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MAJOR PROFESSOR: Dr. Peter Filip  

 

Interaction of friction brakes with external environment can considerably influence their 

performance which could relate to friction instabilities and friction induced vibration and noise. 

Humidity can alter the chemistry of friction surfaces that could relate to unwanted phenomena 

which may increase the cost of product. In addition to the chemical phenomena leading to 

unwanted reactions, there are physical effects related to adsorption of humidity and to 

modification of adhesion, accompanied with changes in contact surfaces and contact mechanics. 

The goal of this thesis is to address these chemical and physical phenomena occurring at friction 

interfaces of model friction materials modified by nano-additives and to relate them to their 

performance. Friction tests were performed by using the bench-top UMT TriboLab friction tester 

equipped with humidity and temperature chambers and scaled-down parameters derived from 

adopted real vehicle braking scenario. Wear surfaces/mechanisms were studied by using 

scanning electron microscopy equipped with the energy dispersive X-ray microanalysis, and 3D 

optical microscope. Vibrational response was monitored by triaxial ICP Accelerometer and 

Oscilloscope. The data were analyzed by use of Matlab. The physical adsorption is dependent 

strongly on the surface topography; nevertheless, the chemical species/products of complex 

reactions generated at the friction surfaces are the dominant factor dictating performance and the 

quantity of absorbed humidity/species. Chemistry of chemicals generated on friction surfaces 
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differs from the chemistry of bulk and a complex correlation between pad formulations and 

brake performance shall be further studied. Adsorption of humidity considerably influences the 

friction performance (friction and its stability, wear, noise and environmental response/pollution 

capacity) of brake pads. Presence of nano-additives made an impact on friction performance at 

elevated humidity conditions. 

Keywords – nanomaterial additives, humidity, friction, scanning electron microscopy, brake pads 

and X-ray microanalysis. 
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CHAPTER 1 

INTRODUCTION 

Friction is a force resisting relative movement of two materials in contact. Friction is 

determined by the system, by properties of the friction materials, by the character of the active 

surfaces of the disc and pad friction called friction layer. In automotive industry, friction is 

mainly observed in the braking applications .A friction brake is a mechanical device that reduces 

motion by absorbing kinetic energy and dissipating heat from a moving system [1]. It is used for 

slowing or stopping a vehicle in motion, most often accomplished by means of friction. Friction 

brakes normally utilize contact between two surfaces compressed together to change the kinetic 

energy of the moving item into heat, however different strategies for energy transformation 

might be utilized [2]. The two main type of brakes used in passenger vehicles are  

- Disc brake system, consisting in pushing two brake pads on to a disc. 

- Drum brake system, consisting in pushing outwards brake shoes mounted inside a drum against 

the inner surface of the drum. 

https://en.wikipedia.org/wiki/Machine
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Figure 1 Schematic picture of Disc brake 

In present automotive vehicles, disc brakes are mostly used as they dissipate the heat 

more efficiently [3], so the current study is on the disc brakes. Modern light and commercial 

vehicles disc-pad brake systems are constituted by a brake disc, integral with the wheel hub, 

which is clamped by brake pads pushed on the disc by slave cylinders inside a caliper fixed to a 

hub bracket [3] see (Figure.1). Here, the kinetic energy of the vehicle is converted mostly to 

thermal energy [4].  

 Brake pad performance shall be defined by the following factors, which include friction 

level and stability, wear rate, propensity to generate vibrations and noise, and impact of wear 

debris on environment and health issues. One of the important factors that defines the 

effectiveness of braking is the brake pad material composition. Brake lining materials generally 

are asbestos, metals, non - asbestos organic (NAO) such as palm kernel shell (PKS), and 
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ceramics. Asbestos during application releases the hazardous gases, which causes health issues 

[5], this led to the ban of asbestos usage in brakes. In general, the brake pads are broadly 

classified into Non-asbestos organic, semi-metallic and low metallic types depending upon the 

material used in brake pads [6]. Typically, non-asbestos brake pads are made from organic 

materials such as glass, rubber and Kevlar, semi metallic brakes contain 30-65% of metals, 

finally, low steel contains less than 30% of steel [7]. Brake pad material composites can easily 

make use of the nanomaterials because of the small size of the particle. With the large surface 

area of nanomaterials very small quantities are needed to observe significant friction altering 

effects as observed by numerous researchers. Specifically, when the nanomaterials become part 

of the friction layer they will increase the contact area, the mechanical properties, reduces wear 

and typically increase and stabilizes the coefficient of friction [8]. Pearlitic cast iron is mostly 

used in brake rotors, one of the most important features of cast-iron brake discs from the disc 

operation point of view is the condition of the working (friction) surface of the disc as this 

surface is not homogenous, it is divided into areas of pearlitic and ferritic structure and other 

areas where graphite precipitates predominate. Due to this overall structure of the friction 

surface, vibrations with high frequencies are being damped [9]. 

Due to the increase in customers’ needs for shorter stopping distance, ease of operation 

and high braking comfort (with low noise and vibration) is leading engineers continue 

developing friction materials matching the increasingly demanding safety, environmental and 

customer requirements [1]. Researchers strive hard to achieve a better braking experience along 

with a stable coefficient of friction when exposed to different braking conditions. Friction 

coefficient is a system property and is not completely depending on materials, rubbing against 

each other [10]. The entire system in which brake operates and other external conditions impact 
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their performance. Experimental studies demonstrated the impact of friction and wear 

performance of a given friction material. Dependency of friction coefficient on normal load, 

relative humidity, temperature, sliding friction, roughness of surfaces and nature of material, 

influence the real area of contact which impacts the friction coefficient [11]. Therefore, friction 

and wear are not simply materials parameters available in handbooks: they are unique 

characteristics of the tribological system in which they are measured [10]. Therefore, when 

performing tests relevant for development, care must be exercised. 

In recent years, various authors have done research on the contact film for the disc 

brakes. The analytical representation of the pad- disc tribological contact is challenging, which in 

turn influences the brake operation by varying the coefficient of friction of the brake, fading [7] 

[12], bedding [13], hysteresis against the pressure, hysteresis against speed [2], wear [14, 15, 16] 

aging [13] and variation in the environmental condition [17], the behavior disc-pad coupling is 

also dependent on the chemical composition and mechanical properties of each brake component 

[18]. 

Once a brake pad is manufactured testing is very important in determining the 

effectiveness of the brake [19]. The testing consists of various on-field tests to laboratory tests 

such as dyno and other small-scale tests. But, the final test involves on vehicle tests equipped 

with full size components. Brake performance is affected not only by the materials and vehicle 

hardware design, but also significantly by driver behavior, the vehicle usage, the state of 

adjustment of the brake hardware, and the overall environment in which the vehicle is driven and 

no laboratory test can simulate driving conditions precisely [1]. The main purpose of testing is to 

simulate the laboratory tests as close as possible to the on-vehicle conditions on which the brake 

pad works. Majority of the standardized friction and wear testing procedures apply somehow 
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“empirical philosophy” to their testing scenarios  [19, 7]. This included, for example, the 

standardized tests of friction and wear e. g. ASTM G99. Similarly, the recommended particles 

defining testing procedures, developed for assessment of brake performance of passenger cars e. 

g. SAE J2522, provide conditions to be used in automotive (“full-scale”) brake dynamometers, 

offering somehow generally adopted test philosophies based on agreement of professional 

committees and applied to a wide range of passenger vehicles [20]. 

In contrast to these strategies, adoption of the “proper scaling-down philosophy” based of 

laws of physics demonstrated that the results obtained on a small scale bench-top tester could 

correlate well with the findings generated using the full-scale automotive brake dynamometer 

performance tests data and their trends [7] [21, 22]. Although the scaling and related testing 

simulations do not aspire to offer a perfect prediction of friction performance in real systems, is 

certainly possible to make educated decisions particularly when “on the research and 

development stages” [23],  which in turn could lead to considerable savings of time and financial 

resources. In addition to the usually controlled physical parameter like normal load (pressure), 

torque, sliding speed, and temperature, the stiffness and dampening characteristics of a particular 

“friction system” significantly impact the measured performance. When considering the 

environmental impact on friction performance, humidity and the presence of other chemical 

species (e. g. deicing agents, lubricants, and hydraulic fluids) play crucial role [14] [24]. Small-

scale tester could easily accommodate the additional requirements, offer considerably larger 

flexibility and more accurate sensing/measurement of relevant parameters when compared to the 

full-scale friction and field tests. Nonetheless, there is no a standardized test procedure which 

could be applied to all the different small scale (subscale) testers, as it is hard to provide a 

universal testing procedure when friction performance shall be assessed [6] [25]. 
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This thesis/research addresses adopts scaling philosophy and addresses brake 

performance due to interaction of nanomodified friction brake materials with external conditions. 

A pin on disk test setup is used to study the friction and NVH characteristics using triaxial 

accelerometer and microphone in the presence of varying relative humidity. Fast Fourier 

Transform (FFT) analysis is performed on the extracted data and the critical frequencies of 

vibrations are identified at different relative humidity. These high amplitude vibrations 

correspond to friction instabilities and influence the brake performance. The development of new 

testing strategy and procedures based in scientific principles and understanding of physical and 

chemical phenomena controlling friction will also be addressed. 
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CHAPTER 2 

LITERATURE REVIEW 

Friction is observed in our daily applications, in which automotive braking is observed 

frequently. In a typical friction brake, two brake pads or shoes are pressed against a rotor, to 

restrict movement between disc and pad surfaces, as shown in Fig 1. In this process, both the 

brake pads and rotor are subjected to wear. The friction behavior is determined by the system, by 

the character of the active surfaces of the rotor and pad friction called friction layer [26]. 

In 1490’s, Leonardo da Vinci observed an increase in frictional force by increasing the 

normal force on the block [27]. In 17th century, French physicist Amontons published his work 

on friction. According to Amontons, friction is caused by surface roughness and the surfaces in 

contact have peaks and valleys, in which peaks of one surface lay in valleys of adjoining surface. 

He believed that the force which is required to pull the peaks up the other surface, until they 

clear. Amonton’s mathematically formulated friction relationship as: 

μ = FL / FN 

where μ is the coefficient of friction, FN is the normal force and FL is friction force. 
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Dragging Force 

Plane of sliding 

 As shown in Fig.1, a block is dragged from left to right, a frictional force FL acts against 

the dragging force.One must study the surface properties, to understand why friction force is 

independent of normal contact area. In microscopic view all surfaces which are smooth also have 

a roughness value. According to Bowden and Tablor, when two solids are in contact, the upper 

surface is supported by the tips of the irregularities between the two solids [28]. When two rough 

surfaces are pressed against each other, the real contact area is very small. According to 

Jacobson and Hogmark, the real area of contact between two surfaces is defined by the hardness 

of two materials and applied normal load [29].   

 

Figure 3. Contact situation between two rough surfaces. 

a) Low load and/or high hardness b) High load and/or low hardness 

FL 

FL 

FL 

FN 

FL 

FL 

Figure 2 Illustration of Friction force 
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Figure 2 shows that only few parts of the surfaces are in real contact with each other. 

With increase of normal load and decrease of hardness of the materials in contact, the real 

contact area between the two surfaces increases. Based on their research Eriksson and Jacobson 

[30] introduced the disc brake contact situation process theoretically. Initially prima`ry plateaus 

are formed by abrasive particles present in the brake pads with regards to the third-body abrasion 

generated by wear debris [31]. The wear debris piles up against the primary plateaus and by 

applying normal pressure, shear forces and heat developed during friction, compacts the piled-up 

wear debris in forming secondary plateaus. The investigation done by Osterle and Bettge (2001) 

contradicted the characterization of contacting surfaces in the form of plateaus protruding from 

the surface by Eriksson and Jacobson [30]. On the other hand, they agreed on the point that a 

lower roughness is observed on the contacting surfaces when compared to the surrounding area.  

It is believed that stick-slip causes high intensity and low-frequency noise [32]. Stick-slip 

phenomena occurs when static friction is higher than kinetic friction. In the case of automotive 

brakes, the stick-slip is depended on the friction material characteristics [33]. Yoon [34] 

investigated the propensity to generate stick-slip condition in brake system, he concluded that 

stick-slip increased with applied load and decreased with speed. Jang’s [35] results show that by 

adding cashew and phenolic resin reduces the difference in coefficient of friction (Δμ), in case of 

brakes containing organic components. By decreasing the difference (Δμ) it is possible to reduce 

stick-slip [35]. In a braking system, vibration is being affecting by higher friction levels and 

negative friction-velocity slope which occurs at high humidity levels and low temperature. In 

addition, stick-slip phenomena are also affected by friction-velocity ratio (μ-v) [35]. In a braking 

system, vibration can be reduced by minimizing the factors that cause stick-slip phenomena, 

which include properties of friction materials, speed, temperature and humidity [36]. 
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J. J. Bikerman [37] reviewed the importance of adhesion between the slider and the 

counter facing support in frictional phenomena. Adhesion is the phenomenon that occurs when 

two surfaces are in contact (either under a pure normal force or under combined normal and 

shear forces). According to Goryacheva and Makhovskaya, [38] adhesion is caused by molecular 

forces between the surfaces and significantly influences the characteristics of contact interaction 

of solids both in static contact as well as in sliding/rolling friction, particularly on micro- and 

nanometer scale levels. When two solid surfaces are clean, i.e when there are no contaminants 

present on the surface, the adhesive forces are stronger. On the other hand, in the presence of 

contaminants and at well lubricated conditions adhesion can decrease considerably [39].  

 

Figure 4 Schematic illustration of a normal force W, which forms an adhesive force and a tensile force W′ which pulls to separate 
them [39] 

 

Earlier, several studies showed that the existence of nanoscale as well as microscale 

roughness is known to dramatically reduce adhesion between two contacting bodies due to a 

decrease in the real area of contact and increase the distance between bulk surfaces and only 

small area are in real contact [40] [41]. When two surfaces are in contact and asperities are close 

enough, van der Waals forces act between them. Surface roughness has an impact on adhesion 
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and friction, higher the roughness of the surfaces lower the real contact area is, which indeed 

lowers adhesion [39].  

 

Figure 5 Formation of menisci due to condensation of liquid molecules [39] 

Menisci are formed around the contact area, due to the condensation of liquid molecules 

around the asperities. These menisci alter the friction level and adhesion during sliding. 

Depending upon the liquid level, menisci would increase or decrease the level of friction. From a 

liquid mediated contact, an external force which is greater than the meniscus force is required to 

separate both surfaces [39].  
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Figure 6 Regimes of different liquid levels [39] 

 

Figure 5 illustrates a contact model of a slider on a rough surface with different regimes, 

varying in dependence on the present liquid levels. Menisci are formed in the first three regimes 

which contribute to meniscus forces. The first and third are the minimum and extreme regimes in 

which a small quantity of liquid condensate around the tips of contacting asperities or the entire 

surface [39]. The interface is fully immersed in the present liquid in the case of the fourth regime 

and low meniscus forces are observed when compared to other regimes. The tow dipping regime 

is directly proportional to normal load and is independent of apparent contact area [39]. The 

effect of water vapor or moisture influence on COF is observed by examining the effect of 

humidity. It is known that many brakes develop “morning sickness” which occurs during startup 

after overnight parking in between fall and spring when humidity could rise overnight and reach 
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a high level of 90% in cold morning [42]. It has been reported that friction associated with 

adsorbed water film and high humidity could be 50% higher than “dry COF” [43, 44]. As 

humidity increases, COF may have larger variation during initial sliding process which is related 

to surface tension [42]. When there is insufficient amount of water present between rotor and 

brake pad, the water film can fractionate into small bridges and surface tension of water at 

menisci [42]. High humidity could develop high friction due to capillary adhesive force for the 

interface with all surface and higher in case of smooth surfaces when water meniscus is 

substantially established [42]. 

 Typically, a commercial brake pad consists of 1-8 vol% abrasive with a size of several 

microns [45]. Tribological characteristics of friction material are being influenced by a large 

number of particles in the form of oxides and carbides with varying size and shape [46, 47]. Use 

of inorganic fillers in polymeric composites is increasing, they alter friction performance, wear 

resistance and meet required performance. Some of the main advantages of nanoparticles: 

Firstly, nanoparticles exhibit large specific surface area which increases the propensity to 

transfer stress from matrix to nanoparticles and increases strength of composites, their hardness 

and wear resistance [48, 49]. Secondly, addition of nanoparticles helps in retaining the intrinsic 

merits of pure polymers. Thirdly, angularity of the abrasives is decreased with decreased particle 

size which leads to the improvement of mechanical behavior of the polymer [50]. It has been 

demonstrated that to achieve the optimal friction performance, the polymer matrix composites 

should be modified with different materials [45]. 

 Wang [51] summarized the effects of nanoadditives on polymeric matrices and concluded 

that by adding nano-fillers to polymers not only can lead to an increase of the friction 

performance, but it can also decrease it, and nanoadditives alter friction performance in different 
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ways. Friction performance is typically judged by the level and stability of the COF, wear rate, 

propensity to vibrational and noise and environmental aspects. Lee [52] studied different 

abrasives including zirconia, quartz, Fe2O3, Fe3O4, MgO and SiC with different sizes 1 and 150 

µm and concluded that size was one of the dominant factors in controlling friction oscillations 

and stability.  J. Bijwe [53] worked on 3 different abrasives in nano and micron sizes for 

developing friction materials and concluded that all performance parameters were significantly 

affected due to nano-fillers as they form thin coherent film on both the surfaces in case of NCs 

which is responsible for enhanced friction performance. According to Li [54] lubricating oil with 

ZrO2 and SiO2 nanoadditives and decrease in average coefficient of friction as the nanoparticles 

were eventually transferred to the friction contact and altered sliding friction into rolling friction.  

 Hence, the formulation of brake pads plays a vital role in friction behavior. According to 

Osterle [55] the relationship between composition and property of friction materials is not known 

well enough, the formulation is based on trial and error and thus is expensive and time 

consuming. Testing is another important thing which shows the effectiveness of an automotive 

brake [56]. Many brake manufacturing companies conduct laboratory tests using brake 

dynamometer. But to overcome the cost and time effectiveness in testing friction materials 

Bruker has developed a Universal Mechanical tester (UMT) which is a bench top tester and can 

test brake pads much efficiently than dyno [56].  
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Figure 7 Possibilities for scaling tribo testing 

Figure 6 provides research done by Czichos, varying from on-field tests to laboratory 

testing with simple geometry [57] and concluded that in laboratory tests, the factors that 

determine wear rates are not sufficiently well controlled. Using chase type friction tester, Ertan 

and Yavuz [17] demonstrated that, manufacturing parameters influence the friction stability, 

wear resistance of pads rubbed against surface of gray cast iron rotor. Oliviero Giannini [58] 

conducted a research to characterize the vibration and noise. They designed and built a 

laboratory test model for controlling experimental studies of noise emission in automotive brake. 

Their results indicated that frequency of vibration is affected by the stiffness of caliper, but the 

vibration of the whole system remains qualitatively the same.  
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Many researchers compared large scale dynamometer and small-scale chase machine, but 

these tests were conducted without scaling methodology.  A. Wahab et al [59] used the scaled 

down methodology to evaluate the thermal performance of disc brake. A comparison is done 

between full-scale dynamometer and bench top material screening tester to evaluate the 

performance of a brake pad and it is demonstrated that the scaled down tester is reliable, 

effective for screening tests and to evaluate brake pad friction performance [60]. The automotive 

industry uses inertia-dynamometer tester for screening tests, the main reasons for performing 

screening tests are to study the friction and wear properties of materials and to rank the materials. 

On small scale UMT features, low cost and less time for evaluation. Proper scaling methodology 

must be used to evaluate the wear and friction performance in the case of a small-scale bench top 

tester. There are different scaling laws depending on their involvement in the fields of 

applications [61]. Some of the scaling laws which are essential include the following.   

Scaling: 

Due to the increase in dependency of modern technology on miniaturization, scaling laws 

are used to predict the behavior of a larger system on a small-sized scale model. Some 

researchers call these laws by the name “dimensional analysis”. There are 2 types of scaling, 

isomorphic and allometric. In case of isomorphic scaling, all the aspects of a device scale with 

respect to geometric integrity. When different aspects scale in different ways, it is called 

“allometric” scaling. In miniaturization scaling laws play a vital role in understanding different 

physical aspects involved in complex systems. All quantities in physics have dimensions that can 

be expressed in fundamental quantities they are mass (M), length (L) and time (T). Scaling of 

different geometric parameters follows the laws given below 
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Scaling of Area and Volume 

     The general rule is called “square law”: 

(ratio of areas) = (ratio of lengths)2 

  (ratio of volumes) = (ratio of lengths)3 

These two relationships can be expressed in one governing equation [62]:  

(ratio of volumes) (1/3) = (ratio of areas) (1/2) = (ratio of lengths)1 

Consider a simple rectangular solid, with length l, height h and thickness t. Each of these 

dimensions can be generalized as a characteristic dimension “l”. Different quantities can be 

expressed (characterized) by the initial characteristic length l. For instance, mass is equal to 

density times volume (m = ρV). Density is constant, as we are scaling for the same material and 

density is a material property.  So that mass is directly proportional to volume, which in turn is 

expressed by the third power of characteristic length. Therefore,  

m ∝ l 3 

 Volume is expressed using the characteristic, length l as follows 

V = htl ∝ l . l . l ∝ l 3 

So, volume is expressed as the third power of characteristic length. In similar way the surface 

area is expressed by the second power of the characteristic length 

S = 2 (ht + tl+ hl) = 2 ( l 2+ l 2+ l 2) ∝ l 2 

In case of force, we all know that  

Mechanical Force (F) = mg, where g is gravitational constant 

F = mg∝ l 3 (Mass is always proportional to the volume of the body) 
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So, force is expressed as the third power of characteristic length. In similar way the acceleration 

is expressed by the zero power of the characteristic length 

From the second law of motion, F = ma or a = F/m 

a = l 3/ l 3 = l 0 = 1 

In case of surface to volume ratio is expressed by the power of negative one of the characteristic 

length.  

S/V = l 2 / l 3∝ 1/ l 

In order to scale time, the displacement equation can be used:  

S = (1/2).a.t2, 

where  

a is acceleration, S is displacement, and t is time Hence, 

t = (2 S/a)1/2 = (2 Sm/F)1/2 

By substituting the scaling of mass and force, we have: 

[t] = [s]1/2[m]1/2[F]-1/2 = [l]1/2[l 3]1/2[l 3]-1/2 = [l]1/2 

  

 

 

 

 

 

lpad lsample 

Figure 8 length comparison of real brake pad to pad sample 
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Figure 8. shows real brake pad and pad sample, where lpad is length of real brake pad and 

lsample is length of cut down sample. In this thesis, scaling is done based on area, let A1 be area of 

real brake pad and A2 be area of cut down pad sample and consider S as scaling factor. 

We know that area of the pads and samples are being used to scale down the results: 

(ratio of areas) = (ratio of lengths)2 

Hence,  

 Length of real brake pad

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑎𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
= 𝑆  

Ratio of areas= 
Area of real brake pad

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑝𝑎𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
 = (

 Length of real brake pad

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑎𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
)

2

= S2 

Similarly, other parameters with their scaling factor are given in table. 1 

Table 1. Scaling in different parameters 

 

 

 

 

 

 

 

Parameters Scaling factor for parameter 

Force(N) S3 

Velocity (meter/sec) S0.5 

Time (sec) S0.5 

Angular velocity (rpm) S-0.5 

Energy(J) S4 
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In current testing, Universal Mechanical Tester will be considered as small-scale test and 

scaled down parameters are calculated for different braking scenarios. In the current thesis, the 

following parameters which include Normal load, pressure, rotational speed of disc, acceleration 

and time were scaled down and are determined for Universal Mechanical Tester using the real 

braking test and drag test scenarios. These tests are conducted for same materials but at different 

humidity levels and then a comparison is done between different testing conditions. Friction 

induced vibrations is also addressed as it is one of the factors which determines the brake 

performance. 
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CHAPTER 3 

 

STATEMENT OF OBJECTIVES 

 

1. Demonstrate the effect of humidity in nano-modified brake pad materials when subjected 

to different humidity levels. 

2. Explore differences obtained with different braking conditions which include, real 

braking and drag test testing scenarios. 

3. Correlate the friction induced vibration to detected friction levels and stability and to 

generated noise. 
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CHAPTER 4 

 

EXPERIMENTAL 

4.1. Brake pad model samples 

The experiments described in this paper are conducted on two model brake samples 

prepared in laboratories.  Composition of these model samples was based on a series of materials 

used for manufacturing commercial brakes. Different types of commercial brake pads are 

available in US, classified as semi-metallic (SM), Low-metallic (LM), non-asbestos organic 

(NAO) [1] .  Modified phenolic resin, polymeric fibres, ceramics, nano additives ZrSiO4(50 nm 

average size), metal compounds and solid lubricants were weighted with accuracy of +/- 1mg 

(OHAUS Explorer Pro balance), mixed in Stephan vertical mixer (model 2786) for 12 minutes, 

hot pressed in a cylindrical steel mold (inner diameter of 50mm) at 20 MPa and 170֯ C for 15 

minutes and subsequently post cured in programmable furnace (Isotemp, Fisher Scientific) at 

180 C for 4 hours. Friction samples with dimensions of 10 X 10 X 7 mm and density varying 

between 2.3 (NAO) and 3 gm/cc (LM) were cut-off by using water cooled precision diamond 

saw (Buehler, ISOMET 4000). 

  

Figure 9 (a) Buehler ISOMET 4000 and (b) Sample used in holder 
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4.2. Rotor material 

 The rotor used is a grey pearlitic cast iron which is typically seen in passenger vehicles. 

The diameter of rotor is 97 mm and its thickness is 12 mm as shown in Figure 2. Surfaces of cast 

iron rotors were prepared by grinding using a BUEHLER sand paper with 320/P400 grid and the 

tested friction couple were subjected to run-in procedure before testing [1]. 

 

Figure 10 Pearlitic cast iron rotor 

4.3. Sample holder 

A sample holder is designed in such a way that it can fit inside the humidity chamber and 

is used to hold the three samples at a radius of 38mm is used as shown in Figure 3 

 

Figure 11 Sample holder used in UMT 
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4.4. Universal Mechanical tester (UMT) 

Bruker's brake Material Screening Tester for the UMT Tribo Lab was specifically 

developed to be a cost-effective, fast screening and rank materials before performing the 

component level evaluation, with the techniques used, the tribological performance of small, 

friction material samples can be characterized in a precise and timely manner, while mounting 

key parameters such as sliding speed, friction, wear, vibration and temperature [2]. Universal 

Mechanical tester with a humidity chamber is shown in below Figure 4. The humidity chamber 

which is controlled by the humidity generator is being isolated from the outer environment. Both 

UMT and the humidity chamber were operated form a computer.  

 

 

(a)                                       (b) 

Figure 12 (a) UMT Bench Top Tester (b) Accelerometer and microphone mounting. 

A force and torque sensor are equipped on this sub scale tester to monitor the normal load 

applied and the torque generated by the friction pads. The force sensor can measure up to 1000N 

of load with accuracy of +/- 0.01 N and torque sensor can measure up to 30Nm with an accuracy 

of +/- 0.01 Nm. A closed chamber with enough space to accommodate the sample holder and 

rotor is used to maintain the humidity level. The chamber has an inlet connected to a humidity 
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generator by means of a hose pipe which allows dry and wet air to flow into the chamber. The 

humidity generator can generate relative humidity of up to 90% with an accuracy of +/_ 0.1% 

and the humidity level is monitored by the means of a sensor placed inside the chamber. 

 Vibration response was monitored by tri-axial ICP accelerometer (PCB Piezotronics, 

Model=356A45) coupled with Oscilloscope (Agilent Technologies, Model=MSOX2024A), this 

accelerometer is capable of measuring frequency between 0.8 and 8000 Hz. Noise response was 

monitored by a 1/4" free-field, prepolarized microphone (PCB Peizotronics, Model==377C01) 

which can measure between a range of 4 and 100 KHz. The accelerometer is mounted on the 

machine as shown in Figure 6, which is nearer to the sample holder using adhesive mount and 

the microphone is stuck on to the platform around the chamber to recover every sensitive sound 

occurring. Keysight BenchVue software is used to save data from the oscilloscope at a sampling 

rate of 50 KHz. Data from the sub scale tester is extracted at a sampling rate of 18KHz using 

UMT Viewer software (Bruker). 

4.5. Run-in Process 

Run-in ensures that pad samples touch the rotor evenly and with a largest possible contact 

area. Typically, automotive dynamometer tests standards require that at least 80% of the 

apparent pad contact area “touches” the rotor counter face. Initially after grinding the rotor with 

sandpaper, a 180-grid sandpaper is stick on the surface of the rotor. The cut down samples are 

placed in the sample holder and then a load of Fz= 200 N is applied for 5 minutes, followed by a 

relaxing time of one minute to prevent samples from being overheated. Five periods were 

performed as shown in Figure 5. After run-in process, friction force approached to converged 

values in the end after five periods as shown in figure 6, it meant that the samples and the rotor 

were evenly touched, and the following tests were trustworthy.  
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Figure 13 Run in process 

 

Figure 14 Friction force during Run in process 

4.6. Friction Test Scenarios: 

Two brake test scenarios were performed at different humidity levels. The first test is real 

braking simulation test, which is a parking lot scenario in which the car starts braking from 5 

Mph to rest, during this process the braking load increases from 0 to 300N correspondingly. In 

real braking simulation testing, both the applied load and speed varies. The second test is drag 

test it is assumed that car is moving at 5 Mph with a load of 300N applied constantly throughout 
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the test. Both the tests are conducted at extreme humidity levels with 15% RH as lower humidity 

level and 65% RH as higher humidity level. 

  Each model brake is tested for 3 repetitions and the average of the three tests are 

reported. Data from accelerometer and microphone are extracted using oscilloscope and 

Keysight BenchVue software during steps 3 & 5. The data from oscilloscope are collected at a 

sampling rate of 50KHz and from sub scale tester at a sampling rate of 18 KHz.  

Fast Fourier Transform analysis was used to analyze data obtained from the sub scale 

tester and oscilloscope to convert the mechanical vibrations and coefficient of friction 

oscillations signal into amplitude and frequency. Matlab (Mathworks, Version=R2015a) was 

used to perform Discrete FFT analysis on the data obtained at a sampling rate of 18KHz for 

better data comparison.   

4.8. Surface analysis: 

Friction surface analysis was performed after friction test. Friction surface of tested 

samples was investigated by using Scanning Electron Microscopy (SEM), which is a technique 

used to produce images by scanning the surface with a focused electron beam. The topography of 

the surface is created by scanning the sample and collecting the secondary electrons which are 

collected by special detector. The samples surfaces were observed after running friction tests at 

20%RH and 70%RH for both the braking scenarios. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

Friction Tests: 

Real brake simulation and drag tests are conducted at different humidity levels in UMT. 

Then, by using MATLAB graphs are plotted and put together for easier comparison. In the 

following graphs, the blue line indicates COF at higher humidity level (65%RH) and black line 

represent COF at lower humidity level (15%RH).                        

 

Figure 15 Real Braking test for Model material 1 (LM) 
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Figure 16 Real Braking test for Model material 2(NAO) 

 

Figure 17 Drag test for Model material 1 (LM) 
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Figure 18 Drag Test for Model material 2 (NAO) 

Figures 15, 16, 17 and 18 show the detected COF for two different samples tested at 

different humidity’s, for 2 different Friction tests. In case of real braking test, friction coefficient 

is higher at 65%RH when compared to the values detected at 15%RH for modal material 1(LM) 

(figure 15). Although, this increase of the COF with increased humidity level contradicts with 

the observation by [21]. In figure 16 COF is initially higher for model brake 2 (NAO) but, tends 

to decrease in the end. COF is unstable for LM at different humidity levels when compared to 

NAO. On the other hand, for drag test COF is stable in different humidity levels for both LM and 

NAO. In figure 10 NAO has almost equal COF at 15%RH and 65%RH, this shows that humidity 

does not affect the friction performance of NAO brake pad. In all the cases, the difference 

between COF at 15%RH and 65%RH is higher for LM, than that of NAO. The average COF for 

NAO at 15RH is higher than that of LM. When comparing both the real braking and drag tests, 

it’s clearly observed that COF is more stable in case of drag test (Figures 17 and 18).  
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Surface Analyses of tested Samples after Friction tests: 

 Friction surface of tested samples was investigated by using SEM equipped with the 

energy dispersive X-ray microanalysis. Figure 16 shows the characteristic topography of friction 

surface as observed in model pad material 1 (LM sample). The elevated plateaus are formed on 

metallic fibers present in brake pad composite. Obviously, the real contact area is considerably 

smaller than the apparent surfaces of pad samples. The contact is predominantly on the metallic 

chips, but there are few plateaus formed by compacted wear debris.    

Model samples LM and NAO revealed their different chemistry. While LM contains 

metallic chips, NAO is formulated without metal fibers. The role of metallic fiber is to reinforce 

the composite and to increase its thermal conductivity, but it also impacts the contact area with 

the rubbing counter-face (gray cast iron). It is easily visible that the valleys surround the plateaus 

by removal of wear debris [35]. In figure 16 (b) the bright spots are visible as metallic chips or 

heavier compounds and the dark areas are related to rubber or coke. Several micro-cracks can be 

easily seen in Figure 16, they indicate that fatigue mechanism was also involved in sliding 

process. EDX analysis shown in Figure 16 (c) provide chemical components of friction surfaces 

as detected for modal material 1 after friction tests. Bright strips in Figure 16 (b) were associated 

with steel chips with typical grooving, indicating abrasive wear. Little amounts of Mo were also 

observed which could be due to transfer from wearing of cast iron rotor. A great amount of iron 

was detected, and iron oxide is the dominant component detected. Besides iron, Si was also 

present in this area. Si presence could be abrasive silicate particles like silicon dioxide (SiO2). 

The presence of Ca, Cr and K can be associated with potassium titanate (K2TiO3), calcite 

(CaCO3) and calcium sulphate (CaSO4). Besides Fe and Si, it is noticed that presence of calcium 

was also dominated on the friction surface. 



32 
 

 
 

 

  

(a)                                                          (b) 

 

(c) 

Figure 19 (a) SEM of modal material 1 at 250X magnification, (b) Back Scattered Electron image for modal material 1 and 

(c) EDX analysis of Modal material 1 after friction tests 
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(a)                                                                (b) 

 

(c) 

Figure 20 (a) SEM of modal material 2 at 250X magnification, (b) Back Scattered Electron image for modal material 2 and 

(c) EDX analysis of Modal material 2 after friction tests 

 

Figures 20 shows characteristic topography of friction surface as observed in model 

material 2 (NAO) these images indicate that the surfaces included valleys (White arrows), and 

plateaus. The sliding directions are indicated by the grooves, which shows the evidence that 

abrasive particles remained after friction process. Friction layer formed during braking process 

plays a major role in determining friction performance. However, structures and chemical 
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components on the friction layer tremendously differ from the entire matrix [33]. A friction layer 

is generated on a friction surface after sliding process, and it is formed from wear debris by 

compaction and sintering at high temperatures [34]. Components from plateaus due to higher 

wear resistance and those wear debris result in flat surfaces [34]. From Figure 20 it is clearly 

observed that the contact area of modal material 2 is predominantly formed by a friction layer 

formed on the surface from captured wear debris. Figure 20 (c) represents EDX analysis of 

Modal material 2 after friction tests. Fe and Mn elements dominated this area and the existence 

of Si, Mg, Zr and Al are possibly related to Silicon dioxide (SiO2), Aluminum oxide (Al2O3) and 

zirconium silicate (ZrSiO4) used in the formation of brake pads. Modal material 2 is NAO (Non- 

Asbestos Organic) brake pad which does not have any metallic elements in the brake, presence 

of iron results in the formation of friction film from the wear of iron present in brake disc which 

is gray cast iron. With the presence of oxygen, instead of pure metals, metal oxides such as 

aluminum oxide, iron oxide and magnesium oxide most likely existed. The surface chemistry of 

both the samples are compared and it is observed that chromium components are only present in 

LM material, from results we know that LM material, is having unstable COF, this instability 

might be occurring in LM due to the existance of chromium components in it. 

Friction induced vibration and noise: 

Real braking test: 

Figure 21 (a) represent the accelerometer vibrations, 21 (b) represent the noise recorded 

and 21 (c) represent the distribution of COF for modal material 1 at low humidity level. 

Significant vibrations are observed initially during the engagement with an amplitude range of 

(0.5-1) m/s2. Few peaks are observed at 3000Hz and 5000Hz frequency with an amplitude of 1 

m/s2 and 0.75 m/s2 respectively. But, there is no noise recorded by the microphone at these 

peaks, microphone recorded data with amplitude near to 20dB in the initial stage, during the 
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engagement of samples with the rotor.  In between 6000Hz and 9000Hz frequency peaks are 

observed in recorded COF with amplitudes 4x10-5 and 3x10-5 respectively, but there is no noise 

dependence during these peaks, neither any vibrations are observed in the accelerometer. 

 

(a) 

 

(b) 
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(c) 

Figure 21 FFT analysis of accelerometer (a), microphone (b) and COF in UMT (c) for modal material 1 at 15%RH 

 

(a) 
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(b) 

 

(c) 

Figure 22 FFT analysis of accelerometer (a), microphone (b) and COF in UMT (c) for modal material 1 at 65%RH 
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Figure 22 (a) represent the accelerometer vibrations, 22 (b) represent the noise recorded 

and 22 (c) represent the distribution of COF for modal material 1 at high humidity level. No 

significant vibrations are observed during the complete friction test. Microphone recorded data 

with amplitude near to 15 dB in the initial stage, during the engagement of samples with the 

rotor. In between 6000Hz and 9000Hz frequency peaks are observed in recorded COF with 

amplitudes 4x10-5 and 3x10-5 respectively, but there is no noise dependence during these peaks, 

neither any vibrations are observed in the accelerometer. Similar trend is observed in Figure 21 

(c) for low humidity condition as well. Increase in humidity results in lowering the vibration in 

case of modal material 1. Similar decrease is observed in recorded noise by microphone.  

 

 

 

(a) 
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(b)

(c) 

Figure 23 FFT analysis of accelerometer (a), microphone (b) and COF in UMT (c) for modal material 2 at 15%RH 
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(a) 

 

(b) 
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(c) 

Figure 24 FFT analysis of accelerometer (a), microphone (b) and COF in UMT (c) for modal material 2 at 65%RH 

 

Figure 23 (a) represent the accelerometer vibrations, 23 (b) represent the noise recorded 

and 23 (c) represent the distribution of COF for modal material 2 at low humidity level. 

Significant vibrations are observed initially during the engagement with an amplitude range of 

(0-0.5) m/s2. Microphone recorded data with amplitude near to 20dB in the initial stage, during 

the engagement of samples with the rotor. In between 6000Hz and 9000Hz frequency peaks are 

observed in recorded COF with amplitudes 4x10-5 more respectively, but there is no noise 

dependence during these peaks, neither any vibrations are observed in the accelerometer. 

Figure 24 (a) represent the accelerometer vibrations, 24 (b) represent the noise recorded 

and 24 (c) represent the distribution of COF for modal material 2 at high humidity level. 

Vibrations are observed at 2000Hz frequency with an amplitude of 0.5 m/s2, but there is no noise 

recorded during these vibrations. Few peaks are observed at 3000Hz and 5000Hz frequency with 

an amplitude of 1 m/s2 and 0.75 m/s2 respectively. But, there is no noise recorded by the 
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microphone at these peaks, microphone recorded data with amplitude near to 20dB in the initial 

stage, during the engagement of samples with the rotor. In between 6000Hz and 9000Hz 

frequency peaks are observed in recorded COF with amplitudes 4x10-5 and 3x10-5 respectively, 

but there is no noise dependence during these peaks, neither any vibrations are observed in the 

accelerometer, Similar trend is also observed in case of low humidity. The overall amplitude of 

vibration and noise response is decreased at higher humidity level. In case of real braking change 

in humidity effects the frictional performance of NAO brake pads, in which they perform 

considerably well at higher humidity levels. 

Drag test: 

Accelerometer vibration data, microphone noise data and the COF data collected in case 

of Drag test for each model brake at different relative humidity levels are plotted in Figures 25, 

26, 27 and 28 respectively. 

 

(a) 
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(b) 

 

(c) 

Figure 25 FFT analysis of accelerometer (a), microphone (b) and COF in UMT (c) for modal material 1 at 15%RH 
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(a) 

 

(b) 
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(c) 

Figure 26 FFT analysis of accelerometer (a), microphone (b) and COF in UMT (c) for modal material 1 at 65%RH 

 Figure 25 (a) represent the accelerometer vibrations, 25 (b) represent the noise recorded 

and 25 (c) represent the distribution of COF for modal material 1 at low humidity level. 

Significant vibrations are observed in all the 3 axes, initially during the engagement with an 

amplitude range of (0.5-1) m/s2. Few peaks are observed at 3000Hzfrequency with an amplitude 

of 0.5 m/s2, but there is no noise recorded by the microphone at the respective peak, microphone 

recorded data with amplitude near to 20dB in the initial stage, during the engagement of samples 

with the rotor. In between 6000Hz and 9000Hz frequency COF vibrated with an amplitude of 

4x10-5, but there is no noise dependence during these peaks, neither any vibrations are observed 

in the accelerometer.  

Figure 26 (a) represent the accelerometer vibrations, 26 (b) represent the noise recorded 

and 26 (c) represent the distribution of COF for modal material 1 at high humidity level. 

Significant vibrations are observed initially during the engagement with an amplitude range of 

value greater than 1 m/s2. Few peaks are observed at 3000Hz, 8000Hz and 9000Hz frequency 
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with an amplitude of 0.75 m/s2. But, there is no noise recorded by the microphone at these peaks, 

microphone recorded data with amplitude near to 20dB in the initial stage, during the 

engagement of samples with the rotor. In between 6000Hz and 9000Hz frequency peaks are 

observed in recorded COF with amplitudes 4x10-5 and 3x10-5 respectively, but there is no noise 

dependence during these peaks, neither any vibrations are observed in the accelerometer. By 

comparing Figures 25 (c) and 26 (c) it is clearly observed that COF has different vibrations at 

different humidity levels, but neither of them show any dependency over noise. In case of drag 

test, increase in humidity has impact on vibrations in COF for LS brake pads.  

(a) 
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(b) 

 

(c) 

Figure 27 FFT analysis of accelerometer (a), microphone (b) and COF in UMT (c) for modal material 2 at 15%RH 



48 
 

 
 

 

(a) 

 

(b) 
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(c) 

Figure 28 FFT analysis of accelerometer (a), microphone (b) and COF in UMT (c) for modal material 2 at 65%RH 

 

Figure 27 (a) represent the accelerometer vibrations, 27 (b) represent the noise recorded 

and 27 (c) represent the distribution of COF for modal material 2 at low humidity level. Few 

vibrations are observed in all the Y-axes, initially during the engagement with an amplitude 

range of 0.5 m/s2. Few peaks are observed at 3000Hz frequency with an amplitude of 0.5 m/s2, 

but there is no noise recorded by the microphone at the respective peak, microphone recorded 

data with amplitude near to 20dB in the initial stage, during the engagement of samples with the 

rotor. At 300Hz, 6000Hz and 9000Hz frequency COF vibrated with an amplitude of 1x10-5 and 

4x10-5 respectively, but there is no noise dependence during these peaks, neither any vibrations 

are observed in the accelerometer.  

Figure 28 (a) represent the accelerometer vibrations, 28 (b) represent the noise recorded 

and 28 (c) represent the distribution of COF for modal material 2 at high humidity level. No 

Significant vibrations are observed initially during the engagement when compared with. Few 
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peaks are observed at 3000Hz, 8000Hz and 9000Hz frequency with an amplitude of 0.75 m/s2. 

But, there is no noise recorded by the microphone at these peaks, microphone recorded data with 

amplitude near to 20dB in the initial stage, during the engagement of samples with the rotor. 

Peaks are observed at 2000Hz, 3000Hz and in between 6000Hz and 9000Hz in recorded COF 

but there is no noise dependence during these peaks, neither any vibrations are observed in the 

accelerometer. By comparing Figures 25 (c) and 26 (c) it is clearly observed that COF has 

different vibrations at different humidity levels, but neither of them show any dependency over 

noise. As humidity increases, the COF vibrations also increases, similar trend is observed in case 

of modal material 1 for Drag test. By comparing figures 27 (a) and 28 (a), vibrations are reduced 

by increase in humidity and performs well at higher humidity conditions which is also observed 

in Real Braking condition.  
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CHAPTER 6 

CONCLUSION 

1. Increase of relative humidity increased the level of detected coefficient of friction. 

2. LM brake pad has larger differences in COF with varying humidity conditions when 

compared with NAO brake pad. 

3. During braking process, the real contact takes place at elevated areas on the surfaces. 

Those plateaus, groves and sliding direction are observed in SEM images. 

4. Real braking simulation and drag tests generate completely different results. 

5. Due to the presence of nano-additives, friction induced vibrations at higher humidity 

conditions are reduced. 

6. It is observed that if there are oscillations in friction levels and if we observe vibration in 

system. It does not necessarily mean that there is always a noise. 
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