
Southern Illinois University Carbondale Southern Illinois University Carbondale

OpenSIUC OpenSIUC

Theses Theses and Dissertations

5-1-2018

Predicting the Stock Market Using News Sentiment Analysis Predicting the Stock Market Using News Sentiment Analysis

Majid Memari
Southern Illinois University Carbondale, memari@siu.edu

Follow this and additional works at: https://opensiuc.lib.siu.edu/theses

Recommended Citation Recommended Citation
Memari, Majid, "Predicting the Stock Market Using News Sentiment Analysis" (2018). Theses. 2442.
https://opensiuc.lib.siu.edu/theses/2442

This Open Access Thesis is brought to you for free and open access by the Theses and Dissertations at OpenSIUC.
It has been accepted for inclusion in Theses by an authorized administrator of OpenSIUC. For more information,
please contact opensiuc@lib.siu.edu.

https://opensiuc.lib.siu.edu/
https://opensiuc.lib.siu.edu/theses
https://opensiuc.lib.siu.edu/etd
https://opensiuc.lib.siu.edu/theses?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2442&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/theses/2442?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2442&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

PREDICTING THE STOCK MARKET USING NEWS SENTIMENT ANALYSIS

by

Majid Memari

Bachelor of Industrial Engineering, Azad Tehran University, 2010

Master of Business Administration (MBA), Azad Qazvin University, 2015

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master of Science Degree

Department of Computer Science

Graduate School Southern Illinois University Carbondale

May 2018

THESIS APPROVAL

PREDICTING THE STOCK MARKET USING NEWS SENTIMENT ANALYSIS

By

Majid Memari

A Thesis Submitted in Partial

Fulfillment of the Requirements

For the Degree of

Master of Science Degree

In the field of Computer Science

Approved by:

Dr. Shahram Rahimi, Chair

Dr. Norman Carver

Dr. Banafsheh Rekabdar

Graduate School

Southern Illinois University Carbondale

November 3rd, 2017

i

AN ABSTRACT OF THE THESIS OF

MAJID MEMARI, for the Masters of Science degree in Computer Science, presented on

November 3rd, 2017 at Southern Illinois University, Carbondale, IL.

Title: PREDICTING THE STOCK MARKET USING NEWS SENTIMENT ANALYSIS

Major Professor: Dr. Norman Carver

 Big data is a term for data sets that are so large or complex that traditional data processing

application software is inadequate to deal with them. GDELT is the largest, most comprehensive,

and highest resolution open database ever created. It is a platform that monitors the world's news

media from nearly every corner of every country in print, broadcast, and web formats, in over

100 languages, every moment of every day that stretches all the way back to January 1st, 1979,

and updates daily [1].

 Stock market prediction is the act of trying to determine the future value of a company stock

or other financial instrument traded on an exchange. The successful prediction of a stock's future

price could yield a significant profit. The efficient-market hypothesis suggests that stock prices

reflect all currently available information and any price changes that are not based on the newly

revealed information thus are inherently unpredictable [2].

 On the other hand, other studies show that it is predictable. The stock market prediction has

been a long-time attractive topic and is extensively studied by researchers in different fields with

numerous studies of the correlation between stock market fluctuations and different data sources

derived from the historical data of world major stock indices or external information from social

media and news [6].

ii

 The main objective of this research is to investigate the accuracy of predicting the unseen

prices of the Dow Jones Industrial Average using information derived from GDELT database.

Dow Jones Industrial Average (DJIA) is a stock market index, and one of several indices created

by Wall Street Journal editor and Dow Jones & Company co-founder Charles Dow. This

research is based on data sets of events from GDELT database and daily prices of the DJI from

Yahoo Finance, all from March 2015 to October 2017. First, multiple different classification

machine learning models are applied to the generated datasets and then also applied to multiple

different Ensemble methods. In statistics and machine learning, Ensemble methods use multiple

learning algorithms to obtain better predictive performance than could be obtained from any of

the constituent learning algorithms alone. Afterwards, performances are evaluated for each

model using the optimized parameters. Finally, experimental results show that using Ensemble

methods has a significant (positive) impact on improving the prediction accuracy.

Keywords: Big Data, GDELT, Stock Market, Prediction, Dow Jones Index, Machine Learning,

Ensemble Methods

iii

ACKNOWLEDGEMENTS

 In dedication to my thesis advisor Dr. Norman Carver, who has guided me these past few

years. It is only because of him that I have reached this point in my journey and have attained the

knowledge, resiliency, persistence, and support needed to accomplish my goal.

 I would like to extend a personal thank you to Dr. Sharam Rahimi, who in conjunction with

Dr. Norman Carver, assisted me continuously throughout my research.

 I would like to acknowledge my committee members in addition to Dr. Norman Carver and

Dr. Sharam Rahimi, Dr. Banafsheh Rekabdar who have taken the time to attend my defense.

 Finally, I want to extend my appreciation to my family and friends without whom this

accomplishment would not have been possible.

iv

TABLE OF CONTENTS

CHAPTER PAGE

ABSTRACT ... i

ACKNOWLEDGMENTS ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

1. INTRODUCTION ...1

1.1 Statement of the Problem ..2

1.2 Objectives and Contributions ..3

2. BACKGROUND AND RESEARCH ..5

2.1 Big Data ...6

2.1A Misconceptions about Big Data ..7

2.2 GDELT ..8

2.3 Literature Review ..13

3. METHODOLOGY AND EXPERIMENTS ..16

3.1 Historical Data ..16

3.2 Data Collecting ...17

3.3 Model Selection ..19

3.4 Preprocessing the Data ...20

v

3.5 Time Lag ..21

3.6 Feature Engineering ..23

3.7 Classification ..24

3.8 Dealing with Negative and Positive Sentiments ..29

3.9 The Tools ..30

3.10 Prediction ...30

4. THE RESULTS OF THE EXPERIMENTS ..31

4.1 Classification ..32

4.1.A Logistic Regression Classifier ...32

4.1.B K Nearest Neighbors Classifiers ...35

4.1.C Support Vector Machine ...36

4.1.D Random Forest Classifier ..38

4.1.E Multi-Layer Perceptron Classifier ...42

4.2 Ensemble Methods ...46

4.2.A Ensemble Voting Classifier ..47

4.2.B Naïve Bayes Methods ...48

4.2.C Bernoulli Naïve Bayes ..49

4.2.D Adaptive Boosting Classifier ..49

vi

4.2.E Ensemble Gradient Boosting Classifier ..50

4.2.F Bagging Classifier ...55

4.3 Summary of Classification Results ...57

4.4 Prediction ..58

5. CONCLUSION AND FUTURE PERSPECTIVE...61

REFERENCES ..63

APPENDIX A ..66

APPENDIX B ..68

APPENDIX C ..70

Vita ..73

vii

LIST OF TABLES

TABLE PAGE

Table 1 Quick Review of the GDELT Attributes ..10

Table 2 List of Keywords for DJIA ...18

Table 3 Feature Engineering ..20

Table 4. Filtered and Unfiltered Data Sets...21

Table 5 The 30 Largest Countries by Net National Wealth ...22

Table 6 Filtered Data Set Based on the Locations ...23

Table 7 The average performance of the classification models Using Different Time Lags25

Table 8 Negative and Positive News Sentiments ..26

Table 9 Description for Parameters of Logistic Regression ..32

Table 10 Description for Parameters of K Nearest Neighbors ..34

Table 11 Description for Parameters of SVM ...36

Table 12 Description for Parameters of Random Forest Classifier ...38

Table 13 Description for Parameters of Multi-Layer Perceptron Classifier41

Table 14 Ensemble Voting Classifier ..46

Table 15 Descriptions for Parameters of Ensemble Voting Classifier ..47

Table 16 Description for Parameters of Adaptive Boosting Classifier ..49

Table 17 Description for Parameters of Gradient Boosting Classifier ..50

viii

Table 18 Description for Parameters of Ensemble Bagging Classifier ...55

Table 19 Average Performance of the Classifiers ...56

Table 20 Prediction Results Based on the Numbers of Samples in Each Data Set57

Table 21 The Size of Training Set in Each Data Set ...58

ix

LIST OF FIGURES

FIGURE PAGE

Figure 1 DJI (Mar 01, 2015 - Oct 01, 2017) - Prices currency in USD ...28

1

CHAPTER 1

INTRODUCTION

 Technology is one of the most influential aspects in modern history without which humankind

would not be where they are today. By incorporating technology into everyday life, people have

the opportunity to be more efficient and productive in every decision they make. One way that

technology has been helpful is the topic of machine learning. Machine learning is a field of

computer science that aims to give computers the ability to artificially learn [29]. It explores the

study and construction of algorithms that can “learn” the patterns and make predictions on data

[29]. Understanding the various techniques of machine learning enables individuals and entities

to apply it to a wide range of areas. One specific area where these techniques have increasingly

been applied to is the Stock Market prediction. Studies show that using machine learning

algorithms such as Support Vector Machine (SVM) and Reinforcement Learning to predict stock

market prices can make a huge impact on how and what individuals or businesses do with their

money [4] [11] [13] [16] [17] [20]. These models have shown to be very effective in analyzing

the stock market to optimize profits with a minimum amount of lash back [3] [20] [28].

Currently, in the United States, stock trades use special high-frequency trading algorithms that

monitor the stock market [36] [37]. The problem with these kinds of machine learning models is

that the inputs chosen are usually determined from the same dataset as the market that is being

evaluated in the first place. However, modern-day technology has given entities the ability to

share and use information outside and inside the market share. In fact, some studies show there is

a strong correlation between closing prices overseas and its effect on the prices in the United

States after they close. Therefore, it is necessary to evaluate information in a bigger perspective

rather than keeping it the way it is currently because this makes the process of predicting future

2

prices more prone to flaws [28]. This flaw has been acknowledged and many efforts are being

made to widen these boundaries to get the most accurate results possible. One way this is being

done is through an approach known as sentiment analysis of up-to-date financial news and social

networking streams such as Twitter [8] [23] [33]. Another way is using a database GDELT,

which already has analyzed the sentimental analysis. This reduces the need to conduct a separate

analysis and gather information from different sources.

1.1 Statement of the Problem

 Two factors that affect the application of machine learning models to financial news are the

ability to collect news and performing a sentiment analysis [10]. The common way to collect

news is to run text mining [10]. This will aid in aggregating real-time news articles from various

sources. Natural Language Processing (NLP) is then used to not only analyze the data from those

news articles, but also to categorize those articles as positive (good) or negative (bad) polarity

[10]. Optimizing the results derived from this analysis opens the ability to visualize the

connection between news and its effect on stock market prices. With the assumption that

negative and positive events over the course of a few days have an impact on the immediate

future of stock market prices, it would be of great benefit to increase the accuracy of the

prediction models so that individual and entities are able to choose the best course for their

investments. GDELT has been chosen to drive this research because it addresses these both

crucial factors. GDELT has the ability to collect news in more than sixty-five different languages

from various streams nationally and globally and then runs a sentiment analysis on them [9]. By

gathering relevant news and using the attributes to classify news as positive (good) or negative

(bad), this research will aim to evaluate the accuracy of predicting the stocks prices [9]. The end

3

of this experiment should determine how and what relevant news affect stock prices and how this

can be used to predict stock prices in the future.

1.2 Objective and Contributions

 The objective of this study is to compare the performances of different machine learning

algorithms that evaluate the relationships between equity, commodity, and currency markets with

news sources and social network streams to aid in predicting the stock market prices more

accurately. This study will also serve to show the value of inputting different features such as

world major stock indices and social media trends to observe stock market’s reactions.

Therefore, the goal of this study is to provide an analysis on the different emerging algorithms

and models (Logistic Regression, K Nearest Neighbors, SVM, Random Forest, Multi-layer

Perceptron, Bernoulli Naive Bayes, Naive Bayes, Adaptive Boosting, Gradient Boosting, and

Bagging) that are being applied to big data from stock market and other social media sources to

determine there is a link between news and the Dow Jones Index and if it can be used to predict

future stock prices. For the purpose of this study, the dataset used has been collected from

GDELT. Future suggestions to expand this study would be to include GDELT V2.0, which uses

near-real-time events and retrain models for high-frequency trading.

 This study will be categorized as follows. Chapter 2 will consist of background information

and research that have led to this study. This will include understanding big data, its

misconceptions, GDELT, and other literature. Chapter 3 will continue to explain the experiment

and methodology of this research. It will consist of how the data was collected and extracted,

what features are used/selected, understanding the challenges, and finally determining a way to

rid the noise and interpreting negative and positive sentiments. Other topics that will be covered

in this experimental section are the tools being used to derive the information, how the

4

predictability will be determined, historical data and preprocessing the data. Chapter 4 consists

of interpreting the data. It will cover all the models used and a description of the parameters used

for each model. This chapter will conclude with a short summary of the results. Chapter 5 will

discuss the results of the experiment, give a short overview of the entire paper, and will suggest

future implications to consider for continuing experiments similar to this.

5

CHAPTER 2

BACKGROUND AND RESEARCH

 The stock market is highly sensitive to many factors. Every minute of every day, it

continuously fluctuates up and down. Part of the reason for this is due to supply and demand.

When the need for a certain stock is high, its market price will increase. If more people want to

sell a stock, in response the stock prices will decrease. There are several factors that affect this

supply and demand relationship.

 The types of news reports that are published at a certain given moment have an impact on

how the stock prices react. Individuals are likely to sell stocks when informed of negative news

that produces tension to sell and inadvertently cause a decrease in stock prices [9]. This amount

of negative news is the result of poor corporate governance, bad earnings reports, unfortunate

occurrences, and economic and political uncertainty [9].

 On the other hand, positive news encourages individuals to purchase more stocks. Individuals

are more likely to buy stock during this time due to increased buying pressure that leads to an

increase in stock prices [9]. This amount of positive news is a reflection of innovation and

acquisitions, good earnings reports, increased corporate governance, and an improvement in

economic and political indicators [9].

 Stock market prediction is vital and useful to all types of industries large or small. By being

able to predict how the stock market will respond daily, investors can decide what to do with

their money more efficiently. Stock prices are affected by the behaviors of investors whose

behaviors are the direct result of publicly available information [18]. Therefore, financial news

plays a crucial role in what individuals decide to do with their stocks [18]. There are various

6

theories evaluating the relationship between news articles and stock price movement but with

poor accuracy [31]. The Efficient Market Hypothesis (EMH) and Random Walk theory state that

stock prices are unpredictable and are driven solely by new information. Since new information

is unpredictable, stock prices will move in a random walk pattern making it impossible to be

used to predict future stock prices with an accuracy greater than 50 percent. Other studies show

that stock prices do not follow a random pattern and instead can be anticipated regardless if the

news gathered is unpredictable. A fair amount of studies shows that access to large amounts of

data online such as through Twitter, Facebook, and LinkedIn can provide some insight in

predicting changes in finances [14]. Outside of news, there seems to also be an existing link

between views of Wikipedia on certain topics and the trends in the stock market, online chat

activity and book sales, and even Google search queries and incidence of disease infection rates

[21, 38, and 40]. In conjunction with this link, the idea of this research is to analyze the

correlation between news and social media networks with future stock prices.

 In this research, GDELT database is used to narrow down news media that makes references

to the Dow Jones Index, which consists of the largest companies in the New York Stock

Exchange, every day. The goal of this is to classify these news titles as positive or negative by

based on their attributes to determine if there is indeed a link between the news reports and stock

prices.

2.1 Big Data

 Big data is neither a new term nor have its techniques never been used. In fact, big data has

been around for years. Big data is data that is hard to interpret and expensive to manage. It is

defined as high-volume, high-velocity, or high-variety information that needs to be processed in

order to interpret and be used for purposes other than what it is originally intended for [7] [15].

7

Big data should meet any of or all four of the V’s- volume, velocity, veracity, and variety [15].

There are two other V’s less mentioned- variability and value [7] [15].

 Volume refers to the size of the data, which needs to be considered to make sure it can be

managed by the algorithm or models being used. Velocity focuses on the data streaming rates

that need to be successfully handled by traditional algorithms. Veracity focuses on the idea that

regardless of the data’s availability, the quality of the data could be at risk. Larger amounts of

data are prone to quality issues and need to be worked on before processing the information.

Variety is the ability to present the same data in different ways and modalities while variability is

the ability to change the structure of data and how it is interpreted. Lastly, value refers to the

value that the data gives to the entirety.

2.1 Misconceptions about Big Data

 There are common misconceptions about big data. The three most common concepts are that

models are not important, correlation is enough, and older methodologies don’t work anymore

[35]. However, research and further evaluations show otherwise. Models exist because there is

not just one simple model that would be perfect in every situation and result in the best

performance and accuracy. Some studies on deep learning show that to interpret big data, certain

sophisticated models are able to achieve better performance [35]. Deep learning techniques have

been used for ages and simple models were more common in the past because there weren’t any

models equip to handle the data and parameters existing today. In addition, the amount of data

available in past was significantly smaller than today, therefore making simpler models seem

unnecessary today. However, this does not mean models should not be used at all. Complex

models that exist today are very useful.

8

 Regarding the second misconception of correlation not being enough, there are plenty of

statistical information that shows that no amount of correlation data could ever replace the role

of causality. For example, one study’s data showed that there is a strong correlation between the

number of hospitals and number of car thefts in that area. If the misconception that correlation is

enough was true, then the best way to stop car thefts would be to stop making hospitals.

However, this is not true [25]. There are other factors that could affect this correlation such as

the location and economic status of the community. Therefore, it would not be valid to say that

correlation is enough.

 The third concept that old methodologies do not work anymore is also false. Big data has

existed for many decades and it has been used many times in multiple different places. The only

part of big data that has changed over time is its’ volume. Therefore, methodologies about big

data in the past should still be valued today.

2.2 GDELT

 GDELT is also known as Global Database of Events, Location/Language, and Tone [8]. It

monitors the world’s broadcast, print, and web news from every corner of every country in over

a hundred languages while identifying locations, people, organizations, themes, images,

emotions, counts, and quotes every second of every moment [8]. GDELT is the largest and most

comprehensive open-access spatiotemporal database in existence and is pushing the boundaries

of "Big Data"[8]. A spatiotemporal database manages both space and time information [8]. For

example, tracking moving objects at a specific position at a given time [8]. Creating such a

platform that has information for every moment of everyday dating from the present back to

January 1, 1979, has only been successful thanks to the technical and methodological

innovations, partnerships, and creativity of those who worked together to make GDELT [8].

9

Nearly three-quarters of a trillion emotional snapshots and more than 1.5 billion location

references were recorded in just 2015 [8]. Making GDELT this complex has required solving

unparalleled challenges and “reimagining” human interaction and how it perceives societal-scale

data.

 Originally created by Yahoo! And Georgetown University, GDELT is machine-coded by the

Textual Analysis by Augmented Replacement Instructions (TABARI) and is updated daily

through information derived from thousands of news articles. It also uses Conflict and Mediation

Event Observations (CAMEO) coding to record events [25]. CAMEO is a hierarchical coding set

for recording events that are newsworthy and coverage [25]. It is commonly used in the study of

political news and violence on a wide range of the spectrum. With all of this information,

GDELT will encode the contents of each event into 57 different fields that help to describe that

event, the people involved, and the geographical location along with other information [1] [11].

To understand GDELT, Actors need to be understood. Actor 1 refers to the one who's done

something, and Actor 2 refers to the one the action is being done to. Each Actor is identified by a

code, name, country code, country name, group, label, ethnic code and label, a religion code and

label, and finally a CAMEO code and type [1]. There are more than 38 million multilingual news

reports existent in the past 25 years that have been processed and extracted [11]. GDELT can be

downloaded as a CSV file from its website or can be accessed through Google Big Query [1]

[11]. Based on the available data, from the years 1979 to 2005 there are yearly archived files and

from the years 2006 to March 2013, there are monthly archived files. After April 2013, there are

daily archived files that include the web URLs of the recorded news events as well. More than

220,000 events are added to GDELT daily [1]. For the purpose of this study, ten features—

"GLOBAL_EVENT_ID”, “EVENT_DATE”, “COUNTRY_CODE”, “IS_ROOT_EVENT”,

10

“SOURCE_URL”, “NUM_MENTIONS”, “NUM_SOURCES”, “NUM_ARTICLES”,

“GOLDSTEIN_SCALE”, and “AVG_TONE” have been chosen which are described in table 1.

These attributes are chosen for this research because they are numerical attributes, which will

help analyze the movements of stock prices.

Table 1

 Quick Review of the GDELT Attributes [13]

GlobalEventID (integer) A globally unique identifier assigned to each event record that

uniquely identifies it in the master dataset.

Date (integer) Date the event took place in YYYYMMDD format.

IsRootEvent (logical or

binary or byte)

A binary number that shows if events occurring in the lead paragraph

of a document tend to be the most “important.” This flag can,

therefore, be used as a proxy for the rough importance of an event to

create subsets of the event stream.

GoldsteinScale

(numeric)

Each event is assigned a numeric score from -10 to +10, capturing the

theoretical potential impact that type of event will have on the

stability of a country. This is known as the Goldstein Scale. This field

specifies the Goldstein score for each event type. This score is based

on the type of event, not the specifics of the actual event record being

recorded – thus two riots, one with 10 people and one with 10,000,

will both receive the same Goldstein score. This can be aggregated to

various levels of time resolution to yield an approximation of the

11

Table 1

 (Continued)

 stability of a location over time.

NumMentions (integer) This is the total number of mentions of this event across all source

documents. Multiple references to an event within a single document

also contribute to this count. This can be used as a method of

assessing the “importance” of an event: the more discussion of that

event, the more likely it is to be significant. The total universe of

source documents and the density of events within them vary over

time, so it is recommended that this field is normalized by the

average or another measure of the universe of events during the time

period of interest. This field is updated over time if news articles

published later discuss this event

NumSources (integer) This is the total number of information sources containing one or

more mentions of this event. This can be used as a method of

assessing the “importance” of an event: the more discussion of that

event, the more likely it is to be significant. The total universe of

sources varies over time, so it is recommended that this field is

normalized by the average or another measure of the universe of

events during the time period of interest. Same as with

NumMentions, this field is updated over time to reflect subsequent

coverage of the event.

12

Table 1

 (Continued)

NumArticles (integer) This is the total number of source documents containing one or more

mentions of this event. This can be used as a method of assessing the

“importance” of an event: the more discussion of that event, the more

likely it is to be significant. The total universe of source documents

varies over time, so it is recommended that this field be normalized

by the average or other measure of the universe of events during the

time period of interest. Same as with NumMentions, this field is

updated over time to reflect subsequent coverage of the event.

AvgTone (numeric) This is the average “tone”, general feelings or attitudes, of all

documents containing one or more mentions of this event. The score

ranges from -100 (extremely negative) to +100 (extremely positive).

However, common values range between -10 and +10, with 0

indicating neutral. This can be used as a method of filtering the

“context” of events as a subtle measure of the importance of an event

and as a proxy for the “impact” of that event.

13

Table 1

 (Continued)

SOURCEURL

(character)

This field is only present in the daily event stream files beginning

April 1, 2013 and lists the URL of the news article the event was

found in. If the event was found in an article from the BBC

Monitoring

ActionGeo_FullName

(character)

This is the United Nations Country Codes of the matched location.

This can be used to label locations when placing events on a map.

2.3 Literature Review

 There are many types of research that have focused on the relation of news collected and its’

influence on prices. To begin, it is worth noticing that there are a couple of famous sentiment

analysis tools that are frequently used to process information. TextBlob is a type of natural

language processing NLP that helps to provide a simple application program interface (API) that

allows the completion of tasks such as part-of-speech tagging, noun phrase extraction, sentiment

analysis, classification, and translation [12]. TextBlob uses NLTK (Natural Language Toolkit), a

type of natural language processing library in Python. It contains two sentiment analysis

modules- PatternAnalyzer and NaiveBayesAnaylizer [12]. PatternAnalyzer is based on the

pattern library and returns the sentiment polarity and the subjectivity of the text [12]. The

polarity score is usually within the ranges of [-1.0, 1.0]. The subjectivity is within the range of

[0.0, 1.0] where 0.0 is very objective and 1.0 is very subjective. NaiveBayesAnalyzer is an

14

NLTK classifier that classifies movie reviews into positive or negative sets [12]. It is a text

analyzer and returns the sentiment polarity of text.

 A paper that has analyzed public sentiment to predict the movements of stock prices for thirty

companies that are listed in the NASDAQ and the New York Stock Exchange uses NLP

techniques to classify relevant news in the United States into five categories- Positive+, Positive,

Neutral, Negative, and Negative- [34]. The hourly rise and fall of the Stock Market prices are

normalized into five categories as well- Up+, Up, Flat, Down, and Down- [34]. The proposed

algorithm is then used and discovers that there is, in fact, a link between the stocks of those thirty

companies and the news with an accuracy of 76 percent [34]. Based on this research it can be

determined that this technique has an average predictive accuracy better than NaiveBayes and

SVM. Like this, there are plenty of research that seeks to find a correlation between stock prices

and news and social media streams.

 Another research uses GDELT to build a Hidden Markov Model that is used to predict the

overall level of social unrest associated with country instability from five countries in the

Southeast Asia- Thailand, Malaysia, Philippines, Indonesia, and Cambodia [24]. Social unrest

event prediction was evaluated through calculations. Extensive empirical testing with the data

specific to those five countries showed the effectiveness of using GDELT by comparing it with

logistic regression model and the baseline model [24].

 A recent experiment uses GDELT dataset to analyze the connection between China and the

rest of the world. It first finds the total number of worldwide events that include China from

years 1979 to 2012 and applies the ARIMA models to estimate future possible patterns in the

years 2013 [17]. It seeks to determine the strength of correlation between China and the top 15

15

other countries from the list of possible events [17]. This study shows the effectiveness of using

GDELT for predicting trends globally.

 One study that runs parallel to this study tries to predict the Bitcoin prices using GDELT

database [6]. Because the historical data for Bitcoin included the weekends, the time series in

this research was complete and had no missing days. Therefore, the prices could be shifted to the

next days. The time-lag between the event dates and the prices of the stocks adjust accordingly.

This study evaluated prediction by only using the historical data for prices to future prices and

then using machine-learning models along with historical prices to predict future stock prices [6].

This study concluded that the latter was more accurate.

 Stock market prediction and big data are the main topics for this research. Although there is

very little research on using GDELT solely to predict how news affects stock market prices, this

research attempts to continue this fairly new topic and further evaluates its relationship to see if a

correlation exists.

16

CHAPTER 3

METHODOLOGY AND EXPERIMENTS

 The experiments done for this research consist of collecting financial news related to the DJI,

a well-known index of the New York Stock Exchange, and then extracting certain features that

influence the prices of the DJI. The movements of the DJI prices are needed to be learned by

machine learning models in order to predict the movements of unseen prices. Since the desired

outputs are either up or down, the binary classification machine learning models are needed to

classify the data set in order to figure out whether there is an enough strong correlation between

the relevant financial news and the DJI price movements, and if so, then to predict the movement

of the DJI unseen prices. Binary or binomial classification is the task of classifying the elements

of a given set into two groups based on a classification rule [10]. Some of the methods

commonly used for binary classification are Decision Trees, Random Forests, Bayesian

Networks, Support Vector Machines, Neural Networks, and Logistic Regression. Each classifier

has its advantages in only a select domain based upon the number of observations, the

dimensionality of the feature vector, the noise in the data and many other factors. Some tools to

evaluate the performances of the models, as well as some technique to optimize them, are also

needed such cross-validation and grid search. The goal of this experiment is to evaluate how the

DJI prices change accordingly to relative news and see if there is an existing link between these

two.

3.1 Historical Data

 The historical data of the DJIA prices was downloaded from Yahoo Finance API in CSV

format. The input data set includes the events from March 1st, 2015 to October 1st, 2017 (31

17

months) and the output data set includes the closing prices during this period excluding the

weekends and holidays. The Figure 1 shows that the DJI prices have increased significantly in

this period. As expected, there are more positive versus negative events for the news posted in

this period especially in 2017.

Figure 1. DJI (Mar 1st, 2015 - Oct 01st, 2017) - Prices currency in USD from Yahoo Finance

3.2 Data Collecting

 The first and foremost step in conducting this study is to successfully retrieve and gather data

using GDELT for each day excluding weekends from March 1st, 2015 until October 1st, 2017 in

CSV (comma-separated values) format files from the GDELT website [38]. The reasoning

behind choosing this date range is because of the data before March 1st, 2015 seemed to have

significantly more positive Average Tone in comparison to the events that occurred after that

date. This might be due to another undocumented change that may have influenced GDELT's

sentiment analysis tools before that time [6].

18

 After collecting the data, CSV files were put together in chronological order. A table was

created incorporating the features of GDELT using Oracle RDBMS, which is a relational

database management system. Oracle RDBMS creates a platform on which a query can be

created to search and select specific events that affect the DJI. The final CSV file consisting all

the attributes from March 1st, 2015 until October 1st, 2017 was imported into the table.

 Predicting a certain stock in the DJI is difficult because there may not be enough news related

to a specific stock. It is because of this, an index of 30 companies of the Stock Market was

chosen. The DJIA (Dow Jones Industrial Average) index was picked because it consists of the

largest thirty companies in the NYSE [10] [19]. In addition, other indices consist of too many

companies that make it very expensive to create a list of related keywords and keep track of all

the news related to them. For example, the S&P index consists of 500 companies [10] [19].

 A list of relevant keywords was created specifically to the companies in the DJI. This is

because the DJI consists of only 30 companies and the best way to locate articles specific to

these companies is through specific keywords pertaining to them. The list of the relevant

keywords can be found in Table 2. The only feature available in GDELT database that can be

used to search and find relevant news in regard to the query is “Source URL”. Uniform Resource

Locator (URL), also known as a web address, is a reference to a web resource that specifies its

location on a computer network and a mechanism for retrieving it [28]. Since URL’s contain

news titles, searching through the “Source URL” column of the table is of benefit. Therefore, it

was decided to search relevant keywords through the URL’s to find relevant news to the DJIA.

19

Table 2

List of Keywords for DJIA

Dow-Jones DJIA Industrial-Average Jones-Industrial

^DJI Dow-30 Charles-Dow S&P-Dow-Jones

Apple-Inc. American-Express Boeing Caterpillar

Cisco-Systems Chevron Coca-Cola Disney

Dow-Du-Pont Exxon General-Electric Goldman-Sachs

Home-Depo IBM Johnson-&-Johnson Johnson-and-Johnson

JPMorgan-Chase McDonald Merck Microsoft

Nike Pfizer Procter-&-Gamble Procter-and-Gamble

Travelers-Companies United Technologies UnitedHealth Verizon

Visa Wal-Mart

3.3 Model Selection

The first objective of this research is to find a meaningful correlation between the DJI related

News Sentiments and the DJI price movements through specific machine learning models. The

second objective of this research is to determine if there is indeed a way to predict the

movements of the DJI unseen prices using the News Sentiments.

The performances of classification models have been analyzed using 10 Fold Cross

Validation techniques. The K-Fold Cross Validation Score function repeatedly and randomly

splits the training set into K-folds and then makes predictions based on each fold using a model

20

trained on the remaining folds [26]. In addition, the performance of each model has been

evaluated using the Voting Classifier model from Ensemble method.

In order to do binary classification and considering the size of the data set, Logistic

Regression, SVM, Random Forest Classifier, and KNN models were chosen for the experiments

of this research.

The hyperparameters of the models which have significant influences on the performance of

the classification models have been optimized by using the Grid Search function. This function

exhaustively tries every combination of all the hyper-parameters for each model. In addition, the

Ensemble Methods were used to improve the performance of the models, which combines the

predictions of many base classifiers/estimators to improve generalizability over a single

classifier/estimator.

3.4 Preprocessing the Data

 Standardization of a data set is a common requirement for many machine learning models.

They might behave badly if the individual features do not more or less look like standard

normally distributed data (e.g. Gaussian with 0 mean and unit variance) [32]. Therefore, for this

study, all the numerical values have been standardized. To do this, the Standard Scaler function

from preprocessing class of sklearn library is used. This function standardizes features by

removing the mean and rescaling to unit variance [32]. In this research, centering and rescaling

carried out independently on each feature by computing the relevant statistics on the samples in

each set. The mean and standard deviation are then stored.

21

3.5 Time Lag

 There is always some time lag between the date an event takes place and the date it affects the

Stock Market because it takes time for an event to make an impact. One of the biggest challenges

in this research is finding the average time lag between for all the events. It is determined that the

DJI price movements would be shifted to the next business days to evaluate the best lag because

this would give news ample time to make an impact, if it is going to, on prices.

 The desired outputs (the movements of the DJI prices) have been shifted to the next working

business day in the data. Each time the correlation between the News Sentiments and the shifted

outputs is measured by applying them to different classification models and assessing how the

results of classification generalize to n sample sets. APPENDIX B shows how this process was

implemented. First, each time the desired outputs are shifted to the next day before reading the

data, data = pd.read_csv('~/N-DAY-LAGGED.csv'). The input matrix consists of the News

Sentiments, X = data [['AVG_GOLDSTEINSCALE', 'AVG_TONE']]. The desired output vector

consists of the sifted the DJI price movements, y = data ['Price Change']. As you see in the

following pseudocode, a for loop is created to break the input matrix and the output vector into

n-sample sets and the inputs are standardized based on the samples of each set.

for i in range(0,646-n,1):

 Xi = X[i:(i+n)]

 yi = y[i:(i+n)]

 scaler = StandardScaler()

 Xi = scaler.fit_transform(Xi)

22

Then the samples of each set are split into train and test sets as shown in the following

code snippet:

Xi_train,Xi_test,yi_train,yi_test=train_test_split(Xi,yi,test_size=m,random_state=None,shuffl

e=False)

The input and output train sets are fit to different classification machine learning models.

Then the fitted classifiers predict the outputs of each test set based on their input test sets.

 classifier = RandomForestClassifier()

 classifier.fit(Xi_train,yi_train)

 yi_predict = classifier.predict(Xi_test)

At the end, the average accuracy of the predictions is calculated by comparing the

predicted outputs and the desired outputs as shown in the following snippet:

 score = metrics.accuracy_score(yi_test,yi_pred)

 scores.append(score)

The average accuracy of each classification model using different time lags was calculated

and shown in the Table 7.

23

Table 7

The average score and the 95% confidence interval of average performance of the classification

models Using Different Time Lags

Model 0 Day 1 Days 2 Days 3 Days 4 Days

Average Classification

Performance

0.51+/-

0.01

0.52+/-

0.03

0.56+/-

0.02

0.53+/-

0.02

0.52+/-

0.03

As you see in Table 7, in average best classification performance we found was the result of

fitting 2-day shifted outputs to the models. Therefore, we can claim that on average it takes 2

days for each event to have most influence possible in this data set on the DJI prices. For the rest

of the research, we have used the 2-day shifted outputs.

3.6 Feature Engineering

 In GDELT, records are completely independent of the past records. Given the enormous size

of the data, it is not only very expensive to manage but also tedious to extract value from it [6].

Fitting all the GDELT features to predictive models increases the complexity of the models and

as a result, decreases the overall performance.

 To analyze the stock price movements in order to predict the movements of unseen prices

some specific features need to be considered. The features “GLOBAL_EVENT_ID”,

“EVENT_DATE”, “SOURCE_URL”, and “COUNTRY_CODE” can serve as unique identifiers,

the numerical features “IS_ROOT_EVENT”, “NUM_MENTIONS”, “NUM_SOURCES”,

“NUM_ARTICLES”, “GOLDSTEIN_SCALE”, and “AVG_TONE” can help to predict the

24

movements of the DJI prices. Each of these features has special capabilities that are essential in

conducting this experiment. “GLOBAL_EVENT_ID” is used to help identify unique events,

“EVENT_DATE” will be used to make the time series, and “SOURCE_URL” will be used find

articles. In addition, “GOLDSTEIN_SCALE”, and “AVG_TONE” is specifically used in

prediction and classification. “COUNTRY_CODE”, “IS_ROOT_EVENT”,

“NUM_MENTIONS”, “NUM_SOURCES”, and “NUM_ARTICLES” have a special role in this

experiment, they will be used to aid in filtering out irrelevant news or noise.

3.7 Classification

 In statistics, dependence or association is any statistical relationship, whether causal or not,

between two variables. Correlation most often refers to how close two variables have a

relationship with each other. Correlations are useful because they can indicate a predictive

relationship that can be exploited in practice. There should be a significant correlation between

the input (the features of news) and 2-day shifted output (the price movement compared to

previous day) of each day so that we can claim the movements of the DJI prices are predictable

based of the DJI related news. To calculate the correlation, the input and output of each day

fitted to the chosen classification models—Logistic Regression Classifier, K Nearest Neighbors,

Random Forest, Multi-Layer Perceptron, Naive Bayes (Ensemble), Bernoulli Naive Bayes

(Ensemble), Adaptive Boosting Classifier (Ensemble), Gradient Boosting Classifier (Ensemble),

and Bagging Classifier (Ensemble). These models are most common classification models based

on the studies surveyed for the purpose of binary classification.

One of the ways to evaluate the performance of classification models is to use the train-test

sets techniques. Training the models against the smaller training set and evaluating them against

the validation set may require a bit of work but the results are more accurate. However, by

25

partitioning the available data into three sets, we drastically reduce the number of samples which

can be used for learning the model, and the results can depend on a particular random choice for

the pair of (train, validation) sets. A solution to this problem is a procedure called the K-fold

cross-validation. In K-fold cross-validation, the original sample is randomly partitioned into k

equal sized subsamples. Of the k subsamples, a single subsample is retained as the validation

data for testing the model, and the remaining k − 1 subsamples are used as training data. The

cross-validation process is then repeated k times, with each of the k subsamples used exactly

once as the validation data. The k results from the folds are averaged to produce a single

estimation. The advantage of this method over repeated random sub-sampling is that all

observations are used for both training and validation, and each observation is used for validation

exactly once.

Therefore, K-fold cross-validation technique was used to evaluate the performance of each

model, based on the size of the dataset (647 days), 10 folds were determined. The News

Sentiments (Goldstein Scale and Average Tone) and all combinations of other features separately

were fitted to different classification models. It was found that the classification models have

best performances using only the AVG_AVGTONE and AVG_GOLDSTEIN_SCALE features

as shown in Table 3. The average performance The News Sentiments (Goldstein Scale and

Average Tone) and the other features separately were fitted to different classification models and

their performances have been measured using 10-fold cross-validation technique. The average

performance and 95% confidence interval of the classification models using only the News

Sentiments and other features were calculated and shown in Table 3.

26

Table 3

Feature Engineering

Model News Sentiments Other features

Average Classification Performance 0.49 +/- 0.03 0.44 +/- 0.02

These results show that applying only the News Sentiments to the classification models

results, in average, higher performance in comparison to applying other features. In addition, in

general, using fewer features decreases the complexity of the classification models. Therefore, it

was decided to apply only the News Sentiments to the models for the rest of the experiments.

Usually, more important news has more influence on the stock market, to find relatively

important news in the data set, the average values of all the numerical features for all the events

occurred in each day were calculated. The unimportant news in dataset serves as noise, which

decreases the performance of classification models. The numerical features “COUNT_URL”,

“AVG_NUM_MENTIONS”, “AVG_NUM_SOURCES”, and “AVG_NUM_ARTICLES” are

chosen to filter out the unimportant news based on the average number of mentions, the average

number of sources, and the average number of articles which are considered as thresholds, thus

any event that has any feature value less than its threshold was removed from the dataset.

Another feature used to filter out unimportant events is “Is Root Event”. This feature shows

whether the events occurring in the lead paragraph of a document tend to be the most

“important.” This flag can, therefore, be used as a proxy for the estimation of an event to create

subsets of the event stream (GDELT). Any news that “is not root” have been filtered out. The

27

filtered and unfiltered data sets separately were applied to different classification models. The

average performance and 95% confidence interval of the classification models using filtered and

unfiltered dataset were calculated and shown in Table 4.

Table 4

Filtered and Unfiltered Data Sets

Model Filtered dataset Unfiltered dataset

Average Classification Performance 0.53 +/- 0.02 0.49 +/- 0.03

A considerable amount of important news occurs every day around the world but some of

them do not affect the DJI prices. Therefore, it is very important to find the countries that

relevant news have the most influence on the DJI companies. Some research has shown that the

news related to the largest countries by net national wealth has the most influence on the largest

companies in the NYSE, and the DJI consists of the 30 largest companies in the stock market [8].

Therefore, a list of the richest countries in the world is created and any events not pertaining to

these countries have been ruled out with the use of the “COUNTRY_CODE” feature. The richest

countries have been chosen based on Net National Wealth made by Credit Suisse Group in 2017.

Credit Suisse Group is a Swiss multinational financial service holding company that operates the

Credit Suisse Bank and other financial services investments. This list of countries can be found

in Table 5. The average performance of the classification models was calculated to measure the

correlation between events pertaining to the richest countries in the world. This can be found in

Table 6.

28

Table 5

The 30 Largest Countries by Net National Wealth in 2017

Table 6

Filtered data set based on the Locations

Model The Richest Countries Unfiltered Dataset

Average Classification Performance 0.56 +/- 0.02 0.53 +/- 0.02

Comparing the average of the classification performances using the News Sentiments related

to the 30 richest countries to the average of the classification performances using all the News

Sentiments shows that filtering the location of the News Sentiments helps in improving the

classification performance.

1.United States 2.China 3.Japan 4.Unite Kingdom 5.Germany

6.France 7.Italy 8.Canada 9.Australia 10.South Korea

11.Spain 12.India 13.Switzerland 14.Tawiwan 15.Brazil

16.Russia 17.Netherlands 18.Belgium 19.Sweden 20.Mexio

21.Indoesia 22.Turrkey 23.Greece 24.Austria 25.Norway

26.Denmark 27.Singapore 28.Hong Kong 29.New Zealand 30.Israel

29

3.8 Dealing with Negative and Positive Sentiments

 We can fit negative and positive News Sentiments in two ways to the models. The first one is

fitting the average of the negative and positive News Sentiments to the models and the second

one is fitting negative and positive News Sentiments separately, this means fitting negative

Goldstein Scale, negative Tone, positive Goldstein, and positive Tone separately to the models.

There are no neutral values for the features Goldstein Scale and Average Tone. The average of

News Sentiments, and positive and negative News Sentiments separately were applied to

different classification models. The average performance and the 95% confidence interval of the

classification models were calculated and the results are shown in Table 8.

Table 8

Negative and Positive News Sentiments

Model Average Separate

Average Classification Performance 0.56 +/- 0.02 0.53 +/- 0.02

Comparing the average of the classification performances using average News Sentiments to

the average of the classification performances using negative and positive News Sentiments

separately shows that using average News Sentiments helps more in improving the classification

performance.

30

3.9 The Tools

 Scikit-learn is a free software machine-learning library for the Python programming language

[26]. It features various classifications, regression and clustering algorithms such as SVM,

random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with

the Python numerical and scientific libraries NumPy and SciPy [27].

 Scikit-learn was initially developed by David Cournapeau as a Google summer of code

project in 2007 [27]. Its’ name stems from the notion that it is a "SciKit" (SciPy Toolkit), a

separately-developed and distributed third-party extension to SciPy [27]. The original codebase

was later rewritten by other developers. In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre

Gramfort, and Vincent Michel, took leadership of the project and made its first public release on

February 1st, 2010 [27]. As of 2017, scikit-learn is under active development [27].

3.10 Prediction

Having found the meaningful average classification performance of 0.67 we can claim that

the movements of DJI prices are predictable. Clearly, the events of 31 months are not all

dependent and the price movements of future days cannot be predicted using all the News

Sentiments of the period. Therefore, the data set needs to be broken into smaller sets. To do so, a

short period yet not too short that the machine learning models cannot learn the patterns, is most

beneficial. To learn the patterns in each data set, there should be enough samples of two desired

outputs (up or down). To train the predictive models, the News Sentiments and the desired

outputs of train set of each sample set were used to train the predictive models. Having trained

the models, the News Sentiments of the last 2 days of the sample set were applied to the trained

models to predict, and the desired outputs of the last 2 days (test set) were compared to the

31

predicted outputs to test the performance of the predictions. Since the outputs were shifted to 2

next days we can consider the outputs of last 2 days of each sample set as future and unseen

price movements. The process and results of the predictions are shown in the section 4.4.

32

CHAPTER 4

THE RESULTS OF THE EXPERIMENTS

4.1 Classification

 The following are the results of the experiments conducted to get an accurate classification

and determine if a significant correlation exists between the News Sentiments and the

movements of the DJI prices between March 1st, 2015 and October 1st, 2017. The preprocessed

data set, which is explained in the previous chapter, has first been fit to all the classification

models and then their hyper-parameters were optimized to get the best accuracies.

4.1.A Logistic Regression Classifier

 The first classification model used is Logistic Regression. Logistic Regression is a model

where the dependent variable is categorical. It was first developed by David Cox, a statistician,

in 1958. This classifier is used to estimate the probability of a binary response based on one or

more predictor variables. The following parameters resulted in the best predictive accuracy for

this data. The missing parameters have an insignificant effect on the overall accuracy, so their

values have been made equal to their default values.

Best parameters of Logistic Regression for this data: C=1, class_weight=None, dual=False,

fit_intercept=True, intercept_scaling=1, max_iter=200, multi_class='ovr', n_jobs=1,

penalty='l2', random_state=None, solver='newton-cg', tol=0.0001.

Performance in average: 0.54 +/- 0.03

33

Table 9

Descriptions of the Parameters of Logistic Regression

Paremeter Description

penalty Used to specify the norm used in the penalization. The ‘newton-cg’, ‘sag’

and ‘lbfgs’ solvers support only l2 penalties.

dual Dual or primal formulation. Dual formulation is only implemented for l2

penalty with liblinear solver. Prefer dual=False when n_samples >

n_features

tol Tolerance for stopping criteria.

C Inverse of regularization strength; must be a positive float. Like in support

vector machines, smaller values specify stronger regularization.

fit_intercept Specifies if a constant (a.k.a. bias or intercept) should be added to the

decision function.

intercept_scaling Useful only when the solver ‘liblinear’ is used and self.fit_intercept is set

to True. In this case, x becomes [x, self.intercept_scaling], i.e. a

“synthetic” feature with constant value equal to intercept_scaling is

appended to the instance vector. The intercept becomes intercept_scaling *

synthetic_feature_weight.

34

Table 9

(Continued)

class_weight Weights associated with classes in the form {class_label: weight}. If not

given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights

inversely proportional to class frequencies in the input data as n_samples /

(n_classes * np.bincount(y)).

solver For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ and ‘saga’

are faster for large ones. For multiclass problems, only ‘newton-cg’, ‘sag’,

‘saga’ and ‘lbfgs’ handle multinomial loss; ‘liblinear’ is limited to one-

versus-rest schemes. ‘newton-cg’, ‘lbfgs’ and ‘sag’ only handle L2

penalty, whereas ‘liblinear’ and ‘saga’ handle L1 penalty.

max_iter Useful only for the newton-cg, sag and lbfgs solvers. Maximum number of

iterations taken for the solvers to converge.

multi_class Multiclass option can be either ‘ovr’ or ‘multinomial’. If the option chosen

is ‘ovr’, then a binary problem is fit for each label. Else the loss minimised

is the multinomial loss fit across the entire probability distribution. Does

not work for liblinear solver.

35

4.1.B K Nearest Neighbors Classifier

 The second predictive classifier used is KNN. This is a non-parametric method that is used

for classification and regression. The following parameters have been determined to get best

predictive accuracy for this data. The missing parameters here are also insignificant that the

values are considered to be equal to their default values.

Best parameters of K Neighbors Classifier for this data set : algorithm='auto', leaf_size=30,

metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=17, p=2, weights='uniform'

Performance in average: 0.56 +/- 0.02

Table 10

Descriptions for the parameters of the K Nearest Neighbors

Paremeter Description

n_neighbors Number of neighbors to use by default for kneighbors() queries

weights weight function used in prediction

algorithm ‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’

leaf_size Leaf size passed to BallTree or KDTree. This can affect the speed of the

construction and query, as well as the memory required to store the tree. The

optimal value depends on the nature of the problem.

p Power parameter for the Minkowski metric. When p = 1, this is equivalent to

using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For

arbitrary p, minkowski_distance (l_p) is used.

36

Table 10

(Continued)

metric the distance metric to use for the tree. The default metric is minkowski, and

with p=2 is equivalent to the standard Euclidean metric.

4.1.C Support Vector Machine

 The third predictive classifier used is SVM. Support Vector Machine are supervised learning

models that work with learning algorithms that analyze data used for classification and

regression. The SVM training algorithm builds a model that assigns new examples to the

category [17]. The following parameters have resulted in the most accurate predictive data. The

missing parameters are insignificant, so their values have been changed to their default values.

SVM is based on libsvm [4] [17]. The fit time complexity is more than quadratic with the

number of samples, therefore making it hard to scale to a dataset with more than a couple of

10000 samples [4]. The multiclass support is handled according to a one-vs-one scheme. The

following is the optimum estimator for the dataset.

Best parameters of Support Vector Machine for this data set: C=1, cache_size=200,

class_weight=None, coef0=0.0, _function_shape='ovr', degree=3, gamma=0.001, kernel='rbf',

max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False

Performance in average: 0.53 +/- 0.03

37

Table 11

Descriptions of the Parameters of the SVM

Parameter Description

C Penalty parameter C of the error term.

kernel Specifies the kernel type to be used in the algorithm. It must be one

of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If

none is given, ‘rbf’ will be used. If a callable is given it is used to

pre-compute the kernel matrix from data matrices; that matrix

should be an array of shape (n_samples, n_samples).

degree The degree of the polynomial kernel function (‘poly’). Ignored by

all other kernels.

gamma Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is

‘auto’ then 1/n_features will be used instead.

coef Independent term in kernel function. It is only significant in ‘poly’

and ‘sigmoid’.

probability Whether to enable probability estimates. This must be enabled prior

to calling fit, and will slow down that method.

shrinking Whether to use the shrinking heuristic.

tol Tolerance for stopping criterion.

cache_size Specify the size of the kernel cache (in MB).

38

Table 11

(Continued)

class_weight Set the parameter C of class i to class_weight[i]*C for SVC. If not

given, all classes are supposed to have weight one. The “balanced”

mode uses the values of y to automatically adjust weights inversely

proportional to class frequencies in the input data as n_samples /

(n_classes * np.bincount(y))

max_iter Hard limit on iterations within solver, or -1 for no limit.

decision_function_shape Whether to return a one-vs-rest (‘ovr’) decision function of shape

(n_samples, n_classes) as all other classifiers, or the original one-

vs-one (‘ovo’) decision function of libsvm which has shape

(n_samples, n_classes * (n_classes - 1) / 2).

4.1.D Random Forest Classifier

 The fourth predictive model used is the random forest classifier. This is a meta-estimator that

fits a number of decision tree classifiers on various sub-samples of the dataset and uses

averaging to improve the predictive accuracy and controls its’ over-fitting [28]. The sub-sample

size is always the same as the original input sample size but, the samples are drawn with

replacement if bootstrap=True (default) [28]. The following parameters have resulted in the best

predictive accuracy for this data. Like the other models, the missing parameters have little to no

effects on the accuracy and therefore have been changed to their default values.

39

Best parameters of Random Forest Classifier for this data set: bootstrap=True,

class_weight=None, criterion='gini', max_depth=None, max_features='auto',

max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,

min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=7,

n_jobs=-1, oob_score=False.

Performance in average: 0.57 +/- 0.02

Table 12

Descriptions for the Parameters of the Random Forest Classifier

Parameter Description

n_estimators The number of trees in the forest.

criterion The function to measure the quality of a split. Supported criteria

are “gini” for the Gini impurity and “entropy” for the information

gain.

max_features The number of features to consider when looking for the best split:

If int, then consider max_features features at each split.

If float, then max_features is a percentage and int(max_features *

n_features) features are considered at each split.

If “auto”, then max_features=sqrt(n_features).

If “sqrt”, then max_features=sqrt(n_features) (same as “auto”).

If “log2”, then max_features=log2(n_features).

If None, then max_features=n_features.

40

Table 12

(Continued)

max_depth The maximum depth of the tree. If None, then nodes are expanded

until all leaves are pure or until all leaves contain less than

min_samples_split samples.

min_samples_split: int, float, optional (default=2)

The minimum number of samples required to split an internal

node:

If int, then considers min_samples_split as the minimum number.

If float, then min_samples_split is a percentage and

ceil(min_samples_split * n_samples) are the minimum number of

samples for each split.

min_samples_leaf The minimum number of samples required to be at a leaf node:

If int, then considers min_samples_leaf as the minimum number.

If float, then min_samples_leaf is a percentage and ceil

(min_samples_leaf * n_samples) are the minimum number of

samples for each node.

min_weight_fraction_leaf The minimum weighted fraction of the sum total of weights (of all

the input samples) required to be at a leaf node. Samples have

equal weight when sample_weight is not provided.

41

Table 12

(Continued)

max_leaf_nodes Grow trees with max_leaf_nodes in best-first fashion. Best nodes

are defined as a relative reduction in impurity. If None then

unlimited number of leaf nodes.

min_impurity_split The threshold for early stopping in tree growth. A node will split

if its impurity is above the threshold, otherwise, it is a leaf.

min_impurity_decrease A node will be split if this split induces a decrease of the impurity

greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t

* left_impurity)

where N is the total number of samples, N_t is the number of

samples at the current node, N_t_L is the number of samples in

the left child, and N_t_R is the number of samples in the right

child.

N, N_t, N_t_R, and N_t_L all refer to the weighted sum, if

sample_weight is passed.

bootstrap Whether bootstrap samples are used when building trees.

oob_score Whether to use out-of-bag samples to estimate the generalization

accuracy.

42

4.1.E Multi-Layer Perceptron Classifier

 The fifth predictive model used for this research is the Multi-Layer Perceptron Classifier.

This is a class of feedforward artificial neural networks. It consists of at least three layers of

nodes. Each node, in except to the input node, is a neuron that uses a nonlinear activation

function [21]. This model optimizes the log-loss function using LBFGS or stochastic gradient

descent [21]. The following parameters result in the most accurate predictive results and the

missing parameters are considered to be so insignificant that their values are changed to their

default values.

Best parameters of MLP Classifier for this data set: activation='relu', alpha=0.0001,

batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08,

hidden_layer_sizes=(100,), learning_rate='invscaling', learning_rate_init=0.001, max_iter=200,

momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True,

solver='lbfgs', tol=0.0001, validation_fraction=0.1.

Performance in average: 0.54 +/- 0.04

Table 13

Descriptions of the Parameters of the Multi-Layer Perceptron

Parameter Description

hidden_layer_sizes The ith element represents the number of neurons in the ith hidden

layer.

43

Table 13

(Continued)

activation Activation function for the hidden layer:

‘identity’, no-op activation, useful to implement linear bottleneck,

returns f(x) = x

‘logistic’, the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-

x)).

‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x).

‘relu’, the rectified linear unit function, returns f(x) = max(0, x)

solver The solver for weight optimization:

‘lbfgs’ is an optimizer in the family of quasi-Newton methods.

‘sgd’ refers to stochastic gradient descent.

‘adam’ refers to a stochastic gradient-based optimizer

alpha L2 penalty (regularization term) parameter.

batch_size Size of mini-batches for stochastic optimizers. If the solver is ‘lbfgs’,

the classifier will not use minibatch. When set to “auto”,

batch_size=min (200, n_samples)

44

Table 13

(Continued)

learning_rate ‘constant’ is a constant learning rate given by ‘learning_rate_init’.

‘invscaling’ gradually decreases the learning rate learning_rate_ at

each time step ‘t’ using an inverse scaling exponent of ‘power_t’.

effective_learning_rate = learning_rate_init / pow (t, power_t)

‘adaptive’ keeps the learning rate constant to ‘learning_rate_init’ as

long as training loss keeps decreasing. Each time two consecutive

epochs fail to decrease training loss by at least tol, or fail to increase

validation score by at least tol if ‘early_stopping’ is on, the current

learning rate is divided by 5.

learning_rate_init The initial learning rate used. It controls the step-size in updating the

weights. Only used when solver=’sgd’ or ‘adam’.

power_t The exponent for inverse scaling learning rate. It is used in updating

effective learning rate when the learning_rate is set to ‘invscaling’.

Only used when solver=’sgd’.

max_iter Maximum number of iterations. The solver iterates until convergence

(determined by ‘tol’) or this number of iterations. For stochastic

solvers (‘sgd’, ‘adam’), note that this determines the number of

epochs (how many times each data point will be used), not the number

of gradient steps.

45

Table 13

(Continued)

shuffle Whether to shuffle samples in each iteration. Only used when

solver=’sgd’ or ‘adam’.

random_state If int, random_state is the seed used by the random number generator;

If RandomState instance, random_state is the random number

generator; If None, the random number generator is the RandomState

instance used by np.random.

tol Tolerance for the optimization. When the loss or score is not

improving by at least tol for two consecutive iterations, unless

learning_rate is set to ‘adaptive’, convergence is considered to be

reached and training stops.

momentum Momentum for gradient descent update. Should be between 0 and 1.

Only used when solver=’sgd’.

nesterovs_momentum Whether to use Nesterov’s momentum. Only used when solver=’sgd’

and momentum > 0.

early_stopping Whether to use early stopping to terminate training when validation

score is not improving. If set to true, it will automatically set aside

10% of training data as validation and terminate training when

validation score is not improving by at least tol for two consecutive

epochs. Only effective when solver=’sgd’ or ‘adam’

46

Table 13

(Continued)

validation_fraction The proportion of training data to set aside as validation set for early

stopping. Must be between 0 and 1. Only used if early_stopping is

True

beta_1 Exponential decay rate for estimates of first moment vector in adam,

should be in [0, 1]. Only used when solver=’adam’

beta_2 Exponential decay rate for estimates of second moment vector in

adam, should be in [0, 1]. Only used when solver=’adam’

epsilon: float, optional, default 1e-8

Value for numerical stability in adam. Only used when solver=’adam’

4.2 Ensemble Methods

 The Ensemble methods were also considered for this experiment. The goal of the Ensemble

methods is to combine the predictions of several base estimators built with a given learning

algorithm in order to improve generalizability/robustness over a single estimator [5].

 There are two families of Ensemble methods in scikit-learn library- averaging methods and

boosting methods [5]. In averaging methods, the driving principle is to build several estimators

independently and then to average their predictions [5]. On average, the combined estimator is

usually better than any of the single base estimator because its variance is reduced. Examples of

this would be bagging methods and forests of randomized trees.

47

 By contrast, in boosting methods, base estimators are built sequentially and one tries to

reduce the bias of the combined estimator [5]. The motivation is to combine several weak models

to produce a powerful ensemble. Examples of this would be AdaBoost and Gradient Tree

Boosting.

4.2.A Ensemble Voting Classifier

 The first ensemble method used for this research is the Ensemble Voting Classifier, which fits

clones of the original estimators [5]. The main Of All the predictive classifiers and Bayes

methods are combined and then applied to the Voting Classifier in order to improve

generalizability/robustness over the ensemble estimator [5].

Table 14

Ensemble Voting Classifier

Model Performance in average

Logistic Regression 0.54 +/- 0.03

K Nearest Neighbors 0.56 +/- 0.02

Support Vectors Machine 0.53 +/- 0.03

Random Forest 0.57 +/- 0.02

Multi-Layer Perceptron 0.54 +/- 0.04

Bernoulli Naive Bayes 0.56 +/- 0.03

Naive Bayes 0.55 +/- 0.04

48

Table 15

Descriptions for the Parameters of the Ensemble Voting Classifier

Parameter Description

estimators Invoking the fit method on the VotingClassifier will fit clones of those

original estimators that will be stored in the class attribute

self.estimators_. An estimator can be set to None using set_params.

voting If ‘hard’, uses predicted class labels for majority rule voting. Else if

‘soft’, predicts the class label based on the argmax of the sums of the

predicted probabilities, which is recommended for an ensemble of well-

calibrated classifiers.

weights Sequence of weights (float or int) to weight the occurrences of predicted

class labels (hard voting) or class probabilities before averaging (soft

voting). Uses uniform weights if None.

flatten_transform Affects shape of transform output only when voting=’soft’ If

voting=’soft’ and flatten_transform=True, transform method returns

matrix with shape (n_samples, n_classifiers * n_classes). If

flatten_transform=False, it returns (n_classifiers, n_samples, n_classes).

4.2.B Naive Bayes Methods

 Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’

theorem with the “naive” assumption of independence between every pair of features [5]. The

different naive Bayes classifiers differ mainly by the assumptions they make in regarding to the

49

distribution of P (x_i \mid y). In spite of their apparently over-simplified assumptions, Naive

Bayes classifiers have worked quite well in many real-world situations. They are famous for

document classification and spam filtering. They require a small amount of training data to

estimate the necessary parameters [5]. Theoretical reasons on why they work well is because the

Naive Bayes learners and classifiers can be extremely fast compared to more sophisticated

methods. The decoupling of the class conditional feature distributions meaning that their

distribution can be independently estimated as a one-dimensional distribution.

4.2.C Bernoulli Naive Bayes

Like MultinomialNB, this classifier is suitable for discrete data. The difference is that while

MultinomialNB works with occurrence counts, BernoulliNB is designed for binary/boolean

features. In addition, this model is popular for document classification tasks where binary term

occurrence features are used rather than term frequencies [5].

4.2.D Ensemble Adaptive Boosting Classifier

 The second Ensemble method used for this research is Adaptive Boosting Classifier, which is

a meta-estimator that begins by fitting a classifier on the original dataset [5]. It was first created

by Yoav Freund and Robert Schapire [5]. It then fits additional copies of the classifier on the

same dataset where the weights of incorrectly classified instances are adjusted such that the

subsequent classifiers focus more on difficult cases. This classifier can be used together with

other types of learning algorithms to improve their performance.

Best parameters of AdaBoostClassifier for this data set: algorithm='SAMME.R', base_estimator=

DecisionTreeClassifier, learning_rate=1.0, n_estimators=50

Performance in average: 0.57 +/- 0.03

50

Table 16

Descriptions for the parameters of the Adaptive Boosting Classifier

Parameter Description

base_estimator The base estimator from which the boosted ensemble is built. Support for

sample weighting is required, as well as proper classes_ and n_classes_

attributes.

n_estimators The maximum number of estimators at which boosting is terminated. In case

of perfect fit, the learning procedure is stopped early.

learning_rate Learning rate shrinks the contribution of each classifier by learning_rate.

There is a trade-off between learning_rate and n_estimators.

algorithm If ‘SAMME.R’ then use the SAMME.R real boosting algorithm.

base_estimator must support calculation of class probabilities. If ‘SAMME’

then use the SAMME discrete boosting algorithm. The SAMME.R algorithm

typically converges faster than SAMME, achieving a lower test error with

fewer boosting iterations.

4.2.E Ensemble Gradient Boosting Classifier

The third Ensemble method used for this research is Gradient Boosting Classifier, which

builds an additive model in a forward stage-wise fashion. This allows for the optimization of

arbitrary differentiable loss functions [5]. In each stage n_classes_ regression trees are fit on the

negative gradient of the binomial or multinomial deviance loss function. Binary classification is

a special case where only a single regression tree is induced.

51

Best parameters of Gradient Boosting Classifier for this data set: criterion='friedman_mse',

init=None, learning_rate=0.1, loss='deviance', max_depth=3, max_features=None,

max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,

min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100,

presort='auto', random_state=None, subsample=1.0

Performance in average: 0.63 +/- 0.02

Table 17

Descriptions for the Parameters of the Gradient Boosting Classifier

Parameter Description

loss loss function to be optimized. ‘deviance’ refers to deviance (=

logistic regression) for classification with probabilistic outputs.

For loss ‘exponential’ gradient boosting recovers the AdaBoost

algorithm.

learning_rate learning rate shrinks the contribution of each tree by learning_rate.

There is a trade-off between learning_rate and n_estimators.

n_estimators The number of boosting stages to perform. Gradient boosting is

fairly robust to over-fitting so a large number usually results in

better performance.

max_depth Maximum depth of the individual regression estimators. The

maximum depth limits the number of nodes in the tree. Tune this

parameter for best performance; the best value depends on the

interaction of the input variables.

52

Table 17

(Continued)

criterion The function to measure the quality of a split. Supported criteria

are “friedman_mse” for the mean squared error with improvement

score by Friedman, “mse” for mean squared error, and “mae” for

the mean absolute error. The default value of “friedman_mse” is

generally the best as it can provide a better approximation in some

cases.

min_samples_split The minimum number of samples required to split an internal

node:

If int, then consider min_samples_split as the minimum number.

If float, then min_samples_split is a percentage and ceil

(min_samples_split * n_samples) are the minimum number of

samples for each split.

min_samples_leaf The minimum number of samples required to be at a leaf node:

If int, then consider min_samples_leaf as the minimum number.

If float, then min_samples_leaf is a percentage and ceil

(min_samples_leaf * n_samples) are the minimum number of

samples for each node.

min_weight_fraction_leaf The minimum weighted fraction of the sum total of weights (of all

the input samples) required to be at a leaf node. Samples have

equal weight when sample_weight is not provided.

53

Table 17

(Continued)

subsample The fraction of samples to be used for fitting the individual base

learners. If smaller than 1.0 this results in Stochastic Gradient

Boosting. subsample interacts with the parameter n_estimators.

Choosing subsample < 1.0 leads to a reduction of variance and an

increase in bias. The fraction of samples to be used for fitting the

individual base learners. If smaller than 1.0 this results in

Stochastic Gradient Boosting. subsample interacts with the

parameter n_estimators. Choosing subsample < 1.0 leads to a

reduction of variance and an increase in bias.

max_features The number of features to consider when looking for the best split:

If int, then consider max_features features at each split.

If float, then max_features is a percentage and int(max_features *

n_features) features are considered at each split.

If “auto”, then max_features=sqrt(n_features).

If “sqrt”, then max_features=sqrt(n_features).

If “log2”, then max_features=log2(n_features).

If None, then max_features=n_features.

Choosing max_features < n_features leads to a reduction of

variance and an increase in bias.

54

Table 17

(Continued)

max_leaf_nodes Grow trees with max_leaf_nodes in best-first fashion. Best nodes

are defined as relative reduction in impurity. If None then

unlimited number of leaf nodes.

min_impurity_split Threshold for early stopping in tree growth. A node will split if its

impurity is above the threshold, otherwise it is a leaf.

min_impurity_decrease A node will be split if this split induces a decrease of the impurity

greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t

* left_impurity)

where N is the total number of samples, N_t is the number of

samples at the current node, N_t_L is the number of samples in

the left child, and N_t_R is the number of samples in the right

child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if

sample_weight is passed.

init An estimator object that is used to compute the initial predictions.

init has to provide fit and predict. If None it uses

loss.init_estimator.

55

Table 17

(Continued)

presort Whether to presort the data to speed up the finding of best splits in

fitting. Auto mode by default will use presorting on dense data

and default to normal sorting on sparse data. Setting presort to true

on sparse data will raise an error.

4.2.F Ensemble Bagging Classifier

 The fourth Ensemble method used is the Ensemble Bagging classifier, which is an ensemble

meta-estimator that fits base classifiers each on random subsets of the original dataset and then

aggregates their individual predictions (either by voting or by averaging) to form a final

prediction [5]. A meta-estimator can typically be used as a means to reduce the variance of a

black-box estimator (e.g., a decision tree) by introducing randomization into its construction

procedure and then making an ensemble out of it.

 This algorithm encompasses several works from literature. When random subsets of the

dataset are drawn as random subsets of the samples, it is known as Pasting [5]. If samples are

drawn with replacement, then the method is known as Bagging [5]. When random subsets of the

dataset are drawn as random subsets of the features, it is known as Random Subspaces [5].

Finally, when base estimators are built on subsets of samples and features, then the method is

known as Random Patches [5].

Best parameters of Bagging Classifier for this data set: class_weight=None, criterion='gini',

max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0,

56

min_impurity_split=None, min_samples_leaf=1, min_samples_split=2,

min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best'.

Performance in average: 0.58 +/- 0.03

Table 18

Descriptions for the Parameters of the Ensemble Bagging Classifier

Parameter Description

base_estimator The base estimator to fit on random subsets of the dataset. If None, then

the base estimator is a decision tree.

n_estimators The number of base estimators in the ensemble.

max_samples The number of samples to draw from X to train each base estimator.

If int, then draw max_samples samples.

If float, then draw max_samples * X.shape[0] samples.

max_features: int or float, optional (default=1.0)

The number of features to draw from X to train each base estimator.

If int, then draw max_features features.

If float, then draw max_features * X.shape[1] features.

bootstrap Whether samples are drawn with replacement.

bootstrap_features Whether features are drawn with replacement.

oob_score Whether to use out-of-bag samples to estimate the generalization error.

57

4.3 Summary of Classification Results

 The experimental data shows that Ensemble methods worked better in helping to derive

accurate predictions. Part of the reasoning behind the poor prediction is due to not being able to

calculate the time-lag between the release date of the news and the date the DJI prices adjusted

accordingly. Not all the prices can be shifted to the next days since there are already many

missing days in the time series (holidays and weekends). Table 6 shows the summarized average

accuracy per model.

Table 19

Average Performance of the Classifiers

Machine Learning Model Performance in average

Logistic Regression Classifier 0.54 +/- 0.03

K Nearest Neighbors 0.56 +/- 0.02

Support Vectors Machine 0.53 +/- 0.03

Random Forest Classifier 0.57 +/- 0.02

Multi-Layer Perceptron Classifier 0.54 +/- 0.04

Bernoulli Naive Bayes (Ensemble) 0.56 +/- 0.03

Naive Bayes (Ensemble) 0.55 +/- 0.04

Ensemble Adaptive Boosting Classifier 0.57 +/- 0.03

Ensemble Gradient Boosting Classifier 0.63 +/- 0.02

Ensemble Bagging Classifier 0.58 +/- 0.03

58

4.4 Prediction

 After determining that there is a meaningful link between the DJI related News Sentiments

and the DJI price movements, we can predict the movements of DJI prices. Since we cannot

predict the future prices using the news of 31 months, the data set needs to be broken into

smaller sets. To do so, a short period yet not too short that the machine learning models cannot

learn the patterns, is most beneficial. To learn the patterns in the smaller data sets, there should

be enough samples of two desired outputs (up or down) in each data set. The number of samples

in each data set should not be less than 20 since there is at least one set that does not have at least

one sample of each the desired outputs.

The mean score and the 95% confidence interval of different predictive machine learning

models using a different number of samples (in the range of 20 and 50 days) have been

calculated and the results are shown in table 20.

Table 20

Prediction Results Based on the Number of Samples in each Data Set

Model 20-sample 25-sample 30-sample 35-sample

Average Prediction Performance 0.58 +/- 0.03 0.62 +/- 0.04 0.67 +/- 0.02 0.65 +/- 0.03

These results show that there is a tradeoff in choosing the size of sample sets. In General, the

more training samples in each set result the better classification performance. On the other hand,

we cannot relate the old news to the price movements. Having less or more than 30 samples in

each sample set results in less prediction accuracy in average. Due to this, the time series was

broken into 30-sample sets to predict the unseen prices of DJI. This break was done by shifting

59

data to the next day. The input of the first sample set includes the News Sentiments of from 1st to

30th day, and the output includes the DJI price movements of 3rd to 33rd day. The input of the

second sample set includes the News Sentiments of from 2nd to 31st day, and the output includes

the DJI price movements of days from 4th to 34th day. By doing so, 615 sample sets were created,

the input of the last sample set includes the News Sentiments of 615th to 645th day, and the

output includes the DJI price movements of days from 617th to 647th day.

To train the predictive models, the News Sentiments and the desired outputs of 28 days of

each sample set were used to train the predictive models. Having trained the models, the News

Sentiments of the last 2 days of the sample set were applied to the trained models to predict, and

the desired outputs of the last 2 days (test set) were compared to the predicted outputs to test the

performance of the predictions. Since the outputs were shifted to 2 next days we can consider the

outputs of last 2 days of each sample set as future and unseen price movements.

The mean score and the 95% confidence interval of each classification model are calculated,

and the results are shown in Table 21.

Table 21

Average Prediction Performance

Model Average Accuracy

Average Prediction Performance 0.67 +/- 0.02

60

Based on these results, we can claim that having the DJI related News Sentiments of recent 30

days we can predict the DJI price movements of 2 days in the future with an accuracy of 0.67.

61

CHAPTER 5

CONCLUSION AND FUTURE PERSPECTIVES

 This research employed GDELT dataset, multiple classification models—Logistic Regression

Classifier, K Nearest Neighbors, Support Vectors Machine, Random Forest Classifier, Multi-

Layer Perceptron Classifier—to find the best correlation possible in this data between the News

Sentiments and the movements of the DJI prices. Having found the best possible correlation

between the News Sentiments and the movements of the DJI prices, the data set was broken into

smaller sets so that movements of unseen prices can be predicted. Each data set was broken into

train sets and test sets, and the predictive models were trained using the train sets. The

movements of DJI unseen prices of 2 days in the future (test set) were predicted by the trained

predictive models using the News Sentiments of the sample set. The performances of the

predictions were measured by comparing the predicted price movements and the real price

movements.

In addition, Grid Search Cross-Validation and Ensemble methods were utilized to improve

prediction performances in forecasting the daily movement direction of one of the most popular

New York Stock Exchange indices.

 Based on the experiment results of this research concludes that there is a significant link

between relevant financial news and the movements of DJI prices to predict the movements of

the unseen prices. In addition, on contrary to the famous financial hypothesis that states the

Stock Market is not predictable, it can be concluded that the Stock Market movement is

predictable. We can claim that the more accurately we analyze the financial news the more

accurately we can predict the unseen prices. This study not only shows that there is a significant

62

link between DJI related news and the DJI prices, but also shows how to use the news to predict

the future prices. However, this research did have gaps that should be considered for future

studies as it may in fact help raise the accuracy of predictability.

 One gap was in finding time lag. Finding the time lag for each day might help with the accuracy

especially because in this study the time lag was not consistent due to holidays and weekends.

Help from some financial experts would help with determining the best way to find time lag. In

addition, future works can also consider using Amazon Mechanical Turk to find the time lags for

each. Another way to tackle this problem may be by using interpolation to assign some prices for

the missing days to complete the time series.

Future studies can look into the Deep Learning techniques to predict the future/unseen prices.

This method was not mentioned in this research because they were unsuccessful to use due to the

heavy computations that needed to be distributed over several powerful systems. Deep Learning

techniques would be a great future perspective for this research. In addition, another direction for

future studies would include finding some thresholds for classifying price movements in order to

increase the accuracy of prediction.

63

REFERENCES

[1] All GDELT Event Files, data.gdeltproject.org/events/index.html  

[2] Bing, L., Chan, K., OU, C. (2014). Public Sentiment Analysis in Twitter Data for Prediction

of a Company’s Stock Price Movements. IEEE 11th International Conference on e-

Business Engineering.  

[3] Birgul A. (2003). Stock Market Prediction Using Artificial Neural Networks.

[4] Cao, L. (2002). Support Vector Machines Experts For Time Series Forecasting.  

[5] Dietterich, T. Ensemble Metho Ds in Machine Learning. Oregon State University, 2011,

web.engr.oregonstate.edu/~tgd/publications/mcs-ensembles.pdf.

[6] Fallahi, F. Machine Learning on Big Data For Stock Market Prediction. Aug. 2017.

[7] Gruhl, D., Guha, R., Kumar, R., Novak, J., Tomkins, A. (2005). The Predictive Power of

Online Chatter In Proceedings of the Eleventh International Conference on Knowledge

Discovery in Data Mining (pp. 78-87). ACM.  

[8] Jiao, P., Veiga, A., Walther, A. (2016). Social Media, News Media and the Stock Market.  

[9] Johan B., Mao, H., and Zeng, X. (2011), Twitter mood predicts the stock market, Journal of

Computational Science, 2(1), March 2011, Pages 1-8.

 [10] Joshi, K., Bharathi H., Rao, J. Stock Trend Prediction Using News Sentiment Analysis.

[11] Khaidem, L., Saha, S., Dey, S. (2016). Predicting the Direction of Stock Market Prices

Using Random Forest.  

64

[12] Killer, M. “Textblob Documentation.” 17 Sept. 2017, pp. 1–45.

https://media.readthedocs.org/pdf/textblob-de/latest/textblob-de.pdf.

[13] Kim, K. (2003). Financial Time Series Forecasting Using Support Vector Machines.

[14] Kimmey, D., and Yoo, J. (2016). Nowcasting With Social Media Data.

[15] Laney, D. (2001). 3-D Data Management: Controlling Data Volume, Velocity and Variety,

Technical report, META Group.  

[16] Lee, J. (2001). Stock Price Prediction Using Reinforcement Learning.  

[17] Madge, S. (2015). Predicting Stock Price Direction using Support Vector Machines.  

[18] Mittal, A., and Goel, A.. “Stock Prediction Using Twitter Sentiment Analysis.” Standford

University

[19] Moat, H. (2013). Quantifying Wikipedia Usage Patterns Before Stock  Market Moves.

[20] Moody, J., Wu, L., Liao, Y., Saffell, M. (1998). Performance Functions And Reinforcement

Learning For Trading Systems And Portfolios.  

[21] Nieminen, P. (February 20th, 2012). Classification and Multilayer Perceptron Neural

Networks. users.jyu.fi/~nieminen/dm2012mlp/dm_mlp.pdf.

[22] Nikola Milosevic Equity Forecast: Predicting long term stock price movement using ma-

chine learning  

[23] Porshnev, A., Lakshina, V., Redkin, I. (2016). Could Emotional Markers in Twitter Posts

 Add Information to the Stock Market. 

65

[24] Qiao, F., and X. Zhang. “Predicting Social Unrest Events with Hidden Markov Models

Using GDELT.” Discrete Dynamics in Nature and Society, 10 May 2017,

www.hindawi.com/journals/ddns/2017/8180272/.

[25] Schrodt, P. (2012). CAMEO Conflict and Mediation Event Observations Event and Actor

Codebook.

[26] SciKits, https://www.scipy.org/scikits.html.

[27] Scikit Website. http://scikit-learn.org/stable/.

[28] Shah V. (2007). Machine Learning Techniques For Stock Prediction.  

[29] Shalev-Shwartz, S. (2014). “Understanding Machine Learning: From Theory to

Algorithms.”

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-

learning-theory-algorithms.pdf.

[30] Shen, S., Jiang, H., Zhang, T. (2012). Stock Market Forecasting Using Machine Learning

Algorithms.

[31] Tianxin Dai, Arpan Shah, Hongxia Zhong (2012). Automated Stock Trading Using Ma-

chine Learning Algorithms . 

[32] Wei F., Bifet, A. (2012). Mining Big Data: Current Status, and Forecast to the Future, ACM

SIGKDD Explorations Newsletter table of contents archive, Vol. 14 Issue 2. 

[33] Yu, Y., Duan, W., Cao, Q. (2013). The Impact of Social and Conventional Media on Firm

Equity Value: A Sentiment Analysis Approach.  

66

[34] Yuan, Y. (2016). Modeling Inter-Country Connection from Geotagged News Reports:  A

Time-Series Analysis.  

[35] Zhou, Z. (November 4th,2014). Data Opportunities and Challenges: Discussions from Data

Analytics Perspectives, IEEE Computational Intelligence Magazine Vol: 9, Issue: 4.

[36] Robots have been running the US stock market, and the government is finally taking control

qz.com/370019/  

[37] (2012). 84% of All Stock Trades Are By High-Frequency Computers

www.zerohedge.com/contributed/2012-17-26/84-all-stock-trades-are-high-frequency-

computers [38] GDELT on Google BigQuery, bigquery.cloud.google.com/table/gdelt-

bq:full.events

APPENDICES

66

APPENDIX A

Part of the SQL Query Used to Retrieve the Data Set

SELECT sub2.EVENTDATE AS EVENT_DATE,

COUNT(sub2.SOURCEURL) AS COUNT_SOURCEURL,

AVG(sub2.GOLDSTEINSCALE) AS Avg_GOLDSTEINSCALE,

AVG(sub2.NUMMENTIONS) AS Avg_NUMMENTIONS,

AVG(sub2.NUMSOURCES) AS AVG_NUMSOURCES,

AVG(sub2.NUMARTICLES) AS AVG_NUMARTICLES,

AVG(sub2.AVGTONE) AS AVG_AVGTONE

FROM

(SELECT sub1.*

FROM

(SELECT sub0.*

FROM

(SELECT *

FROM GDELT

WHERE NUMMENTIONS >= 14

AND NUMSOURCES >= 3

AND NUMARTICLES >= 14

AND ISROOTEVENT > 0

) sub0

WHERE COUNTRYCODE LIKE '%US%'

67

OR COUNTRYCODE LIKE '%UK%'

OR COUNTRYCODE LIKE '%JPN%'

OR COUNTRYCODE LIKE '%DEU%'

OR COUNTRYCODE LIKE '%CHN%'

)sub1

WHERE SOURCEURL LIKE '%Dow-Jones%'

OR SOURCEURL LIKE '%DJIA%'

OR SOURCEURL LIKE '%Industrial-Average%'

OR SOURCEURL LIKE '%Jones-Industrial%'

OR SOURCEURL LIKE '%^DJI%'

OR SOURCEURL LIKE '%Dow-30%'

) sub2

GROUP BY (sub2.EVENTDATE)

ORDER BY (sub2.EVENTDATE);

68

APPENDIX B

An Example of the Python Codes used for the Predictions

data = pd.read_csv('C:/Users/Majid/Documents/Database/Export4_Lag5.csv')

X = data[['AVG_GOLDSTEINSCALE','AVG_AVGTONE']]

y = data['Price_Change'].as_matrix().astype(int)

scores = []

n = 30

for i in range(0,646-n,1):

 Xi = X[i:(i+n)]

 yi = y[i:(i+n)]

 scaler = StandardScaler()

 Xi = scaler.fit_transform(Xi)

 Xi_train,Xi_test,yi_train,yi_test =

train_test_split(Xi,yi,test_size=0.1,random_state=None,shuffle=False)

 clf = RandomForestClassifier()

 clf.fit(Xi_train,yi_train)

 yi_pred = clf.predict(Xi_test)

 score = metrics.accuracy_score(yi_test,yi_pred)

 scores.append(score)

69

 print('Subset #',i,' (from',i,'to',i+30,')',)

 print('AVG_GOLDSTEINSCALE AVG_AVGTONE\n',Xi)

 print('\n')

 print('Price Movements:',yi)

 print('\n')

 print('Score:',score)

print('Average Score:',sum(scores)/len(scores))

70

APPENDIX C

An Example of Python Codes used for the Classifications

data = pd.read_csv('~/5-DAY-LAG.csv')

X = data[['AVG_GOLDSTEINSCALE','AVG_AVGTONE']]

y = data['Price_Change'].as_matrix().astype(int)

scaler = StandardScaler()

X = scaler.fit_transform(X)

clf1 = LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True,

 intercept_scaling=1, max_iter=200, multi_class='ovr', n_jobs=1,

 penalty='l2', random_state=None, solver='newton-cg', tol=0.0001,

 verbose=0, warm_start=False)

clf2 = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',

 max_depth=None, max_features='auto', max_leaf_nodes=None,

 min_impurity_decrease=0.0, min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, n_estimators=7, n_jobs=1,

 oob_score=False, random_state=None, verbose=0,

 warm_start=False)

71

APPENDIX C

(Continued)

clf3 = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',

 metric_params=None, n_jobs=1, n_neighbors=17, p=2,

 weights='uniform')

clf4 = svm.SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,

 decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf',

 max_iter=-1, probability=False, random_state=None, shrinking=True,

 tol=0.001, verbose=False)

clf5 = MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9,

 beta_2=0.999, early_stopping=False, epsilon=1e-08,

 hidden_layer_sizes=(100,), learning_rate='invscaling',

 learning_rate_init=0.001, max_iter=200, momentum=0.9,

 nesterovs_momentum=True, power_t=0.5, random_state=None,

 shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.1,

 verbose=False, warm_start=False)

clf6 = BernoulliNB()

eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('knn',

clf3),('svm',clf4),('mlp',clf5),('gnb',clf6)], voting='hard')

72

APPENDIX C

(Continued)

for clf, label in zip([clf1, clf2, clf3, clf4, clf5, clf6, eclf], ['Logistic Regression','Random Forest',

'KNeighborsClassifier','SVM','MLPClassifier','BernoulliNB','Ensemble']):

 scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy')

 print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

73

VITA

Graduate School

Southern Illinois University

Majid Memari

memari.majid@hotmail.com

Azad Tehran University

Bachelor of Industrial Engineering May 2010

Azad Qazvin University

Master of Business Administration (MBA), May 2015

Thesis Title:

 Predicting the Stock Market Using News Sentiment Analysis

Major Professor: Dr. Norman Carver

	Predicting the Stock Market Using News Sentiment Analysis
	Recommended Citation

	tmp.1550701573.pdf.dKDds

