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    Big data is a term for data sets that are so large or complex that traditional data processing 

application software is inadequate to deal with them. GDELT is the largest, most comprehensive, 

and highest resolution open database ever created. It is a platform that monitors the world's news 

media from nearly every corner of every country in print, broadcast, and web formats, in over 

100 languages, every moment of every day that stretches all the way back to January 1st, 1979, 

and updates daily [1].  

    Stock market prediction is the act of trying to determine the future value of a company stock 

or other financial instrument traded on an exchange. The successful prediction of a stock's future 

price could yield a significant profit. The efficient-market hypothesis suggests that stock prices 

reflect all currently available information and any price changes that are not based on the newly 

revealed information thus are inherently unpredictable [2].  

    On the other hand, other studies show that it is predictable. The stock market prediction has 

been a long-time attractive topic and is extensively studied by researchers in different fields with 

numerous studies of the correlation between stock market fluctuations and different data sources 

derived from the historical data of world major stock indices or external information from social 

media and news [6]. 
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    The main objective of this research is to investigate the accuracy of predicting the unseen 

prices of the Dow Jones Industrial Average using information derived from GDELT database. 

Dow Jones Industrial Average (DJIA) is a stock market index, and one of several indices created 

by Wall Street Journal editor and Dow Jones & Company co-founder Charles Dow. This 

research is based on data sets of events from GDELT database and daily prices of the DJI from 

Yahoo Finance, all from March 2015 to October 2017. First, multiple different classification 

machine learning models are applied to the generated datasets and then also applied to multiple 

different Ensemble methods. In statistics and machine learning, Ensemble methods use multiple 

learning algorithms to obtain better predictive performance than could be obtained from any of 

the constituent learning algorithms alone. Afterwards, performances are evaluated for each 

model using the optimized parameters. Finally, experimental results show that using Ensemble 

methods has a significant (positive) impact on improving the prediction accuracy. 

Keywords: Big Data, GDELT, Stock Market, Prediction, Dow Jones Index, Machine Learning, 

Ensemble Methods  
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CHAPTER 1 

INTRODUCTION 

     Technology is one of the most influential aspects in modern history without which humankind 

would not be where they are today. By incorporating technology into everyday life, people have 

the opportunity to be more efficient and productive in every decision they make. One way that 

technology has been helpful is the topic of machine learning. Machine learning is a field of 

computer science that aims to give computers the ability to artificially learn [29]. It explores the 

study and construction of algorithms that can “learn” the patterns and make predictions on data 

[29]. Understanding the various techniques of machine learning enables individuals and entities 

to apply it to a wide range of areas. One specific area where these techniques have increasingly 

been applied to is the Stock Market prediction. Studies show that using machine learning 

algorithms such as Support Vector Machine (SVM) and Reinforcement Learning to predict stock 

market prices can make a huge impact on how and what individuals or businesses do with their 

money [4] [11] [13] [16] [17] [20]. These models have shown to be very effective in analyzing 

the stock market to optimize profits with a minimum amount of lash back [3] [20] [28]. 

Currently, in the United States, stock trades use special high-frequency trading algorithms that 

monitor the stock market [36] [37]. The problem with these kinds of machine learning models is 

that the inputs chosen are usually determined from the same dataset as the market that is being 

evaluated in the first place. However, modern-day technology has given entities the ability to 

share and use information outside and inside the market share. In fact, some studies show there is 

a strong correlation between closing prices overseas and its effect on the prices in the United 

States after they close. Therefore, it is necessary to evaluate information in a bigger perspective 

rather than keeping it the way it is currently because this makes the process of predicting future 
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prices more prone to flaws [28]. This flaw has been acknowledged and many efforts are being 

made to widen these boundaries to get the most accurate results possible. One way this is being 

done is through an approach known as sentiment analysis of up-to-date financial news and social 

networking streams such as Twitter [8] [23] [33].  Another way is using a database GDELT, 

which already has analyzed the sentimental analysis. This reduces the need to conduct a separate 

analysis and gather information from different sources.  

1.1 Statement of the Problem 

     Two factors that affect the application of machine learning models to financial news are the 

ability to collect news and performing a sentiment analysis [10]. The common way to collect 

news is to run text mining [10]. This will aid in aggregating real-time news articles from various 

sources. Natural Language Processing (NLP) is then used to not only analyze the data from those 

news articles, but also to categorize those articles as positive (good) or negative (bad) polarity 

[10]. Optimizing the results derived from this analysis opens the ability to visualize the 

connection between news and its effect on stock market prices. With the assumption that 

negative and positive events over the course of a few days have an impact on the immediate 

future of stock market prices, it would be of great benefit to increase the accuracy of the 

prediction models so that individual and entities are able to choose the best course for their 

investments.  GDELT has been chosen to drive this research because it addresses these both 

crucial factors. GDELT has the ability to collect news in more than sixty-five different languages 

from various streams nationally and globally and then runs a sentiment analysis on them [9]. By 

gathering relevant news and using the attributes to classify news as positive (good) or negative 

(bad), this research will aim to evaluate the accuracy of predicting the stocks prices [9]. The end 
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of this experiment should determine how and what relevant news affect stock prices and how this 

can be used to predict stock prices in the future. 

1.2 Objective and Contributions 

     The objective of this study is to compare the performances of different machine learning 

algorithms that evaluate the relationships between equity, commodity, and currency markets with 

news sources and social network streams to aid in predicting the stock market prices more 

accurately. This study will also serve to show the value of inputting different features such as 

world major stock indices and social media trends to observe stock market’s reactions. 

Therefore, the goal of this study is to provide an analysis on the different emerging algorithms 

and models (Logistic Regression, K Nearest Neighbors, SVM, Random Forest, Multi-layer 

Perceptron, Bernoulli Naive Bayes, Naive Bayes, Adaptive Boosting, Gradient Boosting, and 

Bagging) that are being applied to big data from stock market and other social media sources to 

determine there is a link between news and the Dow Jones Index and if it can be used to predict 

future stock prices. For the purpose of this study, the dataset used has been collected from 

GDELT. Future suggestions to expand this study would be to include GDELT V2.0, which uses 

near-real-time events and retrain models for high-frequency trading.  

     This study will be categorized as follows. Chapter 2 will consist of background information 

and research that have led to this study. This will include understanding big data, its 

misconceptions, GDELT, and other literature. Chapter 3 will continue to explain the experiment 

and methodology of this research. It will consist of how the data was collected and extracted, 

what features are used/selected, understanding the challenges, and finally determining a way to 

rid the noise and interpreting negative and positive sentiments. Other topics that will be covered 

in this experimental section are the tools being used to derive the information, how the 
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predictability will be determined, historical data and preprocessing the data. Chapter 4 consists 

of interpreting the data. It will cover all the models used and a description of the parameters used 

for each model. This chapter will conclude with a short summary of the results. Chapter 5 will 

discuss the results of the experiment, give a short overview of the entire paper, and will suggest 

future implications to consider for continuing experiments similar to this.   
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CHAPTER 2 

BACKGROUND AND RESEARCH 

     The stock market is highly sensitive to many factors. Every minute of every day, it 

continuously fluctuates up and down. Part of the reason for this is due to supply and demand. 

When the need for a certain stock is high, its market price will increase. If more people want to 

sell a stock, in response the stock prices will decrease. There are several factors that affect this 

supply and demand relationship.  

     The types of news reports that are published at a certain given moment have an impact on 

how the stock prices react. Individuals are likely to sell stocks when informed of negative news 

that produces tension to sell and inadvertently cause a decrease in stock prices [9]. This amount 

of negative news is the result of poor corporate governance, bad earnings reports, unfortunate 

occurrences, and economic and political uncertainty [9].   

     On the other hand, positive news encourages individuals to purchase more stocks. Individuals 

are more likely to buy stock during this time due to increased buying pressure that leads to an 

increase in stock prices [9]. This amount of positive news is a reflection of innovation and 

acquisitions, good earnings reports, increased corporate governance, and an improvement in 

economic and political indicators [9].  

     Stock market prediction is vital and useful to all types of industries large or small. By being 

able to predict how the stock market will respond daily, investors can decide what to do with 

their money more efficiently. Stock prices are affected by the behaviors of investors whose 

behaviors are the direct result of publicly available information [18]. Therefore, financial news 

plays a crucial role in what individuals decide to do with their stocks [18]. There are various 
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theories evaluating the relationship between news articles and stock price movement but with 

poor accuracy [31]. The Efficient Market Hypothesis (EMH) and Random Walk theory state that 

stock prices are unpredictable and are driven solely by new information. Since new information 

is unpredictable, stock prices will move in a random walk pattern making it impossible to be 

used to predict future stock prices with an accuracy greater than 50 percent. Other studies show 

that stock prices do not follow a random pattern and instead can be anticipated regardless if the 

news gathered is unpredictable. A fair amount of studies shows that access to large amounts of 

data online such as through Twitter, Facebook, and LinkedIn can provide some insight in 

predicting changes in finances [14]. Outside of news, there seems to also be an existing link 

between views of Wikipedia on certain topics and the trends in the stock market, online chat 

activity and book sales, and even Google search queries and incidence of disease infection rates 

[21, 38, and 40]. In conjunction with this link, the idea of this research is to analyze the 

correlation between news and social media networks with future stock prices.  

     In this research, GDELT database is used to narrow down news media that makes references 

to the Dow Jones Index, which consists of the largest companies in the New York Stock 

Exchange, every day. The goal of this is to classify these news titles as positive or negative by 

based on their attributes to determine if there is indeed a link between the news reports and stock 

prices. 

2.1 Big Data 

     Big data is neither a new term nor have its techniques never been used. In fact, big data has 

been around for years. Big data is data that is hard to interpret and expensive to manage. It is 

defined as high-volume, high-velocity, or high-variety information that needs to be processed in 

order to interpret and be used for purposes other than what it is originally intended for [7] [15]. 
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Big data should meet any of or all four of the V’s- volume, velocity, veracity, and variety [15]. 

There are two other V’s less mentioned- variability and value [7] [15].  

 Volume refers to the size of the data, which needs to be considered to make sure it can be 

managed by the algorithm or models being used. Velocity focuses on the data streaming rates 

that need to be successfully handled by traditional algorithms. Veracity focuses on the idea that 

regardless of the data’s availability, the quality of the data could be at risk. Larger amounts of 

data are prone to quality issues and need to be worked on before processing the information. 

Variety is the ability to present the same data in different ways and modalities while variability is 

the ability to change the structure of data and how it is interpreted. Lastly, value refers to the 

value that the data gives to the entirety.  

2.1 Misconceptions about Big Data 

     There are common misconceptions about big data. The three most common concepts are that 

models are not important, correlation is enough, and older methodologies don’t work anymore 

[35]. However, research and further evaluations show otherwise. Models exist because there is 

not just one simple model that would be perfect in every situation and result in the best 

performance and accuracy. Some studies on deep learning show that to interpret big data, certain 

sophisticated models are able to achieve better performance [35]. Deep learning techniques have 

been used for ages and simple models were more common in the past because there weren’t any 

models equip to handle the data and parameters existing today. In addition, the amount of data 

available in past was significantly smaller than today, therefore making simpler models seem 

unnecessary today. However, this does not mean models should not be used at all. Complex 

models that exist today are very useful.  
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     Regarding the second misconception of correlation not being enough, there are plenty of 

statistical information that shows that no amount of correlation data could ever replace the role 

of causality. For example, one study’s data showed that there is a strong correlation between the 

number of hospitals and number of car thefts in that area. If the misconception that correlation is 

enough was true, then the best way to stop car thefts would be to stop making hospitals. 

However, this is not true [25]. There are other factors that could affect this correlation such as 

the location and economic status of the community. Therefore, it would not be valid to say that 

correlation is enough.  

     The third concept that old methodologies do not work anymore is also false. Big data has 

existed for many decades and it has been used many times in multiple different places. The only 

part of big data that has changed over time is its’ volume. Therefore, methodologies about big 

data in the past should still be valued today. 

2.2 GDELT 

     GDELT is also known as Global Database of Events, Location/Language, and Tone [8]. It 

monitors the world’s broadcast, print, and web news from every corner of every country in over 

a hundred languages while identifying locations, people, organizations, themes, images, 

emotions, counts, and quotes every second of every moment [8]. GDELT is the largest and most 

comprehensive open-access spatiotemporal database in existence and is pushing the boundaries 

of "Big Data"[8]. A spatiotemporal database manages both space and time information [8]. For 

example, tracking moving objects at a specific position at a given time [8]. Creating such a 

platform that has information for every moment of everyday dating from the present back to 

January 1, 1979, has only been successful thanks to the technical and methodological 

innovations, partnerships, and creativity of those who worked together to make GDELT [8]. 
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Nearly three-quarters of a trillion emotional snapshots and more than 1.5 billion location 

references were recorded in just 2015 [8]. Making GDELT this complex has required solving 

unparalleled challenges and “reimagining” human interaction and how it perceives societal-scale 

data.  

     Originally created by Yahoo! And Georgetown University, GDELT is machine-coded by the 

Textual Analysis by Augmented Replacement Instructions (TABARI) and is updated daily 

through information derived from thousands of news articles. It also uses Conflict and Mediation 

Event Observations (CAMEO) coding to record events [25]. CAMEO is a hierarchical coding set 

for recording events that are newsworthy and coverage [25]. It is commonly used in the study of 

political news and violence on a wide range of the spectrum. With all of this information, 

GDELT will encode the contents of each event into 57 different fields that help to describe that 

event, the people involved, and the geographical location along with other information [1] [11]. 

To understand GDELT, Actors need to be understood. Actor 1 refers to the one who's done 

something, and Actor 2 refers to the one the action is being done to. Each Actor is identified by a 

code, name, country code, country name, group, label, ethnic code and label, a religion code and 

label, and finally a CAMEO code and type [1]. There are more than 38 million multilingual news 

reports existent in the past 25 years that have been processed and extracted [11]. GDELT can be 

downloaded as a CSV file from its website or can be accessed through Google Big Query [1] 

[11]. Based on the available data, from the years 1979 to 2005 there are yearly archived files and 

from the years 2006 to March 2013, there are monthly archived files. After April 2013, there are 

daily archived files that include the web URLs of the recorded news events as well. More than 

220,000 events are added to GDELT daily [1].  For the purpose of this study, ten features—

"GLOBAL_EVENT_ID”, “EVENT_DATE”, “COUNTRY_CODE”, “IS_ROOT_EVENT”, 
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“SOURCE_URL”, “NUM_MENTIONS”, “NUM_SOURCES”, “NUM_ARTICLES”, 

“GOLDSTEIN_SCALE”, and “AVG_TONE” have been chosen which are described in table 1. 

These attributes are chosen for this research because they are numerical attributes, which will 

help analyze the movements of stock prices.   

Table 1 

 Quick Review of the GDELT Attributes [13] 

GlobalEventID (integer) A globally unique identifier assigned to each event record that 

uniquely identifies it in the master dataset. 

Date (integer) Date the event took place in YYYYMMDD format. 

IsRootEvent (logical or 

binary or byte) 

A binary number that shows if events occurring in the lead paragraph 

of a document tend to be the most “important.” This flag can, 

therefore, be used as a proxy for the rough importance of an event to 

create subsets of the event stream. 

 

GoldsteinScale 

(numeric) 

Each event is assigned a numeric score from -10 to +10, capturing the 

theoretical potential impact that type of event will have on the 

stability of a country. This is known as the Goldstein Scale. This field 

specifies the Goldstein score for each event type. This score is based 

on the type of event, not the specifics of the actual event record being 

recorded – thus two riots, one with 10 people and one with 10,000, 

will both receive the same Goldstein score. This can be aggregated to 

various levels of time resolution to yield an approximation of the  
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Table 1 

 (Continued) 

 stability of a location over time. 

NumMentions (integer) This is the total number of mentions of this event across all source 

documents. Multiple references to an event within a single document 

also contribute to this count. This can be used as a method of 

assessing the “importance” of an event: the more discussion of that 

event, the more likely it is to be significant. The total universe of 

source documents and the density of events within them vary over 

time, so it is recommended that this field is normalized by the 

average or another measure of the universe of events during the time 

period of interest. This field is updated over time if news articles 

published later discuss this event 

NumSources (integer) This is the total number of information sources containing one or 

more mentions of this event. This can be used as a method of 

assessing the “importance” of an event: the more discussion of that 

event, the more likely it is to be significant. The total universe of 

sources varies over time, so it is recommended that this field is 

normalized by the average or another measure of the universe of 

events during the time period of interest. Same as with 

NumMentions, this field is updated over time to reflect subsequent 

coverage of the event. 
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Table 1 

 (Continued) 

NumArticles (integer) This is the total number of source documents containing one or more 

mentions of this event. This can be used as a method of assessing the 

“importance” of an event: the more discussion of that event, the more 

likely it is to be significant. The total universe of source documents 

varies over time, so it is recommended that this field be normalized 

by the average or other measure of the universe of events during the 

time period of interest. Same as with NumMentions, this field is 

updated over time to reflect subsequent coverage of the event. 

 

AvgTone (numeric) This is the average “tone”, general feelings or attitudes, of all 

documents containing one or more mentions of this event. The score 

ranges from -100 (extremely negative) to +100 (extremely positive). 

However, common values range between -10 and +10, with 0 

indicating neutral. This can be used as a method of filtering the 

“context” of events as a subtle measure of the importance of an event 

and as a proxy for the “impact” of that event. 
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Table 1 

 (Continued) 

SOURCEURL 

(character) 

This field is only present in the daily event stream files beginning 

April 1, 2013 and lists the URL of the news article the event was 

found in. If the event was found in an article from the BBC 

Monitoring 

ActionGeo_FullName 

(character) 

This is the United Nations Country Codes of the matched location. 

This can be used to label locations when placing events on a map.  

 

2.3 Literature Review 

     There are many types of research that have focused on the relation of news collected and its’ 

influence on prices. To begin, it is worth noticing that there are a couple of famous sentiment 

analysis tools that are frequently used to process information. TextBlob is a type of natural 

language processing NLP that helps to provide a simple application program interface (API) that 

allows the completion of tasks such as part-of-speech tagging, noun phrase extraction, sentiment 

analysis, classification, and translation [12]. TextBlob uses NLTK (Natural Language Toolkit), a 

type of natural language processing library in Python. It contains two sentiment analysis 

modules- PatternAnalyzer and NaiveBayesAnaylizer [12]. PatternAnalyzer is based on the 

pattern library and returns the sentiment polarity and the subjectivity of the text [12]. The 

polarity score is usually within the ranges of [-1.0, 1.0].  The subjectivity is within the range of 

[0.0, 1.0] where 0.0 is very objective and 1.0 is very subjective. NaiveBayesAnalyzer is an 
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NLTK classifier that classifies movie reviews into positive or negative sets [12]. It is a text 

analyzer and returns the sentiment polarity of text.  

     A paper that has analyzed public sentiment to predict the movements of stock prices for thirty 

companies that are listed in the NASDAQ and the New York Stock Exchange uses NLP 

techniques to classify relevant news in the United States into five categories- Positive+, Positive, 

Neutral, Negative, and Negative- [34]. The hourly rise and fall of the Stock Market prices are 

normalized into five categories as well- Up+, Up, Flat, Down, and Down- [34]. The proposed 

algorithm is then used and discovers that there is, in fact, a link between the stocks of those thirty 

companies and the news with an accuracy of 76 percent [34]. Based on this research it can be 

determined that this technique has an average predictive accuracy better than NaiveBayes and 

SVM. Like this, there are plenty of research that seeks to find a correlation between stock prices 

and news and social media streams.  

     Another research uses GDELT to build a Hidden Markov Model that is used to predict the 

overall level of social unrest associated with country instability from five countries in the 

Southeast Asia- Thailand, Malaysia, Philippines, Indonesia, and Cambodia [24]. Social unrest 

event prediction was evaluated through calculations. Extensive empirical testing with the data 

specific to those five countries showed the effectiveness of using GDELT by comparing it with 

logistic regression model and the baseline model [24].  

     A recent experiment uses GDELT dataset to analyze the connection between China and the 

rest of the world. It first finds the total number of worldwide events that include China from 

years 1979 to 2012 and applies the ARIMA models to estimate future possible patterns in the 

years 2013 [17]. It seeks to determine the strength of correlation between China and the top 15 
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other countries from the list of possible events [17]. This study shows the effectiveness of using 

GDELT for predicting trends globally.  

     One study that runs parallel to this study tries to predict the Bitcoin prices using GDELT 

database [6]. Because the historical data for Bitcoin included the weekends, the time series in 

this research was complete and had no missing days. Therefore, the prices could be shifted to the 

next days. The time-lag between the event dates and the prices of the stocks adjust accordingly. 

This study evaluated prediction by only using the historical data for prices to future prices and 

then using machine-learning models along with historical prices to predict future stock prices [6]. 

This study concluded that the latter was more accurate.  

     Stock market prediction and big data are the main topics for this research. Although there is 

very little research on using GDELT solely to predict how news affects stock market prices, this 

research attempts to continue this fairly new topic and further evaluates its relationship to see if a 

correlation exists.  
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CHAPTER 3 

METHODOLOGY AND EXPERIMENTS 

 The experiments done for this research consist of collecting financial news related to the DJI, 

a well-known index of the New York Stock Exchange, and then extracting certain features that 

influence the prices of the DJI. The movements of the DJI prices are needed to be learned by 

machine learning models in order to predict the movements of unseen prices. Since the desired 

outputs are either up or down, the binary classification machine learning models are needed to 

classify the data set in order to figure out whether there is an enough strong correlation between 

the relevant financial news and the DJI price movements, and if so, then to predict the movement 

of the DJI unseen prices. Binary or binomial classification is the task of classifying the elements 

of a given set into two groups based on a classification rule [10]. Some of the methods 

commonly used for binary classification are Decision Trees, Random Forests, Bayesian 

Networks, Support Vector Machines, Neural Networks, and Logistic Regression. Each classifier 

has its advantages in only a select domain based upon the number of observations, the 

dimensionality of the feature vector, the noise in the data and many other factors. Some tools to 

evaluate the performances of the models, as well as some technique to optimize them, are also 

needed such cross-validation and grid search. The goal of this experiment is to evaluate how the 

DJI prices change accordingly to relative news and see if there is an existing link between these 

two. 

3.1 Historical Data 

     The historical data of the DJIA prices was downloaded from Yahoo Finance API in CSV 

format. The input data set includes the events from March 1st, 2015 to October 1st, 2017 (31 
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months) and the output data set includes the closing prices during this period excluding the 

weekends and holidays. The Figure 1 shows that the DJI prices have increased significantly in 

this period. As expected, there are more positive versus negative events for the news posted in 

this period especially in 2017.  

 

 

Figure 1.  DJI (Mar 1st, 2015 - Oct 01st, 2017) - Prices currency in USD from Yahoo Finance  

3.2 Data Collecting 

     The first and foremost step in conducting this study is to successfully retrieve and gather data 

using GDELT for each day excluding weekends from March 1st, 2015 until October 1st, 2017 in 

CSV (comma-separated values) format files from the GDELT website [38]. The reasoning 

behind choosing this date range is because of the data before March 1st, 2015 seemed to have 

significantly more positive Average Tone in comparison to the events that occurred after that 

date. This might be due to another undocumented change that may have influenced GDELT's 

sentiment analysis tools before that time [6].  



18 
 

     After collecting the data, CSV files were put together in chronological order. A table was 

created incorporating the features of GDELT using Oracle RDBMS, which is a relational 

database management system. Oracle RDBMS creates a platform on which a query can be 

created to search and select specific events that affect the DJI. The final CSV file consisting all 

the attributes from March 1st, 2015 until October 1st, 2017 was imported into the table. 

     Predicting a certain stock in the DJI is difficult because there may not be enough news related 

to a specific stock. It is because of this, an index of 30 companies of the Stock Market was 

chosen. The DJIA (Dow Jones Industrial Average) index was picked because it consists of the 

largest thirty companies in the NYSE [10] [19]. In addition, other indices consist of too many 

companies that make it very expensive to create a list of related keywords and keep track of all 

the news related to them. For example, the S&P index consists of 500 companies [10] [19].  

     A list of relevant keywords was created specifically to the companies in the DJI. This is 

because the DJI consists of only 30 companies and the best way to locate articles specific to 

these companies is through specific keywords pertaining to them. The list of the relevant 

keywords can be found in Table 2. The only feature available in GDELT database that can be 

used to search and find relevant news in regard to the query is “Source URL”. Uniform Resource 

Locator (URL), also known as a web address, is a reference to a web resource that specifies its 

location on a computer network and a mechanism for retrieving it [28]. Since URL’s contain 

news titles, searching through the “Source URL” column of the table is of benefit. Therefore, it 

was decided to search relevant keywords through the URL’s to find relevant news to the DJIA. 
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Table 2 

List of Keywords for DJIA 

Dow-Jones DJIA Industrial-Average Jones-Industrial 

^DJI Dow-30 Charles-Dow S&P-Dow-Jones 

Apple-Inc. American-Express Boeing Caterpillar 

Cisco-Systems Chevron Coca-Cola Disney 

Dow-Du-Pont Exxon General-Electric Goldman-Sachs 

Home-Depo IBM Johnson-&-Johnson Johnson-and-Johnson 

JPMorgan-Chase McDonald Merck Microsoft 

Nike Pfizer Procter-&-Gamble Procter-and-Gamble 

Travelers-Companies United Technologies UnitedHealth Verizon 

Visa Wal-Mart   

 

3.3 Model Selection  

The first objective of this research is to find a meaningful correlation between the DJI related 

News Sentiments and the DJI price movements through specific machine learning models. The 

second objective of this research is to determine if there is indeed a way to predict the 

movements of the DJI unseen prices using the News Sentiments.  

The performances of classification models have been analyzed using 10 Fold Cross 

Validation techniques. The K-Fold Cross Validation Score function repeatedly and randomly 

splits the training set into K-folds and then makes predictions based on each fold using a model 
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trained on the remaining folds [26]. In addition, the performance of each model has been 

evaluated using the Voting Classifier model from Ensemble method.   

In order to do binary classification and considering the size of the data set, Logistic 

Regression, SVM, Random Forest Classifier, and KNN models were chosen for the experiments 

of this research.  

The hyperparameters of the models which have significant influences on the performance of 

the classification models have been optimized by using the Grid Search function. This function 

exhaustively tries every combination of all the hyper-parameters for each model. In addition, the 

Ensemble Methods were used to improve the performance of the models, which combines the 

predictions of many base classifiers/estimators to improve generalizability over a single 

classifier/estimator. 

3.4 Preprocessing the Data 

     Standardization of a data set is a common requirement for many machine learning models. 

They might behave badly if the individual features do not more or less look like standard 

normally distributed data (e.g. Gaussian with 0 mean and unit variance) [32]. Therefore, for this 

study, all the numerical values have been standardized. To do this, the Standard Scaler function 

from preprocessing class of sklearn library is used. This function standardizes features by 

removing the mean and rescaling to unit variance [32]. In this research, centering and rescaling 

carried out independently on each feature by computing the relevant statistics on the samples in 

each set. The mean and standard deviation are then stored.  
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3.5 Time Lag 

     There is always some time lag between the date an event takes place and the date it affects the 

Stock Market because it takes time for an event to make an impact. One of the biggest challenges 

in this research is finding the average time lag between for all the events. It is determined that the 

DJI price movements would be shifted to the next business days to evaluate the best lag because 

this would give news ample time to make an impact, if it is going to, on prices.  

 The desired outputs (the movements of the DJI prices) have been shifted to the next working 

business day in the data. Each time the correlation between the News Sentiments and the shifted 

outputs is measured by applying them to different classification models and assessing how the 

results of classification generalize to n sample sets. APPENDIX B shows how this process was 

implemented. First, each time the desired outputs are shifted to the next day before reading the 

data, data = pd.read_csv('~/N-DAY-LAGGED.csv'). The input matrix consists of the News 

Sentiments, X = data [['AVG_GOLDSTEINSCALE', 'AVG_TONE']]. The desired output vector 

consists of the sifted the DJI price movements, y = data ['Price Change']. As you see in the 

following pseudocode, a for loop is created to break the input matrix and the output vector into 

n-sample sets and the inputs are standardized based on the samples of each set. 

for i in range(0,646-n,1): 

    Xi = X[i:(i+n)] 

    yi = y[i:(i+n)] 

    scaler = StandardScaler() 

    Xi = scaler.fit_transform(Xi) 



22 
 

Then the samples of each set are split into train and test sets as shown in the following 

code snippet: 

Xi_train,Xi_test,yi_train,yi_test=train_test_split(Xi,yi,test_size=m,random_state=None,shuffl

e=False) 

The input and output train sets are fit to different classification machine learning models. 

Then the fitted classifiers predict the outputs of each test set based on their input test sets. 

    classifier = RandomForestClassifier() 

    classifier.fit(Xi_train,yi_train) 

    yi_predict = classifier.predict(Xi_test) 

At the end, the average accuracy of the predictions is calculated by comparing the 

predicted outputs and the desired outputs as shown in the following snippet: 

    score = metrics.accuracy_score(yi_test,yi_pred) 

    scores.append(score) 

The average accuracy of each classification model using different time lags was calculated 

and shown in the Table 7. 
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Table 7 

The average score and the 95% confidence interval of average performance of the classification 

models Using Different Time Lags 

Model  0 Day  1 Days  2 Days  3 Days  4 Days 

Average Classification 

Performance 

0.51+/- 

0.01 

0.52+/- 

0.03 

0.56+/- 

0.02 

0.53+/- 

0.02 

0.52+/- 

0.03 

As you see in Table 7, in average best classification performance we found was the result of 

fitting 2-day shifted outputs to the models. Therefore, we can claim that on average it takes 2 

days for each event to have most influence possible in this data set on the DJI prices. For the rest 

of the research, we have used the 2-day shifted outputs. 

3.6 Feature Engineering 

     In GDELT, records are completely independent of the past records. Given the enormous size 

of the data, it is not only very expensive to manage but also tedious to extract value from it [6]. 

Fitting all the GDELT features to predictive models increases the complexity of the models and 

as a result, decreases the overall performance.  

     To analyze the stock price movements in order to predict the movements of unseen prices 

some specific features need to be considered. The features “GLOBAL_EVENT_ID”, 

“EVENT_DATE”, “SOURCE_URL”, and “COUNTRY_CODE” can serve as unique identifiers, 

the numerical features “IS_ROOT_EVENT”, “NUM_MENTIONS”, “NUM_SOURCES”, 

“NUM_ARTICLES”, “GOLDSTEIN_SCALE”, and “AVG_TONE” can help to predict the 
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movements of the DJI prices. Each of these features has special capabilities that are essential in 

conducting this experiment. “GLOBAL_EVENT_ID” is used to help identify unique events, 

“EVENT_DATE” will be used to make the time series, and “SOURCE_URL” will be used find 

articles. In addition, “GOLDSTEIN_SCALE”, and “AVG_TONE” is specifically used in 

prediction and classification. “COUNTRY_CODE”, “IS_ROOT_EVENT”, 

“NUM_MENTIONS”, “NUM_SOURCES”, and “NUM_ARTICLES” have a special role in this 

experiment, they will be used to aid in filtering out irrelevant news or noise.  

3.7 Classification 

 In statistics, dependence or association is any statistical relationship, whether causal or not, 

between two variables. Correlation most often refers to how close two variables have a 

relationship with each other. Correlations are useful because they can indicate a predictive 

relationship that can be exploited in practice. There should be a significant correlation between 

the input (the features of news) and 2-day shifted output (the price movement compared to 

previous day) of each day so that we can claim the movements of the DJI prices are predictable 

based of the DJI related news. To calculate the correlation, the input and output of each day 

fitted to the chosen classification models—Logistic Regression Classifier, K Nearest Neighbors, 

Random Forest, Multi-Layer Perceptron, Naive Bayes (Ensemble), Bernoulli Naive Bayes 

(Ensemble), Adaptive Boosting Classifier (Ensemble), Gradient Boosting Classifier (Ensemble), 

and Bagging Classifier (Ensemble). These models are most common classification models based 

on the studies surveyed for the purpose of binary classification.  

One of the ways to evaluate the performance of classification models is to use the train-test 

sets techniques. Training the models against the smaller training set and evaluating them against 

the validation set may require a bit of work but the results are more accurate. However, by 
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partitioning the available data into three sets, we drastically reduce the number of samples which 

can be used for learning the model, and the results can depend on a particular random choice for 

the pair of (train, validation) sets. A solution to this problem is a procedure called the K-fold 

cross-validation. In K-fold cross-validation, the original sample is randomly partitioned into k 

equal sized subsamples. Of the k subsamples, a single subsample is retained as the validation 

data for testing the model, and the remaining k − 1 subsamples are used as training data. The 

cross-validation process is then repeated k times, with each of the k subsamples used exactly 

once as the validation data. The k results from the folds are averaged to produce a single 

estimation. The advantage of this method over repeated random sub-sampling is that all 

observations are used for both training and validation, and each observation is used for validation 

exactly once.  

Therefore, K-fold cross-validation technique was used to evaluate the performance of each 

model, based on the size of the dataset (647 days), 10 folds were determined. The News 

Sentiments (Goldstein Scale and Average Tone) and all combinations of other features separately 

were fitted to different classification models. It was found that the classification models have 

best performances using only the AVG_AVGTONE and AVG_GOLDSTEIN_SCALE features 

as shown in Table 3. The average performance The News Sentiments (Goldstein Scale and 

Average Tone) and the other features separately were fitted to different classification models and 

their performances have been measured using 10-fold cross-validation technique. The average 

performance and 95% confidence interval of the classification models using only the News 

Sentiments and other features were calculated and shown in Table 3. 
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Table 3 

Feature Engineering 

Model  News Sentiments Other features 

Average Classification Performance 0.49 +/- 0.03 0.44 +/- 0.02 

 

These results show that applying only the News Sentiments to the classification models 

results, in average, higher performance in comparison to applying other features. In addition, in 

general, using fewer features decreases the complexity of the classification models. Therefore, it 

was decided to apply only the News Sentiments to the models for the rest of the experiments. 

Usually, more important news has more influence on the stock market, to find relatively 

important news in the data set, the average values of all the numerical features for all the events 

occurred in each day were calculated. The unimportant news in dataset serves as noise, which 

decreases the performance of classification models. The numerical features “COUNT_URL”, 

“AVG_NUM_MENTIONS”, “AVG_NUM_SOURCES”, and “AVG_NUM_ARTICLES” are 

chosen to filter out the unimportant news based on the average number of mentions, the average 

number of sources, and the average number of articles which are considered as thresholds, thus 

any event that has any feature value less than its threshold was removed from the dataset. 

Another feature used to filter out unimportant events is “Is Root Event”. This feature shows 

whether the events occurring in the lead paragraph of a document tend to be the most 

“important.” This flag can, therefore, be used as a proxy for the estimation of an event to create 

subsets of the event stream (GDELT). Any news that “is not root” have been filtered out. The 
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filtered and unfiltered data sets separately were applied to different classification models. The 

average performance and 95% confidence interval of the classification models using filtered and 

unfiltered dataset were calculated and shown in Table 4.  

Table 4 

Filtered and Unfiltered Data Sets 

Model Filtered dataset Unfiltered dataset 

Average Classification Performance 0.53 +/- 0.02 0.49 +/- 0.03 

 

A considerable amount of important news occurs every day around the world but some of 

them do not affect the DJI prices. Therefore, it is very important to find the countries that 

relevant news have the most influence on the DJI companies. Some research has shown that the 

news related to the largest countries by net national wealth has the most influence on the largest 

companies in the NYSE, and the DJI consists of the 30 largest companies in the stock market [8]. 

Therefore, a list of the richest countries in the world is created and any events not pertaining to 

these countries have been ruled out with the use of the “COUNTRY_CODE” feature. The richest 

countries have been chosen based on Net National Wealth made by Credit Suisse Group in 2017. 

Credit Suisse Group is a Swiss multinational financial service holding company that operates the 

Credit Suisse Bank and other financial services investments. This list of countries can be found 

in Table 5. The average performance of the classification models was calculated to measure the 

correlation between events pertaining to the richest countries in the world. This can be found in 

Table 6. 
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Table 5 

The 30 Largest Countries by Net National Wealth in 2017 

 

Table 6 

Filtered data set based on the Locations  

Model The Richest Countries Unfiltered Dataset 

Average Classification Performance 0.56 +/- 0.02 0.53 +/- 0.02 

  

Comparing the average of the classification performances using the News Sentiments related 

to the 30 richest countries to the average of the classification performances using all the News 

Sentiments shows that filtering the location of the News Sentiments helps in improving the 

classification performance. 

 

 

1.United States 2.China 3.Japan 4.Unite Kingdom 5.Germany 

6.France 7.Italy 8.Canada 9.Australia 10.South Korea 

11.Spain 12.India 13.Switzerland 14.Tawiwan 15.Brazil 

16.Russia 17.Netherlands 18.Belgium 19.Sweden 20.Mexio 

21.Indoesia 22.Turrkey 23.Greece 24.Austria 25.Norway 

26.Denmark 27.Singapore 28.Hong Kong 29.New Zealand 30.Israel 
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3.8 Dealing with Negative and Positive Sentiments  

     We can fit negative and positive News Sentiments in two ways to the models. The first one is 

fitting the average of the negative and positive News Sentiments to the models and the second 

one is fitting negative and positive News Sentiments separately, this means fitting negative 

Goldstein Scale, negative Tone, positive Goldstein, and positive Tone separately to the models. 

There are no neutral values for the features Goldstein Scale and Average Tone. The average of 

News Sentiments, and positive and negative News Sentiments separately were applied to 

different classification models. The average performance and the 95% confidence interval of the 

classification models were calculated and the results are shown in Table 8.  

Table 8 

Negative and Positive News Sentiments 

Model Average  Separate 

Average Classification Performance 0.56 +/- 0.02 0.53 +/- 0.02 

 

Comparing the average of the classification performances using average News Sentiments to 

the average of the classification performances using negative and positive News Sentiments 

separately shows that using average News Sentiments helps more in improving the classification 

performance. 
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3.9 The Tools 

    Scikit-learn is a free software machine-learning library for the Python programming language 

[26]. It features various classifications, regression and clustering algorithms such as SVM, 

random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with 

the Python numerical and scientific libraries NumPy and SciPy [27]. 

     Scikit-learn was initially developed by David Cournapeau as a Google summer of code 

project in 2007 [27]. Its’ name stems from the notion that it is a "SciKit" (SciPy Toolkit), a 

separately-developed and distributed third-party extension to SciPy [27]. The original codebase 

was later rewritten by other developers. In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre 

Gramfort, and Vincent Michel, took leadership of the project and made its first public release on 

February 1st, 2010 [27]. As of 2017, scikit-learn is under active development [27]. 

3.10 Prediction  

Having found the meaningful average classification performance of 0.67 we can claim that 

the movements of DJI prices are predictable. Clearly, the events of 31 months are not all 

dependent and the price movements of future days cannot be predicted using all the News 

Sentiments of the period. Therefore, the data set needs to be broken into smaller sets. To do so, a 

short period yet not too short that the machine learning models cannot learn the patterns, is most 

beneficial. To learn the patterns in each data set, there should be enough samples of two desired 

outputs (up or down). To train the predictive models, the News Sentiments and the desired 

outputs of train set of each sample set were used to train the predictive models. Having trained 

the models, the News Sentiments of the last 2 days of the sample set were applied to the trained 

models to predict, and the desired outputs of the last 2 days (test set) were compared to the 
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predicted outputs to test the performance of the predictions. Since the outputs were shifted to 2 

next days we can consider the outputs of last 2 days of each sample set as future and unseen 

price movements. The process and results of the predictions are shown in the section 4.4. 
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CHAPTER 4 

THE RESULTS OF THE EXPERIMENTS 

4.1 Classification 

     The following are the results of the experiments conducted to get an accurate classification 

and determine if a significant correlation exists between the News Sentiments and the 

movements of the DJI prices between March 1st, 2015 and October 1st, 2017. The preprocessed 

data set, which is explained in the previous chapter, has first been fit to all the classification 

models and then their hyper-parameters were optimized to get the best accuracies. 

4.1.A Logistic Regression Classifier 

     The first classification model used is Logistic Regression. Logistic Regression is a model 

where the dependent variable is categorical. It was first developed by David Cox, a statistician, 

in 1958. This classifier is used to estimate the probability of a binary response based on one or 

more predictor variables. The following parameters resulted in the best predictive accuracy for 

this data. The missing parameters have an insignificant effect on the overall accuracy, so their 

values have been made equal to their default values.  

Best parameters of Logistic Regression for this data: C=1, class_weight=None, dual=False, 

fit_intercept=True,  intercept_scaling=1, max_iter=200, multi_class='ovr', n_jobs=1, 

penalty='l2', random_state=None, solver='newton-cg', tol=0.0001. 

Performance in average: 0.54 +/- 0.03 
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Table 9 

Descriptions of the Parameters of Logistic Regression 

Paremeter Description 

penalty Used to specify the norm used in the penalization. The ‘newton-cg’, ‘sag’ 

and ‘lbfgs’ solvers support only l2 penalties. 

dual Dual or primal formulation. Dual formulation is only implemented for l2 

penalty with liblinear solver. Prefer dual=False when n_samples > 

n_features 

tol Tolerance for stopping criteria. 

C Inverse of regularization strength; must be a positive float. Like in support 

vector machines, smaller values specify stronger regularization. 

fit_intercept Specifies if a constant (a.k.a. bias or intercept) should be added to the 

decision function. 

intercept_scaling Useful only when the solver ‘liblinear’ is used and self.fit_intercept is set 

to True. In this case, x becomes [x, self.intercept_scaling], i.e. a 

“synthetic” feature with constant value equal to intercept_scaling is 

appended to the instance vector. The intercept becomes intercept_scaling * 

synthetic_feature_weight.  
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Table 9 

(Continued) 

 

class_weight Weights associated with classes in the form {class_label: weight}. If not 

given, all classes are supposed to have weight one. 

The “balanced” mode uses the values of y to automatically adjust weights 

inversely proportional to class frequencies in the input data as n_samples / 

(n_classes * np.bincount(y)). 

solver For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ and ‘saga’ 

are faster for large ones. For multiclass problems, only ‘newton-cg’, ‘sag’, 

‘saga’ and ‘lbfgs’ handle multinomial loss; ‘liblinear’ is limited to one-

versus-rest schemes. ‘newton-cg’, ‘lbfgs’ and ‘sag’ only handle L2 

penalty, whereas ‘liblinear’ and ‘saga’ handle L1 penalty. 

max_iter Useful only for the newton-cg, sag and lbfgs solvers. Maximum number of 

iterations taken for the solvers to converge. 

multi_class Multiclass option can be either ‘ovr’ or ‘multinomial’. If the option chosen 

is ‘ovr’, then a binary problem is fit for each label. Else the loss minimised 

is the multinomial loss fit across the entire probability distribution. Does 

not work for liblinear solver. 
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4.1.B K Nearest Neighbors Classifier 

     The second predictive classifier used is KNN. This is a non-parametric method that is used 

for classification and regression. The following parameters have been determined to get best 

predictive accuracy for this data. The missing parameters here are also insignificant that the 

values are considered to be equal to their default values.   

Best parameters of K Neighbors Classifier for this data set : algorithm='auto', leaf_size=30, 

metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=17, p=2, weights='uniform' 

Performance in average: 0.56 +/- 0.02 

Table 10 

Descriptions for the parameters of the K Nearest Neighbors 

Paremeter Description 

n_neighbors Number of neighbors to use by default for kneighbors() queries 

weights weight function used in prediction 

algorithm ‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’ 

leaf_size Leaf size passed to BallTree or KDTree. This can affect the speed of the 

construction and query, as well as the memory required to store the tree. The 

optimal value depends on the nature of the problem. 

p Power parameter for the Minkowski metric. When p = 1, this is equivalent to 

using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For 

arbitrary p, minkowski_distance (l_p) is used. 
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Table 10 

(Continued) 

metric the distance metric to use for the tree. The default metric is minkowski, and 

with p=2 is equivalent to the standard Euclidean metric. 

 

4.1.C Support Vector Machine  

     The third predictive classifier used is SVM. Support Vector Machine are supervised learning 

models that work with learning algorithms that analyze data used for classification and 

regression. The SVM training algorithm builds a model that assigns new examples to the 

category [17]. The following parameters have resulted in the most accurate predictive data. The 

missing parameters are insignificant, so their values have been changed to their default values. 

SVM is based on libsvm [4] [17]. The fit time complexity is more than quadratic with the 

number of samples, therefore making it hard to scale to a dataset with more than a couple of 

10000 samples [4]. The multiclass support is handled according to a one-vs-one scheme. The 

following is the optimum estimator for the dataset.  

Best parameters of Support Vector Machine for this data set: C=1, cache_size=200, 

class_weight=None, coef0=0.0, _function_shape='ovr', degree=3, gamma=0.001, kernel='rbf', 

max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False 

Performance in average: 0.53 +/- 0.03 
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Table 11 

Descriptions of the Parameters of the SVM 

Parameter Description 

C Penalty parameter C of the error term. 

kernel Specifies the kernel type to be used in the algorithm. It must be one 

of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If 

none is given, ‘rbf’ will be used. If a callable is given it is used to 

pre-compute the kernel matrix from data matrices; that matrix 

should be an array of shape (n_samples, n_samples). 

degree The degree of the polynomial kernel function (‘poly’). Ignored by 

all other kernels. 

gamma Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is 

‘auto’ then 1/n_features will be used instead. 

coef Independent term in kernel function. It is only significant in ‘poly’ 

and ‘sigmoid’. 

probability Whether to enable probability estimates. This must be enabled prior 

to calling fit, and will slow down that method. 

shrinking Whether to use the shrinking heuristic. 

tol Tolerance for stopping criterion. 

cache_size Specify the size of the kernel cache (in MB). 
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Table 11 

(Continued) 

class_weight Set the parameter C of class i to class_weight[i]*C for SVC. If not 

given, all classes are supposed to have weight one. The “balanced” 

mode uses the values of y to automatically adjust weights inversely 

proportional to class frequencies in the input data as n_samples / 

(n_classes * np.bincount(y)) 

max_iter Hard limit on iterations within solver, or -1 for no limit. 

 

decision_function_shape Whether to return a one-vs-rest (‘ovr’) decision function of shape 

(n_samples, n_classes) as all other classifiers, or the original one-

vs-one (‘ovo’) decision function of libsvm which has shape 

(n_samples, n_classes * (n_classes - 1) / 2). 

 

4.1.D Random Forest Classifier 

     The fourth predictive model used is the random forest classifier. This is a meta-estimator that 

fits a number of decision tree classifiers on various sub-samples of the dataset and uses 

averaging to improve the predictive accuracy and controls its’ over-fitting [28]. The sub-sample 

size is always the same as the original input sample size but, the samples are drawn with 

replacement if bootstrap=True (default) [28]. The following parameters have resulted in the best 

predictive accuracy for this data. Like the other models, the missing parameters have little to no 

effects on the accuracy and therefore have been changed to their default values.  
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Best parameters of Random Forest Classifier for this data set: bootstrap=True, 

class_weight=None, criterion='gini', max_depth=None, max_features='auto', 

max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, 

min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=7, 

n_jobs=-1, oob_score=False. 

Performance in average: 0.57 +/- 0.02 

Table 12 

Descriptions for the Parameters of the Random Forest Classifier 

Parameter Description 

n_estimators The number of trees in the forest. 

criterion The function to measure the quality of a split. Supported criteria 

are “gini” for the Gini impurity and “entropy” for the information 

gain. 

max_features The number of features to consider when looking for the best split: 

If int, then consider max_features features at each split. 

If float, then max_features is a percentage and int(max_features * 

n_features) features are considered at each split. 

If “auto”, then max_features=sqrt(n_features). 

If “sqrt”, then max_features=sqrt(n_features) (same as “auto”). 

If “log2”, then max_features=log2(n_features). 

If None, then max_features=n_features. 
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Table 12 

(Continued) 

max_depth The maximum depth of the tree. If None, then nodes are expanded 

until all leaves are pure or until all leaves contain less than 

min_samples_split samples. 

min_samples_split: int, float, optional (default=2) 

The minimum number of samples required to split an internal 

node: 

If int, then considers min_samples_split as the minimum number. 

If float, then min_samples_split is a percentage and 

ceil(min_samples_split * n_samples) are the minimum number of 

samples for each split. 

min_samples_leaf The minimum number of samples required to be at a leaf node: 

If int, then considers min_samples_leaf as the minimum number. 

If float, then min_samples_leaf is a percentage and ceil 

(min_samples_leaf * n_samples) are the minimum number of 

samples for each node. 

min_weight_fraction_leaf The minimum weighted fraction of the sum total of weights (of all 

the input samples) required to be at a leaf node. Samples have 

equal weight when sample_weight is not provided. 
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Table 12 

(Continued) 

max_leaf_nodes Grow trees with max_leaf_nodes in best-first fashion. Best nodes 

are defined as a relative reduction in impurity. If None then 

unlimited number of leaf nodes. 

min_impurity_split The threshold for early stopping in tree growth. A node will split 

if its impurity is above the threshold, otherwise, it is a leaf. 

min_impurity_decrease A node will be split if this split induces a decrease of the impurity 

greater than or equal to this value. 

The weighted impurity decrease equation is the following: 

N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t 

* left_impurity) 

where N is the total number of samples, N_t is the number of 

samples at the current node, N_t_L is the number of samples in 

the left child, and N_t_R is the number of samples in the right 

child. 

N, N_t, N_t_R, and N_t_L all refer to the weighted sum, if 

sample_weight is passed. 

bootstrap Whether bootstrap samples are used when building trees. 

oob_score Whether to use out-of-bag samples to estimate the generalization 

accuracy. 
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4.1.E Multi-Layer Perceptron Classifier 

     The fifth predictive model used for this research is the Multi-Layer Perceptron Classifier. 

This is a class of feedforward artificial neural networks. It consists of at least three layers of 

nodes. Each node, in except to the input node, is a neuron that uses a nonlinear activation 

function [21]. This model optimizes the log-loss function using LBFGS or stochastic gradient 

descent [21]. The following parameters result in the most accurate predictive results and the 

missing parameters are considered to be so insignificant that their values are changed to their 

default values.   

Best parameters of MLP Classifier for this data set: activation='relu', alpha=0.0001, 

batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, 

hidden_layer_sizes=(100,), learning_rate='invscaling', learning_rate_init=0.001, max_iter=200, 

momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, 

solver='lbfgs', tol=0.0001, validation_fraction=0.1. 

Performance in average: 0.54 +/- 0.04 

Table 13 

Descriptions of the Parameters of the Multi-Layer Perceptron 

Parameter Description 

hidden_layer_sizes The ith element represents the number of neurons in the ith hidden 

layer. 
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Table 13 

(Continued) 

activation Activation function for the hidden layer: 

‘identity’, no-op activation, useful to implement linear bottleneck, 

returns f(x) = x 

‘logistic’, the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-

x)). 

‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x). 

‘relu’, the rectified linear unit function, returns f(x) = max(0, x) 

solver The solver for weight optimization: 

‘lbfgs’ is an optimizer in the family of quasi-Newton methods. 

‘sgd’ refers to stochastic gradient descent. 

‘adam’ refers to a stochastic gradient-based optimizer 

alpha L2 penalty (regularization term) parameter. 

batch_size Size of mini-batches for stochastic optimizers. If the solver is ‘lbfgs’, 

the classifier will not use minibatch. When set to “auto”, 

batch_size=min (200, n_samples) 
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Table 13 

(Continued) 

learning_rate ‘constant’ is a constant learning rate given by ‘learning_rate_init’. 

‘invscaling’ gradually decreases the learning rate learning_rate_ at 

each time step ‘t’ using an inverse scaling exponent of ‘power_t’. 

effective_learning_rate = learning_rate_init / pow (t, power_t) 

‘adaptive’ keeps the learning rate constant to ‘learning_rate_init’ as 

long as training loss keeps decreasing. Each time two consecutive 

epochs fail to decrease training loss by at least tol, or fail to increase 

validation score by at least tol if ‘early_stopping’ is on, the current 

learning rate is divided by 5. 

learning_rate_init The initial learning rate used. It controls the step-size in updating the 

weights. Only used when solver=’sgd’ or ‘adam’. 

power_t The exponent for inverse scaling learning rate. It is used in updating 

effective learning rate when the learning_rate is set to ‘invscaling’. 

Only used when solver=’sgd’. 

max_iter Maximum number of iterations. The solver iterates until convergence 

(determined by ‘tol’) or this number of iterations. For stochastic 

solvers (‘sgd’, ‘adam’), note that this determines the number of 

epochs (how many times each data point will be used), not the number 

of gradient steps. 
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Table 13 

(Continued) 

shuffle Whether to shuffle samples in each iteration. Only used when 

solver=’sgd’ or ‘adam’. 

random_state If int, random_state is the seed used by the random number generator; 

If RandomState instance, random_state is the random number 

generator; If None, the random number generator is the RandomState 

instance used by np.random. 

tol Tolerance for the optimization. When the loss or score is not 

improving by at least tol for two consecutive iterations, unless 

learning_rate is set to ‘adaptive’, convergence is considered to be 

reached and training stops. 

momentum Momentum for gradient descent update. Should be between 0 and 1. 

Only used when solver=’sgd’. 

nesterovs_momentum Whether to use Nesterov’s momentum. Only used when solver=’sgd’ 

and momentum > 0. 

early_stopping Whether to use early stopping to terminate training when validation 

score is not improving. If set to true, it will automatically set aside 

10% of training data as validation and terminate training when 

validation score is not improving by at least tol for two consecutive 

epochs. Only effective when solver=’sgd’ or ‘adam’ 
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Table 13 

(Continued) 

validation_fraction The proportion of training data to set aside as validation set for early 

stopping. Must be between 0 and 1. Only used if early_stopping is 

True 

beta_1 Exponential decay rate for estimates of first moment vector in adam, 

should be in [0, 1]. Only used when solver=’adam’ 

beta_2 Exponential decay rate for estimates of second moment vector in 

adam, should be in [0, 1]. Only used when solver=’adam’ 

epsilon: float, optional, default 1e-8 

Value for numerical stability in adam. Only used when solver=’adam’  

 

4.2 Ensemble Methods 

     The Ensemble methods were also considered for this experiment. The goal of the Ensemble 

methods is to combine the predictions of several base estimators built with a given learning 

algorithm in order to improve generalizability/robustness over a single estimator [5]. 

     There are two families of Ensemble methods in scikit-learn library- averaging methods and 

boosting methods [5]. In averaging methods, the driving principle is to build several estimators 

independently and then to average their predictions [5]. On average, the combined estimator is 

usually better than any of the single base estimator because its variance is reduced. Examples of 

this would be bagging methods and forests of randomized trees.  
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     By contrast, in boosting methods, base estimators are built sequentially and one tries to 

reduce the bias of the combined estimator [5]. The motivation is to combine several weak models 

to produce a powerful ensemble. Examples of this would be AdaBoost and Gradient Tree 

Boosting.  

4.2.A Ensemble Voting Classifier  

     The first ensemble method used for this research is the Ensemble Voting Classifier, which fits 

clones of the original estimators [5]. The main Of All the predictive classifiers and Bayes 

methods are combined and then applied to the Voting Classifier in order to improve 

generalizability/robustness over the ensemble estimator [5].  

Table 14 

Ensemble Voting Classifier  

Model Performance in average 

Logistic Regression 0.54 +/- 0.03 

K Nearest Neighbors  0.56 +/- 0.02 

Support Vectors Machine 0.53 +/- 0.03 

Random Forest 0.57 +/- 0.02 

Multi-Layer Perceptron  0.54 +/- 0.04 

Bernoulli Naive Bayes 0.56 +/- 0.03 

Naive Bayes 0.55 +/- 0.04 
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Table 15 

Descriptions for the Parameters of the Ensemble Voting Classifier  

Parameter Description 

estimators Invoking the fit method on the VotingClassifier will fit clones of those 

original estimators that will be stored in the class attribute 

self.estimators_. An estimator can be set to None using set_params. 

voting If ‘hard’, uses predicted class labels for majority rule voting. Else if 

‘soft’, predicts the class label based on the argmax of the sums of the 

predicted probabilities, which is recommended for an ensemble of well-

calibrated classifiers. 

weights Sequence of weights (float or int) to weight the occurrences of predicted 

class labels (hard voting) or class probabilities before averaging (soft 

voting). Uses uniform weights if None. 

flatten_transform Affects shape of transform output only when voting=’soft’ If 

voting=’soft’ and flatten_transform=True, transform method returns 

matrix with shape (n_samples, n_classifiers * n_classes). If 

flatten_transform=False, it returns (n_classifiers, n_samples, n_classes).  

 

4.2.B Naive Bayes Methods 

     Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ 

theorem with the “naive” assumption of independence between every pair of features [5]. The 

different naive Bayes classifiers differ mainly by the assumptions they make in regarding to the 
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distribution of P (x_i \mid y). In spite of their apparently over-simplified assumptions, Naive 

Bayes classifiers have worked quite well in many real-world situations. They are famous for 

document classification and spam filtering. They require a small amount of training data to 

estimate the necessary parameters [5]. Theoretical reasons on why they work well is because the 

Naive Bayes learners and classifiers can be extremely fast compared to more sophisticated 

methods. The decoupling of the class conditional feature distributions meaning that their 

distribution can be independently estimated as a one-dimensional distribution.  

4.2.C Bernoulli Naive Bayes 

Like MultinomialNB, this classifier is suitable for discrete data. The difference is that while 

MultinomialNB works with occurrence counts, BernoulliNB is designed for binary/boolean 

features. In addition, this model is popular for document classification tasks where binary term 

occurrence features are used rather than term frequencies [5].  

4.2.D Ensemble Adaptive Boosting Classifier 

     The second Ensemble method used for this research is Adaptive Boosting Classifier, which is 

a meta-estimator that begins by fitting a classifier on the original dataset [5]. It was first created 

by Yoav Freund and Robert Schapire [5]. It then fits additional copies of the classifier on the 

same dataset where the weights of incorrectly classified instances are adjusted such that the 

subsequent classifiers focus more on difficult cases. This classifier can be used together with 

other types of learning algorithms to improve their performance.  

Best parameters of AdaBoostClassifier for this data set: algorithm='SAMME.R', base_estimator= 

DecisionTreeClassifier, learning_rate=1.0, n_estimators=50 

Performance in average: 0.57 +/- 0.03 
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Table 16 

Descriptions for the parameters of the Adaptive Boosting Classifier 

Parameter Description  

base_estimator The base estimator from which the boosted ensemble is built. Support for 

sample weighting is required, as well as proper classes_ and n_classes_ 

attributes. 

n_estimators The maximum number of estimators at which boosting is terminated. In case 

of perfect fit, the learning procedure is stopped early. 

learning_rate Learning rate shrinks the contribution of each classifier by learning_rate. 

There is a trade-off between learning_rate and n_estimators. 

algorithm If ‘SAMME.R’ then use the SAMME.R real boosting algorithm. 

base_estimator must support calculation of class probabilities. If ‘SAMME’ 

then use the SAMME discrete boosting algorithm. The SAMME.R algorithm 

typically converges faster than SAMME, achieving a lower test error with 

fewer boosting iterations. 

 

4.2.E Ensemble Gradient Boosting Classifier  

The third Ensemble method used for this research is Gradient Boosting Classifier, which 

builds an additive model in a forward stage-wise fashion. This allows for the optimization of 

arbitrary differentiable loss functions [5]. In each stage n_classes_ regression trees are fit on the 

negative gradient of the binomial or multinomial deviance loss function. Binary classification is 

a special case where only a single regression tree is induced. 
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Best parameters of Gradient Boosting Classifier for this data set: criterion='friedman_mse', 

init=None, learning_rate=0.1, loss='deviance', max_depth=3, max_features=None, 

max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, 

min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, 

presort='auto', random_state=None, subsample=1.0 

Performance in average: 0.63 +/- 0.02 

Table 17 

Descriptions for the Parameters of the Gradient Boosting Classifier 

Parameter Description 

loss loss function to be optimized. ‘deviance’ refers to deviance (= 

logistic regression) for classification with probabilistic outputs. 

For loss ‘exponential’ gradient boosting recovers the AdaBoost 

algorithm. 

learning_rate learning rate shrinks the contribution of each tree by learning_rate. 

There is a trade-off between learning_rate and n_estimators. 

n_estimators The number of boosting stages to perform. Gradient boosting is 

fairly robust to over-fitting so a large number usually results in 

better performance. 

max_depth Maximum depth of the individual regression estimators. The 

maximum depth limits the number of nodes in the tree. Tune this 

parameter for best performance; the best value depends on the 

interaction of the input variables. 
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Table 17 

(Continued) 

criterion The function to measure the quality of a split. Supported criteria 

are “friedman_mse” for the mean squared error with improvement 

score by Friedman, “mse” for mean squared error, and “mae” for 

the mean absolute error. The default value of “friedman_mse” is 

generally the best as it can provide a better approximation in some 

cases. 

min_samples_split The minimum number of samples required to split an internal 

node: 

If int, then consider min_samples_split as the minimum number. 

If float, then min_samples_split is a percentage and ceil 

(min_samples_split * n_samples) are the minimum number of 

samples for each split. 

min_samples_leaf The minimum number of samples required to be at a leaf node: 

If int, then consider min_samples_leaf as the minimum number. 

If float, then min_samples_leaf is a percentage and ceil 

(min_samples_leaf * n_samples) are the minimum number of 

samples for each node. 

min_weight_fraction_leaf The minimum weighted fraction of the sum total of weights (of all 

the input samples) required to be at a leaf node. Samples have 

equal weight when sample_weight is not provided. 
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Table 17 

(Continued) 

subsample The fraction of samples to be used for fitting the individual base 

learners. If smaller than 1.0 this results in Stochastic Gradient 

Boosting. subsample interacts with the parameter n_estimators. 

Choosing subsample < 1.0 leads to a reduction of variance and an 

increase in bias. The fraction of samples to be used for fitting the 

individual base learners. If smaller than 1.0 this results in 

Stochastic Gradient Boosting. subsample interacts with the 

parameter n_estimators. Choosing subsample < 1.0 leads to a 

reduction of variance and an increase in bias. 

max_features The number of features to consider when looking for the best split: 

If int, then consider max_features features at each split. 

If float, then max_features is a percentage and int(max_features * 

n_features) features are considered at each split. 

If “auto”, then max_features=sqrt(n_features). 

If “sqrt”, then max_features=sqrt(n_features). 

If “log2”, then max_features=log2(n_features). 

If None, then max_features=n_features. 

Choosing max_features < n_features leads to a reduction of 

variance and an increase in bias. 
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Table 17 

(Continued) 

max_leaf_nodes Grow trees with max_leaf_nodes in best-first fashion. Best nodes 

are defined as relative reduction in impurity. If None then 

unlimited number of leaf nodes. 

min_impurity_split Threshold for early stopping in tree growth. A node will split if its 

impurity is above the threshold, otherwise it is a leaf. 

min_impurity_decrease A node will be split if this split induces a decrease of the impurity 

greater than or equal to this value. 

The weighted impurity decrease equation is the following: 

N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t 

* left_impurity) 

where N is the total number of samples, N_t is the number of 

samples at the current node, N_t_L is the number of samples in 

the left child, and N_t_R is the number of samples in the right 

child. 

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if 

sample_weight is passed. 

init An estimator object that is used to compute the initial predictions. 

init has to provide fit and predict. If None it uses 

loss.init_estimator. 
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Table 17 

(Continued) 

presort Whether to presort the data to speed up the finding of best splits in 

fitting. Auto mode by default will use presorting on dense data 

and default to normal sorting on sparse data. Setting presort to true 

on sparse data will raise an error. 

 

4.2.F Ensemble Bagging Classifier 

     The fourth Ensemble method used is the Ensemble Bagging classifier, which is an ensemble 

meta-estimator that fits base classifiers each on random subsets of the original dataset and then 

aggregates their individual predictions (either by voting or by averaging) to form a final 

prediction [5]. A meta-estimator can typically be used as a means to reduce the variance of a 

black-box estimator (e.g., a decision tree) by introducing randomization into its construction 

procedure and then making an ensemble out of it. 

      This algorithm encompasses several works from literature. When random subsets of the 

dataset are drawn as random subsets of the samples, it is known as Pasting [5]. If samples are 

drawn with replacement, then the method is known as Bagging [5]. When random subsets of the 

dataset are drawn as random subsets of the features, it is known as Random Subspaces [5]. 

Finally, when base estimators are built on subsets of samples and features, then the method is 

known as Random Patches [5]. 

Best parameters of Bagging Classifier for this data set: class_weight=None, criterion='gini', 

max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, 
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min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, 

min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best'. 

Performance in average: 0.58 +/- 0.03 

Table 18 

Descriptions for the Parameters of the Ensemble Bagging Classifier 

Parameter Description 

base_estimator The base estimator to fit on random subsets of the dataset. If None, then 

the base estimator is a decision tree. 

n_estimators The number of base estimators in the ensemble. 

max_samples The number of samples to draw from X to train each base estimator. 

If int, then draw max_samples samples. 

If float, then draw max_samples * X.shape[0] samples. 

max_features: int or float, optional (default=1.0) 

The number of features to draw from X to train each base estimator. 

If int, then draw max_features features. 

If float, then draw max_features * X.shape[1] features. 

bootstrap Whether samples are drawn with replacement. 

bootstrap_features Whether features are drawn with replacement. 

oob_score Whether to use out-of-bag samples to estimate the generalization error. 
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4.3 Summary of Classification Results 

     The experimental data shows that Ensemble methods worked better in helping to derive 

accurate predictions. Part of the reasoning behind the poor prediction is due to not being able to 

calculate the time-lag between the release date of the news and the date the DJI prices adjusted 

accordingly. Not all the prices can be shifted to the next days since there are already many 

missing days in the time series (holidays and weekends). Table 6 shows the summarized average 

accuracy per model.  

Table 19 

Average Performance of the Classifiers 

Machine Learning Model Performance in average 

Logistic Regression Classifier 0.54 +/- 0.03 

K Nearest Neighbors  0.56 +/- 0.02 

Support Vectors Machine 0.53 +/- 0.03 

Random Forest Classifier 0.57 +/- 0.02 

Multi-Layer Perceptron Classifier 0.54 +/- 0.04 

Bernoulli Naive Bayes (Ensemble) 0.56 +/- 0.03 

Naive Bayes (Ensemble) 0.55 +/- 0.04 

Ensemble Adaptive Boosting Classifier 0.57 +/- 0.03 

Ensemble Gradient Boosting Classifier 0.63 +/- 0.02 

Ensemble Bagging Classifier 0.58 +/- 0.03 

 

  



58 
 

4.4 Prediction 

        After determining that there is a meaningful link between the DJI related News Sentiments 

and the DJI price movements, we can predict the movements of DJI prices. Since we cannot 

predict the future prices using the news of 31 months, the data set needs to be broken into 

smaller sets. To do so, a short period yet not too short that the machine learning models cannot 

learn the patterns, is most beneficial. To learn the patterns in the smaller data sets, there should 

be enough samples of two desired outputs (up or down) in each data set. The number of samples 

in each data set should not be less than 20 since there is at least one set that does not have at least 

one sample of each the desired outputs.  

The mean score and the 95% confidence interval of different predictive machine learning 

models using a different number of samples (in the range of 20 and 50 days) have been 

calculated and the results are shown in table 20.  

Table 20 

Prediction Results Based on the Number of Samples in each Data Set 

Model 20-sample  25-sample  30-sample 35-sample 

Average Prediction Performance 0.58 +/- 0.03 0.62 +/- 0.04 0.67 +/- 0.02 0.65 +/- 0.03 

 

These results show that there is a tradeoff in choosing the size of sample sets. In General, the 

more training samples in each set result the better classification performance. On the other hand, 

we cannot relate the old news to the price movements. Having less or more than 30 samples in 

each sample set results in less prediction accuracy in average. Due to this, the time series was 

broken into 30-sample sets to predict the unseen prices of DJI. This break was done by shifting 
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data to the next day. The input of the first sample set includes the News Sentiments of from 1st to 

30th day, and the output includes the DJI price movements of 3rd to 33rd day. The input of the 

second sample set includes the News Sentiments of from 2nd to 31st day, and the output includes 

the DJI price movements of days from 4th to 34th day. By doing so, 615 sample sets were created, 

the input of the last sample set includes the News Sentiments of 615th to 645th day, and the 

output includes the DJI price movements of days from 617th to 647th day. 

To train the predictive models, the News Sentiments and the desired outputs of 28 days of 

each sample set were used to train the predictive models. Having trained the models, the News 

Sentiments of the last 2 days of the sample set were applied to the trained models to predict, and 

the desired outputs of the last 2 days (test set) were compared to the predicted outputs to test the 

performance of the predictions. Since the outputs were shifted to 2 next days we can consider the 

outputs of last 2 days of each sample set as future and unseen price movements. 

The mean score and the 95% confidence interval of each classification model are calculated, 

and the results are shown in Table 21.  

Table 21 

Average Prediction Performance  

Model Average Accuracy 

Average Prediction Performance 0.67 +/- 0.02 
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Based on these results, we can claim that having the DJI related News Sentiments of recent 30 

days we can predict the DJI price movements of 2 days in the future with an accuracy of 0.67. 
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CHAPTER 5 

CONCLUSION AND FUTURE PERSPECTIVES 

     This research employed GDELT dataset, multiple classification models—Logistic Regression 

Classifier, K Nearest Neighbors, Support Vectors Machine, Random Forest Classifier, Multi-

Layer Perceptron Classifier—to find the best correlation possible in this data between the News 

Sentiments and the movements of the DJI prices. Having found the best possible correlation 

between the News Sentiments and the movements of the DJI prices, the data set was broken into 

smaller sets so that movements of unseen prices can be predicted. Each data set was broken into 

train sets and test sets, and the predictive models were trained using the train sets. The 

movements of DJI unseen prices of 2 days in the future (test set) were predicted by the trained 

predictive models using the News Sentiments of the sample set. The performances of the 

predictions were measured by comparing the predicted price movements and the real price 

movements. 

In addition, Grid Search Cross-Validation and Ensemble methods were utilized to improve 

prediction performances in forecasting the daily movement direction of one of the most popular 

New York Stock Exchange indices. 

    Based on the experiment results of this research concludes that there is a significant link 

between relevant financial news and the movements of DJI prices to predict the movements of 

the unseen prices. In addition, on contrary to the famous financial hypothesis that states the 

Stock Market is not predictable, it can be concluded that the Stock Market movement is 

predictable. We can claim that the more accurately we analyze the financial news the more 

accurately we can predict the unseen prices. This study not only shows that there is a significant 
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link between DJI related news and the DJI prices, but also shows how to use the news to predict 

the future prices. However, this research did have gaps that should be considered for future 

studies as it may in fact help raise the accuracy of predictability.  

  One gap was in finding time lag. Finding the time lag for each day might help with the accuracy 

especially because in this study the time lag was not consistent due to holidays and weekends. 

Help from some financial experts would help with determining the best way to find time lag. In 

addition, future works can also consider using Amazon Mechanical Turk to find the time lags for 

each. Another way to tackle this problem may be by using interpolation to assign some prices for 

the missing days to complete the time series.  

Future studies can look into the Deep Learning techniques to predict the future/unseen prices. 

This method was not mentioned in this research because they were unsuccessful to use due to the 

heavy computations that needed to be distributed over several powerful systems. Deep Learning 

techniques would be a great future perspective for this research. In addition, another direction for 

future studies would include finding some thresholds for classifying price movements in order to 

increase the accuracy of prediction. 
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APPENDIX A 

Part of the SQL Query Used to Retrieve the Data Set 

SELECT sub2.EVENTDATE      AS EVENT_DATE, 

COUNT(sub2.SOURCEURL)    AS COUNT_SOURCEURL, 

AVG(sub2.GOLDSTEINSCALE) AS Avg_GOLDSTEINSCALE, 

AVG(sub2.NUMMENTIONS)    AS Avg_NUMMENTIONS, 

AVG(sub2.NUMSOURCES)     AS AVG_NUMSOURCES, 

AVG(sub2.NUMARTICLES)    AS AVG_NUMARTICLES, 

AVG(sub2.AVGTONE)        AS AVG_AVGTONE 

FROM 

(SELECT sub1.* 

FROM 

(SELECT sub0.* 

FROM 

(SELECT * 

FROM GDELT 

WHERE NUMMENTIONS >= 14 

AND NUMSOURCES    >= 3 

AND NUMARTICLES   >= 14 

AND ISROOTEVENT   > 0 

) sub0 

WHERE COUNTRYCODE LIKE '%US%' 
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OR COUNTRYCODE LIKE '%UK%' 

OR COUNTRYCODE LIKE '%JPN%' 

OR COUNTRYCODE LIKE '%DEU%' 

OR COUNTRYCODE LIKE '%CHN%' 

)sub1 

WHERE SOURCEURL LIKE '%Dow-Jones%' 

OR SOURCEURL LIKE '%DJIA%' 

OR SOURCEURL LIKE '%Industrial-Average%' 

OR SOURCEURL LIKE '%Jones-Industrial%' 

OR SOURCEURL LIKE '%^DJI%' 

OR SOURCEURL LIKE '%Dow-30%' 

) sub2 

GROUP BY (sub2.EVENTDATE) 

ORDER BY (sub2.EVENTDATE); 
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APPENDIX B 

An Example of the Python Codes used for the Predictions 

data = pd.read_csv('C:/Users/Majid/Documents/Database/Export4_Lag5.csv') 

X = data[['AVG_GOLDSTEINSCALE','AVG_AVGTONE']] 

y = data['Price_Change'].as_matrix().astype(int) 

scores = [] 

n = 30 

for i in range(0,646-n,1): 

    Xi = X[i:(i+n)] 

    yi = y[i:(i+n)] 

    scaler = StandardScaler() 

    Xi = scaler.fit_transform(Xi) 

    Xi_train,Xi_test,yi_train,yi_test = 

train_test_split(Xi,yi,test_size=0.1,random_state=None,shuffle=False) 

    clf = RandomForestClassifier() 

    clf.fit(Xi_train,yi_train) 

    yi_pred = clf.predict(Xi_test) 

    score = metrics.accuracy_score(yi_test,yi_pred) 

    scores.append(score) 
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    print('Subset #',i,' ( from',i,'to',i+30,')',) 

    print('AVG_GOLDSTEINSCALE AVG_AVGTONE\n',Xi) 

    print('\n') 

    print('Price Movements:',yi) 

    print('\n') 

    print('Score:',score) 

print('Average Score:',sum(scores)/len(scores)) 
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APPENDIX C 

An Example of Python Codes used for the Classifications 

data = pd.read_csv('~/5-DAY-LAG.csv') 

X = data[['AVG_GOLDSTEINSCALE','AVG_AVGTONE']] 

y = data['Price_Change'].as_matrix().astype(int) 

scaler = StandardScaler() 

X = scaler.fit_transform(X) 

clf1 = LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True, 

          intercept_scaling=1, max_iter=200, multi_class='ovr', n_jobs=1, 

          penalty='l2', random_state=None, solver='newton-cg', tol=0.0001, 

          verbose=0, warm_start=False) 

clf2 = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', 

            max_depth=None, max_features='auto', max_leaf_nodes=None, 

            min_impurity_decrease=0.0, min_impurity_split=None, 

            min_samples_leaf=1, min_samples_split=2, 

            min_weight_fraction_leaf=0.0, n_estimators=7, n_jobs=1, 

            oob_score=False, random_state=None, verbose=0, 

            warm_start=False) 
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APPENDIX C 

(Continued) 

clf3 = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', 

           metric_params=None, n_jobs=1, n_neighbors=17, p=2, 

           weights='uniform') 

clf4 = svm.SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, 

  decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf', 

  max_iter=-1, probability=False, random_state=None, shrinking=True, 

  tol=0.001, verbose=False) 

clf5 = MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9, 

       beta_2=0.999, early_stopping=False, epsilon=1e-08, 

       hidden_layer_sizes=(100,), learning_rate='invscaling', 

       learning_rate_init=0.001, max_iter=200, momentum=0.9, 

       nesterovs_momentum=True, power_t=0.5, random_state=None, 

       shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.1, 

       verbose=False, warm_start=False) 

clf6 = BernoulliNB() 

eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('knn', 

clf3),('svm',clf4),('mlp',clf5),('gnb',clf6)], voting='hard') 
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APPENDIX C 

(Continued) 

for clf, label in zip([clf1, clf2, clf3, clf4, clf5, clf6, eclf], ['Logistic Regression','Random Forest', 

'KNeighborsClassifier','SVM','MLPClassifier','BernoulliNB','Ensemble']): 

    scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy') 

    print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label)) 
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