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Macrophomina phaseolina (Tassi) Goid., is a soilborne fungus that causes charcoal rot in over 

500 plant species including Zea mays L. and Glycine max (L.) Merr. The pathogen is present in 

most soybean growing regions of the United States. Infection in soybean can occur after 

emergence and throughout the vegetative growth stages in a range of environmental conditions. 

The syndrome is manifest during periods of hot and dry conditions during the reproductive states 

of the crop. Management options are lacking and consist of avoidance and irrigating crops to 

lessen the damage caused by the pathogen. Fluopyram is a succinate dehydrogenase inhibitor 

(SDHI) fungicide with a spectrum of activity against a unique and very diverse group of plant 

pathogens including species of Venturia, Botrytis, Alternaria, Sclerotina, Monilia and multiple 

species that cause powdery mildew. This fungicide also has activity against Fusarium 

virguliforme O’Donnell & T. Aoki, Heterodera glycines Ichinohe (soybean cyst nematode), 

Meloidogyne incognita acrita (root knot nematode) and other important nematode species. The 

objective of this research was to determine the impact of fluopyram on colonization by M. 

phaseolina and symptoms of charcoal rot and on plant emergence, plant height and soybean 

yield. A field study was initiated at the SIU Agronomy Research Station in Carbondale in 2015 

and 2016. A factorial treatment structure was used with variety and fungicide treatment as the 

two factors. Four soybean varieties of varying maturity and three different seed treatment 

options. The first treatment contained a base fungicide, insecticide and a nematode biocontrol 
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agent. The second treatment contained the base fungicide, insecticide, nematode biocontrol agent 

and fluopyram. The third treatment was a non-treated control. The four varieties and 3 seed 

treatment options were used in all possible combinations with five replications in a randomized 

complete block design. Each four-row plot was 3.04 m wide by 6.1 m in length with 0.76 m row 

spacing. The plots were infested at planting with M. phaseolina infested sorghum seed at the rate 

at 4.0 g of inoculum per 30.5 cm of row. Data collected included stand, plant height, seed quality 

and soybean yield. Soybean cyst nematode (SCN) samples were collected 2 weeks after planting. 

Root samples and root ratings were collected at 1 month after emergence and prior to harvest to 

determine colony forming units and for DNA extraction to quantify M. phaseolina in the roots 

using qPCR. For both growing seasons, 2015 and 2016 there was more rainfall than the 29-year 

average. The average air temperature was consistent with the 26-year average. There was varietal 

differences in qPCR for both 30 days after planting (DAP) and 120 DAP. For seed treatment 

options, there were not differences between the treatments for the 30 DAP, but 120 DAP showed 

differences. For CFU there was varietal differences but no differences between seed treatments. 

There were no differences between seed treatments for plant height. Seed quality was assessed in 

2015. There were differences across varieties but not across seed treatment. Soybean yield 

differed among varieties but not seed treatment. 
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CHAPTER 1 

INTRODUCTION/LITERATURE REVIEW 

Soybeans [Glycine max (L.) Merr.] serve as one of the most valuable crops in the world, 

not only as an oil seed crop and feed for livestock and aquaculture, but as a good source of 

protein for the human diet and as a biofuel feedstock (Masuda et al, 2009). Soybeans are the 

dominant oilseed in the United States, accounting for about 90% of United States oilseed 

production and is the second most planted field crop in the United States after corn (USDA, 

2017). The legume crop has the highest protein content and the highest gross output of vegetable 

oil among the cultivated crops in the world (Qiu et al., 2010). Soybean originated in China and 

for the first half of the 20th century China was the largest producer and exporter. In the 1950s 

soybean production developed rapidly in the United States (Qiu et al., 2010). Now it is the 

largest soybean producing country in the world (Guriqbal, 2010). The first documentation of 

soybean usage in the United States was in 1765 in the state of Georgia (Hartman et al., 2011). At 

that time soybeans were grown and processed to make products for export, such as margarine or 

shortening (Hartman et al, 2011). The discovery in 1917 that heating soybean meal made it 

suitable as livestock feed, led to the growth of the soybean processing industry and the dual-

purpose protein and oil crop of today (Hartman et al., 2011). By the 1970s the United States 

expanded its production and supplied two thirds of the world’s soybean needs (Hartman et al., 

2011). Soybean production in 2015 totaled a record 3.93 billion bushels with the average yield 

per acre estimated at a record high 48.0 bushels and total harvested area being 81.8 million acres 

(USDA, 2016). 

Charcoal rot of soybean caused by the pathogen Macrophomina phaseolina (Tassi) Goid. 

is one of the most important diseases of soybean (Almeida et al., 2008). M. phaseolina is known 



 

2 
 

to cause disease in at least 500 plant species including economic hosts such as corn, sorghum, 

cotton, and tobacco (Mengistu et al., 2009). The pathogen is widely present in soil and has been 

reported to cause yield losses of 30 to 50%, mainly in southern soybean production regions of 

the United States (Yang et al., 2005). Although, the disease can occur throughout the north 

central and southern regions of the United States, as well as in tropical and subtropical regions of 

the world (Wyllie, 1988). Charcoal rot in soybean was first observed in the United States in 1949 

(Young, 1949). The disease has emerged, however, from being minor to more severe within the 

last few years. 

Colonization of host tissue is favored by high temperature and low soil moisture (Dhingra 

and Sinclair, 1974). Low soil moisture has been reported to increase growth (Mulrooney, 1988) 

and enhance survival (Short et al., 1980) of the pathogen. Drought conditions favor the 

development of charcoal rot in sorghum and sunflower, and yield suppression has been attributed 

to the influence of the combination of drought and charcoal rot (Gary et al., 1991; Manici et al., 

1995). Specifically, severity of charcoal rot has been determined to be significant when air and 

soil temperatures are high (28 to 35°C), and when soil moisture is limiting (Gary et al., 1991; 

Pearson et al., 1984; Smith and Wyllie, 1999). Damage caused by M. phaseolina can increase 

under either type of stress separately, as well as in combination (Hartman et al., 1999). The 

fungus has both a broad host range and wide geographic distribution (Grau et al., 2004). The 

fungus survives in the soil and on soybean debris as microsclerotia; which are black, spherical to 

oblong, and typically measure 50 to 200 µm in diameter (Smith and Wyllie, 1999). After harvest 

of the infected crop, the microsclerotia are protected in the crop residues and are then released 

into the soil after crop residues break down (Gupta et al., 2012). Microsclerotia can survive in 

the soil for 2-15 years depending on environmental conditions and whether or not the sclerotia 
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are associated with host residue (Cook et al., 1973; Papavizas, 1977; Short et al., 1980). 

Microsclerotia produced in the roots and stem tissues of its hosts serve as the primary source of 

inoculum (Kaur et al., 2012). Microsclerotia can germinate on the surface of or close to the roots 

and germination can occur throughout the growing season as long environmental conditions 

remain favorable (Wyllie, 1988). Infected soybean seed can also be a source of inoculum (Smith 

et al., 2015). 

Root infection can occur throughout the entire development of the soybean life cycle. 

Invasion of the root cortex is followed by colonization of vascular tissue (Grau et al., 2004). 

Mycelia colonize the vascular tissue by growing through the cortex and then entering the xylem 

vessels (Abawi and Pastor-Corrales, 1990). Once inside vascular tissue, the fungus spreads 

through the tap root and plugs the vessels resulting in wilting of the plant (Wyllie, 1988). The 

fungus will then grow outward throughout the root and stem tissue and eventually produces 

visible microsclerotia later in the growing season (Wyllie, 1988). Once the soybean plant reaches 

the reproductive stages, the fungus starts to grow rapidly and disturbs water uptake by clogging 

vascular tissue with fungal growth and newly formed microsclerotia (Smith et al., 2015). When 

numerous microsclerotia are present it will give the lower stem and taproot tissue a charcoal-like 

appearance that provides inoculum for future disease (Smith et al., 2015). 

Symptoms of charcoal rot can be found at all stages of the soybean plant. Infected seeds 

are either asymptomatic or have microsclerotia, appearing as black spots of variable size, 

embedded in cracks of the seed coat (Gangopadhyay et al., 1970). The infected seed may 

germinate but resultant seedlings usually die within a few days (Kunwar et al., 1986). The 

pathogen causes lesions on the roots, stems, pods and seeds (Gupta et al., 2012). Above ground 

symptoms generally appear after flowering; particularly at R5, R6 and R7 growth stages (Fehr et 
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al., 1971). Diseased plants initially show non-specific symptoms such as reduced leaf size and 

stem height, which indicate loss of vigor (Grau et al., 2004). At flowering, a light gray 

discoloration develops on the epidermal tissues of both the tap and secondary roots and lower 

stems (Grau et al., 2004). Microsclerotia are formed in the vascular tissues and in the pith, giving 

a greyish-black appearance to the subepidermal tissues of the stem (Gupta et al., 2012). Leaves 

of infected plants remain smaller than normal and subsequently turn yellow prior to wilting 

(Gupta and Chauhan, 2005). The infected mature and dry pods are covered with locally or 

widely distributed microsclerotia. The infected crop exhibits premature yellowing in scattered 

patches (Gupta et al., 2012). M. phaseolina can reduce plant height, root volume and root weight 

by more than 50% which can contribute to yield loss (Wyllie, 1976). Ammon et al. (1974, 1975) 

used scanning electron microscopy to study the early stages of fungal infection. In both soybean 

and Medicago truncatula, in-vitro infection and microscopic examination of infected roots 

revealed that the initial host entry occurred within 24 h, followed by a rapid colonization 36-48 h 

after inoculation (Bressano et al., 2010; Gaige et al., 2010). 

Interaction between charcoal rot and soybean cyst nematode (SCN) has been documented 

from early reports (Todd et al., 1987; Meyer et al., 1974) and suggests that H. glycines infection 

can increase colonization of soybean roots by M. phaseolina and may increase losses due to 

charcoal rot (Radwan et al., 2014). Severity of charcoal rot, which is frequently related to stress 

(Meyer et al., 1974; Pearson et al., 1984), may be enhanced subsequently in the presence of the 

nematode (Todd et al., 1987). 

Management options are lacking for the disease but there are some practices that may 

help reduce the impact of the disease. Most recommendations focus on reducing crop stress and 

maintaining plant vigor (Grau et al., 2004). Host resistance may be the only feasible method to 
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manage the disease (Bristow et al., 1984; Smith and Wyllie, 1999; Wyllie, 1988), but host 

resistance is currently not available, and other management options are needed (Mengistu et al., 

2007; Mengistu et al., 2009). Planting at a lower population rate can reduce the incidence of 

charcoal rot as well as reduction in microsclerotia (Gupta et al., 2012). Crop rotation with non-

host crop, or a crop that is less-susceptible to M. phaseolina for a sufficient time, reduces 

infection (Grau et al., 2004). Rotation with non-host crops for 2-3 years is necessary to lower M. 

phaseolina infection levels in severely infested fields (Gupta et al., 2012). Cotton in rotation with 

soybean consistently reduced the population density of M. phaseolina more than did corn-

soybean rotations (Wrather et al., 1998). These results suggest that only long-term rotations of 

soybean with cotton or corn would be effective in decreasing the population density of M. 

phaseolina to non-damaging levels (Wrather et al., 1998). Irrigation is recommended to help 

alleviate stress; although, Kendig et al., (2000) showed that water management limits, but does 

not prevent root infection by M. phaseolina. An alternative method to reduce the pathogen 

population density is through tillage (Wrather et al., 1998). Wyllie (1988) reports that there is 

little direct evidence on the role of plant nutrition or soil fertility on the disease. Limited 

information is available on the direct role of fertility or plant nutrition in charcoal rot 

management in soybean (Todd et al., 1987). Recent studies indicate that an increase in 

nitrogen:phosphorus:potassium (NPK) supply (Csöndes et al., 2008) is important for charcoal rot 

management in soybeans. 

Problem Statement 

Current seed treatments have been reported to have limited impact on Charcoal rot 

severity in field trials (Mengistu et al., 2015). Currently, no chemicals are available to control 

charcoal rot in soybeans (Reznikov et al., 2016). In a recent study, two biological products 
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(Trichoderma viride and Bacillus subtilis) or one chemical treatment (thiophanate methyl + 

pyraclostrobin) reduced disease severity in field trials (Reznikov et al., 2016). Recent in-vitro 

research has revealed that fluopyram has a negative impact on M. phaseolina (A. Fakhoury, 

personal communication, April 1, 2015), and additional trials are needed to evaluate the potential 

for use in production fields. 

The research objectives were to: 

1. Determine the impact of fluopyram on colonization by M. phaseolina and symptoms 

of charcoal rot. 

2. Determine the impact of fluopyram on plant parameters such as emergence, plant 

height and soybean yield. 

The fungicides that were evaluated included EverGol Energy (0.019 mg a/seed), 

Allegiance FL (0.02 mg a/seed), Poncho/Votivo (0.13 mg a/seed) and ILeVO (0.15 mg a/seed). 

EverGol Energy is a fungicide that targets soilborne, seedborne and early season post-emergence 

diseases (Anonymous, 2016). The active ingredients (ai) of EverGol Energy is Prothioconazole, 

a broad spectrum, systemic fungicide that belongs to the conazole (triazolinthione) class of 

fungicide (Kashuba et al., 2006). Conazole fungicides act through disruption of normal fungal 

cell membrane structure and function primarily through interactions or inhibitions of ergosterol 

synthesis (Kashuba et al., 2006). Penflufen is a systemic, xylem-mobile fungicide (Anonymous, 

2012). The fungicide is a carboxamide fungicide that inhibits mitochondrial respiration by 

inhibiting succinate dehydrogenase, an enzyme in the electron transport system (Anonymous, 

2012). Penflufen has fungicidal activity against many phytopathogenic fungi (such as 

Rhizoctonia spp. and Ustilago spp.) Metalaxyl, a systemic fungicide with protective and curative 

properties that controls species of Pythium and Phytophthora and targets seed rots and is 
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absorbed through the leaves, stems and roots (Agrochemical, 2013). Metalaxyl suppresses 

sporangial formation, mycelia growth and the establishment of new infections by the inhibition 

of RNA synthesis (Cohen et al., 1986). The active ingredient clothianidin, is a neonicotinoid 

insecticide. Neonicotinoids are among the most effective insecticide for the control of sucking 

insect pests (Elbert et al., 2008). All neonicotinoids act as agonists on the insect nicotinic 

acetylcholine receptor (nAChR) (Elbert et al., 2008). Bacillus firmus i-1582 is the active 

ingredient in Votivo. Bacillus firmus i-1582 is a bacterial strain that has nematicidal activity 

against plant-pathogenic nematodes (Peleg et al., 2002). Fluopyram is a systemic seed treatment 

used for protecting the seed and seedling against certain early season plant pathogenic fungi and 

nematodes that attack the root system. Fluopyram is grouped under the FRAC Code No. 7 (List, 

2005) and is a succinate dehydrogenase inhibitor (SDHI) (Sierotzki et al., 2013). Fluopryam 

inhibits spore germination, germ tube elongation, mycelium growth and sporulation (Lunn, 

2011). SDHI fungicides specifically inhibit fungal respiration by blocking the ubiquinone-

binding sites in the mitochondrial complex II (McKay et al., 2011). The primary biochemical 

mode of action is the blockage of the TCA cycle at the level of succinate to fumarate oxidation, 

leading to an inhibition of respiration (Sierotzki et al., 2013). Fluopyram has a broad spectrum of 

activity against a diverse group of plant pathogens. Its activity includes several pathogens 

belonging to the Ascomycetes and Deuteromycetes, such as Botrytis spp., Sclerotinia spp., and 

Monilinia spp. and Venturia inaequalis (Veloukas and Karaoglanidis, 2012; Villani et al., 2016). 

  



 

8 
 

CHAPTER 2 

MATERIALS AND METHODS 

The field trials were conducted in Carbondale, IL in 2015 and 2016. The trial was planted on 

June 22nd in 2015 and May 31st in 2016. In 2015, the plot was 58.5 m by 33.5 m and in 2016 the 

plot was 192.5 m by 24.4 m. It was a four-row plot, 3.04 m wide by 6.1 m in length with 0.76-m 

row spacing. Planting density was 8 seeds/ 30.5 cm with a planting depth of 2.54 cm. The field 

trial was set up as a randomized complete block design with five replications. It had a factorial 

treatment structure with 4 varieties in 2016 and 7 varieties in 2015 with 3 seed treatment options. 

Varieties F, G and H were not included in 2016. All soybean varieties were chosen based on 

relative maturity, ranging from early to late maturity group four. Pearson et al., (1984) found that 

cultivars that mature later in the season may escape some of the stress associated with high 

temperatures and low moisture in soil. The variety names were not provided. The varieties 

selected were resistant to soybean cyst nematode (SCN) Hg Type 0. The first seed treatment will 

be referred to as the base treatment and contained a mixture of prothioconazole, penflufen, 

metalaxyl, clothianidin, and Bacillus firmus i-1582. The second treatment contained the base 

treatment plus fluopyram. A third treatment consisted of a non-treated control. 

The trial area was inoculated with M. phaseolina. In each plot, the two center rows were 

inoculated with a rate of 4 g of inoculum per 30.5 cm in furrow while planting. The seed and the 

inoculum were dropped in the furrow at the same time. The trial area was naturally infested; 

however, inoculum was used to insure each plot had sufficient density of the pathogen. The 

inoculum was prepared using a protocol described by Wenefrida et al., (1997) with some 

modifications. Modifications included using white grain sorghum, [Sorghum bicolor (L.) 

Moench] (Janet, 1983) as the inoculum carrier. Sorghum seeds were soaked in a Rubbermaid 
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37.8-liter container for approximately 17 hours in tap water. The next morning 1,360 g of grain 

sorghum was placed in aluminum pans (29.8 cm x 23.8 cm x 5.8 cm) with the aluminum lid 

tightly secured leaving approximately 6 inches left open for ventilation. One of two pieces of 

heavy duty aluminum foil (71.1 cm long by 11.4 cm wide) are wrapped around each side of the 

tin allowing some of the aluminum foil to be on the top of the tin. The aluminum tins were 

sterilized for 15 minutes at 132°C in an Amsco Eagle 3000 Stage 3 autoclave. The whole 

sterilizing process with dry down and releasing pressure takes a total 35 minutes. Once the tins 

were autoclaved, the lids were shut completely to minimize contamination. The tins were then 

stored at room temperature to cool overnight and were autoclaved for a second time the 

following day. The aluminum tins sat overnight again at room temperature to cool completely 

before being inoculated. Using a Laminar Flow Hood to reduce contamination, four potato 

dextrose agar (PDA) petri dishes that contained actively growing M. phaseolina mycelium and 

600 ml of sterile potato dextrose broth (PDB) were blended using a Waring Commercial 

Blender. Each tin received 100 ml of the blended broth and agar solution. The aluminum lids 

were closed on all four sides and a 50.8-cm-long piece of parafilm was wrapped around the lid 

and side of the tin and the aluminum foil was put back on the tin. The aluminum tins were 

incubated at room temperature for 7 days and then air dried at room temperature for 3 days. Once 

the inoculum was dry, it was sieved using a Seedburo Grain Sieve (0.4 cm x 1.9 cm) round steel 

sieve and put in brown paper sack (38.1 cm x 8.8 cm x 91.4 cm). The inoculum was stored in a 

cold storage unit, 4.4° c until the trial was planted. 

Two weeks after emergence, soil samples were collected to determine the initial levels of 

soybean cyst nematode (SCN) Heterodera glycines (Mengistu et al., 2007). The samples were 

collected from the 2 inoculated rows from each plot. In each plot, 6-8 cores, 15.2 - 20.3 cm deep 
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were collected in a zig-zag pattern (Todd, 1993). Each sample was mixed by hand in the Ziploc 

bag so that there were no clumps to ensure good representative samples. A 100 ml Nalgene 

polypropylene beaker was filled with 200 ml of tap water and 100 cc of soil was added to the 

beaker. The soil and water was transferred from the beaker to a 3-liter pitcher. The soil and water 

was blasted with tap water filling the 3-liter pitcher up 2.54 cm from the top of the pitcher. The 

soil and water mixture was allowed to settle for 8 seconds then poured over a 707- µm (micron) 

sieve over 177-µm sieve. The soil and water was blasted again using tap water and let to settle 

for 8 seconds. The mixture was again poured over a 707-µm sieve over 177-µm sieve. The 707-

µm sieve was rinsed with tap water insure all cysts were on the 177-µm sieve. The 707-µm sieve 

material was discarded, and the 177-µm sieve material was collected into a non-sterile 4-oz 

polypropylene specimen container with a screw on lid. The cysts were crushed using a drill press 

with a motorized stirrer and rubber stopper. Tap water was used to rinse the cysts from the 

specimen container into a small PVC sieve. A 75 µm over a 25-µm sieve was then used to catch 

all the eggs. The sample was ground until nothing remained and the tap water was clear. The 25 

over 75-µm sieve was rinsed with tap water and the eggs were collected on the 75-µm sieve. The 

eggs were rinsed into the specimen container using tap water and 7 drops of acid fuchsin (3.5 

grams acid fuchsin, 250 ml glacial acetic acid and 750 ml distilled water) and tap water was 

added up to 40ml prior to heating the samples in the microwave for 2 minutes. Acid fuchsin is 

used so the eggs are easier to see under the microscope since nematodes are translucent and hard 

to see. Once cooled, each sample is checked to make sure there is 40 ml in the container. For 

each sample, a 1 ml subsample of the solution is counted. The eggs were counted with a 

stereomicroscope. Each sample was recorded as egg/ml. To get the total amount of eggs in 40 

ml, the number of eggs was multiplied by 40. 
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Plant Population Assessment 

Plant population (stand) was determined at the V4 growth stage in the center two rows. 

Root samples were collected 30 days after planting and at harvest for colonization of M. 

phaseolina. Six plants per plot were collected using a shovel to ensure removal of the entire root 

system. The top of the plant was cut off at the soil line and the roots were rinsed using tap water, 

blotted dry and placed in a brown paper sack to dry in the greenhouse. Once the roots dried, each 

root was split in half and were rated for charcoal rot symptom severity using an established root 

rating scale (Mengistu et al., 2007) that ranged from 1-5, 1 = no microsclerotia visible in the 

tissue to 5 = tissue is darkened due to the high number of microsclerotia visible. Only the harvest 

roots were rated. The 30-day roots did not have any visible symptoms. The roots were ground by 

using a Wiley Laboratory Mill root grinder and the root tissue from each sample was placed into 

polystyrene dilution vials. After each sample the root grinder was cleaned using an air 

compressor. Colony forming units (CFUs) were determined from the inoculum and root samples. 

For the inoculum CFUs, 0.5 g of the inoculated sorghum was poured into 100 ml of potato 

dextrose agar that was amended with 100 mg rifampicin and 1 ml tergitol and poured into the 

250 ml Erlenmeyer flask. The sample was swirled, to obtain uniformity and distributed evenly 

among 10 petri dishes. The plates were incubated at room temperature for 3 days in the dark and 

then counted for total CFUs per plate. In 2015, there was 1,300 CFU per gram. The CFUs in the 

root samples were determined in a similar manner to the inoculum. A total of 0.5 g of tissue was 

weighed in weighing canoes using a Denver Instrument TP-214 Analytical Balance. The sample 

was placed in a blender with 100 ml of 0.525% NaOCl. In 1-minute intervals, the sample was 

processed (blend-rest-blend-rest-blend) for a total of 5 minutes. The suspension was poured over 

a 44-µm sieve and rinsed with tap water. The sample was backwashed into a sterile, 250 ml 
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Erlenmeyer flask using minimal amounts of distilled water. 100 ml of cooled potato dextrose 

agar that was amended with 100 mg rifampicin and 1 ml of tergitol was poured into the 

Erlenmeyer flask. The sample was swirled and distributed among 10 petri dishes. The plates 

were incubated at room temperature for 5 days in the dark and counted for CFUs. 

Root Colonization Assessment 

DNA extraction and quantification polymerase chain reaction (qPCR) was completed for 

assessing root colonization of M. phaseolina. The cetyltrimethylammonium bromide (CTAB) 

method for DNA extraction was used. CTAB is a non-ionic detergent that can precipitate nucleic 

acids and acidic polysaccharides from low ionic strength solutions (Sambrook et al., 2001). 

Quantitative PCR is used to measure the quantity of a PCR product (Joshi et al., 2010). It is used 

to determine whether a DNA sequence is present in a sample and the number of its copies in the 

sample (Joshi et al., 2010). Absolute quantification is the method that was used for qPCR. This 

method is based on a standard curve of known quantities. All the unknowns, which are the 

samples that are being quantified are compared to the standard curve. The root tissue was ground 

using liquid nitrogen in a sterilized mortar and pestle. For each sample, 0.1 g of tissue was placed 

into a 1.5 ml sterilized plastic microcentrifuge tube that has a tight-fitting hinged cap. Each 

sample was placed in a styrofoam container that had ice in it until all the samples were ground. 

Once all the samples were ground and ready for DNA extraction they were transferred to 

polypropylene microcentrifuge PCR tube racks to keep the samples upright. In each sample, 800 

µl of CTAB buffer was added to each sample and vortexed for three seconds. Before the use of 

CTAB buffer, 1% polyvinylpyrrolidone (PVP) and 3% beta-mercaptoethanol is added to the 

buffer. The samples were placed in a 55°C water bath for 3-4 hours. Every 45 minutes the 

samples were vortexed and then inverted and vortexed at the end of the 4 hours. At the end of the 
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4 hours 600 µl of a 24:1 ratio (chloroform: isoamyl alcohol) was added, inverted and centrifuged 

in an Eppendorf Centrifuge 5417C for 5 minutes at 120,000 rpm. The supernatant was 

transferred to a new set of microcentrifuge tubes and 400 µl of a 24:1 ratio (chloroform: isoamyl 

alcohol) was added and centrifuged for 5 minutes at 120,000 rpm. The top aqueous layer was 

transferred to another set of microcentrifuge tubes and 400 µl isopropanol was added to the tube 

and put in a -20°c freezer overnight. The next day the samples were centrifuged for 10 minutes at 

140,000 rpm. The supernatant was discarded leaving the pellet at the bottom of the tube. To 

clean the pellet 400 µl of 75% ethanol was added to the tube and vortexed. The samples were 

placed into the centrifuge for 7 minutes at 140,000 rpm. The supernatant was discarded again 

and 400 µl of ice cold 95% ethanol was added. The samples were centrifuged for 7 minutes at 

140,000 rpm. The supernatant was discarded, and the lid of the microcentrifuge was left open to 

allow the samples to dry. Once the pellet was dry, 50 µl of pure water was added to each tube to 

help the pellet dissolve. The samples were placed in the -20°C freezer overnight. The 

microcentrifuge tubes were vortexed and centrifuged for 7 seconds the next morning to ready for 

DNA quantification. 

Root Assessment 

DNA quantification was determined for each sample by using a Nanophotometer (ng/µl). 

The spectrophotometer determined the average concentration of the nucleic acids DNA present 

in a sample. The ratios of absorbance used were 260/280 and 260/230. Nucleic acids absorb 

ultraviolet (UV) light due to the heterocyclic rings of the nucleotides. The wavelength of 

maximum absorption for DNA is 260nm (Anonymous, 2011). The two ratios are indicators of 

DNA purity. The ratio of absorbance at 260 nm and 280 nm is used to assess the purity of DNA 

(Anonymous, 2009). The ratio 260/230 is used as a secondary measure of nucleic acid purity 
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(Anonymous, 2009). Before starting, the cell holder was cleaned using TE Buffer. Each sample 

was measured and quantified separately using 1.5 µl of DNA. To prepare the samples for QPCR, 

the samples needed to have the same amount of DNA. Using a new set of microcentrifuge tubes, 

the desired amount of water was added to each and 10µl of DNA from each sample was added to 

the tube. The samples were vortexed for a second then put in a -40° refrigerator overnight. The 

next day a few samples were measured using the Nanophotometer to see how much DNA was in 

the sample before running qPCR. The samples were put on ice to thaw while making the master 

mix. To prepare for making the Master Mix all the lights were turned off. The probe used was 

light sensitive and direct light could interfere with the efficiency of the probe. DNA is prone to 

contamination, and the area was cleaned to prevent any contaminates. The master mix was made 

right before running the qPCR. The master mix included water (5.92 µl per reaction), 5x GoTaq 

Flexi Buffer (4 µl per reaction of 10mM), MgCl2 (2.4 µl per 25mM), dNTPs (0.4 µl per reaction 

of 10mM), F + R primer (1.5 µl per reaction of 10 µM), probe (0.5 µl per reaction of 10µM), 

GoTaq Flexi polymerase (0.2 per reaction of 5µ/µl) and BSA (0.08 µl per reaction of 10 µg/µl). 

A well-plate map was designed so the correct DNA sample went into the correct well. Once the 

master mix was made and the samples were thawed, 15 µl of the master mix and 5 µl of each 

sample DNA was put into each well of a 96-well plate. Avant Guard low binding barrier tips 

were used to put each DNA sample into the corresponding well. These sterile tips improved the 

accuracy of volume dispensing and were ideal for sensitive assays like qPCR. The well plate was 

put into a frozen PCR-cooler well plate, so the samples were kept cold. The plate was covered 

with an adhesive PCR plate seal and was made sure the seal was tightly sealed to each individual 

well. The plate was centrifuged in a miniplate spinner for 30 seconds. After centrifugation the 

plate was carefully put into the CFX96 Real-Time System, the machine that runs the qPCR. To 
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check the efficiency of the data a standard curve was used by preparing a dilution series of 

templates of known concentrations. It was used to calculate the unknown quantity of target DNA 

in the samples. Standard concentrations of known M. phaseolina DNA and 45 µl of water was 

used. The standards were processed with the samples to evaluate the efficiency of the 

amplification. There were 6 dilutions, each dilution having 10x more the DNA, the 

concentrations went from lowest concentration to highest concentration, 0.01, 0.1, 1.0, 10.0, 

100.0. Each concentration was replicated twice. Along with the standards, NTC (no template 

control) was processed with the samples. NTC was the control that does not contain the DNA 

and can detect contaminations. The Taqman probe was labeled with FAM (fluorescein). FAM 

was monitored during each PCR cycle providing an amplification plot during the reaction. 

During the qPCR process there were three steps that were involved, denaturing, annealing and 

extension. First, the DNA was denatured at high temperatures (95° C) and the double-stranded 

template was separated into single-strands. During annealing the temperature was lowered and 

the primers attached to the complementary sequences of DNA making it double-stranded again. 

Extension was the final step and the temperature was increased and new DNA was made by Taq 

polymerase which added the bases. The thermal cycle was repeated 50 times. The end result was 

a quantification cycle (Cq) value that corresponded to each sample giving the amount of 

quantification of M. phaseolina in the sample. The result was an exponential increase in the total 

number of DNA fragments that included the sequences between the PCR primers (Joshi et al., 

2010). 

Plant Height and Seed Assessment 

In 2016, plant height was taken at the growth stage R5 on four random plants in the 

center two rows. There was a visible height difference across the trial. A 182.88 cm straight edge 
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metal ruler was used to measure from the soil line to the top of the plant. In 2015, a seed quality 

assessment was taken at harvest to evaluate if there were any visible differences between 

varieties or if the pathogen caused any seed quality damage. The center two rows were harvested 

and all the seed from each plot was bagged so a subsample could be collected for seed quality 

rating. The scale was a percentage 0-100, 0 being no visible discoloration or damage of the seed 

and 100 being the entire subsample was discolored and damaged. Both years, the trial was 

harvested using a two row Kincaid 8-XP combine. The center two rows were harvested and yield 

data was collected. The data included test weight, moisture, seeds per pound and yield. In 2015, 

the trial was harvested on October 19th and in 2016 on October 17th. In 2015, the seed from each 

plot was saved and seed quality was determined. 

The general linear mixed models (GLIMMIX) procedure of SAS was used for all 

analyses. Fixed effects for the models were variety, treatment, year and all interaction. The 

experiments were viewed as multiple environments trials. Fisher’s Protected least significant 

difference was used for mean separations at a significance level of P < 0.05. 
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CHAPTER 3 

RESULTS 

The total rainfall from May to September in 2015 was 65.4 cm and in 2016 was 72.9 cm 

(Fig 1) and was above the 29-year average of 50.7 cm. In 2015, the months of May and August 

were below the average rainfall and June, July and September was above the average rainfall. 

There was more rainfall in 2016 than in 2015. In 2016, only June was below average. For both 

years, July had the most rainfall. The average air temperature (Fig. 2) for each month was fairly 

close to the 26-year average for both trial years. 

For assessment on M. phaseolina colonization, qPCR was determined 30 days after 

planting (DAP). The quantity of M. phaseolina DNA amount ranged from 0.04 ng in variety H to 

0.30 in variety C. Variety C contained more of M. phaseolina DNA than all the other varieties. 

All three seed treatment options had similar levels of M. phaseolina DNA. The QPCR 

assessment for the harvest roots at 120 DAP had a higher amount of M. phaseolina DNA. 

Variety F had more M. phaseolina DNA than variety G and H but similar to the other varieties. 

There were differences between seed treatment options, base fungicide had higher M. phaseolina 

DNA than the base treatment with fluopyram but was similar to the non-treated. Another method 

to assess colonization of the pathogen was assessing the CFU in dried root material. The CFU 

per gram of root ranged from a low of 2,511 for variety G to a high of 5,487 for variety C. All 

the other varieties were similar in CFU. There were no differences between seed treatment 

options for CFU. Root rating assessed the severity of root symptoms and signs of the pathogen. 

Variety F had a higher root severity than varieties A, B C and H, but was not different from 

varieties E and G. All three seed treatment options had a similar root rating severity. 
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The impact of varieties and seed treatment options on plant parameters are shown in 

Table 2. Visually, in 2015 stand was uniform and in 2016 the stand was inconsistent. Variety B 

had more plants/plot than variety A and F, but was the similar to variety C, E and G. The seed 

treatment options had similar plants/plot. Since there were visual height differences between 

plots, plant height was evaluated in 2016. Varieties F, G and H were not available in 2016. 

Variety C had the highest height among the varieties, with the other varieties similar in height. 

Plant height did not differ for the seed treatment options. Varieties A and E had the poorest 

quality seed and were similar to each other. All other varieties had good seed quality. Seed 

quality was similar for the base treatment and the base treatment plus fluopyram. Soybean yield 

differed among varieties but not by seed treatment. Variety F had the lowest yield and averaged 

3308.7 kg/ha and variety C had the highest yield and averaged 3671.9 kg/ha. Varieties A, B, C 

and E were similar and different than F, G and H. All three seed treatment options were similar 

in yield. 

The impact of varieties and seed treatment options on SCN population densities are 

parameters are shown in Table 3. SCN population densities were determined 2 weeks after 

planting. There were not any differences across varieties or seed treatment options. 
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CHAPTER 4 

DISCUSSION/CONCLUSION 

The environment has been shown to be a major contributing factor in Charcoal rot 

development (Radwan et al., 2014). The pathogen grows actively, competes for substrate, and 

predominates in host tissues more effectively than other fungi during dry conditions (Wyllie, 

1989). Colonization of the root by the pathogen is higher when plants are subjected to post 

flowering water stress (Tosi and Zazzerini, 1990; Diourte et al., 1995). The symptoms of the 

disease are most evident during the reproductive phases of the plant growth (Kendig et al., 2000). 

The amount of rainfall during the two growing seasons of this study was not conducive for 

expression of charcoal rot symptoms. There was abundant rainfall throughout both growing 

seasons, especially during the peak months when the plant was in the reproductive stages. 

Formation of microsclerotia is an important survival mechanism for M. phaseolina (Baird 

et al., 2003). Depending on the environmental conditions and association of the microsclerotia 

with the host residue, microsclerotia can normally survive for 2-15 years (Short et al., 1980; 

Baird et al., 2003). Unless destroyed by environmental factors or other microorganisms, these 

structures will continue to germinate and infect host tissues during subsequent growing seasons 

(Baird et al., 2003). In wet soils, microsclerotia do not survive more than 7-8 weeks and mycelia 

cannot survive more than 7 days (Hartman et al., 2015). Microsclerotia levels decrease as water 

levels increase, and soils at 60% moisture-holding capacity are sufficient to keep fungal 

populations at bay (Dhingra and Sinclair, 1975). While moisture-holding capacity was not 

measured in the current study, the above average rainfall would have impacted the microsclerotia 

in this study. 
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The air temperatures during this study were conducive for the pathogen, but there were 

periods of cooler weather. In 2015, during the month of July there were 5 consecutive days 

followed by 4 days that had below the 26-year average temperature. For the month of August, 

there were 4 days and then 10 consecutive days that had below average temperatures. September 

started out with temperatures above average and then there was a period of 10 of the 14 days 

with below average temperatures. In 2016, July started out below the average temperature and 

then stayed above the average for the rest of the month. August started out above the average and 

by the middle of the month the temperature went below the average for 8 days. The end of the 

month was above average temperature. September was above average temperature except a few 

days at the beginning of the month. The end of the month had below average temperature for 5 

days. 

Diseased plants may wilt and prematurely die with senesced leaves remaining attached to 

the petioles (Mengistu et al., 2009). Aboveground visual symptoms of the disease were not 

observed throughout the whole growing season. This could be due to the amount of atypical soil 

moisture and the low temperatures in the months of July, August and September. 

Molecular tools such as real time PCR are one of the ways used in pathogen detection 

and quantification (Azarmanesh, 2013). Babu et al., (2007) reported the first development of 

specific primers and probes for the identification and detection of M. phaseolina. Later which 

qPCR assays with greater specificity and sensitivity detect M. phaseolina was by Babu et al., 

(2011). Quantitative real-time PCR based assays have advantages of speed, accuracy and 

sensitivity over other detection techniques (Gachon et al., 2004; Schaad and Frederick, 2002; 

Schena et al., 2004; Wong and Medrano, 2005). In this study, the qPCR data revealed that there 

was minimal amount of M. phaseolina DNA in root tissue at 30 DAP. This could be the reason 
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there was not visible discoloration in the root samples when the roots were rated at 30 DAP. The 

120 DAP qPCR data revealed there was more M. phaseolina DNA present in the root tissue. This 

may be due to M. phaseolina growing rapidly during the R5, R6 and R7 plant growth stages and 

resulted in more DNA. This agrees with the work of Gupta et al., (2012) when the pathogen was 

more prevalent post flowering stage (Gupta et al., 2012). 

Significant efforts have been made to identify charcoal rot resistance in soybean, but no 

claims have been made for soybean charcoal rot resistance in commercial varieties (Bellaloui et 

al., 2008). This is in contrast with a report that was based on seed yields and the levels of lower 

stem and taproot colonization by M. phaseolina; four soybean cultivars, Asgrow 4715, 

DeltaPineland 3478, Hamilton, and Jackson II were rated moderately resistant to M. phaseolina 

(Smith and Carvil, 1997). Results from a study by Smith and Carvil, (1997), demonstrated that 

field screening soybean cultivars for resistance to M. phaseolina is a reliable though time 

intensive process. Consistent with other research results, Smith and Carvil, (1997) observed that 

all soybean cultivars may become infected by M. phaseolina. Resistance factors to M. phaseolina 

do not protect plants against infection, but more likely restrict the growth rate of the fungus 

within plant tissue (Smith and Carvil, 1997). 

Fungicide treatment of soybean seed can help manage seedling damping off and seed rot 

problems caused by fungi (Heatherly and Elmore, 2004). Several seed treatments are available 

for commercial use, Pythium spp., Phytophthora sojae, Rhizoctonia spp., and Fusarium spp. are 

the most common pathogens associated with reduced soybean germination and emergence and 

subsequent stand failures (Heatherly and Elmore, 2004). There are currently no fungicide seed 

treatments to manage charcoal rot in soybean. For this study, seed treatments did not affect root 

colonization at 30 DAP, root rating, plants/plot, height, seed quality or soybean yield. The only 
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differences in regards to seed treatment was in the qPCR 120 DAP. The base treatment had more 

M. phaseolina DNA than the other two treatments. It is possible that the seed treatments 

controlled other root pathogens, thereby allowing for greater concentrations of M. phaseolina. 

Mengistu et al. (2015) reported that seed treatments may be helpful if soybean seeds are infected 

with M. phaseolina, but there was no information on specific active ingredients effective against 

this pathogen. The fungicide fluopyram was registered in December 2014 for the treatment of 

soybean seed to manage Sudden Death Syndrome (SDS) (Kandel et al., 2016). There are reports 

of the use of seed treatment and its impact on yield for other seed borne pathogens that have 

shown positive responses. In this study, fluopyram and the other seed treatments had little impact 

on M. phaseolina. 

Quantification of microsclerotia in stem and root tissue as CFU can be useful as a 

pathogen assessment method (Smith and Carvil, 1997). One problem with this method is the 

variability within a single sample and also among years. The same amount of root tissue was 

used when preparing for CFU during both years. Another method that was used to assess the 

disease was to rate the lower stem and tap root. This method also showed variability within a 

single plot. The established root rating scale was used but, was adjusted for this study due to the 

large number of microsclerotia found in the root tissue. The root rating scale was on a scale from 

1 to 5 just like the established scale, 1 being no microsclerotia visible to 5 being the tissue was 

darkened due to the high numbers of microsclerotia. It was adjusted for this study in that each 

number there was more microsclerotia visible than in the established scale. For both years, 

within a single plot the ratings ranged from 1-5. 

One of the symptoms of charcoal rot includes stunted growth. In sunflower, charcoal rot 

can reduce stem height (Hoes, 1985; Kolte, 1985). To evaluate if visual height differences were 
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caused by M. phaseolina in this study plant height was recorded, and the results indicated that 

the visible height differences observed across the trial area were due differences in varieties and 

did not correspond to the three seed treatment options. 

A visual rating of seed quality was performed after harvest. A subsample was taken from 

each plot and was visually assessed. Overall, there was not much damage to the seed. In 

Gangopadhyay et al., (1970) four varieties were tested and found that infected seeds have 

indefinite black spots and blemishes on the seed coat. Many of the seeds harvested from the 

inoculated plants were blemished by the presence of black, nondescript spots whereas seed from 

noninoculated plants were blemish-free (Gangopadhyay et al., 1970). Their data suggests that 

under severe field infestations of M. phaseolina, a considerable percentage of seed can be 

infected; that the pathogen is capable of surviving for extended periods in the seed coat 

(Gangopadhyay et al., 1970). 

Yield losses due to charcoal rot can vary among years. In sunflower, losses from charcoal 

rot can reach 60 to 90% if the conditions are favorable for infection (Khan, 2007). M. phaseolina 

can suppress yield loss depending on the timing and severity of the disease. Yield loss 

assessments of charcoal rot have been largely based on anecdotal evidence, so replicated variety 

trials are needed in areas where the disease is a recurrent problem (Smith and Carvil, 1997). The 

amount of yield loss attributed to charcoal rot cannot be determined when there is drought stress 

associated with non-irrigated treatments (Mengistu et al., 2011). This is in agreement with 

Bowen and Schapaugh, who reported no association between charcoal rot severity and yield in a 

non-irrigated environment (Bowen and Schapaugh, 1989). In this study, differences in soybean 

yield were due to genetic differences of the varieties. 
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Charcoal rot severity, which is frequently related to drought stress (Meyer et al., 1974; 

Pearson et al., 1984), may be enhanced in the presence of the H. glycines (Radwan et al., 2014). 

Todd et al., (1987) results indicated that H. glycines infection can increase colonization of 

soybean roots by M. phaseolina which increase losses due to charcoal rot. In another study, 

Francl et al., (1988) found no interaction between M. phaseolina and H. glycines in a field where 

both organisms were present. H. glycines did not have an impact on variety or treatment for this 

study. This could be due to the timing the samples were taken. The focus for SCN for this study 

was to document the presence and also the distribution in the study. 

It is difficult to study charcoal rot since the growing conditions can change from year to 

year. The amount of rainfall and the periods of cooler weather may have slowed down 

colonization. The data from this study indicated that applying a seed treatment did not influence 

M. phaseolina colonization. Colonization of M. phaseolina was different among the different 

varieties. Seed treatment did not influence qPCR, CFU and root rating severity. Plant parameters 

such as stand, plant height, seed quality and yield did not differ across the three seed treatment 

options. To further seed treatment and any other potential management options, a study needs to 

be conducted in an environment that is more conducive for charcoal rot. 
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CHAPTER 5 

RECOMMENDATION 

To manage the soil borne pathogen, Macrophomina phaseolina, current seed treatments 

are not recommended. However, seed treatments are a good option for other soilborne pathogens. 

Choosing a resistant variety that is resistant to the prevalent diseases in the area is always 

something to take into consideration when deciding what seed variety to plant. For M. 

phaseolina that is not an option. Currently the management options to control the pathogen is 

planting non-host crop to decrease the population in the field, reducing plant stress by planting a 

lower population or if feasible irrigation. Planting varieties that are later maturity groups may 

escape some of the stresses of the pathogen by flowering later in the season when the 

temperatures are lower and there is less rainfall.    
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EXHIBITS 

 

Table 1. Quantification of Macrophomina phaseolina colonization in soybean roots and symptoms severity as influenced by variety 

and seed treatment. 

Factor 

QPCR (ng) QPCR (ng) CFU /0.5 gram root 
Root Rating 

Severity 

30 DAP 120 DAP 120 DAP 
120 DAP (1-5 

scale) 

Variety 

 
          

A 

 
0.08 b 0.8 ab 3,401 ab 2.1 c 

B 

 
0.09 b 0.7 ab 3,447 ab 2.5 bc 

C 

 
0.30 a 1.0 ab 5,487 a 2.6 b 

E 

 
0.07 b 1.4 ab 5,081 ab 2.8 ab 

F 

 
0.07 b 2.4 a 3,787 ab 3.2 a 

G 

 
0.05 b 0.3 b 2,511 b 2.8 ab 

H 

 
0.04 b 0.5 b 3,364 ab 2.3 bc 

Treatment 

 
          

Base Treatment  

 
0.07 a 1.7 a 3,688 a 2.7 a 

Base Treatment plus 

Fluopyram 

 

0.06 a 0.7 b 3,886 a 2.5 a 

Non-treated 0.17 a 0.6 ab 4,031 a 2.8 a 

1Within each factor and parameters, means with similar letters are not different according to Fishers protected LSD (P ≤ 0.05) 
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Table 2. Soybean plants/ plot, plant height, seed quality, and yield as influenced by variety and seed treatment. 

 

Factor Plants/plot 
Plant Height Seed Quality Soybean Yield 

kg/ha R5 (cm) Scale 0-100% 

Variety         

A 

 
258.9 bc 111.0 b 4.9 a 3611.4 a 

B 

 
285.7 a 109.5 b 1.4 b 3665.2 a 

C 

 
281.1 ab 116.6 a 1.5 b 3671.9 a 

E 

 
270.2 abc 109.5 b 4.8 a 3618.1 a 

F 

 
255.1 bc .  1.5 b 3308.7 c 

G 

 
266.3 abc .  0.7 b 3463.4 b 

H 

 
250.1 c .   0.6 b 3396.2 bc 

Treatment 

 
        

Base Treatment  

 
269.0 a 111.5 a 2.8 a 3530.7 a 

Base Treatment plus 

Fluopyram 

 

264.8 a 113.0 a 1.6 a 3537.4 a 

Non-treated 

 
266.5 a 110.2 a .   3530.7 a 

1Within each factor and parameters, means with similar letters are not different according to Fisher’s protected LSD (P ≤ 0.05)
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Table 3. SCN as influenced by variety and seed treatment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Means with similar letters are not different according to Fishers protect LSD (P ≤ 0.05) 

Factor 
SCN/100cc 

 2 WAP 

Variety   

A 

 
716.1 a 

B 

 
400.5 a 

C 

 
437.1 a 

E 

 
569.8 a 

F 

 
392.6 a 

G 

 
384.6 a 

H 

 
357.9 a 

Treatment 

 
  

Base Treatment 

 
475.0 a 

Base Treatment plus Fluopyram 

 
387.4 a 

Non-treated 

 
534.2 a 
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Figure 1: Total rainfall by month and the 29-year average for that month in 2015 and 2016 in Carbondale, IL 
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Figure 2: Average air temperature by month and the 25-year average for that month in 2015 and 2016 in Carbondale, IL 
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