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INSULATORS

MAJOR PROFESSOR: Dr. Dipanjan Mazumdar

Time-Reversal Symmetry (TRS) is a hallmark of Topological Insulator (TI) systems.

TRS in conjuction with the strong Spin-Orbit Coupling (SOC) present in Bismuth

Selenide is responsible for the uniquely robust surface states shown in this material.

Breaking TRS in these systems in order to achieve gapped surface states requires the

presence of a magnetic field throughout the material. We achieve this effect by doping the

system with 4f elements whereby the magnetic field is provided by the local magnetic

moments of the dopants manifesting ferromagnetic behavior. Through this spontaneous

gap opening in the surface states in is expected that the Quantum Anomalous Hall Effect

is present in the system.

This thesis provides experimental evidence of good candidate materials for measuring

the Quantum Anomalous Hall Effect. By combining X-ray Diffraction to ensure good

crystal growth, Angle-resolved Photoemission Spectroscopy probe to the evolution of the

bandstructure as an effect of doping and Density Functional Theory to support the

experimental data it is shown in this work that Samarium doped Bismuth Selenide is a

prime candidate for displaying the Quantum Anomalous Hall Effect.
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PREFACE

Topological Insulators are quantum materials which are characterized by the

topological nature of their electronic bandstructure. Most simply, these materials exhibit

the behavior of having gapped electronic states in the bulk of the material, while showing

metallic electronic behavior on the surface. This phenomenon can be explained by

classifying the topology of the electronic bandstructure of the bulk as different than that

of the vacuum with the surface of the material acting as the boundary between the

material and the vacuum. It is very easy to see that the topology of the vacuum is trivial,

which indicates that if the insulating bulk has a non-trivial topology then the phase

transition between the non-trivial bulk and the trivial vacuum should produce states that

pass through the Fermi energy and manifest themselves as metallic electronic states at

the surface. The origin of this non-trivial topology in the bulk and its consequences will

be discussed in further sections.
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CHAPTER 1

BACKGROUND

1.1 HALL EFFECT

While the connection of topology to a materials surface conductivity was discovered

fairly recently, the study of conduction along the boundaries of a material dates back to

1879 with the Hall effect.[1] The Hall Effect is a result of the Lorentz force acting on

electrons moving through a conductor.

~F = q ~E + ~v × ~B (1.1)

From the schematic Figure 1.1 we see that as electrons move through the material

longitudinally they feel a transverse force due to the applied magnetic flux through the

material. After some time the system settles into a steady-state arrangement and a

transverse voltage is produced which we call the Hall Voltage (Vh). From Vh we can

determine a transverse conductance σxy. Taking this experiment further and applying a

magnetic field to two dimensional material gives another interesting result. [2]

Now that the electrons are confined to their local nucleus they undergo cyclotron

motion as shown in Figure 1.2 . In the interior the electrons remain bound to the parent

nucleus and remain insulating. The electrons on the edges of the material cannot complete

Figure 1.1. Schematic of Hall effect geometry.
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a full rotation as they get reflected by the potential difference from the lattice and

vacuum boundary and therefore must hop to the neighboring nucleus, inducing a current

on the edge of the material. Using solutions of the harmonic insulator in conjunction with

the Landau gauge we can determine that this current and therefore the transverse

conductivity is quantized in units of e2

h
which undergo transitions as the magnetic flux B

is increased. This phenomenon is known as the Integer Hall Effect (IHE). These

transitions occur as the Landau levels are tuned and pass through the Fermi Energy. This

effect can also be achieved by gating the device and tuning the Fermi Energy (or

Chemical potential) into static Landau levels, keeping the magnetic field constant. [3]

Figure 1.2. Edge current in the absence of an applied electric field.

1.1.1 Integer Quantum Hall Effect

The IHE can be seen in two dimensional systems such as 2DEGs, and recently

graphene or monolayers of other gapped layered materials.[4] An interesting consequence

of these transitions of the transverse conductivity is the vanishing of the longitudinal

resistivity. At first glance this may seem that the material should be superconducting in

this direction, however, when treating the conductivity and resistivity as elements of a

matrix we see that when the longitudinal resistivity vanishes the longitudinal

conductivity vanishes as well.

This IHE, also called the Quantum Hall Effect, was first theorized by Ando,
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Figure 1.3. Integer Quantum Hall Effect taken from [4]. Γ indicates
the width of the Landau Levels in this case.

Matsumoto and Uemura in 1974[5] and experimentally verified in 1980 by von Klitzing[6],

for which von Klitzing won the 1985 Nobel Prize in Physics (see figure 1.3. It is in this

theory where the first connection of electronic behavior was first connected to topology by

relating the integer ν to the first Chern numbers, which are closely related to Berrys

phase. In the spirit of keeping the narrative on track an explanation of Berrys phase and

its importance to the topology of electronic bandstructure will be discussed in a future

section.

There are, however, ways to produce systems which display these effects without

applying an external magnetic flux. If, for example, the system contains a ferromagnetic

order the Hall Effect and Quantum Hall Effect can be observed without supplying a

magnetic flux, which we refer to as the Anomalous Hall Effect and Quantum Anomalous

Hall Effect.[7] Systems displaying the QAHE are sometimes referred to as Chern

Insulators.[8]
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Figure 1.4. Interaction of electron spin-angular momentum S, and
orbital-angular momentum L.

1.2 SPIN-ORBIT EFFECTS

So far in our discussion of the Integer Quantum Hall Effect we have ignored the role

of spin and special relativity in electron behavior. Specifically, how does an electrons

motion around its parent nucleus interact with the electric field produced by the protons

which rest in the nucleus? We know from relativity that a charged particle under the

influence of an electric field will behave as though some of the field is magnetic flux if the

electron is moving at relativistic speeds. Then the question becomes, under what

conditions does and electron in a crystal lattice meet these requirements? A simplistic

approach is to treat electron orbitals classically at first, with some requirements about

their behavior that we know from quantum mechanics. We know a few things about

orbital mechanics from Keplers law, which relates the period of an orbit to the charges of

the satellite and central charge as well as the distance of the orbit from the central

charges. This suggests that for any given distance of the orbit of an electron, as the

central charge increases then the period of oscillation will decrease and the electron must

move faster to maintain a stable orbital. In this case the central charge is determined by

Z, which is the number of protons in the nucleus, which determines the element in

question. This effect of electrons behaving as though the nucleus is producing a magnetic

field is most easily seen in high Z elements such as Hg, Te, and Bi. By including high Z

elements in the system the Hall Effect can be realized without supplying a magnetic flux

4



or ferromagnetic order.

1.3 TIME REVERSAL SYMMETRY

If we consider the orbital angular momentum of the electron producing a relativistic

magnetic field, then we must also consider its spin angular momentum and its interaction

with the resulting field. In order to minimize the interaction energy between the spin and

orbital angular momentum the electron will now have a preferred direction of motion

dependent on its spin orientation.

Figure 1.5. Spin current induced by spin-orbit coupling.

Figure 1.6. Time-reversed spin-orbit coupling. Spin current flow remains unchanged.
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In two dimensional systems this manifests as two opposing spin current edge states

where no electric charge is transferred. This system displays Time-Reversal symmetry

(TRS) which a hallmark of Topological Surface States (TSS). In three dimensional

systems these two dimensional surface states are subject to spin-momentum locking,

where the spin of an electron and its momentum vector are interlocked, which produces a

non-trivial spin texture in momentum space. These three dimensional systems displaying

TRS and TSS are what we call Topological Insulators and were first discovered in 2008 by

David Hsieh at Princeton[9].

The result of Spin-Orbit coupling is a very robust Spin-Momentum locking effect,

wherein the Spin direction of the electron is uniquely tied to its momentum vector.

Within the bulk bandgap the surface states take on a unique spin texture in the

momentum space. These helical spin-textures can be mapped onto the unit sphere, where

they can be seen to be topologically non-trivial skyrmion charges.

Figure 1.7. Spin texture on the surface of a 3-dimensional TI. Spins
become degenerate at the Dirac Point.

Above and below the Dirac point the surface states change their helicity, owing to

the change in mass sign above and below the Fermi energy, a consequence of the band

inversion.

To better understand the effect of topology on electronic bandstructure, we must

6



move to a discussion of what do we mean by topology in the context of the Hamiltonian

of the system and how its eigenvalues are affected by various physical phenomena.

Topology can be used to classify different systems as belonging to the similar or disimilar

groups. If two systems have the same topology then one of these systems can be moved

adiabatically to the other system, and vis a versa. In the study of Hamiltonians we can

classify groups of Hamiltonians by how many electronic states they have below the Fermi

Energy, which we will call the Topological Invariant Q. This means that any Hamiltonian

with TI of Q=2 is topologically to any other Hamiltonian with Q=2. Let us then consider

the case where we take a Hamiltonian H1 with Q=1 and attempt to transform it to a

hamiltonian H2 with Q=2.

H̃ = H1(1− α) +H2(α) (1.2)

Here our parameter alpha controls the contributing of H1 and H2 on the total

Hamiltonian H̃. We can see that if our original definition of Q holds, then at some value

of α the topological class of H̃ will transition from Q=1 to Q=2. We call this a topological

phase transition and it is characterized by the energy eigenvalue of an electronic state

crossing the Fermi Energy. This explanation holds up well for zero dimensional quantum

dots but we would like to extend this idea of topology to higher dimensions.

In one dimension it is useful to use the Su-Schrieffer-Heeger model(Figure 1.8).

Using a tight-binding model we can build a Hamiltonian of some one dimensional chain of

lattice points whose eigenvalues are parameterized by the hopping parameters v and u.[10]

H =
∑
a,b

[vc†acb + uc†bca + h.c.] (1.3)

Using Bloch’s Theorem to force periodicity into the solutions of the Hamiltonian we

obtain

7



Figure 1.8. Model of Poly-acetylene, a 1-D chain of Carbon atoms.
Hydrogen bonds not shown.

H̃ =
∑
a,b

[ha,b(v + ueika)] (1.4)

Since this Hamiltonian describes a two particle system due to the contribution of one

electron from each carbon sublattice our ha,b matrix is two by two and can be expressed

in terms of the pauli matrices.

hab = d0 ⊗ 1 +
∑
i

[ ~d(k)⊗ σi] (1.5)

where d0 = 0, dx = v + ucos(ka), dy = usin(ka) and dz = 0

Above we see as the relationship between v and u changes our system goes through

various transitions. We can define a topological invariant for these one dimensional

systems as the winding number, or how many times the vector ~d(k) encircles the origin.

This winding number is closely related to Berry’s phase[11] where Berry’s phase is given

by γ = νπ. We can see that a topological phase transition occurs between v > u where

ν=0 and v < u where ν=1. We call ν=0 topologically trivial and ν=1 topologically

non-trivial. Another interesting feature of this topological phase transition is that the

8



Figure 1.9. (a),(b),(c): Energy dispersion at different v,u inequalities.

(d),(e),(f): Tracing out the path of ~d(k) in parameter space.

band dispersion for v > u and v < u are practically identical insulating phases. The point

of the phase transition occurs at v = u where the bands close their gap and become

conducting. This feature was seen in the one dimensional quantum dot case where an

electron passed through the Fermi Energy and switched between the valence and

conduction bands. This process is known as band inversion and can occur due to a

number of effects.

In two dimensional systems CdTe-HgTe-CdTe heterostructures[12] are the model

example. The bandstructure of CdTe and HgTe near the Γ point are quite similar. In

CdTe the Γ6 s orbital and Γ8 p orbital are above and below the fermi energy, respectively.

In HgTe the opposite is true. By creating a heterostructure of these materials the band

characteristics of at the interface of these layers depends on the mixing of the eigenstates

of both systems. At some critical thickness of the HgTe layer, the mass parameter is

equal to zero, indicating and change in sign. Above and below this critical thickness the

bands look similar, although inverted, and is characterized by an energy gap dependent

9



on the value of the mass parameter. What is not similar is the number of pairs of edge

states. In this case, where time-reversal symmetry is present in the Hamiltonian, each

eigenvalue is two-fold degenerate due to the equivalent spin-up and spin-down

eigenvalues. This is a consequence of Kramers degeneracy and these pairs are called

Kramers pairs. By counting the number of Kramers pairs in the edge states of our system

we see that the topologically non-trivial state is characterized by an odd number of

Kramers pairs, and the topologically trivial state is characterized by an even number of

Kramers pairs. With this information it is easy to decide on a topological invariant for

these two-dimensional systems by determining if the number of edge states is odd or even.

The easiest way to determine this is to take the number of edge states, modulo 2. This is

known as the Z2 invariant[13] which outputs a value of +1 (even) or -1 (odd). The

Quantum Spin Hall state occurs when the Z2 invariant is 1, and the typical Charge Hall

state occurs for values of Z2= +1. These two states are mutually exclusive due to the

presence or breaking of time-reversal symmetry.

Z2 = (−1)ν (1.6)

In the three dimensional regime the major contributor to band inversion is

Spin-Orbit coupling. For this reason the only strong three dimensional TIs are

compounds with heavy elements, typically Bi, Te, Pb, Hg, Pt, etc. In order to undergo

the band inversion, the Spin-Orbit energy shift ( ∆so) should be greater than the

non-relativistic bandgap. For example, despite having similar chemistry, Sb2Se3 is not a

strong TI, where as (BixSb1−x)2Se3 is. At a critical value of x the Spin-Orbit shift in the

energy eigenvalues overcomes the non-relativistic bandgap and the band inversion occurs.

We also deal with the topological Z2 number similarly to the 2D case, however we need to

now consider the full three dimensional brillouin zone. To fully describe the topology of

the system we need 4 topological numbers. The first and most important is the strong Z2

invariant, which runs across all 8 Time-Reversal Invariant Momenta at the corners of the

10



Figure 1.10. Generalized Brillouin zone with TRIMs.

three dimensional brillouin zone as shown in figure 1.10. The other 3, known as the weak

invariants, run across the corners of the xy, yz, and zx planes, starting from Γ. The weak

invariants are identical to the 2D case if the system is reduced to that dimension.

Although TRS is present in these systems, other similar systems where TRS is

spontaneous broken can lead to novel states of matter.[7, 14] The Quantum Anomalous

Hall State can be achieved by inducing a spontaneous ferromagnetic ordering to the

system by either doping or proximity effects in grown heterostructures. [15–23]

Ferromagnetic insulators are another state which must undergo TRS breaking.

Non-typical superconducting states can also theoretically be achieved with TRS broken

topological states, as well as searching for exotic particles. [24–30]
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CHAPTER 2

CONTEXT AND HYPOTHESIS

In this chapter we will discuss the current state of research to provide the context for

this work as well a motivation for the hypothesis presented.

2.1 TOPOLOGICAL INSULATORS

As stated previously, 3D Topological Insulators were experimentally verified in 2008,

with many more soon following in 2009.[9][31][32] Bi0.9Sb0.1 was the first material

measured with ARPES to directly map the TSS. In this compound the band inversion

occurs at the L point in the Brillouin zone when the compound is doped to Bi0.96Sb0.04.

At this particular doping the bandstructure gives rise to a massless Dirac point. Beyond

this doping the compound becomes an inverted-band insulator whose low-energy physics

near the L point are dominated by the spin-orbit interaction.

In figure 2.1 we can see the ARPES data taken by Hsieh on the system Bi0.9Sb0.1.

The L point measured was in the third Brillouin zone at coordinates (kx, ky, kz) =

(0.8,0,2.9)Å−1. In the ky direction we see a linear relationship between ~k and Energy,

suggesting a massless Dirac particle in this direction. A much more complicated parabolic

and indirect bandstructure is shown in the kx direction, owing to the effects of spin-orbit

interaction in the band inversion.

Later, in 2009, an experimental study of the bandstructure of Bi2Te3 was published

in Science by Y.L. Chen et. al. In figure 2.2 the TSS (Surface State Bands in the figure)

are present within the Bulk bandgap. In this material the band inversion occurs at the Γ

point. By convention the three dimensional Brillouin zone is projected onto the two

dimensional Brillouin zone when doing theoretical bandstrucutre analysis. Therefore the

path K → Γ→M is typically used for rhombohedral structures with inversion at the Γ

point. The reason for this is due to the surface sensitivty of ARPES, which results in data

that is best represented in two dimensions. The kz dispersion can be measured by
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Figure 2.1. ARPES data of Bi0.9Sb0.1 centered around L along the ky,
intermediate, and kx directions, respectively. Taken from [9].

measuring across multiple Energy values. Although there should be zero dispersion in the

kz direction, sometimes it is mapped to verify this.

Figure 2.2. Bi2Te3 Arpes and Theory. Taken from [31].

In this measurement we can see the Dirac point occurs below the Valence Band

Maximum. It was also noted in this work that doping the Bi sites is important in

reducing the carrier concentration to achieve a true insulating state. Due to Te vacancies

and anti-site defects, the stoichiometric material tends to be n-type, thereby raising Ef

into the conduction band. By doping with Sn the carrier concentration was reduced,

tuning Ef into the bulk bandgap and achieving a true Topological Insulator.
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The Topological bandstrucutre of Bi2Se3, which is the focus of this work, was also

reported experimentally in 2009 by Xia et. al. Bi2Se3 has a similar bandstructure to

Bi2Se3, unsurprisingly. It’s band inversion is spin-orbit induced at Γ as well as having an

indirect Bulk bandgap near Γ also as a consequence of spin-orbit coupling. Worth noting

is the correspondence of the K → Γ→ K and M → Γ→M ARPES data to the

K → Γ→M theoretical calculation. In practice, isolating the kz reciprocal vector is

trivial, as this family of materials tends to cleave along its basal plane, exposing the

surface normal to the kz vector. However in order to get precise measurements along the

kx or ky directions one must know the in-plane orientation of the crystal. One effective

method is Laue diffraction to map the reciprocal lattice, but this must be done in-situ

and is not always feasible for all experimental set-ups.

Figure 2.3. Bi2Se3 ARPES and Theory. Taken from [32].

2.2 MAGNETIC DOPING

Because of the exotic properties promised by breaking TRS in TIs[14, 15, 29] much

work has also been done in doping these systems to achieve this goal. Transition metals

were, of course, the first systems believed to be able to achieve this effect. Elements such

as Cr, Mn, Fe and Co were doped into TI systems to varying degree of success.

Rare-earth elements have also been doped in these systems to explore magnetic ordering.
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[15–17, 33–39]

Due to the spin degeneracy imposed by normal TRS in undoped TIs, the Anomalous

Hall Effect in these systems transports spin, instead of charge. However, when magnetic

impurities are introduced into the system, the Hall Effect transports charge, due to the

spin-polarization present in the magnetic ordering. Therefore it is of greatest interest to

measure the QAHE in these magnetically doped systems. [15–21, 36] These systems

require tuning the chemical potential of the material into the gap of the surface states to

measure the QAHE. The location of Ef in the energy spectrum due to doping and

vacancies is paramount in determining if attempting to measure the QAHE is feasible in

the system. ARPES is a useful tool in determining sample candidates which are viable in

their ability to display the QAHE. To this end much work has been done on the 3d

transition metal dopants [33, 35, 39], however, at the time of this writing, comparatively

little work has been done to characterize the nature of Rare-earth dopants through

ARPES.[40–43]

Figure 2.4. Gd doped ARPES from [40],[41] respectively.

The main obstacle in 3d doping of Bi2Se3 in particular seems to be a mismatch of

the atomic size of the dopant and Bismuth. Because of this the 3d dopant may occupy Bi

sites as well as undesirable interstitial sites. This could give rise to competing magnetic

orderings within the material, thereby lowering the magnetic transition temperatures.
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[44, 45] Rare-earth Lanthanides, however, have relatively large ionic radii which are very

close in value to Bismuth, thereby restricting the sites which they can occupy and

promoting a single magnetic ordering in the system. Additionally rare-earth elements

tend to have much higher magnetic moments than their transition metal counterparts.

2.2.1 Hypothesis

For these reasons this work has focused on the synthesis and characterization of Gd

and Sm doped Bi2Se3. It is then expected that with enough Gd doping the system will

form an AFM phase with a TN < 10K. The result of this will be that TRS will be broken

locally at the impurity sites, but the metallic TSS should be conserved throughout the

material. Also, due to the unique topological spin-texture present in the system, this

AFM phase may show novel long-range order. In the Sm doped sample it is expected that

a FM phase will form with a TC near 50K, breaking TRS throughout the system and

thereby inducing a gap in the TSS. A consequence of this would be the formation of a

QAHE state in the system, which will require more thorough investigation.
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CHAPTER 3

METHODS

3.1 GROWTH

All materials were grown in evacuated quartz ampules. Ingredients were measured

out in stoichiometric ratios and transferred to an unsealed tube. This tube was then

attached to a vacuum system, flushed with argon and evacuated to a pressure of 10-6

Torr. The evacuated tube was then transferred to a furnace. The heating program then

slowly heated the tube to 500oC at a rate of 1oC per minute. The temperature was kept

at 500oC for 24hr and then increased to 850oC again at a rate of 1oC per minute. The

temperature was then kept at 850oC for 5 days and then cooled to 600oC and was kept

there for another 4 days. The ampule was then carefully removed from the furnace and

quenched in water before the crystal was removed from the ampule.

3.2 X-RAY DIFFRACTION

The major technique used to characterize the crystallininty of the prepared samples

was X-ray Diffraction. In this section we will discuss the theory behind X-ray Diffraction

as well as the experimental effects one must consider to measure a sample.

3.2.1 Theoretical Background

The basic idea of X-ray diffraction is using Braggs law to measure interplanar

distances in the crystal structure.

nλ = 2dsinθ (3.1)

However, this is a simplistic model and not very useful for in-depth analysis of the

total structure. By their nature crystals are periodic and can be described by periodic

functions in real space. Building a mathematical expression for the lattice structure we
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can use a series of Dirac Deltas to roughly describe the crystal.

f =
∑
i

Aiδ(~x− ~xi) (3.2)

Taking advantage of this fact we can express this as a series of plane-wave in

reciprocal space using a Fourier Transform.

F =

∫ ∞
−∞

fei2π(
~k·~x)dx =

∑
i

Aie
i2π(~k·~xi) (3.3)

This result is known as the structure factor and will determine what allowed of (hkl)

are allowed due to the symmetries present in the structure. In reciprocal space Bragg’s

Law becomes to Laue condition.

2k̃ · S̃ = S2 (3.4)

In this way, by evaluating the reciprocal lattice at certain planes described by (hkl)

we can determine the spatial frequency at which these planes occur in real space, thereby

determining the interplanar distance. In experiment the effect of diffraction is to do

essentially that, applying the Fourier Transform to the object through which the light

diffracts. The output pattern from an X-ray Diffraction scan is then simply the spatial

frequencies of the planes present in the crystal under study. In general this then explains

the positions of the peaks in the diffraction pattern, but does not give information on

their intensity.

To understand the way the X-rays scatter from the crystal sites we must consider

their electrical nature. When the X-ray enters the material primarily what it will interact

with is the electron density. Since the sourced X-rays in this case are 8keV, many of the

electrons it interacts with will be emitted as photoelectrons. If instead the X-ray interacts

with a core electron whose binding energy is sufficient to prevent photoemission then the

X-ray will be re-emitted. If we consider the core electrons states like a hydrogenic atom,
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then it is easy to see that high atomic number elements will have many more electrons

that meet these requirements than lighter, low atomic number elements. In this way the

peak intensities are dependent on the Z-number of the element present at the scattering

site, and therefore peaks corresponding to reflections off high Z elements will appear

larger. An important connection here is the relation of X-ray Diffraction to Density

Functional Theory, which will be discussed in a later section. Density Functional Theory

utilizes self consistent calculations of the electron density to determine the ground state

wave functions of the many-electron problem. To do this, however, we must determine

the background potential from the nuclei in the crystal structure which is generated by

assuming the nuclei sit at the center of the high-scattering points of our electron density.

Figure 3.1. Visual representation of Bragg’s Law, left, and the Laue Condition, right.

Another important factor in determining peak intensity is the multiplicity of the

reflection. For example, in high symmetry crystals, such as the simple cubic, many unique

planes will have the exact same interplanar distances. The (hkl) = (100) plane for

example shares peak position with the planes (0 1 0),(0 0 1),(-1 0 0), (0 -1 0), and (0 0 -1)

giving this peak a multiplicity of 6, since 6 unique values of (hkl) occupy the same peak
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position. Other lower symmetry crystal configurations can interfere destructively, thereby

reducing the expected peak intensity, particularly if the crystal is described by additional

atom basis whose sites are occupied by dissimilar elements (and therefore scattering

factors).

By determining the peak positions and peak intensities and comparing to known

values for the parent material we can determine, roughly, what is happening to the parent

compound when it is being doped. If, for example, a shift occurs in the peak positions

then we can know how the dopant is altering the interplanar distances of the parent

compound, and therefore the overall lattice parameters. Peak intensity can also, in

theory, give information about the occupation sites of the dopant, but in practice this is

difficult to accomplish, since peak intensity is also determined by many other factors. The

temperature of the sample is also important in understanding both the intensity and the

shape of the diffraction peak. If we treat the nuclei of the crystal as classical particles we

can extract an average kinetic energy of the nuclei based on its temperature by the

equation E = kbT where kb is the Boltzmann constant. Combining this with a

3-dimensional version of the Lennard-Jones potential we can determine a range from

which a nucleus can deviate from its lattice point, thereby changing the results of the

crystal structure from a fixed dirac delta to a gaussian centered around the lattice point.

This factor is known as the Debye Temperature factor.

Another factor in determining the peak intensity of the Lorentz-Polarization factor.

The L-P factor arises when the incident beam is unpolarized. The in-plane and

out-of-plane components of the electric field of the incident photons will be attenuated

differently when they interact with the sample being measured. In polycrystalline samples

this factor tends to overestimate peaks near the extremes of the measurement. At the

high angle extremes of the range of the experiment the L-P factors for both powder and

single crystal measurements converge, however other factors such as the Debye

Temperature factor severely limit the intensity of the scattered beam at high angle, and
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Figure 3.2. Lennard-Jones potential showing an atom’s deviation from
it’s minimum potential due to temperature effects.

therefore an experimental comparison of the L-P factor at this range is unreliable.

In this way measuring the relative intensities of the peaks helps to differentiate single

crystal patterns from those patterns that are simply textured (ie, polycrystalline but with

preferred growth direction). In this work it is important that the measured samples are

high quality single crystals, as transport and especially ARPES measurements are highly

sensitive to disorder in the crystal structure.

To extract exact information from the diffraction pattern due to all these competing

factors the use of Rietveld refinement is required. Rietveld refinement is a method to

match the measured diffraction pattern against a theoretically modeled pattern using

multiple parameters to simulate the exact diffraction pattern. Matching the theoretical

model to the experimental model will provide very detailed information on the internal

structure and crystalline nature of the sample in question. At this point the factors that

contribute to a diffraction pattern are entirely solved and the theoretical model is highly

reliable with practically no deviation from experimental results.
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In general the integrated intensity of the diffraction pattern is given by Eqn 3.5

where I is the integrated intensity, F is the norm of the structure factor, m is the

multiplicity of the hkl peak, Lp is the Lorentz-polarization factor and e−2M is the Debye

Temperature factor.

Ihkl = F 2
hklmhkl(Lp)e

−2M (3.5)

3.2.2 Experimental Factors

All X-ray Diffraction measurements in this work were done using a Rigaku Smart

Lab device. X-rays were generated from a CuKα source. X-rays are generated in the

following way. Current is passed through a Tungsten filament such that electrons are

emitted from the filament. A voltage is applied between the Tungsten filament and a

Copper target so that the emitted electrons are accelerated toward the Copper target.

The Copper target is then bombarded with electrons which produce two types of

electromagnetic radiation. The first type of radiation is Bremsstrahlung radiation and is

due to an electron passing by a Cu nucleus and being deflected. This deflection

accelerates the electrons and therefore photons are emitted. This radiation is not

characteristic of the material and is emitted in a broad spectrum. The second type of

radiation is the characteristic emission for the material and is due to electrons in the Cu

target jumping to lower energy states that were vacated during electron-electron

collisions. Kα is the Siegbahn notation describing the orbital transition from the 2p to 1s

state. Further considering spin-orbit interactions leads to a splitting of the Kα emission

to Kα1 and Kα2 where Kα1 is the 2p 3
2

to 1s transition and Kα2 is the 2p 1
2

to 1s transition.

The next allowed transition to the 1s state is from 3p to 1s. Due to the energy scale of

the 3p orbital, the spin-orbit splitting is difficult to resolve in practice and so this

characteristic peak is labeled simply as Kβ. Due to the different emission energies of these

transitions the generated photons will be produced at different wavelength, thereby
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altering the Bragg angle for each hkl plane measured. This gives the effect of ”echoes” in

the diffraction data, where the same hkl peak will show up three times. This is not ideal,

so some measures can be taken to reduce the intensity of these peaks, specifically Kβ.

Luckily, there is an easy solution. In general, by introducing a foil of atomic number

Z - 1 where Z is the atomic number of the element we are using to generate the

characteristic X-rays, we can severely attenuate the Kβ radiation. To understand why

this works so well we have to consider the source of the energy scales responsible for the

elements’ emission lines, namely the Binding Energy of the electronic states. Given

simple Coulomb interactions we can see that Eb is proportional to Z. The absorption

spectrum for an element is governed by the Binding Energy of the electronic states.

Incident photons with a sufficient energy to eject an electron will be absorbed while

photons with insufficient energy will be unaffected. In the case of characteristic X-rays,

the photon energies are governed by the difference in Binding Energies of the allowed

state transitions. It turns out then that Eb of the Z - 1 element tends to fall between the

Kα and Kβ energies of the Z element.

KZ
α < EZ−1

b,1s < KZ
β (3.6)

Due to this result, placing a foil of Ni in the path of X-rays generated by a Cu target

will severely attenuate the Kβ emissions while leaving the Kα X-rays relatively unscathed.

3.3 ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY

A useful tool for evaluating the effect of TRS breaking on the surface states of a TI

is Angle Resolved Photoemission Spectroscopy (ARPES). The basic principle behind

ARPES is the photoelectric effect, for which Albert Einstein won the Nobel Prize in

Physics in 1921. The Photoelectric effect is the measuring of a voltage across a conductor

when light of certain frequencies shines on it. When the photons are energetic enough

they can eject electrons from the surface of the metal. These electrons are known as
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photo-electrons. The absence of the ejected electrons leaves the conductor positively

charged, resulting in a voltage difference between the conductor and the ground. The

energy and relative angle with which these photo-electrons are ejected with are what is

measured in ARPES. In low-energy scans UV light ( 20-40eV per photon) is used to eject

electrons with energies near the Fermi Energy. By measuring the angle with which the

photo-electrons are ejected we can gain information as to what their momentum in the

crystal was. Combining this with the energy of the ejected photo-electron we are able to

accurately map the E(k) dispersion relationship of the electrons in the Brillouin zone.

This gives us a real picture of the bandstructure of the electrons near the Fermi Energy,

revealing the precise nature of the bulk bandgap and surface states.

Figure 3.3. Schematic of ARPES device.

The energy (E) and deviated angle are measured at the detector. Given a specific

photon energy Eph = hν and work function (φw) we can compute the binding energy of

the photo-electron.
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Eb = hν − E − φw (3.7)

And by relating the momentum of the photo-electron to its detected angle we can

determine the wavenumber of the photo-electron.

~p = ~~k

p2

2m
= E

pz = |p|cos(θ)

py = |p|sin(θ)cos(φ)

px = |p|sin(θ)sin(φ)

kz = ~−1
√

2mEcos(θ)

ky = ~−1
√

2mEsin(θ)cos(φ)

kx = ~−1
√

2mEsin(θ)sin(φ)

(3.8)

Based on these equations we can see that the wavenumber-detector angle

relationship scales with the photon energy. In a real measurement situation the sample

may not be perfectly flat with respect to the perpendicular direction. This will manifest

itself in slight deviations in the θ and φ angles. The problem then becomes how does one

know where in the Brillouin is the data showing? Generally, in layered materials, the kx

and ky directions are what are interesting, and Γ occurs at the value of θ = 0. Then the

location of Γ on the detector is independent of the photon energy. By taking

measurements at multiple values of hν one can then determine the location of Γ by

observing the features which do not move as hν is changed.
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3.4 DENSITY FUNCTIONAL THEORY

To better understand the electronic nature of our system it is beneficial to model it

computationally rather than continually making and measuring physical samples. To do

this exactly one must solve the Schrödinger equation for a many-body system in a

background potential.

(−1

2
∇2 + Vext(r) + Vint(r, r

′
))Ψi(r) = εiΨi(r)

↓

[Te + VNe + Vee]Ψ = EΨ

(3.9)

In particular we are considered with the VNe term, which is uniquely defined based

on the system in question. This term defines the interaction of the electrons with the

background potential. In our case the background potential is generated by the crystal

structure of our material. Rather than computing the Schrödinger equation explicitly, we

instead attempt to find a self-consistent charge density. [46, 47]

VNe =

∫
v(r)ψ∗(r)ψ(r)dr (3.10)

ρ(r) =
∑
i

ψ∗i (r)ψi(r) (3.11)

Using equations (3.10) and (3.11) we can make an attempt to solve for the

wavefunctions ψi(r) in equation (3.9) by guessing at the form of ρ(r) using our v(r)

generated by the structure of the crystal. Then, by using equation (3.11) to generate a

new ρ(r) based on the ψi(r)’s we can run the cycle again. Additionally this approach can

be applied to the Vee term in equation (3.9) by treating the electrons as probability

densities given by ρ(r). This exchange-correlation term then can be expressed as a

functional of ρ(r) as well.
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Vee =
1

2

∫
ρ(r)ρ(r

′
)

|r− r′|
drdr

′
(3.12)

Then, since Ψ is uniquely determined by ρ, then there exists a groundstate energy

Eo such that ρ will returns itself on the next cycle, up to a constant. Then, as a

self-consistent calculation, after several cycles the groundstate energy should converge to

some finite value, and the difference in energies from one cycle to the next should

approach zero. In practice zero is not a feasible convergence limit, so one must determine

what convergence criteria is acceptable for the particular problem.

To solve these problems computationally the software used in this work was

WIEN2K. WIEN2K uses an Augmented Plane Wave + Local Orbitals approach to

generate solutions. [48] This code solves the Schödinger equation for both the core and

valence electrons. Therefore it is necessary to determine criteria for what ”core” and

”valence” mean, mathematically. This is done by setting an energy difference between

states such that, when the difference reaches the set point all states thereafter are

regarded as valence electrons. And it is also necessary to use different bases for both

situation. In the core electrons the potential and therefore wavefunctions are expanded in

terms of spherical harmonics, and in the valence electrons the plane-wave basis is used.

Vcore =
∑
lm

Vlm(r)Ylm(r̂)

Vval =
∑
K

VKe
iK·r

(3.13)

WIEN2K uses the procedures desribed by equations (3.10),(3.11) and (3.12) to

produce solutions, however it must treat the core and valence densities separately, and

then mix them at the end. In figure (3.4) we see that the WIEN2K code makes good use

of the Hohenberg-Kohn and Kohn-Sham theorems. First, an initial ρ is calculated based

on the input crystal structure of the system. Next that ρ is used to calculate inner and
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outer potentials Vc and Vxc. Those potentials are then used to calculate the eigenstates

and eigenvalues using Schödinger’s equation. Those eigensates are then used to calculate

the total probability densities ρ for the valence and core. These ρ’s are then simply added

together. Since these ρ’s describe the densities in completely different regions of space,

there is no overlap, and simply adding them gives an appropriate result for the total ρ.

Next, these calculated ρ’s are mixed with the ρ used to calculate the initial potentials, and

a new ρ is generated. This process will continue until the energy difference in iterations

reaches some threshold, as shown in equation (3.14). Once the calculations converge the

eigenstates and eigenvalues can be used to generate the bandstructure of the material.

Putting the symmetries of the material into good use can significantly reduce the

complexity of the Hamiltonians used to determine the eigenstates of the system. [14, 49]

|E[ρnew]− E[ρold]| < Econv (3.14)
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Figure 3.4. Flow chart of WIEN2K software.
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CHAPTER 4

RESULTS

4.1 X-RAY DIFFRACTION

X-ray Diffraction was used to determine that the grown samples were the correct

phase of Bi2Se3. By comparing the position of the peaks against the known pattern we

can determine that the phase of the grown sample is Paraguanajuatite, which is the

desired phase of Bi2Se3 in the R-3m spacegroup 166. Other species are possible which

either share the same stoichiometry or spacegroup, however Paraguanajuatite is the only

phase of its particular spacegroup and stoichiometry and is easily identified by its

diffraction pattern. . The mechanical separation of flakes from the bulk ingot is

characteristic of the layered nature of Bi2Se3 and suggests the single crystal nature of the

sample by how large the separated flakes are.

Optical characterization is also strong, although insufficient, tool. As the bandgap

for Bi2Se3 lies well within the Infrared range, the sample should reflect the visible

spectrum, as can be seen in the Figure (4.1).

Another indication that the grown samples are high quality is the presence of

high-angle peaks. Being able to identify high-angle peaks is important in measuring the

changes in lattice parameter due to doping. In the figure below we see that the

introduction of Gd to the sample results in a noticeable lattice expansion for the c

parameter, contrary to others findings[37]

By comparing the Sm doped, Gd doped and simulated X-ray Diffraction patterns we

can see that not only are the samples grown with a preferred orientation, but they are in

fact single crystal. The simulated diffraction pattern is generated assuming a powder

sample. Due to this we can see that the (003) peak in particular is highly favored in

contrast to the relatively low intensity of that peak in the measured patterns. This is due

to the difference in the L-P factor in powder and single crystal samples. We can also see

that the presence of the dopants has not appreciably altered the structure of the parent
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Figure 4.1. X-ray Diffraction data of Bi2Se3 showing (00L) texture.
Inset: Optical image of Bi2Se3 flake.

compound.
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Figure 4.2. X-ray Diffraction data of Bi2−xGdxSe3 series. Inset: C
Parameter measured at L=30 as a function of x.

4.2 ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY

4.2.1 UV Sourced ARPES

ARPES measurements were performed at Missouri University at Columbia by

Qiangsheng Lu in Dr. Guang Bian’s laboratory. All measurements were taken at a

temperature of 100K unless otherwise specified. The measurements also used a photon

energy of 21.2 eV.

The expected result for the Gd doped Bi2Se3 ARPES data would show that the

Dirac point remained preserved and the TSS would be gapless. In the case of the

Bi1.5Gd0.5Se3 data we can easily see that the Dirac point is present and the TSS are

preserved. This is likely due to the high quality of the sample measured. In contrast the

Bi1.98Gd0.02Se3 data is much lower resolution, perhaps due to some imperfections in the
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Figure 4.3. Comparison of Theoretical pattern with Gd and Sm doped Bi2Se3.

crystal. In both cases the VBM appears to be at -0.5 eV and the Dirac point at

approximately -0.4 eV, giving a difference of 0.1 eV. Also worth noting is the location of

the CBM just below -0.2 eV. The Spin-Orbit band inversion producing an indirect gap in

the bandstructure is also present and the bandgap can be estimated at approximately 0.3

eV, which agrees with the literature. [50–54] It is concluded then that the magnetic

ordering, if present in this system, has not broken the TRS of the parent compound as

shown by the preservation of the TSS.

Next we consider the role magnetization plays in the Sm doped Bi2Se3 samples. In

this case, in contrast to the Gd doped sample, the comparison was made between the

same sample at two different temperatures rather than differing dopant concentrations. In

this case the temperatures were chosen to be above and below the measured Tc of the

material. The Tc of the sample Bi1.9Sm0.1Se3 was measured to be approximately 250K.
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Figure 4.4. ARPES data of Bi2Se3 at different concentrations of Gd.

Therefore, when measuring the sample at a temperature of 300K there should be no

ferromagnetic ordering to disrupt the TSS of the system. However what was found was

that regardless of the temperature measured the TSS seems to be gapped. This gap is

unlikely due to surface effects. [55, 56] Precisely what the energy value of this gap is

cannot be determined from this data, however it appears to be on the order of 10 meV.

The bulk band characteristics of the Sm doped sample also strongly agree with that of

the Gd doped samples, suggesting no large scale effect on the parent compound as a

whole. The presence of Sm seems to have only affected the nature of the surface states,

which is an expected consequence of breaking TRS. It is therefore concluded that Sm

doping has succeeded in breaking TRS in this system. However it appears that the

presence of long-range FM ordering is not the only factor present in producing this effect.

The TSS gap that exists at the 300K measurement may suggest that short-range

magnetic ordering is also responsible for breaking TRS in this system. More magnetic

measurements will be performed to determine the exact nature of the magnetic structure

of this compound both above and below its Tc.
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Figure 4.5. ARPES data of Sm doped Bi2Se3 above and below the Tc of the material.

4.2.2 Soft X-ray ARPES

ARPES work was also done at Argonne Nation Laboratory by the author of this

work under the guidance of Jessica McChesney. There are many advantages to using Soft

X-ray instead of UV light source. The main advantage is being able to probe larger

energies in the bandstructure and as a result more of the Brillouin zone.

The downside to this is losing momentum resolution, as more of the Brillouin zone is

represented in a fixed detector width. Another advantage is using the beamline to access

a continuum of photon energies rather than fixed or very narrow spectra found in UV

sources. Because of this, and the large photon energies available, the photon beam can be

tuned to resonant binding energies of specific electronic states. For example, the binding

energy of the Bismuth 4d electrons occur at approximately 440 eV, with some splitting

because of spin-orbit coupling. This allows one to tune the energy to specific resonant

energies in order to highlight the contributions of a specific electronic state to the mixed

states found in the bandstructure. This experimental set-up also allows one to easily
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Figure 4.6. SQUID data showing the Curie Temperature of the Sm
doped sample at nearly 250K.

determine the X-ray Photoemission Spectrum (XPS) of the sample by sweeping the beam

energy through a large range and measuring the resonant energies corresponding to the

electronic states present in the system.

For this work the samples measured were Bi1.98Gd0.02Se3 and Bi1.9Sm0.1Se3. All

measurements were taken at 81K. Samples were cleaved in-situ at UHV pressures. The

detector has an energy resolution of 0.0175 eV and an angular resolution of 0.03 degrees.

From the XPS data in Figure (4.7) we can determine the resonant energies which

may be of interest in the ARPES scans. We can also determine the quality of the cleave

in the measured sample. By observing the sharpness of the Bi 4f peaks we can see that it

is indeed terminated in a Se layer[57–59], which is what we would expect for van der

Waals materials. Multiple photon energies were used in the ARPES scans. To isolate the

Bi 4d5/2 the photon energy was tuned to 440 eV. Other energies used were 400, 500, and
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Figure 4.7. XPS measurement of Gd doped Bi2Se3.

550 eV.

Looking at Figure (4.8) we can see the evolution of the bandstructure shifting as the

photon energy changes. This effect is described in Eqn. (3.8) where the photon energy E

dictates the scale of the wavenumber to the corresponding detector angle. At these

energies it appears that multiple Γ points are measured. By noticing a shift in the

location of these Γ points as the photon energy changes we can determine that these are

not located in the first Brillouin zone, where Γ is described by ~k = 0.

Although our view of the conduction band is limited by the work function, we can

still see a large part of the valence band. A small contribution from the conduction band

surface states can still be seen indicating that the Gd doped samples appear to be gapless.

Also, worth noting is the Bi 4d5/2 states highlighted in the 440 eV image appear to not be

highly represented in the valence band surface states, preferring to rest in the lower bulk

valence band states near Γ. We will return to this feature later when discussing DFT

calculations and where we expect to see contributions from each electronic state.
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Figure 4.8. Resonant ARPES of Gd doped Bi2Se3.
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Figure 4.9. Resonant ARPES of Sm doped Bi2Se3.
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In the Sm doped data shown in Figure (4.9) we see some differences to the Figure

(4.8). The two major differences are first, the overall intensity of the signal. The Sm

doped sample is much noisier suggesting that the crystal quality is overall poorer. Second,

is the location of the Γ point. In the Sm sample Γ doesn’t seem to move as the photon

energy changes, suggesting that were are looking at Γ in the first Brillouin zone. Also

worth noting is the appearance of what seems to be a gap in the surface states. While

this is inconclusive by itself due to various experimental factors at play, taken with the

UV ARPES and MvT data we can say with good certainty that there is a gap in the TSS

due to the presence of Sm in the sample.

4.2.3 DFT Bandstructure

All DFT calculations were performed using the WIEN2K software utilizing the

LAPW method. For bulk characterization the structure used was spacegroup 166, R-3m

in rhombohedral axes. The generated k-mesh is 10x10x10, RMT is set to 2.5 for both Se

and Bi, and RKmax is 6. Calculations were done using the GGA [60] potential with an

energy convergence of 0.0001 Ry.

Figure (4.10) shows the structure of Bi2Se3 in both Rhombohedral and Hexagonal

axes. The Rhombohedral representation is the primitive unit cell, while the Hexagonal

unit cell is the more conventional representation. The Hexagonal structure in Figure

(4.10) has been extended in the xy plane to accent its layered nature. The mirror

symmetry in the z-direction is clearly shown in the Hexagonal representation, while the

three-fold rotation symmetry in the xy plane is easily seen in the Rhombohedral axes.

These symmetries are valuable for DFT calculations as they reduce the computational

requirements for the system.

DFT calculations were done on this structure with and without SOC to determine

the role SOC plays in the shape of the bandstructure. For SOC calculations all atoms

were considered to have SOC effects. However, due to its large local potential Bi radial
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Figure 4.10. Visual representation of Bi2Se3 in a) R and b) H axes.

states may become split between the core and valence. For this reason an p1/2 RLO state

was added to Bi to improve its basis.

As can be seen in Figure (4.11) the SOC changes the material from a direct gapped

system to an indirect gap of about 0.35 eV. Degeneracies present in the non-SOC

calculation are lifted in the SOC case. Additionally, the CBM and VBM at Γ have

swapped places due to the band inversion introduced with the SOC effect. In particular

the Bi pz and Se pz orbitals have inverted.

Figure (4.12) shows the role SOC plays in the inversion of the pz orbitals. The circles

represent the magnitude of the projection of the eigenvector onto the pz basis. A larger

circle then means that the pz state is highly represented in that particular band. For the

non-SOC calculations we can see that the Bi and Se pz bands are segregated into the

conduction and valence bands, respectively. Very little mixing occurs when SOC is not
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Figure 4.11. Bandstructure of Bi2Se3 without and with SOC, respectively.

considered. With SOC turned on we can see that the bands get very mixed near Γ. The

dip near Γ in the valence band in the SOC case is highly represented by Bi pz which can

be explained by the CBM in the non-SOC case moving down due to the effects of SOC.

Also, the conduction band near Γ in SOC case is heavily Se pz favored, whereas in the

non-SOC there was practically no representation of that basis. Due to this inversion

around the Γ point there should be a non-trivial Berry’s Phase which will manifest itself

by the presence of a Dirac Cone at Γ when the surface interfaces with a trivial topological

material, such as a vacuum.

Using DFT analysis we can also determine what direction were are measuring along

in our ARPES data. In Figure (4.8) we looked at Gd doped Bi2Se3 ARPES. It is

apparent that there are two Γ points in our measurement range, and due to the size of

our measuremet range that these two Γ points are in neighboring Brillouin zones.

Therefore it should be evident that this measurement is taken very near to a high
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symmetry direction, and the midpoint between these two Γ points is also a high

symmetry point, namely K or M. By comparing the DFT Bandstructure to the ARPES

data we can determine which direction this measurement is actually taken along.
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Figure 4.12. Inversion of the pz orbitals with SOC. a) Se pz without
SOC, b) Se pz with SOC, c) Bi pz without SOC, d) Bi pz with SOC.
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Figure 4.13. Comparison of DFT and ARPES Bandstructure. a) Gd
doped Bi2Se3 ARPES at 400 eV. b) DFT of Bi2Se3. c) Gd doped
Bi2Se3 ARPES at Bi 4d5/2 resonance 440 eV. d) DFT of Bi2Se3 high-
lighting Bi d orbitals.
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CHAPTER 5

CONCLUSION

5.1 RESTATEMENT OF HYPOTHESIS

This work has focused on the synthesis and characterization of Gd and Sm doped

Bi2Se3. It is then expected that with enough Gd doping the system will form an AFM

phase with a TN < 10K. The result of this will be that TRS will be broken locally at the

impurity sites, but the metallic TSS should be conserved throughout the material. Also,

due to the unique topological spin-texture present in the system, this AFM phase may

show novel long-range order. In the Sm doped sample it is expected that a FM phase will

form with a TC near 50K, breaking TRS throughout the system and thereby inducing a

gap in the TSS. A consequence of this would be the formation of a QAHE state in the

system, which will require more thorough investigation.

5.2 CONCLUSION

5.2.1 Validity of Results

The quality of samples in this work is the major source of error in the results. Due

to this much care in characterization of the samples was necessary to ensure the quality of

the work. From the X-ray Diffraction data we can be sure that the samples grown were in

fact single crystal without any spurious phases in competition with the main

Paraguanajuatite phase. Also, where applicable in the ARPES measurements, the quality

of the crystal is self-evident by the fact that clear bands are shown. If the crystal were

poly-crystalline then band dispersion along specific momentas would not be shown, and

the data would shown merely the density of states as a function of energy.
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5.2.2 AFM Character of Gd doped Bi2Se3

The lack of a gap in the ARPES data is an inconclusive result for the presence of an

AFM ordering in Gd doped samples. More magnetic measurements and DFT analysis

will be required to determine the expected behaviour of the TSS’s due to AFM ordering

in the sample.

5.2.3 FM Character of Sm doped Bi2Se3

The appearance of a gap in the ARPES data is an expected result for FM ordering

in Sm doped samples. The smearing of the bands in both the UV and Soft X-ray scans is

likely a result of some minor disorder in the samples. Due to this the exact value of the

TSS gap is difficult to determine. However it is also clear due to the more parabolic

dispersion of the bands, particularly above the Dirac point, the magnetic ordering has

induced some mass in the system. The nature of the TSS gap above the Curie

temperature however is somewhat puzzling and will require more thorough investigation.

5.2.4 Future Work

With the continuation of this work the next appropriate step will be to synthesize

materials which will be good candidates for measuring the QAHE. To this end the main

goals will be to 1) Control the carrier concentration with doping, likely with Sb replacing

Bi along with providing a Se rich environment to reduce vacancies, 2) More rigorously

probe the magnetic behavior of Sm doped samples through SQUID, and 3) Determine

more accurately describe the AFM phase of Gd doped samples with Neutron Scattering.
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