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AN ABSTRACT OF THE THESIS OF 

 

Nathan M. Hoover, for the Master of Science degree in Forestry, presented on May 4, 2018,  at 

Southern Illinois University Carbondale. 

 

TITLE: Succession of an Upland Oak/Hickory Forest in the Central Hardwood Region 

 

MAJOR PROFESSOR: Dr. Eric Holzmueller 

 

For the last 9,000-10,000 years the Central Hardwood Region (CHR) has been primarily 

composed of a mosaic of mesophytic communities in climax and communities of successional 

forest types dominated by oak (Quercus Linnaeus) and hickory (Carya Nuttall). Shade intolerant 

oak/hickory dominated forest types have been maintained by natural disturbance processes in 

synergy with anthropogenic causes, resulting in a large composition of communities which are 

neither at climatic nor edaphic climax. Reduction in fire events, thinning, forest grazing, and 

other disturbance processes over the last 80-100 years have coincided with decreased 

regeneration of shade intolerant species due to lack of adequate light availability and recruitment 

of shade tolerant species of communities dominated by American beech (Fagus grandifolia L.) 

and maple (Acer saccharum L.) into the overstory of forests typically dominated by oak/hickory. 

Forest inventory data at Trail of Tears State Forest was analyzed across two separate time events 

(1980 and 2014) to determine compositional and structural changes which have occurred. 

Density, basal area, and community patterns via ordination were compared across six Ecological 

Land Types (ELTs) to determine topography’s effect on composition. .  

Community trends were analyzed via NMS Ordination and between ELTs by a Mantel 

Test. A Multi-Response Permutation Procedures (MRRP) was also used as a nonparametric 

method for assessing differences between ELTs examined in the NMS. Density and basal area 

between years for species, ELT, and species*ELT interactions were compared. Across all ELTs, 

between 1980 and 2014, overstory density decreased from 218 trees/ac in 1980 to 180 trees/ac in 
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2014 and basal area increased from 98 ft2/ac in 1980 to 106 ft2/ac in 2014. Maple basal area 

increased from 5 ft2/ac to 12 ft2/ac while beech increased from 1 ft2/ac to 8ft2/ac, signifying 

progression of these species from the understory up into the canopy. The component of soft 

masting species within the forest has also decreased sharply in the last 34 years. MRPP analysis 

of overstory compositional gradients reported distinct species compositions between ELTs, 

however the trend was weak (MRPP: p < 0.001, A = 0.038). NMDS ordination graphs confirmed 

MRPP showing little separation among ELTs.  The final stress was 18.71146 and instability was 

< 0.01 after 212 iterations (Table 6). Our research at TTSF is a clear example of oak/hickory 

succession to beech maple on an upland site among species community types as delineated by 

topographic moisture gradient (ELTs) within the CHR. Expansion of beech and maple onto xeric 

ELTs suggests a breakdown of edaphic barriers that have previously been thought to be resistant 

to encroachment from mesophytic species. Currently oak decline induced by lack of 

management is likely the number one forest health issue resulting in loss of oak/hickory and 

other soft masting species. 
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CHAPTER 1 

LITERATURE OVERVIEW 

The Central Hardwood Forest  

The Central Hardwood Forest (CHR) physiographic region encompasses a large part of 

the interior eastern United States. Its range extends north into the lake states and upper northeast 

where it is bordered by the Northern Hardwood Conifer Forest. The Eastern half is separated by 

the Appalachian Mountains while further south into the upper portions of Alabama and 

Louisiana, the Southern Hardwood Conifer Forest begins. Regions from Texas to Missouri 

define the Western border where forest cover begins to transition into the Great Prairie. The 

CHR is further delineated along the upper Mississippi River into Canada and the Missouri River 

into Nebraska (Braun 1950, Kuchler 1964,  McNab et al 2006). 

The genesis of the CHR has been influenced by several variables including edaphic 

conditions, successional processes, fire, storm events, and wildlife. While all of these variables 

are interactive and influences species composition and distribution across all spatial scales, 

climate may be thought of as the most overarching. Regional climate trends are primarily a 

product of large-scale topography, latitudinal position, and land cover types. All of which effect 

temperature extremes, precipitation, and the number of growing days plants are susceptible to 

(Barnes et al 1997). Over the last 18,000 years, the floristic compositions and forest types of the 

eastern U.S. have shifted contingent with the waxing and waning of glacial periods as well as 

competition between species (Jackson et al 2000). For the last 9,000-10,000 years the present 

CHR region has included a large component of deciduous tree species adapted the temperate 

climate and moderate number of growing days.  

Topography, edaphic conditions, and disturbance processes have had an effect on 
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regional distributions of forest types. While Government Land Office (GLO) records and other 

historical data show oak/hickory have been the dominating species on upland and southern 

exposures, they have also occurred on mid slope and northern aspect sites for the duration of the 

Holocene epoch (Hanberry 2013). Paradoxically, microclimate conditions on these exposures 

favor dominance of mesic species (Thompson and Dessecker 1997, Dyer 2001). The prevalence 

of oak/hickory species is explained by examining fire scar data and historical reports of other 

disturbances that show a repeated pattern of periodic historical disturbances have maintained 

these pyrogenic communities (Ruffner and Groninger 2006). Higher frequency of fire occurred 

on refugee upland sites occasionally extending into more mesic sites during extreme disturbance 

events or appropriate environment conditions, supporting the expansion of shade intolerant 

species (Guyette et al 2004). Currently oak/hickory forests located on high site index sites (50-

80, height in ft, base age 50) are ubiquitous across the region (Oswalt et al 2014). As such the 

transition from oak/hickory to maple/beech dominated stands facilitated by removal of 

disturbance will influence the entirety of the CHR and a large area of the Eastern United States 

(Ebinger 1986, Abrams 1998, Zaczek et al 2002, Holzmueller et al 2011). To fully understand 

this process, it is first important to complete a more depth examination into the historic 

disturbance regimes which played a role in shaping the CHR. 

Historical Disturbances 

In combination with climate, topography, and edaphic conditions, the episodic 

destruction of forest communities has played a powerful role in shaping the CHR. Disturbances 

have been both natural and anthropogenic, occurring heterogeneously across site conditions, and 

affecting subsequent successional processes (Abrams 2010 &Abrams 2005). Among upland 

communities, fire has been the essential disturbance process in maintaining oak/hickory (Abrams 
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2003).  Analysis of historic pollen concentrations and carbon dating of woody species’ charcoal 

through the use of soil cores have been used to estimate historic species composition as well as 

the pervasiveness of fire (Hart and Buchanan 2012). Data from the GLO and current overstory 

species has also be used to determine forest composition over the last 200 years (Hanberry 

2013). Fire scar data issued to predict fire return rate (Smith and Sutherland 1999, Guyette et al 

2004) and research in this area has confirmed the variable nature in which fire changes a 

landscape. However, it has also been conclusive in recording the cumulative decrease in fire 

affecting the entire region over the last century (Ruffner and Groninger 2006).  

Other historical accounts have also been very important in cataloguing the disturbance 

regime affecting the region, such as documented logging practices and natural storm events 

(Beilmann and Brenner 1951, Steyermark 1959). The discrepant nature between estimated 

historic fire return rates and estimated lighting strikes during the Holocene suggests Native 

Americans were the primary ignition source for fire in this era (Guyette et al 2004). Post-

settlement European activity had similar ecological effect on the environment as Native 

Americans (Nelson 2010). Other disturbance processes also have had huge effects on species 

distribution such as flooding, drought, storm events, earthquakes, and intense browse/soil 

disturbance from wildlife. However, historical impacts from these processes have been much less 

well studied.   

 Presettlement: The pre-1810 CHR was a mosaic of disturbance patters largely created 

by anthropogenic forces (McEwan et al 2011). Native Americans intensely used the land for 

agriculture, firewood collection, irrigation, and hunting (Denevan 1992). Low intensity fires 

were commonly implemented to maintain grazing forage, regenerate desirable herbaceous 

species, and for hunting purposes (Van Lear 2004, Donovan and Brown 2007). Intervals between 
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fire events varied across the CHR depending on litter, soil saturation, and topography. For 

example, historical mean fire intervals reported for the Central Hardwoods range between 2 

years in the central till plain of Illinois (McClain et al 2010) to 12 years in the Allegheny Plateau 

of eastern Kentucky (McEwan et al 2007) to 30 years for a glade located in the Missouri Ozarks 

(Guyette and Cutter 1997).  For the topographically variant Ozark Hills, fire return rates are 

especially variant over small spatial ranges as shown by (Stambaugh and Guyette 2008). They 

found site topographic roughness had a positive correlation with mean fire return interval. Fire 

return rate ranged from 1-39 years. As mentioned above, Native Americans are theorized to be 

the primary ignition source in the eastern U.S during the presettlement era as lighting strikes are 

too infrequent to explain historical fire intervals (Kay 2007,Yang et al 2006). Primary 

disturbances by natural sources included storm events (such as tornadoes, microbursts, and 

derechos), and intense but ephemeral grazing by bison.  

1810-1920: Post-1810 until the 1920s marks a change in the disturbance regime of the 

CHR. In the early 19th century, several large earthquakes occurred along the Madrid Seismic 

Fault which felled vast tracts of forest (Fuller 1912). European settlers extensively cleared land 

and ran livestock within the forest. Large areas of forest where logged in what is known as the 

“19th Century Great Cutover” for use in railroads, mines, the rising coal industry, and for 

buildings (Hicks 1997). Fire was a common tool throughout this period as a general land clearing 

tool for use by farmers, as well as caused by accidental ignitions (Abrams 2010). Populations of 

American bison (Bison bison L.) dropped dramatically due to over-hunting and climatic shifts 

(Isenberg 2001). As well, chestnut blight (Cryphonectria parasitica (Murrill) Barr) affected the 

region during the 19th century (Paillet 2002), creating canopy openings that were predominately 

filled by oak and hickory (Diamond et al 2000). It is important to note, even with the increase in 
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disturbance intensity it is still estimated that eastern forests during this time returned to pre-

settlement composition, with some exceptions, most notably being the loss of American chestnut 

(Castanea dentata (Marshall) Borkh) (Whitney 1996).  

1920-Present: Where post European settlement up until 1920 had been noted for its 

increased disturbances, post 1920 has been defined by removal of disturbance processes 

(Nowacki and Abrams 2008). Fire suppression became the official policy of the Forest Service 

with the establishment of the “10 a.m. policy” (Donovan and Brown 2007). It was the 

culmination of public perception and professional opinion towards fire suppression and held 

sway for the next 35 years. Livestock was removed from the forest due to overexploitation in the 

early 20th century and subsequent “fence laws” were put into place in a successful movement to 

improve water quality (Hursh 1951). Timber harvesting decreased in the 19th century where it 

was estimated 99% of the original forest was removed (Abrams 2010). However, some public 

land has also undergone a significantly greater reduction in harvesting/thinning do to public 

concern over environmental effects, such as in the Shawnee National Forest (Kessler 1993). 

Disturbance from white tail deer (Odocoileus virginianus Zimmerman) has seen an eventual 

increase across the 20th century, however increased populations have been shown to decrease 

stand diversity through preferential browsing of oak (McGarvey et al 2013). On public lands in 

the CHR the lack of disturbances over the last 80 years has led to a decrease in shade intolerant 

to intermediate shade intolerant species and an increase in shade tolerant individuals (Zaczek et 

al 2002, Gould et al 2003, Schmidt and McWilliams 2003, Pierce et al 2006, Holzmueller et al 

2011).      
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Upland Oak/Hickory Forests 

Upland oak and hickory species are intermediate to shade intolerant, requiring ample 

light throughout their life cycle to germinate and reach maturity (Carvell and Tryon 1961). These 

species respond well to large disturbance events which increase light on the forest floor, low 

intensity fire events, and after drought periods which cause mortality of competitors (Arthur et al 

2012, Clark et al 2016). Ecophysiological attributes include thicker bark, a capacity to stump 

sprout, rot resistance, and high gas exchange rates under drier conditions (Kubiske and Abrams 

1994, Larsen and Johnson 1996). While upland oak seedlings may be top-killed by fire, they are 

adapted for regenerating following a burn (Brose and Van Lear 2004). Both oak and hickory are 

especially adapted for early and robust root growth (Abrams 1996).  Their nuts contain two large 

cotyledons that provide adequate energy stores for root development without the immediate need 

for a large photosynthetic crown. This allows hard mast seedlings regenerate after fire although 

acorns must be protected by mineral soil to effectively germinate (Iverson et al 2007). Deep 

rooting is also a characteristic of mature individuals which allows them to survive draught 

conditions (Abrams 1996).  

Oak species leaves, bark, and acorns contain tannins, which aid in fire, insect, and disease 

resistant as well as decreasing acorn edibility by seed predators due to their bitter taste and 

digestive interference (Shimada and Saitoh 2006, Vander Wall 2001). A high lignin content also 

increase flammability of litter by delaying decomposition of senesced leaves and improving air 

circulating within the litter layer (Nowacki and Abrams 2008). Maple, beech, and other species 

are shade tolerant and capable of growing under the low light conditions associated with 

continuous canopy cover.  Given adequate nutrient availability and water resources, they will 

frequently outcompete upland oak/hickory species, especially in more mesic environments 
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However, on more xeric environments, oak/hickory may still hold the competitive advantage and 

may achieve an edaphic climax (Palus 2017).  

Forest Succession 

Succession is the ecological process describing the dynamic changes in vegetation 

composition and structure in a given area over time. There is no doubt the progressive 

replacement of plant species by one another has been known by man throughout history; 

however, the first precise recording of species replacement patterns was completed by Durea De 

La Malle in 1825. De La Malle recorded changes in plant communities in the meadows and 

woodlands of France, proposing a theory of succession which he compared to crop rotation. In 

1881, Finish botanist, Ragnar Hult, was the first to introduce the idea of pioneer-adapted species 

transition into climax community. However, his focus was much less on ecology than plant 

physiology and it was not until Henry Cowles publication on succession of Indiana sand dunes 

that the theory began to be more fully developed. Cowles’ greatest contributions to theory of 

plant succession include his detailed description of succession of the Indiana dunes as well his 

recognition of regional influences, topographic changes, and biotic factors’ influence on 

successional processes.  

In 1916, Frederick Clements, who also set the standard for current methods of vegetation 

sampling, published his first article on succession which was paramount in the development of 

current theory. Clements described important methods of seed dispersal, environmental 

conditions affecting germination and growth, and biotic interactions, all of which influence 

succession. In addition, he described many other relevant theories of ecology such as the 

important role of dominant species in defining the growing environment which other species 

must persist under. Clements’ definition also had several flaws; however, they were primarily 
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not in his descriptions of phenomena, which were largely comprehensive, but rather in his 

interpretation of them. Clements’ stressed the existence of homogenous self-reproducing climax 

communities defined by climatic regions and placed less emphasis on other intervening factors 

such as fire, disease, insects, animals, natural disturbances, and human disturbances. Succession 

theory as developed by Clements was further modified by Tansley (1935), Whittaker (1953), and 

most famously by Gleason (1926). Whereas Clements stressed the homogeneity of communities 

and successional stages, Gleason stressed complexity and heterogeneity as described by his 

“Individualistic concept”. Gleason reasoned fortuitous dispersal events and fluctuating 

environmental conditions where the main determinants of succession. Conditions affecting these 

processes are dynamic and unique to every specimen. These criticisms have led to the current 

definition of succession which is better described as vegetation dynamics.  

The current state of succession theory describes several main causes of succession 

including site availability, species availability, and species performance (Pickett et al 2009). 

Succession is also divided into primary succession, which occurs when vegetation establishments 

in a previously unoccupied area, and secondary succession in which a plant establishes in an area 

already occupied, though these types are many times impossible to distinguish (van der Maarel 

2012). The potential for a species to persist on a site is determined by chance establishment 

events, the microenvironment it is subjected, and recourses available to it (Bakker et al 1996). 

Once again, climate is the dominating factor controlling the initial availability of a site to a 

specific species. Simply, only those individuals evolutionarily adapted to the climatic conditions 

of an environment will be capable of propagating there. Disturbances, such as fire and storm 

events, also play an important role in clearing land via mortality and altering recourse 

availability that further influences the dynamic succession of vegetation in an area (Walker and 
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Moral 2009).  

Succession is influenced by a species’ capacity to propagate itself, which is related to 

quantity of seed production, seed viability, and vectors for dispersal (Nathan and Muller-Landau 

2000). Additionally, species capable of regenerating (Abrams 1996) or persisting within the seed 

bank (Clark et al 2007) after disturbance have an additional advantage in populating a site. After 

initial establishment, secondary succession proceeds variably depending on an individual’s 

performance, interactions with other organisms, and the abiotic environment.  

Within the CHR light is the prominent selecting factor for successional pathways, 

followed by availability of water on xeric ridgetop sites. Successional pathways transition from 

shade intolerant species to shade tolerant species where those species are capable of maturation 

(Wang et al 2015). Upland oak/hickory communities exist in two successional site types because 

of this (Nowacki and Abrams 2008). On south, southwest, upland, and ridgetop sites, soil 

conditions limit the available water content of the stratum (Boerner 2006). Fire intervals are also 

shortened (Stambaugh and Guyette 2008), favoring xeric species. Physiologically, oak/ hickory 

species are draught resistant, deep rooted and intermediate to extremely shade intolerant 

becoming slightly more shade intolerant as they mature (Burns and Honkala 1990). These 

conditions may create a climax community of oak/ hickory due to their ability to proliferate 

under the limiting factors of the environment. Under more mesic site conditions oak/hickory 

undergo greater competition from hydrophilic species that are capable of outgrowing and 

shading out slower growing species. Disturbances are necessary to establish and maintain these 

successional communities of oak/hickory (Hanberry et  al 2014).  For disturbances to recruit an 

oak/hickory component, they must create large enough gap openings in the forest to allow shade 

intolerant individuals to undergo advanced regeneration or invade from refugee sites on xeric 



 

10 
 

low productivity sites (Loftis 2004). Fire plays an additional role in sustaining shade intolerant 

pyrogenic communalities by causing mortality in the seedling/sapling size class of mesophytic 

species within the understory. Size class, fire intensity, and fire frequency, litter composition, 

and environmental stressors are important factors in determining the effect fire will have on 

modifying species composition via mortality (Albrecht and McCarthy 2006, Iverson et al 2007). 

Topographical Effects 

Topographic heterogeneity (percent slope, slope position, and aspect) may increase 

species diversity in a landscape through the creation of differing microenvironments (Beckage 

and Clark 2003). In itself, topographic positions are products of geological processes and are 

associated with specific soil types generated from parent material and further modified by a 

variety of environmental conditions (Jenny 1941). Growth conditions under topographic position 

are additionally affected by varying amount of light, precipitation, nutrients, disturbance, and 

competition from other species (Boerner 2006). In turn, vegetation also alters abiotic factors 

affecting the site and soil conditions (Alexander and Arthur 2010). In culmination, these factors 

can create several different microenvironment conditions within a forest (Rentch and Hicks 

2005). As these conditions are very specific to location they will be discussed broadly and in 

relation to the study region in the Ozark Hills. 

  Soils are formed by an interaction between climate, plants and wildlife, percent slope, 

parent material, and time (Jenny 1941). Topographically, the downslope movement of sediment 

generally creates deeper soils on lower slope position and thinner soils on upper slope positions 

(Gabet et al 2003). There are exceptions to this such as in the Ozark Hills where loess caps 

generated from millennia of deposits from the Mississippi have increased the soil depth 

heterogeneously on some ridgetops. As well, clay fragipans exist which further accentuate xeric 

http://en.wikipedia.org/wiki/Climate
http://en.wikipedia.org/wiki/Topography
http://en.wikipedia.org/wiki/Parent_material
http://en.wikipedia.org/wiki/Geologic_time_scale
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conditions (Seifert et al 2009). Lower slope positions in the Ozark Hills usually contain more 

organic matter, more exchangeable ions, thicker horizons, higher base saturation, and pH values 

(Ware et al 1992). South, Southwest, and West soils usually have a higher surface sand content 

and more clay within the B-horizon. These aspects are commonly associated with lower 

productivity. Soils on North, Northeast, and East aspects usually have higher organic matter, 

thicker soil strata, higher base saturation, and pH values. These aspects are commonly associated 

with higher productivity sites (Fekedulegn et al 2002).  

Light exposure, precipitation, nutrients, and disturbance also play a significant role in 

defining vegetation distribution in a community (Boerner 2006).  North, Northeast, and Eastern 

aspects receive less exposure to solar radiation, which decreases evapotranspiration rates and 

cools and dampens the forest floor. Eastern aspects also receive the added benefit of early sun 

exposure during the cool morning and reprieve from the sun earlier in the day as humidity levels 

drop (Dubayah and Rich 1995).  South, Southwest, and West aspects are generally more xeric. 

They experience a higher degree of solar radiation and light intensity, which in turn increases air 

temperature and decreases moisture (Martin et al 2011). Due to decreased soil depth, upper slope 

positions have a decreased capacity to retain precipitation, accentuating xeric conditions. (Downs 

1976) concluded drought conditions could cause soil water to drop below the permanent wilting 

point (-1.5 MPa) in all rooting zones of oak/hickory stands. Upper slope positions also 

experience greater solar radiation and wind exposure, increasing evapotranspiration rates. Low 

slope positions have an increased protection from exposure due to shading from adjacent ridges. 

The result is a wetter and cooler environment with decreased rates of evapotranspiration. Cool 

air drainage also affects the temperature of low slope position potentially creating an 

environment 5-10 °F lower than S slopes (Daly et al 2008) 
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Topography has a mediating effect on disturbances processes across the landscape. Low 

slope positions, valley bottoms, and windward aspects are vulnerable to uprooting due to 

windthrow, however, ridgetops may also remain vulnerable, however resulting in stem breakage 

instead (Lin et al 2004). Low slope positions are also more vulnerable to frost damage due to 

cool air drainage (Jones and Hellman 2003). Fire occurs more frequently on upper slope 

positions, which remain drier, and along draws that create convection currents funneling fire 

upward on these sites (Stambaugh and Guyette 2008).  

Soft Mast 

Declining soft mast production has been reported across the CHR (Schmidt and 

McWilliams 2003, Rentch and Hicks 2005). Heterogeneous forests created by variable and 

periodic disturbance have resulted in a mosaic of species, forest types, and perpetuated mid-

successional forests. While this is the cornerstone of oak/hickory regeneration many co-

occurring species such as black cherry (Prunus serotine Ehrh.), sassafras (Sassafras albidum 

(Nuttall) Nees), persimmon (Diospyros virginiana L.), redbud (Cercis canadensis L.), ash, tulip 

poplar, elm, and basswood (Tilia americana L.) also rely on these disturbance patterns for 

reproduction (Thompson and Dessecker 1997). Management of mid-successional oak/hickory 

forests can increase the biodiversity of these stands increasing their soft mast potential 

(Holzmueller et al 2009). However many soft masting species are shorter lived than the 

oak/hickory overstory and “last minute” regeneration efforts of oak/hickory still may lose their 

diverse soft mast component (Perry et al 1999).   

Soft mast is imperative for wildlife species as they provide varying and additional 

sources of nutrition. Additional species also serve to hedge nutritional production across years in 

the case of hard mast failure in oak/hickory stands (Short 1975). This is especially important in 
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winter when these species may be a main source of nutrition. This loss in diversity has been 

shown to have negative effects on resident wildlife including several priority CHR songbird 

species (Greenberg et al 2011), white-tailed deer (McShea and Schwede 1993), as well as other 

small mammal populations (Kellner et al 2013).  These species are especially important during 

winter migration of wildlife when they may be the sole food source (McCarty et al 2002). 

However while soft mast is a successful technique to hedge bets during hard mast failure, these 

species also provided variable nutrient composition to a variety of wildlife species (Short 1975).  

This includes many species of bees, flies, and other species that feed on the nectar and pollen of 

these species. However, in the absence of large scale disturbance associated with oak/hickory 

regeneration, these pollinator species have been shown to decline (Proctor et al 2012).  

Forest Health 

 Healthy forests support the maximum production of desirable species and services as 

determined by a community’s goals (Rapport et al 1998). Forest health encompasses many 

variables such as species distribution, environmental conditions, and disturbance return intervals 

all of which impact succession (Hagle et al 1995). Forest health also includes the study of 

invasive plants, insects, and disease. Native pathogens are an important piece of the successional 

process as they are typically the mortality inducing agents, important in nutrient cycling, 

participate in many trophic interactions, and in themselves often result in landscape disturbance 

patterns. Simply, they are an important piece of the complex feedback process of ecological 

succession and forest dynamics (Holdenrieder et al 2004).  

 Typically, forests pathogens are thought of as primary or secondary damaging agents. 

Primary damaging agents are capable of successfully attacking vigorous trees and overcoming 

their natural defenses. Even so primary forest pests usually only cause significant damage during 
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large population outbreaks. As an example of a primary pest, forest tent caterpillar (Malacosoma 

disstria Hubner) usually causes marginal damage throughout its range; however, in outbreak it 

may cause mass defoliation across the affected area (Cooke and Lorenzetti 2006). Secondary 

damaging agents are more common and attack already weakened or damaged trees (Wainhouse 

2005). This might include any number of native insects such as native bark or borer beetles; 

fungus including leaf spots, cankers, and leaf scorch; or bacteria such as bacteria leaf scorch 

(Xylella fastidiosa (Wells et al 1987)) or slime flux (Pectobacterium carotovorum (Jones 1901, 

Waldee 1945)). 

 Increases in international trade over the 20th and 21st century have resulted in increasing 

pathways for introduction of forest health threats from  non-native invasive species. This 

includes many species, many of which are harmless, a portion of which may be defined as minor 

pests, and the minority that are significant invasive pests (Kiritani and Yamamura 2003). To 

name a few of concern to oak/hickory in the CHR they include the following plants: amur 

honeysuckle (Lonicera maackii (Ruprecht) Maxmovich), Japanese honeysuckle (Lonicera 

japonica Thunberg), Japanese privet (Ligustrum japonicum Thunb.), Chinese lespedeza 

(Lespedeza cuneate (Dumont de Courset) Don), oriental bittersweet (Celastrus orbiculatus 

Thunb.), princess tree (Paulownia tomentosa (Thunb.) Steudal), and tree of heaven (Alianthus 

altissima (Miller) Swingle); insects: Asian longhorned beetle (Anoplophora glabripennis 

Motschulsky 1853), emerald ash borer (EAB) (Agrilus planipennis Fairmaire 1888), spotted 

lantern fly (Lycorma delicatula White 1845), European gypsy moth (Lymantria dispar L.), and 

gold spotted oak borer (Agrilus coaxalis Waterhouse 1889); and disease: Dutch elm disease 

(Ophiostoma ulmi (Buisman) Melin and Nannfeldt 1934), chestnut blight, thousand cankers 

disease (Geosmithia morbida  Kolark et al 2010), dogwood anthracnose (Discula destructiva 
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(Fr.) Munk ex H. Kern 1955), laurel wilt (Raffaelea lauricola Fraedrich et al 2008), and sudden 

oak death (Phytophthora ramorum Werres et al 2001). These invasive species often cause 

unprecedented impacts to successional processes (Pimentel et al 2005).  

Invasive plants are already widely distributed throughout the CHR due to accidental 

introduction or their desired utility as wildlife species, in erosion control, and as ornamentals 

(Reichard et al 2001). These species increase forest cover shading further driving mesophication 

processes and favoring multi aged stands. There aggressive growth strategy allows them to 

rapidly occupy gap openings, potentially resulting in arrested succession where they achieve a 

homogenous cover (Hejda et al 2009). Along with these plants, several invasive insect and 

disease have also impacted the CHR such as the chestnut blight (discussed above) and the Dutch 

elm disease (Potter et al 2011).  

 Species such as EAB have not yet impacted the entire CHR. It is expected complete 

mortality of ash across the region will result in increased gap openings and increased rate of 

succession to shade tolerant species (Kashian and Witter 2011). Other species such as the gold 

spotted oak borer (Seybold and Coleman 2015) or European gypsy moth (Morin and Liebhold 

2016) stand to significantly decrease oak/hickory populations and have the potential to produce 

non-analogous forest types across the CHR (Flower and Gonzalez-Meler 2015).   

The Ozark Hills 

Research on the composition and structural changes in the Ozark Hills of Illinois, both in 

comparison to historical records and in recent composition/structural changes has shown a 

general trend towards the replacement of oak/hickory dominated communities to stands 

dominated by beech/maple (Ozier et al 2006). While this trend is ubiquitous across the CHR, this 

trend is potentially more advanced in the Ozark Hills (Wang et al 2016).  An excellent body of 
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research is available documenting the change in forest composition in and surrounding the Ozark 

hills ( van de Gevel 2006, Hanberry et al 2014)  

Ozier et al (2006) analyzed 238 permanent plots established in 1980 at Trail of Tears 

State Forest (TTSF). The inventory was repeated in 2000, with additional sampling of the 

regenerative age classes. Data collected for species, DBH, and height were used to calculate 

overall and species density and basal area. Tree age classes were split into seedlings/saplings, 

pole size, immature, and mature. Age classes were then compared across slope position and 

aspect. Overall, basal area increased 93 ft2/ac to 107 ft2/ac, mostly due to growth in the mature 

age class. Overall density decreased from 137 trees/ac to 118 trees/ac. Oak basal area and density 

decreased in every age class except the mature age class, and especially within the 

seedling/sapling and pole age classes. Hickory density and basal also changed from 27 trees/ac to 

23 tree/ac. Basal area changed from 10 ft2/ac to 11 ft2/ac following the same trend as reported for 

oak species. Sugar maple and beech showed both increases in basal area and density, most 

significantly in the seedling/sapling age class. Sugar maple basal area and density increased from 

<1 tree/ac to 1 tree/ac and 226 ft2/ac to 448 ft2/ac respectively.  Beech basal area and density 

increased from <1 trees/ac to 1 trees/ac and 87 ft2/ac to 202 ft2/ac respectively.  

Both white oak and red oak showed the same general trend of increasing basal area and 

decreasing density in mature age classes irrespective of aspect. Black oak changed similarly with 

exception including a stable density on bottom aspects and a decrease in basal area on north and 

south aspects. Hickory density decreased on bottomlands, north, and west aspects. However, 

there was no change in hickory basal area across any aspect. 

White oak and red oak densities decreased across slope positions except on the top-mid 

position. White oak basal area increased across all slope positions while red oak showed no 
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change. Black oak density also decreased across slope positions however basal area also 

decreased on the mid, mid-bottom, and bottom slope positions. Hickory showed no change in 

density or basal area across slope positions.  

Sugar maple basal area and density increased on every aspect and slope position. Beech 

density increased on every aspect except northwest and basal area increased on east, north, 

northeast, south, and southwest aspects. Beech density increased on every slope position except 

on top-mid and basal area increased on mid, mid-bottom, and bottom slope positions. Inventory 

data from the 2000 understory showed pawpaw as the most prevalent species in the seedlings 

class while beech and sugar maple were the most common in the sapling class. White oak 

seedlings were only recorded on southwest and west aspect and top and bottom slope positions. 

Black oak was recorded primarily on Southwest aspects and mid slope positions. Red oak was 

not inventoried in the 2000 understory data. Hickory within the seedling/sapling age classes also 

occupied more xeric sites consistent with the general trends reported with oak species. 

Site conditions where further characterized by (Fralish and McArdle 2009) who analyzed 

forest dynamics in the Ozark Hills over three centuries. Separate Ecological Land Type positions 

(ELTs) designated by agglomerative clustering and percent similarity of species importance 

values  were defined and then further used to interpret past and present forest composition as 

well as to predict future forest composition dependent on topographic variation. Six ELTs were 

identified by slope position, slope percentage, and aspect as shown in the following Table 1. 
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Table 1. 

Ecological Land Type Positions as defined by (Fralish and McArdle 2009) 

Ecological Land Type Position Characteristics 

Ridgetop Above contour line 

Top to high slope position/ 

<10% slope 

Southwest Mid-High  203°-270° aspect  

high to mid slope position 

South Mid-High  135°-203° aspect 

270°-315° aspect 

high to mid slope position 

North Mid-High  315°-135° aspect 

high to mid slope position 

Low  mid to low slope position 

regardless of aspect 

Low-Bottom  <5% slope 

 

GLO records were used to generate approximated presettlement species Importance 

Values for the Ozark Hills. (Fralish and McArdle 2009) predicted oak, hickory, and other 

successional species had a high Importance Value (IV=73.9-80.9) across all ELTs. Beech was 

shown to range from a low importance value (IV=10.8) on Southwest ELTs to a high Importance 

Value (IV=35) on Low Slope and Terrace ETLs. Sugar maple was only recorded as a notable 

stand component on Terrace ELTs (IV=15). Currently oak and hickory have both maintained 

relatively High Importance values (IV=51.5-70.7 and IV=7.7-93.7 respectively). Late 

successional species were found to have higher importance values (IV=36.3) on the North and 

Low Slope ELTs. Terrace ELTs were shown to be dominated by primarily early successional 

bottomland species including American sycamore (Platanus occidentalis L.), sweetgum 

(Liquidambar styraciflua L.), boxelder (Acer negundo L.), and other minor species with a 
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combined Importance Values of (IV=56.1). Future forest composition was predicted from 

understory data on the assumption that the understory will eventually proliferate into the 

overstory. Across all ELTs, late successional mesophytic species Importance Values were 

greater than early successional species. The Southwest ELT was an exception where Importance 

Values (IV=46.7-76.5) of shade intolerant species are predicted to remain high. Oak and hickory 

Importance Values (IV=29.1-37.9) were predicted to remain highest on Southwest, South, and 

Ridgetop ELTs. 
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CHAPTER 2 

STUDY OBJECTIVES 

The CHR is experiencing major shifts in forest composition. Historically, forests of the CHR 

have regenerated in a landscape punctuated by periodic disturbances, natural and anthropogenic. 

Even aged stands have developed from single regeneration events including fire and large-scale 

timber harvesting resulting in the high percentage of mid-successional shade intolerant 

oak/hickory forests in the contemporary CHR. Current forests experience reduced intensity and 

frequency of disturbance events that results in the successional devolution of the even aged 

structure of many upland forests through increases in competitor species, prevention of 

regenerating events, and subsequent alterations to the forest environment.  

Researches have well documented oak/hickory forest senescence, failed regeneration, and 

development of shade tolerant beech/maple understories across the CHR. However, less research 

has studied finer scale topographic specific changes in oak/hickory forest composition and 

structure. Biases towards the study of dominant species have also overshadowed related changes 

in soft masting tree species over the last century. It is the goal of our study to document these 

successional processes in the CHR. Results are discussed in terms of contributing factors to 

successional pathways via forest health trends. Specific objectives of our study were to: 

I) Objective 1- Determine compositional and structural shifts from dominant oak/ hickory 

species to beech/maple forest-wide and by ELT in the CHR. 

II) Objective II-Determine corresponding compositional and structural changes in soft masting 

species in the CHR 

.
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CHAPTER 3 

STUDY INTRODUCTION 

In the past 75 years, the Ozark Hills physiographic region of the Shawnee National Forest 

has undergone rapid shifts in dominant species composition at rates only comparable to several 

other areas in the CHR (Wang et al 2016). The Ozark Hills are located east of the Mississippi 

River along much of Central and Southern Illinois. Primary factors in the development of the 

Ozarks Hills were uplift of cherty or siliceous limestone bedrock during the Devonian period, 

erosion, as well as alluvial deposits of loess from the Mississippi (Williams and Indorante 2005). 

These formative processes as well as historic disturbances affecting the region have created 

oak/hickory forests with variable components of bottomland pioneering species, successional 

shade intolerant species, and shade tolerant species (McNab et al 2007). 

 In 2006, Ozier et al. analyzed 1980 and 2000 inventory data for compositional and 

structural changes at Trail of Tears State Forest (TTSF), located in the southern section of the 

Ozark Hills.  They reported a decrease in the density of oak and hickory species’ seedlings and 

saplings, a substantial increase in shade tolerant seedlings and saplings, and a decrease in oak 

and hickory in mature age classes. They also reported variable rates of succession depending on 

topographic position with north, east, and bottomland positions in the most advanced state of 

succession.  South, west, and upper slopes position were in a moderate state of succession.  

Ridgetops were reported progressing slowest to an increased maple and beech dominance. These 

results are conclusive with other studies in the eastern United States (Dyer 2001, McEwan and 

Muller 2006, Galbraith and Martin 2005, McDonald et al 2002). Due to the advanced state of 

maple/beech succession in the Ozark Hills, it stands as a paramount example of oak/hickory 

forests transitioning to beech/maple in the CHR. In addition, the increased prevalence of 
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nonnative invasive forest associated plants, insects, and disease stand to further alter CHR forest 

dynamics (Hejda et al 2009). Analysis and discussion of 1980 and 2014 sampling data at TTSF 

were used to exemplify this pattern. 

 



 

23 
 

CHAPTER 4 

METHODS 

Study Area 

Trail of Tears State Forest (TTSF) (37.509998,-89.349947) encompasses 5,162 ac and is 

located in Union County, IL (Figure 1).  It is part of the Ozark Plateau physiographic region, 

which covers an expansive area of the central and western CHR. The Union County area is 

characterized by hot and dry summers and moderate winters. Temperate ranges from an average 

of 46°F to 69°F with an average annual temperature over the last ten years of 52°F. Average 

annual precipitation is approximately 49 inches. (NOAA 2014). TTSF is typified by narrow 

ridges 148-197’ high, which lead into ephemeral streams. The dendritic pattern of ridgetops was 

created in the Pennsylvanian Period with the uplifting of the Devonian-age cherty bedrock 

(Helmig et al 2011).  Soils include Stookey and Hosmer soils types on ridgetops, Goss and 

Baster soils typically found on mid to lower slopes, and Elsah and Wakeland soils found along 

stream terraces (National Cooperative Soil Survey 2001). Generally, soils are more productive in 

lower slope position with exception of sporadic ridgetops where loess caps provide an added 

benefit in available water content gained from millennia of drift from the Mississippi alluvial 

valley. Fragipans also occur sporadically across ridgetops increasing heterogeneity (National 

Cooperative Soil Survey 2001).  

 TTSF has shared a similar disturbance regime to most other public lands in the CHR. Pre-

1810 the forest was used by several Native American tribes, most notably being the 

Mississippian Cahokia. After 1830, the forest underwent several major harvesting operations for 

timber, the barrel industry, and by the Illinois Central Railroad. Other events of note include the 

temporary encampment of 10,000 Cherokee, Creek, and Chickasaw in the winter of 1838 during 
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their march on the “Trail of Tears” to a reservation in Oklahoma. In 1929, 1,306 acres of the now 

TTSF was purchased by the Illinois Department of Conservation with the remainder purchased 

in subsequent years. Up until 1989 when the last cutting operation occurred, the forest was 

managed in 26 compartments with two compartments per year harvested to 60 % residual 

stocking. The forest has not been managed since except for several prescribed fires in recent 

years (van de Gevel et al 2003). 

Ecological Land Types 

Unique community types were delineated by species composition and topographic 

variation (azimuth, slope, and slope position) by using agglomerative clustering and percent 

similarity analysis of species importance values (Fralish and McArdle 2009). Based on these 

values, six Ecological Land Types (ELTs) were developed: Ridgetops, Southwest Mid-high 

slopes, South mid-high slopes, North mid-high slopes, Lowlands, and Bottomlands (Table1). Our 

study focused on the direction of succession of these communities.    

Forest Inventory 

Inventory data was used across two years (1980 and 2014) at TTSF. Data for present 

forest composition was collected in 2014. Variable radius plots (504) were stratified across ELTs 

over a 925 acre area on the north end of TTSF. This area has been identified by the Illinois DNR 

as a demonstration area for future management activities within TTSF.  Forest data for 1980 was 

collected from fixed area permanent plots established on a 924 x 924 ft. grid across the entire 

forest. Only 54 of the plots which overlapped with the current inventory area were used in this 

study. In all inventory years, species and DBH were recorded. Stems above 3.3’ and greater than 

3” in DBH were included in overstory plots. From these initial tallies, density and basal area 

were calculated. ELT was also determined for each plot utilizing azimuth, slope, and slope 
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position data collected in the field (Table 1.). In addition, four nested regeneration plots were 

inventoried in 2014. Regeneration plots were 51/2 ft. radius circular plots established 26 ft. in the 

cardinal directions, from the overstory plot. Seedlings were recorded as any stem less than 3.3 ft. 

while saplings were any stem above 3.3 ft. and between 1”-3” in diameter.   

Statistical Analysis 

Several possibilities were considered for statistical analysis of forest communities at 

TTSF including non-metric multidimensional scaling (NMS), a repeated measures ANOVA 

design, and a repeated measures Mixed Model and Trend Analysis design. However NMS was 

chosen due to its efficiency at analyzing spatial and temporal trends in community structure. 

NMS also tolerates missing values (McCune et al 2002). Plots with missing values are removed 

in other statistical techniques including profile analysis (multivariate repeated measures) and 

repeated measures ANOVA which reduces sampling size and statistical power. PC-ORD version 

6 was used to visualize community trends via NMS Ordination test and a Mantel Test was used 

to determine significant correlations among the land types for each year (McCune and Mefford 

1999).  A Multi-Response Permutation Procedures (MRRP) was also used as a nonparametric 

method for assessing differences between ELTs examined in the NMS. These results were 

further confirmed by a Mantel test using a Bray-Curtis dissimilarity index. Inventory data was 

used to compare density and basal area between years for species, ELT, and species*ELT 

interactions.  
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     Figure 1.  Study Area at Trail of Tears State Forest in Union County, IL 
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CHAPTER 5 

 

RESULTS 

 

Species Composition 

Across all ELTs, between 1980 and 2014, ovestory density decreased from 218 trees/ac 

in 1980 to 180 trees/ac in 2014 and basal has area increased from 98 ft2/ac in 1980 to 106 ft2/ac 

in 2014 (Table 2). The largest decline in species density was in oak species which decreased 

from 78 trees/ac to 37 trees/ac followed by hickory species which decreased from 26 trees/ac to 

18 trees/ac. Conversely, maple species increased from 31 trees/ac to 46 trees/ac (p < 0.01) and 

beech from 8 trees/ac to 37 trees/ac. Maple basal area increased from 5 ft2/ac to 12 ft2/ac  while 

beech increased from 1 ft2/ac to 8ft2/ac, signifying progression of these species from the 

understory up into the canopy. Both oak and hickory species showed unsubstantial shifts in basal 

area with the exception of black oak which has declined from 22 ft2/ac to 12 ft2/ac. 

Oak has undergone the greatest decrease in density on sites where it was once most 

prevalent including Ridgetops, Southwest, South, and North ELTs. Most notably white oak 

decreased from 79 trees/ac to 38 trees/ac on the South ELT. Meanwhile Lowland and 

Bottomland ELTs have also declined with only a marginal oak component reported in 2014. 

Hickory trends population dynamics were variable on upland sites increasing on Ridgetops from 

34 trees/ac to 43 trees/ac and decreasing on Southwest ELTs from 29 trees/ac to 20 trees/ac, 

though the results were unsubstantial. However, hickory declined on lowland and bottomland 

ELTs. Beech increased on all ELTs most notably on South ELTs where it increased from 4 

trees/ac to 54 trees/acand Southwest ELTS where it increased from 4 trees/ac to 45 trees/ac. 

Maple also increased steadily between 10-19 trees/ac on all ELTs.  
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The component of soft masting species within the forest has also decreased sharply in the 

last 34 years (Table 2). The greatest declines in density were seen in flowering dogwood from 10 

trees/ac to 2 trees/ac and sassafras which decreased from 19 trees/ac to 8 trees/ac. Cucumber tree 

(Magnolia acuminata L.) and mulberry (Morus spp. L.) have been extirpated during the study 

period. Little change was seen in black cherry, black gum (Nyssa sylvatica Marsh.), or hackberry 

(Celtis occidentalis L.). All three were reported at <4 trees/acre in all survey ELTs and years. 

The most common sapling species in the regeneration layer at TTSF was pawpaw 

(Asimina triloba (L.) Dunai) at 2,126 stems/ac, followed by beech at 1,596 stems/ac, maple at 

461 stems/ac, ironwood at 313 stems/ac, and ash at 107 stems/ac (Table 4). Meanwhile oak 

saplings comprised 78 stems/ac and hickory 90 stems/ac. The most common seedlings species 

was pawpaw at 2,648 stems/ac, followed by ironwood at 517 stems/ac, beech at 387 stems/ac, 

oak at 369 stems/ac, and maple at 339 stems/ac (Table 5). Beech dominated across all ELTs, 

with the highest sapling density reported on South ELTs at 1,910 stems/ac with only slight 

marginal dips on Ridgetops (Table 4) and Bottomland ELTs. Maple reported sapling and 

seedling densities between 400-650 stems/ac on Ridgetop, South, North, and Southwest ELTs 

(Tables 10-13) with proportionally lower numbers on Lowland and Bottomland ELT (Tables 14-

15). Oak regeneration was limited on Southwest, South, and North ELTS and marginal on 

Lowland and Bottomland ELTs (Table 3-4). Comparatively, while hickory regeneration was 

most prominent on Ridgetop ELTs at a sapling density of 149 stems/ac and a seedling density of 

458 stems/ac (Table 4), it still hold a relatively well distribution on Lowland and Bottomland 

ELTs (Tables 3-4). 
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ELT Overstory Composition 

NMS ordination (Figure 2) and MRPP (Table 6) analysis were used to determine whether 

overstory species composition was significantly different between ELTs. MRPP analysis of 

overstory compositional gradients reported distinct species compositions between ELTs, 

however the trend was weak (MRPP: p < 0.001, A = 0.038). NMDS ordination graphs confirmed 

MRPP showing little separation among ELTs.  The final stress was 18.71146 and instability was 

< 0.01 after 212 iterations (Table 6).  Upland ELTs (ridgetop, southwest slopes, south slopes, 

and north slopes) have remained marginally distinct with the exception of southwest slopes vs 

south slopes and ridgetops vs southwest slopes which have homogenized.  

A Mantel Test using a Bray-Curtis dissimilarity index was used to confirm these results. 

While comparison of ELTs in 2014 showed significantly different communes, individual indices 

between 1980 and 2014 were subtracted to determine the percent change in ELTs between years 

(Table 7). Values are presented as percentages with negative values reporting a decrease in 

similarities between years while positive values report an increase in similarity between years. 

Comparisons of percent dissimilarity calculated using the Bray-Curtis method between 1980 and 

2014 showed increasing similarity between species compositions on SW mid-high slopes, S mid-

high slopes, N mid-high slopes, and lowlands (Table 6). Ridgetop percent similarity to other land 

types decreased, with the exception of North mid-high slopes, which increased 3% in similarity. 

Bottomlands also decreased in similarity to other land types, with the exception of lowlands 

which became 6% more similar. 
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Table 2. 

TTSF forest inventory data for all species’ density in 1980 and 2014. Standard error is calculated for all values.  
 

Species

Ash spp. 7 (6.2) 1 (0.4) 11 6.2 4 (0.4) 7 (4.3) 2 (0.3) 8 (1) 4 (0.4) 14 (1) 3 (0.4) 10 (4.4) 3 (0.2) 9 (2.4) 3 (0.4)

Basswood 0 (N/A) 0 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (<0.01) 0 (N/A) <1 (0) 0 (N/A) <1 (0.1) 0 (N/A) <1 (<0.01)

Beech 0 (N/A) 20 (3.9) 4 (4) 54 (2.8) 4 (5.2) 45 (2.2) 12 (2) 25 (1.9) 19 (9) 37 (2.4) 10 (9) 36 (2.6) 8 (4.3) 37 (2.6)

Black Cherry 0 (N/A) <1 (<0.01) 0 (N/A) <1 (0.2) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0) 1 (2.8) <1 (0) 1 (1.8) <1 (0.1) <1 (0.5) <1 (0.1)

Black Gum 2 (2.7) 3 (0.3) 2 (2.8) 4 (1.2) 3 (4.4) 3 (0.3) 3 (6) 4 (0.5) 3 (5.6) 4 (0.7) 6 (3.9) <1 (0.9) 3 (1.5) 3 (0.8)

Cucumber Tree 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (1.5) 0 (N/A) 0 (N/A) 0 (N/A) 1 (1.4) 0 (N/A) <1 (0.4) 0 (N/A)

Dogwood 6 (4.2) 3 (0) 7 (5.1) 1 (0.5) 7 (2.7) 8 (0.62) 20 (4) <1 (0.9) 14 (2) 0 (N/A) 9 (6.1) 0 (0.6) 10 (3) 2 (0.65)

Elm spp. 2 (3.9) 1 (0.8) 1 (2.2) 3 (0.6) 0 (N/A) <1 (0.7) <1 (1.5) 1 (0.6) 6 (6) 7 (0.8) 5 (5.6) 6 (0.7) 3 (1.8) 3 (0.7)

Hackberry 0 (N/A) 0 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (<0.01) 0 (N/A) 1 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0.3)

Hickory spp. 34 (1) 43 (1.6) 16 (9.2) 22 (2.1) 29 (1) 20 (1.2) 28 (2) 16 (2.1) 37 (1) 9 (1.5) 22 (7.3) 10 (0.9) 26 (5.5) 18 (1.7)

Ironwood 13 (9.7) 5 (0.3) 3 (3.5) 5 (0.9) 2 (2.7) 2 (0.6) 4 (7.3) 7 (0.7) 12 (1) 0 (0.5) 4 (4.2) <1 (2.1) 6 (2.6) 4 (1)

Maple 27 (5) 45 (2.8) 23 (4) 39 (2.4) 17 (3) 27 (2.7) 36 (8) 48 (3.2) 42 (3) 58 (2.3) 40 (9) 59 (2.1) 31 (7.2) 46 (2.7)

Mulberry 0 (N/A) 0 (N/A) 1 (1.6) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0.8) 0 (N/A) <1 (0.4) 0 N/A

Black Oak 25 (6) 12 (0.3) 22 (9.8) 9 (0.5) 26 (3) 8 (0.3) 8 (4.5) 4 (0.4) 11 (0) 2 (0.5) 7 (6.5) <1 (0.3) 16 (4.5) 6 (0.4)

Red Oak 14 (7) 4 (0.3) 9 (4.5) 6 (0.5) 9 (7.1) 8 (0.4) 17 (9.6) 6 (0.5) 8 (7.2) 2 (0.3) 10 (8.6) 1 (0.4) 11 (3.3) 5 (0.4)

White Oak 57 (6) 38 (1.3) 79 (9) 38 (1.4) 74 (3) 36 (2) 28 (2) 22 (1.5) 26 (5) 13 (1.3) 27 (3.1) 4 (0.7) 48 (6) 25 (1.4)

Other Oak Spp. 3 (6.5) 6 (0.4) 3 (2.3) 2 (0.6) 13 (1) 2 (0.67) 0 (N/A) <1 (0.4) 1 (2.8) <1 (0.1) 0 (N/A) 5 (0.2) 3 (2.8) 2 (0.45)

Pecan 0 (N/A) <1 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0.1) 0 (N/A) 0 (N/A) 0 (N/A) 0 (0.1) 0 (N/A) <1 (0.1)

Persimmon 1 (2.6) 0 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 2 (4.5) 1 (0.3) 0 (N/A) <1 (0.1) <1 (0.8) 0 (0.8) <1 (0.7) <1 (0.3)

Redbud 0 (N/A) 0 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) 0 (0.3) 0 (N/A) 0 (N/A) 1 (2.8) 0 (N/A) 0 (N/A) 3 (<0.01) <1 (0.2) <1 (0.2)

Sassafras 19 (1) 18 (2.4) 17 (4.1) 7 (1.3) 13 (1) 7 (1.1) 26 (1) 6 (0.9) 26 (7) 7 (1.3) 18 (3.1) 7 (1.2) 19 (5.5) 8 (1.3)

Sweetgum <1 (1.3) 3 (1.9) 3 (4.4) 3 (0.9) 0 (N/A) 2 (1.2) 1 (3) 7 (1.2) 13 (7) 12 (0.5) 33 (0.3) 29 (0.9) 11 (8.4) 9 (1.1)

Sycamore 0 (N/A) <1 (0.1) 0 (N/A) <1 (0.2) 0 (N/A) 0 (0.1) 0 (N/A) <1 (0.1) 0 (N/A) <1 (0) <1 (1.1) 2 (0.1) <1 (0.3) <1 (0.1)

Tulip Poplar <1 (1.3) 5 (0.9) 1 (3.1) 4 (1.4) 3 (6.5) 2 (0.3) 2 (3.1) 7 (0.9) 13 (1) 9 (1.3) 34 (7.1) 19 (0.6) 11 (4) 7 (1)

Walnut 1 (2.6) 0 (0.1) <1 (1) <1 (0.2) 0 (N/A) 0 (0.1) 0 (N/A) <1 (0.1) 1 (2.8) 0 (0.2) 1 (1.7) 3 (0.1) <1 (0.6) <1 (0.2)

Total 212 (9) 209 (5.7) 202 (1) 201 (4.7) 205 (8) 172 (4) 197 (2) 162 (4.2) 251 (9) 167 (3.6) 240 (5) 190 (3.8) 218 (8) 180 (4.3)

Ridgetop South Southwest North Lowland Bottomland Across all ELTs

1980 2014 2014 1980 20141980 2014 1980 20141980 19802014 2014 1980
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     Table 3. 

       TTSF forest inventory data for all species basal year in 1980 and 2014. Standard error is calculated for all values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species

Ash spp. 2 (0.48) 2 (0.17) 2 (0.13) 2 (0.13) <1 (0.27) <1 (0.23) 2 (0.34) 3 (0.24) 3 (0.47) 3 (0.27) 3 (0.44) 3 (0.24) 2 (0.38) 2 (0.23)

Basswood 0 (N/A) 0 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0.04) 0 (N/A) <1 (0.05) 0 (N/A) <1 (0.06) 0 (N/A) <1 (0.03)

Beech 0 (<0.01) 3 (0.24) 2 (0.08) 9 (0.55) <1 (0.76) 7 (0.51) 2 (0.48) 8 (0.47) 3 (0.49) 11 (0.52) 1 (0.43) 11 (0.6) 1 (0.48) 8 (0.51)

Black Cherry 0 (<0.01) <1 (0.07) 0 (N/A) <1 (<0.01) 0 (N/A) 0 (N/A) 0 (<0.01) <1 (0.07) <1 (0.06) <1 (0.05) <1 (0.15) <1 (0.1) <1 (0.08) <1 (0.06)

Black Gum <1 (0.27) <1 (0.09) <1 (0.07) <1 (0.14) <1 (0.07) <1 (0.13) <1 (0.09) 2 (0.23) <1 (0.19) 1 (0.19) 1 (0.37) 1 (0.16) <1 (0.24) 1 (0.17)

Cucumber Tree 0 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0.34) 0 (N/A) 0 (N/A) 0 (N/A) 1 (0.4) 0 (N/A) <1 (0.25) 0 (N/A)

Dogwood <1 (0.08) <1 (0.07) <1 (0.03) <1 (0.14) <1 (0.09) <1 (0.04) 3 (0.38) <1 (0.04) 1 (0.22) 0 (N/A) <1 (0.15) 0 (N/A) 1 (0.21) <1 (0.06)

Elm spp. <1 (0.09) <1 (0.07) <1 (<0.01) <1 (0.05) 0 (N/A) <1 (0.09) <1 (0.05) <1 (0.11) 2 (0.52) 3 (0.32) 1 (0.54) 3 (0.28) <1 (0.32) 1 (0.19)

Hackberry 0 (N/A) 0 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (<0.01) 0 (N/A) <1 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0.04)

Hickory spp. 17 (2.01) 21 (0.82) 4 (1.24) 9 (0.56) 11 (0.48) 9 (0.48) 17 (1.44) 10 (0.62) 10 (1.18) 7 (0.41) 10 (1.22) 7 (0.4) 11 (1.42) 10 (0.57)

Ironwood 1 (0.17) <1 (0.09) <1 (0.03) <1 (0.07) <1 (0.08) <1 (0.11) <1 (0.1) <1 (0.15) 2 (0.27) 0 (N/A) <1 (0.09) <1 (0.06) <1 (0.14) <1 (0.1)

Maple 5 (0.62) 12 (0.61) 3 (0.24) 10 (0.45) 2 (0.36) 7 (0.49) 5 (0.74) 12 (0.56) 11 (1.06) 14 (0.57) 7 (1.02) 16 (0.65) 5 (0.8) 12 (0.56)

Mulberry 0 (<0.01) 0 (N/A) <1 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0.02) 0 (N/A) <1 (0.03) 0 (N/A)

Black Oak 35 (3.76) 23 (0.89) 27 (3.06) 18 (0.82) 33 (2.4) 15 (0.84) 9 (1.19) 11 (0.61) 24 (4.02) 5 (0.5) 11 (2.59) 2 (0.22) 22 (3.06) 12 (0.74)

Red Oak 8 (1.38) 8 (0.47) 7 (1.15) 10 (0.6) 6 (1.02) 10 (0.83) 9 (0.89) 11 (0.63) 13 (2.07) 5 (0.42) 8 (1.27) 4 (0.41) 8 (1.23) 8 (0.61)

White Oak 30 (3.65) 33 (1.02) 42 (2.54) 43 (1.24) 35 (2.37) 46 (1.11) 38 (3.45) 29 (0.91) 18 (2.74) 20 (0.82) 14 (1.52) 8 (0.51) 29 (2.99) 31 (1.11)

Other Oak Spp. 2 (0.84) 4 (0.46) 2 (1.76) 2 (0.39) 6 (0.57) 4 (0.28) 0 (N/A) 1 (0.23) 1 (0.33) 2 (0.27) 0 (N/A) 4 (0.3) 2 (0.74) 3 (0.31)

Pecan 0 (N/A) <1 (0.07) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0.08) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0.05)

Persimmon <1 (0.07) 0 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0.06) <1 (0.09) 0 (N/A) <1 (0.11) <1 (0.02) 0 (N/A) <1 (0.04) <1 (0.07)

Redbud 0 (<0.01) 0 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (<0.01) 0 (N/A) 0 (N/A) <1 (<0.01) <1 (<0.01) <1 (0.03)

Sassafras 2 (0.2) 3 (0.37) 2 (0.32) 1 (0.14) 1 (0.36) 1 (0.16) 4 (0.79) 2 (0.18) 4 (0.35) 2 (0.29) 3 (0.59) 2 (0.23) 3 (0.49) 2 (0.23)

Sweetgum <1 (0.05) <1 (0.21) <1 (<0.01) 2 (0.17) 0 (N/A) 1 (0.28) <1 (0.13) 4 (0.39) 5 (1.07) 8 (0.66) 9 (1.99) 23 (0.94) 3 (1.18) 6 (0.59)

Sycamore 0 (<0.01) <1 (0.07) 0 ((N/A)) <1 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0.04) 0 (N/A) <1 (0.05) <1 (0.15) 3 (0.34) <1 (0.08) <1 (0.13)

Tulip Poplar <1 (0.05) 3 (0.3) 2 (0.24) 2 (0.3) <1 (1.05) 2 (0.3) 3 (0.88) 9 (0.72) 4 (0.8) 17 (0.77) 19 (4.08) 27 (1.29) 6 (2.37) 10 (0.78)

Walnut <1 (0.13) 0 (<0.01) <1 (<0.01) <1 (<0.01) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0.06) 2 (0.68) 0 (N/A) <1 (0.35) 2 (0.21) <1 (0.28) <1 (0.09)

Total 107 (3.71) 116 (<0.01) 96 (<0.01) 109 (<0.01) 97 (3.02) 105 (1.32) 96 (<0.01) 103 (1.18) 103 (3.43) 100 (<0.01) 92 (11.54) 115 (1.27) 98 (26.92) 106 (1.25)

Across all ELTs

2014 2014 2014 2014 2014 2014 1980 20141980

Ridgetop South Southwest North Lowland Bottomland

1980 1980 1980 1980 1980
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         Table 4. 

         TTSF all ELTs forest inventory data for all species’ sapling density in 2014. Standard error is calculated for all values. 
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Species

Ash Spp. 130 (38.7) 121 (13.5) 73 (10.5) 92 (12.9) 145 (10) 81 (10.5) 107 (16.2)

Basswood 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 5 (<0.1) 0 (N/A) <1 (0.9)

Beech 1126 (56.5) 1910 (58.1) 1650 (50.5) 1569 (63.8) 1717 (60.9) 1227 (75.9) 1596 (61.5)

Black Cherry 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)

Blackgum 0 (N/A) 31 (9.8) 18 (6) 7 (1.8) 14 (2.1) 0 (N/A) 14 (5.2)

Dogwood Spp. 50 (8.3) 54 (7.3) 98 (6.2) 40 (7.5) 51 (10.8) 7 (5.6) 51 (7.9)

Elm Sp. 30 (11.3) 90 (10.2) 110 (9.2) 51 (8.7) 5 (8.6) 52 (7.1) 57 (9.3)

Hackberry 0 (N/A) 0 (N/A) 6 (2.5) 0 (N/A) 0 (N/A) 0 (N/A) <1 (0.9)

Hickory Spp. 149 (22.8) 144 (13.8) 171 (10.5) 55 (8.8) 23 (10.8) 37 (9.4) 90 (12.4)

Ironwood 458 (26.9) 422 (35.2) 403 (15.5) 260 (19.4) 192 (22.8) 214 (34.8) 313 (26.5)

Maple Spp. 598 (32.6) 593 (36.7) 642 (27.6) 495 (29.8) 253 (28.9) 185 (30.6) 461 (31.2)

Mulberry Spp. 0 (N/A) 0 (N/A) 0 (N/A) 7 (2.6) 0 (N/A) 0 (N/A) 2 (1.3)

Black Oak 130 (24.6) 31 (15.6) 6 (3.5) 29 (6.5) 9 (5.1) 22 (0) 31 (10.9)

Red Oak 0 (N/A) 18 (17.6) 37 (<0.1) 51 (6.5) 14 (8) 52 (28.6) 31 (11.5)

White Oak 30 (3.1) 13 (2) 24 (4.2) 7 (1.8) 0 (N/A) 0 (N/A) 11 (3.4)

Other Oak Spp. 0 (N/A) 0 (N/A) 6 (4.9) 0 (N/A) 0 (N/A) 37 (2.6) 5 (2.6)

Pawpaw 279 (122.6) 822 (184.2) 978 (172.1) 2501 (134.9) 3934 (159.5) 3416 (202.4) 2126 (164.2)

Pecan 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)

Persimmon 0 (N/A) 4 (2) 0 (N/A) 0 (N/A) 28 (2.1) 0 (N/A) 6 (4.7)

Redbud 0 (N/A) 4 (2.8) 18 (2.5) 4 (2.6) 5 (<0.1) 7 (0) 6 (2.4)

Sassafras 438 (29.9) 328 (23.5) 238 (12.9) 121 (34) 80 (24) 104 (18.9) 199 (25.7)

Sweetgum 0 (N/A) 13 (4.9) 55 (7.4) 18 (4.1) 65 (4.6) 30 (10.9) 32 (11.7)

Sycamore 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 5 (<0.1) 0 (N/A) <1 (0.9)

Tulip Poplar 0 (N/A) 9 (4.5) 6 (<0.1) 59 (12.4) 51 (9) 15 (10.1) 29 (8.7)

Walnut 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)

Total 3418 (195.8) 4611 (182.3) 4547 (169.8) 5368 (141) 6595 (158.6) 5486 (216.3) 5169 (173.1)

Across all ELTsBottomlandRidgetop South Southwest North Lowland
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           Table 5. 

           TTSF all ELTs forest inventory data for all species’ seedling density in 2014. Standard error is calculated for all values. 

 

 

 

Species

Ash Spp. 628 (17.2) 333 (26.6) 226 (25.3) 194 (26.6) 201 (35.2) 222 (16.4) 271 (17.2)

Basswood 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 9 (3.7) 0 (N/A) 2 (<0.1)

Beech 259 (20.4) 386 (20.4) 409 (20.1) 334 (20.4) 440 (31) 481 (57.4) 387 (63.7)

Black Cherry 0 (N/A) 27 (6) 18 (2.9) 22 (6) 14 (2.6) 15 (7.7) 18 (4.4)

Blackgum 0 (N/A) 9 (5.5) 12 (4.6) 0 (N/A) 9 (<0.1) 15 (4.3) 7 (<0.1)

Dogwood Spp. 60 (3.2) 36 (4.9) 79 (9) 26 (4.9) 19 (5.4) 37 (9.6) 39 (8.5)

Elm Spp. 70 (14) 81 (4.9) 37 (14.4) 55 (4.9) 5 (8.4) 140 (10.2) 60 (11.1)

Hackberry 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (<0.1)

Hickory Spp. 458 (35.2) 351 (29.1) 403 (24.1) 176 (29.1) 173 (14.2) 170 (30.3) 269 (21)

Ironwood 986 (49.3) 670 (42.3) 623 (40.3) 418 (42.3) 267 (38.7) 384 (27.9) 517 (45.7)

Maple Spp. 558 (34.6) 360 (41.3) 532 (38.4) 389 (41.3) 140 (34.3) 126 (28.3) 339 (35)

Mulberry Spp. 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)

Black Oak 389 (19.3) 135 (16) 79 (32.7) 51 (16) 80 (10.1) 15 (9.4) 104 (5)

Red Oak 40 (12) 130 (16.2) 110 (19) 139 (16.2) 70 (15.1) 148 (29.8) 112 (27.4)

White Oak 219 (15.8) 126 (23.3) 92 (13.2) 154 (23.3) 164 (20.8) 74 (27.1) 137 (13.7)

Other Oak Spp. 0 (N/A) 0 (N/A) 18 (6.5) 15 (2.5) 14 (5.5) 59 (2.1) 16 (8.5)

Pawpaw 349 (198) 1528 (160.8) 1760 (168.6) 2780 (160.8) 4270 (210.5) 4443 (193.1) 2648 (165.4)

Pecan 10 (<0.1) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) <1 (<0.1)

Persimmon 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)

Redbud 0 (N/A) 4 (<0.1) 12 (2.1) 11 (<0.1) 5 (6.1) 0 (N/A) 6 (<0.1)

Sassafras 508 (15.1) 337 (20.4) 324 (20.5) 231 (20.4) 103 (39.5) 89 (32) 249 (24.6)

Sweetgum 0 (N/A) 9 (17.8) 24 (2.9) 18 (7.5) 42 (9.6) 15 (14.1) 20 (<0.1)

Sycamore 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 7 (<0.1) <1 (2.6)

Tulip Poplar 60 (10.1) 0 (N/A) 0 (N/A) 18 (<0.1) 19 (10) 15 (20.7) 15 (2.6)

Walnut 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)

Total 4594 (1353.7) 4521 (938) 4761 (1238.4) 5031 (853.8) 6043 (992.7) 6454 (1366.5) 5218 (435.6)

Across all ELTsBottomlandRidgetop South Southwest North Lowland
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Table 6. 

NMDS and MRPP Results of TTSF 2014 overstory by species composition and density. 

        NMDS Results     MRPP Results  

Sample Stress Axis 1 Axis 2 Axis 3 Sum T A P Value 

2014 Overstory  22.78 0.25  0.214     0.28     0.71    -25.77   0.04 <0.01 
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        Table 7. 

Percent Similarity Change between ELTs at TTSF between 1980 and 2014 using the Bray-Curtis               

Method. Positive values indicate increasing similarity while negative values indicate decreasing. 

 

 Ridgetop Southwest South North Lowland Bottomland 

Ridgetop 0.00 -8.90 -3.09 3.21 -7.74 -6.74 

Southwest -8.90 0.00 0.74 7.97 6.01 -1.35 

South -3.09 0.74 0.00 12.79 9.72 -0.68 

North 3.21 7.97 12.79 0.00 0.17 -6.69 

Lowland -7.74 6.01 9.72 0.17 0.00 5.64 

Bottomland -6.74 -1.35 -0.68 -6.69 5.64 0.00 
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Figure 2. Nonmetric Dimensional Scaling (NMDS) ordination of TTSF overstory species 

composition and density in 2014. 

 

 

 

 

 

 

2014 Overstory 
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CHAPTER 6 

DISCUSSION 

Overstory Succession 

Our research at TTSF yields an interesting perspective on the issue of widespread 

declining oak/hickory forests in the CHR and management of successional forests reliant on 

disturbance under changing social, economic, and ecological pressures. Our results show a 

reduction in oak/hickory overstory composition, very low composition of these species in the 

regeneration layer, and conversion into a multi-aged forest structure populated by primarily 

beech and maple undergoing recruitment into higher size classes (Table 3). These changes have 

occurred across ELTs (Table.2-3), suggesting an overall homogenization of species composition 

within the forest. Weak associations between ELTs in our MRPP analysis confirm these results 

(Table 6) as well as high percent similarities reported in the Bray-Curtis dissimilarity index 

analysis of ELTs (Table 7).  

   TTSF is undergoing succession to a shade tolerant beech/maple climax forests as the 

present cohort of oak/hickory forest experiences annual mortality. In 1980 oak and hickory 

species comprised 48% of forest trees while only 31% in 2014 (Table 2). Meanwhile basal area 

oak and hickory has increased (Table 3). A more in depth analysis shows decreases in overall 

TPA and increases in BA are substantial on Ridgetop and Bottomland ELTs. This trend is typical 

of successional forests reliant on periodic disturbance for recruitment of understory stems and 

mortality associated with over maturation of the overstory. Increasingly across the CHR natural 

and stochastic senescence processes (e.g. windthrow, disease, pests, natural senescence) decrease 

oak/hickory stocking while beech and maple have increased exponentially within the shaded 

understory (McEwan et al 2007, Fei and Steiner 2007, Holzmueller et al 2012). The state of 
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succession of oak/hickory forests to beech/maple in the region is confirmed by several other 

studies in the Ozark highlands including Shang et al (2007) and Olson et al (2014). Our results 

are conclusive with the body of literature on successional processes occurring in maturing 

oak/hickory uplands lacking disturbance in the CHR (Ebinger 1986, Zazcek et al 2002, Galbraith 

and Martin 2005, DeSantis et al 2010, Fei et al 2011).  

Our understory data indicates that while regeneration of oak and hickory seedlings is 

present, with the exception of black oak, recruitment of these species is absent into the sapling 

layer. This suggests that the microenvironment conditions for germination and initial growth of 

shade intolerant species may be adequate, but light conditions are not adequate to bring these 

species into the overstory. In the case of gap openings where initial light penetration may be 

high, competitor species are prevalent and shading, especially in single tree gaps, occurs rapidly 

creating minimal light conditions again. These ephemeral light swings are not conducive for oak 

recruitment which typical requires prolonged 20% - 30% light exposure to encourage growth and 

limit overtopping by competitor saplings (Dey et al 2008). 

In the case of nominal light conditions consistent with uneven stands oak and hickory 

will continue to stagnant in the understory while shade intolerant maple, beech, and pawpaw will 

proliferate. Along with this, the regeneration potential of oak/hickory will decrease with the loss 

of viable mother trees, seed banking, and stump sprouts.  

 

ELT Overstory Composition 

Delimiting of these successional patterns along ELT boundaries showed a substantial 

increase across all ELTs in beech/maple density and basal area (Table 2-3). Notably, beech 
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expansion into the canopy has occurred from xeric ridgetops to mesic bottomlands. Analysis of 

ELTs between 1980 and 2014 using the Bray-Curtis dissimilarity index showed dissolving 

ecological boundaries between all land types and increased in similarity (Table 7). Our results 

differ to previous research which have hypothesized edaphic restraints to mesic expansion from 

bottomlands and show successful establishment of these species on all ELTs (Klos et al 2009, 

Burton et al 2010,Hanberry et al 2014). Further analysis utilizing MRPP and NMDS confirm 

these results. Our results suggest under a reduced disturbance scenario shade tolerant species 

composition increased across all ELTS and a homogenization of communities has occurred 

within the forest. 

In regard to oak, three main trends stand out. First, the red oak group has seen the greatest 

reduction in density at TTSF, dropping from 27 trees/ac to 11 trees/ac. This trend has been 

reported in other areas of CHR and is tied to its shorter lifespan as well as mechanisms of 

mortality associated with native pathogens (Fei and Steiner 2007, Wargo et al 1983). Secondly, 

low and bottomland ELT oak populations have become low to marginal components while beech 

and maple maintain the highest density on these sites. Oak regeneration is likely not feasible 

today on lowland bottomland ELTs. This is due to increasing competition from shade intolerant 

species, including pawpaw. Pawpaw has become increasingly dominate in the understory of all 

ELTs, ranging from ¼ of stems on xeric ELTs and ¾  of stems on mesic ELTs. Prior research 

has shown increasing densities of pawpaw to be significant competitors to oak/hickory due to 

their defensive compounds against herbivory and clonal growth strategy (Slater and Anderson 

2014).  Lastly, upland ELTs have seen the greatest drop in oak density. Several articles have 

discussed whether the limited water availability on these sites or the original higher population of 

oak has caused the present high density of oak (McDonald et al 2002, Iverson et al 2007, 
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McEwan et al 2011). Current research points to the latter suggesting these trends are simply 

representative of the original population as defined by disturbance patterns (Nowacki and 

Abrams 2008) and environmental conditions are not solely restrictive (Palus 2017). This further 

supports the concept that edaphic barriers will not limit progression of mesophytic species onto 

upland sites (Hanberry et al 2012).  

Changes in Soft Mast 

While incurring mortality and dwindling regeneration potential are two primary concerns 

at TTSF, smaller populations of soft masting species at TTSF have shown even less resiliency to 

lack of disturbance. Species including dogwood, sassafras, mulberry, and cucumber tree have 

declined or become extirpated in the forest. Forest management focused on proliferation of 

longer lived oak and hickory species has the potential to provide inadequate disturbance to these 

shorter lived shade intolerant species. This is especially true in areas of the CHR, such as TTSF 

where even short lived oak species such as red and black oak already has already experienced 

collapsing regeneration potential.  This loss in diversity has been shown to have negative effects 

on resident wildlife including several priority songbird species in other areas (Greenberg et al 

2011).  These species are especially important during winter migration when they may be the 

sole food source (McCarty et al, 2002). However while soft mast is a great way of hedging bets 

during hard mast failure, these species also provided variable nutrient composition to a variety of 

wildlife species (Short 1975). This is an important factor for successful multi goal forest 

management (Perry et al 1999) and a tool towards engaging concerned stakeholder groups 

(Sheppard et al 2005). 

These species provide numerous other key ecosystem functions within the CHR other 

than wildlife value. Dogwood for example, has been documented to serve as calcium pump, 
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absorbing mineralized calcium for its own growth, which later is available to other species as 

dogwood sheds its leaves in fall (Holzmueller et al 2010). Sassafras stems, which have decreased 

by half in density at TTSF, also provide valuable wildlife forage via their fruit and buds. 

Sassafras is an early successional species that often falls out several years after canopy closure. 

However, sassafras snags serve an importance purpose as wildlife trees and very rarely they 

reach considerable size in the overstory (Grant and Clebach 1975). At TTSF most trees have 

been shaded out and clonal pockets of sassafras persist in the understory. The clonal nature of 

sassafras allows it to persist in shaded environments however; canopy removal is required for a 

stand to maintain a sassafras component (Guyette and Kabrick 2002).  

Mulberry is more tolerant of shade, but a decline in population has been reported across 

the CHR during the last 50 years (Core 1974). No direct disease or insect has been determined. It 

is likely there are numerous reason including leaf spot, wood boring insects, habitat loss, and 

fragmentation (Perry et al 1999). Mulberry was not inventoried in our study and is likely nearly 

or completely extirpated from the stand. Cucumber tree has suffered the same fate as mulberry at 

TTSF. As the Ozark population represents an isolated group of cucumber tree it is possible the 

species is especially vulnerable to the shifting environmental conditions at TTSF. This may 

include shifting nutrient availability, light conditions, or additional competition from mesophytic 

species and invasive plants (Binkley and Giardina, 1998).   

Forest Health and Succession 

Not only does homogenizing forest composition decrease biodiversity in itself and the 

multitude of benefits that biodiversity provides, it also increases the forests susceptibility to 

insects and disease (Boyd et al 2013). While it is important to research successional pathways 

through historical ecological mechanisms, introduction and increased distribution of several 
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invasive non-native diseases, plants, and insects, such as emerald ash borer (EAB), have huge 

impacts on contemporary forests. These forest health issues have required new management 

strategies and have a strong potential to drive succession towards non- analogous states (Flower 

and Gonzalez-Meler 2015).  

Some forest health issues, including many species of invasive plants are already prolific 

across the CHR (Huebner 2006). This includes amur honeysuckle, autumn olive, several species 

of privet, Japanese honeysuckle, princess tree, and tree of heaven (Webster et al 2006). These 

species readily invade smaller forested areas, highly recreated areas, and disturbed areas. Larger 

forested tracts often have heavy populations of invasive plants along edge habitat which pose as 

staging areas for interior invasion (Hutchinson and Vankat 1997). Invasive species outcompete 

native species for light, water, and nutrients. Not only does this decrease the regeneration 

potential of desirable oak and hickory species but also has the potential to disrupt trophic 

interactions and inhibit the regeneration of even native shade tolerant species, potentially 

resulting in arrested succession (Hejda et al 2009).  

Other pest populations such as EAB are still trending upward across the CHR with many 

unaffected areas across the North American distribution of ash. However many forests have 

suffered the impacts of EAB, resulting in 100% mortality of all ash species and white fringe tree 

in infected areas (Herms and McCullough 2014). In 2015, EAB was detected in Southern Illinois 

adjacent to TTSF. Ash is a minor component at TTSF composing 3% of stems in 1980 and 2% in 

2014. The largest populations are found in low and bottomland ELTs however, a relatively high 

component can also be found on upland ELTs. South facing ELTs reported a 9% ash component 

in 1980 and a 2% component in 2014. Small gap openings, created during EAB inflicted 
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mortality, are predicted to accelerate successional shifts to beech/maple over the next 5-10 years 

(Klooster et al 2014).  

Other forest health threats such as Asian longhorned beetle (ALB), laurel wilt, and 

European gypsy moth, are not currently affecting TTSF. However they have the potential to 

result in wide spread mortality at TTSF depending on their rate of spread (Venette et al 2014).  

Asian longhorned beetle infests species within 12 genera of hardwood species in the U.S 

including maple, ash, willow (Salix L.), elm, birch, sycamore, hackberry, mimosa (Albizia 

julibrissin Durazz., 1772 non sensu Baker, 1876), yellow poplar, and mountain-ash (Sorbus 

americana Marsh.). While mulberry, oak, locust, and basswood are all questionable hosts (Hu et 

al 2009). Currently there are seven infestation sites in the U.S. the closest to TTSF being in 

Clermont County, Ohio. Eradication of these infestation sites has been successful in some cases 

however is intensive including massive removal and chipping of infested tress (Haack et al 

2010). It is suggested while ALB has typically infested urban areas it has a large potential to 

outbreak into forested settings (Dodds and Orwig 2011). 

  Laurel wilt is a recent disease discovered in 2002 in Port Wentworth, GA. All species in 

the laurel genus, including sassafras, are impacted by the R. lauricola fungus (Fraedrich et al 

2008). The wilt is spread mainly by redbay ambrosia beetle (Xyleborus glabratus Eichhoff 

1877); however other ambrosia beetles may play a role as potential vectors (Ploetz et al 2017). 

Northern movement into the Carolinas and Arkansas over the last several years has resulted in 

infestation of isolated stands of sassafras (Oswalt et al 2014). This suggests potential movement 

into the interior CHR and further decrease of the sassafras population at TTSF in the next 20-30 

years (Hanula et al 2008).  
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European gypsy moth, which was introduced in Massachusetts in the latter half of the 

19th century, has slowly spread across the Eastern U.S. since its introduction (McManus, and 

Csóka 2007).. The slowed movement in thanks to well-coordinated state and federal monitoring 

and eradication programs. However even with current management recourses and efforts, gypsy 

moth will likely eventually infest all of the CHR, including TTSF (Tobin and Blackburn 2007). 

Maturing oak stands are particularly vulnerable to defoliations during outbreak status of gypsy 

moth in quarantined zones. Silvicultural practices promoting health forests and the reduction of 

native pathogenic stressors is recommended to increase the resilience of oak to these impacts 

(Waring and O’Hara 2005). 

All of the above nonnative insects and disease aggressively populate new hosts shifting 

forest dynamics and, along with native insect and disease, impact overall forest succession at 

TTSF. Due to the aging oak overstory the largest native forest health issue of concern at TTSF is 

oak decline (Kabrick et al, 2008). This complex is an encompassing term for a host of typically 

secondary insects and disease which have resulted in wide scale mortality of oak species, 

typically in the red oak group, across the CHR ( Bendixsen et al 2015)). Pathogen associates of 

oak decline are commonly root rot (e.g. Armillaria root rot), other fungal agents such as 

hypoxylon canker (Hypoxylon spp. Bull.)), or insects (e.g.. two-lined chestnut borer (Agrilus 

bilineatus Weber) (Haavik et al 2015). However other species may be present while the above 

may be absent. Secondary pathogens, such as those involved in oak decline, invariably increase 

in overmature stands, driving successional pathways (Millar and Stephenson 2015). Our research 

shows shifting species composition at TTSF representative of these complex interactions. 

However, it is important to understand the impact of invasive species and there potential to 

increase the speed, change, or produce non-analogous successional pathways. 
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Management Implications 

TTSF is a representative model for managing mid successional forests that have 

developed an advanced midstory and understory due to removal of disturbance from the 

ecosystem. Our results provide sufficient evidence for several recommendations for land 

management under this scenario. Shifts in overstory and understory composition show a sharply 

reduced capacity for present oak/hickory overstory regeneration and recruitment.  

Before determining management strategies at TTSF (or similar forests), it is first 

important to weight ecological restrictions, fiscal restrictions, and management objectives. A 

fundamental questions addressed in the literature is the ecological restrictions behind recruiting 

oak/hickory. Our research suggests that present management in the CHR should consider 

accepting a lower composition of oak/hickory than historically observed on Lowland and 

Bottomland ELTs while focus oak/hickory recruitment on upland ELTs. In addition, our data 

shows a changing forest structure that requires a midstory removal for adequate recruitment on 

oak hickory. Prescribed fire is an additional available practice that has a studied history 

improving forage tonnage as well as decreasing density of pyrophobic species such as beech and 

maple (Ryan et al 2013). However, fire and midstory removal alone will not sufficiently 

regenerate oak species (Holzmueller et al 2012), and will likely need to be combined with 

overstory removal to increase the likelihood of successful oak regeneration (Brose et al 2013). In 

order to further increase the success of these treatments to regenerate oak they should focus on 

upland sites rather than lowlands, even where oak had predominated before. Our current 

assessment of oak/hickory regeneration potential shows these species have very little presence in 

the understory and are subjected to a high degree of competition from other shade tolerant 

species, especially on lowland and bottomland ELTs. The above practices focused on 
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regeneration of the overstory should promote co-occurring mid successional soft masting species 

as well. However, it is important to note the short lived nature and the marginal component 

maintained by many of these species may inhibit their regeneration even during management.  

Periodic surveillance for mortality and forest health issues is also important. Areas with 

established recreated areas, such as TTSF, have an increased risk of introduction of exotic pests 

and diseases. Any insect of disease-induced mortality will necessitate focused management in 

that area. This is especially important as species such as black oak, have very low levels of 

regeneration in the understory.   
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CHAPTER 7 

CONCLUSION 

Senescing oak/hickory forests co-occurring with failed regeneration is a major 

environmental issue across the CHR. The Ozarks have the highest importance of oak and the 

second highest importance of hickory in the eastern U.S (Abrams 2010). This region has 

experienced unprecedented decreases in these species along with the Highland Rim of 

Tennessee, the central Alleghany Plateau, and the Driftless area of the Upper Midwest (Fei et al 

2011).These species have a keystone effect supporting a host of biodiversity and trophic levels. 

Regional changes in oak/hickory forests are a paramount research area for informing 

management and land prescriptions. 

 Our research at TTSF is a clear example of oak/hickory succession to beech maple on an 

upland site among species community types as delineated by topographic moisture gradient 

(ELTs) within the CHR. Expansion of beech and maple onto xeric ELTs suggests a breakdown 

of edaphic barriers throughout the region which have been hypothesized to resist encroachment 

from mesophytic species. Especially noteworthy is the expansion of beech from mesic refuge 

sites.  

In addition our study shows a corresponding decline in soft masting species in advance of 

reported declines in oak and hickory. As soft masting species exist at lower stocking levels and 

have short lifespans they are especially vulnerable to lack of management. Some of the species 

including mulberry, cucumber tree, and dogwood may be completed extirpated from the forest. 

Under a no management scenario stochastic small gap disturbances will likely continue to 

favor maple/beech expansion across the region. It is likely these processes will be accelerated 

due to insect and disease attacks on the mature oak/hickory overstory as well as gap mortality of 
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other species by invasive species, such as EAB. Currently oak decline induced by lack of 

management is likely the number one forest health issue. Introduction of other forest health 

concerns such as laurel wilt and Asian longhorned beetle may exacerbate these issues in the 

future. 

These results typify shifting forest types across large spatial areas indiscriminant of 

topographical variation. This is directly related to lack of disturbance in the forest as also shown 

by previous research. These changes, and their potential to accelerate under imminent forest 

health threats, are important for direct management and communicating management ideas. It is 

more important than ever for land managers to communicate all of these ideas (overstory 

composition, soft mast, and forest health concerns) in order to have an effective impact.  
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