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AN ABSTRACT OF THE THESIS OF 

 

ZACHARY M. CRAVENS, for the Master of Science degree in Zoology, presented on April 6, 

2018 at Southern Illinois University Carbondale.  

 

TITLE: ILLUMINATING DIETARY AND PHYSIOLOGICAL CHANGE IN AN 

INSECTIVOROUS BAT COMMUNITY EXPOSED TO ARTIFICIAL LIGHT AT NIGHT 

 

MAJOR PROFESSOR: Dr. Justin G. Boyles 

 

Global light pollution is increasing worldwide, nearly doubling over the past 25 years, 

and the encroachment of artificial light into remaining dark areas threatens to disturb natural 

rhythms of wildlife species, such as bats. Artificial light impacts the behaviour of insectivorous 

bats in numerous ways, including changing foraging behaviour and altering prey selection. I 

conducted two manipulative field experiments to investigate effects of light pollution on prey 

selection in an insectivorous bat community. In the first experiment, I collected fecal samples 

from 6 species of insectivorous bats in naturally dark and artificially lit conditions and identified 

prey items using molecular methods. Proportional differences of identified prey were not 

consistent and appear to be species specific. Red bats, little brown bats, and gray bats exhibited 

expected increases in moths at lit sites. Beetle-specialist big brown bats had a sizeable increase in 

beetle consumption around lights, while tri-colored bats and evening bats showed little change in 

moth consumption between experimental conditions. Dietary overlap was high between 

experimental conditions within each species, and dietary breadth only changed significantly 
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between experimental conditions in one species, the little brown bat. Our results, building on 

others, demonstrate that bat-insect interactions may be more nuanced than the common assertion 

that moth consumption increases around lights. Thus, no single policy is likely to be universally 

effective in minimizing effects of light pollution on foraging bats because of differences in bat 

and insect communities, and their interactions. Our work highlights the need for greater 

mechanistic understanding of bat-light interactions to predict which species will be most affected 

by light pollution, and to more effectively craft management strategies to minimize unnatural 

shifts in prey selection caused by artificial lights. In the second experiment, I again focused on 

changes in foraging due to light pollution by investigating expected knock-on physiological 

effects, which have not been studied. I measured plasma ß-hydroxybutyrate concentrations from 

six species of insectivorous bats in naturally dark and artificially lit conditions to investigate 

effects of light pollution on energy metabolism. We also recorded bat calls acoustically to 

measure differences in activity levels between experimental conditions. Blood metabolite level 

and acoustic activity data suggest species-specific changes in foraging around lights. In red bats 

(Lasiurus borealis), ß-hydroxybutyrate levels at lit sites were highest early in the night followed 

by a decrease. Acoustic data suggest pronounced peaks in activity at lit sites early in the night. In 

red bats on dark nights and in the other species in this community, which seem to avoid lights, ß-

hydroxybutyrate remained constant, or possibly increased slightly throughout the night. Taken 

together, our results suggest red bats actively forage around lights and may gain some energetic 

benefit, while other species in the community avoid lit areas and thus gain no such benefit. Our 

results demonstrate that artificial light may have a bifurcating effect on bat communities, 

whereby a few species benefit through concentrated prey resources, yet most do not. Further, this 

may concentrate light-intolerant species into limited dark refugia, thereby increasing competition 
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for depauperate insect communities, as insects are drawn to artificially lit spaces. It appears then 

that artificial lights change the environment in such a way as to benefit some species in 

insectivorous bat communities. 
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CHAPTER 1 
 

ILLUMINATING PREY SELECTION IN AN INSECTIVOROUS BAT COMMUNITY 

EXPOSED TO ARTIFICIAL LIGHT AT NIGHT 

 

1.1 DISCLAIMER 

 This chapter of my thesis was published in the Journal of Applied Ecology, under the 

following citation: Cravens, Z.M., V.A. Brown, T.J. Divoll, and J.G. Boyles. 2018. Illuminating 

prey selection in an insectivorous bat community exposed to artificial light at night. Journal of 

Applied Ecology 55:705-713. doi:10.1111/1365-2664.13036. 

 

1.2 INTRODUCTION 

The biological world is ordered around the natural rhythm of alternating night and day. 

As a reliable signal over geologic time, most organisms have evolved in relation to temporal 

cycles of light and dark periods (Gaston et al. 2013). However, fast-paced urbanization 

beginning in the 20th century has led to a dramatic increase in artificial light at night (ALAN) 

(Hölker et al. 2010a). Global light pollution is increasing, and has nearly doubled over the past 

25 years (Hölker et al. 2010a, Koen et al. In press). Currently, almost 90% of Europe and half the 

United States experiences light-polluted skies (Falchi et al. 2016), but those levels have remained 

relatively constant over the last several decades (Koen et al. In press). Conversely, developing 

regions with above-average species richness have experienced recent increases in light pollution 

extent compared to areas with low to moderate richness (Koen et al. In press). This trend will 

likely continue as the majority of urban growth is expected to occur near currently protected land 

(i.e. dark refugia) (Güneralp and Seto 2013). Encroachment of artificial light into remaining dark 
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areas will increasingly threaten biodiversity as 30% of vertebrates and >60% of invertebrates are 

nocturnal and therefore likely to be strongly impacted by ALAN (Hölker et al. 2010b). 

Most bats have evolved unique behavioral and morphological adaptations (e.g. 

echolocation) to navigate in the absence of light (Neuweiler 1990, ter Hofstede and Ratcliffe 

2016). Avoidance of lit environments is likely a significant ultimate cause of nocturnality in bats 

because it reduces susceptibility to predation by visual hunters, such as diurnal birds of prey 

(Rydell and Speakman 1995, Speakman 2001, Voigt and Lewanzik 2011). This selective 

pressure is strong enough that bats generally emerge from roosts just after sunset (Duverge et al. 

2000), despite a pulse of insect activity just prior to sunset (Rydell et al. 1996). Therefore, bats 

seem to prioritize darker conditions over a higher energetic payoff under natural conditions, and 

the global pervasiveness of ALAN may affect this trade-off.      

Artificial light at night impacts bat species in numerous ways, often leading to roost 

abandonment, spatial avoidance, and delayed emergence (reviewed in Stone et al. 2015, Rowse 

et al. 2016). Impacts on bat foraging behavior are less clear and depend on taxon-specific traits 

and environmental conditions. For example, clutter-adapted bats generally avoid lit conditions, 

whether in a consistently lit urban or semi-urban environment or in an experimentally lit 

environment (Stone et al. 2009, Lacoeuilhe et al. 2014, Schoeman 2016). This is likely because 

light-intolerant species may associate a predatory risk with lit environments (Jones and Rydell 

1994). Conversely, numerous species have been observed feeding at artificial lights (Rydell 

1992, Svensson and Rydell 1998, Acharya and Fenton 1999, Clare et al. 2009). Artificial light 

interferes with insect navigational cues, causing attraction to and unusually high densities around 

lights (van Langevelde et al. 2011). Higher densities alone may make aerial insects more 

vulnerable to predation from bats, but in some prey species, changes in behavior around lights 
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may also play an important role. For example, artificial light appears to interfere with highly-

evolved mechanisms eared moths use to detect bat echolocation and avoid predation (Svensson 

and Rydell 1998, Acharya and Fenton 1999, Wakefield et al. 2015). Observations of bats 

foraging at lights are usually in urban or semi-urban areas (except, see Minnaar et al. 2015), 

where streetlights are a consistent part of the nocturnal environment. From these studies, a 

pattern has emerged that consumption of moths, specifically eared moths, increases at lights 

(Belwood and Fullard 1984, Hickey and Fenton 1990, Svensson and Rydell 1998, Minnaar et al. 

2015). However, the universality of this pattern is unclear, both within and across bat 

communities.   

We evaluated effects of light pollution on prey selection of bats at a community level. 

The bat community in the study area is represented by species with different wing morphologies, 

foraging habits, and diets, so if the general pattern of increased moth consumption around lights 

is found in all members of this community, the pattern is likely to be robust. To test this pattern, 

we manipulated naturally dark areas with a short-term artificial light treatment. We collected 

fecal samples from bats captured in both lit and unlit environments and used next generation 

sequencing of insect DNA extracted from fecal samples to measure differences in frequency of 

insect prey between unlit and lit conditions. We predicted bat consumption of moths (including 

eared moths) to increase and consumption of beetles to decrease in artificial light treatments 

relative to naturally dark areas. 

 

1.3 MATERIALS AND METHODS 

1.3.1 Study Site 
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Our study was conducted in a 15-county region of western-southwestern Missouri, USA 

during summer (May to August) 2016. The eastern half of the study area is within the Ozark 

Highlands physiographic region, which is a heavily forested landscape dominated by oak-

hickory forests. To the west, the land transitions to the Osage Plains, a region historically 

dominated by prairie but now heavily converted to agriculture with limited forest and woodlands 

(Raeker et al. 2010).  

 

1.3.2 Experimental Design 

We erected temporary lights along naturally dark forest roads or streams on public lands 

and had two experimental conditions: unlit (control) and lit (light pollution treatment). Distance 

between lit and unlit sites was at least 2 km to minimize overlap in foraging ranges by individual 

bats, but sites were chosen with similar habitat and landscape features. At lit sites, we used 50W 

LED (Shenzhen Lepower Opto Electronics Co., China) producing 4200 lumens at 5500 K. 

Lights were elevated 3m from the ground on a metal pole and powered by a 12V lead acid 

battery. We used LED lighting as it is becoming more common in outdoor lighting applications 

as older styles, such as mercury vapor, are being phased out. We netted each survey location for 

three nights and ran lights for all three nights from 21:00 to 5:00. On the first two nights, we 

captured bats at a nearby unlit site as a control and on the third night captured bats at lit sites 

(Minnaar et al. 2015). Delaying capture at lit sites until the third night allowed bats to become 

accustomed to the lit condition, as well as provide time for them to choose to forage in the newly 

lit environment. We make no assumption that all bats captured at lit sites will necessarily be 

foraging around the lights; moreover, we expect some species may be less prone to foraging at 
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lights than others and therefore less likely to show dietary shifts. Nets were placed in flyways 

within 25m of the light in an appropriate netting location. 

We netted along forested roads or streams at 20 locations throughout the summer. We 

held bats in cloth bags for 30-45 minutes, stored all deposited fecal pellets in 1.5 mL micro 

centrifuge tubes with silica beads, and assigned a unique sample ID to allow random 

subsampling, when necessary, for molecular analysis. Samples were kept frozen after the field 

season at -20 °C for 4 months before processing for DNA. 

 

1.3.3 Molecular Analysis 

We extracted DNA from 1–3 pellets of guano from each individual bat using PowerSoil® 

DNA Isolation Kit (Mo Bio Laboratories Carlsbad, CA) following manufacturer’s specifications, 

with the minor modification of increasing the first 4°C step from 30 minutes to overnight. We 

discarded samples with insufficient fecal matter (<1 full pellet). Red bat (Lasiurus borealis) 

samples were too numerous so we subsampled by randomly selecting lit and unlit pairs from the 

same site. We closely followed the methods of Divoll et al. (2018). We amplified the CO1 gene 

with ZBJ-ArtF1c and ZBJ-ArtR2c primers (Zeale et al. 2011) modified with adapters on the 5’ 

end for the Illumina MiSeq platform (Illumina Corporation, San Diego, CA, USA). PCR 

conditions were 25 µl reactions of 1X PCR gold buffer, 2.5 mM MgCl2, 0.8 mM dNTP blend, 

0.125 µl AmpliTaq Gold (Applied Biosystems, Foster City, CA, USA), 5 µg BSA (Sigma-

Aldrich, St. Louis, MI, USA), 5 µM each primer (Integrated DNA Technologies, Coralville, IA, 

USA), and 3 µl of fecal DNA. PCR cycling parameters were: denaturation at 95°C for 10 min, 

followed by 40 cycles of 95°C for 30 sec, 52°C for 30 sec, and 72°C for 30 sec, with a final 

elongation step of 10 min at 72°C. Samples were processed in two batches of 95 samples each 
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plus a reaction blank of water in place of DNA template, which was carried through the entire 

process. Aerosol barrier tips were used to minimize chances of cross contamination and all steps 

were performed in a laminar flow hood. Amplification success was confirmed by running 5 µl of 

each sample on a 2% agarose gel (Sigma-Aldrich, St. Louis, MI, USA).  

Initial PCR products with Illumina adapters were cleaned of unincorporated nucleotides 

with Agencourt AMPure XP beads (Beckman Coulter, Indianapolis, IN, USA). The cleaned 

products were then amplified in a second PCR, which attaches dual indices and Illumina 

sequencing adapters using the Nextera XT index kit (Illumina Corporation, San Diego, CA, 

USA). This second-step PCR consisted of 25 µl KAPA HiFi HotStart taq (KAPA Biosystems, 

Wilmington, MA, USA), 5 µl each of Nextera XT index primers 1 and 2, and 5 µl of initial PCR 

product, brought up to 50 µl with PCR grade water. PCR cycling parameters were: denaturation 

at 95°C for 3 min, followed by 8 cycles of 95°C for 30 sec, 55°C for 30 sec, and 72°C for 30 sec, 

with a final elongation step of 5 min at 72°C. 

The indexed PCR products were purified again with Agencourt AMPure XP beads. The 

purified, indexed products were then quantified on a Hoefer DyNA Quant 200 fluorometer 

(Amersham Pharmacia, Amersham, Buckinghamshire, UK) and samples were combined into 12 

approximately equimolar pools to be visualized and quantified on a Bioanalyzer (Agilent 

Technologies, Santa Clara, CA, USA). Samples in the first run of 96 were diluted to 6 pM and 

the second run was diluted to 8 pM to increase yield. For each run, the diluted products were 

combined with PhiX control DNA (Illumina Corporation, San Diego, CA, USA) at a ratio of 

20% PhiX, loaded onto a v3 600-cycle flow cell set for a paired-end read of 220 bases each, then 

sequenced on the Illumina MiSeq at the University of Tennessee Genomics Core (Knoxville, 

TN, USA). 
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1.3.4 Data Analysis 

Sequences were analyzed using the QIIME (www.qiime.org) platform (Caporaso et al. 

2010) and the workflow outlined in Divoll et al. (2018) with one additional step to only keep 

sequences within 10-bp of our target amplicon (see Appendix 3.1 for a flowchart of the 

workflow). Forward and reverse reads were joined and primer sequences were clipped. We 

filtered out sequences smaller than 147 bp or greater than 167 bp Sequences were clustered into 

molecular operational taxonomic units (MOTUs) using the SWARM method with a resolution of 

2 (Mahé et al. 2014). To account for potential OTU inflation, we excluded MOTUs that were not 

present at least 10 times in at least one sample. We performed filtering using a custom Python 

script employing the ‘pandas’ package (McKinney). We conducted further filtering of remaining 

MOTUs by considering within-sample MOTU occurrences <10 as potential sequencing errors 

and removing them. We extracted representative sequences from each MOTU cluster, based on 

abundance, to compare against a reference database (Divoll et al.).  

The representative set of sequences (Cravens et al. 2017) was then compared to the COI 

database in BOLD (Ratnasingham and Hebert 2007) using the package ‘bold’ (Chamberlain 

2017) in R (R Core Team 2017). We considered only the first 40 records for each representative 

MOTU and then filtered records with <98% similarity and country of origin outside of United 

States and Canada. The entire output for each representative was then separated into two groups: 

high quality with at least one match (≥99.36% similarity) and low quality with all matches 

(>98.0% but <99.36% similarity). Taxonomic identification was made based on these groupings 

and in all cases where there was disagreement, identification was made at the next highest level 

of taxonomy. In the high-quality group, matches <99.36% did not change the identification, 
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regardless of taxonomic divergence and in the low-quality group, variation in percent match was 

not considered for identification, only disagreement. As an example: a given MOTU has a 100% 

match from the Bold package output for the moth Aristotelia rubidella (family: Gelechiidae), and 

a 98.92% match for the moth Hillia iris (family: Noctuidae). Because the second match is less 

than 99.36% (a single base pair difference assuming 157 bp) and the first match is ≥99.36%, we 

identified the prey item as Aristotelia rubidella. If the Hillia iris had ≥99.36% match then, 

because there was disagreement at the family level, we would have identified the item only as 

Lepidoptera. Unique MOTUs assigned to the same taxonomy were collapsed into a single 

MOTU, representing one bat prey item. This may lead to certain orders being over or under split 

due to differences in genetic variation (Brown et al. 2015); however, this should not bias our 

results when measuring within species change between experimental conditions.  

1.3.5 Statistical Analysis 

We calculated percent frequency of occurrence of insect prey orders (number of samples 

containing an order divided by the total occurrences of all orders) for each bat species in both 

experimental conditions. Within order Lepidoptera, we also calculated percent frequency of 

occurrence of eared moths for each bat species as follows: 

# of samples with eared moths 
# of eared moth occurrences in dataset 

 
We defined families Sphingidae, Noctuidae, Notodontidae, Geometridae, Pyralidae as 

eared moths, as they are known to have tympanate organs used for predator avoidance (ter 

Hofstede and Ratcliffe 2016). We were unable to quantify abundance of prey items given 

variation in insect DNA degradation as it passes through a bats intestinal tract and differences in 

PCR amplification. For all other analyses, we used the collapsed set of unique MOTU assumed 

to be bat prey species.  
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We used the EcoSimR 0.1.0 package (Gotelli et al. 2015) in R to determine dietary 

overlap among the six bat species and to assess effects of artificial light. Null models were used 

to determine whether extent of niche overlap was lower than would be expected by chance. We 

used Pianka’s (1973) measure of niche overlap and generated 1000 bootstrap randomizations of 

MOTU diet composition using the ‘ra3’ algorithm. We conducted this analysis including all 

MOTUs (all-prey analysis) as well as excluding prey only eaten by a single individual (common-

prey analysis) (as per Brown et al. 2014, Clare et al. 2014a, Clare et al. 2014b). We used the 

iNEXT package (Hsieh et al. 2016) in R to determine extent of dietary specialization and 

diversity using the first three Hill numbers (or effective number of species): q = 0 (species 

richness), q = 1 (exponential of Shannon’s entropy index), and q = 2 (inverse of Simpson’s 

concentration index) as well as the chao2 asymptotic estimator for those numbers. Hill numbers 

have been increasingly used for biodiversity analysis and are preferred over other diversity 

indices given they are intuitive and statistically robust (Chao et al. 2014).  

 

1.4 RESULTS 

We captured 453 bats from six species (big brown bats (Eptesicus fuscus); red bats; gray 

bats (Myotis grisescens); little brown bats (Myotis lucifugus); evening bats (Nycticeius 

humeralis); and tri-colored bats (Perimyotis subflavus)) across both experimental conditions (n = 

297 during unlit and n = 151 during lit) spanning 61 nights (n = 42 during unlit and n = 19 during 

lit). Light did not appear to attract new species as we captured most of the expected species 

based on regional species distributions, at both lit and unlit sites. We analyzed DNA from 188 

fecal samples from the six species (Table 3) and recovered 71 992 648 sequencing reads. After 

performing bioinformatics processing, these reads were clustered and filtered down to 3078 
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MOTUs. Using representative sequences of the 3078 MOTUs, we identified 1129 (36.7%) with 

matching sequences in the BOLD database, belonging to 15 insect orders. After collapsing 

MOTUs with the same taxonomy, we were left with 487 unique MOTUs or unique prey items.  

In general, Lepidoptera, Coleoptera, and Diptera were the most commonly identified 

orders and their combined proportion was relatively constant (range: ~69% to ~83%) for each 

bat species in both treatment groups. Specifically, Coleoptera were the most commonly 

identified prey for big brown and evening bats and Lepidoptera were the most common prey for 

red and little brown bats in both treatment groups. Diptera were the most common prey identified 

in the diet of gray and tri-colored bats at unlit sites, but the most common prey items at lit sites 

were Lepidoptera for gray bats and Coleoptera for tri-colored bats.  

Based on order-level taxonomy of prey, gray bats were the only species with a significant 

shift between treatments (c2 = 10.11, P = 0.02), though significance is lost after a Bonferroni 

correction (Figure 1). Further, this may be related to our smaller total sample size for this 

species. Little overall variation in prey selection was detected in any other species (P > 0.15). 

Analysis of dietary overlap values tell a similar story (results of all-prey and common-prey 

analyses were similar, therefore all-prey values are reported). Overlap between lit and dark 

treatment groups exceeded 0.6, the value at which diets are generally considered to represent 

biological similarity (Pianka and Pianka 1976), for all species (see Table 1). Within a species, 

red bats had the highest degree of overlap between lit and unlit conditions (Ojk 0.906, P < 0.001). 

The results were generally less conclusive when we limited our comparison of overlap values 

between treatment groups to prey items identified as Lepidoptera, but red bats still had a 

significant degree of overlap (Ojk 0.9059, P < 0.001). In general, values for dietary overlap 

between species pairs were lower than those found within species between treatment groups 
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(Table 2). Further, even qualitative shifts in consumption of the two most important prey items, 

Coleoptera and Lepidoptera, varied across species (Figure 1). There was also no indication of the 

expected increase in eared-moth consumption around lights, and the only species with a 

significant shift in moths identified as eared moths, big brown bats (P < 0.007), consumed fewer 

eared moths in the lit treatment. 

Diversity estimates showed that dietary breadth did not change substantially between 

experimental conditions for most species, and no clear pattern exists in the direction of change 

(Table 3). Only little brown and tri-colored bats had no overlap in the 95% confidence intervals 

for diversity accumulation curves of the first Hill number (q = 0) using the Chao2 estimation of 

incidence-based richness estimation (Figure 2). The little brown bat is the only species that had 

significantly higher estimated dietary diversity in lit conditions in all three diversity measures. In 

general, red bats had the broadest dietary diversity, while big brown bats had the narrowest, and 

this pattern held for each Hill number whether observed or estimated (Table 3).  

 

1.5 DISCUSSION 

We determined diet of six species of insectivorous bats to examine the impact of ALAN, 

at the community level, on prey selection. Contrary to expectations, no species in this 

community showed a significant shift in diet as seen in another study using a similar 

experimental design. Further, even ignoring statistical significance, our data do not support a 

consistent trend in shifts in dietary niche between naturally dark and experimentally lit 

conditions that would suggest an existing pattern we are missing due to low power. Proportional 

differences in identified prey appear to be species-related. Red bats, little brown bats, and gray 

bats followed the expected pattern at lit sites with higher moth and lower beetle consumption 
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frequencies. Big brown bats are beetle specialists, and there was a substantial increase in the 

proportion of beetles identified under lit conditions. Evening bats and tri-colored bats showed no 

change in moth or beetle proportions under dark and lit conditions. There was a high degree of 

dietary overlap for all species between the experimental conditions (Ojk > 0.719 for all species). 

This may be a biological result suggesting that either bats did not choose to forage in an 

artificially lit condition or that bats did not select different prey in the presence of light. 

Alternatively, this may be a methodological limitation as we are unable to determine true 

abundance of each prey item within an individual bat, so the amount of a particular prey item 

may change without a change in the proportion of unique prey items identified in our analysis. 

Additionally, dietary breadth was similar between lit and unlit sites, except for little brown and 

tri-colored bats. There was a high degree of overlap in the 95% confidence intervals between 

treatment groups in the interpolation and extrapolation curves of dietary breadth for the other 

four species (Figure 2). Overall, diversity and breadth estimates suggest bats were not feeding 

selectively on a distinct prey group in the presence of light.  

Pairwise comparisons between species, within each treatment group, provide further 

evidence for species-specific changes in diet, as opposed to an overall pattern common to all 

species (Table 2). For example, the degree of overlap between big brown bats and red bats was 

less at lit sites (Ojk = 0.345) than unlit sites (Ojk = 0.536), suggesting increased dietary 

differentiation in the presence of light. Similarly, little brown bats and gray bats exhibited the 

greatest dietary overlap with big brown bats at unlit sites, and red bats at lit sites because of 

increased consumption of Lepidoptera. Finally, evening bats had a high degree of overlap with 

big brown bats at unlit sites (Ojk = 0.705), which is to be expected as evening bats typically 

prefer Coleoptera (Whitaker 1972, Feldhamer et al. 1995). However, the degree of overlap 
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decreases in presence of light (Ojk = 0.544), because evening bats were not exploiting higher 

concentrations of beetles at lit sites as were big brown bats.  

We found little evidence of increased consumption of eared moths under artificially lit 

treatments; in fact, eared-moth proportions decreased (although not significantly) at lit sites for 

most species. Conversely, Cape serotine bats (Neoromicia capensis), significantly increase 

eared-moth consumption at experimentally manipulated lit sites in South Africa (Minnaar et al. 

2015). Nearly every moth species (92.9%) was identified as an eared moth at that study site, 

while the proportion of eared moths in the community we studied is likely considerably lower 

(Dodd et al. 2008). Our results may also be an artefact of our use of the Bold Systems database 

as numerous potential eared moths had multiple family level identifications and were thus only 

identified to the ordinal level. This may be because these moth species are not yet in the Bold 

Systems database or that we had sequenced degraded DNA.  

Based on our current work and that of others, we propose four responses in terms of prey 

selection by bats around light. First, known specialists may take advantage of artificial light-

induced phototaxis (van Langevelde et al. 2011) to increase prey consumption of their preferred 

prey. In the bat community we studied, two dietary specialists (big brown and red bats) 

consumed proportionally more of their preferred prey at lit sites. Big brown bats, with their 

powerful jaws, prefer beetles (Agosta 2002, Clare et al. 2014b), while red bats prefer softer-

bodied Lepidoptera (Acharya and Fenton 1999, Clare et al. 2009). Second, some generalist 

species may show dietary shifts to include greater consumption of moths around lights. In our 

community, two generalist species (gray bat and little brown bat) exhibited such a pattern of 

increased moth consumption and decreased beetle consumption under artificial light. Gray bats 

had a 64.9% increase in Lepidoptera prey at lit sites, the highest within-order percent increase. 
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Third, some species may show no shift in prey selection around lights. Two species (evening bat 

and tri-colored bats) exhibited little difference in the proportion of beetles and moths under the 

two experimental conditions. For these species, the lack of dietary change may be related to their 

morphology. Tri-colored bats are clutter adapted (Menzel et al. 2005), and while evening bats are 

not completely clutter adapted, they are weak fliers (Norberg and Rayner 1987); therefore, these 

bats may be avoiding the lights to avoid predation. Fourth, specialist species may decrease 

consumption of their preferred prey in favor of moths around lights. No species in our study 

showed this response, but it has been noted in Cape serotine bats, a beetle specialist that 

increases consumption of moths around lights (Minnaar et al. 2015). 

Artificial lighting at night has varied effects on bat species and the mechanism governing 

behavioral responses to light is unclear. In general, species with morphological adaptations that 

favor faster flight in relatively uncluttered habitats are considered light-tolerant species (Rowse 

et al. 2016). These species often feed on positively phototactic prey around temporally stable 

light sources, such as streetlights (Schoeman 2016). Conversely, slower flying species with 

greater maneuverability to forage in and around cluttered habitats are considered light-intolerant 

(Rowse et al. 2016). These species are often found in lower densities in artificially lit 

environments and may actively avoid artificial light, although presumably light-intolerant Myotis 

species have been recorded near single, experimental light setups in desert environments (Fenton 

and Morris 1976, Bell 1980). It may be that light-intolerant species in non-desert regions are not 

avoiding lights, but rather the open habitat in which streetlights are found. Even light-tolerant 

species seem to prefer streetlights in rural areas over urban landscapes (Geggie and Fenton 

1985). 
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The spectral composition of the LEDs used in this experiment may further explain the 

lack of a consistent response in our experiment. LEDs do not induce phototaxis to the same 

degree as other light sources, especially mercury vapor (Huemer et al. 2010, Eisenbeis and Eick 

2011), likely because LEDs do not produce light in the lower UV spectrum (Stone et al. 2015). 

Other forms of light which lack UV light, such as high pressure sodium, also attract fewer insects 

(Rydell 2006). Light sources with lower insect abundance have significantly less bat activity 

(Blake et al. 1994); in fact, bat activity can change by as much as an order of magnitude 

depending on lighting technology (Rydell 1992). Interestingly, light-intolerant bats do not appear 

as averse to LEDs as other technologies (Lewanzik and Voigt 2017). Lower aversion may be 

related to UV as evidence suggests light-intolerant bats are avoiding UV light specifically 

(Gorresen et al. 2015). The lack of UV in LED light may change the perception by these bats 

leading to decreased aversion. Therefore, LED lighting may have less of a negative impact, at 

least with respect to foraging, for bats and their insect prey. 

Numerous studies have reported bats feeding at artificial lights (Hickey and Fenton 1990, 

Rydell 1992, Minnaar et al. 2015, Schoeman 2016), and some of these studies have compared 

differences in diet with unlit sites to determine a dietary shift (Hickey and Fenton 1990, Minnaar 

et al. 2015). A pattern has emerged that bats generally consume more moths, and more eared 

moths specifically, under artificial light. In particular, much of the work on effects of artificial 

light on foraging bats in North America has focused on hoary, red, and Hawaiian hoary bats 

(Belwood and Fullard 1984, Hickey and Fenton 1990, Acharya and Fenton 1992, Hickey et al. 

1996, Acharya and Fenton 1999, Jacobs 1999, Fullard 2001). Hoary and red bats are generally 

considered moth specialists, therefore, an increase in moth consumption around lights may be 

expected (and is generally supported by our results). The lack of consistent dietary change in our 
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study may be related to the broader range of species sampled, and suggests caution in assuming a 

universal response in dietary shifts around lights for all species. The oft-cited pattern, which is 

quickly becoming a paradigm, that ALAN leads to increases in moth consumption in 

insectivorous bats may not be the case for all species. Our results underscore the need for a better 

mechanistic understanding of interactive effects of lights on bats and their insect prey to predict 

which bat species will be most strongly affected by lights and to craft management plans to limit 

negative effects of lights on foraging bats.
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Table 1.1. Diet overlap between the six species of insectivorous bats evaluated in this study. 
Observed mean values below 0.6 are generally accepted to represent biologically significant 
resource partitioning.  
 

 All MOTUs Common prey analysis 

 Observed 
mean 

P (Observed ≥ 
expected) 

Observed 
mean 

P (Observed ≥ 
expected) 

All treatments and spp. 0.70446 <0.001 0.70968 <0.001 

Lit treatment all spp. 0.60420 <0.001 0.61796 <0.001 

Control all spp. 0.66239 <0.001 0.66866 <0.001 

Lit/unlit treatment     

   big brown bat 0.85907 <0.001 0.86922 <0.001 

   red bat 0.90643 <0.001 0.91358 <0.001 

   gray bat 0.71912 <0.001 0.74098 <0.001 

   little brown bat 0.81780 <0.001 0.83112 <0.001 

   evening bat 0.82670 <0.001 0.83715 <0.001 

   tri-colored bat 0.74422 <0.001 0.75555 <0.001 

Lepidoptera all 

treatments and spp. 

0.64481 <0.001 0.66121 <0.001 

Lepidoptera lit all spp. 0.45916 <0.001 0.48400 <0.001 

Lepidoptera control all 

spp. 

0.52352 <0.001 0.54295 <0.001 

Lepidoptera lit/unlit     

   big brown bat 0.48110 0.250 0.50903 0.190 

   red bat 0.90586 <0.001 0.91503 <0.001 

   gray bat 0.56171 0.570 0.60760 0.470 
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Table 1.1. Continued    

 All MOTUs Common Prey Analysis 

 Observed 
mean 

P (Observed ≥ 
expected) 

Observed 
mean 

P (Observed ≥ 
expected)  

   evening bat 0.56600 0.083 0.57387 0.099 

   tri-colored bat 0.45748 0.766 0.49490 0.713 
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Table 1.2. Pairwise comparison of diet overlap between six species of insectivorous bats in 
experimentally lit and naturally dark experimental treatments. Values below the diagonal are the 
observed mean and numbers above the diagonal are the corresponding P values.  
 

LIT big brown 
bat 

red bat little 
brown bat 

gray bat evening 
bat 

tri-colored 
bat 

big brown bat  0.037 0.001 0.073 0.022 0.001 

red bat 0.34471  0.001 0.001 0.001 0.001 

little brown bat 0.57593 0.65952  0.001 0.001 0.001 

gray bat 0.46833 0.68382 0.77017  0.002 0.001 

evening bat 0.54435 0.43585 0.63214 0.59877  0.001 

tri-colored bat 0.64095 0.54714 0.76412 0.69536 0.70188  
 

UNLIT big brown 
bat 

red bat little 
brown bat 

gray bat evening 
bat 

tri-colored 
bat 

big brown bat  0.001 0.001 0.001 0.001 0.002 

red bat 0.53586  0.001 0.001 0.001 0.001 

little brown bat 0.76932 0.6034  0.001 0.001 0.001 

gray bat 0.64075 0.51874 0.81686  0.001 0.001 

evening bat 0.70514 0.58402 0.76158 0.74654  0.001 

tri-colored bat 0.54008 0.57741 0.67231 0.69197 0.77191  
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Table 1.3. Diversity estimates between experimentally lit and naturally dark conditions in six species of insectivorous 
bats.  
 
     q = 1, Shannon diversity 

effective # of MOTUs 
q = 2, Simpson diversity 
effective # of MOTUs 

Bat species n (samples 
analyzed) 

Treatment 
group 

 Richness Obs.  Est.  Obs.  Est.  

big brown bat 7 lit  66 54.40  85.67  44.50  59.98  

14 unlit  100 69.19  97.66  52.36  59.34  

red bat 35 lit  200 111.89  164.19  68.26  74.86  

39 unlit  213 119.98  157.49  74.33  80.70  

gray bat 7 lit  107 89.76  148.73  74.57  107.04  

9 unlit  108 81.69  134.30  61.59  77.21  

little brown bat 9 lit  119 89.51  176.47  65.47  83.73  

29 unlit  150 87.57  114.84  57.70  62.41  

evening bat 6 lit  73 60.29  101.71  49.63  67.52  

16 unlit  120 81.45  105.00  58.58  66.18  

tri-colored bat 6 lit  91 75.31  146.47  60.63  86.83  

 11 unlit  95 72.87  95.91  55.64  66.89  
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Figure 1.1. The proportion of MOTUs identified in the diet of six species of insectivorous bats under experimentally lit and naturally 
dark conditions.
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Figure 1.2. Interpolation (rarefaction) and extrapolation of dietary species richness for each experimental condition in six species of 
insectivorous bats using the Chao2 estimation for incidence-based sample data. Richness is extrapolated to twice the sample size and 
bootstrapped 500 times.
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CHAPTER 2 

 
ILLUMINATING THE PHYSIOLOGICAL IMPLICATIONS OF ARTIFICIAL LIGHT ON 

AN INSECTIVOROUS BAT COMMUNITY 
 

2.1 INTRODUCTION 

Global light pollution has increased dramatically during the 20th and 21st centuries as a 

result of rapid urban development (Hölker et al. 2010a). Nearly 90% of Europe and over half of 

North America are estimated to experience light polluted skies (Falchi et al. 2016). These levels 

have remained relatively constant over the last several decades, while increases in light pollution 

extent have occurred recently in developing areas with higher than average species richness 

(Koen et al. In press). The use of artificial light at night (ALAN) is widespread and a major 

threat to biodiversity (Hölker et al. 2010b), especially for nocturnal animals such as bats that are 

adapted to life in dark environments (Voigt and Lewanzik 2011).  

The impact of artificial lighting on bat behaviors is wide ranging and includes effects on 

foraging and commuting, emergence, roosting, breeding, and hibernation (as reviewed in Stone 

et al. 2015). Negative impacts on these behaviors could have reduced fitness costs. For instance, 

artificial lighting around bat roosts can lead to a delayed nightly emergence (Downs et al. 2003). 

By delaying emergence, bats can miss the peak in insect abundance around dusk (Jones and 

Rydell 1994), which could be particularly detrimental to pregnant or lactating females who have 

increased energetic demands (Kurta et al. 1989).  

While bats, in general, appear to prefer dark environments (Lima and O'Keefe 2013), 

there are numerous observations of bats foraging around artificial light (Hickey et al. 1996, 

Acharya and Fenton 1999, Polak et al. 2011, Schoeman 2016). Concurrently, artificial light 

induces phototaxis in aerial insects, leading to unusually high densities around lights (van 
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Langevelde et al. 2011). It has been proposed that light-tolerant bats may take advantage of 

larger and higher densities of prey around artificial light, which could offset predation risks from 

flight in a lit environment (Tomassini et al. 2014). If this is the case, widespread ALAN in the 

nocturnal environment could significantly alter bat-insect interactions and foraging behaviors 

with cascading effects on the food web and ecosystem functioning (Minnaar et al. 2015, Cravens 

et al. 2018). 

If ALAN can potentially alter foraging behaviors, we should also expect to see energetic 

effects on the bats. Thus, we evaluated the effect of artificial light on energy metabolism in an 

insectivorous bat community through plasma metabolite analysis (McGuire et al. 2009, Boyles et 

al. 2016). We experimentally manipulated naturally dark areas with an artificial light treatment 

known to cause shifts in prey selection (Minnaar et al. 2015, Cravens et al. 2018), and measured 

ß-hydroxybutyrate levels from bats captured in both lit and unlit environments. We also 

measured bat activity from acoustic recordings in lit and unlit conditions. We predicted an 

increase in foraging intensity and activity in artificial light treatments relative to naturally dark 

areas. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Study Site 

Our study was conducted in a 9-county region of western Missouri, USA during summer 

(May to August) 2017. The study area lies primarily within the Ozark Highlands physiographic 

region, a heavily forested landscape dominated by oak-hickory forests. Along the western edge 

of our study area, the land begins to transition to Osage Plains, a region historically dominated 



 

 25 

by prairie but now heavily converted to agriculture with limited forest and woodlands (Raeker et 

al. 2010).  

 

2.2.2 Experimental Design 

We erected temporary lights along naturally dark forest roads or streams on public lands 

and had two experimental conditions: unlit (control) and lit (light pollution treatment). Distance 

between lit and unlit sites was at least 2 km to minimize overlap in foraging ranges by individual 

bats, but sites were chosen with similar habitat and landscape features. At lit sites, we used 50W 

LED (Shenzhen Lepower Opto Electronics Co., China) producing 5600 lumens at 4000 K. We 

used LED lighting as it is replacing older outdoor lighting styles, such as mercury vapor. Lights 

were elevated 3m from the ground on a metal pole and powered by a 12V lead acid battery. We 

used mist nets to capture bats along forested roads or streams at 17 sites throughout the summer. 

We netted at each survey site for three nights and ran lights for all three nights from 21:00 to 

05:00. On the first two nights, we captured bats at an unlit control site and on the third night, we 

captured bats at lit sites (Minnaar et al. 2015, Cravens et al.). Delaying capture at lit sites until 

the third night allowed bats to become accustomed to the lit condition, as well as provide time 

for them to choose to forage in the newly lit environment. We make no assumption that all bats 

captured at lit sites were necessarily foraging around the lights; moreover, we expect some 

species may be less prone to foraging at lights than others and therefore show less pronounced 

shifts in feeding rates and activity levels. Nets were placed in flyways within 25m of the light in 

an appropriate netting location. 

We recorded bats acoustically (SM2Bat+ and SM4ZC; Wildlife Acoustics, Maynard, 

Massachusetts, USA) from 20:00 to 06:00 on each of three sampling nights at all lit and unlit 
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sites and added additional sampling nights if there was a period of rain or high winds longer than 

30 minutes. We elevated detectors two meters on a metal pole away from clutter that could affect 

echolocation calls. We identified bat species from our acoustic detector recordings using 

Kaleidoscope Pro v3.1 automated identification software (Wildlife Acoustics, Maynard, 

Massachusetts, USA). Little brown bats (Myotis lucifugus) and Indiana bats (M. sodalis) are 

difficult to differentiate acoustically, so we combined calls identified as either of those species. 

We pooled calls identified to each species into 15-minute intervals, and report data from the 

second night of recording. 

We measured plasma ß-hydroxybutyrate concentrations from six species of insectivorous 

bats in naturally dark and artificially lit conditions. ß-hydroxybutyrate is generally considered a 

fasting metabolite and increases during fasting to power metabolic processes when dietary 

triglycerides are low (Robinson and Williamson 1980, Jenni-Eiermann and Jenni 1991). While 

the mechanism is not understood, available data indicate ß-hydroxybutyrate paradoxically 

increases in both captive and free-living bats after feeding (McGuire et al. 2009) and has thus 

been used as a proxy for foraging intensity (McGuire et al. 2009, Boyles et al. 2016, Sommers et 

al. 2017; we discuss the implications of these competing interpretations in the discussion). We 

removed bats from the net and collected a small (<75 µl) blood sample from the interfemoral 

vein by puncturing the vein with a 26-gauge needle and collecting blood with a 75-µl 

heparinized hematocrit tube (Fisher Scientific, Waltham, MA)(Hooper and Amelon 2014). All 

blood samples were collected within 10 min after removing the bat from the net. After blood 

collection, we centrifuged blood samples (10 min at 2,000 g; Fisher Scientific Mini Centrifuge) 

to obtain 10 µl of plasma which was used to quantify ß-hydroxybutyrate concentration with a 
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handheld meter (STAT-Site M ß-HB; Stanbio Laboratory, Boerne, Texas USA)(Sommers et al. 

2017). 

We expect foraging intensity to be highly temperature dependent because both bats and 

their insect prey are more active on warmer nights; thus, ß-hydroxybutyrate levels are also likely 

temperature dependent. However, we designed our experiment specifically to determine the 

effect of light pollution on ß-hydroxybutyrate levels. Thus, to account for temperature, we used 

residuals from a regression of mean nightly ambient temperature against ß-hydroxybutyrate in all 

further analyses. We then used general linear models in program R to test the effects of treatment 

(lit, unlit), minutes after sunset (because the effect of the lights may change as ambient light 

changes), and treatment * minutes after sunset interaction for each bat species (R Core Team 

2017). We used this approach because we were interested in the effect from the light treatment 

and not concerned with the effect of environmental and morphological variables, as these have 

been well established in the literature. We used a paired t-test to compare acoustic activity across 

the night between treatments for each bat species. We qualitatively compared temporal patterns 

in ß-hydroxybutyrate to activity estimated with acoustic detectors for each species of bat. 

 

2.3 RESULTS 

We collected blood samples from 169 bats (n = 66 lit and n = 103 unlit) over 36 nights (n 

= 11 lit and n = 25 unlit) during summer 2017 (10 June – 14 August). We included samples in 

our statistical analysis from five species (big brown bats (Eptesicus fuscus); red bats (Lasiurus 

borealis); gray bats (Myotis grisescens); evening bats (Nycticeius humeralis); and tri-colored 

bats (Perimyotis subflavus)) and excluded little brown bats because of small sample size (n = 1). 

We excluded two outliers, one from a big brown bat and one from a red bat, and as their removal 
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did not change the results qualitatively we are reporting results with these samples excluded. We 

measured acoustic activity across 16 paired lit and unlit locations from 10 June – 8 August 2017. 

Little brown bats were detected regularly on acoustic recorders, so those data are included below.   

Both blood metabolite and acoustic data suggest similar, species-specific patterns: red 

bats actively forage around lights and may gain some energetic benefit, while big brown and 

gray bats avoid lit areas and thus gain no such benefit. Specifically, the interaction between 

minutes after sunset and light treatment was significant in red bats (t = 3.782, p < 0.001); ß-

hydroxybutyrate levels were highest just after sunset and declined throughout the night in 

artificially lit sites, while at naturally dark sites, ß-hydroxybutyrate levels were lowest just after 

sunset and increased throughout the night (Figure 1). Although activity, as indicated by acoustic 

recordings, was not different between treatments across the entire night (t = 1.882, df = 39, p = 

0.067), there are two distinct periods during the night when red bats were more active at lit sites 

relative to unlit sites (Figure 2): one immediately after sunset corresponding to the highest ß-

hydroxybutyrate levels for this species, and another approximately 300 minutes after sunset. 

Interestingly, the only red bats we captured after approximately 250 min after sunset were 

around artificial lights.  

Blood metabolite and acoustic data for big brown bats and gray bats indicate avoidance 

of lit areas. Plasma ß-hydroxybutyrate levels were not significantly different between treatments, 

across the night, or in the treatment*minutes after sunset interaction for either big brown bats or 

gray bats (p > 0.54 in all cases). Both species were more active at unlit sites than lit sites (big 

brown bats: t = 5.086, df = 39, p < 0.001; gray bats: t = 10.009, df = 39, p < 0.001), which is 

maintained after a Bonferroni correction for multiple comparisons. Notably, when comparing the 

difference in activity between lit and unlit sites for each 15-minute interval throughout the night, 
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activity is rarely greater at lit sites for big brown bats and gray bats (Figure 3). Taken together, 

this strongly indicates these species are actively avoiding lit areas. 

It is difficult to compare ß-hydroxybutyrate levels with acoustic activity for evening and 

tri-colored bats. Plasma metabolite levels for evening bats were quite similar between treatments 

(t = -0.017, p = 0.987) with no significant interaction between the main effects (t = 0.114, p = 

0.911), suggesting this species may be avoiding lit areas. Tri-colored bats may also be avoiding 

lit sites as their plasma metabolite levels were again very similar between treatments (t = -1.331, 

p = 0.315) and no interaction between main effects (t = 1.251, p = 0.337), although interpretation 

is limited given our small sample size. While we have no blood metabolite data for the two 

myotis species (Indiana bats and little brown bats), acoustic data indicate activity is significantly 

greater at unlit sites (p < 0.017). 

 

2.4 DISCUSSION 

Our data show taxon-specific effects of short-term changes in ALAN on foraging 

intensity and activity levels in an insectivorous bat community. Acoustic data suggest red bats 

actively forage around artificial lights, and ß-hydroxybutyrate levels indicate they likely gain 

energetic benefits by doing so, regardless of the exact interpretation of ß-hydroxybutyrate levels 

(see below). The other species in the community appear to not select artificially lit sites for 

foraging and showed no observable difference in ß-hydroxybutyrate between experimental 

treatments. This is the first study, to our knowledge, demonstrating that ALAN can modify 

behavior sufficiently to cause knock-on effects on physiology and energetics, and because the 

effects are not the same on all species, ALAN might further affect competitive balance in a 

community.  
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Bats adapted for faster flight in relatively open habitats are generally considered to be 

light-tolerant species (Rowse et al. 2016). Red bats have a moderate aspect ratio, high wing 

loading, and are fast flyers with limited (relatively speaking) maneuverability (Norberg and 

Rayner 1987). They have been the focus of numerous studies on bats and artificial light (Acharya 

and Fenton 1992, Hickey et al. 1996, Acharya and Fenton 1999), and these studies have 

consistently shown artificial light to have an attractive effect on red bats. Conversely, slower 

flying species adapted for flight in cluttered habitat tend to be light-intolerant (Rowse et al. 2016) 

as slower flight may make bats vulnerable to predation in open, lit environments. Big brown bats 

and gray bats, while not necessarily clutter adapted, do have lower aspect ratios, lower wing 

loadings, and are slower fliers than red bats (Norberg and Rayner 1987). Our data suggests these 

two species, especially gray bats, avoid lit areas (Figure 2). Acoustic data suggest the other 

Myotis species in the community (little brown and Indiana bats) are also light adverse (Figure 2). 

Evening bats are not fully clutter adapted, but are weak fliers (Norberg and Rayner 1987). 

Although the acoustic data may be unreliable for evening bats, this species showed no change in 

ß-hydroxybutyrate levels between treatments. Care should be taken when interpreting evening 

and tri-colored bat acoustic data. The Kaleidoscope software is known to commonly confuse 

evening and tri-colored bats with more common red bats (Ford 2017). Qualitatively, the activity 

patterns of these two species track closely with red bats (Figures 2 and 3), so we suspect these 

patterns are an artefact of the identification process, not a biological pattern. Further, evening 

bats did not alter diet, at least with respect to Lepidoptera and Coleoptera, in the presence of 

artificial light (Cravens et al. 2018), suggesting they are not actively taking advantage of prey 

densities around artificial light.  
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We recorded the highest ß-hydroxybutyrate levels in red bats foraging around lights 

shortly after sunset, with a decrease throughout the rest of the night. There were no significant 

trends in ß-hydroxybutyrate levels throughout the night in other species. Unlike in most other 

animals, ß-hydroxybutyrate levels in bats appear to behave contrary to physiological norms, 

increasing with food intake (McGuire et al. 2009). Thus, previous papers measuring ß-

hydroxybutyrate levels in bats have interpreted increased ß-hydroxybutyrate as an indicator of 

increased foraging efficiency and energy intake (McGuire et al. 2009, Boyles et al. 2016). Using 

this interpretation, our data suggest red bats forage heavily around lights shortly after sunset and 

gain energetic benefits by doing so, but do not forage around artificial light late in the night, and 

thus gain no energetic benefit. This is incongruous with acoustic data which indicate a second 

peak in red bat activity late in the night (Figure 2). Under this interpretation, some other species 

in this community, such as grey bats, avoid lights and thus gain no benefit of increased prey 

densities around lights, regardless of time of night.  

Our acoustic and capture data hint that interpreting ß-hydroxybutyrate levels in bats as a 

proxy of foraging success might be problematic, and that ß-hydroxybutyrate might behave as it 

does in other species. Ketogenesis, or the production of ß-hydroxybutyrate and other ketone 

bodies in the liver, occurs during periods of low food availability to provide fuel to the brain, 

muscles, and other organs (Flatt 1972). Thus, ß-hydroxybutyrate levels increase with fasting 

(Jenni-Eiermann and Jenni 1991, Féry et al. 1996). Temperate-zone, insectivorous bats generally 

only forage on the wing for 2-8 h each night (Kurta et al. 1989). For the remainder of the daily 

cycle they stay in roosts and do not feed, so we might expect ß-hydroxybutyrate levels to 

increase throughout the day, peaking immediately before the nightly foraging period. If this were 



 

 32 

the only driver of high ß-hydroxybutyrate, we would expect to see elevated levels in all species 

early in the night, which we do not.  

Our data suggest ß-hydroxybutyrate may be a better indicator of the energy source 

powering flight than of foraging success in bats, as it has been interpreted in the past. Although 

most commonly thought of as a fasting metabolite, elevated levels of ketone bodies can also be 

found during prolonged or intense exercise (Laffel 1999) and exercise-trained muscles oxidize ß-

hydroxybutyrate more efficiently than muscles from sedentary individuals (Winder et al. 1973). 

Thus, we might expect to see elevated ß-hydroxybutyrate in bats undertaking intense foraging 

shortly after leaving the roost and before they can metabolize exogenous energy sources. If red 

bats are taking advantage of high densities of insects around lights (particularly moths) 

immediately after beginning foraging (Rydell et al. 1996), they may be powering flight through 

ketogenesis. The same reasoning may explain why ß-hydroxybutyrate levels are high in little 

brown bats living at high latitudes, where foraging bouts are necessarily short and intense 

because of limited darkness (Boyles et al. 2016). The difference in ß-hydroxybutyrate patterns 

between red bats in the two treatments in this study may relate to what the bats were doing when 

captured. During the artificial light treatments, red bats were likely foraging (as indicated by 

high, sustained acoustic activity), while red bats captured in naturally dark conditions were likely 

commuting to foraging areas (because they normally forage in open areas, not over roads and 

streams where we captured them)(Elmore et al. 2005, Menzel et al. 2005, Walters et al. 2007). 

The relatively lower flight costs of straight flight during commuting (Grodzinski et al. 2009, 

Voigt et al. 2010a, Voigt and Holderied 2012) should impose lower energetic demands, and thus 

less need for an upregulation of ketogenesis. Interestingly, red bats were only captured late in the 

night around lights, and these individuals universally had low ß-hydroxybutyrate levels, although 
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this is based on a small sample size (Figure 1). This would suggest foraging around lights 

provides more energy than foraging in naturally dark areas, and as the night progresses, red bats 

fuel increasingly more flight through dietary proteins and fatty acids (Voigt et al. 2010b, Voigt et 

al. 2012). ß-hydroxybutyrate levels do not decrease throughout the night in any of the species 

which are not selecting lit areas or in red bats at naturally dark sites. Further, both acoustic data 

and capture data suggest red bats are not highly active late in the night at naturally dark sites. If 

so, energy intake may never be high enough in the absence of artificial light, when insect 

densities are presumably low, for metabolized dietary sources to fully replace ketone bodies in 

powering flight. It is also important to note that differences in ß-hydroxybutyrate between 

species with different diets, such as two known specialists, red bats and big brown bats, are 

likely not related to their consumption of different insects. The ratio of protein and lipids may 

differ, as red bats primarily consume moths and big brown bats beetles, however, both proteins 

and lipids are not immediately available as an energy source (Voigt et al. 2010b, Voigt et al. 

2012). An interesting comparison would be with a species with a carbohydrate rich diet, such as 

a nectivorous bat (Voigt and Speakman 2007). 

The production and use of ketone bodies may have other physiological benefits for bats 

beyond powering flight during periods of intense activity when dietary sources are not available. 

For example, ketogenesis inhibits lipolysis, which serves to maintain endogenous energy stores 

and muscle glycolysis, allowing for fattening and recharge of muscle glycogen (Féry et al. 1996, 

Jenni-Eiermann 2017). Thus, we might expect to see ß-hydroxybutyrate used heavily to power 

flight during periods when storing fat is imperative, such as immediately before hibernation. In 

support of this prediction, some of the highest ß-hydroxybutyrate levels measured in bats to date 
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were from little brown bats during the pre-hibernation fattening period in Ontario (McGuire et al. 

2009).  

The unique combination of circadian cycles, high fat diet, and an unusually expensive 

mode of locomotion might explain why ß-hydroxybutyrate levels appear to increase with energy 

intake in insectivorous bats (McGuire et al. 2009). In the lab, bats are fed without foraging. 

However, in the field highly energetically expensive foraging occurs at the end of a daily fast 

when circulating triglyceride levels are low. Insectivorous, aerial-hawking bats never naturally 

intake energy without flying, so flight and feeding might be physiologically linked in these 

species, and a reliance on a low-carbohydrate diet might mean that dietary energy is not 

immediately available to power foraging. Feeding might signal the liver to increase ketogenesis 

in insectivorous bats, even without flight. An interesting test of this hypothesis would be to 

measure ß-hydroxybutyrate levels in frugivorous or nectivorous bats, which can metabolize 

dietary energy almost instantly to power flight (Voigt and Speakman 2007). In these species, 

ketones may be less important energetic substrates for powered flight, and therefore may be less 

physiologically linked to flight.     

 Our results shed additional light on the complex interactions of the bat-insect-light 

system. The effect of ALAN on bat-insect interactions, from our results, appear to benefit some 

species, while other species may be at a disadvantage, at least with respect to bats. The potential 

for negative impacts, at a population level, warrant further study at a landscape scale, given the 

degree of artificial light in the nocturnal environment. In this bat community, red bats, with a 

morphological propensity for fast flight, seem to be gaining an energetic benefit by foraging 

around artificial lights. However, red bats may not need a competitive leg up as they are 

ubiquitous on the landscape and among the most common species in the region. Other species in 
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the area, particularly those in the genus myotis, are rare, and becoming rarer. This is a pattern 

seen in European bat communities as well, whereby species that are light-tolerant are common 

on the landscape and those which are light-averse tend to be rare or threatened (Stone et al. 

2009;2012, Lacoeuilhe et al. 2014). In addition to limiting spatial extent, the negative impacts of 

light pollution on light-intolerant species may be further compounded by decreasing prey 

resources in naturally dark areas where they forage (Longcore and Rich 2004, Conrad et al. 

2006, Eisenbeis 2006, Groenendijk and Ellis 2011). The low capture rates (and activity levels 

from the acoustic data) of those species around lights would suggest that despite being caught 

near the light, they may just be commuting through. Thus, artificial lights may be helping 

common species, such as red bats, but actively hurting other, rarer species by both limiting their 

distribution on the landscape and concentrating insects where these species will not forage. 

Conservation practitioners should ensure protected lands have only necessary night lighting 

around infrastructure and work with lighting engineers to minimize impacts of artificial light on 

imperiled bat populations. 
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Table 2.1. Output from the general linear models testing the main effects of light treatment, minutes after sunset, and the 
interaction of treatment with minutes after sunset against ß-hydroxybutyrate concentrations in the five species of 
insectivorous bats. 
 
Coefficients big brown bat red bat gray bat evening bat tri-colored bat 

estimate P  estimate P  estimate P  estimate P  estimate P  
Intercept 0.047 0.492 0.118  0.001 8.96e-03 0.942 5.76e-02 0.336 0.377 0.248 

lit treatment -0.051 0.491 -0.165  <0.001 -2.92e-02 0.822 -1.24e-03 0.987 -0.353 0.315 

minutes after sunset -2.57e-04 0.464 -8.04e-04  <0.001 -4.01e-05 0.937 -5.04e-04 0.284 -0.003 0.241 

Interaction 2.93e-04 0.476 0.001  <0.001 1.69e-04 0.765 6.14e-05 0.911 0.003 0.337 

n 21 94 29 16 6 
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Table 2.2. Output from paired t-tests between activity levels in artificially lit and 
naturally dark conditions in six species of insectivorous bats 

 
Species Mean of difference t df P 
big brown bat -0.164 -5.086 39 9.53e-06 

red bat 0.719 1.882 39 0.067 

gray bat -1.173 -10.009 39 2.49e-12 

evening bat -0.133 -0.114 39 0.910 

tri-colored bat -0.153 -0.869 39 0.390 

Indiana/little brown bat -0.290 -3.179 39 0.003 
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Figure 2.1. (caption on next page) 
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Figure 2.1. Changes in ß-hydroxybutyrate concentrations across the night in the five species of 
insectivorous bats between artificially lit and naturally dark conditions. Yellow points represent 
values from artificially lit sites, while black points represent values from naturally dark sites. 
Values along the y-axis represent the range of residual values from a regression of temperature 
and ß-hydroxybutyrate in order to account for an effect of temperature.
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Figure 2.2. (caption on next page) 
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Figure 2.2. Comparison of relative bat activity, summed in 15-minute intervals, across the night 
between experimental treatments for each bat species. Calls of common red bats are often 
misidentified as rarer evening bats and tri-colored bats by the identification software so the 
patterns for these two species should be interpreted with care. Calls of the Indiana and little 
brown bat were combined as a single species group as they are very difficult to distinguish 
acoustically.
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Figure 2.3. Difference in relative abundance between treatments for each 15-minute interval, based on call data from Figure 2. Higher 
positive values represent greater activity at lit sites, while higher negative values indicate greater activity at unlit sites. 
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Figure 2.4. (caption on next page)
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Figure 2.4. Changes in ß-hydroxybutyrate concentrations across the night in the five species of 
insectivorous bats between artificially lit and naturally dark conditions. Yellow points represent 
values from artificially lit sites, while black points represent values from naturally dark sites. 
Two outliers, one from a big brown bat and one from a red bat, have also been excluded in this 
figure to maintain consistency between Figure 2.1. Their removal did not change the results 
qualitatively. 
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A.1 SUPPLEMENTARY DATA FOR CHAPTER 1 

Appendix Figure A.1 
 

 
 
Appendix Figure 1.1 caption on the next page 
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Appendix Figure 1.1 Flowchart for bioinformatics processing of Illumina MiSeq sequences. This 
flowchart details steps taken to ensure accurate identification of arthropods and filter out low-
quality sequences (i.e. chimeras, poor database matches, etc.). 
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