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STORMWATER SYSTEMS  

 
MAJOR PROFESSOR:  Dr. Ajay Kalra 

Climate models have anticipated higher future extreme precipitation for various regions. 

Urban stormwater facilities are vulnerable to these changes as this design assumes stationarity. 

However, recent climate change studies have argued about the existence of non-stationarity of 

the climate. A distribution method adopted on extreme precipitation varies spatially and may not 

always follow Generalized Extreme Value (GEV) distribution. In this research, the future design 

storm depth based on the stationarity of climate and GEV distribution method was examined 

with non-stationarity and a best fitted distribution method. For this, observed data from North 

American Regional Reanalysis (NARR) and climate model data from North American Regional 

Climate Change Assessment Program (NARCCAP) for historical (1971-2000) and future (2041-

2070) were analyzed to identify the best distribution method associated with the design storm 

depth (100yr 6hr). Twenty-seven different statistical distributions were applied to the data and 

were assessed using Kolmogorov-Smirnov and Pearson Chi-square test for the best-fit. The best 

fitted distribution method was used to calculate the design storm depth. Climate change scenarios 

were adopted as delta change factor, a downscaling approach to transfer historical storm to the 

climate adopted future storm, to represent a range of climate changes. Existing design storm 

depth and the climate generated storm depth were simulated and used as input to the HEC-HMS 
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model developed by Clark County Regional Flood Control District, NV to evaluate the 

hydrological parameters of the existing and proposed stormwater facility within Las Vegas 

City’s jurisdiction. The historic and projected storm depth from fourteen different NARCCAP 

models with different durations showed GEV-min (L-moments) distribution method as the best-

fit. Most of the delta change factors calculated were higher than one, representing strong climate 

change impact on design storm depth. The model result showed the existing stormwater facilities 

available may not be able to handle a future design storm. Thus, a proper update on existing 

design practice is warranted with a proper handling of non-stationarity and uncertainty of climate 

change. The research highlights the importance of available climate information and suggests a 

possible approach for climate change adaptation on stormwater design practice. 

Flooding is one of the major natural hazards in the US along with tropical cyclones and 

drought/heat waves. More adverse effects on flooding observed in recent years were linked with 

climate change. Understanding of flooding event along with flood risk management, a widely 

accepted best approach for flood defense, can mitigate the risk. Floodplain mapping which is the 

part of risk analysis is the first step towards flood risk management. Further, understanding the 

changing pattern of the design flood would help to understand and manage future changes. 

Variable Infiltration Capacity (VIC) forcing generated Coupled Model Intercomparison Project 

phase 5 (CMIP5) streamflow was used for the future streamflow analysis. Various statistical 

distributions were fitted with Pearson Chi-square and Kolmogorov Smirnov test to get the 

underlying distribution among the routed streamflow of Carson River near Carson City, an 

agricultural area in the desert of Nevada. Altogether 97 projections from 31 models with 4 

emission scenarios were used to predict the 100yr flow using a best fit distribution. Delta change 

factor is used to predict future flows and routing uses HEC-RAS model. Most of the projections 
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indicate increase in the future 100yr flood level. Developed floodplain mapping for the future 

has a larger inundation area compared with Federal Emergency Management Agency (FEMA) 

flood inundation maps. This study suggests an approach to analyze future flood and preparation 

of floodplain. This will provide helpful information to the facility manager, design engineer, and 

stakeholders.    
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CHAPTER 1  

INTRODUCTION 

 Research Background 

After the improvement in agriculture and start of the industrialization gathered more 

urban population in the 18th and 19th century rose substantially (Wu et al., 2011). Urban 

population is increasing day by day, with more than half of the world population now living in 

urban areas (Lederbogen et al., 2011). Urbanization has enhanced the industrial development and 

development prospect of human life (Grimm et al., 2008; Landes, 2003). At the same time due to 

concentration of human population, natural resources nearby were more stressed (Chen et al., 

2017; Chen et al., 2018; Shukla et al. 2011). 

Urbanization has increased the paved surface and changed land use pattern leaving less 

infiltration and more surface runoff eventually producing more flash floods (Aryal et al., 2018; 

Carrier et al., 2011; Douglas et al., 2007; Kalra et al., 2013a; Kalra et al., 2013b; Kalra et al., 

2017). These flash floods are intensified in recent years due to climate change, which has the 

capacity to alter the duration, intensity and frequency of a storm event (Zwiers et al., 2013). 

Thus, the urban population is vulnerable to such change and it is necessary to strengthen urban 

infrastructure to protect from such imminent threats (Gautam et al., 2013; Jobe et al., 2017; Jobe 

et al., 2018; Thakali et al., 2017a; Thakali et al., 2018). The urban infrastructures are designed 

based on the stationary approach to climate characterization which has already been opposed by 

many recent researches (Cheng et al., 2014, Jiang et al., 2016; Zhang et al., 2010; Thakali et al., 

2017b; Thakali, 2017). Though climate change is a well-known phenomenon, prediction of the 

future climate is not an easy task. Various climate models and their projections are available, 

which facilitates the researcher in describing future climate and climatic variables (Knutti et al., 
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2013; Mearns et al., 2009; Pokhrel et al., 2012; Pokhrel et al., 2017; Pokhrel et al., 2018). This 

study aims to utilize available climate models to predict the probable future condition and 

analyzes the effect on infrastructures.   

Design of stormwater infrastructures, which are the major components of urbanization 

depends upon probabilistic analysis of available datasets (Notaro et al., 2015; Nyaupane et al., 

2017, Parajuli et al., 2017). The result of the analysis directly depends upon the selection of the 

statistical distribution method (Cunnane, 1989). Selection of a random distribution among 

available different options deviates the result from reality (Bhandari et al., 2017; Ghimire et al., 

2016; Thakur et al., 2017a; Thakur et al., 2017b). Thus, best fit analysis would be effective way 

to select the best distribution before carrying any frequency analysis, which is the basis of design 

parameter selection. The study aims to possible way of analyzing future hydrology associated 

with urban life and would be helpful to designers, managers, planners and engineers.  

 Research Motivations 

Extremes in weather are more common in recent years linking these to climate change. 

Since most of the infrastructures are designed based on historical records of data considering the 

stationarity of climate. Recent research developments outdated the stationarity of climate. Thus, 

there is a necessity to cope with the challenges posed by increasing extreme events. Along with 

this, method used in frequency analysis affects directly on the probable return period of an event. 

Without a best fit it cannot be decided which distribution fits best with a given set of data. These 

research problems have motivated the two research tasks one on each of extreme precipitation 

and streamflow. 



 3 

 

 Research Objectives 

This study aims to check the existing standards followed on distribution analysis of City 

of Las Vegas along with estimates of the worst case scenario in future. Impact on existing 

infrastructures were evaluated for future design storm. The research highlights the importance of 

available climate information and suggests a possible approach for climate change adaptation on 

stormwater design practice.  

The second part of the study deals with finding a suitable approach to estimate the future 

streamflow and comparefuture floodplain prediction with existing FEMA maps. This will 

provide helpful information to the facility manager, design engineer, and stakeholders.   

Research Question #1: How the changing precipitation pattern due to climate change affect the 

stormwater infrastructures? 

Assumption #1: The climate is changing and the climate models represent future climate 

conditions especially precipitation pattern.  

Hypothesis #1: Extreme storm events are increasing in Las Vegas City with the changing 

climate. 

Research Question #2: How the changing streamflow as a result of changing climate impact the 

flood frequency and floodplain? 

Assumption #2: The climate is changing and the CMIP5 streamflow projection best represents 

unimpaired streamflow. 

Hypothesis #2: Extreme streamflow is increasing in the future in Carson River at Carson City.    
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 Research Outline 

The research follows a manuscript format starting with introduction. Two different 

manuscript are combined under this study. The second chapter titled “Statistical evaluation of 

precipitation extremes and the climate change impact on urban stormwater infrastructures” 

addresses the research question #1 while the third chapter titled “understanding climate effect 

on future streamflow with statistical approach on variable infiltration capacity forced cmip5 

hydrology projection at Carson river, Carson City” addresses the research question #2. Chapter 

four summarizes the results and suggests recommendations for future work. 
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CHAPTER 2  

STATISTICAL EVALUATION OF PRECIPITATION EXTREMES AND THE 

CLIMATE CHANGE IMPACT ON URBAN STORMWATER INFRASTRUCTURES  

 Introduction 

Infrastructure is defined as built up structures that are needed for operation of modern 

society (Hanson, 1984). These include transportation systems, water and wastewater system, 

electrical network, communication network etc., which are critical for urban civilization. These 

infrastructures are most vulnerable to the fluctuations in weather. The recent flooding events in 

several regions have already shown the sign of the impact of extreme weather on urban 

stormwater infrastructure (Reilly and Piechota, 2005; WSDOT, 2008). To understand these 

impacts that could more intense in future, Southern Illinois University Carbondale and City of 

Las Vegas collaborated a partnering effort. 

Intergovernmental Panel on Climate Change (IPCC) report highlights that more than fifty 

years of extreme weather records of heavy precipitations are directly related to human influence 

(Stocker, 2014). In this period, climate change has increased the frequency of the extreme storm 

events, and longer dry periods by changing the intensity-duration-frequency relationship 

(Christensen et al., 2007; Zhu et al., 2013). Coping with these extremities is the main global 

challenge (Richardson et al., 2011). One of the outcomes of these extremities, urban flooding is 

the costly and chronic natural hazard in the United States (O'Connor and Costa, 2003). In 

addition, urbanization has amplified the effect of flooding with the increased paved surface. To 

cope with these hazards in the urban area, engineering design and planning sectors are required 

to take appropriate measures.  
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Most of the current hydrological design of stormwater infrastructures are based on 

standard return period derived from historical data (Guo, 2006). Design based on historical data 

without considering climate change cannot fulfill the future requirements of stormwater 

infrastructure (Mailhot and Duchesne, 2009). Rainfall prediction based only on historical data 

can provide a stationary relation between time and precipitation (Bonnin et al., 2006). Stationary 

based conventional method of water management infrastructure design is compromising the 

future fluctuation of climate (Milly et al., 2008). Anthropogenic factors, the cause of the climate 

change, are a primary reason of recently observed non-stationarity in the climate (Brown, 2010). 

This necessitates robust approach of design with the capacity to incorporate climate change 

(Guo, 2006; Mailhot and Duchesne, 2009). The design method to deliver the long-term 

requirement of the infrastructure only be validated by foreseeing the future. Climate models are 

the tools to simulate the future climate conditions (Randall et al., 2007).   

Various climate models are available for research and use representing future climatic 

condition (Cox et al., 2000; Zhang et al., 1995; Kiehl et al., 1998). Based on IPCC Fifth 

Assessment Report and Special Report on Emission Scenarios (SRES) the climate models were 

derived. Though, the model can represent future climate condition under the same emission, 

there is always two types of uncertainties underlined while predicting climate change using a 

model: one while selecting a proper model (Gutmann et al., 2016) and another deficiency of the 

model to simulate the climate (Houghton et al., 2001). Selecting all the available models for the 

study will cover the range of the climate change scenarios. Recent studies using different climate 

models have indicated increasing trend of the extreme storm events in future in the various part 

of the world (Lee et al., 2016;  Daage et al., 2016; Sorribas et al., 2016; Pinto et al., 2016). A 

new design approach is necessary with the proper prediction of climate change storm depth 
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(Thakali et al., 2016).  Mailhot and Duchesne (2009) proposed a design procedure for the urban 

drainage infrastructure considering the effect of climate change. Previous papers have suggested 

the accounting the effect of climate change on the current design practices (Mailhot et al., 2007; 

Mailhot and Duchesne, 2009; He et al., 2006; Wernstedt and Carlet, 2012; Salvadore et al., 2015; 

Praskievicz and Chang, 2009). 

Zhu et al. (2012) projected regional influence on Intensity-Duration-Frequency curves 

and suggested its underlying distribution varies spatially. Grillakis et al. (2011) study based on 

hydrology found the increase in extreme precipitation events. Moglen and Vidal (2014) used 

North American Regional Climate Change Assessment Program (NARCCAP) climate model 

data to analyze the performance of detention basin under future climate condition using storm 

depth and intensity. Since most of the design of water infrastructures are designed based on 

maximum up to 24 hours of duration while most of the available climate model data are coarser 

in resolution, NARRCAP climate model data are widely used (Thakali et al., 2016; Ahmed and 

Tsanis, 2016). Forsee and Ahmad (2011) carried out the performance evaluation of the Pittman 

watershed of Las Vegas Valley. The study assessed the climate model performance using 

gridded reanalysis data. The study used the Generalized Extreme Value (GEV) distribution based 

on Bonnin et al. (2006). Further, Thakali (2017) has proposed a robust approach to consider the 

climate change effect on stormwater and suggested distribution method as L-moment for 

regional analysis. But the regional analysis in L-moment may not always show the best fit (Zhu 

et al., 2012). Ahmed and  Tsanis (2016) used 6 different RCM-GCM paired models of 

NARCCAP for the prediction of the best fit-distribution. These previous studies suggested 

different approaches for adopting effect of climate change on design depth, but they were lacking 

either in the selection of best-fit distribution or utilization of all the NARCCAP models. The 
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study aims to suggest the best fit distribution for the City of Las Vegas and suggest an approach 

for climate change adaptation on design storm depth. 

The scope of this study was to obtain the best fit distribution for the City of Las Vegas, 

predict the effect of climate change on design storm depth given by all fourteen different RCM-

GCM paired NARCCAP models. The data from each model for the study area were studied on 

twenty-seven different frequency distribution analysis to get the best fit distribution using two 

tests. Suggesting a robust design method for the prediction of the potential impact of climate 

change on the existing stormwater infrastructure is the main scope of this study. Total fourteen 

RCM-GCM data available to date from NARCCAP have been used to predict the A2 scenario 

originated future projected design storm depth. NARCCAP model data were grouped for 3hr, 

6hr, 12hr and 24hr durations. These grouped data were best fitted using Pearson Chi-square and 

Kolmogorov Smirnov test among the twenty-seven-different distribution analysis. The best-fitted 

distribution method is adopted to calculate 6hr 100yr storm depth for historic and projected data. 

Delta change factor was applied to the design depth from NOAA Atlas II to project the future 

storm depth due to climate change. The existing hydrological model in HEC-HMS is used to get 

the hydrological parameter under the multiple scenarios of climate change. The model outputs 

were analyzed for determining the effect on existing stormwater infrastructures. The details of 

the study are discussed in the subsequent sections.   

 Study Area 

Southwest region of the United States is not only the arid and hottest but has also been 

experiencing more extremes like drought, high temperature and extreme precipitation (Jardine et 

al., 2013). This extreme precipitation is climate change originated and has subsequent intense 

effects on urban stormwater infrastructures. Lying in the semi-arid desert of Nevada, City of Las 



9 

 

Vegas is vulnerable to climate change. Two urbanized watersheds i.e. Gowan and Central were 

considered as the study area. The total area of the Gowan and the Central watersheds are 

approximately 215 km2 and 145 km2 respectively. The Las Vegas Valley has 47.2°C and -13.3°C 

with upper and lower extreme temperature observed on 06/30/2013 and 01/13/1963 respectively. 

The average annual precipitation of the valley is 121mm with record maximum of 272mm in 

1941. The study area extends from 244°33’22” E to 244°56’20” E and 36°06’54” N to 

36°17’13” N. Figure 1 shows the two watersheds of Las Vegas Valley occupying the major 

portion of City of Las Vegas. Two largest detention basins one on each are indicated in Figure 1.  

 

Figure 1: Study Area (Gowan and Central Watershed) of Las Vegas Valley. 

In the recent years, the rate of development in Las Vegas has been slowed. However, it is 

anticipated that the population growth is likely to continue in the coming years (Tra, 2008). 

Growth in population and urbanization changes the hydrological parameter of the watersheds 



10 

 

resulting more flooding due to increase in extreme precipitation events (White and Greer, 2006). 

Funding of the flood control activities lies within the jurisdiction of Clark County Regional 

Flood Control District (CCRFCD). The local entity, City of Las Vegas is responsible for design 

and implementation of flood control activity for these watersheds. Recent drought and intense 

extreme precipitation have shown the clear picture of the vulnerability of city of Las Vegas. 

Recent heavy rainfall in 1999 and 2003 had exceeded the 100-year peak rainfall and runoff 

respectively (Reilly and Piechota, 2005). Two of the meteorological stations of the valley 

reported the precipitation depth on July 8, 1999 more than 75mm within 60 to 90 minutes of the 

respective time period. The flood caused public damage of more than $20.5 million and life of 

two. Another thunderstorm of August 19, 2003, was centered over 127 km2 in Gowan watershed 

(Reilly and Piechota, 2005). The intensity of 2 of the 15 rain gage networks within the Gowan 

watershed measured more than 50mm within 90 minutes of the time interval. The flash flood 

developed by these events created huge damage to public and private properties. This study 

analyzed the detention basins with the design storm depth for present and future conditions for 

hydrological parameter comparison with and without climate change conditions.  

 Data 

SRES presents the basis of climate scenarios research for international climate change 

projects (Nakicenovic et al., 2000). SRES A2 emissions scenario for the 21st century have been 

applied to atmosphere-ocean general circulation models (AOGCMs), NARCCAP is one of such. 

RCMs are nested within multiple AOGCMs for the current period 1968-2000 and the future 

period of 2038-2070 (Mearns et al., 2009). NARCCAP dataset contains different models output 

for a conterminous domain covering the United States and most of Canada and northern part of 

Mexico (Mearns et al., 2009). Precipitation depths provided by NARCCAP model were used to 
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project the storm depth for the study area. These different model datasets have 3hrs temporal 

distribution and available total up to 33 years. The data between the period of 1971 – 2000 (30 

years) were considered for the study as the initial spin-up period, where the model is not stable 

and cannot produce usable data and were discarded. In addition, there were differences on time 

steps in a run as different calendars are used for different driving AOGCMs. GCM HadCM3 uses 

30 days month and total 360 days year. For all other drivers, 365 days a year without leap year is 

run calendar. Table 1 represents the NARCCAP climate model and contributing RCM and GCM.  
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Table 1: Regional Climate Model (RCM) and Global Climate Model (GCM) paired combination 

models adopted for the study.  

Model (RCM-GCM) RCM GCM 
CRCM-CCSM Canadian Regional Climate 

Model 
Community Climate System 
Model 

CRCM-CGCM3 Canadian Regional Climate 
Model 

Third Generation Coupled 
Global Climate Model 

ECP2-GFDL Experimental Climate 
Prediction Center 

Geophysical Fluid Dynamics 
Laboratory 

ECP2-HadCM3 Experimental Climate 
Prediction Center 

Hadley Centre Coupled Global 
Climate Model 

HRM3-GFDL Hadley Regional Model 3 Geophysical Fluid Dynamics 
Laboratory 

HRM3-HadCM3 Hadley Regional Model 3 Hadley Centre Coupled Global 
Climate Model 

MM5I-CCSM MM5 - PSU/NCAR 
Mesoscale Model 

Community Climate System 
Model 

MM5I-HadCM3 MM5 - PSU/NCAR 
Mesoscale Model 

Hadley Centre Coupled Global 
Climate Model 

RegCM3-CGCM3 Regional Climate model 
version 3 

Third Generation Coupled 
Global Climate Model 

RegCM3-GFDL Regional Climate model 
version 3 

Geophysical Fluid Dynamics 
Laboratory 

TMSL-CCSM Time slice Community Climate System 
Model 

TMSL-GFDL Time slice Geophysical Fluid Dynamics 
Laboratory 

WRFG-CCSM Weather Research and 
Forecasting Model 

Community Climate System 
Model 

WRFG-CGCM3 Weather Research and 
Forecasting Model 

Third Generation Coupled 
Global Climate Model 

 

The data are stored in NetCDF file in two-dimensional arrays. Each spatially separated 

data grid point has its assigned x and y as location coordinates, where the data belong to. RCM 

determines the location of the grid points. The grid nearest to the centroid of the study were 

considered for the study. Data provided by National Centers for Environmental Prediction as 

North American Regional Reanalysis (NARR), whose spatial resolution is 32km were used as 

available historical observed data to assess the climate model data. The NARR data have a 
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temporal span of 1979-2008 (30 years) and are also 3-hour resolution (Mesinger et al., 2006). 

Only the data from the time span of 1979-2000 (22 years) were considered to compare with 

NARCCAP data.   

CCRFCD was formed in 1985 for the development of coordinated and comprehensive 

Master Plan to mitigate the flooding problems within the Clark County jurisdiction. This 

program is also responsible for regulating land use in the flood hazard areas and provides 

funding and coordination on flood control facility construction works. The Las Vegas valley has 

been divided into ten watersheds as depicted in Figure 1 (CCRFCD, 2018). CCRFCD modeled 

each watershed in the HEC-1 hydrological model for the design of the drainage facilities 

(CCRFCD, 1999). Later, these HEC-1 models were converted to HEC-HMS for its graphical 

user interface capability. HEC-HMS is a rainfall-runoff simulation model, developed by United 

States Army Corps of Engineers (USACE). Along with basin characteristics, it allows simulation 

of channel behavior and water control structures for a watershed. Rainfall depths for the area are 

provided in the NOAA Atlas 2(Miller et al., 1973).  USACE (1988) suggested a subsequent 

modification in the NOAA precipitation depth. Prediction of runoff as discharge, stage, volume, 

and timing are the output from the model. Latest Master Plan Update (MPU), 2018 has no 

changes on the hydrologic parameters of the HEC-HMS model from MPU 2008, thus 2008 

HEC-HMS models were implemented for the hydrological modeling of the study area 

(CCRFCD, 2018). The basin models consist of the subbasin, reach, junction, reservoir, and 

diversion. 

CCRFCD has developed a guideline, Hydrologic Criteria and Drainage Design Manual 

(HCDDM) for proper design and modeling or stormwater infrastructure (CCRFCD, 1999). 6hr 

duration storm with 100 years of frequency provided by NOAA Atlas 2 is multiplied by an 
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adjustment factor of 1.43 before applying to HEC-HMS model (CCRFCD, 1999). The adjusted 

storm depth varies from 70mm to 94mm based upon the distance from the measured 

meteorological station, McCarran International Airport. This storm depth represents precipitation 

for given frequency and duration for the isolated centroid of a subbasin, however, storm 

occurring over an area vary spatially even within the watershed. To account this variation depth-

area reduction factor (DARF) has been applied to the precipitation depth depending upon the 

area of the subbasin. As storm intensity decrease with increase in area greater DARF ranging 

from 1 to 0.39 for drainage area 0 to 1295 km2 applied (CCRFCD, 1999). HEC-HMS does not 

entertain multiple DARF in a single simulation, thus separate simulation should be carried out 

for different DARF values. There are 198 & 230 subbasins for analysis of Central and Gowan 

watersheds respectively in the existing HEC-HMS models. Based on the storm distribution over 

the area hydrological models with two storms centering were available for the Gowan watershed. 

The model with storm centering over the Gowan Watershed was used for the hydrological 

analysis of an existing detention basin named Angle Park detention basin (ANGLPKDB). 

Similarly, three storm centering conditions were available for the Central watershed. Based upon 

the location of the detention basin named Carey-Lake Mead detention basin (CARYLMDB), 

Northwestern, basin model with storm centering all over the watershed was considered. 

 Method 

The methods adopted in this study comprised of two parts.; (1) Statistical fitting and delta 

change factor and (2) Hydrological Modeling. Statistically, fitted distribution methods were 

adopted for the calculation of delta change factor, which was used with the design storm depth 

on the hydrological model of the study area. The existing HEC-HMS models of the study were 

used for the interpretation of design parameters of drainage system in the future climate.  
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Table 2: Distribution used for frequency analysis and corresponding parameter (Kozanis et al., 

2010). 

SN Distribution methods Paramters Symbol 

1 Normal mu, sigma μ, σ 
2 Normal(L-Moments) mu, sigma μ, σ 
3 Log Normal mu, sigma μy, σy 
4 Galton mu, sigma, psi μ, σ, ψ 
5 Exponential lambda, psi λ, ψ 
6 Exponential (L-Moments) lambda, psi λ, ψ 
7 Gamma kappa, lambda κ, λ 
8 Pearson III kappa, lambda, psi κ, λ, ψ 
9 Log Pearson III kappa, lambda, psi μy, σy, c 
10 EV1-Max (Gumbel) lambda, psi λ, ψ 
11 EV2-Max kappa, lambda κ, λ 
12 EV1-Min (Gumbel) lambda, psi λ, ψ 
13 EV3-Min (Weibull) kappa, lambda κ, λ 
14 GEV-Max kappa, lambda, psi κ, λ, ψ 
15 GEV-Min kappa, lambda, psi κ, λ, ψ 
16 Pareto kappa, lambda, psi κ, λ, ψ 
17 GEV-Max (L-Moments) kappa, lambda, psi κ, λ, ψ 
18 GEV-Min (L-Moments) kappa, lambda, psi κ, λ, ψ 
19 EV1-Max (Gumbel, L-Moments) lambda, psi λ, ψ 
20 EV2-Max (L-Moments) kappa, lambda κ, λ 
21 EV1-Min (Gumbel, L-Moments) lambda, psi λ, ψ 
22 EV3-Min (Weibull, L-Moments) kappa, lambda κ, λ 
23 Pareto (L-Moments) kappa, lambda, psi κ, λ, ψ 
24 GEV-Max (Kappa Specified) kappa, lambda, psi κ, λ, ψ 
25 GEV-Min (Kappa Specified) kappa, lambda, psi κ, λ, ψ 
26 GEV-Max (Kappa Specified, L-Moments) kappa, lambda, psi κ, λ, ψ 
27 GEV-Min (Kappa Specified, L-Moments) kappa, lambda, psi κ, λ, ψ 

 

 Statistical fitting and delta change factor 

In this study, altogether twenty-seven different statistical distributions were applied to 

each data sets and best fit among them was identified which will be applicable for the given 

watershed. The distribution analysis applied for the study are listed in Table 2. The precipitation 

data from the NARCCAP and NARR, considering the grid nearest to the centroid of the study 
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area, were extracted. Each model has data with 3-hour temporal resolution. Using an algorithm, 

the data were converted into the 6hr, 12hr and 24hr temporal scale using the moving window of 

6hr, 12hr, and 24hr respectively over each model data (Bedient and Wayne, 1988). A series of 

annual maxima was pulled from each set of climate model data for four temporal spacing 3hr, 

6hr, 12hr, and 24hr. Each series of annual maxima was best fitted into the twenty-seven-different 

distribution. Pearson Chi-square (χ2
) and Kolmogorov-Smirnov test were used to measure the 

goodness of fit for the distributions. This process was implemented to the historic and projected 

data from fourteen NARRCAP model, and historic data of NARR for four different durations. In 

total, one hundred sixteen sets of data (60 historic and 56 projected) were used for the analysis. 

After the best fit, each test return reached a significant level as αreached (Kozanis et al., 2010). The 

significant level for Pearson Chi-square and Kolmogorov Smirnov test is respectively given by, 

�������� = 1 − �� (� = � − � − 1, �)   (Eq. 1) 

�������� = 1 − �� (�, �)     (Eq. 2) 

Where, m is the degree of freedom, k is the class interval, r is the number of parameter of 

the distribution and q is the computed Pearson parameter, which is given by 

 � = �
� � n�� − �

�

���
     (Eq. 3) 

where, n is the size of the sample. 

These analyses were carried out using the statistical Hydrognomon software developed 

by National Technical University of Athens (Kozanis et al., 2010). The method, which gives the 

best fit for the maximum number of datasets was selected for the further calculation design 

depth, 100yr 6hr, for historic and future NARCCAP models, and historic NARR climate 

scenarios. The design depth from historic NARR data was used to assess the NARCCAP historic 
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data. Since NARR data are fine gridded (32km grid) than NARCCAP data (50km), NARCCAP 

data should give the higher design depth as climate model considers area-averaged grid values. 

Those NARCCAP models with higher than the NARR historic data were discarded from further 

analysis. The delta change factor for each model is the ratio of future 100yr 6hr storm depth to 

the present 100yr 6hr storm depth. Equation 4 and 5 provide the procedure for the calculation of 

delta change factor given by Zhu et al., (2012). 

∆�� 
(!) (", #) = $%

(&)(',()
$)

(&)(',()    (Eq. 4)   

*�
(+)(", #) =  ∆�� 

(!) (", #) ∗ * 
(+)(", #)  (Eq. 5) 

Where,  

P with superscript g and p denotes the precipitation for grid and the point respectively. F 

and H represent future and historic respectively. All the parameters are for specific T (return 

period) and D (duration). Figure 2 represents the method as flowchart format.  
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Figure 2: Flowchart of methodology to calculate delta change factor 

 Hydrological modeling  

Each point rainfall from NOAA Atlas 14 was multiplied by adjustment factor depending 

upon the recurrence interval of the design storm before applying to hydrological model. The 
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details of the calculations are provided in the HCDDM (CCRFCD, 2018). HEC-HMS has been 

widely used for the rainfall-runoff simulations because of its hydraulic capabilities from basin 

simulation, channel routing, storage units, diversion function and loss accounting. The modified 

NOAA rainfall depths as suggested by (USACE, 1988) were used. CCRFCD has prepared 

different hydrological models for each watershed on HEC-HMS. The models contain drainage 

network and detention basins considered for the future development (CCRFCD, 1999). The 

model contains 198, 230 sub-basins for Central and Gowan watersheds. 

There are ten detention basins in Gowan watershed and four detention basins in the 

Central watershed. ANGLPKDB was considered for the performance analysis from Gowan 

watershed, while, CARYLMDB was considered for the performance analysis. These detention 

basins are the largest one in their respective watershed. The contributing drainage area for the 

ANGLPKDB and CARYLMDB area is 56.95 and 30.51 sq km respectively. Among the three 

models prepared for the Central watershed, NW was selected to simulate the detention 

CARYLMDB. Similarly, ALLGOW model among two available models was selected for the 

simulation of the ANGLPKDB. The control specification of the simulation was set starting from 

01:05, 01 January to 02:00, 09 January. The simulation time interval was set for 5 minutes.  

 Results 

The annual maxima from the fourteen different NARCCAP RCM-GCM models of 

present and future data were fitted to Pearson Chi-square and Kolmogorov Smirnov test for the 

twenty-seven-different statistical distribution. The best-fitted distribution method for each model 

for historical and projected data are listed in Table 3. For example, the present (historic) of 

CRCM-CCSM model has been best fitted with GEV-max (kappa specified) using Pearson Chi-

square test, while for future (projected) data for the same model is fitted with EV3-Min 
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(Weibull). These two were marked by symbol ○ and □ on the table respectively. Similarly, ▪ and 

● represents the best-fitted distribution method from Kolmogorov Smirnov test for historic and 

projected datasets respectively. Altogether 116 different datasets derived from observed NARR 

data with 4 durations (3hr, 6hr, 12hr and 24hr) and 14 NARCCAP models under 4 different 

durations and 2 categories (historic and projected) were analyzed for the best fit. The results of 

which are presented in Table 3. Figure 3 shows the selection results for the twenty-seven 

distribution methods.
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Table 3: Best fitted distribution for different NARCCAP model data.  
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Note :- The symbol ○ and □ are used for Pearson Chi-square test fit for present and future climate data respectively while ▪ and ● are used for Kolmogorov 

Smirnov test fit for present and future climate data respectively. 
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Figure 3: Selection of best fitted distribution 

The statistical analysis result as depicted in Table 3 and Figure 3, GEV-Min (L-moment) 

was found to be the best-fitted distribution by resulting highest goodness values in Pearson Chi-

square and Kolmogorov Smirnov test in 23 occasions. GEV-Min (L-moment) was best fitted for 

10% of total 232 maximum possible number of best fit from 15 models, 4 durations, 2 categories 

and 2 test. Similarly, second most selected was EV1-Max (Gumbel, L-moment), which was 

considered as the most frequently used distribution method for extreme precipitation evaluation 

with a total selection of 22 times i.e. 9% of the total. The third most selected was Gamma with a 

total selection of 18 times ie. 8% of the total. This best fit analysis provides the best distribution 

for the datasets which eliminated the underlying uncertainty on the selection of the appropriate 

distribution method.  
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Design storm depths using the best-fitted distribution method were calculated for the 

NARCCAP present and future datasets along with the NARR historic depth, these were tabulated 

in Table 4. Figure 4 shows the scatter plot between historic and future NARCCAP design depths. 

The solid vertical line with value 38.19mm for historic depth represents the NARR 100yr 6hr 

storm depth. The solid line at 45° represents the delta change factor one i.e. without climate 

change in future. Another inclined line represents the delta change factor value two representing 

twice the increase in design storm depth in future. The range of the delta change factors was 0.88 

to 2.64 with the minimum for ECP2-GFDL and maximum for HRM3-HadCM3. Among 14 

models, 11 models have delta change factor greater than 1. Must of the delta change factor are 

greater than 1 which represents higher possibility of increasing future storm depth. Thus, null 

hypothesis of hypothesis #1 is true.  

Table 4: Delta change factor for different NARCCAP models.  

Climate Model 
Historic 100yr 6hr 
depth (mm) 

Projected 100yr 6hr 
depth (mm) 

Delta Change 
Factor 

NARR 38.19 - - 
CRCM-CCSM 20.42 22.84 1.12 
CRCM-CGCM3 17.17 22.37 1.30 
ECP2-GFDL 85.48 75.32 0.88 
ECP2-HadCM3 34.57 57.92 1.68 
HRM3-GFDL 104.98 144.69 1.38 
HRM3-HadCM3 27.12 71.61 2.64 
MM5I-CCSM 40.75 53.14 1.30 
MM5I-HadCM3 36.55 56.95 1.56 
REGCM3-CGCM3 43.10 40.56 0.94 
REGCM3-GFDL 66.44 122.51 1.84 
Timeslice-CCSM 27.57 26.60 0.96 
Timeslice-GFDL 30.99 39.23 1.27 
WRFG-CCSM 55.93 63.52 1.14 
WRFG-CGCM3 30.17 35.65 1.18 
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NARR historic storm depth was used to assess the climate model data. As the NARR data 

is finer than the NARCCAP climate model, the climate model data with higher historic design 

storm depth were discarded from further analysis. Thus, among the 14 climate models, 6 (ECP2 

GFDL, HRM3-GFDL, MM5I-CCSM, REGCM3-CGCM3, REGCM3-GFDL and WRFG-

CCSM) were discarded. Among the remaining model Timeslice-CCSM with delta change factor 

0.96, which is less than 1, representing the condition where there will be less design storm depth 

in future, such condition is considered as negative climate change condition. The recently 

observed climatic phenomenon over the City of Las Vegas invalidates the decrease in the design 

storm, thus was eliminated. Only the remaining 7 models with minimum and maximum delta 

change factor 1.12 and 2.64 were considered for the further hydrological analyses and were 

represented by Climate Change Condition 1.12 (CCC1.12) and Climate Change Condition 2.64 

(CCC2.64) respectively.  
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Figure 4: Historic 100yr 6hr versus future 100yr 6hr storm depth from different NARCCAP 

model and vertical line represents the NARR depth for 100yr 6hr. 

HEC-HMS hydrological model with two different simulations, for different watersheds, 

were used to compare the result of inflow, outflow, elevation, and storage. For the detention 

basins ANGLPKDB and CARYLMDB, DARFs of 0.765 and 0.85 respectively for the baseline 

scenario. The assigned DARFs were based upon their drainage area, which are 56.95 and 30.51 

sq-km respectively for ANGLPKDB and CARYLMDB. The change in elevations was calculated 

in such a way that the elevation for zero inflow and outflow is taken as a datum. HEC-HMS 

model simulations for baseline, CCC1.12 and CCC2.64 were carried out to represent the range of 

future 6hr 100yr storm depth conditions.  

Hydrological modeling of the detention basins was represented by the elevation storage 

and storage discharge function, while input for diversion component was assigned as inflow-
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diversion function. These parameters were defined under the paired data. During the simulation, 

the input values were exceeded the specified on the model. Those values were linearly 

interpolated to cope the higher values under climate change conditions. The model output of 

inflow, discharge, change in elevation and storage for ANGLPKDB and CARYLMDB are 

presented in Figure 5. The peak of each output is presented in Table 5.  

Table 5: Peak HEC-HMS outputs for the detention basins (ANGLPKDB and CARYLMDB) 

Element Scenario 
Peak Inflow 

(m3/s) 
Peak 

Storage (m3) 
Maximum Change in 
storage elevation (m) 

Peak Outflow 
(m3/s) 

ANGLPKDB 

Design 260.49 1726872 13.01 11.51 
Baseline 259.57 1854044 13.05 11.51 
CCC1.12 303.63 2210273 15.18 11.91 
CCC2.64 1004.90 7253849 45.51 17.55 

CARYLMD
B 

Design 146.79 748722 7.97 10.63 
Baseline 145.58 732070 7.99 10.67 
CCC1.12 174.19 881321 8.81 11.45 
CCC2.64 551.16 3137110 21.49 23.22 

 

Figure 5a-d are the graphical plots for output for ANGLEPKDB while the Figure 5e-h are 

the plots for output for CARYLMDB. For ANGLEPKDB, the peak inflows were observed at 

5:00, 5:00 and 5:05 for baseline, CCC1.12, and CCC2.64 respectively. The peak storages were 

observed at 8:50, 7:15 and 5:10 for baseline, CCC1.12, and CCC2.64 respectively. The 

maximum changes in storage elevation were observed at 8:40, 7:15 and 5:10 for baseline, 

CCC1.12, and CCC2.64 respectively. Maximum outflows were observed at 8:50, 7:15 and 5:10 

respectively. For CARYLMDB, the peak inflows were observed at 5:05, 5:05 and 5:05 for 

baseline, CCC1.12, and CCC2.64 respectively. The peak storages were observed at 7:25, 6:55 

and 7:00 for baseline, CCC1.12, and CCC2.64. The maximum changes in storage elevation were 

observed at 7:10, 6:55 and 7:00 for baseline, CCC1.12 and CCC2.64 respectively. Maximum 

outflows were observed at 7:20, 6:55 and 7:00 respectively.  
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The change in 100yr 6hr storm depth ranging from 12% to 164% increase the peak 

inflow will increase 17% to 230% and 19% to 216% for ANGLPKDB and CARYLMDB 

respectively. Similarly, the peak storage will increase 19% to 228% and 20% to 256% for 

ANGLPKDB and CARYLMDB respectively for the range of climate change. The outflow is 

governed by the outlet structure, which was designed based on the present scenario. Thus, the 

outflow has less increment compared with inflow i.e. from 3% to 47% compared with 7% to 

103% for ANGLPKDB and CARYLMDB respectively. 
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Figure 5: HEC-HMS outputs for detention basins (ANGLPKDB and CARYLMDB) on time 

series format for (a) inflow-ANGLPKDB, (b) Discharge-ANGLPKDB, (c) Elevation difference-

ANGLPKDB, (d) storage-ANGLPKDB, (e) inflow-CARYLMDB, (f) Discharge-CARYLMDB, 

(g) Elevation difference-CARYLMDB and (h) storage-CARYLMDB. 
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 Discussion  

The NARCCAP models are derived from RCM-GCM combinations with the same spatial 

resolution of 50-km, however, the best fit distribution varied with each other. In this study, the 

best fit distribution corresponding to the climate model data of the study area was selected using 

Pearson Chi-square and Kolmogorov Smirnov method. NARR observed data and fourteen 

NARCCAP both historic and future data for four different durations were best fitted for twenty-

seven distribution methods. The GEV Min (L-moment) resulted as the best fitted from Pearson 

Chi-square and Kolmogorov Smirnov test, which was applied to the design storm depth 

calculation. This study identified the best distribution underlying the study area which minimizes 

the risk of selecting inappropriate distribution method. A comprehensive statistical analysis by 

Bonnin et al. (2006) found the GEV distribution as the best distribution for the Las Vegas 

Valley. Thakali et al. (2016) carried out the regional frequency analysis under the Flamingo-

Tropicana watershed to minimize the best fit error using the L-moment and GEV. The regional 

frequency analysis increases the size of the data reducing best-fit error, however, it doesn’t 

completely eliminate the error of selecting single best distribution method. Especially, in the 

climate model data selecting a distribution method may not justify the statistical analysis since 

the nature of climate data differs from the actual observed data and also among the climate 

models. 

Different statistical distributions can produce different design storm depth from the same 

sets of available data. Design storm depth varies spatially along with the distribution method. 

Hosking and Wallis (2005) suggested L-moment method for the frequency analysis of 

hydrological parameter. Also, natural variability of the climate affects its ability to project the 

emission forced component in extreme precipitation (Kendon et al., 2008). Thakali et al. (2016) 
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carried out regional frequency analysis using L-moment. Though, Ahmed and Tsanis (2016) 

carried out best fit analysis but unable to use all the available ranges of NARCCAP models data. 

The study also unable to assess the climate model data. Previous studies were either not able to 

find the best-fit distribution method or unable to use all the range of the model data from 

NARCCAP. The study identified the best distribution method underlying to the City of Las 

Vegas. Identification of underlying statistical distribution method helps for proper prediction of 

future storm depth. This research will provide an approach to finding the best-fitted distribution 

underlying the City of Las Vegas. Using all the available data of NARCCAP provides the range 

of the effect of climate change on future storm depth. 

Though different climate model data are available for research, NARCCAP provides fine 

temporal resolution. It eliminated the difficult downscaling process to get to the small duration of 

rainfall. Using all the available climate model has provided the range of the effect of climate 

change. For the assessment of the NARCCAP climate model data, NARR data were available at 

the same temporal resolution. Among the 14 models, only the 8 climate models were selected for 

the analysis. The hatched portion of Figure 4 represents the eliminated climate model data. The 

delta change factor which is the ratio of future to present design storm depth ranges from 1.12 to 

2.64. HRM3-HadCM3 model data gives the maximum climate change effect on stormwater 

depth in future.  

CCRFCD developed the hydrological model in HEC-1 which was later converted to 

HEC-HMS. This study carried out the HEC-HMS simulation with design storm depth as the 

baseline scenario. The design values and the baseline outputs were very close and the difference 

is apparent since the design values were calculated from the HEC-1 simulation. The graphical 

user interface of the HEC-HMS has more advantages over HEC-1. With the selection of 
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hydrological model and storm centering conditions, the HEC-HMS models were able to perform 

the necessary hydrological simulation. HEC-HMS 3.5, a more stable version of HEC-HMS was 

used for the simulation. The simulation result showed that the functioning of the stormwater 

facility would be greatly affected even with the minimum change in climate (i.e. for CCC1.12). 

The effect of maximum climate change conditions (i.e. CCC2.64) will be huge to the existing 

stormwater infrastructures. Proper measures shall be taken to mitigate the effect of such extreme 

events. Enlarging the capacity of the infrastructure to utilizing green technology to decrease the 

surface runoff are some of the measures that could be applied to the existing facilities.  

The risk of climate change is one of the big challenges of the world. This anthropogenic 

climate change risk increasing in coming days as there is no sign of major curbing on the 

production of greenhouse gasses. As, the majority of the world population living in an urban 

area, the risk associated with life and economy is more intense there (Kendon et al., 2008). Main 

urban risks of climate change are extreme weather, pollution, scarcity of natural resources 

(IPCC, 2014). Among them, flooding is a worldwide major risk for urban areas. A recent trend 

of climate change has shown more frequent intense precipitation. Thus, there is a necessity to 

incorporate this change in intensity and duration of rainfall while designing stormwater 

infrastructures. City of Las Vegas could learn the success from restoration and management of 

Las Vegas Wash (Gautam et al. 2014). This study aims to develop a proper way to incorporate 

the climate changed storm depth and evaluation of infrastructure facility. 

 Conclusion 

In this study, hydrological parameters of two detention basins of Gowan and Central 

watershed were examined using under the climate change condition to compare the potential 

effect on urban stormwater infrastructures. Fourteen RCM-GCM paired NARCCAP model 
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datasets were considered for the historic and future time span. Two statistical tests were carried 

out to test the goodness of fit among twenty-seven different distributions. Best fitted distribution 

from the NARCCAP datasets for the study area was identified. 100yr 6hr design storm depth for 

the historical datasets of NARCCAP and observed datasets of NARR were calculated using the 

best-fitted distribution. Performance of the NARCCAP 100yr 6hr is assessed using NARR 100yr 

6hr. Delta change factor with extremes was considered as the quantified change in storm depth 

due to climate change for the study area. From the study, a significant change in storm depth due 

to projected climate change was observed. HEC-HMS models were used for hydrological 

modeling to assess the effect of climate change on existing drainage facilities. The following 

conclusions were drawn from this study. 

i. The statistical analysis resulted in minimum delta change factor of 1.12 and maximum delta 

change factor of 2.64. 

ii. HRM3-HadCM3 NRCCAP climate model resulted in the highest design depth in the future 

climate. 

iii. The hydrological simulation showed the substantial increase in inflow, storage, change in 

elevation and outflow from the detention basins. 

iv. Though the existing infrastructures are functioning their purpose, more stress will be there 

in coming years. 

v. Since the climate change has been already affecting the stormwater facility of the study 

area, adaptation plan and facility upgradation is necessary. 

vi. With the implementation of robust method to incorporate climate change, either capacity 

of stormwater facility increment or reduction of surface runoff using green technology 

should be applied.  
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Effect of climate change on hydrology is not limited to change in average precipitation 

depth but also the pattern, frequency, and extremities of a storm. However, non-stationarity of 

climate is not generally adopted in current stormwater facility design practice. Now, predicting 

future storm depth stationarity of climate change is invalidated. This study explored a robust 

method to account the potential impact of climate change on design storm and its effect on the 

performance of detention pond. Recent cases of frequent flooding of the study area enthralled to 

quantify the effect of climate change on precipitation. As there are always uncertainties while 

using only one climate model, this study applied all the available NARCCAP model to pick the 

best fit distribution which outstands the study from others. The method demonstrated in this 

study provides an approach to adopt the climate change on urban stormwater infrastructure 

design depth.  This study helps infrastructure designer, manager, policy makers and stakeholders 

to incorporate the effect of climate change on stormwater facilities. 
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CHAPTER 3  

 UNDERSTANDING CLIMATE EFFECT ON FUTURE STREAMFLOW WITH 

STATISTICAL APPROACH ON VARIABLE INFILTRATION CAPACITY FORCED 

CMIP5 HYDROLOGY PROJECTION AT CARSON RIVER, CARSON CITY 

 Introduction 

Global surface temperature record shows the global mean surface temperature has been 

rising. Record of past three decades of global mean surface temperature is hotter than any 

previous decade (IPCC, 2013). This global warming has led to more evaporation from water 

surface and vegetation which in turns increase the average global precipitation. However, the 

wind and ocean current pattern may change local precipitation trend which eventually fluctuates 

the streamflow. Different part of the world has already shown the sign of adverse effect on water 

availability due to climate change. The peak streamflow is projected to increase in some part of 

the globe (Hirabayashi et al., 2008; Nohara et al., 2006) at the same time low flow is also 

expected to increase with more number of drought days across the globe (Dankers and Feyen, 

2009; Davie et al., 2013; Hirabayashi et al., 2013). Thus, the extreme weather phenomena are 

more frequent nowadays than previous and with recent trend, it is expected to increase in future.  

Flooding is one of the major natural hazard in the US along with tropical cyclone and 

drought/heatwave (NCEI 2018). Reduction in emission could result in huge monetary benefit in 

long-term as difference in future flood at the end of the 21st century from higher emission 

pathway to lower emissions pathway will be in billions of dollar per year (Wobus et al., 2017). 

Despite this benefits, climate change has intensified the adversity in recent years (Papalexiou et 

al., 2018; Van Aalst, 2006). Flood prevention practice along with a proper understanding of 
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flooding event can mitigate the risk of such hazard and floodplain mapping is one of the widely 

used technique to quantify the severity of the flooding. 

Coupled Model Intercomparison Project (CMIP), which is a standard experimental 

framework for studying the output of coupled Atmosphere-Ocean Coupled General Circulation 

Model (AOGCM) was first started on 1995. World Climate Research Programme (WCRP) 

developed global climate projections through CMIP5, which represents the climate projections 

from new generation global climate models and represents the recent climate science 

advancements (Taylor et al., 2011). These CMIP5 projections were based on updated global 

greenhouse gas emissions scenarios. CMIP5 model, which is large in scale contributing all major 

climate modeling groups, includes simulation of long-term twentieth-century climate and 

projections for the generation of the twenty-first century (Taylor et al., 2012). Conventional 

AOGCM and Earth system models were joined by more recently developed earth system models 

under an experiment design, where they were compared to observations on an equal basis. 

Recent decades were initialized based on the observations and its use for future prediction gives 

the enhanced capability to the CMIP5 models (Taylor et al., 2012).  

CMIP5 hydrology projection was released in 2015 and was based on total 234 CMIP5 

climate projections. These projections were downscaled into climate projections localized to the 

contiguous U.S. using the Bias Corrected Statistically Downscaled (BCSD) technique (Wood et 

al., 2004). The results of the BCSD projection from phase 3 and phase 5 were known as BCSD3 

and BCSD5 respectively. The model results from BCSD5 hydrology projections were based 

common gridded daily historical meteorology forced simulation (Maurer et al., 2002). . Projected 

Constructed Analog (CA) method is applied to spatially downscale a GCM day by matching the 

same grid coarsened set of observed days (Hidalgo et al., 2008). Changes in precipitation at 
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spatial and temporal scales are to understand the climate impact on peak streamflow. The 

primary tools for such projections are GCMs, which needs to translate to the similar locally 

relevant precipitation data before use for assessment. This includes but not limited to the 

selection of appropriate GCMs for a given study area (Mote and Salathe, 2010), removing biases, 

resolution scale difference between GCM and local applications (Fowler et al., 2007). 

Gangopadhyay et al. (2011) translated the downscaled projection to hydrologic projections over 

the Western U.S. portion of domain making the projections consistent and eased the hydrologic 

impact analysis of climate change. Due to the limitation on the scope of hydrologic modeling 

practicalities, only 97 BCSD5 climate projection from 31 CMIP5 climate models with four 

emission scenarios are available.  

Over a long period of time runoff is equal to the difference in precipitation to 

evapotranspiration. Hence, it is equal to the horizontal water flux converged at a particular 

location (Milly et al., 2005). For the simulation of the future hydrology Variable Infiltration 

Capacity (VIC) (Liang et al., 1994; Liang et al., 1996; Nijssen et al., 1997) hydrologic model 

was used. VIC model is a semi-distributed hydrologic model, which shares basic features with 

large-scale land surface models that are coupled to GCMs (Liang, 2002). VIC forcing generation 

process and modeling code were checked for proper application and whether the hydrology 

projections were developed as intended. Before production, the VIC forcing modeling code and 

generating code were compiled and run on production platform to validate the result. During 

production, it is ensured that the forcing generation and VIC simulation process were error free. 

Correct size and number of output files were produced. After production, BCSD climate monthly 

data were compared with monthly derived by aggregating daily forcing data to check any error 

occurred during the VIC forcing generation process. There were exact matching in most of the 
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cases (Brekke et al., 2014). BCSD5 features a larger range compared to BCSD3, as CMIP5 use 

different scenarios describing the larger range of greenhouse gas amount in the atmosphere in the 

future than CMIP3 (Brekke et al., 2013). The main difference between BCSD3 and BCSD5 

climate projections are in the driving emission scenarios and climate model change, making 

projections of temperature and precipitation somewhat different. However, other differences 

were from model updates on VIC to generate projections with BCSD5 providing a complete 

representation of the range of possible future climate and hydrology. 

An occurrence of extreme events was estimated by fitting probability distribution to the 

record of historical annual flood series. Using only the historic flood event may not truly reflect 

the probable future scenario more likely due to climate change. Since, the stationary approach, a 

conventional way of predicting extreme events in future using historical data only, is not best 

way due to non-stationarity of the climate. To overcome the shortcomings in the design based on 

the stationarity of climate, climate model and projections are useful. Various climate models 

based on IPCC fifth assessment report and Special Report on Emission Scenarios (SRES) 

representing the future climate are available for research and use. Besides the available data, 

selection of distribution method significantly impacts the design value. In most of the cases, 

Generalized Extreme Value (GEV) distribution along with Gumbel and log-Pearson type III 

distribution are selected for the use by different governmental agencies, but it’s not always the 

GEV which fits the best for annual peak flood. Thus, it is necessary to examine the given sets of 

annual flood series and choose the alternative distributions where they produce the better 

estimates. An empirical goodness of fit is one of the criteria for selection of appropriate 

distributions. At the same time, the assumptions theoretically associated with the distribution 
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should be considered (Canfield et al., 1980). The selection of best-fitted distribution of the 

streamflow for Carson River is one of the objectives of the study.   

Flood risk management is widely accepted best approach for flood defense. Floodplain 

mapping is the part of risk analysis and first steps towards flood risk management. Climate 

change, which has the capacity to alter the magnitude and frequency is changing the design 

flood. A better way of understanding the changing pattern of the design flood is necessary to 

flood risk management in the future. VIC forced CMIP5 streamflow was used to find the 

underlying probability distribution of an area among 27 different statistical distribution. Selected 

best-fitted distribution was used to find the future streamflow. Finally, the comparison among the 

existing design parameter and change in hydraulic parameters of the river was identified. A 

proper approach to floodplain mapping for the future design flood is discussed here.   

 Study Area 

Southwest of arid land of United States is not only experiencing extreme heat but also 

vulnerable to extreme flood due to climate change (Jardine et al., 2013). Carson City, NV has the 

historical record of flood since 1852 and is experiencing some flooding due to extreme storm 

events. This agricultural land in the desert of Nevada has experienced an extreme flood in the 

recent year.  Carson Valley, which lies 4,700-5,000 feet above mean sea level is rain shadow of 

the Sierra Nevada. The highest point of catchment lies on the Sierra Nevada and is 11462 feet 

above mean sea level. The climate of the area ranges from semiarid over the valley plain to 

humid or super humid over the peaks of the catchment. The catchment receives precipitation 

mostly as rain in lower part while as snow at highest altitudes. Runoff reaches its yearly peak 

mainly in May. In this study, the part downstream end of the Carson City at the bank of Carson 
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River is examined to the future flood. Figure 6 represents the Carson city county of Nevada and 

Carson River flowing through it.  

 

Figure 6: Carson River flowing through Carson City of Nevada. 

 Data 

The latest daily average runoff from 31 AOGCMs participating in the CMIP5 are used to 

analyze the change in the extreme runoff for Carson River. These CMIP5-AOGCMs had 

produced Bias Corrected Spatially Downscaled (BCSD) streamflow for different streams of 

United States from 1950 to 2099. The data produced by these AOGCMs were routed over a 

historic period of 1950 to 1999. Thus, in this study, the same period of 1950 to 1999 is 

considered as the historic period. The farthest 50-year period i.e. 2050 to 2099 is considered as 

the future period. Streamflow data for East Fork Carson River near Gardnerville from total 97 

projections derived through 31 models and 4 RCP were used to estimate the change in 

streamflow due to climate. The location of the streamflow is at Latitude 38.844 and Longitude 

119.702. The VIC application used for forcing the Climate model to streamflow is gbas. The 

details of the climate model and developing institutions were provided in Table 6.  
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Table 6: CMIP5-AOGCMs adopted for the study (Total 31 models with 97 projection).  

Modeling 

Center 
Institution Model 

Used Concentration 

Path (RCP) 

2.6 4.5 6.0 8.5 

  CSIRO-
BOM 

CSIRO (Commonwealth Scientific and Industrial 
Research Organisation, Australia), and BOM (Bureau of 
Meteorology, Australia) 

  ACCESS1.0   √  √ 

  BCC 
Beijing Climate Center, China Meteorological 
Administration 

  BCC-CSM1.1  √ √ √ √ 

  BCC-CSM1.1(m)  √  √ 

  CCCma Canadian Centre for Climate Modelling and Analysis   CanESM2 √ √  √ 

  NCAR National Center for Atmospheric Research   CCSM4 √ √ √ √ 

  NSF-DOE-
NCAR 

National Science Foundation, Department of Energy, 
National Center for Atmospheric Research 

  CESM1(BGC)   √  √ 

  CESM1(CAM5)  √ √ √ √ 

  CMCC Centro Euro-Mediterraneo per I Cambiamenti Climatici   CMCC-CM   √  √ 

  CNRM-
CERFACS 

Centre National de Recherches Meteorologiques / 
Centre Europeen de Recherche et Formation Avancees 
en Calcul Scientifique 

  CNRM-CM5  √  √ 

  CSIRO-
QCCCE 

Commonwealth Scientific and Industrial Research 
Organisation in collaboration with the Queensland 
Climate Change Centre of Excellence 

  CSIRO-Mk3.6.0 √ √ √ √ 

  LASG-
CESS 

LASG, Institute of Atmospheric Physics, Chinese 
Academy of Sciences; and CESS, Tsinghua University 

  FGOALS-g2 √ √  √ 

  FIO The First Institute of Oceanography, SOA, China   FIO-ESM √ √ √ √ 

  NOAA 
GFDL 

Geophysical Fluid Dynamics Laboratory 
  GFDL-CM3  √ √ √ √ 
  GFDL-ESM2G  √ √ √ √ 
  GFDL-ESM2M  √ √ √ √ 

  NASA 
GISS 

NASA Goddard Institute for Space Studies 

  GISS-E2-H-CC   √   

  GISS-E2-R  √ √ √ √ 

  GISS-E2-R-CC  √   

  MOHC  
Met Office Hadley Centre (additional HadGEM2-ES 
realizations contributed by Instituto Nacional de 
Pesquisas Espaciais) 

  HadGEM2-A  √ √ √ √ 
  HadGEM2-CC   √  √ 
  HadGEM2-ES √ √ √ √ 

  INM Institute for Numerical Mathematics   INM-CM4  √  √ 

  IPSL Institut Pierre-Simon Laplace 
  IPSL-CM5A-MR  √ √ √ √ 

  IPSL-CM5B-LR  √  √ 

  MIROC 

Atmosphere and Ocean Research Institute (The 
University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for Marine-
Earth Science and Technology 

  MIROC5  √ √ √ √ 

  MIROC 

Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean Research Institute 
(The University of Tokyo), and National Institute for 
Environmental Studies 

  MIROC-ESM  √ √ √ √ 

  MIROC-ESM-
CHEM 

√ √ √ √ 

  MPI-M Max Planck Institute for Meteorology (MPI-M) 
  MPI-ESM-LR  √ √  √ 

  MPI-ESM-MR  √ √  √ 

  MRI Meteorological Research Institute   MRI-CGCM3  √ √  √ 

  NCC Norwegian Climate Centre   NorESM1-M  √ √ √ √ 
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The DEM required for the river terrain was obtained from national map viewer. 1/3 arc-

second DEM product is used for producing the river profile and cross sections for the study area. 

The river cross section locations were considered at and in between the FEMA adopted cross 

sections for the comparison purpose. Levee and other existing structures are not adopted on the 

prepared model as the detail of the structures are not readily available. Figure 7 represents the 

HEC-RAS geometric model with river sections. 18 cross sections of the cross sections match 

with the cross section from FEMA developed flood map. 

 

Figure 7: Carson River with cross sections location developed from DEM. 
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 Method 

Each WWCRA stations has average daily and average monthly streamflow data ranging 

from 1950 to 2099. Each station has 31 models and 4 RCP producing total 97 projections. The 

model generated daily average streamflow along with historical gage record of the Carson River 

is selected and data series with yearly peak flow is prepared for each model. The data is used for 

statistical evaluation to get the best-fitted distribution for the streamflow at that location. The 

selected distribution method is used to calculate the design flow for present and future 

conditions. Delta Change method is used to predict the future flow of the location. The future 

flow was then routed to a developed HEC-RAS model. Figure 8 is the flow chart representation 

of the method followed for the study. The methods followed were described under three 

headings; (i) Frequency analysis and best fit, (ii) Future flow prediction, (iii) Model preparation 

and flow routing.  

(i) Frequency analysis and best fit: The streamflow projections along with the nearby 

existing real gage station was analyzed with frequency distribution to find the best-fitted 

frequency distribution for the study area. From the 97 streamflow projections for historic and 

future period total 194 projection datasets each containing 50 years of yearly peak flow was 

prepared. These datasets along with one Carson River gage data total 195 datasets were fitted 

with 27 different distribution methods to get the best-fitted distribution. The 27-different 

distribution applied for the study area listed in Table 2. The data were tested for goodness of fit 

with Pearson Chi-square and Kolmogorov Smirnov test. The test was implemented to the 195 

datasets for a historic and future period of the model and historic gage data. Each best fit test 

returns an attained value of a represented as αreached (Kozanis et al., 2010). The significant level 

for Pearson Chi-square and Kolmogorov Smirnov test is respectively given by eq. 1, eq. 2 and 
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eq. 3. These analyses were carried out using the statistical Hydrognomon software developed by 

National Technical University of Athens (Kozanis et al., 2010). The best-fitted distribution 

among them was selected to generate the future streamflow.  

(ii) Future flow prediction: Based on the best fitted distribution method, 100yr flood 

(design flood) is estimated for the historic and future projected streamflow datasets. The Delta 

Change Factor (DCF) is used to calculate the future flow on the stream station. Future flow of 

gage data and delta change method gives the flood without climate change and flood with 

climate change in future. Among the range of delta change factor, peak one was selected 

representing the maximum increase in future design flood condition. For this study, it is assumed 

that the ratio of peak flow at the downstream to downstream remains same in the future.  

#-./0 520�3- <05/6� = 47/7�- �6=-. =0>.9 ?-0�
@>;/6�>5 �6=-. =0>.9 ?-0� 

(iii) Model preparation and flow routing: A HEC-RAS model was prepared from 

available DEM model. Each cross-section location was chosen from FEMA for the comparison 

purpose. The prepared model was routed with future peak flood and hydraulic parameters were 

compared with the existing design condition of the FEMA map.    
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Figure 8: Best fit analysis, future flow using Delta Change Method and future flow routing using 

HEC-RAS. 

 Result 

The daily streamflow series derived from the climate model projections have shown the 

clear trend of increasing future peak streamflow in Carson River at the same time the minimum 

of the yearly peak is decreasing. That means both tendencies of flash flood and dry peak are 

increasing which is shown by the spread of Figure 9. The average of peak flow is not increasing 

there is clear spread between minimum yearly peak flow to maximum yearly peak flow from 97 
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streamflow projections. In this study, only the probable maximum flood for different return 

periods was analyzed. 

 

Figure 9: Spread of band of yearly peak flow from 97 climate model indicating the complexity of 

future streamflow. 

Yearly maximum streamflow data from 97 projections ranging from 1950 to 2099 were 

selected and analyzed using Pearson Chi-square and Kolmogorov Smirnov method. The 

selection of the best fit from both models was presented in Figure 10. The numbers in Figure 10 

represents the count of the projections best fitted with specific distribution method. From Figure 

10, the GEV-Max (L-Moments) is selected as the best-fitted distribution from Pearson Chi-

square and Kolmogorov Smirnov method with selection count 48 and 53 respectively out of 97 

total projections. Thus, the GEV-Max (L-moments) is found to be the best distribution method 

and selected to analyze the future flood of the study area. More than half of the streamflow from 

different projection fitted for the distribution method for both best fit tests. 
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Figure 10: Selection from the best fit analysis for 27 different distributions using Pearson Chi-

square and Kolmogorov Smirnov method. 

The best-fitted distribution method, GEV-Max (L-Moments) is used to calculate the 

100yr peak flow (design flood) for historic and future period.  The selected distribution method 

has been used to calculate the Delta Change Factor. The delta change factor is the ratio between 

future to historic design flow, was calculated from each climate model projections which has 

been represented in Figure 11 (a). Inclined lines with DCF1, DCF2, and DCF4 represents the 

delta change factor 1, 2 and 3 respectively representing the future design flood would be same, 

double and four times of the historic period respectively. On the figure, each emission scenario 

20

8

2

4

4

19

10

4

2

10

2

48

1

12

12

10

22

3

1

3

4

2

53

3

8

1

4

15

0 20 40 60 80 100 120

Normal

Normal(L-Moments)

LogNormal

Galton

Exponential

Exponential (L-Moments)

Gamma

Pearson III

Log Pearson III

EV1-Max (Gumbel)

EV2-Max

EV1-Min (Gumbel)

EV3-Min (Weibull)

GEV-Max

GEV-Min

Pareto

GEV-Max (L-Moments)

GEV-Min (L-Moments)

EV1-Max (Gumbel, L-Moments)

EV2-Max (L-Moments)

EV1-Min (Gumbel, L-Moments)

EV3-Min (Weibull, L-Moments)

Pareto (L-Moments)

GEV-Max (Kappa Specified)

GEV-Min (Kappa Specified)

GEV-Max (Kappa Specified, L-Moments)

GEV-Min (Kappa Specified, L-Moments)

Number of selection

Best fit distribution selection

Pearson Chi-square

Kolmogorov Smirnov



49 

 

projections were represented with a different color to distinguish easily. From the Figure 11 (a), 

RCP2.6 has lowest delta change factor and RCP8.5 highest delta change factor. From Figure 

11(b), it is clear that with the increase in greenhouse gasses the future extremes on streamflow is 

expected to increase. The two lower RCPs has few models for delta change factor less than one. 

For the flood mapping, maximum delta change factor 5.086 obtained from model CNRM-CM5 

with RCP8.5 is considered. 

 

(a) 

 

(b) 
Figure 11: Comparison of delta change factor from 97 model projections. (a) Historic vs future 

design flood (100yr flood), (b) box plot of delta change factor in comparison with different RCPs 

5000

15000

25000

35000

45000

5000 10000 15000 20000 25000

F
u

tu
re

 D
e

si
g

n
 F

lo
o

d
, 

cf
s

Historic Design Flood, cfs

Delta Change Factor from 97 different climate 

projections

RCP2.6

RCP4.5

RCP6.0

RCP8.5

DCF1

DCF2

DCF4



50 

 

Hydrological summary of the Gage site 1031000 lying in Carson City has carried out the 

flood analysis and developed flood with different return periods represented in Table 4. For this 

study purpose, only the 1% and 0.2% chance of annual existing i.e. 100yr and 500yr return 

period were used. FEMA has developed the 100yr and 500yr return period flood for the area. 

FEMA map 3200010227E, 3200010112E and 3200010114F covers the study area. The area 

covered by red polygon on Figure 6 represents the FEMA flood area for 100yr return period.  

Table 7: Hydrological Summary of Flood at USGS gage site 1031000. 

Floodi
ng 
Source 

Location 
Drainage 
Area (Square 
Miles) 

10% 
Annual 
Chance 

2% 
Annual 
Chance 

1% 
Annual 
Chance 

0.2% 
Annual 
Chance 

Carson 
River 

3 Miles Upstream of 
Lloyds Bridge (USGS 
1031000) 

876 8420 23800 36000 90400 

 

Delta change factor calculated for the study was used to calculate the future design flood 

(100yr). The future design flood comes to be 183,094cfs, which is more than the current 500yr 

flood. Thus, climate generated future design flood may be more than the recent 500yr flood. The 

developed HEC-RAS model routed with the 3-different flood that is existing 100yr, existing 

500yr and future 100yr with discharge 36000cfs, 90400cfs and 183094cfs respectively. The 

flood area developed using HEC-RAS and ArcGIS is presented in Figure 12. Floodplain for 

present design flood, present 500yr flood, and future design flood were plotted. The area covered 

by these three conditions are 3915290 m2, 4762168 m2 and 5947893 m2 respectively while the 

FEMA 100yr flood covers 4882183 m2. Floodplain for these three conditions was compared and 

found the future 100yr flood could cover more than 1.5 times more area. 
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Figure 12: Three layers of Flood area for 100yr historic, 500yr historic and 100yr future (from 

smaller to larger area respectively). 

Further, channel velocity, flow area, and top width were compared between historic 

100yr, historic 500yr and future 100yr flood. FEMA has 18 cross-sections in between the reach 

length. Hydraulic parameter as channel velocity, flow area, and top width was compared within 

this reach length and FEMA cross sections and are presented in Figure 13. The result shows that 

there will be more flooding on the left bank of the river than the right due to its topography. As 

the city is residing nearby the river it might be affected due to this change in a future flood. The 
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low lying agricultural land on Carson floodplain will be flooded more frequently in future than in 

past.   

 

(a) 

 

(b) 

 

(c) 
Figure 13: Comparison of (a) channel velocity, (b) flow area and (c) top width for different flood 

scenario. 
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Channel velocity, flow area and top width are the key hydraulic parameters of flood 

which were compared with different flow conditions. The future 100yr flow has highest channel 

velocity of around 8m/sec. The channel flow area will be more than double in most of the cross 

sections and there would be significant increase in top width along section N, O and P.  

 Discussion  

The population of Carson City which is not increasing since 2004 has most of the 

settlement in left bank of the Carson River. The topography of the river shows the river has more 

floodplain on left side of the river than in right side. The floodplain contains the fertile 

agricultural land crucial due to lying in desert of Nevada. Due to increase in design flood in the 

future more area than expected might get flooded. The future flood not only affect the 

agricultural supply but also affects the lives residing nearby the river. Thus, a proper analysis and 

future forecast will help to minimize the flood risk likely to happen in future.  

Floodplain management must address to balance the long-term flood damage with the 

benefit of human and natural uses of it over long periods of time. Flood protection decision can 

endure more than a century thus it is necessary to consider the long-term change in 

environmental conditions. The decision on floodplain management would likely to affect long-

term performance of the infrastructures (Zhu et al., 2007). From the evolution of human beings, 

it started to inhabited places close to freshwater to ensure water for drinking, agricultural use 

and, livestock. Major known civilizations were inhabited very close to rivers with an adequate 

supply of fresh water. More than half of the total global population resides within 3km from 

freshwater bodies, mostly near to river (Kummu et al., 2011). This population is more vulnerable 

to change in streamflow in the future. In this study, such a case analyzed using CMIP5 hydrology 

projections. As different distribution method predicts different flood frequency for a flood, thus 
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selecting appropriate flood distribution method is vital in flood frequency analysis. To select the 

best-fitted distribution method model dataset were fitted using Pearson Chi-Square and 

Kolmogorov Smirnov method among 27 different distribution. The selected method was used to 

predict design flood for present and future datasets of climate projections. Delta change method 

was adopted to predict the future flood to predict future flow, which was routed on HEC-RAS 

1D model to compare the change with present scenarios. The result shows there is high 

possibility to increase in flood in future and the extreme condition design flood would be more 

than the 500yr flood. 

 Conclusion 

This study provides the possible approach for the quantification of the future streamflow 

of the similar area from reliable streamflow model. The result will present the possible way to 

identify the best-fitted distribution to get future streamflow. GEV-Max (L-moment) was found to 

be the best-fitted distribution among 27 different distribution. Most of the climate model from 97 

model has shown an increase in the design flow. For the extreme case as predicted from CNRM-

CM5 model with RCP8.5 was considered and suggest more than 5 times increase in design flow 

in the future. From the study, the future 100yr flood would be more than a current 500yr flood. 

The future flow, depth of flow and inundation comparison gives a clear image of future flooding 

extent due to climate change which is the first step toward flood risk management.  

The risk of the climate change is one of the main global challenges of the 21st century. 

This anthropogenic climate change risk in increasing in recent years as there is very little effort 

to curb the production of the greenhouse gasses. At the same time, rapid urbanization and change 

in land use pattern affect the hydrological processes leading to high surface flow. Most of the 

entity is applying stationary approach for flood management. This study suggests a possible 
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approach of applying nonstationary approach into future streamflow. Most of the flood 

management structures are made for the lifespan of more than a century, but foreseeing climate 

change in streamflow is lacking. This study will help planner, designer, engineer and 

policymakers. 
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CHAPTER 4  

CONTRIBUTIONS AND RECOMMENDATIONS 

 Summary 

Despite the decrease in annual growth rate world population is increasing day by day. 

Urban population is increasing in more rapid way than world population with more than half of 

the world population living in Urban areas. This urbanization reshapes the landscape with 

increasing paved surface, which in turn increases flash flood and stresses on urban infrastructure 

as well as natural drainage such as streams and rivers (Kalra & Ahmad, 2011; Kalra & Ahmad, 

2012; Kalra et al., 2013c; Maheshwari et al., 2016; Peiravi et al., 2017; Paz et al., 2013). At the 

same time the natural extremities such as extreme precipitations were observed more in recent 

years due to climate change (Pathak et al., 2016a, Pathak et al., 2016b; Pathak et al., 2018). This 

change in landscape and natural hydrology affected the urban life making it more vulnerable 

(Kalra et al., 2008; Kandissounoun et al., 2018; Pathak et al., 2016c). In this changing natural 

extremity only using conventional stationary approach might not be effective (Sagarika et al., 

2014; Sagarika et al., 2015; Sagarika et al., 2016). Thus, climate models were analyzed to answer 

the future extreme problems in terms of precipitation and streamflow. This research proposed a 

robust and straightforward method for consideration in design of stormwater infrastructure as 

well as natural streamflow and floodplain. Following research questions for problem #1 were 

answered through this study: 

i. Which distribution pattern the storm follows over the study area? 

ii. What will be the future design storm depth?  

iii. What will be the effect on stormwater infrastructure due to change in design 

storm depth?  
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This set of questions were addressed using 14 different NARCCAP climate model, which has 

future projection of datasets. These climate data were fitted among 27 different distribution using 

Pearson Chi-square and Kolmogorov Smirnov test. Delta change method is adopted to 

downscale the climate model data. The result shows there is higher probability of increasing 

future design storm depth and stress on stormwater infrastructures. Following research questions 

for problem #2 were answered through this study: 

i. Which flood frequency distribution method represents best for the study area?  

ii. What will be the future design flow in study area?  

iii. How floodplain will change due to increase in future design streamflow?  

This set of questions were addressed using 97 different CMIP5 hydrology projected VIC forced 

streamflow, which includes unimpaired streamflow from 1950 to 2099 available as daily and 

monthly averaged. These dataset consists of projection from 4 different RCPs with higher 

concentration pathway producing higher future extremes. These datasets were fitted among 27 

different distribution using Pearson Chi-square and Kolmogorov Smirnov test. Delta change 

method is used as an alternative to the complex downscaling climate model projections. The 

result shows there would be more peak flow as well as drier peak in future than in history. The 

floodplain mapping shows more flooding due to this increase in future extremes.  

 Contributions  

Some previous studies have already highlighted the importance of the climate model to 

predict the future hydrology (Tamaddun et al., 2016; Tamaddun et al., 2017a; Tamaddun et al., 

2017b; Tamaddun et al., 2018). This study suggests a robust method from selection of best fit 

distribution method to the implementation of the effect of climate change in future design storm 

depth as well as future design flood. This study evaluates the hydraulics of detentions basins 
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which are the key part of the urban stormwater managements. Also, this study provides 

comparative increase in floodplain due to increase in future streamflow. Thus, the study is 

unique in best fit selection and estimation of future storm depth and future streamflow. Further, 

following points summarize the contribution from the study: 

i. Suggest best fit selection using Pearson Chi-square and Kolmogorov Smirnov best fit 

analysis.  

ii. Simple alternative of complex downscaling method to use the low spatial resolution 

climate data to the design of stormwater infrastructure and streamflow analysis. 

iii. Using the nonstationary approach using available high temporal resolution climate 

model for precipitation and streamflow datasets. 

iv. Analyzing software based hydrological model to represent the present scenarios of two 

large watersheds of Las Vegas Valley.  

v. Floodplain mapping using widely used software. 

 Limitations 

A comprehensive analysis was carried out to meet the research objectives, however 

certain some limitations are unavoidable. The climate models from different combinations of 

RCM-GCM provides different result suggesting a range of future options, but during the study 

only the worst scenario was analyzed. A simple downscaling technique might not perform best. 

Though most of the model has shown increase in extreme streamflow in future, selection of best 

representing model is beyond the scope of this study.  

Convective precipitation, which is characterized by deep layer of moisture laden clouds 

capable of efficient strong rainfall, is responsible for the intense precipitation in the Las Vegas 

Valley. The convective clouds moves in vertical direction with cool top layer and hot bottom 
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layer, thus is more localized. Climate models are not capable to fully represent these localized 

effect of convective precipitation, this limits the effectiveness of such models 

 Recommendations for future work 

This study proposed a simple way to implement the future design storm and future design 

streamflow in infrastructure and floodplain mapping. Best fit analysis among 27-different 

distribution methods suggest appropriate distribution for study area. Though the study suggests a 

robust method to understand the future conditions on storm depth and streamflow, following 

recommendations are suggested as future works. 

i. Complex downscaling techniques could be implemented instead of delta change 

method. 

ii. Regionalization among neighbor grids would suggest better trend for larger 

watersheds. 

iii. Climate models with very fine temporal resolutions would provide better dataset 

for 6hr duration than from 3hr temporal resolution. 
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