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ABSTRACT OF THE THESIS OF 

Yub Raj Sapkota, for the Master of Science degree in Physics, presented on July 28, 2017, at 

Southern Illinois University Carbondale. 

 

TITLE: PHYSICAL PROPERTIES OF TOPOLOGICAL INSULATOR: BISMUTH 

SELENIDE THIN FILMS 

 

MAJOR PROFESSOR: Dr. Dipanjan Mazumdar 

Topological Insulator (TI) is new classes of materials with gapless surface states and 

insulating bulk. The topological connection can be traced back to the discovery of Integer 

Quantum Hall Effect in 1980. In the last decade, new categories of topological insulators were 

predicted and later discovered, that have gained a lot of attraction for room-temperature 

applications.  Since the experimental observation of single Dirac cone on the surface states of 

Bismuth selenide (Bi2Se3) in 2009, it has emerged as the prototype.  Bismuth Selenide has one of 

the highest bulk band gap of 0.3 eV among all TI materials. While its single crystal properties 

are well documented, thin films are producing equally exciting discoveries. In this work, Bi2Se3 

thin films were synthesized using magnetron sputtering method and a diverse set of physical 

properties, such as structural, optical, and electronic, are investigated. In particular, properties of 

few-layer (ultra-thin) Bi2Se3 thin films are studied. Optical properties of Bi2Se3 was particularly 

revealing.  We observed a sharp increase (blue shift) in the bulk band gap of Bi2Se3 by almost 

0.5 eV as it approached the two-dimensional limit. Strong thickness-dependent structural and 

transport properties were also observed.  

 

 



 

ii 

 

ACKNOWLEDGMENTS 

 I would like to thank my advisor Dr. Dipanjan Mazumdar for his guidance. He has been 

a constant source of encouragement. I would like to thank Dr. Saikat Talapatra for serving on my 

thesis committee and giving feedback on my research. I also would like to thank Dr. K.V 

Shajesh who taught me advanced quantum mechanics and some theoretical ideas in the field of 

topological insulators at the beginning of my research and for serving as a thesis committee 

member. 

       When I joined the Novel Materials and Heterostructures Laboratory, Hassana Samassekou 

first introduced me to the experimental part. I would like to thank him for his patience to teach 

me the basic ideas about the experiments. I am also thankful to Asma Alkabash who provided 

me with a detailed study of the ellipsometric properties of Bismuth Selenide thin films. Thanks 

to my colleagues Said Bakkar, Stephen Hofer, and Aaron Walber for their support. I would like 

to thank Pravin khanal, Sudip Pandey, Anil Aryal, and Prrassana Patil for friendship. I would 

like to thank the faculty of physics department Dr. Eric Chitamber and Dr. Leo Silbert for 

teaching me advanced level physics.  

     Finally, I am grateful to my family: my parents, my brother, and sisters. They are my 

source of inspiration. 

 

 

 

  



 

iii 

 

 

DEDICATION 

 

 

 

 

This thesis is proudly dedicated to 

 

My Parents 

 

 

 

 

 

 

 

 

 

 



 

iv 

 

 

TABLE OF CONTENTS 

CHAPTER           PAGE 

ABSTRACT…………………………………………………………………………………….....i 

ACKNOWLEDGMENTS………………………………………………………………………...ii 

DEDICATION …………………………………………….……………………………………..iii 

TABLE OF CONTENTS……………………………………………………………………........iv 

LIST OF TABLE………………………………………………………………………………...vii 

LIST OF FIGURES……………………………………………………………….…………….viii 

CHAPTER 1 – INTRODUCTION………………………………………………………..………1 

 1.1 Theoretical background…………………………....…………………………….…....4 

 1.2 Time reversal Symmetry.…………………………………………………………...…6 

 1.3 3D Topological Insulator…………………………...…………………………………7 

 1.4 Thesis Statement………………………………………...……………………...……10 

 1.5 Thesis Outline………………………………………………….………………….…10 

CHAPTER 2 – Bi2Se3 AND EXPERIMENTAL TECHNIQUES…………..……..…………....11 

 2.1 Introduction to Bi2Se3……………………………………………..………....……....11 

 2.2 Finite-size properties of Bi2Se3……………………………………...….……..……..13 

 2.3 Thin film synthesis of Bi2Se3 …………………………………………….…….….14 

 2.4 Physical vapor deposition……………….…………………………..………..…......15 

   2.4.1 Sputtering ………………………………………………………...……..…16 

   2.4.1.1 Magnetron Sputtering…………………………...…………….…17 

 2.5 Structural Characterization……….………..……………….…….…………..……...18 



 

v 

 

  2.5.1 X-ray diffraction…………………………………………………….…..…18 

 2.5.2 X-ray Reflectivity………………….……………………………………....20 

 2.6 Optical absorption Spectroscopy.…………………………………….....…...……....21 

 2.7 Transport Measurement…………………………………….………………………..23 

  2.7.1 Hall effect………………………………………………………….……....23 

 2.8 Conclusion……………………………...…………………………………………....26 

CHAPTER 3 – STRUCTURAL AND TRANSPORT PROPERTIES OF Bi2Se3 THIN 

                         FILMS ………………………………………………………….……………….27 

 3.1 Growth of Bi2Se3 thin films ……………………..……………..……………...…….27 

 3.2 Effect of thickness on Bi2Se3 structure …………………….………..……………....28 

 3.3 Effect of substrate on the structure of Bi2Se3……………………….……………......30 

 3.4 Transport properties of Bi2Se3: Finite size effects………………………………...…32 

 3.5 Conclusion……………………………………………………………………...…....35 

CHAPTER 4 – OPTICAL PROPERTIES OF  FEW-LAYER Bi2Se3 ………...………..............37 

 4.1 Introduction to Few-layer Bi2Se3…………………………………………………………..……..…….….37 

 4.2 Structural properties of ultra-thin Bi2Se3…………………..………...……………....39 

 4.3 Optical Transmittance measurements………………………………….…………….41 

 4.4 Band-gap spectroscopy of few-layer Bi2Se3 thin films…………...………………...42 

 4.5 Conclusion…………………………………………………………………………...45 

CHAPTER 5 – SUMMARY …….…………………………………………….............................46 

REFERENCES……………………………………………………………………………..……48 

VITA……………………………………………………………………………………………..62 

 



 

vi 

 

 

LIST OF TABLES 

TABLE           PAGE 

Table 1.1 A partial list of known Topological insulators. ………………………………………….9 

Table 3.1 Intensity and Full Wave Half Maxima value of (0006) peaks with thickness………...30 

 

Table 3.2 Intensity (cps) and FWHM value of the (0006) peak as obtained in different 

                substrates ………………………………………………………………..………….…31 

Table 3.3 Carrier concentration (bulk and surface), bulk resistivity, and Hall mobility 

                 At 295 K of Bi2Se3 thin films of various thickness.n-type behavior was 

                  observed in all films ……………………………..…………………………….…….34 

 

 

 

 

 

 

 

 

 

 



 

vii 

 

 

LIST OF FIGURES 

FIGURE           PAGE 

Figure 1.1 Schematic band structure of a topological insulator showing a single Dirac 

                  cone that corresponds to the metallic surface state…………………………………..…1 

Figure1.2 The surface of a sphere (g=0) and donut (g=1) are topologically distinct…………......2 

Figure 1.3 The quantum Hall effect (QHE) occurs in a two-dimensional electron system 

                 under a large applied magnetic field. Transverse resistivity quantized and  

                 longitudinal resistivity vanish………………..…………………….…………….…….4 

Figure 1.4 Quantum Hall System and Quantum Spin Hall System. Left hand figure: In a Quantum 

Hall system a magnetic field is required to produce edge states. Right hand figure: No 

magnetic field is required to generate edge states in quantum Spin Hall System. The 

spin up (right moving) and spin down (left moving) show linear dispersion (Dirac 

cone)..…...……………………………….……………………………………..……...6 

Figure 1.5 Schematic diagram showing possible back scattering paths in quantum  

                 spin hall systems which interfere destructively……………………….………………..7 

Figure 2.1 Surface states of Bi2Se3 as measured by ARPES. Clear single Dirac  

                 cone is observed……………………………………………………………………....12 

Figure 2.2 Crystal structure of Bi2Se3 with three primitive lattice vectors …………….………....12 

Figure 2.3 Band Gap of ultra-thin film bismuth selenide by using the ARPES……….………..14 



 

viii 

 

Figure 2.4 A schematic diagram of a typical sputtering system ………………………………….16 

Figure 2.5 Schematic arrangement of the magnets and target in a typical magnetron 

                 sputtering system……………………………………………………….……………..17 

Figure 2.6 Photograph of the magnetron sputtering system in our lab………………....................18 

 

Figure 2.7 Schematic diagram of XRD machine hardware…………………..……………..…….19 

Figure 2.8 Simulated XRR plots for a 13 nm Bismuth Selenide film (density 6.9 gm/cm3) 

                 with two roughness values……………………………………………………………20 

Figure 2.9 Schematic for a NIR-VIS-UV spectrophotometer (left) and Photograph of  

                 Shimadzu UV3600   Spectophotometer ……..……………………………………..…23 

Figure 2.10 A Schematic diagram of the Hall measurement…………………………………...…24  

Figure 2.11 Van-der-pauw geometries………………………………………………………...…25 

Figure 3.1 We show the X-ray reflectivity (XRR) pattern of approximately 10-12 QL 

                 Bi2Se3 films grown on different substrates (Si, Si/SiO2, amorphous BN, and  

                 c-orientated Al2O3 …………...………………………………………………………..28 

Figure 3.2 (a) Normalized XRD pattern of a 35 nm Bi2Se3 film showing only (000l) Bragg 

                 peaks. Simulated XRD intensities corresponding to 000l Bragg peaks is 

                shown using black stars. A very good agreement is observed except for the 

                (00015) peak(b) XRD scans of Bi2Se3 thin films of different thickness as 



 

ix 

 

                indicated. ‘Sub” indicates substrate peak………………………………………..…......29 

Figure 3.3 (a) X-ray diffraction patterns of 10-12 nm Bi2Se3 films grown on  

                  different substrates. “Sub” indicated peaks from various substrates. 

                  (b) (0006) peak on different substrates showing variation in intensity. 

                  Thickness oscillations are observed around (0006) peak indicating 

                  smooth films………………………………………………………………………….31 

Figure 3.4 Room temperature Hall mobility (blue curve) and sheet resistance (red) of  

                Bi2Se3 thin films grown on quartz substrate. Strong scaling behavior is 

                observed as a function of thickness……………………………………………….……35 

Figure 4.1 High-resolution x-ray reflectivity of ~ 10 nm Bi2Se3 thin film 

                  Grown on Si/SiO2 substrate. Inset shows the thickness and roughness   

                 of Bi2Se3 film as obtained from the fit of reflectivity data…………….……………….39 

Figure 4.2 X-ray diffraction pattern of 10 nm Bi2Se3 film showing only (000l)  

                  Peaks, implying out of plane growth……………….…………………………..……..40  

 

Figure 4.3 Transmittance data of a 2QL uncapped (a) and BN-capped 

                 (b) Bi2Se3 film taken at different times after film deposition as indicated.  

                 The uncapped sample showed only very little variation with time …….……………...41 

Figure 4.4 Optical absorption data of a 2 and 6 QL Bi2Se3 film showing  



 

x 

 

      a blue-shift with inverse thickness……………………………..………………….….42 

Figure 4.5 Direct band gap analysis………………………………………………………...…….43 

Figure 4.6 The direct band gap for films of different thickness. Both  

                Capped and uncapped films follow the same trend of  

                Increasing band gap with inverse thickness below 6 QL ………...……….……………44 



 

1 

 

CHAPTER 1 

INTRODUCTION 

Topological Insulators [1, 2, 3, 4] are a new quantum state of matter that are different 

from ordinary insulators. Since 2008, it is a widely researched topic in the field of Condensed 

Matter Physics and the 2016 Nobel prize was awarded to the pioneers of the concept. 

Topological insulators (TI) possess an intriguing electrical property. They are metallic on the 

surface and insulating in the bulk. This makes their band structure also unique and is typified by 

the existence of an odd number of linearly dispersed Dirac Cones on the surface (see figure 1.1). 

 

Figure 1.1 Schematic band structure of a topological insulator showing a single Dirac cone that 

corresponds to the metallic surface state. 

  This characteristic is robust, meaning that an insulating surface gap opening is prevented 

(or protected against weak non-magnetic impurities) by time reversal symmetry [5]. This leads to 

a spin-polarized surface current that travels with very low resistance and no backscattering. TI 

materials are unique candidates for electronic applications, such as spintronics and quantum 

computing due to the “dissipation-less” spin-polarized surface currents. As promising as they 

are, these quantum materials are far from their potential due to other materials-related issues. For 

example, crystal defects in the form of vacancies and low bulk band gap value (≤ 0.35eV [6] [7]) 
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are recognized to be major roadblocks for device applications for known TIs. Topological states 

are now considered for diverse device applications such as interconnects [8], low-power devices 

[9], and thermoelectrics.  

The genesis of TIs can be traced back to 1980 with the discovery of integer Quantum 

Hall Effect (QHE) in 2D electron gas (2DEG) [10]. Under a high magnetic field and at low 

temperatures, 2DEGs show the quintessential feature of a TI: bulk insulating electron states with 

metallic edge states that flow in opposite directions. The unique wave function of QHE states is 

due to the nontrivial topology of the Hilbert Space [11, 12]. This concept can be understood by 

invoking the language of topology which is a well-known branch in mathematics.  

 

 

 

Figure 1.2 The surface of a sphere (g=0) and donut (g=1) are topologically distinct. 

The topology of any geometric object can be quantified by its genus. Manifolds with the same 

number of holes (or genus) can be deformed into one another, but manifolds with different genus 

(hole) cannot change to other forms.  For example, the topology of a sphere is trivial (genus=0) 

and can be deformed adiabatically into a cube having the same topology (genus=0). But donut, 

with the genus=1, cannot be deformed adiabatically into the sphere [13]. An object with even 

number of genus is defined to have a trivial topology and objects with odd number of genus are 

termed nontrivial. The band structure of common materials can also be classified based on their 

topological behavior. Materials with even genus number (“trivial”) are the conventional 

materials (e,g, Si, SiO2) and those with an odd genus number are “nontrivial”. In Topological 

a) b) 
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systems, these nontrivial numbers are known as the Chern numbers which represent the gapless 

characteristics of the surface due to the closing band gap of the bulk at the interface of a 

topological insulator and air.                                                                                                                                                                                     

  The topological invariant nature of surface state which is represented by a Berry Phase is 

represented by a TKNN invariant [11].  The surface states Hamiltonian is expressed as, 

)( yyyxf kkvH                                                                                              (1.1)                                                                                                                                                                                                           

Where 
fv is the fermi velocity and ),( yx   are the Pauli matrices, k=(kx, ky) is the wave vector 

[14]. 

The energy eigenvalues of the Hamiltonian operators are kvE f .This gives us the 

linear dispersion of the Dirac Cone. Due to the Berry curvature at the surface, electrons are 

moving adiabatically in the unidirectional closed loop which is protected by the time reversal 

symmetry [15, 16]. Application of a magnetic field or doping with magnetic materials breaks 

time reversal symmetry. This opens a gap in the surface states. There are other methods to open a 

surface gap, such as finite-size [17], and is one of the topic of this thesis.  

Many applications attempt to utilize the unique attribute of the surface states. It is 

hypothesized that Majorana fermions, which are massless and are their own antiparticles [18], 

exists at the interface of topological insulator and superconductor [14]. Majorana fermions are 

already well known in high energy physics. Due to their non-abelien statistics they can be 

utilized in fault-tolerating quantum computing [19]. In the next sections, we shall explain the 

essential theoretical topics of Topological Insulators in some detail such as quantum Hall Effect, 

Quantum Spin Hall Effect, time reversal symmetry, and spin-orbit coupling.  
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Figure 1.3 The quantum Hall effect (QHE) occurs in a two-dimensional electron system under a 

large applied magnetic field. Transverse resistivity is quantized and longitudinal resistivity 

vanishes. [24] 

 

1.1 Theoretical background 

As mentioned before, electrons flow along the edges in Quantum Hall systems whereas 

the conductance of the electron gas in the bulk is zero. The edge states are robust against small 

perturbation and the direction of the electron will not change due to the presence of weak 

impurities (figure 1.4). The quantized transverse magneto-conductance, 
xy , is a fractional 

multiple of  
h

e2

 [10].  This transverse conductance is the property of the bulk. To explain the 

edge states Thouless, Kohmoto, Nightingale and den Niks proposed a new topological (TKNN) 

invariant [11]. They modified the transverse magneto-conductance which is given by the TKNN 

invariant or Chern numbers (Cs) of complete Brillouin zone of the lattice given by, 
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kdkkAC yx

s

BZ

ks


2)],([                        (2.1) 

Where sA


 is the berry potential. 

Even though the Cherns number seems complicated, Thouless et al. showed that it is precisely 

the integer in the integer quantized hall conductivity. 

After the observation of the Quantum Hall effect, theorists asked whether QHE (Landau 

Levels) can be observed without the application of magnetic field (i.e, without breaking time 

reversal symmetry). This was first considered by Haldane in 1988 [20] [21]. Later in 2006, Kane 

and Mele [22] (and independently by Bernevig and Zhang [23]) extended the Haldane Model and 

introduced the concept of Z2 topological insulators and quantum Spin Hall effect.  They showed 

that electrons can move in two opposite directions on the edge without breaking time reversal 

symmetry in another class of topological invariants called Z2 (see figure 1.4). The bulk of the 

material is insulating because of spin-orbit coupling.  Such materials show the quantum spin hall 

effect (quantized spin-Hall conductance and vanishing charge-hall conductance [24]) and are 

also called 2D topological insulators. For example, Graphene is a candidate QSH Insulator 

except that the spin-orbit coupling is not strong enough to open a bulk gap. 
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Figure 1.4 Quantum Hall System and Quantum Spin Hall System. Left hand figure: In a 

Quantum Hall system a magnetic field is required to produce edge states. Right hand figure: No 

magnetic field is required to generate edge states in quantum Spin Hall System. The spin up 

(right moving) and spin down (left moving) show linear dispersion (Dirac cone).  

1.2 Time Reversal Symmetry 

Time Reversal symmetry (TRS) is ubiquitous in physics and plays an integral part in TIs. 

From elementary physics, we know that physical quantities such as position, density, and 

Electric field etc. are time reversal invariant because E(-t) = E(t). Other quantities such as 

Magnetic Field, velocity of the particle and Electromagnetic Vector Potential (A) do not 

conserve TRS. As pointed out before, a magnetic field is not required to observe the edge states 

in QSH systems, thereby preserving TRS. In Quantum Spin Hall system, electrons are moving 

clockwise and anti-clockwise direction in two opposite lane to preserve time-reversal symmetry. 

This trajectory also remains invariant in the presence of non-magnetic impurities. This can be 

explained in the following manner [25]:  In the presence of a non-magnetic impurity, the electron 
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has two choices. One is to scatter backwards and the other is to move forward (side-ways 

scattering is not allowed). Figure 1.5 shows the two possible trajectories for backward scattering 

that involves a π or –π rotation around the impurity. This leads to destructive interference [25]. 

So the back-scattered wave function is always zero, implying the electron can only move in the 

forward and backscattering is prevented [26].  In the presence of the magnetic impurities, the 

time reversal symmetry is broken [27]. 

 

Figure 1.5 Schematic diagram showing back scattering paths in quantum spin hall systems which 

interfere destructively [25] 

1.3 3D Topological Insulators 

Topological insulators can be categorized as 2D and 3D type. 2D system with edge states 

were first predicted theoretically [22] . Topologically, they are characterized by a single non-

trivial Z2 invariant (1,2 etc). Experimentally, 2D topological insulator was first realized in  

quantum well geometries (CdTe/HgTe/CdTe) [28] and InAs/GaSb/AlSb [29]  

Topological properties are also observed in 3D materials (single crystals, etc). 

Topologically they are characterized by 4 Z2 invariants (ν0, (ν1, ν 2, ν 3)) [5]. Materials with ν 0 =0 
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are known as weak 3D TIs. Weak 3D TIs have even number of Dirac cones as the surface states, 

and net Berry’s phase 0 or 2π which are not robust with non-magnetic impurity i.e. surface states 

can be gapped in presence of non-magnetic impurities that break translation symmetry without 

breaking TRS. Materials with ν 0 =1 are termed strong TIs. They have odd number of Dirac cones 

on the surface which is the result of bulk topological order support by the nontrivial Berry’s 

phase of π. Strong topological insulators are robust against the non-magnetic impurity. BixSb1-x 

single crystals is the first experimentally reported strong 3D Topological insulator with 2D 

metallic surface states by Heish et al. [30] following the prediction by Fu and Kane [31]. BixSb1-x 

has a complicated band structure with small bulk band gap that varies with x. Later, in 2009, a 

new set of strong 3D TIs were predicted by Zhang et al. using first-principle electronic structure 

calculation (Sb2Te3, Bi2Se3, Bi2Te3) [32] with a single Dirac cone. The predictions were verified 

experimentally very soon in Bi2Se3 by Xia et al. [33] .  Bi2X3 (X=Se, Te) have a single Dirac 

cone characterized by the Z2 topological invariants (ν 0 =1, (000)). Very soon, other Bismuth and 

Antimony based layered materials such as Bi2Te3 [34]  and Sb2Te3 [35] were reported. Many 

other materials demonstrate topological properties such as TlBiSe2, TlBiTe2 and PbBi2Te4 [36]. 

Among the known TIs, TlBiSe2 has the largest band gap (0.35 eV) [6] followed by Bi2Se3 (0.3 

eV). Table 1.1 lists a few known TIs [37].    

Apart from single crystals, thin-film growth method is promising for growing high 

quality TI materials, particularly Bi2X3 (X=Se,Te). Molecular-beam epitaxy (MBE) method is 

proving to be the benchmark in terms of quality (low bulk carriers for example)[38,39,40,41] 

[38, 39, 40, 41, 42, 43]. Presence of selenium vacancies in thin-films impedes probing of 

metallic surface states.   High bulk carrier concentration (n3D  > 1019 cm-3)  that is typical of 

Bi2Se3 can be lowered during a thin-film growth process [44]. Other methods are also being 
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explored including Pulsed laser deposition [45]  chemical vapor deposition [46] and magnetron 

sputtering [47]. In this thesis work we clearly demonstrate that magnetron sputtering can be 

effective in growing TI materials. The thesis work investigates many physical properties of 

Bi2Se3 grown by the magnetron sputtering method. 

 

Table 1.1. A partial list of known Topological insulators. Data from ref [37] 
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1.4 Thesis Statement  

This thesis work is focused on the growth and physical property investigations of Bi2Se3 

thin films that include structural, optical and transport properties. Films of different thickness 

(2-100 nm) were grown using magneto-sputtering technique to study the effect of size on the 

physical properties. Additionally, the effect of substrate was also investigated in some detail. 

The optical properties of Bi2Se3 as it approaches the 2-dimensional limit was particularly 

surprising. Using optical absorption spectroscopy, we discovered that ultra-thin films (less 

than 4 nm) show an increase in the bulk band gap when compared to thicker films (6 nm or 

higher). Thickness and substrate also had a strong influence on the crystal quality and the 

transport properties (resistivity, Hall mobility) of the films. The details of these findings are 

explained in the remainder of the thesis.  

1.5 Thesis Outline 

In the second chapter, we discuss the properties of Bismuth Selenide and the 

experimental technique used in this thesis. In Chapter 3, we discuss the structural and 

transport properties of Bi2Se3 films as a function of thickness and substrate. In 4 chapter, we 

will focus on the optical properties of few-layer Bismuth selenide. Finally, 5 chapter 

summarizes the major findings of my thesis. 
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CHAPTER 2 

Bi2Se3 AND EXPERIMENTAL TECHNIQUES 

In this chapter, we discuss the properties of the material of interest (Bi2Se3) and the 

experimental techniques used in the thesis. In section 2.1-2.2 we provide a brief background on 

Bi2Se3 including its finite-size properties. Section 2.3 we provide an overview of the typical 

synthesis method that is employed to grow Topological materials such as Bi2Se3. In section 2.4, 

we describe the magnetron sputtering method of growing thin films that is used in this thesis 

work. Structural characterization methods (X-ray diffraction and reflectivity) are discussed in 

section 2.5. Optical absorption spectroscopy method is briefly discussed in section 2.6. Finally, 

we describe transport measurement methods in section 2.7.  

2.1 Introduction to Bi2Se3 

Bismuth selenide is a prototypical example among 3D Topological insulators [5]. Single 

Dirac cone was observed at the Γ point in bulk Bi2Se3 through angle-resolved photo emission 

(ARPES) [16, 15, 33]  and scanning tunneling microscopy measurements [48]. It is classified as 

a strong topological insulator [49], where surface states retain zero-gap despite the presence of 

atomic-level non-magnetic impurities (very stable even in the presence of strong disorder). The 

literature has also been growing on Bi2Se3 thin films. Recent experiments involving Bi2Se3 thin 

films demonstrated proximity-induced superconductivity [50, 51] and ferromagnetism [52], both 

phenomena associated with symmetry breaking. Exotic effects such as Quantum anomalous Hall 

Effect has been experimentally observed in magnetic TI thin films at ultralow temperatures [53, 

27, 54].  
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Figure 2 .1 Surface states of Bi2Se3 as measured by ARPES [1]. Clear single Dirac cone is 

observed. 

Bi2Se3 has a rhombohedral structure as shown in figure 2.2 belonging to the D5 
3d (R-3m) 

space group. The larger hexagonal unit cell has lattice parameter c= 2.864 nm and a=0.413 nm. 

The structure can be broken down into covalently bonded Se-Bi-Se-Bi-Se quintuple layer (QL) 

blocks with a thickness of 0.95 nm. Different QLs are held together by weak van-der-Waals 

bonds.  

 

Figure 2.2 Crystal structure of Bi2Se3 with three primitive lattice vectors [32] 

Among all Bismuth and Antimony-based compound Bismuth Selenide shows one of the 

highest bulk band gap of 0.3eV [32, 33, 26], In comparison, Bismuth Telluride has a gap of 



 

13 

 

0.15eV.  While ARPES has proved successful in directly imaging the surface properties, 

transport measurements, that should also probe surface states, are obscured due to large 

concentration of selenium vacancies in Bi2Se3. The vacancies make Bi2Se3 strongly n-type 

doping with a typical bulk carrier concentration of between 1018 to 1019 cm-3. In comparison, n-

doped Si has a carrier concentration between 1014-1015 cm-3, and metals have a concentration of 

1022 cm-3. Even very pure single crystal prepared by Bridgman techniques show high bulk carrier 

density (>1019 cm-3). However, to properly utilize the conducting surface states for device 

applications, the bulk contribution must be kept low. In this respect, topological properties must 

survive various tests of scalability and compatibility. Therefore, growth of high-quality TI 

materials with low defects in thin-film form will provide the platform for further investigations. 

2.2. Finite-size properties of Bi2Se3 

Ultra-thin Bi2Se3 is required for exploring nanoelectronics applications. Therefore, 

scalability of topological properties with reducing thickness is of interest. Theoretically we 

expect crossover from a 3D TI to 2D TI as the thickness is reduced.  Theoretical work indicated 

that a trivial 2D behavior is possible [55, 56, 57]. i.e., a gapped state due to the hybridization of 

the top and bottom surfaces. In other words, due to quantum tunneling the top and bottom states 

talk to each other as the thickness is reduced which opens a surface gap. Experimentally this was 

observed below the 6 QL in ARPES measurements by Zhang et al. [17] as shown in figure 2.3.  
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Fig 2.3 Band Gap opening in ultra-thin film bismuth selenide films by using the ARPES. [17] 

In short, ultra-thin Bi2e3 transforms into to a trivial insulator in the two-dimensional limit. 

On the positive side, observation of quantum- tunneling modulated spin texture of ultra-thin 

films open the new door for the possible spin switch nano electronics and spintronic devices 

application [58]. Insulating behavior was reported in the transport properties of mechanically 

exfoliated 3 QL films [59] . Recently, first principles density functional theory calculations of 

2 QL Bi2Se3 thin films showed increase in the bulk band gap [60]. In the present thesis work, 

we confirm the increase in bulk gap in the 2D limit through optical spectroscopy. The details 

are discussed in chapter 4. 

2.3 Thin film synthesis of Bi2Se3 

Popular single crystal synthesis techniques of Bi2Se3 and other topological materials 

are synthesized by Bridgman method, Chemical Vapor Deposition [61]  and Physical vapor 

transport. Mechanical exfoliation of single crystals provides thickness dependent experimental 

studies of electronic and optical properties [59, 62]. Thin films deposition can be generally 

classified into either physical or chemical. The well-known method of thin films growth is 
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Molecular Beam Epitaxy (MBE) which gives high quality epitaxial thin films. Sailent feature 

of MBE method is a low film growth rate under ultra-high vacuum (UHV) [19, 63, 64, 65, 66, 

67].  Growth of Bi2Se3 using MBE is reported on different substrates such as Si (111) [64], GaAs 

(111) [63], SrTiO3 (111) [49], InP (111) [68], CdS (0001) [69], graphene-terminated 6H-

SiC(0001) [67] and Sapphire [67].  MBE provides better structural control, sputtering is more 

versatile, PLD provide better stoichiometry control, and CVD is more cost-effective. Therefore, 

depending on application, one method might be preferred over other.  Thin films of Bismuth 

Selenide are also synthesized by using magneto-sputtering technique [70] which is a large 

area growth technique of thin films. Sputtering method is described in detail in the next 

section as it is the method used in this thesis work. The substrate plays an vital role in the 

crystal structure of thin films. In our study, we used different substrates such as sapphire, silicon, 

Si/SiO2, amorphous Boron nitride buffered Silicon and quartz.  

2.4 Physical vapor deposition 

Physical vapor deposition (PVD) consists mainly three steps: (1) production of a target 

atomic, molecular, or ionic species, (2) transport of this material to the substrate through a 

medium and (3) atomic assembly of the species on the substrate.  PVD system is categorize into 

two: evaporation or sputtering. In the evaporation system the target molecules are evaporated 

which include molecular beam epitaxy (MBE), Thermal evaporation and laser ablation. The 

MBE is one of the best way of getting nearly perfect single crystalline structure texture. This 

system can be used for getting the thin films of metal, semiconductor or insulator. MBE system 

has relatively very slow growth rate in ultra-high vacuum pressure (10-10 torr). This system may 

be controlled in situ by surface reflection high energy electron diffraction (REED) which is the 
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unique feature of this system. However, MBE system is very complex and expensive so that it is 

not preferred for use in large –scale production thin films. 

2.4.1 Sputtering 

           Sputtering system is one of the thin film growth technique in which targeted materials are 

ejected from the solid source at a higher temperature than its vaporization point [71]. High purity 

materials are deposited on the substrate in in an Argon environment.  

 

Figure 2.4 A schematic diagram of a typical sputtering system (source: Wikipedia) 

An electric field is applied to accelerate the Argon ions present in the chamber. The Argon ions 

accelerate towards the substrate and sputters the source ingredients from the target in vapor form 

by a physical momentum-exchange process as shown in figure 2.4. One of the most striking 

characteristics of sputtering is its universality. Since atoms from the target are by   a physical 

momentum-exchange process, virtually any solid material can be deposited using sputtering 

process. There are different types of sputtering systems. Among them the DC diode sputtering, 

RF diode sputtering and DC or RF. Magnetron sputtering is the most advanced technology 

capable of handling a variety of materials (metals, semiconductors and insulators)  
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2.4.1.1 Magnetron Sputtering 

            In our lab, we have the magnetron-sputtering system which is used to fabricate thin films.  

In this system, a magnetic field is applied parallel to the surface of the target by a pair of planar 

electrodes, across which a static voltage is applied to create a plasma discharge. The secondary 

electrons travelling from the target to the substrate are forced into a spiral path due to the Lorentz 

force. This significantly increases the travel distance of each electron, enhancing the probability 

of collisions with the background gas atoms. This dramatically increases the impact efficiency of 

the ejected electrons, making it possible to sputter at lower pressure (1-5 mTorr).  

During the deposition of magnetic material attention must be paid. An inhomogeneous magnetic 

field will result in non-uniform plasma density, which cases non-uniform target erosion and 

degrades the uniformity of the sputtered films. Figure 2.6 is a photograph of our customized, 

high-vacuum magnetron sputtering system, which has three targets which can run simultaneously 

at high temperature, manufactures by AJA international. 

 

Figure 2.5 Schematic arrangement of the magnets and target in a typical magnetron sputtering 

system. (source: Wikipedia) 
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Figure 2.6 Photograph of the magnetron sputtering system in our lab 

2.5 Structural characterization    

2.5.1. X-ray diffraction 

X-ray Diffraction (XRD) is a well-known method to investigate the crystal structure and 

plane spacing of solid state system. Utilizing the fact that hard X-ray wavelengths comparable to 

inter-atomic distances, strong diffraction patterns are obtained when X-ray impinge upon a 

crystal at some specific angles (θ). The distance between the atomic planes (d) is given by the 

Bragg’s law of diffraction. 

   sin2d       (3.1) 

Where 𝛌 is the wave length of the X-ray. 
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The relation between the plane spacing, in plane lattice constant (a), out plane lattice (c) 

and miller Indies (hkl) for the different lattice are given by  
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Figure 2.7 Schematic diagram of XRD machine hardware (Source:SmarLab Manual) 

 

Figure 2.7 shows schematic X-ray setup. Cu K-line produced in the X-ray generator is 

guided using mirrors and slits onto the sample which is placed on the Goniometer. The 

reflected/diffracted beam is collected by the detector after the beam is conditioned by the 

receiving optics. Cu produce two K-alpha line and a K-beta line. The K-beta radiation is 

removed (attenuated) by the Ni filter. Kα2 line is removed by a 220-Ge monochromator. Thus 
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our XRD system (Rigaku Smartlab) produces highly monochromatic Kα2 radiation with a 

wavelength of 1.5404Å. Generally, the out of plane lattice parameter (c-axis) can be extracted 

easily using a simple two–axis theta-2theta scan when the crystal grows with a preferred (00l) 

orientation. Non-zero h, k, l indices must be exposed to obtain in-plane parameters. It is achieved 

by four-circle scans (Phi, psi, omega). The texture of the thin films can be measured by rocking 

curves (omega scans at fixed 2theta).    

2.5.2 X-ray reflectivity 

X-ray reflectivity (XRR) is a surface sensitive technique that is used to analyze thin films 

and multi-layers.  In a typical XRR scan, X-rays are incident at a grazing angle of incidence and 

specular reflection from the sample surface is measured. Essentially, it is a theta-2theta scan (like 

XRD) at very low angles. Various relevant information can be extracted from XRR data such as 

thickness, large-area roughness, and density values of each individual layer. A simulated XRR 

pattern for a film (Bi2Se3) of a specific thickness and density is shown in figure 2.8.  

 

Figure 2.8 Simulated XRR plots for a 13 nm Bismuth Selenide film (density 6.9 gm/cm3) with 

two roughness values. 
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At very low angles, X-rays do not penetrate the sample due to total external reflection as 

density of materials at x-ray wavelengths is slightly less than 1. The critical angle, θc, the angle 

at which X-rays start to penetrate the sample is related to the density of the underlying layer. 

Higher θc indicates higher density. For the plot shown in figure 2.8 the critical angle is 2θ ~ 0.8. 

As the angle increase, the X-rays also reflect from the film-substrate interface and interferes with 

the top-surface reflection, giving rise to oscillatory interference pattern called Kiessig fringes. 

The thickness of a single film on a substrate, to a very good approximation, can be calculated 

from the period of oscillations through the relation 

)
2

sin
2

(sin2 21 





t                                                                          (3.4) 

Where 𝜽𝟐 and 𝜽𝟏 are the angle of consecutive oscillation maxima. This approximation is reliable 

at angles significantly higher than the critical angle.  Another feature of the XRR data is that is 

sensitive to the RMS roughness of the system. Qualitatively, this can be inferred from the slope 

of XRR data. As the simulated data of figure 2.8 indicates samples with high roughness loose 

intensity rapidly with increasing angle. Quantitative estimate can be made through fitting. 

Multilayers can be analyzed similarly. Parratt’s formalism [72] used to extract quantitative data 

(thickness, roughness, density). and implemented in the simulation software used for this work  

[73]. 

2.6 Optical absorption Spectroscopy 

Broadband absorption spectroscopy was used to identify the optical band gap and optical 

property Bi2Se3. The measurements covered the near-infrared (NIR), visible (VIS), and ultra-

violet range from 190-3300 nm (0.375 eV- 6.2 eV). In a Transmission spectroscopy 
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measurement setup, the light is incident at normal incidence through a sample (see figure 2.9) 

and the transmitted light is measured by a detector. The loss of light can be attributed to 

absorption which in turn can be assigned to the electronic structure of the material under interest. 

Of course, some of the light is reflected. The relation among transmittance (T), reflectance (R), 

absorption (α) and thickness (t) of the films for a strongly absorbing medium is given by the 

relation, 

teRT 2)1(                                                                      (4.1) 

This equation is the modified form of Beer’s law. For a highly transmitting thin film 

(particularly on or below the band gap), we can neglect the reflectance and the relation becomes,   

  T
t

Absorption ln)
1

()(                                                                                     (4.2) 

This absorption is related to the extinction coefficient (k) by the relation 

     





k4
                                                                                  (4.3) 

 The apparatus used is a grating spectrometer, as the wavelength resolution is obtained by 

using a diffraction grating (Shimadzu UV3600 plus spectrophotometer) as shown in figure 2.9. 
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Figure 2.9 Schematic for a NIR-VIS-UV spectrophotometer (left) and Photograph of Shimadzu 

UV3600 Spectophotometer. 

2.7 Transport measurements 

Transport measurenebts of Bi2Se3 thin-films was carried out in the Van-der-Pauw 

geometry [74] to measure quantities such as resistivity and Hall mobility. A commercially 

available setup was used to perform the measurements (NANOMAGNETICS INSTRUMENTS 

ezhEMS). 

2.7.1 Hall effect 

 Magnetic field is applied perpendicular to the sample during Hall Effect measurement. In 

this geometry, Lorentz force carries charges towards the edges of the sample until the process 

stops due to Coulomb repulsion of like charge.  
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Figure 2.10 A Schematic diagram of the Hall measurement (Source: ezHEMS Manual) 

Likewise, at the opposite edge there is a depletion of charges, creating a net voltage 

called Hall Voltage ( HV ) The magnitude of the hall voltage is dependent on the material 

properties which is given by the equation (5.1) 

 
nqd

IB
VH                                                                         (5.1) 

Where I is applied current and B is magnetic field in perpendicular to sample plane, d is 

the thickness of sample, q is the charge of electron and n is the sheet carrier density.  

The Hall coefficient is given by 

              
IB

dV

nq
R H

H 
1

                                                                                  (5.2) 

Hall resistance is defined by 

        
nqd

B

I

V
R H

xy                                                                     (5.3) 
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 Van-der-Pauw geometries require four-point contacts at the edges of an arbitrary shaped 

sample. Factors are accurate thickness value and sample uniformity but not sample width nor 

distance between contacts. However, symmetric geometries as shown in figure 2.11 provide 

accurate resistivity value.  

 

Figure 2.11 Standard van-der-pauw geometries 

In our experiment, we employed the square geometry (center figure in 2.12). Current and 

voltages are measured as described below:  

• 12I means current is supplied though terminal 1 and taken out from terminal 2. 

•  4334 VVV                                                                                              (5.4) 

• 
12

34
1234

I

V
R                                                                                             (5.5) 

• In all Hall measurements, the current is applied along a diagonal (1-3 or 2-4) and the Hall 

voltage is measured along the other (perpendicular) diagonal. 

• Reciprocity dictates that the Hall voltage will be same if we swap the current and voltage 

terminals. 

For an arbitrary shaped material the resistivity is calculated by 
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2ln2

23411234 RR
tf


                                                                        (5.6) 

where f is correction factor given by
2341

1234

R

R
 [74] For our square symmetrical shaped sample  

1f  

Hall mobility is given by the relation, 

          


 HR
                                                                                                    (5.7) 

2.8 Conclusion 

In this chapter, we described the important properties of Bismuth selenide including its 

ultra-thin properties. The Magnetron sputtering method of growing Bi2Se3 thin films is described 

in some details. Next, we discussed the structural (x-ray diffraction and reflectivity), optical 

(absorption spectroscopy), and transport (resistivity and Hall effect) characterization techniques 

used in this thesis.  
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CHAPTER 3 

STRUCTURAL ANDTRANSPOR PROPERTIES OF Bi2Se3 THIN FILMS 

In this chapter, we report the structural, and transport properties of topological insulator 

Bi2Se3 thin films grown using magnetron sputtering with emphasis on investigating their 

dependence as a function of thickness (2-100 quintuple layer) or substrate. In section 3.1, we 

provide the experimental details on the synthesis of Bi2Se3. Section 3.2-3.3 describes the effect 

of thickness and substrate on the structural properties as investigated through X-ray diffraction 

and reflectivity. In Section 3.4 we describe their Transport properties.  

3.1 Growth of Bi2Se3 thin films 

Bi2Se3 thin films were fabricated in the 2-100 nm thickness range that roughly translates 

to 2-100 quintuple layers (1 QL ~ 0.95 nm). Growth was performed on different substrates such 

as Si/SiO2 (100 nm), transparent quartz (SiO2) and amorphous BN-buffered Si, and 001-oriented 

Si with a native SiO2 layer, and c-oriented Al2O3. Bi2Se3 was grown using commercially 

available stoichiometric target from Kurt Lesker (99.999% purity) and RF sputtered in a high 

vacuum magnetron sputtering system (base pressure 4 × 10−9 Torr). The growth rate for Bi2Se3 

was fairly high at 10-15 QL/min even under moderate sputtering power conditions. Films were 

grown at room temperature and annealed in-situ at 300 C.  Structural and interface properties 

were characterized by means of high-resolution X-ray diffraction and reflectivity using a Rigaku 

Smartlab Diffractometer equipped with a Ge (220) 2-bounce incident bean monochromator to 

obtain a Cu Kα1 radiation. Transport and Hall measurements were done using a NanoMagnetics 

Instruments ezHEMS system in the Van-der-Pauw (VDP) geometry. 
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3.2 Effect of thickness on Bi2Se3 structure  

In figure 3.1 we show the X-ray reflectivity (XRR) pattern of approximately 10-12 QL 

Bi2Se3 films grown on different substrates (Si, Si/SiO2, amorphous BN, and c-orientated Al2O3).  

XRR is simultaneously a surface and bulk probe technique. An oscillatory pattern is observed in 

all cases that indicates sharp interface of Bi2Se3 with the substrate. 

 

Figure 3.1 we show the X-ray reflectivity (XRR) pattern of approximately 10-12 QL Bi2Se3 

films grown on different substrates (Si, Si/SiO2, amorphous BN, and c-orientated Al2O3 

Analysis of the critical angle reveals that the measured film densities are somewhat 

higher than the bulk value of ~ 6.8 g/cm3 by about 15-20 %. Though this value may be within the 

margin of error, this might also indicate that the films have selenium vacancies (more Bismuth 

per unit volume) or indication of formation of Bismuth oxide (Bi2O3) at the surface which has a 

much higher density than Bi2Se3. The most distinct variation between substrates are the film 

roughness values that can be inferred qualitatively from the slope of the curves. Fits show that 
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the film on Al2O3 is virtually atomically smooth whereas the film on Si has a roughness of nearly 

1 quintuple layer (~0.9 nm).  Data on amorphous-BN and SiO2/Si show intermediate roughness 

values of 0.7 nm and 0.45 nm respectively.  

 

Figure 3.2 (a) Normalized XRD pattern of a 35 nm Bi2Se3 film showing only (000l) Bragg peaks.   

Simulated XRD intensities corresponding to 000l Bragg peaks is shown using black stars. A very 

good agreement is observed except for the (00015) peak (b) (b) XRD scans of Bi2Se3 thin films 

of different thickness as indicated. ‘Sub” indicates substrate peak. 

Figure 3.2(a) shows the high resolution θ-2θ XRD pattern of a 35 nm Bi2Se3 film 

deposited on Si/SiO2 substrate. Various (000l) peaks assigned to Bi2Se3 are clearly observed. The 

intensities are normalized with respect to the highest (0006) peak to compare the data to a 

simulated XRD pattern [75] of bulk Bi2Se3 structure (c=28.63 Å) [76] . The (000l) simulated 

peak positions are indicated by black stars.  As evident, apart excellent agreement in the Bragg 

angle, the experimental intensities match simulation very well for all except the (00015) peak, 

which is somewhat reduced in intensity. This clearly indicates that highly-oriented Bi2Se3 films 

are growing strain-free with bulk-like crystal structure. The oriented crystal structure is also 
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observed over a wide thickness range. In figure 3.2 b, XRD scans of films of various thickness 

deposited on SiO2/Si substrate are shown. Only (000l) peaks are observed down to 6 QL below 

which some of the low intensity peaks (0009, 00012) fall below the resolution limit of the 

diffractometer. It is however reasonable to assume that the structural integrity is maintained in 

films lower than 6 QL thickness. The intensity and Full-Width-Half-Maximum (FWHM) values 

of the data shown in figure 3.2 b is shown in table 3.1. 

Table 3.1 Intensity and Full Wave Half Maxima value of (0006) peaks with thickness 

Thickness 

(nm) 

Intensity 

on Si/SiO2 

(cps) 

FWHM  

(deg) 

6 184 1.72 

10 1307 0.78 

14 1443 0.79 

35 3170 0.59 

 

3.3 Effect of substrate on the structure of Bi2Se3 

X-ray diffraction analysis also show that films deposited on Al2O3 possess the best 

crystallographic structure. In figure 3.3 we show the high-resolution θ-2θ data of 10-12 nm 

Bi2Se3 films deposited on various substrates. Only (000l) Bi2Se3 peaks are observed on all 

substrates apart from sharp substrate peaks (indicated by “Sub”) indicating out-of-plane (c-axis) 

growth in all cases. The film grown on Al2O3 (red) shows the highest intensity among all 

substrates (Figure3.3) whereas the film on amorphous BN (green) shows the lowest XRD 
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intensity (by almost a factor of five for the (0006) peak). The intensity and FWHM values 

obtained for all substrates are shown in Table 3.2 

 

Figure 3.3 (a) X-ray diffraction patterns of 10-12 nm Bi2Se3 films grown on different substrates. 

“Sub” indicated peaks from various substrates. (b) (0006) peak on different substrates showing 

variation in intensity. Thickness oscillations are observed around (0006) peak indicating smooth 

films. 

Table 3.2 Intensity (cps) and FWHM value of the (0006) peak as obtained in different substrates  

Substrate Intensity of 

10 nm film 

(cps) 

FWHM 

(deg) 

Al2O3 4584 0.600 

Si 2249 0.726 

SiO2/Si 1307 0.782 

BN/Si 792 0.873 
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 Film on SiO2/Si and Si are of intermediate quality. Similar characteristics are also 

inferred from the full-width-at-half-maxima (FWHM) value of the (0006) peak from table 3.2. 

As also clear from figure 3.3b, there is no significant difference in the out-of-plane lattice 

parameter that indicates that strain effect is not significant in Bi2Se3. Therefore, take together 

with X-ray reflectivity data, our data clearly demonstrate that Bi2Se3 films grown on Al2O3 

have the best topographic and structural quality, consistent with existing reports. Amorphous 

substrates such as SiO2 grown in Si are also encouraging and we shall primarily focus on the 

physical property variation on such amorphous substrates next in the discussion of transport 

properties.  

3.4 Transport properties of Bi2Se3: Finite size effects 

Transport and Hall effect measurements were performed on exposed Bi2Se3 films of 

various thickness deposited on 1 cm by 1 cm transparent quartz substrates using the Van-der-

Pauw method. Quartz substrates were chosen so that the films can be measured for their optical 

properties simulteneously. In order to minimize surface contamination and aging effect, transport 

measurements were performed immediately after thin-film deposition. Therefore, new sample 

were fabricated whenever necessary to improve the accuracy of our measurements. Four-probe 

ohmic contacts were made by making light contacts with Au/Cr probes onto silver paint 

deposited at the corners of the square sample. The measurements were completely automated 

using a LABVIEW program. Samples ranging from thickness of 2-100 QL were employed for 

this work. Using VDP method, a vast range of parameters such as carrier-type, 2D and 3D carrier 

concentration, bulk resisitivity, and Hall mobility were analyzed as a functions of thickness at 

room temperature. These values are summarized in Table 1. We will discuss the relevant 

parameter next. 
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Sheet carrier concentration (n2D) shows two distinct regimes. Between 90-15 QL there is 

a slight reduction in n2D by about a factor of two or three (see Table 3.3). However below 6 QL 

onwards, we notice a very sharp reduction in n2D  values by roughly an order of magnitide as the 

thickness approaches the two-dimensional limit. The 2QL show much higher sheet resistance 

which can possibly from poor interface with the amorphous quartz substrate. This is consistent 

witht the reports of Liu et al. [77] where they report similar effects that they attribute to strong 

electron delocalization and topopolgocal protection.  

Bulk carrier concentation (n3D) is largely insensitive to the two-dimensinal effect. It only 

shows a samller increase (factor three) in the entire 100-2 QL range studied. It is also very in 

value with concentration of over 1019-1020 as shown in Table 3.3. This again points that the bulk 

carrier concentration is probably dominated by extrinsic factors such as selenium vacancies. 

Resisitvity values is mostly in the 10-3-10-4 range and shows a slight further increase below 6 

QL, particularly at the the 2-3 layer range which can be assigned to a quantum confinement 

effect. Similar insualating behavior has been reported  Temperature dependent measurements on 

15 and 90 nm film (data not shown) also slow a metalic behavior that is consistent vacancy-

induced mobile carrier concentations. Probably the strongest impact of thickness is observed on 

the Hall mobility values. In figure 3.4 we plot the Hall mobility and the sheet resistance as a 

fucntion of thickness.  
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Table 3.3.  Carrier concentration (bulk and surface), bulk resistivity, and Hall mobility at 295 K 

of Bi2Se3 thin films of various thickness.n-type behavior was observed in all films 

 

Thickness 

(nm) 

Sheet 

concentration 

(cm-2) 

Sheet 

resistance 

(h/e2 ohm/sq) 

Bulk 

concentration 

(cm-3) 

Resistivity 

(ohm.cm) 

Hall Mobility 

(cm2/Vs) 

90 4.2E+14 -- 4.72E+19 0.00108 122 

25 2.46E+14 9.5E-3 9.83E+19 6.1E-4 103 

15 1.64E+14 2.09E-2 1.09E+20 8.10E-4 70.45 

6 9.76E+13 0.1007 1.63E+20 0.00156 24.61 

4 6.02E+13 0.2582 2.0E+20 0.002 15.54 

3 3.11E+13 0.57147 1.56E+20 0.00295 13.60 

2 1.80E+13 7.2391 9.0E+19 0.03737 1.86 
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Figure 3.4 Room temperature Hall mobility (blue curve) and sheet resistance (red) of Bi2Se3 

thin films grown on quartz substrate. Strong scaling behavior is observed as a function of 

thickness. 

A steep decrease in Hall mobility of nearly two order of magnitude is observed as the 

thicknes is reduced from 90 nm to 2 nm.  This reduction is monotonic but most drastic below 

15 nm. Though there is some correlation with inclrease in resistivy value at the 2-3 nm level, it 

is due to the finite size effect. Its is  still not conclusive that what we assume is due  to the finite 

size effect that is coupling of top and bottom layer of the thin films or it is due to the bad 

interface due to the substrate and bismuth selenide thin films.  

3.5 Conclusion 

 In this chapter, we demonstrate growth of high-quality oriented Bi2Se3 thin-films on a 

variety of substrates including amorphous SiO2 and BN, with films on isostructural Al2O3 
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substrate exhibiting the best quality. Transport properties reveal a high bulk carrier 

concentration in all films with n-type behavior and a drastic reduction in two-dimensional 

carrier concentration and Hall mobility in films below 6 QL thickness. The bulk resistivity of 

the thin films increased with decrease in thickness. 
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CHAPTER 4 

 

OPTICAL PROPERTIES OF FEW-LAYER Bi2Se3 

 In this chapter, we shall summarize the optical band gap properties of high-quality few-

layer topological insulator Bi2Se3 thin films grown in our lab. This work has appeared in a 

peer-reviewed journal (Yub Raj Sapkota, et al, Applied Physics Letters, 110 181901 (2017)). 

We provide direct optical evidence of a blue-shift to up to 0.5 eV in the band gap of Bi2Se3 as it 

approaches the two-dimensional limit. In section 4.1 we briefly motivate the study and survey 

the optical properties of Bi2Se3. In 4.2 we briefly outline the structural properties for few-layer 

Bi2Se3. Section 4.3-4.4 describes the optical properties. 

4.1   Introduction to few-layer Bi2Se3 

                 Many potential applications of TIs like Bi2Se3 will rely on their scaling behavior. It is 

therefore important and intriguing to ask as to what happens to such exotic materials as they 

approach the two-dimensional limit?  Thin films, therefore, provide an ideal platform to 

investigate low dimensional physics of TIs. One of the more intriguing consequence of finite-

size effects in TIs is the opening of an energy gap in the surface states due to quantum 

tunneling between the top and bottom surfaces, an effect which was first pointed out by theory 

[57, 55, 56]. and also verified later through first-principles calculations [78, 79]. 

Experimentally such an effect was directly verified by Zhang et al [55].  and   Sakamoto et al. 

[80]. In ultra-thin Bi2Se3 films (below six quintuple layers) through angle resolved photo 

emission spectroscopy (ARPES) measurement. The observed gap opening is substantially large 

(~ few tenths of eV). Weak localization effects can also result in a gap opening in few-layer 
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Bi2Se3 thin films, but it is of the order of meV [81]. Also, recently, Vargas et al. reported large 

blue-shift in Bi2Se3 nanoparticles, which they attributed to quantum-confinement effects in all 

directions [62]..  All these reports demonstrate that finite-size can have a profound impact in 

topological materials. In this work, we report that the optical band gap changes can also occur 

in such materials in the 2-dimensinal limit. 

 Investigations of optical properties of Bi2Se3 thin films has been a subject of previous 

studies. Variation of optical properties with thickness has also been noted.  For example, Post 

et al. [82]. studied uncapped 15-99 quintuple layers (QL) Bi2Se3 films and found band gap 

values below 0.3 eV that are attributed to impurity states or surface contamination. Eddrief et 

al. [83]. Measured optical properties of 3-54 QL Bi2Se3 thin films. While they cover a broad 

thickness range, the optical properties of the 3 QL film do show a behavior that is consistent, 

but not clearly reported, with an increase in band gap.  Higher optical transmittance in 5 or 6 

QL layer Bi2Se3 film has been reported that implies higher band gap [84, 85]. However, to the 

best of our knowledge, a systematic bandgap investigation is lacking at the two-dimensional 

(few-layer) limit of Bi2Se3. 

High-quality Bi2Se3 few-layer thin films were fabricated in the 2-10 nm thickness range 

that roughly translates to 2-10 quintuple layers (1 QL ~ 0.95 nm). Bi2Se3 was grown using 

commercially available stoichiometric target and RF sputtered in a high vacuum magnetron 

sputtering system (base pressure 4 × 10−9 Torr). The structural details are described in Chapter 

3. To protect the surface from contamination and oxidation, and yet retain optical transparency 

in the infrared and visible wavelengths. Some Bi2Se3 films were capped with amorphous BN 

thin films in situ. 
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4.2 Structural properties of ultra-thin Bi2Se3 

 For self-consistency, we shall briefly describe the structural characteristics. Figure 4.1 

shows the structural characteristics of an uncapped 10nm Bi2Se3 thin film grown on Si/SiO2 

substrate. In figure 4.1, we show the X-ray reflectivity data of the film.  

 

Figure 4.1 High-resolution x-ray reflectivity of ~ 10 nm Bi2Se3 thin film grown on Si/SiO2 

substrate. Inset shows the thickness and roughness value of Bi2Se3 film as obtained from the 

fit of reflectivity data. 

Oscillatory thickness pattern from the ~10 nm Bi2Se3 layer and the 100 nm SiO2 layer are 

observed. This is indicative of sharp interfaces. The thickness and roughness value as obtained 

from the reflectivity fit [73, 72]  is shown in the inset of (Fig4.1). Roughness of ~0.4 nm is less 
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than half of quintuple layer. The extracted density of the Bi2Se3 film is also in very good 

agreement with bulk value.  

 Figure 4.2 shows the high-resolution theta-2theta scan of the X-ray diffraction pattern of 

the 10 QL Bi2Se3 thin film. Clear diffraction peaks can be identified for the (002) silicon 

substrate (labeled as “sub”) and (000l) peaks of the Bi2Se3 layer. This is indicative of out-of-

plane growth.  Thickness fringes are also observed around the (0003) and (0006) that are 

consistent with very smooth films. Off-axis measurements on high Miller indices peaks gave 

a=4.17 Å, c=28.56 Å. Taken together with the reflectivity data, we confirm that the properties 

of few-layer Bi2Se3 films are of superior bulk and interface quality and compares very 

favorably with Molecular Beam Epitaxy (MBE) grown films. 

 

Fig 4.2 X-ray diffraction pattern of 10 nm Bi2Se3 film showing only (000l) peaks, implying out 

of plane growth 
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4.3 Optical Transmittance measurements 

To perform the transmittance measurement, the Bi2Se3 samples were deposited on 

transparent quartz substrates. One set of samples was capped with a few nm of amorphous BN 

and the other set was left uncapped.  Boron nitride is a highly transparent material with a 

bandgap of 5.5 eV.  This allowed us to protect the Bi2Se3  layer without affecting its visible and 

infra-red transmittance. To ascertain the impact of oxidation and other surface changes on the 

optical characteristics of the films, we measured the transmittance of several capped and 

uncapped Bi2Se3 films at various times after deposition. In figure 4.3 we show the data taken at 

two times for the 2 QL film which is the thinnest film studied where presumably the oxidation 

effect, if any, should be the strongest. As expected, the uncapped sample demonstrated some 

change in its optical transmittance, but it is only a few percent, and mostly in the high-energy 

range (500-900 nm). 

 

Figure 4.3. Transmittance data of a 2QL uncapped (a) and BN-capped (b) Bi2Se3 film taken at 

different times after film deposition as indicated. The uncapped sample showed only very little 

variation with time. 
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 The observed change is less than 10% even after 7 days (data not shown), proving that 

the optical transmittance properties were not affected to any significant degree even at the 2 QL 

level. The BN capped sample did not show any change as evident from the near-perfect overlap 

of the data taken after 6 mins and 4 hours. Taken together we infer that even though capping 

improves reliability, oxidation and other extrinsic effects do not dominate our optical 

measurements [83]. Encourage by these developments we proceeded to measure the band gap 

on both types of sample.  

 4.4 Band-gap spectroscopy of few-layer Bi2Se3 thin films  

 In figure 4.4, we plot the optical absorption as calculated from the transmittance data 

through the relation α = -(1/thickness) * lnT.  

 

Figure 4.4 Optical absorption data of a 2 and 6 QL Bi2Se3 film showing a blue-shift with 

inverse thickness 

Various optical features can be associated with Bi2Se3. However, the most striking 

dissimilarity between the two films is the rigid blue-shift in the 2 QL sample compared to the 6 

QL data. This clearly indicates that the fundamental band gap of these two systems are 
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different.  The blue-shift in the absorption data continues to up to 3.5 eV, above which the 

optical properties overlap reasonably well.  To quantify the optical band gaps accurately, we 

plot the (αE)2 vs the photon energy (Fig. 4.5) to reveal the direct gaps of few-layer Bi2Se3.  

 

Figure 4.5 Direct Band gap analysis 

Though this method was developed to measure optical properties of semiconductors with 

parabolic bands it has often been extended (successfully) to other systems. The measured band 

gap for the 2QL film is ~0.8 eV whereas the value for the 6QL film is ~0.5 eV. In figure 4.6, 

we plot the band gaps of all the few-layer films (both capped and uncapped). The strong in 

increase in band gap with decreasing thickness is seen in both types of samples. The obtained 

band gap for the 15 QL film is close to bulk value (~0.3 eV), that demonstrates that the 

systematic error in the band gap estimation is small, if any (less than 0.1 eV). 
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Figure 4.6. The direct band gap for films of different thickness. Both capped and uncapped 

films follow the same trend of increasing band gap with inverse thickness below 6 QL. 

 Our observations are consistent with strong differences in the electronic character of 

two-dimensional Bi2Se3 compared to bulk. Previous efforts have highlighted that finite size 

effect is particularly important when the top and bottom surfaces starts to interact with each 

other, the onset of which starts below six QL. It is therefore not a coincidence that the most 

significant bulk band gap change is for thicknesses below six quintuple layers.  Very recent 

first principle calculation also conform this result [60]. We therefore hypothesize while optical 

transmittance measurements might not be directly sensitive only to the surface states, we are 

indirectly measuring the effects of it. It is also worth noting that Vargas et al. reported a 

theoretical band gap of ~0.8 eV for a 2QL Bi2Se3 [62], which is also in excellent quantitative 

agreement with our results. Therefore, we conjecture that quantum confinement effects might 

already play a significant role at the 2D level. Additional lateral confinement will only amplify 

this effect.  At present, we have not confirmed this effect for a single Bi2Se3 layer but believe 

that it will be a robust effect.  
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Another important observation is that the bandgap values of thicker films (10 QL or 

more) are considerably larger than the reported bulk value by about 0.2 eV. We explained this 

as due to the Burstein-Moss (BM) effect, which is observed in semiconductors with high 

carrier concentration (> 1018 cm-3) [86]. In such cases, the Fermi level moves to the conduction 

band and results in an apparent increase in the bandgap due to Pauli blocking of occupied 

conduction band (CB) states. Preliminary Hall effect studies on our 10-30 QL films revealed a 

carrier concentration more than 1019 cm-3 which is typical of Bi2Se3 [87]. 

4.5 Conclusion 

 In conclusion, we have provided optical evidence of a bulk blue shift in Bi2Se3 thin 

films as we approach the two-dimensional limit. High-quality, oriented, few-layer Bi2Se3 films 

was grown using magnetron sputtering and their structural and optical properties were 

investigated using transmittance spectroscopy. Up to 0.5 eV change in band gap is observed, 

and most significantly below 6 QL. The effect is robust and is observed in both capped and 

uncapped films. We explain the increase through a combination of finite-size and Burstein-

Moss effect. Overall, our data sheds more evidence into the scaling behavior of TI systems that 

can potentially have interesting consequences in future nanoelectronics devices. The increase in 

band gap from 0.3 eV to nearly 1.0 eV also can be utilized in opto-electronic areas such as 

photodetector and solar cells. 
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 CHAPTER 5 

SUMMARY 

             In this work, high-quality, oriented, Bi2Se3 films were grown using ultra-high vacuum 

magnetron sputtering system and their structural (X-ray diffraction, X-ray reflectivity), 

transport (resistivity, Hall mobility) and optical (absorption spectroscopy) properties was 

investigated. Films of various thickness (2-100 nm) were grown on a  varitey of subtrates such 

as Si, SiO2 (100 nm)/Si, saphhire, amorphous BN buffered Si, and transparent quartz. X-ray 

diffraction scans demonstrated the growth of high-quality films with lattice parameter very 

close to single crystals. The structual quality was verified down to a few-layers. The best 

crystal structure was observed on sapphire substrate which has a compatible structure with 

Bi2Se3, followed by Si, a-SiO2/Si and a-BN/Si. X-ray reflectivity measurements also 

demonstrated that films on sapphire were the smoothest with sharp film-sustrate interface. 

Typical roughness values were as low as 0.4 nm. The weakly bonded nature of van-der-waals 

force between the substrate and Bismuth selenide layer allowed us to succesfully achieve high 

quality growth of Bi2Se3 thin films on different substrates. 

             The transport results suggest an n-type behavior with high carrier concentration which  

is attributed mainly to Selenium vacancies and low bulk band gap. Van der Paw measurements 

reveled a carrier concentration greater than 1019 cm-3 regardless of the thickness of the sample 

which is indicative of degenerate semiconducting behavior. Both Hall mobilty and resistivity 

showed very strong scaling behvior with thickness. Hall mobility decreased two orders of 

magnnitude while resisitivty increased two orders as the thickness was reduced from 100 nm to 

2nm. 
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            We observed optical evidence for a bulk blue shift in Bi2Se3 thin films as we 

approached the two-dimensional limit. Up to 0.5 eV change in band gap is observed, and most 

significantly below 4 nm. The effect is robust and was not affected by exposure to ambient 

conditions even for the thinnest film studied (2nm). We explain the increase through a 

combination of two factors. Firstly, it is well documented that in the 2D limit Bi2Se3 turns into 

topological insulator with gapped surface states due to quantum interference of the top and 

bottom surface states. Our optical measurements suggest that there is also a bulk gap change as 

the surface states are gapped probably due to hybridization effects. This explains the band gap 

difference (0.3 eV) between the 2 and 6 nm films.  This observation is also confirmed by first-

principles calculations.  Furthermore, we observed that bulk-like films (greater than 10 nm) 

also show a high band gap ( ~0.5 eV rather than the expected value of 0.3 eV). We explain this 

is due to  Burstein-Moss effect. Due to the high carrier concentration, the low-lying conduction 

band states are occupied and the Fermi level is pushed to the conduction band. As a result the 

apparent optical band gap is increased. Prior ARPES and transport data is consistent with our 

data. This work opens up an array of optical applications for Bi2Se3 thin films. 
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