
Southern Illinois University Carbondale
OpenSIUC

Theses Theses and Dissertations

12-1-2017

THROUGHPUT OPTIMIZATION AND
RESOURCE ALLOCATION ON GPUS
UNDER MULTI-APPLICATION
EXECUTION
SRINIVASA REDDY PUNYALA
Southern Illinois University Carbondale, srinu4@outlook.com

Follow this and additional works at: http://opensiuc.lib.siu.edu/theses

This Open Access Thesis is brought to you for free and open access by the Theses and Dissertations at OpenSIUC. It has been accepted for inclusion in
Theses by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
PUNYALA, SRINIVASA REDDY, "THROUGHPUT OPTIMIZATION AND RESOURCE ALLOCATION ON GPUS UNDER
MULTI-APPLICATION EXECUTION" (2017). Theses. 2255.
http://opensiuc.lib.siu.edu/theses/2255

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/theses?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/etd?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/theses?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/theses/2255?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

THROUGHPUT OPTIMIZATION AND RESOURCE ALLOCATION ON GPUS

UNDER MULTI-APPLICATION EXECUTION

by

SRINIVASA REDDY PUNYALA

B.S., Jawaharlal Nehru Technological University Hyderabad, 2015

A Thesis
Submitted in Partial Fulfillment of the Requirements for the

Master of Science Degree

Department of Electrical and Computer Engineering
in the Graduate School

Southern Illinois University Carbondale
December 2017

Copyright by SRINIVASA REDDY PUNYALA, 2017

All Rights Reserved

THESIS APPROVAL

THROUGHPUT OPTIMIZATION AND RESOURCE ALLOCATION ON GPUS

UNDER MULTI-APPLICATION EXECUTION

By

SRINIVASA REDDY PUNYALA

A Thesis Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Master of Science

in the field of Electrical and Computer Engineering

Approved by:

Dr. Iraklis Anagnostopoulos, Chair

Dr. Arash komaee

Dr. Dimitrios Kagaris

Graduate School
Southern Illinois University Carbondale

October 31, 2017

AN ABSTRACT OF THE THESIS OF

SRINIVASA REDDY PUNYALA, for the for the Master of Science degree in Electrical

and Computer, presented on October 31, 2017, at Southern Illinois University Carbon-

dale.

TITLE: THROUGHPUT OPTIMIZATION AND RESOURCE ALLOCATION UNDER

MULTI-APPLICATION EXECUTION ON GPUs

MAJOR PROFESSOR: Dr. I. Anagnostopoulos

Platform heterogeneity prevails as a solution to the throughput and computational chal-

lenges imposed by parallel applications and technology scaling. Specifically, Graphics

Processing Units (GPUs) are based on the Single Instruction Multiple Thread (SIMT)

paradigm and they can offer tremendous speed-up for parallel applications. However,

GPUs were designed to execute a single application at a time. In case of simultaneous

multi-application execution, due to the GPUs’ massive multi-threading paradigm, ap-

plications compete against each other using destructively the shared resources (caches

and memory controllers) resulting in significant throughput degradation. In this thesis,

a methodology for minimizing interference in shared resources and provide efficient con-

current execution of multiple applications on GPUs is presented. Particularly, the pro-

posed methodology (i) performs application classification; (ii) analyzes the per-class in-

terference; (iii) finds the best matching between classes; and (iv) employs an efficient re-

source allocation. Experimental results showed that the proposed approach increases the

throughput of the system for two concurrent applications by an average of 36% compared

to other optimization techniques, while for three concurrent applications the proposed

approach achieved an average gain of 23%.

i

DEDICATION

I dedicate this work to my family who made this possible.

ii

ACKNOWLEDGMENTS

I would like to thank Dr. Iraklis Anagnostopoulos for his invaluable assistance and in-

sights leading to the writing of this paper.

iii

TABLE OF CONTENTS

Chapter Page

Abstract . i

Dedication . ii

Acknowledgments . iii

List of Tables . vi

List of Figures . vii

Chapter 1: Introduction . 1

1.1 GPU computing . 2

1.2 Definitions . 3

1.2.1 Throughput . 3

1.2.2 Utilization . 3

1.2.3 Streaming Multiprocessor(SM) . 3

1.3 Motivation . 3

1.4 Integer Linear Programming . 5

1.5 Contribution . 6

Chapter 2: Literature Review . 7

2.1 Thread-level parallelism . 7

2.2 Concurrent kernel execution . 9

2.3 Shared resource contention . 10

Chapter 3: Definitions - Proposed Method . 12

3.1 Simulators . 12

3.1.1 GPGPU-Sim . 12

3.2 Proposed Methodology . 14

3.2.1 Application Classification . 15

iv

3.2.2 Interference Calculation . 16

3.2.3 Contention Minimization . 17

3.2.4 SM Allocation . 20

Chapter 4: Experimental results. 24

4.1 Two Application execution . 24

4.1.1 Queue with equal class distribution 27

4.1.2 Queue with high class A distribution 28

4.1.3 Queue with high class M distribution 28

4.1.4 Queue with high class MC distribution 29

4.1.5 Queue with high class C distribution 29

4.2 Three application execution . 30

Chapter 5: Conclusions and future work . 33

5.1 Future work . 33

5.1.1 Dynamic Warps . 33

5.1.2 Heterogeneous Systems . 33

Appendix. 34

Vita. 41

v

LIST OF TABLES

Table Page

3.1 Classification criteria . 15

3.2 classification of rodinia [1] benchmarks . 16

4.1 Experimental set up . 24

vi

LIST OF FIGURES

Figure Page

1.1 flow of execution of general purpose workload [2] 2

1.2 Max utilization of rodinia [1] Benchmarks . 4

2.1 Large warp vs baseline register file design [3] 8

2.2 Stream Queue Management and Work Distributor 11

3.1 Overall GPU Architecture Modeled by GPGPU-Sim [4] 12

3.2 SIMT Core [5] . 13

3.3 Detailed Microarchitecture Model of SIMT Core [4] 14

3.4 Average Application slowdown due to co-execution 17

3.5 Scalability Trends of Benchmarks . 20

3.6 IPC of Benchmarks with different number of cores 21

4.1 Throughput Comparison of two application execution When application pairs

are formed using ILP and FCFS compared to their Even approach time 25

4.2 Cycles taken by each pair of applications When application pairs are formed

using (a) ILP (b) FCFS compared to their serial Execution time 25

4.3 Concurrent execution of two applications . 26

4.4 Concurrent execution of two applications with equal distribution 27

4.5 throughput with computational dense work queue 28

4.6 throughput with memory class dense work queue 29

4.7 throughput with class MC dense work queue 29

4.8 throughput with class c dense work queue . 30

4.9 Throughput Comparison of three application execution When applications are

selected using ILP and FCFS compared to their Even approach time 30

4.10 Cycles taken by each group of three applications When applications are se-

lected using (a) ILP (b) FCFS compared to their Even approach time 31

vii

4.11 Concurrent execution of three applications . 31

4.12 Average device throughput of different distributions of queue under Concur-

rent execution of three applications . 32

viii

CHAPTER 1

INTRODUCTION

Graphics Processing Units (GPUs) are co-processors designed for rendering 2-

dimensional and 3-dimensional graphics. Graphics workloads have abundant parallelism.

GPUs utilize the available parallelism to accelerate graphics rendering. It did not take

too long for programmers to realize that this computational power can also be used for

tasks other than graphics rendering. Since 2003, many data parallel workloads have been

ported to GPUs. Back then, there was no programming model for general-purpose tasks

on GPUs. So, all the workloads had to be expressed in terms of graphics with pixels and

vectors. This is because GPU pipeline in the beginning, was tightly bonded to the re-

quirements of graphics applications. The programming paradigm shifted when the two

main GPU manufacturers, NVIDIA and AMD, changed the hardware architecture from a

dedicated graphics-rendering pipeline to a multi-core computing platform.

Graphics processing units have evolved to co-processors of a size larger than typi-

cal CPUs. While CPUs use large portions of the chip area for caches, GPUs use most of

the area for arithmetic logic units (ALUs). The main concept GPUs use to exploit the

computational power of these ALUs is executing a single instruction stream on multiple

independent data streams (SIMD). This concept is known from CPUs with vector regis-

ters and instructions operating on these registers. For example, a 128-bit vector register

can hold four single-precision floating-point values; an addition instruction operating on

two such registers performs four independent additions in parallel. Instead of using vec-

tor registers, GPUs use hardware threads that all execute the same instruction stream

on different sets of data. This approach is termed as Single Instruction Multi Thread

(SIMT). The number of threads required to keep the ALUs busy is much larger than the

number of elements inside vector registers on CPUs. GPU performance therefore relies

on a high degree of data-level parallelism in the application. To alleviate these require-

1

ments on data-level parallelism, GPUs can also exploit task-level parallelism by running

different independent tasks of a computation in parallel. This is possible on all modern

GPUs through the use of conditional statements.

1.1 GPU COMPUTING

With the generalization of GPU architecture and hardware pipeline more and more

general purpose problems have been ported to GPUs. General purpose workload has se-

quential and parallel parts. The sequential part is executed on the CPU and the parallel

part, also known as kernel, of the problem is offloaded to GPU as shown in Figure 1.1.

However, it is then observed that the general purpose workload does not have enough

parallelism to exploit all the available resources on the GPU. Task level parallelism pre-

vails as a solution, where multiple kernels can be offloaded onto a single GPU. These ker-

nels can be launched from the same context or from multiple contexts. Each of the inde-

pendent kernels again needs to involve a relatively high degree of data-level parallelism to

make full use of the computational power of the GPU.

Figure 1.1: flow of execution of general purpose workload [2]

2

1.2 DEFINITIONS

1.2.1 Throughput

Throughput of a device is defined as the number of instructions executed in the

total number of cycles simulated. The mathematical representation of Throughput is

shown in the Equation 1.1

T =

∑k
n=1 In∑k
n=1Cn

(1.1)

1.2.2 Utilization

Utilization is the measure of device occupancy achieved by an application. We mea-

sure utilization by comparing throughput of an application with the maximum through-

put that can be achieved on the Device.

1.2.3 Streaming Multiprocessor(SM)

Each processor in a GPU is called a Streaming Multiprocessor. Each SM contains

mutliple processing elements called as Streaming Processors as called by NVIDIA or

Compute Units interms of AMD. Each SM also contains some Special Function units

that execute FMA instructions.

1.3 MOTIVATION

The exploitation of task-level parallelism gives the programmer more flexibility and

extends the set of applications that can make use of GPUs to accelerate computations.

However throughput of the device depends on the application that are used to achieve

task level parallelism. Improper selection of these applications can cause damage to the

throughput of the GPU. This creates an interesting area of research, through which an

efficient method of selecting applications for task level parallelism can be formalized.

Also every general purpose application may not have enough parallelism and may

3

not fully utilize the resources available to it. We simulated general purpose workloads

from rodinia [1] benchmark suite on GPGPU-Sim with NVIDIA GTX-480 architecture.

Figure 1.2 shows the utilization levels of different benchmarks we used. It is clear now

that there is plenty of space for task level parallelism and resource allocation on GPUs.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BFS2 BLK BP LUD FFT JPEG 3DS HS LPS RAY GUPS SPMV SAD NN

Figure 1.2: Max utilization of rodinia [1] Benchmarks

Multiple application execution can be performed in a temporal or spatial way. The

temporal approach uses time multiplexing in order to allocate resources to different

users and it is the common technique in GPU virtualization [6]. However, this approach

leads to system underutilization and poor performance [7]. Unlike CPUs, where multi-

application is architecturally supported concurrent execution of multiple applications

on GPUs prevails as challenge in order to unlock system’s performance [7, 8, 9]. Due to

massive application parallelism and numerous generated threads, GPUs’ performance is

affected by contention on shared resources in multiple ways. Streaming Multiprocessors

(SMs) are independent processing elements but share resources, such as caches and mem-

ory controllers. Threads, when running simultaneously, compete against each other using

4

destructively the shared resources [3].

1.4 INTEGER LINEAR PROGRAMMING

ILP is a mathematical approach to obtain the best result (maximum productivity

and least resource consumption) when the problems can be expressed in linear functions.

Integer Linear Programming is a branch of mathematical programming (mathematical

optimization). In simple terms, linear programming is an optimizing technique for linear

objective function, subject linear equality and inequality constraints. Solution region for

these functions is a convex polytype. This region is defined as the intersection of many

finite half spaces, each of which is defined by a linear inequality.Its objective function is a

real-valued affine (linear) function defined on this polyhedron. A linear programming al-

gorithm finds a point in the polyhedron where this function has the smallest (or largest)

value if such a point exists.

e.g. problem

maximizef(x1, x2) = c1x1 + c2x2 (1.2)

Subject to constraints

a11x1 + a12x2 ≤ b1 (1.3)

a21x1 + a22x2 ≤ b2 (1.4)

a31x1 + a32x2 ≤ b3 (1.5)

In the above example problem, equation 1.2 is a function to be maximized subject

to constraints shown in the equations below it. ILP forms a polygon using these con-

strains and chooses a value within the polygon that yields the maximum result for the

function f .

5

1.5 CONTRIBUTION

In this thesis, we present a methodology for efficient concurrent execution of multi-

ple applications on GPUs. We use ILP with an objective of obtaining maximum through-

put while minimizing slowdowns. Specifically, the proposed methodology focuses on the

maximization of GPU’s throughput by (i) performing application classification; (ii) ana-

lyzing the per-class interference and slow-down; (iii) finding the best matching between

classes; and (iv) it employs an efficient kernel-to-SM policy that reduces the destructive

effects of applications’ interference.

6

CHAPTER 2

LITERATURE REVIEW

Improving performance and throughput of GPUs has been researched previously in

the context of thread-level parallelism, concurrent kernel execution and shared resource

contention.

2.1 THREAD-LEVEL PARALLELISM

GPUs have tremendous compute power coupled with very high bandwidth mem-

ory. However, the performance of an application and throughput of the device rely on

how efficiently the computaional power of the device is being utilized by the workload.

In GPUs branch divergence within warps leads to partial utilization of compute units

with in SMs. This is because only one branch can be active at any time. For example,

assume a warp of 32 threads with each thread taking a separate branch. In this case only

one thread will be active. This means only one compute unit is being utilized until all

branches merge. Authors in [3] proposed to use large warps to improve the performance

of GPU applications. These warps are divided into sub-warps of 32 threads each with

a modified register file architecture. Their modified register file is shown in Figure 2.1.

In case of branch divergence within warps they select sub-warps within the same warp

which allows more number of threads to be active. Thereby they increase the utilization

of the device and performance of the application. Even though this technique improves

the performance of the application, it cannot improve the device utilization if the appli-

cation does not exploit thread-level parallelism. The problem of warp divergence is also

addressed by authors in [10]. In their work the authors, use a metric called Warp Pro-

gression Similarity (WPS) to measure the divergence of warp execution progress. They

propose a divergence aware warp scheduler, that schedules warps to minimize WPS and

maximize GPU throughput. To obtain WPS they use offline profiling data of bench-

7

marks.

Figure 2.1: Large warp vs baseline register file design [3]

Throughput of GPUs can also get effected due to improper usage of available re-

sources of GPU by programmer, that can lead to under utilization. In general a kernel is

organized as grids and blocks. Programming APIs like CUDA, OpenCl allow program-

mers to organize the threads in their kernels. Programmers organization often may not

fully utilize the resources available on the device. In [7] , the authors proposed a tech-

nique to address this issue using elastic kernels. They address the issue of less number

of active threads per SM. They try to solve this issue by forming soft kernels by group-

ing threads from multiple blocks in a kernel. This allows applications to utilize all the

resources available on each SM of the GPU. In their approach thread Ids change as the

block configuration changed. As a result, The applicability of this technique is highly

limited. Their technique cannot be applied to every kernel. Specifically, the presented

scheme will not work for kernels that are effected when the hardware thread ids are dif-

ferent from software ids. In GPUs, the number of blocks a SM can serve at a time is lim-

ited due to capacity and scheduling limits. Authors in [11] suggest that number of blocks

are limited mostly due to scheduling limits rather than resource constraints. So, they

propose to use virtual threads. They schedule more number of blocks on a SM than it

can host. These threads are marked as active and inactive. At any time there cannot be

more active threads than the SM can serve. This concept helps in case of memory la-

tency, as more number of threads are available for faster context switch.

8

The idea of improving Thread Level Parallelism can improve the throughput of the

device. However, this gain is limited to parallelism available in the application. This limi-

tation gave a new idea of allowing multiple kernels to co-exist on a single GPU.

2.2 CONCURRENT KERNEL EXECUTION

Current generations of GPUs support concurrent execution of kernels provided they

are launched by the same CPU thread. Vendors like NVIDIA extended their support to

allow multiple kernels to co-exist on GPUs at any time. To achieve this, the concept of

streams was introduced. Execution within a stream is serial while multiple streams exe-

cute in parallel. To execute multiple kernels in parallel, they are launched into different

streams from a single CPU thread. (Note: Kernel launches are always asynchronous).

Soon a problem was identified in the hardware queue that lead to false serialization of

kernels. NVIDIA then introduced hyperQ [12] mechanism to solve this issue. However,

device utilization is still limited by the data dependencies among the kernels of the same

application.

The key to increase the throughput further is to allow multiple kernels from differ-

ent CPU threads to co-exist. Traditional way for multiple application execution on GPUs

is time sharing. Nonetheless, this adds a high overhead of context switching. of selected

classes to achieve higher device utilization. Authors in [13] proposed a mechanism for si-

multaneous kernel execution. In this work, a portion of threads from an already running

kernel are preempted and the freed resources are given to a new incoming kernel. This

mechanism still involves partial context switching, which is a big overhead. The authors

in [14] proposed a technique to run kernels concurrently from different contexts through

context funneling. NVIDIA introduced CUDA MPS [15] to support running kernels from

multiple contexts. However, the kernels are not actually executed concurrently by the de-

vice. In MPS there is a MPS server and CPU threads that launch work are called clients.

The MPS server serves a context only after the previous one has finished. However, with

9

CUDA-4.0 [16] NVIDIA allowed to launch multiple kernels from different CPU threads

with the support of their hyperQ mechanism [12]. The authors in [17] proposed to exe-

cute multiple applications concurrently on a GPU through resource partitioning. Last,

in [8, 18] GPU resource partitioning policies for multiple application execution on GPUs

are presented. As an extension to their work, they propose resource partitioning policies

for the co-executing applications using offline profiling data. The authors in [8, 17, 18]

here show that general purpose applications do not scale linearly with cores. However,

they do not have any policy on which applications can co-exist on the device. Improper

selection of applications to co-exist can greatly damage the throughput of the device.

2.3 SHARED RESOURCE CONTENTION

All the SMs in a GPU share the last level cache and memory controllers. GPUs are

very effective in hiding latency. The application needs to have enough parallelism to hide

the latency. However, all the applications may not have enough parallelism and their

latency can be noticed. For applications like these, shared resource contention can fur-

ther increase the latency. The authors in [19] present a warp-aware memory scheduling

method that focuses on minimizing inter-warp contention thereby reducing latency. The

authors in [20] proposed a method to assign to GPUs the required bandwidth and reduce

contention with other devices. In [6, 9], a memory scheduling policy for GPUs that sup-

ports concurrent application execution is proposed. The scheme improves device through-

put by reducing the contention in shared resources. Whereas, in the presented work we

co-schedule applications that have less contention while improving the utilization of the

device.

In the scope of this work, we use automatic context funneling provided by CUDA

API along with hyper Q mechanism and modified work distributor to run multiple ap-

plications concurrently. Our stream management unit and hyperQ with work distributor

are presented in Figure 2.2. Our approach, instead of selecting applications to co-exist in

10

Figure 2.2: Stream Queue Management and Work Distributor

their order of arrival we propose a method presented in Section 3.2.3 in which we choose

applications, using ILP, that yield maximum device throughput. We then use a dynamic

resource allocation policy presented in Section 3.2.4 to further optimize throughput.

11

CHAPTER 3

DEFINITIONS - PROPOSED METHOD

In this Chapter a detailed discussion on the thesis is presented. For testing the

proposed methodology rodinia [1] benchmarks and a modified version of GPGPU-

Simulator [4] are used. Section 3.1 introduces GPGPU-Sim briefly. Section 3.2.1 de-

scribes our application classification criteria. Our proposed methodology is presented in

Section 3.2.

3.1 SIMULATORS

This Section presents the simulators that were used for our work. We also present

changes and features added to the simulators as part of our work.

3.1.1 GPGPU-Sim

Figure 3.1: Overall GPU Architecture Modeled by GPGPU-Sim [4]

GPGPU-Sim [4] is a cycle accurate gpu simulator mainly focused on gpu-computing.

GPGPU-Sim 3.x is the latest version og the simulator. This version supports Fermi and

Tesla NVIDIA gpu microtectures. GPGPU-Sim supports OpenCL and CUDA. The simu-

lator can run both CPU programs and GPU programs, but only the GPU timing is mea-

12

sured.

The overall GPU architecture model of the simulator is shown in the Figure 3.1.

The micro architecture of GPGPU-Sim consists of SIMT cores which are connected to

to GDDR DRAM with an on-chip network. Each SIMT core contains multiple process-

ing elements, which are collectively called as Streaming Multiprocessor in NVIDIA terms.

All the processing elements in a SM share L1 cache and a large register file. These SIMT

cores consit two warp schedulers and two decode units each. Each Processing unit has

it’s own Load Store unit, which is one of the keys for high compute power of a GPU. In

addition to general purpose processing elements each Streaming Multiprocessor also has

multiple Special Function Units. All the processing elememts in a Streaming Multipro-

cessor are interconnected using a interconect network. A block diagram of a Streaming

Multiprocessor is presented in Figure 3.2. The detailed microarchitecture of a SIMT core

is shown in Figure 3.3.

Figure 3.2: SIMT Core [5]

13

Figure 3.3: Detailed Microarchitecture Model of SIMT Core [4]

3.2 PROPOSED METHODOLOGY

Our work mainly focuses on optimizing device throughput when multiple applica-

tions offload kernels onto the device. The state of art method of task level parallelism

in GPUs is to run multiple kernels concurrently in the order of arrival. The state of art

method does not consider the contention one application can cause to other concurrently

running application which will throttle the device throughput. All the SMs in a GPU

share a common Last Level Cache and memory controllers. Multiple kernels with high

interference when run concurrently, greatly reduce the throughput of the device. We pro-

pose a mechanism that selects which applications can run concurrently on the device.

Additionally in this thesis we worked on what portion of these resources is allotted

to each concurrently running application. The traditional approach is to allocate equal

partition the resources equal among the concurrently running applications. However, this

approach is not feasible. We propose a dynamic resource allocation algorithm that allo-

cates resources the applications based on the dynamic behaviour of each application.

The first step of our methodology is to profile each application when running alone

and divide the applications into classes based on the profiling results. Section 3.2.1

14

presents our application classification details. The second step (Section 3.2.2) is to cal-

culate interference of one class of application on other classes. Next step is to select ap-

plication from the queue which will yield a high device throughput. This is presented in

Section 3.2.3. Finally, in Section 3.2.4 we present our dynamic resource allocation algo-

rithm which partitions resources among the running applications to furthur optimize the

throughput.

3.2.1 Application Classification

For our methodology we first profile each application and divide the applications

into four classes namely (i) Memory (class M) Intensive, (ii) Memory and Cache (class

MC) Intensive, (iii) Cache (class C) Intensive and (iV) Compute (class A) Intensive.

The first three classes focus on Shared resource contention, where as class A tell us how

much of device resources the benchmark can use.

Table 3.1: Classification criteria

class classification criteria
M MB > α

MC β < MB < α

C
L2→ L1 > γ
R > 0.2
IPC < ε

A
R < 0.2
IPC > ε

If an application has Memory Bandwidth > α the application is classified as class M

application. Applcations with memory bandwidth > β AND < α are classified as class

MC applications. Applications with memory bandwidth < β AND L2→L1 bandwidth

> γ (OR) Memory to Compute Ratio > 0.2 (AND) Instructions per Cycle is < 0.2 ×

IPCmax fall into class C. If applications have IPC > 0.2 × IPCmax (AND) Memory to

Compute Ratio < 0.2 then they go to calss A. The values of α, β, γ are chosen based on

the GPU. For our work we used a GTX 480 architecture and the values of α, β and γ are

15

Table 3.2: classification of rodinia [1] benchmarks

Benchmark MemoryBandwidth L2→ L1 IPC R class
BFS2 35.5 132.9 19.4 0.19 C
BLK 116.2 83.13 577.1 0.05 M
BP 84.06 142.7 808.3 0.06 MC
LUD 0.19 8.14 40.1 0.03 A
FFT 105.8 122.8 405.7 0.08 MC
JPEG 47.2 77.7 386.4 0.07 A
3DS 81.4 102.75 533.9 0.11 MC
HS 43.93 97.3 984.0 0.01 A
LPS 80.6 115.4 540.9 0.03 MC
RAY 59.7 69.1 523.9 0.1 MC
GUPS 108.75 97.1 10.61 0.1 M
SPMV 48.1 121.3 208.7 0.07 C
SAD 57.35 46.1 781.9 0.01 A
NN 1.3 35.3 56.8 0.15 A

0.30 × MBmax = 50GBps, 0.55 × MBmax = 107GBps and 100GBps respectively. The

value of ε is 200 instructions per cycle.

3.2.2 Interference Calculation

After classifying applications based on the profiling results, we run each application

with every other application and calculate the slowdown of each application compared to

their alone running time. We then based on the our classification presented in Table 3.2

calculate the average slowdown imposed by each class on every other class. The results

are shown in the Figure 3.4.

The results show that class M applications impose slow-down on all the other

classes. This is due to the fact that the memory controller is overloaded by the class M

applications, plus the default memory scheduler (FR-FCFS scheduler [21, 22]) prioritizes

row buffer hits which again favors the class M applications. Based on the results, the sit-

uation is same when class M applications are executed along with class MC applications.

In this case class MC applications suffer more than class M applications. These results

16

Figure 3.4: Average Application slowdown due to co-execution

are used in the next step to minimize contention under concurrent execution.

3.2.3 Contention Minimization

In this step, our goal is to select applications that can run concurrently on device

that yield high throughput. Here we propose to use Integer Linear program, introduced

in Section 1.4, to reduce contention and maximize throughput. ILP is generally used to

maximize the outcome of a function subject to some constraints. In our work, our aim

is to maximize throughput of the device. To achieve this, we focus on minimizing con-

tention by using the slowdown values obtained from the previous section. We define si as

slowdown of class i. We then take inverse of the slowdowns and add them for the whole

queue of applications and try to maximize this value. This is given by Equation 3.3.

We present our methodology for running two applications which can be replicated

for three application execution. For our work, we consider a GPU with NSM number

17

of SMs. The SMs are divided into NC groups, where NC=2 indicates two application

co-execution, NC=3 indicates three applications co-execution. We have C collection of

classes, where C = {c1, c2, . . . , cNT
}. NT is number of classes. We assume length of queue

to be Nq. The total number of groups of applications (L) formed with queue of length Nq

is given by L = Nq

NC
. We define NP as number of application pairs that can be formed

with Nq length queue. PK={p1, p2, . . . , pNP
}. Where pi one of many patterns that can be

formed from the queue of applications. For example pattern pi has two class MC appli-

cations then pi is given by Equation 3.1.

pi =



0

2

0

0


(3.1)

NP =

(
NT +NC − 1

NC

)
(3.2)

Our aim is to maximize function f using ILP. Using ILP we obtain the values of

L1, L2, . . . , Ln which give us the highest value for f . Where Li represents how many

times the pattern pi to be used to obtain a maximum value for function f .

f = e1L1 + e2L2 + · · ·+ eNP
LNP

(3.3)

Where ei is the inverse of slowdown of applications in Li and is given by Equa-

tion 3.4. Si is the slowdown of application.

ek =
1

NC

(1

Sk
1

+
1

Sk
2

+ · · ·+ 1

Sk
NC

)
(3.4)

18

N i
q is the number of applications of ith class in the queue. So, it can be said that the

total number of applications in the queue is equal to sum of number of applications of

each class of applications present in the queue.

Nq = N1
q +N2

q + · · ·+NNT
q (3.5)

As previously mentioned pi has the information of what classes of applications are

present in it. Multiplying pi[1] with L1 gives number of class 1(class M for example) ap-

plications present in the queue. This can be given by Equation 3.6.

[
P1 P2 · · · PNP

]


L1

L2

...

LNP


=



N1
q

N2
q

...

NNT
q


(3.6)

Solving Equation 3.6 will gives us constraints to be used to obtained the values of Li

∀ i=1,2,3,...Np.

We previously stated that L is the total number of groups that can be formed with

a queue of length Nq. We also states Li as number of times each pattern pi appears in

the result set. From these observations it is clear that sum of Li ∀ i=1,2,3,...Np should

be equal to L. This is forms another constraint for calculating the final result set.

L1 + L2 + · · ·+ LNP
= L (3.7)

So, we propose that maximizing function f subject to constraints 3.6 and 3.7 will

give a high device throughput.

19

3.2.4 SM Allocation

In the previous section we find out which applications can run together. This will

guarantee a higher throughput for the queue of applications. We achieve this gain by

reducing interference among concurrently running applications. To further improve the

throughput of the device we now look into available parallelism of each application. As

mentioned in the previous section we divide the available SMs into NC sets and each ap-

plication gets one set of cores. In our initial work we divided the SMs in such a way that

each set in NC has same number of cores. We then tested each application with differ-

ent number of cores. The results are presented in the chart 3.6. Soon, we observed that

some applications cannot use all the resources available to it. Most notable scalability

trends are shown in the chart 3.5.

10 15 20 25 30

1

1.5

2

2.5

3

Number of Cores

IP
C

Ideal
BFS2
LUD
FFT
LPS

GUPS
HS

Figure 3.5: Scalability Trends of Benchmarks

The most noticeable thing is the behaviour of the benchmark GUPS. The IPC of

GUPS decreases with increase in number of cores. This is because GUPS is a memory

intensive application (from Table 3.2) and as number of active threads increase, num-

ber of memory requests increases. This increases contention in memory interconnect

20

which further throttles the throughput. Benchmark LUD has a constant IPC no matter

what number of cores were given to it. Benchmarks like HS and SAD have enough paral-

lelism and scale more close to the ideal performance curve. Some applications (like LPS)

have moderate parallelism and saturate after certain number of cores. Some applications

like FFT saturate and looses performance on further increase of cores. Applications like

BFS2 and NN scale linearly, from Figure 3.5, with cores but have low device utilization.

Maximum Device utilization of each benchmark is presented in Figure 1.2.

0

0.5

1

1.5

2

2.5

3

BFS2 BLK BP LUD FFT JPEG 3DS HS LPS RAY GUPS SPMV SAD NN

10 Cores 15 Cores 20 Cores 30 Cores

Figure 3.6: IPC of Benchmarks with different number of cores

From these observations we propose a dynamic SM allocation algorithm that al-

locates SMs to the co-executing applications based on their dynamic behaviour. Our

algorithm is presented in Algorithm 1. Our algorithm needs three statistics as input,

(i) Throughput of the device, (ii) Throughput of each co-existing application and (iii)

Bandwidth utilization of each concurrently running application. Based on the inputs

(ii) and (iii) the algorithm gives a score to each application. Input (i) is used to judge

the effect of the new resource allocation, if the throughput of the device decreases than

21

the throughput before re-allocation then previous resource allocation configuration is re-

stored.

We initially start with equal SM distribution. After TC cycles we get the required

statistics and a new decision is made on which application does not utilize the given re-

sources. Then SMs from that application are transferred to other co-existing application.

If all the co-existing applications have similar behaviour, then we stick with the present

SM partitioning. In the beginning all applications have a score value of 0. The algorithm

after every TC cycles checks the device throughput and performance statistics for each

executing application and updates the score of each application.

Based on the values, each application changes its score values. If the Instructions

Per Cycle (IPC) of an application Appi is less that a value IPCthr, the score of this ap-

plication is V [i] = 1. If the bandwidth utilization is grater than a value BWthr then

V [i] = 2 and if both conditions are true then V [i] = 3 A high score means that the

application negatively affects the throughput of the device. This happens because an

application with low IPC and high memory bandwidth relies on data transfer the SMs

that is has allocated can be used by another compute intensive application increasing the

throughput of the GPU in total. Then, based on the score of each application, we deallo-

cate nr SMs from application with the highest score and we allocate them to the applica-

tion with the lowest score. When the allocated resources for an application reaches Rmin

the score of that application is set to a negative value and will it is increased again.

The SM deallocation can be done in three ways. The first method requires partial

context switching [13] which is expensive in terms of latency and interconnect band-

width. The second way, is to completely discard the running kernel on the selected SMs.

However, this approach imposes big performance slow-down. The last way is to let the

selected SMs finish the currently running blocks and once they are finished, they are

transfered to the other application. Algorithm 1 follows the third method which, even

though it has a small performance overhead, it allows for smooth exchange of SMs at

22

run-time.

Algorithm 1 SM Allocation
T :Current Throughput
Tp:Previous Throughput
N :Total number of SMs
n:Number of applications running concurrently
Ri:Number of SMs for ith application
S[i]:Score of ith application
Rmin:Minimum SMs Required for an application
BWutil:Memory bandwidth utilization

1: Initial:
2: for each app do
3: V[i]=0;
4: R[i]=N/n;
5: end for
6:

7: for every TC cycles do
8: while T > Tp and Ri(N) > Rmin do
9: for each app do
10: if IPC[i] < IPCthr then
11: V[i]++;
12: end if
13: if BWutil[i] > BWthr then
14: V[i]++;
15: end if
16: end for
17: for each app do
18: if V [i] == V [i+ 1] then
19: break;
20: end if
21: if V [i] == max(V) then
22: Ri=Ri − nr;
23: elseIf V [i] == min(V)
24: Ri=Ri + nr;
25: end if
26: end for
27: end while
28: V[i]=0
29: end for

23

CHAPTER 4

EXPERIMENTAL RESULTS

In order to validate our methodology we have performed extensive simulation exper-

iments using GPGPU-Sim [4], a cycle-level accurate simulator for GPUs, that supports

NVIDIA CUDA, and Rodinia [1] benchmarks as high performance parallel applications.

GPGPU-Sim was modified in order to support multiple streams and concurrent applica-

tion execution. The experimental set up is described in Table 4.1.

Table 4.1: Experimental set up

GPU Architecture - GTX 480

of SMs 60
Core frequency 700MHz
Warps per SM 48
Blocks per SM 8
Shared Memory 48kB
L1 Data cache 16kB per SM
L1 Instr. cache 2kB per SM
L2 cache 768kB
Warp scheduler GTO [23]

4.1 TWO APPLICATION EXECUTION

We first designed a queue with 14 applications with 2 class M and class C applica-

tions, 5 applications each of class MC and class A. We, then executed applications from

the queue in Even approach and set this as baseline for our testing. The we run two ap-

plications together in FCFS way and then using out ILP method. The results are shown

in Figure 4.1. We observed that the proposed method showed 21% better throughput

than FCFS and over 80% improvement than Even approach in case of two application

execution.

Also, from Figure 4.2 we can see that 5 of 7 pairs formed using ILP finished in less

than 50% of time than their serial execution time while only 2 pairs formed using FCFS

24

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Serial FCFS ILP

Figure 4.1: Throughput Comparison of two application execution When application pairs
are formed using ILP and FCFS compared to their Even approach time

0

0.2

0.4

0.6

0.8

1

1.2

BFS2-BLK GUPS-SPMV BP-FFT 3DS-LPS NN-RAY LUD-HS JPEG-SAD

ILP Serial

(a) ILP

0

0.2

0.4

0.6

0.8

1

1.2

BFS2-GUPS FFT-SPMV 3DS-BP JPEG-BLK LUD-HS LPS-SAD NN-RAY

FCFS Serial

(b) FCFS

Figure 4.2: Cycles taken by each pair of applications When application pairs are formed
using (a) ILP (b) FCFS compared to their serial Execution time

finished in 50% of their serial execution time.

We then designed queues of 20 applications with varying distributions of different of

classes of applications to verify the scalability of our approach. The distributions are (i)

Equal distribution of each class (ii) 55% class M and 15% each of other classes (iii) 55%

class MC and 15% each of other classes (iv) 55% class C and 15% each of other classes

and (v) 55% class A and 15% each of other classes.

We name our methodologies presented in Section 3.2.3 and Section 3.2.4 as ILP and

ILP+SMRA respectively. We compare our methodologies with (i)An Even approach that

25

Equal-dist.
workload

M-oriented
workload

MC-oriented
workload

C-oriented
workload

A-oriented
workload

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Even Profile-based [15] ILP ILP-SMRA

Figure 4.3: Concurrent execution of two applications

assigns equal SMs to each application and selects applications in the order of arrival.

We consider this as baseline for our comparisons. (ii) Profiling-based Method proposed

in [17], which assigns resources to applications based on the offline profiled data of each

application and selects applications in the order of arrival. However, the Profiling-based

method needs extensive profiling of every single application to obtain gain in throughput.

This method does not consider the dynamic behavior of the applications.

Results of our simulations for different queue distributions are presented in Fig-

ure 4.3. Figure 4.4 presents the device throughput for different distributions of queue.

ILP Method increased throughput by an average of 19% achieving the best gain of 40%

when the queue has 55% Cache applications. As aforementioned, the ILP method fo-

cuses on finding the best application matching in order to reduce contention working at

the granularity of classes. ILP-SMRA increases throughput by an average of 36%, com-

pared to the Even method, achieving the best gain of 48% in the A-oriented workload.

ILP-SMRA not only reduces contention due to the best matching of the classes, but it

performs run-time SM reallocation that further boost the performance of the GPU.

26

4.1.1 Queue with equal class distribution

Here the queue contains equal number of all classes of applications. The profiling

method is based on extensive off-line profiling and can guarantee maximum possible

throughput for an application. So, for our comparisons the Even approach method sets a

baseline while the profiling method sets the maximum throughputs that can be achieved.

As mentioned earlier the profile-based method does not consider the dynamic behavior of

applications. So, it is possible that this method cannot guarantee maximum throughput.

This situation is observed with almost every queue distribution.

BLK GUPS BP FFT 3DS LPS RAY BFS2 SPMV LUD HS SAD NN0.0

0.5

1.0

1.5

2.0

2.5

Class M Class MC Class C Class A

Even Profile-based [15] ILP ILP-SMRA

Figure 4.4: Concurrent execution of two applications with equal distribution

Figure 4.4 shows the performance results when queue has equal number of appli-

cations from every class. We can see that some applications suffer when they are co-

executing with some other application. However, our methods ensure that the loss of

one application is overshadowed by the gain of the application running along with it.

ILP performed better than the Even approach(Even approach) by 9% on average having

a maximum gain of 70% for RAY. When compared with the Profiling method [17] ILP

performed on average 8% better with a maximum gain of 65% is observed for RAY than

the Profiling-based method. The ILP+SMRA method obtained an average gain of 17%

compared to the even approach for the applications. When compared with the profiling

method the ILP+SMRA gained an average of 23.3% better throughput. ILP+SMRA ap-

27

proach obtained almost 1.5 times the throughput when compared to both the even and

the Profiling-based approaches.

4.1.2 Queue with high class A distribution

Here the queue is dominated by computational intensive applications. We observed

that in this situation our methods performed better with the computational applications

while applications from other classes has suffered. we also observed that the Profiling-

based method has also given a similar result. The Even approach performed better than

ILP and Profiling-based method by 3% and 4% respectively. Our ILP+SMRA approach

however has shown approximately 2% and 5% better throughput than Even approach

and Profiling-based approaches respectively.

BLK 3DS LPS BFS2 LUD HS SAD0.0

0.5

1.0

1.5

2.0

2.5 Even Profile-based [15] ILP ILP-SMRA

Figure 4.5: throughput with computational dense work queue

4.1.3 Queue with high class M distribution

In this scenario we have queue dominated by class M applications. We observed

that our ILP method obtained 32.5% and 9% better throughput than the Even approach

and the Profiling-based approach respectively. The ILP+SMRA approach has obtained

an average 32% and 7% better throughput than the Even approach and the Profiling-

based approach respectively.

28

BLK GUPS BP FFT LPS BFS2 HS SAD0.0

0.5

1.0

1.5

2.0

2.5 Even Profile-based [15] ILP ILP-SMRA

Figure 4.6: throughput with memory class dense work queue

4.1.4 Queue with high class MC distribution

In this scenario the queue is dominated by class MC applications. In this case ILP

method performed almost similar to Even approach while the profiling method performed

on average 5% better throughput than ILP. Our ILP+SMRA method has performed on

average 3% better than Even approach and it performed almost similar to the Profiling-

based method.

BLK 3DS LPS BFS2 HS SAD0.0

0.5

1.0

1.5

2.0

2.5 Even Profile-based [15] ILP ILP-SMRA

Figure 4.7: throughput with class MC dense work queue

4.1.5 Queue with high class C distribution

With the queue being dominated by class C applications, the ILP approach showed

approximately same average throughput as the even approach while the Profiling-based

29

BLK 3DS BFS2 SPMV HS SAD0.0

0.5

1.0

1.5

2.0

2.5 Even Profile-based [15] ILP ILP-SMRA

Figure 4.8: throughput with class c dense work queue

approach performed 9% better. Our ILP+SMRA on the other hand has performed 29%

better than Even approach scenario on average. It also achieved an average 6% better

throughput than the profiling-based method.

4.2 THREE APPLICATION EXECUTION

We then executed three applications concurrently and the throughput results are

shown in Figure 4.9. With three application execution our ILP method achieves double

the throughput than Even approach and 45% more than FCFS.

0

0.5

1

1.5

2

2.5

Serial FCFS ILP

Figure 4.9: Throughput Comparison of three application execution When applications
are selected using ILP and FCFS compared to their Even approach time

30

0

0.2

0.4

0.6

0.8

1

1.2

BLK-GUPS-SAD FFT-3DS-BP JPEG-LUD-HS LPS-BFS2-SPMV

ILP Serial

(a) ILP

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

BFS2-GUPS-FFT SPMV-3DS-BP JPEG-BLK-LUD HS-LPS-SAD

FCFS Serial

(b) FCFS

Figure 4.10: Cycles taken by each group of three applications When applications are se-
lected using (a) ILP (b) FCFS compared to their Even approach time

The Figure 4.10(a) shows that 3 of 4 formed groups finish in less than 40% of their

Even approach time while the Figure 4.10(b) shows that only 1 group of applications fin-

ished within 40% of their Even approach time.

Equal-dist.
workload

M-oriented
workload

MC-oriented
workload

C-oriented
workload

A-oriented
workload

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Even Profile-based [15] ILP ILP-SMRA

Figure 4.11: Concurrent execution of three applications

Simulation results for three concurrent applications with different queue distribu-

tions are presented in Figure 4.11. Figure 4.12 present the average device throughput for

different distributions of queue. The Even approach is considered as the baseline for our

comparison. ILP-SMRA increases throughput by an average of 23%, compared to the

31

BLK GUPS BP FFT 3DS LPS RAY BFS2 SPMV LUD HS SAD NN0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Class M Class MC Class C Class A

Even Profile-based [15] ILP ILP-SMRA

Figure 4.12: Average device throughput of different distributions of queue under Concur-
rent execution of three applications

Even method, achieving the best gain of 40% in the A-oriented workload. Even in the

case of three simultaneous executing applications, ILP-SMRA reduces contention due to

the best matching of the classes and reallocates SMs at run-time based on the score of

each application further increasing the throughput of the GPU. Regarding the Profile-

based method [17], it achieves on average 23% better throughput compared to the Even

and performs similarly with the ILP-SMRA. However, as aforementioned, it requires ex-

tensive off-line profiling in order to find the best configuration which does not make it

scalable and adaptive to new incoming applications.Figure 4.12 depicts the comparison

for 3 concurrent applications. And in this case, ILP achieved on average a gain of 28%

while ILP-SMRA increased the average IPC gain by 67% on average.

32

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, a methodology for efficient concurrent execution of multiple applica-

tions on GPUs by minimizing the interference in shared resources was presented. Specifi-

cally, the proposed methodology focuses on the maximization of GPU’s throughput by (i)

performing application classification; (ii) analyzing the per-class interference and slow-

down; (iii) finding the best matching between classes; and (iv) it employs an efficient

kernel-to-SM policy that reduces the destructive effects of applications’ interference. Ex-

perimental results showed that the proposed approach increases the throughput of the

system for two concurrent applications by an average of 36% compared to other opti-

mization techniques [17], while for three concurrent applications the proposed approach

achieved an average gain of 23%.

5.1 FUTURE WORK

5.1.1 Dynamic Warps

In general consecutive threads are grouped to form warps. In case of branching

with in a warp, threads that take one branch are allowed to execute ant the rest are

halted. This leads to under utilization of resources available on a SM. Instead the trend

of branching in different warps cab be monitored and threads can be regrouped to form

new warps in which all threads take same branch.

5.1.2 Heterogeneous Systems

Mobile computing devices have similar architecture. Chip manufacturers like INTEL

and AMD have already integrated GPU and CPU on a single chip, where CPU and GPU

share same Last Level Cache. Traditional GPUs have their own memory controllers and

Last Level Cache. Work we presented in this thesis is on traditional GPUs, where GPU

33

is placed on PCI extension as a co-processor. Our work can be extended to support this

architecture.

34

APPENDICES

APPENDIX A

Example for Methodology Presented in Section 3.2.3:

For two Application execution we divide SMs into 2 groups (NC = 2). As mentioned

in Section 3.2.1 we have four classes of applications.(i.e., NT = 4). Using the Formula 3.2

we get Np = 10. We assume our queue length Nq to be 14. So, L = 7. So, total number

of patterns possible are 10 (p1, p2, · · · , p10).

We then calculate e1, e2, · · · , e10 using slowdown values presented in Figure 3.4. By

substituting all the values in Equation 3.3 we get the below equation.

(5.1)f = max{0.0072L1 + 0.0110L2 + 0.0146L3 + 0.03584L4 + 0.0204L5 + 0.0202L6

+ 0.0698L7 + 0.0178L8 + 0.0412L9 + 0.166L10}

The possible patterns are as shown below

M - M M - MC M - C
M - A MC - MC MC - C

MC - A C - C C - A
A - A

[
P1 P2 · · · PNP

]
=



2 1 1 1 0 0 0 0 0 0

0 1 0 0 2 1 1 0 0 0

0 0 1 0 0 1 0 2 1 0

0 0 0 1 0 0 1 0 1 2


(5.2)

We have 2 class M (N1
q =2) , 5 class MC (N2

q =5), 2 class C (N3
q =2) and 5 class A

(N4
q =5) applications in our queue.

35



N1
q

N2
q

N3
q

NNT
q


=



2

5

2

5


(5.3)

From Equation 3.6 we get



2 1 1 1 0 0 0 0 0 0

0 1 0 0 2 1 1 0 0 0

0 0 1 0 0 1 0 2 1 0

0 0 0 1 0 0 1 0 1 2





L1

L2

...

L10


=



2

5

2

5


(5.4)

Solving ?? we get the following inequalities.

2L1 + L2 + L3 + L4 ≤ 2

L2 + 2L5 + L6 + L7 ≤ 5

L3 + L6 + 2L8 + L9 ≤ 2

L4 + L7 + L9 + 2L10 ≤ 5

(5.5)

From Equation 3.7 we get

L1 + L2 + · · ·+ L10 = L = 7 (5.6)

36

Solving Equation 5.1 using ILP subject to constraints in Equations 5.4 and 5.6

gives 

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10



=



0

0

2

0

2

0

1

0

0

2



(5.7)

So, the final solution set contains 2 pairs of p3, 2 pairs of p5 2 pairs of p10 and 1 pair

of p7 patterns.

37

REFERENCES

[1] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,

“Rodinia: A benchmark suite for heterogeneous computing,” in Workload Charac-

terization, 2009. IISWC 2009. IEEE International Symposium on. Ieee, 2009, pp.

44–54.

[2] NVIDIA, “GPU accelarated computing, http://www.nvidia.com/object/what-is-gpu-

computing.html.”

[3] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N.

Patt, “Improving gpu performance via large warps and two-level warp scheduling,”

in Proceedings of the 44th Annual IEEE/ACM International Symposium on Microar-

chitecture. ACM, 2011.

[4] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt, “Analyzing

cuda workloads using a detailed gpu simulator,” in Performance Analysis of Systems

and Software, 2009. ISPASS 2009. IEEE International Symposium on. IEEE, 2009,

pp. 163–174.

[5] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi gf100 gpu architecture,”

IEEE Micro, vol. 31, no. 2, pp. 50–59, 2011.

[6] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee, S. W. Keck-

ler, M. T. Kandemir, and C. R. Das, “Anatomy of gpu memory system for multi-

application execution,” in Proceedings of the 2015 International Symposium on

Memory Systems. ACM, 2015.

[7] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving gpgpu concurrency

with elastic kernels,” in ACM SIGPLAN Notices, vol. 48, no. 4. ACM, 2013, pp.

407–418.

[8] P. Aguilera, K. Morrow, and N. S. Kim, “Qos-aware dynamic resource allocation

for spatial-multitasking gpus,” in Design Automation Conference (ASP-DAC), 2014

38

19th Asia and South Pacific. IEEE, 2014.

[9] A. Jog, E. Bolotin, Z. Guz, M. Parker, S. W. Keckler, M. T. Kandemir, and C. R.

Das, “Application-aware memory system for fair and efficient execution of concur-

rent gpgpu applications,” in Proceedings of workshop on general purpose processing

using GPUs. ACM, 2014, p. 1.

[10] C. Zhang, H. Tabkhi, and G. Schirner, “Studying inter-warp divergence aware exe-

cution on gpus,” IEEE Computer Architecture Letters, vol. 15, no. 2, pp. 117–120,

2016.

[11] M. K. Yoon, K. Kim, S. Lee, W. W. Ro, and M. Annavaram, “Virtual thread: Max-

imizing thread-level parallelism beyond gpu scheduling limit,” in Computer Architec-

ture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on. IEEE,

2016, pp. 609–621.

[12] T. Bradley, “Hyper-q example,” NVidia Corporation. Whitepaper v1. 0, 2012.

[13] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo, “Simultaneous

multikernel: Fine-grained sharing of gpus,” IEEE Computer Architecture Letters,

vol. 15, no. 2, pp. 113–116, 2016.

[14] L. Wang, M. Huang, and T. El-Ghazawi, “Exploiting concurrent kernel execution on

graphic processing units,” in High performance computing and simulation (HPCS),

2011 international conference on. IEEE, 2011.

[15] F. Wende, T. Steinke, and F. Cordes, “Multi-threaded kernel offloading to gpgpu

using hyper-q on kepler architecture,” ZIB-Rep. 14-19 June 2014, 2014.

[16] C. Nvidia, “programming guide 4.0 (2012),” URL: http://developer. download.

nvidia. com/compute/DevZone/docs/html/C/doc/CUDA C Programming Guide.

pdf.

[17] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, “The case for gpgpu

spatial multitasking,” in High Performance Computer Architecture (HPCA), 2012

IEEE 18th International Symposium on. IEEE, 2012.

39

[18] P. Aguilera, K. Morrow, and N. S. Kim, “Fair share: Allocation of gpu resources

for both performance and fairness,” in Computer Design (ICCD), 2014 32nd IEEE

International Conference on. IEEE, 2014, pp. 440–447.

[19] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasubramonian,

“Managing dram latency divergence in irregular gpgpu applications,” in Proceed-

ings of the International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE Press, 2014, pp. 128–139.

[20] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A qos-aware memory controller

for dynamically balancing gpu and cpu bandwidth use in an mpsoc,” in Proceedings

of the 49th Annual Design Automation Conference. ACM, 2012, pp. 850–855.

[21] S. Rixner, “Memory controller optimizations for web servers,” in Microarchitecture,

2004. MICRO-37 2004. 37th International Symposium on. IEEE, 2004, pp. 355–366.

[22] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access

scheduling,” in ACM SIGARCH Computer Architecture News, vol. 28, no. 2. ACM,

2000, pp. 128–138.

[23] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious wavefront

scheduling,” in Proceedings of the 2012 45th Annual IEEE/ACM International Sym-

posium on Microarchitecture. IEEE Computer Society, 2012, pp. 72–83.

40

VITA

Graduate School
Southern Illinois University

Srinivasa Reddy Punyala

srinivasareddy.punyala@siu.edu

Jawaharlal Nehru Technological University Hyderabad
Bachelor of Technology, JNTUH, 2015

Thesis Title:

Throughput Optimization and Resource Allocation On GPUs Under Multi-Aapplication
Execution

Major Professor: Dr. I. Anagnostopoulos

41

	Southern Illinois University Carbondale
	OpenSIUC
	12-1-2017

	THROUGHPUT OPTIMIZATION AND RESOURCE ALLOCATION ON GPUS UNDER MULTI-APPLICATION EXECUTION
	SRINIVASA REDDY PUNYALA
	Recommended Citation

	tmp.1521041416.pdf.n4ekP

