
Southern Illinois University Carbondale Southern Illinois University Carbondale

OpenSIUC OpenSIUC

Dissertations Theses and Dissertations

5-1-2024

Resource Optimized Scheduling For Enhanced Power Efficiency Resource Optimized Scheduling For Enhanced Power Efficiency

And Throughput On Chip Multi Processor Platforms And Throughput On Chip Multi Processor Platforms

Shivam Kundan
Southern Illinois University Carbondale, shivamkundan@hotmail.com

Follow this and additional works at: https://opensiuc.lib.siu.edu/dissertations

Recommended Citation Recommended Citation
Kundan, Shivam, "Resource Optimized Scheduling For Enhanced Power Efficiency And Throughput On
Chip Multi Processor Platforms" (2024). Dissertations. 2214.
https://opensiuc.lib.siu.edu/dissertations/2214

This Open Access Dissertation is brought to you for free and open access by the Theses and Dissertations at
OpenSIUC. It has been accepted for inclusion in Dissertations by an authorized administrator of OpenSIUC. For
more information, please contact opensiuc@lib.siu.edu.

https://opensiuc.lib.siu.edu/
https://opensiuc.lib.siu.edu/dissertations
https://opensiuc.lib.siu.edu/etd
https://opensiuc.lib.siu.edu/dissertations?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F2214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/dissertations/2214?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F2214&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

RESOURCE-OPTIMIZED SCHEDULING FOR ENHANCED POWER EFFICIENCY

AND THROUGHPUT ON CHIP MULTI-PROCESSOR PLATFORMS

by

Shivam Kundan

M.S., Southern Illinois University Carbondale, 2019

A Thesis
Submitted in Partial Fulfillment of the Requirements for the

Doctor of Philosophy Degree

School of Electrical, Computer, and Biomedical Engineering
in the Graduate School

Southern Illinois University Carbondale
May 2024

Copyright by Shivam Kundan, 2024

All Rights Reserved

DISSERTATION APPROVAL

RESOURCE-OPTIMIZED SCHEDULING FOR ENHANCED POWER EFFICIENCY

AND THROUGHPUT ON CHIP MULTI-PROCESSOR PLATFORMS

by

Shivam Kundan

A Thesis Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in the field of Electrical and Computer Engineering

Approved by:

Dr. Iraklis Anagnostopoulos, Chair

Dr. Dimitri Kagaris, Co-Chair

Dr. Spyros Tragoudas

Dr. Chao Lu

Dr. Khaled Ahmed

Graduate School
Southern Illinois University Carbondale

April 9, 2024

AN ABSTRACT OF THE THESIS OF

Shivam Kundan, for the Doctor of Philosophy degree in ELECTRICAL AND COMPUTER

ENGINEERING, presented on April 9, 2024, at Southern Illinois University Carbondale.

TITLE: RESOURCE-OPTIMIZED SCHEDULING FOR ENHANCED POWER

EFFICIENCY AND THROUGHPUT ON CHIP MULTI-PROCESSOR

PLATFORMS

MAJOR PROFESSOR: Dr. I. Anagnostopoulos

The parallel nature of process execution on Chip Multi-Processors (CMPs) has boosted

levels of application performance far beyond the capabilities of erstwhile single-core designs.

Generally, CMPs offer improved performance by integrating multiple simpler cores onto a

single die that share certain computing resources among them such as last-level caches,

data buses, and main memory. This ensures architectural simplicity while also boosting

performance for multi-threaded applications. However, a major trade-off associated with

this approach is that concurrently executing applications incur performance degradation if

their collective resource requirements exceed the total amount of resources available to the

system. If dynamic resource allocation is not carefully considered, the potential

performance gain from having multiple cores may be outweighed by the losses due to

contention for allocation of shared resources. Additionally, CMPs with inbuilt dynamic

voltage-frequency scaling (DVFS) mechanisms may try to compensate for the performance

bottleneck by scaling to higher clock frequencies. For performance degradation due to

shared-resource contention, this does not necessarily improve performance but does ensure

a significant penalty on power consumption due to the quadratic relation of electrical power

and voltage (Pdynamic ∝ V 2 · f).

This dissertation presents novel methodologies for balancing the competing

requirements of high performance, fairness of execution, and enforcement of priority, while

also ensuring overall power efficiency of CMPs. Specifically, we (1) Analyze the problem of

i

resource interference during concurrent process execution and propose two fine-grained

scheduling methodologies for improving overall performance and fairness, (2) Develop an

approach for enforcement of priority (i.e., minimum performance) for specific processes

while avoiding resource starvation for others, and (3) Present a machine-learning approach

for maximizing the power efficiency (performance-per-Watt) of CMPs through estimation

of a workload’s performance and power consumption limits at different clock frequencies.

As modern computing workloads become increasingly dynamic, and computers

themselves become increasingly ubiquitous, the problem of finding the ideal balance

between performance and power consumption of CMPs is of particular relevance today,

especially given the unprecedented proliferation of embedded devices for use in

Internet-of-Things, edge computing, smart wearables, and even exotic experiments such as

space probes comprised entirely of a CMP, sensors, and an antenna (“space chips”).

Additionally, reducing power consumption while maintaining constant performance can

contribute to addressing the growing problem of dark silicon.

ii

DEDICATION

To my father, who inspired and enabled my life-long dream of pursuing engineering. To

my mother, who has always supported and encouraged my academic pursuits through all

the many ups and downs. To my sister, who has always been a source of support and

amusing mischief. To my late grandfather, who encouraged me to always dream big and

boldly follow my passions. To my grandmother, who has always had unshakeable belief in

me. To my aunt, who has been a role-model for reasons both academic and more. Finally,

to my cat Data, who has been a constant source of companionship, happiness, and delight

throughout my college education.

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Iraklis Anagnostopoulos for his invaluable assistance,

guidance, and tremendous patience all throughout my undergraduate and graduate study,

and for encouraging me to purse a PhD. I would also like to thank Dr. Spyros Tragoudas

who was the one to first suggest pursuing a graduate education. I would like to thank my

committee co-chair Dr. Dimitri Kagaris for inspiring my interest in the field, through his

excellent teaching in the many undergraduate and graduate courses I took under him. I

would also like to thank Dr. Chao Lu and Dr. Khaled Ahmed for taking the time to be

part of my dissertation committee. Finally, a sincere thank you to my fellow PhD students

Theodoros Marinakis, Ioannis Galanis, Zois Tasoulas, and Ourania Spantidi for their

constant help and support in both classwork and research.

iv

TABLE OF CONTENTS

CHAPTER PAGE

ABSTRACT . i

DEDICATION . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ALGORITHMS . xiii

CHAPTERS

1: Introduction . 1

1.1: Decline of Single-Core Architectures . 1

1.2: Chip Multi Processors . 2

1.3: Chip Multi Processor Challenges . 4

1.4: Conclusion . 5

1.5: Research Questions . 5

1.6: Contributions . 6

2: Literature Review. 8

2.1: Contention-Aware Scheduling . 8

2.2: Power-Aware Scheduling . 11

3: Contention-Aware Scheduling . 17

3.1: Shared-Resource Contention . 17

3.2: Motivation: The effect of finer-grain scheduling. 21

v

3.3: Proposed Methodology . 23

3.3.1 Application Characterization & Interference Analysis 24

3.3.2 Static Pressure-Aware Scheduling Policy 31

3.3.3 Dynamic Pressure-Aware Scheduling Policy 35

3.4: Experimental Results . 40

3.4.1 Experimental setup . 40

3.4.2 Single-Threaded Workload Performance 44

3.4.3 Multi-Threaded Workload Performance 50

3.4.4 Enabling hyper-threading . 52

3.4.5 Performance of Dynamic vs. Static Scheduling Policy 53

3.5: Conclusion . 55

4: Priority-Aware Scheduling . 56

4.1: Introduction . 56

4.2: Proposed Methodology . 58

4.2.1 Application Characterization . 58

4.2.2 Progress . 59

4.2.3 Priority . 59

4.2.4 Application-to-Core Assignment . 60

4.3: Evaluation Setup . 64

4.4: Experimental Results . 65

4.4.1 High Priority Application Performance 65

4.4.2 Overall Workload Performance . 68

4.4.3 Overhead . 69

4.5: Conclusion . 69

vi

5: Power-Aware Scheduling . 71

5.1: Introduction . 71

5.2: Motivation . 72

5.3: Proposed Methodology . 73

5.3.1 Selection of PMC events . 74

5.3.2 Training of MLPs . 75

5.3.3 Run-Time Frequency Selection . 77

5.3.4 Comparison of classification approaches 77

5.4: Evaluation . 78

5.5: Conclusion . 81

6: Performance & Power Aware Scheduling . 83

6.1: Introduction . 83

6.2: Proposed Methodology . 84

6.2.1 Training Set Creation . 84

6.2.2 PMC Selection . 87

6.2.3 MLP Training . 88

6.2.4 Run-time power and performance estimation 89

6.3: Experimental Results . 89

6.3.1 Workload description . 90

6.3.2 Evaluation on the A15 cluster . 91

6.3.3 Evaluation on the A7 cluster . 96

6.4: Conclusion . 98

7: Conclusion. 99

7.1: Remarks . 99

vii

REFERENCES . 100

VITA . 114

viii

LIST OF TABLES

TABLE PAGE

3.1 Application classification (L = memory intensive, C = cache intensive and N =

compute intensive). 21

3.2 Qualitative comparison of application classes based on their contentiousness and

sensitivity on the shared resources. 27

3.3 Server characteristics used for the evaluation. 42

4.1 System specifications for evaluated server platform. 62

4.2 High Priority Applications and Datasets . 65

4.3 List of benchmarks in each evaluated mix . 66

4.4 Avg High Priority Throughput Gain % . 68

5.1 Comparison of different classifiers . 77

6.1 Power and IPStotal Error Percentage for A15 and A7 Clusters 88

6.2 Benchmarks & datasets used for the A15 cluster. 91

6.3 Benchmarks & datasets used for the A7 cluster. 91

6.4 Joint run-time constraints for different scenarios on A15 cluster 92

ix

LIST OF FIGURES

FIGURE PAGE

1.1 Processor trends related to Moore’s Law [1] 2

3.1 Performance of the 35 co-scheduling scenarios compared to the optimal case. . 22

3.2 Behavior of the four identified classes under different pressure (max memory

read bandwidth = 13.6 GB/s, LLC = 15.36MB). 26

3.3 Memory bandwidth sensitive applications are not affected when the overall

bandwidth is less than the maximum available (33 GB/s). 28

3.4 LLC sensitive applications are not affected when the overall pressure is less than

the LLC size (15.36 MB). 29

3.5 Flowchart for Dynamic Pressure-Aware Scheduling Policy 36

3.6 IPC distribution for single threaded workload mixes for Server 1 43

3.7 Throughput gain over Linux for single-threaded workloads for Server 1 44

3.8 Fairness gain over Linux for single-threaded workloads for Server 1 45

3.9 Detailed performance for BW/CS/CNS/N-dominated mixes: (a) BW-dominated;

(b) CS-dominated; (c) CNS-dominated; and (d) N-dominated for Server 1 . . . 47

3.10 Throughput gain over Linux for single-threaded workloads on Server 2. 48

3.11 Fairness gain over Linux for single-threaded workloads on Server 2. 49

3.12 Throughput gain over Linux for multi-threaded workloads on Server 2. 49

3.13 IPC distribution for multi-threaded workload mixes on Server 1 50

3.14 Throughput gain over Linux for multi-threaded workloads on Server 1 51

3.15 Fairness gain over Linux for multi-threaded workloads on Server 1 51

3.16 Fairness gain over Linux for multi-threaded workloads on Server 2. 52

3.17 Enabling hyper-threading results for Server 1 and Server 2 53

x

3.18 Example of the effect of dynamic vs. static scheduling: (a) Two BW processes

P1 and P2 with bandwidth requirement a little less than LBW/2, except for the

first half of process P1 that has a bandwidth requirement of LBW ; (b) Static

scheduling; (c) Dynamic scheduling. 53

4.1 Sum of individual shared resource requirements for each evaluated application

mix . 63

4.2 High Priority Throughput gain % (2 HP Apps) 67

4.3 High Priority Throughput gain % (3 HP Apps) 67

4.4 High Priority Throughput gain % (4 HP Apps) 67

4.5 IPC distribution for all applications in mix (2HP Apps) 68

4.6 IPC distribution for all applications in mix (3HP Apps) 69

4.7 IPC distribution for all applications in mix (4HP Apps) 69

5.1 Power consumption and normalized IPS for different types of application groups. 73

5.2 Block Diagram for Cortex-A15 PMU (ARM PMUv2 architecture) 75

5.3 Top 18 events with minimal variation in recorded counts 76

5.4 MLP classifier training process . 76

5.5 Expected runtime model . 78

5.6 Normalized IPS and shared bus bandwidth for all application mixes. 79

5.7 (a) Power consumption, (b) MIPS/Watt, and (c) Normalized energy. 81

6.1 Overview of the proposed methodology on the Odroid-XU3 board 85

6.2 Distribution of IPStotal and memory bandwidth of the created dataset on the

A15 cluster using kernel density estimation. Each group (denoted by a white

cross) utilizes all four cores of the cluster . 86

6.3 Pearson’s Product Moment Correlation for a subset of A15’s PMCs. 87

6.4 Example constraints for A15 cluster . 89

6.5 Memory bandwidth (shared-resource utilization) for applications mixes used for

the A15 cluster. 92

xi

6.6 Memory bandwidth (shared-resource utilization) for applications mixes used for

the A7 cluster. 93

6.7 (a) Power consumption; (b) performance in terms of normalized IPS; and (c)

power efficiency in terms of MIPS/WATT for 14 random application mixes on

the A15 cluster under two constraint scenarios (Table 6.4). Each mix consist of

four concurrent executing applications . 94

6.8 (a) Performance in terms of normalized IPS and (b) power efficiency in terms

of MIPS/WATT for 14 random application mixes on the A7 cluster for the

selected scenario. Each mix consist of four concurrent executing applications . 94

xii

LIST OF ALGORITHMS

ALGORITHM PAGE

1 Static Scheduling Policy . 35

2 Proposed dynamic scheduling policy . 38

3 Proposed scheduling policy . 61

xiii

CHAPTER 1

INTRODUCTION

This chapter provides technological and historical background into the development of

Chip Multi-Processor (CMP) architectures and discusses the importance of exploring both

resource- & power-aware scheduling techniques for current and future CMP architectures.

1.1 DECLINE OF SINGLE-CORE ARCHITECTURES

From the late 1990’s, chip manufacturers began development of multi-processor

architectures to address the growing shortcomings of existing single-core designs. Among

the major challenges to improving single-thread performance were the diminishing returns

on application performance at higher clock frequencies and the growing difficulty of heat

dissipation due to unprecedented device densities on the die [2]. In the preceding decades,

chip manufacturers, consumers, and enthusiasts alike had become accustomed to large

increases in clock speed with each successive generation of processors. However, at the turn

of the century, the industry inevitably experienced a slowdown in the growth of both clock

frequency and single-thread performance, despite steady advances still continuing at the

device (transistor) level. This led many observers to speculate an imminent end to the

performance predictions associated with Moore’s Law. Figure 1.1 shows a compilation of

nearly 50 years of data depicting raw transistor counts and the corresponding clock

frequencies and single-thread performance (measured by SpecINT benchmarks [3]). The

key detail in the graph is the discrepancy between the growth of raw transistor count

compared to the other metrics such as single-thread performance and clock frequency.

In addition to heat dissipation challenges, single-thread performance was also

increasingly bottlenecked by the growing divide between main memory and CPU speeds

(i.e., the Memory Wall). For example, from 1986 to 2000 the average CPU clock speed

increased by 55% annually while the speed of memory accesses increased at only 10% [4].

1

Figure 1.1: Processor trends related to Moore’s Law [1]

In order to “squeeze-out” additional performance gains from single-core architectures, chip

designers experimented with various techniques to increase parallelism at the instruction

level. Among the developments were deep execution pipelines, superscalar architectures,

Very Long Instruction Word (VLIW) architectures, and proprietary systems such as

Explicitly Parallel Instruction Computing (by Intel) [5]. While these approaches improved

single-thread performance, they came at the cost of greater hardware complexity and a

corresponding increase in power consumption. One example of this approach was the

introduction of a 31-stage pipeline in the final variations of Intel’s Pentium line of

processors [6].

1.2 CHIP MULTI PROCESSORS

One approach to improving performance without increasing raw clock frequency (and

subsequent power consumption and heat) was to distribute computational workloads among

several different processors. Each process could then be executed on its own distinct core

2

and could communicate with concurrently executing processes through message-passing or

accessing shared memory locations. Although the concept of multiprocessing itself had

been known since 1843 [7], manufacturing an entire multiprocessor system on a single chip

was both an unprecedented challenge as well as a significant breakthrough in the history of

computing. The first commercially available Chip Multi-Processor (designed for servers and

workstations), IBM’s Power4 was released in 2001 [8]. It comprised two 64-bit cores

embedded onto the same die, sharing a high-speed L2 cache and buses for inter-core

communication at rates of over 35GB/s [8]. Realizing the obvious advantages, other chip

manufacturers such as Intel and Motorola also adopted the CMP architectural paradigm.

The multi-processor approach of using a number of simpler and less powerful cores

offered considerable practical benefits to the end user. Novel CMP architectures were

developed to address the primary obstacles to single-thread performance improvement,

namely the fast-approaching Memory and ILP Walls, and reduction of dynamic power

consumption to lower the amount of heat generated by the chip (i.e., power wall). CMPs

also addressed the discrepancy between processor speed and rate of memory accesses to a

large extent. Combining multiple CPUs onto a single die allowed for superior cache

coherency, while simply having multiple simpler cores increased the overall rate of memory

accesses.

Combined with the changing landscape of consumer computing in the mid-2000’s,

CMP architectures facilitated several breakthroughs in the field of embedded systems. The

era of mobile computing, Internet-of-Things (IoT), and bio-medical electronics were made

possible in part by the development of ultra low-power multiprocessor architectures.

Despite requiring a more complex manufacturing process, the performance benefits of

CMPs were substantial enough to quickly make them a staple of modern consumer

electronics. Additionally, CMPs made multitasking the norm rather than a rare exception

for embedded systems.

3

1.3 CHIP MULTI PROCESSOR CHALLENGES

Despite their significant advantages, the rise of CMP architectures came at the cost of

higher hardware and software complexity. As CMPs enabled multiple processes to be

executed in parallel, one of the major software challenges was to determine how

concurrently running applications might affect the performance and power consumption of

one another. Despite each process being able to run on its own core, certain resources like

caches, internal buses, and main memory must still be shared among concurrently executing

processes to ensure design simplicity and enable multi-threaded applications to boost

performance by sharing a common cache [9]. This means that individual processes may

have to ‘contend’ for control of the limited resources, resulting in a potential drop in overall

performance. In some cases, the threads of multi-threaded applications may interfere with

each other if fine-grained resource management is not considered. Contention for allocation

of shared resources would also lead to novel power/thermal management challenges such as

the problem of reducing dark silicon areas on the chip. Another problem arising due to

shared-resource contention was the increased difficulty of enforcing priority and fairness

among concurrent processes due to increased unpredictability (i.e., non-determinism). This

would especially affect the functioning of the rapidly growing cloud services industry which

relies on specific Service-Level Agreements (SLAs) for offering different tiers of performance.

Although resource allocation was also a requirement in single-core processors, the

dynamic and parallel nature of CMP process execution added a significant level of

complexity to the process. As modern processors follow a non-deterministic flow of

execution, the number and type of processes being executed on a CMP can vary greatly

between successive time periods, leading to cases where applications interfere with each

other. In contrast, the amount of computing resources available to a process in single-core

execution is usually well known, with the details varying only slightly between architectures.

4

1.4 CONCLUSION

Shared resource contention is the primary bottleneck to concurrent application

performance in CMPs. Sophisticated management of shared resources can yield diverse

benefits such as improved performance, higher throughput, better enforcement of fairness

and priority, lower impact of non-determinism on dynamic execution, lower power

consumption, lower percentage of dark silicon, and generally higher performance-per-Watt

for the overall system. Additionally, fine-grained tracking and allocation of shared resource

usage can aid in the development of dynamic frequency-scaling approaches. When used

effectively, Dynamic Voltage & Frequency Scaling (DVFS) capability can be used to lower

power consumption without incurring any penalty in performance.

Given the diverse benefits, it is imperative to develop sophisticated scheduling

algorithms that account for both the efficient allocation of shared resources as well as the

judicious use of higher clock frequencies.

1.5 RESEARCH QUESTIONS

1. Regarding the relationship between application performance and shared-resource

contention on CMPs:

(a) To what extent, if any, do concurrently executing applications affect the

performance of one another? How can the level of interference be quantified?

(b) What role do shared resources play in facilitating (or hindering) concurrent

application execution?

(c) What is the performance benefit of parallel execution on CMPs compared to

time-multiplexed single-core multitasking?

2. What is the impact of shared-resource contention on the overall power consumption

of CMPs when executing concurrent workloads?

3. Regarding improvement in application performance per unit of power consumed:

5

(a) Can management of shared-resource contention help guide dynamic scaling of

clock frequency (using DVFS)?

(b) Can power consumption be reduced without affecting concurrent application

performance?

(c) Is it practical to scale the operating frequency at runtime?

(d) What is the trade-off between overhead vs performance improvement when using

power-aware scheduling guided by resource pressure management?

4. Using resource-aware scheduling, what is the optimum combination of performance

and power consumption that can be obtained?

1.6 CONTRIBUTIONS

1. A holistic analysis of the impact of shared-resource contention on concurrent

application performance in CMPs. Identifying and quantifying a given process’s

contentiousness and sensitivity to resource pressure. Based on this analysis,

development of two fine-grained pressure-aware scheduling methodologies to

maximize overall throughput and fairness.

2. A methodology for enforcing minimum performance thresholds in an execution

framework comprising two priority levels for processes (high and low). Our approach

ensures that high-priority applications meet their performance requirements while

simultaneously preventing low-priority applications from experiencing resource

starvation. This approach also results in a net improvement in overall throughput.

3. A run-time algorithm for proactively scaling operating frequency based on

Performance Monitoring Counter (PMC) values to improve the overall power

efficiency (IPS-per-Watt) of a clustered RISC CMP architecture.

4. (a) A mechanism to predict the power consumption and performance of concurrent

6

workloads at all available operating frequencies of a CMP, using PMC counts as

inputs.

(b) A scheduling methodology which selectively switches frequency to satisfy both

performance and power constraints

7

CHAPTER 2

LITERATURE REVIEW

Several works have sought to address the multifaceted problem of how to best manage

shared resources on chip-multiprocessors in order to achieve a broad variety of goals such as

improving tail latency, maximizing IPC, enforcing fairness, regulating temperature, and

avoiding hot-spots. This chapter analyzes these approaches from two broad perspectives -

improving purely performance-related metrics such as IPC and fairness, and improving

power-related metrics such as the total power consumption of the chip, or the power

consumption of a specific component on the chip. There is significant overlap between some

works, which may fit into both sections.

2.1 CONTENTION-AWARE SCHEDULING

Most works that address shared-resource contention in CMPs use two main strategies -

resource utilization monitoring and application classification.

In [9, 10], the authors aim to improve the fairness of resource allocation among

concurrent applications by means of a sampling-based approach. For each time quantum,

concurrent applications are profiled and re-scheduled if needed to minimize the amount of

resource-based interference between them. The methodology in [11] presents a distributed

resource allocation technique for multi-threaded applications using pool-based clustering of

the available cores. Clusters are created based on system’s characteristics and the

allocation of cores is performed in a manner so as to increase resource utilization and

reduce fragmentation. The authors of [12] use an IPC-per-core based approach, along with

application classification for determining the ideal number of threads as well as the best

thread-to-core mapping for a given set of workloads.

Several methodologies classify the memory, cache, and performance usage patterns of

applications in order to schedule them into contention-minimizing groups. The authors

8

of [13] propose a memory-aware scheduling methodology which monitors realtime memory

usage and cache miss rates without the need for application profiling. A drawback of this

approach is that it only works for cache architectures with LRU policies. Another work

which utilizes resource monitoring is [14]. This methodology relies upon the L1 cache

bandwidth to identify and minimize shared resource contention. However, the authors do

not consider other shared resources such as memory and L2 cache accesses. The authors

of [15] proposes a two-tier a methodology to address both shared-resource contention and

power consumption of many-core processors. They exploit usage patterns of shared LLC’s

to schedule the given workloads into groups. The drawback of this approach is that it relies

upon per-core voltage monitors, which is not feasible for many CMP architectures [16]. The

authors of [17] present a scalable methodology for dynamic resource allocation on CMPs.

Although they increase weighted speedup and scheduling fairness, they do not consider

power consumption and frequency scaling. The authors of [18] use a machine learning

based approach for anticipating the level of shared-resource contention based on past

resource allocation statistics. Their use of a runtime global monitoring and scheduling

methodology increases the performance overhead considerably. [19] uses a novel MIMO

controller methodology to maximize resource allocation efficiency for concurrently

executing applications. Although this method improves performance over heuristic

approaches, the added hardware required decreases the practicality of this approach.

In [20], the authors propose a methodology to improve fairness among concurrently

executing applications by using a novel method to quantize execution progress by using

instructions-per-second. The applications are then assigned to cores based on progress. The

authors demonstrate an 86% improvement in fairness over evaluated schedulers. In [21], the

authors develop the progress measurement metric further to create application-to-core

mappings that balance both bandwidth and LLC requirements. This method improves

average performance gain by 6.3% to 16% while enforcing fairness of execution.

Other works utilize resource monitoring to achieve domain-specific goals such as the

9

enforcement of priority and maximization of fairness in dynamically scheduled systems.

In [22] and [23], the authors aim to reduce the performance degradation of applications due

to contention for main-memory bandwidth. The authors of [22] present a scheduling

methodology that balances memory bandwidth across all executing applications. In [23], an

improvement in performance is achieved by means of a per-core memory regulator and

reclaim manager.

Numerous works, such as [24], [25], and [26] aim to improve performance of prioritized

applications through hardware-assisted cache partitioning techniques. The authors of [24]

present an application categorization methodology based on cache utilization. The

applications are scheduled according to their class co-execution characteristics. In both [25]

and [26], the authors present a scheduling methodology that uses Intel’s Cache Allocation

Technology (CAT) to create partitions that reduce contention for the LLC. Furthermore,

the authors of [26] demonstrate how their methodology can be used to improve

performance for prioritized applications. However, a major drawback of these methods is

their need for specialized hardware support. The work presented in [27] proposes three

approaches to resource-management for hard real-time embedded systems, with the goal of

reducing Worst-Case Execution Time (WCET) and Worst Case Reaction Time (WCRT). It

uses the 3-phase task execution model presented in [28], [29], and [30], to perform a

contention analysis for the memory bus, a contention analysis for the cache bus, and a

formulation for fixed task-priority approach to memory-centric scheduling. The bus

contention analysis considers two different memory access models, i.e., dedicated and fair

memory access models, built on top of the first-come-first-served (FCFS) bus arbitration

policy to achieve its ultimate goal of determining the maximum contention that can be

suffered by tasks. The contention analysis for the cache focuses on analyzing cache

persistence to determine how LLC misses affect contention on the memory bus, to

supplement the earlier analysis of memory bus contention and further improve the

estimation of the impact of resource contention on WCRT. The memory-centric scheduling

10

approach makes use of these analyses to reduce WCRT. [31] presents an approach to

enforcing QoS for devices in the cloud-edge continuum. It aims to eliminate or minimize

QoS violations due to shared-resource contention on edge devices that execute cloud

micro-services. The authors utilize a mapping approach based on reinforcement learning to

capture the complex contention behaviors of edge devices that execute co-located and

dynamically allocated cloud micro-services. The authors demonstrate a reduction in

computational resource usage by 23.9% while maintaining QoS and also improving tail

latency. In [32] the authors propose a resource-management system to achieve desired video

inference latency and accuracy trade-offs under changing runtime conditions in

internet-connected mobile-devices. This work includes a contention-aware scheduling

methodology that uses DNN models along with extensive offline profiling and considers

resource contention on the CPU, GPU,and memory bus. The authors of [33] present a

contention minimization methodology as part of a work to reduce QoS violations while

executing processes for cloud micro-services. Their ”resource-manager” determines optimal

resource allocation based on reinforcement learning, which the authors claim can capture

complex contention behaviors. In [34], the authors outline an efficient resource-management

mechanism to predict contention-induced performance degradation as part of a larger

method to meet specific Service Level Agreements (SLAs) for server utilization when

providing Network Function (NF) Virtualization service. Their contention minimization

methodology relies on precisely characterizing (1) the pressure each NF applies on the

server’s shared hardware resources (contentiousness) and (2) how susceptible each NF is to

performance drop due to competing contentiousness (sensitivity). They demonstrate a 6%

to 14% improvement in server utilization efficiency.

2.2 POWER-AWARE SCHEDULING

A number of works address the reduction of power consumption in CMPs while also

maintaining a minimum level of performance and/or throughput.

11

First, regarding the power consumption of clustered multi-processors, the authors

of [35] present a methodology that utilizes a PI controller for monitoring and reducing

power consumption. However, the individual characteristics of the workloads are not taken

into consideration, effectively treating the processor as a ‘black box’ with two inputs

(operating frequency and the predefined control parameters) and one output (power). The

authors of [36,37] present a methodology which uses Memory-Reads per Instruction

(MRPI) to meet application-specific performance requirements (IPS) and reduce energy

consumption by predicting the operating frequency of the processor. Similarly, the authors

in [38,39] adjust operating frequency based on the memory accesses and the required

response time. However, these approaches allow for significant energy and power reduction

only when memory-intensive applications are part of the application mix. Additionally, the

authors in [40] present an agent-based power system for frequency selection based on

inter-core communication. However, the frequency selection does not consider contention

effects. Furthermore, the authors in [18] present a machine learning approach which tracks

the usage of multiple shared resources of the processor in order to improve performance of

multiprogrammed workloads. However, the authors do not analyze the selection of the

inputs to their neural network, making the degree of multicollinearity in the training labels

uncertain. Moreover, while the latter tries to improve performance of workloads, it does not

consider the trade-off between the increase in performance and power consumption, leading

to lowered reduced efficiencies.

The authors of [26] present a contention-aware scheduling policy which leverages

Intel’s Top Down Microarchitecture Analysis Method (TMAM) for application profiling.

The TMAM method allows for obtaining an accurate representation of application’s

resource utilization which is in turn used to develop their application-to-core placement

technique. At run-time, the application groupings are determined by a cost function that

seeks to minimize performance (IPC) loss due to contention for the shared LLC. A

drawback of this method is that it requires Intel’s Cache Allocation Technology (CAT)

12

support for the processor, available only in specific models. In [41], the authors aim to

avoid contention on the LLC by combining detailed resource-utilization information with a

resource-aware application-to-core placement policy and use of Intel’s Cache Allocation

Technology (CAT). Their methodology utilizes a two-step approach which first calculates

the ideal cache partition (using hierarchical clustering) and then calculates the ideal

application-to-core placement (using a heuristic based on cache-miss curves). The key

contributor to overhead is the quadratic-time Look-ahead algorithm used at run-time to

determine the best cache partition. When there are more than 8 available applications (and

12-way cache), the scheduling overhead increases significantly, rendering this approach

impractical in real-work applications. In addition, this method also requires specialized

hardware support (Intel’s CAT). Additionally, several other studies have focused on

quantifying the impact of cross-core interference and deciding application groupings to to

boost application throughput [42,43,44,45,46]. These works combine varied techniques to

reduce the performance impact of shared-resource contention. However, they differ from

our proposed approach as they do not holistically monitor contention for all levels of the

memory hierarchy. In [47], the authors present a contention-aware scheduler which utilizes

cache misses per million instructions as a heuristic for quantifying contention. While this

method works successfully for highly memory intensive groups of applications, it yields

lower performance for other workload types. In [48], the bandwidth between links of the

memory hierarchy is tracked to capture activity of the applications. This method identifies

cache-intensive applications and avoids scheduling them with applications that heavily

thrash the LLC. However, unlike our proposed static scheduler, this method is less

fine-grained and cannot detect applications which rely on cache but their cache access

pattern makes them less susceptible to LLC interference (cache non-sensitive). In [49] a

combination of application profiling and neural networks are used to maximize the

performance (Instructions per Second (IPS)) of varied resource-intensive workloads.

Although this work demonstrates an increase in performance over Linux scheduler, their

13

coarse-grained characterization scheme leaves room for further improvements in both

individual and overall application performance. A fine-grained application characterization

is utilized in [50] to improve the performance (IPC) of prioritized applications executing

under shared-resource contention. Even though this method uses fine-grained statistics, its

primary goal is to improve performance for specific high-priority applications in a workload,

in contrast to our approach which considers workload performance. In [51], the authors

present a methodology to improve performance for convolutional neural network workloads

on heterogeneous multicore processors. This method explores the operating frequencies of

the device, prunes the design space and decides the optimal device configuration according

to system objectives (minimize power/maximize performance). Experimental results

demonstrate 42.8% to 61.5% reduction in power consumption. The authors of [42] aim to

improve the efficiency of shared resource utilization while also preserving the required

Quality-of-Service (QoS) (measured by tail latency) of each scheduled application. They

accomplish this by extracting the resource-interference profiles of each application using

specially developed micro-benchmarks and performing a series of stochastic gradient

descent operations to decipher the ideal application-to-core placement. A shortcoming of

this approach is that it requires profiling for each application using specially designed

benchmarks. This renders the approach impractical in cases where additional CPU time

cannot be allocated for separate profiling of applications. The authors of [43,45] utilize

approximate computing techniques to improve resource utilization for shared servers based

on CMP architectures. Both works aim to keep performance degradation of each

application within specified tolerance limits. They take the performance tolerance

threshold (measured in % slack in tail latency) as input and output the ideal

application-to-core placement. However, both techniques need to dynamically recompile the

applications which increases the run-time overhead and precludes their usage in cases where

the source code is restricted. In [46], the authors utilize deep learning techniques in order

to anticipate spatial and temporal patterns in application execution that may result in

14

quality of service degradation in CMP servers. Their method involves obtaining resource

utilization information from remote procedure call (RPC) level traces of each scheduled

application to proactively detect any upcoming violations in tail latency requirements. In

this manner, the authors aim to improve predictability of cloud microservices and prevent

any single misbehavior from causing a cascade of QoS violations. The main drawback of

this approach is the need for an extremely large dataset for training the Deep Neural

Networks (DNNs). Each DNN predictor requires up to 1 week’s worth of execution data for

training. The authors of [44] propose a method that uses a combination of containers,

thread pinning, cache partitioning, frequency scaling, and memory capacity partitioning to

allow latency-critical apps and microservices to be co-executed without QoS (tail latency)

violations. They begin by performing a comprehensive analysis of resource requirements,

contention effects, and sensitivity for different application types. Next, they identify

‘fungible’ computing resources that can be re-allocated at run-time to provide the necessary

resources for applications. The Perf&Fair scheduler [52] uses an online average of

performance and fairness as part of a fitness function to schedule applications for each time

quantum. However, due to its increased focus on fairness, it generally results in lower

overall performance. The BAOS scheduler [22] calculates overall main memory requests

and the average main memory bandwidth utilization for each application per quantum.

The application with the best fit in terms of bandwidth is selected to run during the

following quantum. However, this method cannot prevent memory-intensive applications

executing alongside cache-intensive applications, which leads to a drop in performance.

Finally, certain works employ resource-utilization strategies as part of a larger

approach to meet domain-specific goals. In [53], the authors present an approach that aims

to enforce varying QoS requirements for applications with different levels of execution

priority. Their proposed method utilizes a distributed set of ‘lightweight performance

meters’ on each available core of the system. The performance meters can account for

differences in the cores’ architecture and help to coordinate overall resource allocation. The

15

authors were able to demonstrate up to 24% improvement in memory bandwidth utilization

while also enforcing QoS (measured in frames per second) for target applications. In [54],

the authors express run-time constraints and mine multiple parameters in order to create

optimized system- and application-aware operating points. This approach results in a

balance between temperature, power consumption, and performance

(instructions-per-second), resulting i 15.4% to 35.3% reduction in energy consumption.

In [55], the authors propose a technique for improving the energy efficiency of heterogeneous

multi core architectures while also maintaining a minimum user-defined fairness of

execution. This is achieved through a combination of offline profiling/ application

characterization and dynamic frequency scaling. The authors of [56] also present a

methodology for improving the power efficiency of heterogeneous multi core processors used

for edge-computing purposes. It uses a hardware-tailored multi-task programming model

which yields an average of 22% increase in energy efficiency compared to a reference system.

16

CHAPTER 3

CONTENTION-AWARE SCHEDULING

Modern CMPs are have been steadily integrating an increasing number of cores into a

single socket to address the continually growing demand for higher application performance.

Generally, the cores of a CMP share several components of the memory hierarchy such as a

Last-Level Cache (LLC) and main memory bandwidth. This allows for considerable gains

in multi-threaded application performance, while also helping to maintain overall

architectural simplicity. However, a consequence of sharing resources is the inevitable

performance bottleneck caused by contention for shared resources among concurrently

executing applications. In this chapter, we formulate a fine-grained application

characterization methodology that leverages the Performance Monitoring Counters (PMCs)

and Cache Monitoring Technology (CMT) available in Intel processors. We utilize this

characterization methodology to develop two contention-aware scheduling policies, one

static and one dynamic, that co-schedule applications based on their resource-interference

profiles. Our approach focuses on minimizing contention on both the main-memory

bandwidth and the LLC, by monitoring the pressure each application inflicts on these

resources. We achieve performance benefits for diverse workloads, outperforming Linux and

three state-of-the-art contention-aware schedulers in terms of system throughput and

fairness for both single and multi-threaded workloads. Compared to Linux, our policy

achieves up to 16% greater throughput for single-threaded and up to 40% greater

throughput for multi-threaded applications. Additionally, the policies increase fairness by

up to 65% for single-threaded and up to 130% for multi-threaded ones.

3.1 SHARED-RESOURCE CONTENTION

Chip Multi-core Processors (CMPs) have become the dominant architectural choice in

the server and desktop processing domains due to their scalable computational capabilities

17

at steadily decreasing costs. From the late 90’s, CMPs began to successfully overcome the

performance and heat dissipation bottlenecks faced by single-core designs through the use

of sophisticated Thread-Level Parallelism (TLP) and aggressive scaling of cores.

Integrating multiple simpler and more energy-efficient cores paved the way for higher

performance yields, as greater throughput could be achieved by executing multiple

applications in parallel. Performance boosts, energy-efficiency, and cost-effectiveness were

some of the advantages that ultimately led to CMPs becoming the dominant design choice

in the server and desktop domains.

However, the benefits offered by the CMP architectural paradigm also introduced a

new kind of performance bottleneck: shared-resource contention. Since the cores of a CMP

are not completely independent processors but are instead clustered together to share

several components of the memory-hierarchy, contention among applications for access to

these resources can result in significant performance degradation. Shared-resource

contention can affect the performance of 1. applications executing concurrently on

neighboring cores (noisy-neighbor problem), and 2. threads belonging to the same

application if the application does not take advantage of fine-grained resource sharing [57] .

The first major point of resource contention is the Last Level Cache (LLC) [58,59].

Cache replacement policies attempt to take advantage of temporal and spatial locality by

bringing data to the LLC independently from the application level [57]. A thread may

evict the data of a neighboring thread and its own data may be evicted by another [58].

The effect of concurrently executing threads competing for space in the LLC has been

studied by many different researchers [59, 60, 61]. Their results demonstrate that the cache

miss rate of a thread can vary significantly depending upon its co-runners, resulting in a

performance (Instructions Per Cycle (IPC)) penalty which can be as high as 63% in

extreme cases [62]. The other major source of resource contention is the main memory

bandwidth [22,48,63,64]. Concurrently executing applications on a chip multi-core

processor with a shared memory system can suffer performance degradation due to

18

interference in memory accesses. Authors in [65] demonstrate that the average memory

latency of an application can increase up to 7× (translated to 60% IPC loss) when running

concurrently with another memory-intensive application. Similarly, performance

degradation is observed in experiments where bandwidth contention is injected by

memory-intensive co-runners (up to 65% IPC drop [22], 2.2× slowdown [63]).

Resource contention can harm the performance of the system in various ways. Some

contention-aware approaches target improvements in resource efficiency and utilization

[66, 67], while others focus on maximizing throughput [47, 58,68] and balancing fairness

[20, 64,69]. Previous approaches generally try to address the challenges posed by resource

contention in two steps. First, they extract an interference profile for each application

executed on the CMP platform. These profiles quantify the application’s performance when

competing with co-runners for allocation of shared resources [70, 71]. For each application,

it is important to identify (1) its sensitivity to resource contention, and (2) its

contentiousness [70] . After application characterization, the second step is the

development of contention-aware strategies that optimize system performance by

determining contention-minimizing application groupings [22,47,72] .

In this chapter, we present two pressure-aware scheduling policies, one static and one

dynamic, for contention minimization on chip multiprocessor systems. Both policies utilize

the inbuilt performance monitoring unit for fine-grained characterization and scheduling of

applications based upon the pressure exerted on the processor’s shared resources.

Specifically, the innovations of our approach are:

• A fine-grained application characterization methodology that leverages hardware

Performance Monitoring Counters (PMCs) and Intel’s Cache Monitoring Technology

(CMT) [73] to differentiate between applications with similar behavior. This

approach analyzes the individual pressure exerted on shared resources by each

application at run-time, in turn helping to guide the subsequent resource-aware

placement of applications.

19

• Holistic exploration of the performance impact of resource contention among different

application classes, instead of only pairs of classes as in previous works. Our

approach focuses on monitoring the pressure exerted on all available shared resources

of the system simultaneously. Particularly, our method accounts for the following

factors: (1) resource pressure is generated by applications in different ways, and

(2) applications are sensitive to different levels of pressure applied to various parts of

the memory hierarchy.

• A static contention-aware scheduling policy that co-schedules applications based on

their obtained resource-interference profiles. The key idea lies in our observation that

applications of certain characteristics can be placed together without loss in

performance if their collective resource pressure does not saturate the LLC and/or

main memory bandwidth of the CMP platform.

• A dynamic contention-aware policy that co-schedules applications at run-time based

on their ongoing resource-interference profiles. This policy uses the same

characterization and placement principle as the static scheduling policy except that it

does not require any previous information about the workload. It boosts the

performance of applications that vary their patterns of resource usage frequently. In

both scheduling policies, applications time-share the CPU in a way that evenly

balances the pressure on the CMP’s shared resources.

• Experimental evaluation of various single and multi-threaded application mixes on

two different Intel servers with Cache Monitoring Technology (CMT), and

comparison of results with the Linux scheduler (CFS [57]) and four state-of-the-art

contention-aware schedulers [22,47,48,52] .

20

Bench.
MPMI
used by DI [47]

LCA [72]
classification

Sensitivity
classification [70]

stream 7,614.064 L Contentious/Non-sensitive
ocean 2,936.885 L Contentious/Non-sensitive
chase 9.040 C Non-contentious/sensitive
gemm 0.272 C Non-contentious/Non-sensitive
trmm 0.211 C Non-contentious/sensitive
atax 0.167 C Non-contentious/Non-sensitive
3mm 0.143 N Non-contentious/Non-sensitive
2mm 0.137 N Non-contentious/Non-sensitive

Table 3.1: Application classification (L = memory intensive, C = cache intensive and N =
compute intensive).

3.2 MOTIVATION: THE EFFECT OF FINER-GRAIN SCHEDULING.

This section contains a motivational example that shows the necessity of fine-grain

classification. Table 3.1 depicts a workload of eight applications to be scheduled on a 4-core

Intel Core i7 processor with shared LLC and memory controller. The second column

indicates the Misses Per Million Instructions (MPMI), which are used as a metric for the

Distributed Intensity (DI) contention-aware scheduler [47]. The third column shows the

application classification based on the Link and Cache-Aware (LCA) scheduler [72]. The

last column depicts the application classification based on contentiousness and sensitivity

as presented in [70]. We executed all the 35 possible unique co-scheduling combinations,

each one of them consisting of two groups of four applications.

Figure 3.1 depicts the performance of each combination normalized to the optimal.

We have also annotated the DI [47] and LCA [72] schedulers based on their decisions.

With the DI being in the 22th percentile, we observe that splitting the applications with

“high miss rate” to avoid accumulation of memory intensive applications results in a

sub-optimal decision. This happens because there are applications with “low miss rate”

that show significant reliance on the LLC (C). Consequently, splitting memory intensive

applications (2 in our case) and co-execute them with the cache-reliant applications leads

to significant interference for the later. Overall, using LLC miss rate as a metric fails to

21

distinguish applications with high LLC utilization from applications that restrict their

activity in the lower parts of cache hierarchy.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Schedule

0.80

0.85

0.90

0.95

1.00

Pe
rfo

rm
an

ce
 R

el
at

iv
e

to
 O

pt
im

al

Distributed
 Intensity LCA

mem-intensive separate

mem-intensive together

Figure 3.1: Performance of the 35 co-scheduling scenarios compared to the optimal case.

This problem is addressed by the LCA scheduler, which identifies the cache-intensive

applications (C) and avoids co-execution with applications that heavily thrash the LLC (L).

However, packing all the C applications together also results in performance losses. This

happens because the C applications inflict a lot of pressure on the LLC significantly

affecting their performance. Although, this policy is better than DI, as it is located on the

62th percentile, there is still enough room for improvement. We see that solutions that

group together the memory intensive applications comprise the top 38% of all the

combinations. This is reasonable because the high miss rate applications, which are also

classified as contentiousness, are not spread among groups to harm the sensitive

22

cache-intensive ones. Also, packing them together does not hurt their performance, as the

aggregate pressure they put on memory bandwidth can be tolerated and their memory

requests can be satisfied.

Considering all the aforementioned observations, we conclude that none of the above

classification methodologies alone provide sufficient information for finding the optimal

scheduling policy. Thus, it is necessary to find a more fine-grain application classification

scheme and examine the performance degradation of an application taking into

consideration the following parameters: (1) the pressure the specific application imposes on

the shared resources, (2) the total pressure inflicted on the shared resources by the

co-runners, and (3) the sensitivity of the application.

3.3 PROPOSED METHODOLOGY

In this section, we propose two pressure-aware scheduling approaches, a static and a

dynamic one. Both schedulers utilize Performance Monitoring Counters (PMCs) and Cache

Monitoring Technology (CMT) to capture the pressure that applications exert on the

shared resources and categorize the accordingly. The primary difference between them is

that the static scheduler requires an offline profiling stage to determine the interference

profile for each application and since it works offline, it can afford to perform complex

computations to find the optimum grouping by using Mixed Integer Linear Programming

(MILP) (Section 3.3.2). In contrast, the dynamic scheduler does not require any prior

information about the workload but determines it at run time. Thus, it can only afford to

run a first fit heuristic for scheduling the applications. This generally makes the

performance of the static scheduler better than that of the dynamic one. However, the

dynamic scheduler yields better performance when executing applications that exhibit

frequent phase changes (i.e., changes in resource utilization patterns). Therefore, we split

our scheduling methodology into two separate versions for use in the appropriate situation.

At their core, both methods use the same underlying principle of fine-grained

23

pressure-aware application placement.

Moreover, both proposed scheduling policies are platform independent. The only

prerequisite is the ability to record per-core shared-memory bus bandwidth and last-level

cache behavior, which currently is supported by most of systems. Particularly, for Intel x86

processors, this feature is available either through Intel Resource Director Technology

(server class architectures) or Intel Performance Counter Monitor Technology (desktop class

architectures).

The first part of this section (Section 3.3.1) presents a fine-grained application

characterization methodology and analyzes the performance response of co-executing

applications to varying levels of shared-resource contention. The second part (Section 3.3.2)

presents the proposed pressure-aware static scheduler that focuses on minimizing

contention for shared resources. Finally, the third part (Section 3.3.3) presents a

modification of the static pressure-aware scheduler that allows for dynamic workload

execution (i.e., no prior information about the workload is required at run-time). We utilize

the processor’s inbuilt Performance Monitoring Unit (PMU) to gather statistics for

application characterization, interference analysis, and run-time decision making.

3.3.1 Application Characterization & Interference Analysis

Applications competing for the same shared resources can be executed concurrently

under certain conditions, leading to an increase in system performance. In order to find

which applications are good candidates for each application in a workload, we need to

identify 1. the shared resource it utilizes, 2. the amount of pressure it puts on this resource,

and 3. its sensitivity when competing with other co-runners for this resource.

Applying Pressure

The first step in our approach is to generate pressure with tunable intensity on the

available shared resources of the system in order to test the behavior of applications with

24

widely varying execution characteristics. We record the performance achieved throughout

execution of each application while applying varying levels of pressure to the memory

hierarchy. As a result, we can identify the source of interference and the amount of pressure

at which the applications become vulnerable to a drop in performance. We developed a

micro-benchmark resembling the streaming access pattern of the STREAM [74] benchmark.

It helps us in profiling the sensitivity of applications under the whole spectrum of

interference while also being able to gradually increase the intensity of pressure applied on

the different shared resources. Furthermore, it has aggressive behavior, meaning that the

intensity of resource pressure is maintained when competing with other applications. These

characteristics help to accurately identify the level of pressure at which applications become

susceptible to performance degradation. We note that application characterization can be

affected by the number of threads a given application utilizes, and also by the specific input

to the application. Our methodology considers this by treating benchmarks with different

numbers of threads and input sizes as separate applications for the purpose of their

subsequent scheduling (Sections 3.3.2 and 3.3.3) .

Application Characterization

We consider four classes of applications with regard to their contentiousness and

sensitivity to hardware resources (Memory Bandwidth (BW) and Last Level Cache (LLC)):

Memory Bandwidth Sensitive (BW): Applications with a memory usage pattern that

resembles a streaming behavior and with a working set larger than LLC size. Consequently,

they thrash the LLC (LLC occupancy = LLC size). LLC Sensitive (CS): Applications

with low memory bandwidth and a working set size that fits entirely within the LLC. They

experience severe performance degradation when their cache capacity requirements are not

met. LLC Non-Sensitive (CNS): Applications that have low memory bandwidth and

benefit from occupying a certain portion of the LLC, but their performance degradation is

not as destructive as for their more sensitive twins (CS). Their cache access pattern makes

25

0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
IP

C
BW Class

mg.W
cg.A
stream_32M

gesummv_64M
mg.B

CS Class
2mm_2M
correlation_4M
gemver_8M

is.W
chase_14M

CNS Class
jacobi-1d_2M
atax_4M
lu.W

trisolv_10M
adi_14M

N Class
3mm_16K
bicg_128K
cholesky_16K

mvt_128K
syrk_16K

2
4
6
8

10
12
14

M
em

 R
ea

d
Ba

nd
 (G

B/
s)

0 4 8 12 16 20 24 28 32
0
2
4
6
8

10
12
14
16

LL
C

Oc
cu

pa
nc

y
(M

B)

0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
Pressure (MB)

Figure 3.2: Behavior of the four identified classes under different pressure (max memory
read bandwidth = 13.6 GB/s, LLC = 15.36MB).

them less susceptible to LLC interference and helps them retain a good performance level,

even in the case of excessive LLC thrashing. Neutral (N): These are applications with

negligible memory bandwidth requirements and no dependence on the LLC. Their activity

is restricted to the lower parts of the memory hierarchy (L2 and L1 caches).

Table 3.2 depicts a summary in terms of their contentiousness and sensitivity on the

shared resources. As experimental validation of these 4 classes, we executed our custom

micro-benchmark along with a variety of applications selected from different benchmark

suites

(NAS [75], Polybench [76], SPLASH2 [77], Stream [74], and Chase [78]) on a 6-core

Intel Xeon E5-2620 v3 server, with LLC size of 15, 360 KB and maximum sustainable

memory bandwidth of 33GB/s. More details of our set up can be found in Table 3.3,

26

Classes
Memory Bandwidth LLC
Contributes Affected Contributes Affected

BW ✓ ✓ ✓ ✗

CS ✗ ✓ ✓ ✓
CNS ✗ ✗ ✓ ✗

N ✗ ✗ ✗ ✗

Table 3.2: Qualitative comparison of application classes based on their contentiousness and
sensitivity on the shared resources.

Section 3.4.1. Figure 3.2 depicts the interference profiles of several applications when

co-executed with our micro benchmark exerting different levels of resource pressure. We

note that the plots shown in Figure 3.2 were individually obtained per application, but were

just plotted together in the same figure. In particular, each one of the selected applications

is pinned on a core and it is tested against all different contention conditions, from

negligible to severe interference in the LLC and memory link. The horizontal axis shows

the size of the working dataset (in MB) of the micro benchmark, which is proportional to

the level of pressure exerted on shared resources. Working datasets of 16MB and smaller

apply pressure to the L1, L2, and L3 (LLC) caches, while working datasets greater than

16MB apply pressure to the memory bandwidth. Specifically, we are interested in the

performance (normalized IPC), the memory read bandwidth, and LLC occupancy.

We group the results into four categories, based on the performance response of the

tested applications: The first column of Figure 3.2 depicts BW applications with working

set larger than the LLC size, that thrash the LLC and have no reliance on it (more

in-depth analysis is presented in Section 3.3.1). While their LLC occupancy keeps reducing

in proportion to the applied pressure of the micro-benchmark, their IPC is not affected. On

the contrary, we observe that their performance is dictated by their achieved memory

bandwidth. Reduction in memory bandwidth is directly connected with a drop in IPC,

which occurs due to interference in memory requests that cannot be simultaneously

satisfied for both the application being tested as well as for the micro-benchmark.

The second column of Figure 3.2 depicts CS applications with low memory bandwidth

27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Mix

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
IP

C

0
5
10
15
20
25
30
35 M

em
 BW

 [GB/s]

Figure 3.3: Memory bandwidth sensitive applications are not affected when the overall
bandwidth is less than the maximum available (33 GB/s).

and a working set size that fits entirely within the LLC. We observe that when their cache

capacity requirements are not satisfied, due to applied pressure on the LLC, their IPC

drops up to 65%. Reduced cache occupancy results in higher number of evicted cache lines,

increase in cache misses, and a subsequent increase in memory bandwidth pressure. Note

that applications get negatively affected only beyond the point where both their working

set size and the pressure applied by the micro-benchmark cannot be collectively

accommodated by the LLC. For example, applications with high LLC occupancy (e.g.,

chase 14M, is.W) suffer from performance loss at a much lower level of resource pressure

than applications with low LLC occupancy (e.g., correlation 4M, 2mm 2m).

The third column of Figure 3.2 depicts CNS applications. We observe that their cache

access pattern makes them less susceptible to LLC interference and helps them retain a

good performance level (IPC drops around 20% in the worst case) even in cases of excessive

LLC thrashing (i.e., when micro-benchmark working set ≥ 16 MB, causing high memory

bandwidth).

For this reason they are able to retain a good level of performance (IPC drops around

20% in the worst case) even in the case of excessive LLC thrashing (i.e., micro-benchmark

working set ≥ 16 MB, high memory bandwidth).

The last column of Figure 3.2 depicts N applications. It can be seen that their

performance is not affected by the different levels of pressure exerted by our

micro-benchmark on shared resources (max IPC drop ≃ 5%) as their working set fits in the

lower parts of the memory hierarchy (L2 and L1 caches).

28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Mix

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
IP

C

0
2
4
6
8
10
12
14
16 LLC Occ. [M

B]

Figure 3.4: LLC sensitive applications are not affected when the overall pressure is less than
the LLC size (15.36 MB).

Interference Analysis

In Section 3.3.1, we identified the characteristics and performance response for each

class of applications when subject to different amounts of shared-resource pressure.

However, not all applications that belong to the same class can be treated uniformly in

terms of sensitivity to shared-resource contention, primarily because their slowdown occurs

under different levels of pressure. For example, consider the first column of Figure 3.2

which depicts the performance of the BW class of applications to different levels of

shared-resource pressure. The application stream 32M requires the highest memory

bandwidth (∼13GB/s) to achieve its ideal performance (i.e., normalized IPC=1) and hence

starts to experience performance degradation earlier than all other applications in its class

(at pressure ∼12MB). Meanwhile, the application cg.A, which requires a much lower

memory bandwidth for ideal performance (∼7GB/s), only starts to experience performance

degradation beyond resource pressures of ∼14MB. Interestingly, the performance of BW

applications is not affected as long as the aggregate pressure on the memory controller does

not cause complete saturation of the available bandwidth. Therefore, BW class applications

can be scheduled simultaneously with negligible performance loss if the individual memory

bandwidths are not restricted. We observe the same trend for the CS applications. As long

as the aggregate pressure does not exceed the size of the LLC, the application performance

is not affected. For example, the application 2mm, which requires an LLC occupancy of

2MB for ideal performance, experiences no IPC drop when the pressure on the LLC is

under 12 MB. On the other hand, when the aggregate pressure exceeds the size of the LLC,

the performance of the application is significantly affected. For example, gemver, which

29

requires an allocation of 8MB in the LLC, starts to experience performance loss when the

applied pressure exceeds 7MB. In general, applications that belong to the same class and

have similar activity are not negatively affected if the overall pressure can be tolerated by

the shared component. On any other case, the IPC loss is imminent for the co-scheduled

applications. Hence, it is very important to introduce an additional feature for each class,

which characterizes how much pressure each of the applications inside that class puts on

the specific shared resource.

Figure 3.3 depicts the results from executing various mixes of memory-bandwidth

sensitive applications. Each mix consists of 24 single-threaded benchmarks taken from the

Polybench, Stream, and NAS benchmark suites. The right vertical axis and line plot show

the average memory bandwidth achieved by each mix (in GB/s), while the left vertical axis

and bar plot represent the mix’s overall performance (normalized IPC), with a value of 1.0

representing alone execution without any pressure (no performance loss). We observe that

there is no performance impact if multiple memory-bandwidth sensitive applications are

executed simultaneously, as long as the overall pressure on the memory bus is less than its

maximum sustainable value (33 GB/s in this example). In contrast, when the combined

memory pressure exceeds the saturation point (mix #21 onwards), the performance of all

applications is significantly affected. The same trend can be observed for the CS

applications, as shown in Figure 3.4. The right vertical axis represents the total LLC

occupancy of the mix (in MB) and the left vertical axis shows the overall performance

(normalized IPC). When the overall pressure on the LLC is less than its maximum capacity

(15.36 MB in this example), the performance of the applications is not affected. However,

when the overall pressure exceeds the LLC size (mix #21 onwards), the IPC loss is

significant. This is also the reason why coarse-grain classification techniques such as [72]

fail to optimally schedule multiple applications. Based on the aforementioned experiments,

we make the following observations:

• Observation 1: BW applications hurt CS applications due to high LLC pressure.

30

Co-execution is prohibitive.

• Observation 2: BW applications can be grouped together as long as the aggregate

pressure on the memory controller is less than the maximum sustainable bandwidth.

• Observation 3: CS applications can be grouped together as long as the aggregate

pressure on the LLC is less than its size.

• Observation 4: CNS applications increase pressure on the LLC and can possibly

harm the CS applications. Co-execution is not recommended.

• Observation 5: N applications do not contribute to pressure on shared resources.

Regarding observation 1, we see from Fig. 3.2 and 3.4 that when the cache capacity

requirement of the CS applications is not satisfied, due to interference on LLC, their IPC

drops down by as much as 65%. On the other hand, BW applications typically thrash the

LLC. Hence, we infer that when BW applications are executed together with CS

applications, they will significantly degrade the performance of the latter. Similarly,

regarding observation 4, CNS applications occupy a certain portion of the LLC, but their

performance is not affected so much. Thus, putting together CS and CNS applications will

affect them in unpredictable ways. The accesses on the LLC depend on the utilization

pattern of each application. If a CNS application happens to thrash the LLC contents of

the CS one, then the performance of the CS application will be significantly impacted. Due

to this uncertainty, we recommend to not put them together (Observation 4), even though

it may not have bad effects in some cases.

3.3.2 Static Pressure-Aware Scheduling Policy

Based upon the observations presented in Section 3.3.1, we propose a static

pressure-aware scheduling policy. Let P be the number of processors/cores, LBW be the

maximum sustainable memory bandwidth, and LLLC be the size of the LLC. We utilize the

31

classification scheme presented in Section 3.3.1, where each application is assigned to a

class BW, CS, CNS, or N. Let t(a) indicate the number of threads of application

a ∈ BW ∪ CS ∪ CNS ∪N , b(a) indicate the memory bandwidth requirement of an

application, and c(a) indicate the cache occupancy requirement of an application. We want

to group the applications into a given number of groups G, where the total number of

application threads in each group is at most P , and each application in the group is

executed concurrently with the others until its completion. The constraints that have to be

respected when assigning applications to groups are as follows:

(C1) The total number of the application threads in each group should not exceed the

number of cores P .

(C2) The sum of bandwidth requirements in each group should not exceed the

bandwidth limit LBW .

(C3) The sum of cache occupancy requirements in each group should not exceed the

LLC limit LLLC .

(C4) No member of class BW should be placed in the same group with a member of

class CS, due to the fact that co-execution of BW and CS class applications is prohibitive

given the LLC thrashing nature of BW applications and the high reliance of CS

applications on LLC occupancy, as mentioned above.

We note that an individual process may do well if its number of threads exceeds P ,

but setting the limit in constraint C1 to a value higher than P may lead to

over-subscription and thus deterioration of the system-wide throughput. We also note that

applications belonging to the CNS class apply pressure to the LLC but can withstand

resource interference imposed by BW applications. This makes CNS and BW applications

acceptable co-runners when shared-resource pressure is high. However, since adequate LLC

occupancy is critical to the performance of CS applications, co-execution with CNS type

applications is allowed but may result in performance degradation.

In order to set this problem in context, we correlate it with two previously known and

32

analyzed problems. In particular, our problem is related to the Multidimensional Bin

Packing (MBP) problem [79,80,81] as well as the Machine Reassignment (MR)

problem [82] . In the MBP problem, given a set of N items and a set of D dimensions,

where each item i has weight wid for dimension d, and given a set of m bins where each bin

j has capacity cjd for dimension d, the goal is to pack the items in the bins without

exceeding the bin capacity in each dimension. In the MR problem, given a set of machines

with specified resources (in terms of CPU, cache size, memory bandwidth, etc.), and a set

of processes that have multiple resource requirements and are partitioned into “services”,

the goal is to reassign the processes to machines while respecting the resource capacity

constraints, plus additional constraints (like the “service”, “spread”, “neighborhood”, and

“transient usage” constraints [82]) in order to improve the usage of the machines, as defined

by a complex cost function.

Both the MBP and MR problems are NP-hard. In our problem, if we consider

constraints C1, C2 and C3 only, then this becomes an instance of the MBP problem by

considering the groups as bins, which have D = 3 dimensions (total bandwidth allowed,

total LLC allowed, maximum number (P) of applications in group) and each application a

has a 3-dimensional weight (b(a), c(a), t(a)). Also, with constraints C1, C2, and C3 only,

this becomes an instance of the MR problem by considering the groups as machines (that

have an additional artificial resource to account for the fact that at most P processes can

be hosted by each machine).

A Mixed Integer Linear Programming (MILP) formulation for solving our problem

(with constraints C1, C2, C3, and C4) is: Let xij be an integer binary variable indicating

whether application i, 1 ≤ i ≤ Q, where Q = |BW ∪ CS ∪ CNS ∪N |, is assigned to group

j, 1 ≤ j ≤ G. In this indexing, we assume that all applications are indexed consecutively

starting with those in BW and followed by those in CS, CNS, and N, in that order. For

each i, 1 ≤ i ≤ Q, let ti indicate the number of threads in application i, let bi indicate the

bandwidth requirement of application i (bi is zero for applications in CS ∪ CNS ∪N), and

33

let ci indicate the cache occupancy requirement for application i (ci is zero for applications

in BW ∪N). The constraints are formulated as follows:

For 1 ≤ i ≤ Q,

G∑
j=1

xij = 1 (3.1)

For 1 ≤ j ≤ G,

Q∑
i=1

xij · ti ≤ P (3.2)

For 1 ≤ j ≤ G,

Q∑
i=1

xij · bi ≤ LBW (3.3)

For 1 ≤ j ≤ G,

Q∑
i=1

xij · ci ≤ LLLC (3.4)

For 1 ≤ j ≤ G, and 1 ≤ i ≤ |BW |, and |BW |+1 ≤ î ≤ |BW |+ |CS|, xij+xîj ≤ 1 (3.5)

Constraint 3.1 makes sure that every application is assigned exactly to one group.

Constraint 3.2 makes sure that each group has at most P application threads. Constraint

3.3 makes sure that the memory bandwidth bound is satisfied in each group. Constraint 3.4

makes sure that the LLC bound is satisfied in each group. Constraint 3.5 makes sure that

no group contains both a BW and a CS application.

For a user-specified value of G, the above MILP, referred to as MILPSS(G) (“MILP

Static Scheduler”), determines whether a grouping can be done that satisfies all the

constraints. (We note that this MILP does not have an objective minimization or

maximization function, rather it has a “token” objective, since the aim is to satisfy all

constraints for the given value of G). We are interested in minimizing the number of groups

G, since the total execution time of the applications in the application mix to be scheduled

34

Algorithm 1 Static Scheduling Policy

1: Inputs: Applications in classes BW, CS, CNS, N, each with number of threads t(a), a ∈ BW ∪ CS ∪
CNS ∪N , memory bandwidth b(a), a ∈ BW , cache occupancy c(a), a ∈ CS ∪CNS; P : Total number
of cores; bandwidth limit LBW ; LLC limit LLLC .

2: Output: Assignment of applications into the minimum number of groups respecting limits
P,LBW , LLLC .

3: Initialize L← 1
4: Initialize U ← Q = |BW ∪ CS ∪ CNS ∪N |
5: Initialize s = {}
6: while L ≤ U do
7: G← ⌊(L+ U)/2⌋
8: if MILPSS(G) (i.e., constraints in Eqs. (1)–(5)) is satisfiable then
9: s← assignment found by MILPSS(G)
10: U = G− 1
11: else L = G+ 1

12: if s ̸= {} then
13: return s
14: else report infeasibility

is thus minimized and the utilization of the cores is maximized. Given that MILPSS(G)

provides a definite ”yes or no” answer for a specific value of G, the minimum number of

groups can be found by a binary search on the values of G, running the MILPSS(G) for

each value, and keeping the minimum G for which the MILPSS(G) reports a solution.

The range of the values of G is from 1 to the total number Q of applications to be

scheduled (we note that the minimum value of G may actually be equal to Q in the case

where, e.g., every application in the mix saturates one of the bounds P,LBW , LLLC). The

overall pseudocode of the proposed static scheduler is given as Algorithm 1. Finally, we

note that despite the general exponential time complexity of the MILP formulation, for the

sizes of the application mixes that occur in practice, the proposed static scheduler finds the

minimum number of groups very fast.

3.3.3 Dynamic Pressure-Aware Scheduling Policy

In this section, we present a dynamic resource-aware static scheduling policy based on

the observations presented in Section 3.3.1. The dynamic scheduler operates in periods of

pre-defined time duration (“quanta”) and consists of two phases: Application

Characterization, and Application-to-Core Assignment. A high-level flowchart of the

35

Initialize
 RQ <- Set of applications to be scheduled
 RCI <- Re-Characterization Interval
 AC <- total # of quanta for characterization
lastACHR <- (-RCI)
 i <- 0

i == lastACHR + RCI?

Execution

Run scheduled processes for 1 quantum
Update i = i + 1
Remove terminated processes from RQ

Application Characterization (ACHR)

For each process p in RQ:

Assign p to first available core

Execute in isolation for AC quanta with any N-type
apps found in this ACHR phase

Characterize p

Update LastACHR = i

Update i = i + AC

Remove terminated processes from RQ

RQ is empty?

 Application to Core Assignment (ATCA)

Type (p)
==
BW?

Schedule p
Schedule more BW apps while BWrem and Prem allow

Schedule any N type apps while Prem allows

Schedule p
Schedule more CS apps while LLCrem and Prem allow

Type (p)
==
CS?

Initialize BWrem, LLCrem, Prem

Yes No

Yes

Yes

No

No

Done

No

Yes

Figure 3.5: Flowchart for Dynamic Pressure-Aware Scheduling Policy

scheduler is given in Fig. 3.5 and a more detailed pseudocode is given as Algorithm 2.

Application Characterization phase

The application characterization (ACHR) phase (lines 8–22 of Algorithm 2) is entered

initially and also every RCI quanta after the last ACHR phase, where RCI

(“recharacterization interval”) is a user-defined parameter. Each ACHR phase lasts for AC

quanta, where AC < RCI is another user-defined parameter. The variable lastACHR is

initialized to −RCI so that the ACHR phase is necessarily entered at the first quantum

i = 0. The purpose of the ACHR phase is to (re)determine the class type (BW, CS, N) of

each application based on dynamically obtained measurements about its resource usage

(note: the dynamic scheduler treats CNS applications as belonging to the CS or N class).

The resource utilization of an application can be estimated more accurately when there is

negligible resource interference from the neighboring cores. We accomplish this by

enforcing a light-weight contention scenario in which one core is allocated to each specific

36

application p̂ in turn in the run-queue (RQ), while the rest of the cores are allocated to

other applications (if any) that have been already characterized (in this ACHR phase) as

belonging to the N class. To maintain fairness, the latter applications are furthermore

selected based on their progress so far (as defined in [20]), given that all processes are

sorted in increasing order of progress the beginning of the quantum (lines 6-7 of Algorithm

2). We note that in the very first time that the ACHR phase is entered, all processes have

an empty type, and therefore each application p̂ whose behavior is to be characterized is

run on a single core with all other cores remaining idle. The above process assignment is

run for AC < RCI quanta (line 15) and any processes that have terminated are removed

from RQ (line 16). Then, we record the IPC (IPCalone(p)) (line 17) of every executed

application p that is still in RQ, and in addition, for the specific application p̂ whose

behavior is being characterized, we record (if it has not terminated) its main memory

bandwidth usage (usgBW (p̂)), and LLC utilization (usgLLC(p̂)) (line 19). Depending on

whether the usages are greater than a user-specified categorization bound of CTGBW for

main memory bandwidth or CTGLLC for LLC, we assign the type of p̂ to one of BW, CS,

or N lines (20-22).

Finally, the RCI phase must be long enough so that a stable measurement of each

available application’s resource utilization can be taken. In this work, we considered 30

time quanta of 200ms each. These values were extracted experimentally so that the

overhead is not big enough to obscure the application execution, and at the same time the

dynamic algorithm has enough time to decide the application class type. A more thorough

investigation of these parameters is part of our future work. Additionally, regarding the

user categorized bounds for CTGBW and CTGLLC , we considered 2GB/s as the threshold

value of memory read bandwidth and 1MB for LLC occupancy accordingly.

37

Algorithm 2 Proposed dynamic scheduling policy

1: Initialize lastACHR = −RCI
2: Initialize i = 0
3: RQ← set of applications in the mix to be scheduled
4: for every process p ∈ RQ, initialize IPCco−running(p) = 0, IPCalone(p) = 1, Progress(p) = 0,

type(p) = ′ ′

5: while RQ ̸= {} do
6: for every process p ∈ RQ compute Progress(p) += IPCco−running(p)/IPCalone(p)
7: Sort RQ in ascending order based on Progress(p)
8: if i == lastACHR +RCI then
9: for each p̂ ∈ RQ do
10: Initialize Prem = P
11: Assign p̂ to the first core(s) and update Prem −= t(p̂)
12: while Prem > 0 do
13: Select the first process p ∈ RQ with type(p) = ′N ′ and t(p) ≤ Prem

14: Assign p to the next available core(s) and update Prem −= t(p)

15: Run the assignment above for AC quanta and update lastACHR = i, i += AC
16: Remove any process that has terminated from RQ
17: Update the IPCco−running(p) of every executed process p in this assignment that is still in

RQ
18: if p̂ ∈ RQ then
19: Record the usage usgBW (p̂), usgLLC(p̂) and the IPCalone(p̂) of p̂.
20: if usgBW (p̂) > CTGBW then type(p) = ′BW ′

21: else if usgLLC(p̂) > CTGLLC then type(p̂) = ′CS′

22: else type(p̂) = ′N ′

23: else
24: Initialize CSon = BWon = False
25: Initialize BWrem = LBW , LLCrem = LLLC , Prem = P
26: for each p ∈ RQ do
27: if type(p) == ′BW ′ and not CSon and usgBW (p) ≤ BWrem and t(p) ≤ Prem then
28: BWRemain −= usgBW (p), Prem −= t(p), BWon = True
29: else if type(p) == ′CS′ and not BWon and usgLLC(p) ≤ LLCRem and t(p) ≤ Prem

then
30: LLCRemain −= usgLLC(p), Prem −= t(p), LLCon = True
31: else if type(p) == ′N ′ and t(p) ≤ Prem then
32: Prem −= t(p)

33: Run the assignment above for 1 quantum and update i += 1
34: Remove any process that has terminated from RQ
35: Update the IPCco−running(p) of every executed process p in this assignment that is still in RQ

Application-to-Core Assignment phase:

The application-to-core assignment (ATCA) phase (lines 24–35 of Algorithm 2) is

triggered at every quantum when ACHR is not in effect. It estimates the progress of each

application p by using the ratio of IPCco−running(p) over IPCalone(p). We utilized the term

progress for this ratio, as this is how it has been used in the bibliography [20,52,69].

While an application is executed, this ratio changes based on the co-runners and the

38

number of executed instructions. Thus, it shows how efficiently an application utilized the

time that was assigned to the CPU in comparison to running alone [20] . Based on

progress the algorithm assigns a process to a core or cores (depending on how many threads

t(p) the process inherently requires) based on the type type(p) of the process and on the

remaining resources available. (Note: the type, usage, and IPCalone have been determined

in the last ACHR phase, whereas the IPCco−running is determined by the ACHR initially

and then updated by the ATCA phase). Unfairness is tackled by prioritizing applications

that made the least progress in the workload [20]. This is done in line 6 which is also useful

for the selection of any N class processes during the ACHR phase. We note that for

single-phase application, the IPC does not fluctuate a lot between time-quanta. Thus, we

utilize the average IPC of all previous quanta to make the subsequent scheduling decisions.

Regarding multi-phase applications, we observed that any change on the IPC lasts for

many RCI intervals (i.e., no sudden peaks or drops), thus we are able to record the change

and take necessary actions.

Co-execution of BW with CS is avoided by introducing two flags BWon and CSon (line

24) and making sure that in every iteration of the application selection process, only one

flag is true at a time. Namely, if BWon is true, CS applications are not allowed to be

assigned to the CPU in the current quantum and vice versa (lines 28 and 30). The rest of

the applications for the current quantum are selected according to their progress order so

far (lines 6-7) but also based on their resource requirements and the available provided

resources. In the beginning of the quantum, the available resources BWrem, LLCrem, and

Prem for the main memory bandwidth, LLC and number of cores respectively, are

initialized to their maximum values LBW , LLLC and P , respectively (line 25). Once the

application is selected, its usage requirements (usgBW (), usgLLC()) determined in the

ACHR phase are subtracted from the remaining resources available and the available cores

are decreased by the number of threads that the application requires (lines 28–30). If an

application belongs to the N class, it is directly allocated if it fits into the available cores

39

(line 32), as it does not contribute to contention, as mentioned in Section 3.3.1. Finally, the

above process assignment is run for one quantum (line 33), any processes that have

terminated are removed from RQ (line 34) and the IPCco−running() of every executed

process in this assignment that is still in RQ is updated (line 35).

3.4 EXPERIMENTAL RESULTS

This section describes the experimental setup and evaluates results obtained from

testing various single and multi-threaded workloads executed using our proposed policies

and four other resource-aware schedulers.

3.4.1 Experimental setup

The proposed scheduling policies are validated with extensive experimentation on two

distinct commercially-available Chip Multiprocessors. This is done to ensure robustness of

acquired results as well as to demonstrate that the proposed policies can be utilized on any

processor that allows access to performance metrics. Table 3.3 shows the characteristics of

each system. On both systems, we utilize one socket for application execution in order to

provide run-time isolation from kernel threads. Additionally, we disable Hyperthreading

and Turbo Boost Technology for reducing the impact of non-determinism in the acquired

results. For completeness, a discussion of application performance with Hyperthreading

enabled is presented in Section 3.4.3.

The resource utilization of applications is monitored by accessing specialized hardware

registers (‘performance counters’) built into the Performance Monitoring Unit (PMU) of

the processor. Specifically, we access the x86 architecture’s Model Specific Register

MSR OFFCORE RSP 0 using the MSR interface for Linux to monitor the main memory

bandwidth (as part of Intel Resource Director Technology’s Memory Bandwidth Monitoring

(MBM) feature) . In addition to per-core memory bandwidth, we record the counts of the

architectural events L3 CACHE OCCUPANCY, L2 LINES IN.ALL, INSTR RETIRED,

40

UNHLT CORE CYCLES, and LLC MISSES. The time taken for accessing each PMC event

is 2-5 µs, which is factored into the calculation of total scheduling overhead for evaluated

approaches. The scheduling policies are implemented in user-space, leveraging the cpuset

subsystem provided by the cgroup mechanism in Linux kernel for isolating the socket and

pinning processes to cores at run-time. Program execution is divided into discrete time

quanta of predefined duration, which can be adjusted by the user prior to execution. We

utilize quanta of duration 200ms as it provides a balance between accurate

resource-monitoring and low scheduling overhead for the utilized platform. At the end of

each time quantum, performance metrics for each application are updated and applications

are assigned to cores based upon the decisions made by the relevant scheduling policy.

Regarding the run-time overhead of the two policies, the static scheduler does not have any

as all groups have been formed offline and the scheduler does not perform any additional

actions at run-time. Regarding the dynamic scheduler, two types of overhead exist: (i)

initial profiling overhead (30 time-quanta of 200ms per application), and (ii) per-quanta

overhead of collecting resource-usage statistics during execution. The cost of accessing each

performance counter described before is between 40us to 80us, which together with the

decision-making algorithm sums to an average overhead of about 1ms per time quanta.

Therefore, the overhead accounts for 0.5% of execution time between successive quanta.

Both overheads are accounted in the presented experiments. Finally, we utilized the lpsolve

tool [83] for solving the MILP problem. Since the sizes of the application mixes that occur

in practice for our evaluation are small (order of tens), the proposed static scheduler finds

the minimum number of groups very fast.

We utilize applications taken from the STREAM [74] , Polybench [76], and NAS [75]

benchmark suites to construct various application mixes that exert different levels of

pressure on the system’s shared resources. For evaluating single-threaded performance each

application mix (Mix1 S – Mix8 S) has 24 and 48 single-threaded applications for Server 1

and 2 accordingly, and for evaluating multi-threaded performance each application mix

41

Server 1 Server 2
System Intel Xeon E5-2620 v3 Intel Xeon Gold 6130
Frequency 2.40 GHz 2.10 GHz
#Cores/socket 6 16
L2 Unified 256 KB Unified 1024 KB
LLC size 15,360 KB 22,528 KB
Memory 256 GB DDR4 128 GB DDR4

Table 3.3: Server characteristics used for the evaluation.

(Mix1 M – Mix8 M) has 12 and 32 multi-threaded applications with either 1, 2, or 4

threads for each server respectively. The goal is to evaluate scheduling performance over

the entire possible spectrum of shared-resource utilization of the system.

Evaluated Schedulers

Each application mix is executed using our proposed scheduling policies, and the

results are evaluated against the following resource-aware scheduling approaches:

1. the Linux CFS (Completely Fair Scheduler), which acts as the baseline for the

comparison of results;

2. the Distributed Intensity (DI) [47] contention-aware scheduler, which utilizes cache

misses per million instructions as a heuristic for quantifying contention;

3. the Link and Cache-Aware (LCA) [72], [48] scheduler, which tracks the bandwidth

between links of the memory hierarchy to capture the activity of the applications,

identifies the cache-intensive ones, and avoids co-executing them with applications

that heavily thrash the LLC;

4. the BAOS scheduler [22], which calculates the overall main memory requests and the

average main memory bandwidth utilization for each application per quantum. The

application with the best fit in terms of bandwidth is selected to run during the

following quantum; and

42

BW CS CNS N Mix1_S Mix2_S Mix3_S Mix4_S Mix5_S Mix6_S Mix7_S Mix8_S
0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
IP

C
Di

st
rib

ut
io

n Linux DI LCA BAOS Perf&Fair Proposed Dynamic Proposed Static

Figure 3.6: IPC distribution for single threaded workload mixes for Server 1

5. the Perf&Fair scheduler [52], which simultaneously addresses performance and

fairness of applications by monitoring their main memory bandwidth, L1 bandwidth,

and progress. An online average of the two metrics is then used as part of a fitness

function to schedule applications for each time quantum.

Experimental results are quantified by each application mix’s IPC distribution, total

throughput, and overall fairness when executed with the respective schedulers. The

achieved throughput is calculated using the summed Weighted Speedup of each

application, which is defined as WS =
∑n

i=1

IPCi
co−execution

IPCi
alone

, where N is the number of

applications in the mix, IPCi
co−execution is the IPC of application i when executing

concurrently in the mix, and IPCi
alone is the IPC achieved during standalone execution

(i.e., the ideal case when all shared-resources of the system are available to application i).

Consequently, higher values of weighted speedup signify lower levels of performance loss

from shared-resource contention. The total throughput of the mix is then computed as

Throughput =
∑n

i=1 WSi, where N is the number of applications in the workload and WSi

is the weighted speedup of each application i. Fairness describes the gap between the best

and worst performance achieved by the applications in a workload and it is defined as

Fairness = max{WS1,WS2,··· ,WSn}
min{WS1,WS2,··· ,WSn} , where N is the number of applications in the workload

and WSi is the weighted speedup of each application i.

43

BW CS CNS N Mix1_S Mix2_S Mix3_S Mix4_S Mix5_S Mix6_S Mix7_S Mix8_S Avg
2
0
2
4
6
8

10
12
14
16

Th
ro

ug
hp

ut
 G

ai
n

Ov
er

 L
in

ux
 (%

)
DI LCA BAOS Perf&Fair Proposed Dynamic Proposed Static

Figure 3.7: Throughput gain over Linux for single-threaded workloads for Server 1

3.4.2 Single-Threaded Workload Performance

In this section, we evaluate the results obtained from executing various single-threaded

application mixes. We execute 8 random mixes (Mix1 S to Mix8 S) arranged in decreasing

order of shared-resource pressure inflicted on the socket. Moreover, on Server 1 we provide

a detailed analysis for four additional mixes with specific distributions dominated by each

of the identified application classes in Section 3.3.1: BW-dominated workload : applications

from the Memory bandwidth sensitive class dominate the mix with ratio

3(BW):1(CS):1(CNS):1(N); CS-dominated workload : applications from the LLC sensitive

class dominate the mix with ratio 1(BW):3(CS):1(CNS):1(N); CNS-dominated workload :

applications from the Memory bandwidth non-sensitive class dominate the mix with ratio

1(BW):1(CS):3(CNS):1(N); and N-dominated workload : applications from the Neutral class

dominate the mix with ratio 1(BW):1(CS):1(CNS):3(N).

Figure 3.6 depicts the average value and the distribution of the normalized IPC for

each evaluated scenario for Server 1. The proposed static methodology achieves the best

average IPC for all mixes compared to other scheduling methods. The proposed dynamic

scheduler achieves the second highest average IPC, except for mixes 6 and 7 where it is

outperformed by 3% (LCA) and 3.4%,1.7% (LCA, Perf&Fair) respectively. Furthermore,

our proposed policies achieved the lowest and second lowest average standard deviation

among all schedulers. The next lowest standard deviation was achieved by Perf&Fair

(0.151), followed by LCA (0.154), DI (0.184), BAOS (0.189), and Linux (0.195).

Figure 3.7 depicts the gain in throughput achieved by each scheduler compared to

44

BW CS CNS N Mix1_S Mix2_S Mix3_S Mix4_S Mix5_S Mix6_S Mix7_S Mix8_S Avg
20

0

20

40

60

Fa
irn

es
s G

ai
n

Ov
er

 L
in

ux
 (%

)
DI LCA BAOS Perf&Fair Proposed Dynamic Proposed Static

Figure 3.8: Fairness gain over Linux for single-threaded workloads for Server 1

CFS for single-threaded applications for Server 1. In all scenarios, the proposed static

scheduler achieves the highest throughput gain, except for Mix1 S and Mix2 S where the

proposed dynamic scheduler achieves 0.2% and 1.7% higher throughput respectively.

On average, the proposed static scheduler achieved a throughput gain of 9.4%,

proposed dynamic 5.4%, LCA 4.3% , BAOS and Perf&Fair both 2.2% , and DI 0.6%.

Finally, figure 3.8 depicts the gain in fairness over CFS for single threaded application

mixes for Server 1. On average the proposed static scheduler achieved the highest fairness

gain 51.3%, followed by proposed dynamic 42.1%, Perf&Fair 23.7%, LCA 20.4%, DI 10.2%,

and BAOS 6.2%. Among the evaluated schedulers, only proposed dynamic and Perf&Fair

account for run-time progress of applications.

Figure 3.9 depicts the normalized IPC for each application for the BW-dominated

workload, CS-dominated workload, CNS-dominated workload, and N-dominated workload

for Server 1. As baseline, we considered the IPC of each application when running alone.

For the BW-dominated workload (Figure 3.9 (a)), all policies except for the proposed static

and proposed dynamic achieved overall low performance for the CS applications. Our

proposed approaches managed to capture the sensitivity of cache intensive applications and

wisely isolated the CS from the LLC thrashing nature of BW. This resulted in high

performance benefits for the CS applications for both the static and dynamic policies

{70%,40%} for chase and {40%,40%} for syr2k compared to Linux CFS). LCA also

offers isolation for cache intensive applications but treats each application uniformly. For

this reason it made the oblivious choice to co-schedule chase and syr2k with the

45

harmful BW co-runners, leading to a significant degradation in performance. In contrast,

the proposed static policy selected the CNS applications for co-execution, which suffer

much lower degradation (20% at most) compared to CS. The proposed dynamic policy

achieves performance comparable to the static scheduler for all CS applications (within

2.6%) except for chase where it achieves 54.8% lower IPC. This is because the dynamic

scheduler cannot detect and schedule the CNS applications and thus, it is unable to select

an ideal co-runner for one of the CS applications in the given mix (chase in this case).

The Perf&Fair scheduler achieves good performance for chase as it considers both the

performance and progress of each application. However, it is unable to achieve consistent

performance across all CS applications as it only monitors the resource pressure for main

memory and L1 bandwidth, unlike our proposed schedulers that account for resource

pressure at all levels of the memory hierarchy.

Furthermore, it is noteworthy to mention that the proposed static and dynamic

policies experienced average performance losses of only 6% (same as CFS) and 9%, for the

BW class, whereas LCA experienced a loss of 9%. These three policies group together the

BW applications in order to avoid co-execution with the cache intensive ones. This

performance gap occurs due to the pressure-unaware placement of LCA. Note that our

proposed dynamic methodology is able to achieve similar BW performance level as LCA

(within 2%), despite not requiring the characteristics of each application in the workload to

be known in advance. Overall, despite the heavy contention environment in both memory

bandwidth and the LLC, both proposed policies managed to accomplish isolation of the CS

applications and keep the BW ones at a good performance level at the same time. The

average IPC drop across all applications in this mix is 12.5% for the Linux CFS, 10.8% for

the DI, 8.9% for the LCA, 10.3% for the BAOS, and only 7% and 9% for the proposed

static and dynamic methodologies respectively. Additionally, the maximum IPC loss (worst

case) for the proposed static methodology is only 22%, and for the dynamic is 40%. The

next lowest IPC loss was experienced by Perf&Fair (60%) followed by BAOS (70.8%).

46

str
ea

m.12
8

str
ea

m.32

str
ea

m.22

str
ea

m.64 cg.
A

oce
an

mg.A

jac
ob

i-1
d

cg.
A
fdt

d-2
d

mg.W lu.
C

cha
se

syr
2k

gra
m.6M trm

m ft.S bt.
W

ata
x

ge
mm

do
itg

en

gra
m.16

K

he
at-

3d
du

rbi
n

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
IP

C

BW CS CNS N

(a)

str
ea

m.32 lu.
C

cg.
A

mg.A syr
2k

2m
m cor

r
sym

m
lu.

4M 3m
m

cha
se

trm
m

cov
ar

ge
mve

r
mvt

gra
m

lu.
W ad

i

jac
ob

i-1
d

ata
x

do
itg

en

he
at-

3d
ge

mm
du

rbi
n

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
IP

C

BW CS CNS N

(b)

str
ea

m.32 ua
.B cg.

A
oce

an
sym

m
cha

se
trm

m
cov

ar
bt.

W
lu.

W ad
i

ata
x

ge
mm ft.S

ge
sum ata

x
ep

.A
sei

de
l

tris
olv

do
itg

en
gra

m
he

at-
3d

du
rbi

n
ray

tr
0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
IP

C

BW CS CNS N

(c)

str
ea

m.32
jac

ob
i

fdt
d-2

d
mg.W cha

se
trm

m
ge

mve
r

2m
m

lu.
W ad

i
ray

tr ft.S

do
itg

en

de
ric

he

he
at-

3d
ge

mm
du

rbi
n

gra
m

flo
yd

ge
sum

lud
cm

p
nu

ss
tris

olv
sym

m
0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
IP

C

BW CS CNS N

(d)

Linux DI LCA BAOS Perf&Fair Proposed Dynamic Proposed Static

Figure 3.9: Detailed performance for BW/CS/CNS/N-dominated mixes: (a) BW-dominated;
(b) CS-dominated; (c) CNS-dominated; and (d) N-dominated for Server 1

In the CS-dominated workload (Figure 3.9 (b)), we observe that our policies restrict

the BW applications in a group in order to spread the dominant CS ones as much as

possible. Even though this hurts the BW class, where four applications experience an

average IPC drop of nearly 12% (static) and 18% (dynamic), it is compensated by the

22.8% (static) and 4.9% (dynamic) IPC increase of the CS class compared to the second

highest (LCA). This gap proves that avoiding LLC interference from the streaming

47

BW CS CNS N Mix 1_S Mix 2_S Mix 3_S Mix 4_S Mix 5_S Mix 6_S Mix 7_S Mix 8_S Avg
0
2
4
6
8

10
12
14

Th
ro

ug
hp

ut
 G

ai
n

Ov
er

 L
in

ux
 (%

)
DI LCA BAOS Perf&Fair Proposed Dynamic Proposed Static

Figure 3.10: Throughput gain over Linux for single-threaded workloads on Server 2.

applications is not sufficient (LCA). The Perf&Fair scheduler is able to achieve high IPC

(∼ 1) for three CS application (2mm,3mm, and gram), but on average performs 4.4% worse

than LCA for the entire class, due to its focus on fairness in addition to performance. For

DI and BAOS, we observe that they are able to maximize performance for BW class but

they are again proved insufficient for the CS class. They showed behavior similar to CFS

with an average improvement of 0.6% and 2.86% respectively for BW class. LCA reacted

better depicting a gain of 6.26%, followed by Perf&Fair 8.5%, whereas the proposed

methods achieved the highest IPC increase of 8.87% (static) and 11.8% (dynamic) over

CFS. It is worth mentioning that DI and BAOS converge to CFS, because contention for

memory bandwidth is really low in this workload. As a result the contention-agnostic

placement of the few (only four) BW applications by the Linux scheduler achieves high

performance and there is no room for further improvement by the DI and the BAOS.

Overall, our policies scored the highest average IPC of 95.7% (static) and 88.6% (dynamic),

bridging the performance gap between applications at the same time (minimum IPC of

72.7% (static) and 56.3% (dynamic)), with the second best policy (LCA) reaching 87.2%

and 46.2% respectively.

Examining the CNS-dominated workload (Figure 3.9 (c)), we observe that our policy

provides the lowest contended environment for the CS class reaching performance level of

96.9% (static) and 75.6% (dynamic) on average, whereas LCA achieves 54.8%, and

Perf&Fair achieves 55.5%. Although the dominant CNS applications contribute to LLC

48

BW CS CNS N Mix 1_S Mix 2_S Mix 3_S Mix 4_S Mix 5_S Mix 6_S Mix 7_S Mix 8_S Avg
10

0
10
20
30
40
50
60
70

Fa
irn

es
s G

ai
n

Ov
er

 L
in

ux
 (%

)
DI LCA BAOS Perf&Fair Proposed Dynamic Proposed Static

Figure 3.11: Fairness gain over Linux for single-threaded workloads on Server 2.

Mix 1_M Mix 2_M Mix 3_M Mix 4_M Mix 5_M Mix 6_M Mix 7_M Mix 8_M Avg
0
5

10
15
20
25
30
35
40
45

Th
ro

ug
hp

ut
 G

ai
n

Ov
er

 L
in

ux
 (%

)

DI LCA BAOS Perf&Fair Proposed Dynamic Proposed Static

Figure 3.12: Throughput gain over Linux for multi-threaded workloads on Server 2.

pressure, our policy is able to wisely select the groups and avoid excessive contention for

CS applications. It co-schedules a part of them with BW applications and leaves the N

applications to be co-executed with CS ones, whereas LCA selected the opposite. For this

reason, we notice a slight IPC drop for some CNS applications (lu.w, raytrace), which

is on average 2.8% worse than the highest (LCA). Regarding DI and BAOS, we observe

similar behavior with CFS, as they fail to address contention for cache-intensive

applications.

In the N-dominated workload (Figure 3.9 (d)), resource interference among the

application of the workload is low. However, CS applications still get severely degraded

under the CFS, DI, BAOS, and Perf&Fair policies. This happens because all the four

scheduling policies mix the CS applications with the LLC thrashing BW ones.

Our policy prioritizes the N to be co-executed with CS and dedicates the appropriate

number of groups for each class, balancing their pressure simultaneously. Overall, our static

policy achieves the best average IPC of 97.9%, followed by our proposed dynamic policy

49

Mix1_M Mix2_M Mix3_M Mix4_M Mix5_M Mix6_M Mix7_M Mix8_M
0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
IP

C
Di

st
rib

ut
io

n Linux DI LCA BAOS Perf&Fair Proposed Dynamic Proposed Static

Figure 3.13: IPC distribution for multi-threaded workload mixes on Server 1

and LCA with 84.7% average IPC.

For Server 2, we obtained the results shown in Figures 3.10 and 3.11 for throughput

and fairness, respectively. The results follow the same trend as in the previous server with

the proposed static scheduler exhibiting the best performance with an average gain of 8%,

while the proposed dynamic scheduler is the second best, validating the previous analysis.

At this point, we would like to mention that although Server 2 supports Intel’s Cache

Allocation Technology (CAT), CAT was not utilized as the focus of this work is on

contention in the LLC (in addition to main memory bandwidth) by monitoring the cache

utilization and by subsequently performing sophisticated application-to-core assignment.

Leveraging CAT synergistically increases the complexity and is left as part of future

research.

3.4.3 Multi-Threaded Workload Performance

Figure 3.13 depicts the average value and the distribution of the normalized IPC in

each evaluated multi-threaded scenario. The average standard deviation achieved by by DI,

BAOS, Perf&Fair, proposed dynamic, and proposed static was 0.08, followed by LCA

(0.09), and Linux (0.21).

Figure 3.14 shows the gain in throughput achieved by each scheduler for eight random

mixes of multi-threaded applications for Server 1. The proposed static scheduler achieves

the highest throughput gain in all mixes, except for mix 4 where DI performs 4% better. It

50

Mix1_M Mix2_M Mix3_M Mix4_M Mix5_M Mix6_M Mix7_M Mix8_M Avg
0
5

10
15
20
25
30
35
40
45

Th
ro

ug
hp

ut
 G

ai
n

Ov
er

 L
in

ux
 (%

)
DI LCA BAOS Perf&Fair Proposed Dynamic Proposed Static

Figure 3.14: Throughput gain over Linux for multi-threaded workloads on Server 1

Mix1_M Mix2_M Mix3_M Mix4_M Mix5_M Mix6_M Mix7_M Mix8_M Avg
40
20
0

20
40
60
80

100
120
140

Fa
irn

es
s G

ai
n

Ov
er

 L
in

ux
 (%

)

DI LCA BAOS Perf&Fair Proposed Dynamic Proposed Static

Figure 3.15: Fairness gain over Linux for multi-threaded workloads on Server 1

is able to outperform other schedulers significantly for mixes 7 and 8 because they consist

of a large number of CNS applications that the static scheduler can schedule alongside the

more resource intensive applications. On average, our proposed static scheduler achieved

the highest throughput gain of 20.3%, followed by our proposed dynamic scheduler 16.4%,

DI 16.4%, LCA 15.4%, BAOS 13.6%, and Perf&Fair 12.8%. Overall, there is less

throughput variation in the multi-threaded case because there are fewer possible

combinations of applications that can run concurrently. For effective utilization of

multi-threading, all threads of an application must run during the same time quanta.

However, this also decreases the possible choice of schedules since the number of threads

during each time quantum must add up to a fixed value. similarly, Figure 3.15 depicts the

fairness over CFS of all the scheduling approaches for Server 1. In contrast to the

single-threaded case, there is less variation in the fairness gain compared to the single

threaded case. This occurs because there are fewer possible combinations of applications

that can be created. The average gain on fairness (in descending order) was proposed static

51

Mix 1_M Mix 2_M Mix 3_M Mix 4_M Mix 5_M Mix 6_M Mix 7_M Mix 8_M Avg
40
20
0

20
40
60
80

100
120
140

Fa
irn

es
s G

ai
n

Ov
er

 L
in

ux
 (%

)
DI LCA BAOS Perf&Fair Proposed Dynamic Proposed Static

Figure 3.16: Fairness gain over Linux for multi-threaded workloads on Server 2.

92.8%, Perf&Fair and DI both 89.2%, proposed dynamic 83.8%, BAOS 79.8%, and LCA

76.1%. Multithreaded application execution exhibits similar trends on Server 2. Figures

3.12 and 3.16 show the throughput and fairness gains obtained by the schedulers over Linux.

3.4.4 Enabling hyper-threading

Figure 3.17 depicts the throughput improvement over Linux for both Server 1 and

Server 2 when hyper-threading technology is enabled. The BW, CS, CNS, and N

dominated mixes correspond to the ones presented in Figures 3.7 and 3.10 for Servers 1 and

2 respectively. Hyper-threading addresses each available core as two ‘virtual’/‘logical’ cores

which divide the computational workload among parallel execution units. Since the Linux

scheduler is not resource-aware, it schedules processes on every available core of the system

regardless of the total shared-resource pressure exerted by the workload, leading to an

overall drop in performance. On the other hand, the proposed resource-aware schedulers

are able to maintain throughput levels similar to the previous analysis by leaving certain

cores unutilized whenever the exerted resource pressure does not allow for further

performance gains. For Server 1, the proposed static and dynamic schedulers yielded an

additional 9.3% and 8.8% average increase in throughput over the non-hyperthreaded case.

For Server 2, the throughput increase is even higher due to the significantly larger number

of cores made available to the schedulers. The resultant increase in throughput over the

non-Hyperthreaded case is 17.3% and 13.1% on average for the static and dynamic

schedulers respectively. Note that the proposed schedulers are able to outperform the

52

BW CS CNS N Average
Server1

0
5

10
15
20
25
30

Th
ro

ug
hp

ut
 G

ai
n

Ov
er

 L
in

ux
 (%

)

BW CS CNS N Average
Server2

DI LCA BAOS Perf&Fair Proposed Dynamic Proposed Static

Figure 3.17: Enabling hyper-threading results for Server 1 and Server 2

(a)

P1

P2

(b) (c)

t1

t2

tc tc

ACHR

phase

Figure 3.18: Example of the effect of dynamic vs. static scheduling: (a) Two BW processes
P1 and P2 with bandwidth requirement a little less than LBW/2, except for the first half of
process P1 that has a bandwidth requirement of LBW ; (b) Static scheduling; (c) Dynamic
scheduling.

evaluated resource-aware static and dynamic schedulers when the intensity of resource

contention among applications is aggravated by the presence of additional cores.

3.4.5 Performance of Dynamic vs. Static Scheduling Policy

The static scheduler outperforms in general the dynamic scheduler assuming (i) the

category of the applications is known in advance and (ii) the category of the applications

does not change during execution. For most of the benchmark mixes used in the results so

far, (ii) was true and consequently the dynamic scheduler performance lagged behind that

of the static one. In addition, in the cases where the dynamic scheduler performed better

than the static (as for e.g., Mix1 and Mix2 in Fig. 3.7), the improvement was not

significant. In order to illustrate more the benefit that the dynamic scheduler can offer, we

investigated the following scenario.

We considered two example processes P1 and P2, both of them of type BW. The first

53

half of process P1 saturates the system’s available memory bandwidth LBW , while its

second half has a bandwidth requirement that is a little less than half of LBW . Process P2

has a bandwidth requirement throughout its execution that is a little less than half of LBW

(see Fig. 3.18(a)). Suppose that the static scheduler, which assumes that the category of

each benchmark is fixed and known beforehand, is fed with the information that process P1

is of type BW with requirement LBW and process P2 is of type BW with requirement

LBW/2. Since the total bandwidth that P1 and P2 require exceeds LBW , the static

scheduler schedules the two processes serially (Fig. 3.18(b)). For the synthetic applications

that we used for this experiment, the overall execution time under the static scheduling

turned out to be t1 = 1001.66 sec.

This is to be contrasted with the behavior of the proposed dynamic scheduler which

periodically recharacterizes processes (ACHR phase). Each process is run in isolation for

AC quanta. In this experiment the value of AC was 15 ticks, each tick being 200msec, and

2 recharacterization intervals were used. After time tC = 2 · AC · 200msec = 6 sec, the

dynamic scheduler determines that the type of P1 and P2 is BW but their total requirement

exceeds LBW so it also schedules them serially (Fig. 3.18(c)). After this is done, the second

recharacterization takes place which finds out that both processes are still of type BW but

their combined bandwidth is below LBW and so they are scheduled together. This results

in an overall execution time of t2 = 762.5 sec, which constitutes an improvement of 23.88%

over the static. The above experiment presents a particularly favorable example of the

benefit that the dynamic scheduler can offer. The actual improvement depends, among

other things, on the overhead of recharacterization (its frequency in terms of RCI and

duration in terms of AC), but its full exploration is a topic of future research.

Overhead

The average execution overhead for each evaluated scheduler was Linux 2.9ms, DI

0.8ms, LCA 0.8ms, BAOS & Perf&Fair 3.7ms, Proposed Dynamic 3.1ms, and Proposed

54

Static 0.8ms.

3.5 CONCLUSION

Shared-resource contention is one of the primary bottlenecks to application

performance in modern CMPs. It arises from the sharing of certain computing resources

among the many cores of a CMP - such as last-level caches, data buses, and main-memory.

If processes are executed without careful consideration given to resource-pressure, they can

end up interfering with each others’ execution, resulting in not only performance drops, but

also wasted power.

This chapter presents two versions (static and dynamic) of a fine-grained

pressure-aware scheduling policy that co-schedules applications based on their

shared-resource interference profiles. The static scheduler requires a separate offline

profiling phase while the dynamic scheduler functions entirely according to run-time

performance statistics. We develop and validate our methodology on two different Intel

servers with Cache Monitoring Technology (CMT). Experimental results demonstrate an

increase in throughput of 16% to 40%, and an increase in fairness of 65% to 130%

compared to Linux’s completely fair scheduler.

55

CHAPTER 4

PRIORITY-AWARE SCHEDULING

This chapter describes a priority-aware scheduling technique for CMPs by monitoring

shared-resource pressure.

4.1 INTRODUCTION

For many embedded CMP applications , it is typical practice to divide computing

tasks into smaller processes, each with its own level of execution urgency, minimum

performance requirement, or other related metrics such as tail latency or minimum

response time. These requirements are abstracted into various priority levels with the

conceptual details varying only slightly between a vast variety of applications. For example,

in mission-critical applications such as for manned spacecraft or submarines, life-support

and propulsion-related processes are of primary importance, compared to other tasks such

as collecting scientific or cartographic data. Since any failure in these subsystems may be

catastrophic, the effective prioritization and subsequent scheduling of all computing tasks is

of utmost importance.

On the other hand, cloud service providers also rely heavily on the prioritization of

specific workloads in order to fulfill minimum Quality of Service (QoS) requirements agreed

upon in Service Level Agreements (SLAs). Since cloud infrastructure can be shared among

multiple customers, a significant challenge that arises in server-based environments, termed

the noisy-neighbor problem, can degrade performance by up to 63% in extreme cases. This

is caused due to resource-interference from both the unpredictable execution of end-user

workloads as well as the inherent non-determinism present in CMP systems. While the

effect of Quality of Service (QoS) violations is not catastrophic in these cases, it can

nevertheless result in significant financial and business-related penalties for the service

provider. In short, the development of priority-aware scheduling techniques for CMP

56

architectures is a multi-faceted challenge that is of growing importance in a world that is

rapidly automating its most critical functions.

This chapter proposes a methodology to implement performance prioritization in a

CMP system where each application is classified as either High Priority (HP) or Low

Priority (LP). This approach ensures that all HP applications meet their minimum

performance requirements, while simultaneously ensuring that LP applications do not

experience resource starvation or other scheduling deadlocks, eventually leading to

degradation in overall throughput, performance, and fairness of the system. This is

achieved by providing a fair execution environment for processes by scheduling the

processes with the least accumulated progress first. This is combined with a dynamic

shared-resource pressure-aware application-to-core assignment policy that yields overall

throughput comparable to hardware-assisted cache/resource allocation technologies.

Although some hardware-allocation features have previously been incorporated into modern

CMPs to aid in the prioritization of specific processes, not all models of CMPs incorporate

them because of the increased complexity, cost, and power requirements. Intel’s Cache

Allocation Technology (CAT) and HP’s Non Uniform Memory Access (NUMA) are

examples of such hardware.

Experimental validation of the proposed methodology on an Intel Xeon Gold 6130

CPU demonstrates an HP application performance improvement of 36.4% over Linux while

also maintaining high throughput for LP applications. In addition, results show that our

methodology achieves HP application performance comparable to a state-of-the-art

hardware cache partitioning method (Intel’s POCAT) [26]. Specifically, it achieves average

performance within 14.5% to 0.2% of POCAT without the need for built-in hardware

support.

57

4.2 PROPOSED METHODOLOGY

This section lists definitions and describes our proposed scheduling approach.

4.2.1 Application Characterization

We utilize a generalized version of the application categorization scheme presented

in [84] and [85], where applications can belong to one of three types depending upon their

shared-resource requirements:

1. Streaming This category comprises applications with working set sizes larger than

the available LLC of the CMP system. When executed on a system with a Least

Recently Used (LRU) cache replacement policy, they degrade the performance of

other applications that rely on LLC availability for ideal execution.

2. Cache Intensive Consists of applications with working set sizes that fit entirely

within the available LLC. Many Cache Intensive applications take up the bulk of the

available space in the LLC. As a result, their performance can degrade significantly in

the presence of other applications (excluding Core Fitting). These applications

perform best when executed in isolation.

3. Core Fitting This category contains applications with working set sizes that fit

completely within the lower-level L2 and L1 caches. As a result, they are agnostic to

the presence of shared last-level caches, and do not impact the performance of any

co-scheduled Streaming and Cache Intensive applications.

The authors experimentally demonstrate this to be an effective characterization

technique for developing scheduling methods based on the minimization of shared-resource

contention in CMPs.

58

4.2.2 Progress

The progress of each process is quantified using the metric Progress Ratio which can

be readily extracted online without the need for prior information about the workload. In

addition to quantifying execution progress, use of the Progress Ratio metric also allows for

the dynamic compensation of performance losses by identifying the source of destructive

resource interference. This contrasts with other progress-aware scheduling approaches that

try to compensate for performance losses by combining processes in an alternate way.

The progress ratio of an application A when executing in parallel with co-runners is

defined as the ratio of the instruction rate during all time periods of execution to the

estimated ideal instruction rate acquired at the beginning of execution. Equation 4.1

represents Progress in mathematical form:

ProgressA =
IPCA

co−running

IPCA
ideal

(4.1)

We calculate the initial instruction rate by using the light-weight resource-contention

scenario presented in [9]. This involves scheduling each application on one core of the

system, while also executing any available Core-Fitting applications on the remaining cores

of the CMP. This is done repeatedly for a fixed amount of time until all applications have

been characterized. We empirically determined this to be 30 time quanta of 200ms each to

effectively profile incoming applications.

4.2.3 Priority

Priority is enforced by utilizing a user-selectable minimum progress threshold Pthr for

HP applications. At runtime, the accumulated progress of HP applications is checked at the

end of each time quantum. If any HP application achieves progress lower than the required

threshold, it is assigned to a core and scheduled to be executed in the next iteration. The

scheduler initially attempts to enforce Pthr for each of the prioritized applications in this

59

manner. To fill the rest of the available cores, LP applications are selected according to a

fitness function that determines the best-fitting application given the system’s available

resources. This ensures adequate progress, and consequently performance, for the HP

applications while also avoiding resource starvation for the LP applications. This approach

works well when Core Fitting applications are present in the workload, which help to offset

performance degradation for the more resource-intensive HP and LP applications.

However, in practice a workload could contain a combination of only Streaming

and/or Cache Intensive applications. In such cases, the performance of HP applications

cannot be met by simple repeated scheduling of applications. For these workloads, the

resource requirements for any possible combination of N (N=#CPUs) applications will

exceed the total amount of resources available to the system. When such a case is

encountered, the proposed scheduler utilizes a ‘core-dropping’ methodology to enforce the

progress of HP applications. When the scheduler detects a performance violation

(ProgressA < Pthr) for one or more HP applications despite being re-scheduled for several

consecutive time quanta (Tthr), it can disable the assignment of applications to one core of

the system. This allows for reduction of shared-resource contention, which is the primary

bottleneck to application performance for resource-intensive workloads on CMPs. By

‘dropping’ a single core along with the use of a progress-aware scheduling methodology, we

are able to successfully enforce a minimum progress threshold for HP applications while

also achieving greater throughput for the LP applications (compared to Linux). Section 4.4

demonstrates that the ‘dropping’ of a single core does not hurt overall performance of

workloads with resource requirements far exceeding the total capacity of the system.

4.2.4 Application-to-Core Assignment

Alg.3 presents the runtime behavior of our proposed scheduler. It functions by

dividing application execution into discrete time quanta of predefined duration. At the end

of each quantum, it decides a priority and progress aware app-to-core mapping for the next

60

Algorithm 3 Proposed scheduling policy

INPUTS

1: (BW peak
MM , SIZELLC ,#CPUs)← system-specific limits

2: runqueue← list of p applications with corresponding priorities [H/L]

3: Pthr ← min progress ratio for HP applications

4: Tthr ← # of successive quanta after which core is disabled

APPLICATION-TO-CORE ASSIGNMENT

5: Update ProgressA, ∀p run on CPU

6: Sort runqueue in ascending order based on ProgressA

7: Cacheon = Streamon = False

8: BWRemain=BW peak
MM , LLCRemain=SIZELLC

9: CPURemain = #CPUs

10: DropCore = False

11: while CPURemain > 0 do

12: for each p ∈ runqueue do ▷ First check HP apps

13: if priorityA = High then

14: if (ProgressA < Pthr) then

15: Select p for execution and remove from runqueue

16: t failA ++, CPURemain −−
17: if typeA = Streaming then

18: BWRemain− = BWA
MM

19: if typeA = Cache then

20: LLCRemain− = USAGEA
LLC

21: else t failA = 0

22: if (t failA > Tthr) and (DropCore = False) then

23: DropCore = True, CPURemain −−
24: for each p ∈ runqueue do ▷ Schedule LP apps

25: if typeA = Streaming and not Cacheon then

26: Streamon = True

27: if BWA
MM < BWRemain then

28: BWRemain− = BWA
MM , CPURemain −−

29: if typeA = Cache and not Streamon then

30: Cacheon = True

31: if USAGEA
LLC < LLCRemain then

32: LLCRemain− = USAGEA
LLC , CPURemain −−

33: if typeA = Core then CPURemain −−
34: if (Streamon) then

35: (Limit, UsageA) = (BWRemain, BWA
MM)

36: else

37: (Limit, UsageA) = (LLCRemain, USAGEA
LLC)

38: Select p from runqueue that maximizes Fitness(A)

39: Limit− = UsageA, CPURemain −−

iteration.

61

System Intel Xeon Gold 6130
Clock Frequency 2.10 GHz
#Cores/socket 16

L2 Unified 1024 KB
LLC size 22,528 KB
Memory 128 GB DDR4

Cache Monitoring Technology Available
Cache Allocation Technology Available

Hyperthreading Disabled

Table 4.1: System specifications for evaluated server platform.

The algorithm requires the following inputs (lines 1 to 4) : (1) the system’s

maximum main-memory bandwidth, LLC size, and number of available CPUs, (2) a queue

of applications to be scheduled (runqueue), (3) the minimum required progress ratio Pthr

for HP applications, and (4) Tthr which represents the maximum number of successive time

quanta an HP application can fail to meet Pthr, before the scheduler disables a core. The

parameter Tthr helps to mitigate wasteful core-dropping in cases when an HP application

temporarily fails to meet Pthr. For example, if an HP application does not meet its Pthr for

only one time quantum, disabling a core may result in CPU under-utilization. This is

because minor fluctuations in performance can occur due to the inherent non-determinism

present in the system. However, if an HP application fails to meet Pthr for several

consecutive time quanta, core-dropping can be utilized to ease resource interference and

improve the application’s performance.

The algorithm begins by updating the progress ratio ProgressA (using Equation 4.1)

for each application A in the runqueue (line 6). The queue is then sorted in ascending

order of accumulated progress for each application to ensure that applications with the

least progress will be considered for scheduling first (line 6). This is done to ensure fair

execution time across all applications, thereby preventing starvation. The two flags,

Cacheon and Streamon are initialized to False (line 7). These flags will be used later to

avoid co-execution of Streaming and Cache type applications, which would otherwise

62

Mix1 Mix2 Mix3 Mix4 Mix5
200
300
400
500
600
700
800

GB
/s

Sum of L3->L2 Bandwidth

Mix1 Mix2 Mix3 Mix4 Mix5

100
110
120
130
140
150
160
170

M
B

Sum of L3 Occupancy
2 HP Apps 3 HP Apps 4 HP Apps

Figure 4.1: Sum of individual shared resource requirements for each evaluated application
mix

result in high resource contention and low performance. The parameters BWRemain,

LLCRemain, and CPURemain keep track of the system’s available resources and are hence

initialized to their maximum available values (lines 8 to 9). As each application is

scheduled, its resource requirements are subtracted from the aforementioned parameters.

Additionally, the flag Dropcore is initialized to False (line 10), signifying that all cores are

available for scheduling.

The scheduling process begins by traversing runqueue to first check the progress ratio

of each HP application (lines 12 and 13). If an HP application’s accumulated progress is

found to be lower than Pthr, it is scheduled to be executed in the next iteration and t failA

is incremented to reflect the drop in performance (lines 14 to 16). The parameter t failA

keeps track of how many successive time quanta an HP application failed to meet Pthr. In

lines 17 to 20 , the system’s remaining resources are updated in order to effectively

schedule remaining LP applications in the subsequent stage. If no violation of Pthr is

detected, t failA is reset to 0 since we are only interested in recording consecutive

violations of the progress threshold (line 21). Finally, the scheduler checks if the current

HP application’s t failA exceeded Tthr and sets the flag Dropcore to True if the condition

is met (lines 22 and 23). The Dropcore flag ensures that only one core is dropped (at

63

most) for each time quantum. The process repeats until all HP applications with

ProgressA < Pthr have been scheduled.

Next, remaining LP applications are selected repeatedly from runqueue until all

available cores have been filled (line 24). In each iteration, only one of the two flags

Cacheon or Streamon can be enabled, indicating the type of applications that will be

scheduled in the following quantum. If Cacheon is True, Streaming applications will not

be scheduled, while if Streamon is True then Cache Intensive applications will not be

scheduled (lines 25 and 29). Depending upon the application type, the system’s resource

utilization will be updated by subtracting either BWA
MM or USAGEA

LLC from BWRemain or

LLCRemain respectively (lines 28 and 32). Core Fitting applications can be scheduled

with with either group as they do not contribute to resource contention (line 33). In lines

lines 34 to 37 , the appropriate resource utilization for the application A is updated. The

tuple (Limit, UsageA) is then used as input to a fitness function (Equation 4.2) to fill the

unallocated cores with applications that best fit within the system’s remaining resources

(line 38).

Fitness(A) = 1/

∣∣∣∣ Limit

CPURemain

− UsageA
∣∣∣∣ (4.2)

4.3 EVALUATION SETUP

We evaluate our proposed approach on an Intel Xeon Gold 6130 CPU @ 2.10GHz

using all 16 cores of a single NUMA node consisting of a shared L3 cache (22MB) and

main-memory controller. We consider the progress threshold Pthr of 0.7, which is close to

the upper bound for application performance in a noisy neighbor environment [86]. We test

5 application mixes (each) for the cases of 2, 3, and 4 HP applications. Each application

mix consists of 32 single-threaded applications taken from the Polybench [76] and

Stream [74] benchmark suites. These mixes do not contain any Core Fitting applications,

thus resulting in extremely high pressure on the system’s shared resources. The mixes are

64

Table 4.2: High Priority Applications and Datasets

#HP App1 App2 App3 App4
2 2mm (14M) syrk (14M) - -
3 symm (12M) correlation (12M) gramschmidt (14M) -
4 2mm (12M) symm (12M) stream (29M) correlation (12M)

arranged in decreasing order of total L3→L2 bandwidth requirement, as shown in Figure

4.1. The scheduler is implemented in user-space as an extension of the work presented

in [87]. Table 4.1 summarizes the system specifications.

4.4 EXPERIMENTAL RESULTS

We compare the performance of our proposed approach against: (1) Linux’s

Completely Fair Scheduler (CFS), (2) Perf [22], (3) Perf&Fair [88], and (4) POCAT [26].

Perf calculates the overall main memory requests and the average main memory bandwidth

utilization of each application and then schedules the application with the best fit.

Perf&Fair simultaneously addresses performance and fairness of applications by monitoring

their main-memory bandwidth, L1 bandwidth, and progress ratio. It then uses the online

average values in a fitness function to find applications for the next time quantum. POCAT

uses Intel’s TMAM metrics [89] to predict an optimal cache-ways allocation for HP

applications (single partition for all HP applications). This method requires specialized

hardware support (i.e. Intel’s Cache Allocation Technology). We implement POCAT’s

predictive algorithm (based on AdaBoost) and compare the results to demonstrate how

well our approach performs when measured against a hardware-assisted prioritization

methodology.

4.4.1 High Priority Application Performance

Table 4.2 lists the HP applications in each evaluated application mix. Figures 4.2, 4.3,

and 4.4 depict the HP performance improvement over Linux for the cases of 2, 3, and 4 HP

65

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5
1 gemm 10M syrk 14M 2mm 14M nussinov 6M syrk 14M
2 correlation 14M symm 12M syrk 14M nussinov 14M symm 12M
3 symm 14M nussinov 6M symm 12M 2mm 14M nussinov 14M
4 symm 12M 2mm 14M nussinov 6M syrk 14M nussinov 6M
5 nussinov 12M nussinov 14M trmm 14M symm 12M trmm 14M
6 syrk 2M trmm 14M nussinov 14M nussinov 12M nussinov 12M
7 gemm 4M ludcmp 6M nussinov 12M deriche 14M deriche 14M
8 gramschmidt 2M lu 14M deriche 14M deriche 12M deriche 12M
9 3mm 8M nussinov 12M ludcmp 6M ludcmp 6M adi 6M
10 trisolv 6M gramschmidt 8M adi 6M adi 6M ludcmp 6M
11 cholesky 14M deriche 14M deriche 12M gramschmidt 8M 3mm 14M
12 lu 4M deriche 12M 3mm 14M 3mm 14M gramschmidt 8M
13 atax 12M adi 6M gramschmidt 8M trisolv 10M floyd 6M
14 gesummv 14M 3mm 14M fdtd-2d 12M floyd 6M trisolv 10M
15 fdtd-2d 12M floyd 6M floyd 6M bicg 2M syrk 10M
16 correlation 2M syrk 10M trisolv 10M cholesky 8M cholesky 8M
17 doitgen 10M syrk 6M bicg 2M syrk 6M 2mm 4M
18 adi 6M floyd 12M cholesky 8M doitgen 8M floyd 12M
19 lu 12M cholesky 8M lu 2M lu 2M syrk 6M
20 gesummv 4M lu 2M syrk 6M syrk 10M lu 2M
21 lu 10M 3mm 2M doitgen 8M fdtd-2d 12M doitgen 8M
22 syrk 8M syrk 8M syrk 10M syrk 8M 3mm 2M
23 syr2k 12M fdtd-2d 12M syrk 8M 3mm 2M fdtd-2d 12M
24 floyd 2M 2mm 4M 3mm 2M lu 14M syrk 8M
25 2mm 4M heat-3d 10M heat-3d 10M 2mm 4M seidel-2d 10M
26 adi 10M seidel-2d 2M doitgen 14M heat-3d 10M seidel-2d 2M
27 gemver 12M trisolv 10M seidel-2d 10M seidel-2d 10M heat-3d 10M
28 syr2k 8M seidel-2d 6M seidel-2d 2M seidel-2d 6M seidel-2d 6M
29 floyd 6M jacobi-2d 6M lu 14M seidel-2d 2M doitgen 14M
30 doitgen 4M doitgen 14M jacobi-2d 6M jacobi-2d 6M jacobi-2d 4M
31 syr2k 6M jacobi-1d 12M jacobi-1d 12M jacobi-1d 12M jacobi-2d 6M
32 syr2k 2M jacobi-2d 4M jacobi-2d 4M jacobi-2d 4M jacobi-1d 12M

Table 4.3: List of benchmarks in each evaluated mix

applications respectively. We quantify the performance of each mix by its throughput,

which is the ratio of the total IPC achieved by our policy to the total IPC achieved by

using Linux. For 2 HP applications (Fig. 4.2), our policy achieves the highest throughput

gain among non hardware-assisted methodologies, yielding an average 42.9% increase in

throughput over Linux. For the group with the highest L3→L2 bandwidth requirement

(Mix #1), POCAT was able to achieve 20% greater throughput than the proposed

approach. However, it requires the use of Intel’s Cache Allocation Technology which is

currently limited to the Xeon W family of processors [90]. Moreover, as the shared-resource

66

Mix1 Mix2 Mix3 Mix4 Mix5
20
0

20
40
60
80

100

Th
ro

ug
hp

ut
 G

ai
n

Ov
er

 L
in

ux
 (%

)
Perf Perf&Fair BACH Proposed POCAT

Figure 4.2: High Priority Throughput gain % (2 HP Apps)

Mix1 Mix2 Mix3 Mix4 Mix5
20
0

20
40
60
80

100

Th
ro

ug
hp

ut
 G

ai
n

Ov
er

 L
in

ux
 (%

)

Perf Perf&Fair BACH Proposed POCAT

Figure 4.3: High Priority Throughput gain % (3 HP Apps)

Mix1 Mix2 Mix3 Mix4 Mix5
20
0

20
40
60
80

100

Th
ro

ug
hp

ut
 G

ai
n

Ov
er

 L
in

ux
 (%

)

Perf Perf&Fair BACH Proposed POCAT

Figure 4.4: High Priority Throughput gain % (4 HP Apps)

pressure decreases (while still being enough to cause performance loss due to contention),

our proposed approach is able to achieve performance comparable to the hardware-assisted

POCAT, with the difference in throughput being only 0.76% for Mix #5. The average

difference in performance over all mixes for 2 HP applications was 14.54%

Similarly, this trend also holds for 3 and 4 HP applications (Fig. 4.3 & 4.4) but with

diminishing difference in performance between our proposed approach and the

hardware-assisted POCAT. In addition, the average gain in throughput lowers with an

increase in the number of HP applications. Table 4.4 summarizes the gain in performance

67

Table 4.4: Avg High Priority Throughput Gain %

#HP Apps Over Linux Over POCAT
2 42.9% -14.5%
3 38.3% -2.8%
4 28.1% -0.2%

for all three cases.

4.4.2 Overall Workload Performance

Regarding the overall performance of each of the fifteen evaluated mixes, Figures 4.5,

4.6, and 4.7 show the IPC distribution of all 32 applications in the mix. Because of its

progress-aware nature, our proposed approach successfully avoids the low IPCs incurred by

Linux. In the case of 2 HP applications (Fig. 4.5), our approach achieved the highest

minimum IPC for all 5 mixes. The average min IPC achieved over all 5 mixes was 0.45 for

Linux, 0.47 for Perf, 0.53 for Perf&Fair, and 0.65 for the proposed approach. The

hardware-assisted POCAT method achieved marginally higher min IPC of 0.7. For 3 HP

applications (Fig. 4.6), our approach achieved an average min IPC of 0.45 compared to

Linux’s 0.36. The Perf, Perf&Fair, and POCAT approaches also yielded average min IPC of

0.45. Finally, in the case of 4 HP applications (Fig. 4.7), the average of the min IPC

achieved over all 5 mixes by our approach was 0.45, compared to Linux’s 0.35 and

POCAT’s 0.46. The Perf and Perf&Fair schedulers achieved an average min IPC of 0.42

and 0.49 respectively.

Mix1 Mix2 Mix3 Mix4 Mix5

0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
IP

C
Di

st
rib

ut
io

n Linux Perf Perf&Fair BACH Proposed POCAT

Figure 4.5: IPC distribution for all applications in mix (2HP Apps)

68

Mix1 Mix2 Mix3 Mix4 Mix5

0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
IP

C
Di

st
rib

ut
io

n Linux Perf Perf&Fair BACH Proposed POCAT

Figure 4.6: IPC distribution for all applications in mix (3HP Apps)

Mix1 Mix2 Mix3 Mix4 Mix5

0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
IP

C
Di

st
rib

ut
io

n Linux Perf Perf&Fair BACH Proposed POCAT

Figure 4.7: IPC distribution for all applications in mix (4HP Apps)

4.4.3 Overhead

The average overhead of our proposed policy is 3.5ms for each time quanta.

4.5 CONCLUSION

The prioritization of certain computing workloads over others is an inherent challenge

in the field of embedded systems and computing as a whole. Distinct levels of priority are

used as an abstraction for signifying the importance of different computing tasks. This

model is useful for a large variety of CMP applications, such as for the safe functioning of

mission-critical real-time systems, or for ensuring the promised level of application

performance to customers in cloud-based server environments.

This chapter presents a methodology for improving the performance of high-priority

applications under concurrent application execution, while also maintaining high

throughput for low-priority applications. Experimental results on an Intel Xeon Gold 6130

69

CPU demonstrate an average 36.4% improvement in high-priority application performance

over Linux. Furthermore, the proposed approach achieves high-priority performance

comparable to a hardware-assisted prioritization methodology (between 14.2% to 0.2%

difference in performance).

70

CHAPTER 5

POWER-AWARE SCHEDULING

This chapter describes a power-aware scheduling technique for Chip Multi Processors

which reduces power consumption without affecting application performance.

5.1 INTRODUCTION

While CMPs were able to largely address the problem of the rapidly approaching

Power Wall that plagued development of single-core architectures in the late 90’s, advances

in CMP design in the 21st century have gradually yielded entirely new power-related

challenges. In addition to the unprecedented proliferation of battery-powered embedded

systems and increasing concern for the environmental impacts of computing, several

manufacturing and design concerns have also exacerbated the need for aggressive reduction

of CPU power consumption. One of the most complicated challenges arises from the high

density of devices (transistors) on each die, combined with the continually shrinking

physical footprints of chips [2]. This results in hot-spots which exacerbate the already

existing problem of efficient heat dissipation in processors (Pstatic + Pdynamic ∝ heat). As

a result, the whole processor cannot be powered on at the same time, leading to a

phenomenon termed Dark Silicon. Finding solutions to the problem of dark silicon is

further complicated by the already existing problems of premature aging or component

failure due to extreme heat. Advancements in technology such as the introduction of

Dynamic Voltage And Frequency Scaling (DVFS) have helped increase power efficiency of

CMPs by allowing frequencies to be adjusted in response to dynamically changing

performance and power requirements. DVFS implementations control the clock frequency

by varying the rate of the charge-discharge cycle of capacitors, which is directly

proportional to the magnitude of voltage applied across their terminals. Higher voltages

speed up the charge-discharge rate of capacitors, thereby increasing clock frequency, while

71

lower voltages slow down the charge-discharge rate to decrease the clock frequency. Due to

the exponential relation of electrical power and voltage (Pdynamic ∝ V 2 · f), a small drop in

voltage leads to a large reduction in power consumption. In single-core processors, DVFS

implementations adjust the frequency in response to the performance of the currently

running workload. A popular approach is to determine if the workload can run without

noticeable performance drop on a lower frequency, and then adjust the voltage accordingly.

The same approach cannot be used for multi-core processors because the area/power

overhead of having multiple voltage regulators for each core outweighs the potential benefits

of having per-core voltage control [16]. Consequently, a major constraint of cluster-wide

DVFS implementations is that all cores belonging to the same die must operate at the

same frequency. This is not ideal for power consumption as different types of applications

reach peak performance at different frequencies. For many types of applications, increasing

the frequency beyond this point does not yield any performance benefits.

This chapter presents a run-time manager that focuses on improving power efficiency

for clustered CMPs. Specifically, it monitors the activity of concurrently executing

applications and utilizes neural networks to determine the minimum possible clock

frequency beyond which no performance gains will be obtained. Experimental results on

the Odroid-XU3 board (Samsung Exynos 5422 SoC) show that the proposed methodology

improves power efficiency (MIPS/Watt) by 23% compared to Linux’s performance

governor in exchange for a negligible performance drop of only 3%.

5.2 MOTIVATION

As a motivation, Figure 5.1 illustrates the varying rates of change in power

consumption and normalized Instructions Per Second (IPS), in response to changes in the

processor’s clock frequency, for three different application groups on the Odroid-XU3

platform [91] (quad-core ARM Cortex-A15 cluster on Samsung Exynos 5422 SoC).

Each group consists of four concurrently executing applications. Moreover, the groups

72

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Frequency A15 (GHz)

0

1

2

3

4

5

6

7

8

Po
we

r A
15

 (W
)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Frequency A15 (GHz)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
IP

S

memory-intensive mixed compute-intensive

No perfomance gain when frequency
increases. However, power increases
exponentially.

Figure 5.1: Power consumption and normalized IPS for different types of application groups.

are categorized into three different classes based on the type of the applications: (1) a

memory-intensive group, which consists of applications with average shared-bus bandwidth

greater than 1GB/s; (2) a compute-intensive group, which consists of applications with

average shared-bus bandwidth less than 10MB/s; and (3) a mixed group, which consists of

both memory- and compute-intensive applications. The rate of change in performance is

governed by the composition of each application group. Particularly, the memory-intensive

group achieves maximum performance at lower frequencies than the compute-intensive one.

Additionally, the mixed workload experiences performance gains up till the maximum

frequency but with diminishing returns at each increment. Despite the varying rates of

change in IPS, which saturates after a certain point, the change in power consumption is

quadratic due to the non-linear connection between power and voltage [35].

5.3 PROPOSED METHODOLOGY

The proposed methodology uses multiple MLP neural networks as classifiers to

pro-actively set the operating frequency in order to increase power-efficiency while

73

satisfying specific performance thresholds. Particularly, our method consists of three steps:

(1) selection of the appropriate PMC events; (2) training of the MLPs; (3) run-time

frequency selection. We utilized the Odroid-XU3 board which consists of a big and a

LITTLE cluster with four Cortex-A15 and four Cortex-A7 cores respectively. Although we

use the A15 cluster for developing and validating our methodology, the approach can also

be used for the A7 cluster which accesses PMC counts in a similar way. Finally,

Odroid-XU3 supports a built-in Power Monitoring Unit (PMU) to accurately monitor

power consumption per cluster at run-time.

5.3.1 Selection of PMC events

The Cortex-A15 cluster includes six PMCs with a total of 66 available events to

gather statistics regarding the operation of the processor and the memory system. Figure

5.2 shows a block diagram of the A15’s Performance Monitoring Unit (PMU). As only six

events can be monitored simultaneously, deciding which set of events to count determines

the accuracy of our frequency prediction (Section 5.3.2). Due to this constraint, one of the

most important factors when choosing a set of PMC events is the degree of

multicollinearity between them. Multicollinearity occurs when two or more inputs record

‘overlapping’ information. Identifying events with minimal multicollinearity helps to

improve the accuracy of our frequency estimation with neural networks.

Some events such as 0x6D1 (STREX PASS SPEC) show minimal variation in their

counts for different types of application mixes, while others events such as 0x62

(BUS ACCESS SHARED) show large variations. We shortlist the PMC events that have

significant variation between the different application mixes: 16 PMC events related to the

memory-hierarchy of A15 (e.g., shared memory resources and private L1 cache) and 2 PMC

events related to computing performance (instructions retired and cycle count). Figure 5.3

shows an overview of the top 18 shortlisted events. This will be reduced to a maximum of 6

1Hexadecimal code for the PMC event

74

Figure 5.2: Block Diagram for Cortex-A15 PMU (ARM PMUv2 architecture)

events through an analysis of multi-collinearity and hierarchical clustering.

5.3.2 Training of MLPs

After identifying the most appropriate set of PMC events, the next step is to create a

training set, based on the values of these PMCs. The goal is to estimate the minimum

possible frequency on which an application group (four concurrent applications) should run

in order to satisfy a performance threshold IPSthr. For each required threshold, a neural

75

Event DescriptionEvent MnemonicOffset#
Cycle CountCPU CYCLES0x111
Instruction architecturally executedINSTR RETIRED0x082
Level 2 data cache accessL2D CACHE ACCESS0x163
Level 2 data cache refillL2D CACHE REFILL0x174
Level 2 data cache write-backL2D CACHE WB0x185
Level 2 data cache access, readL2D CACHE LD0x506
Level 1 data cache accessL1D CACHE ACCESS0x047
Level 1 data TLB refillL1D TLB REFILL0x058
Level 1 data cache access, readL1D CACHE LD0x409
Level 1 data cache refill, readL1D CACHE REFILL LD0x4210
Level 1 data cache write-backL1D CACHE WB0x1511
Level 1 instruction cache refillL1I CACHE REFILL0x0112
Level 1 instruction cache accessL1I CACHE ACCESS0x1413
Bus access, writeBUS ACCESS ST0x6114
Bus access, Normal, Cacheable, ShareableBUS ACCESS SHARED0x6215
Bus access, not Normal, Cacheable, ShareableBUS ACCESS NOT SHARED0x6316
Data memory accessMEM ACCESS0x1317
Data memory access, writeMEM ACCESS ST0x6718

Figure 5.3: Top 18 events with minimal variation in recorded counts

Identified Target FrequencyΣPMC(#6)ΣPMC(#5)ΣPMC(#4)ΣPMC(#3)ΣPMC(#2)ΣPMC(#1)Group

1.5GHzn6n5n4n3n2n1G1

1.7GHzn12n11n10n9n8n7G2

........

........

1.8GHzn18n17n16n15n14n13Gn

Figure 5.4: MLP classifier training process

network takes the summed values of the selected events as input. Equation 5.1 shows the

input tuple for our neural networks. The trained neural networks can then select the target

frequency that satisfies IPSthr from one of 10 available output classes, each corresponding

to an available frequency of the processor (1.1GHz up to 2.0GHz).

76

Xfi =
{ 4∑

i=1

PMC
(#1)
i ,

4∑
i=1

PMC
(#2)
i ,

4∑
i=1

PMC
(#3)
i ,

4∑
i=1

PMC
(#4)
i , (5.1)

4∑
i=1

PMC
(#5)
i ,

4∑
i=1

PMC
(#6)
i

}
Each performance threshold requires an input training set for each of the available

frequency levels. Figure 5.4 shows a visual representation of the training methodology.

5.3.3 Run-Time Frequency Selection

The proposed frequency prediction mechanism can be utilized at runtime by

converting the trained neural networks to look-up tables for fast access. By dividing

application execution into discrete time quanta, frequency predictions can be made in the

intermediate stages of execution. At the end of each time quantum, the runtime manager

should check if the required performance threshold IPSthr was satisfied and should scale

frequency accordingly. Figure 5.5 depicts a visual representation of the runtime model.

Table 5.1: Comparison of different classifiers

Method
Prediction Accuracy

Pthr ≤ 5W Pthr ≤ 6W Pthr ≤ 7W
MLP 0.964 0.969 0.957
Tree 0.908 0.894 0.897

CN2 Rule Induction 0.857 0.876 0.931
Naive Bayes 0.851 0.879 0.923

Stochastic Gradient Descent 0.743 0.760 0.839
k-Nearest Neighbors 0.769 0.768 0.825
Logistic Regression 0.786 0.629 0.877

5.3.4 Comparison of classification approaches

Table 5.1 shows that the MLP achieved better classification accuracy, during

validation, compared to other classifiers. Even though the number of frequencies is

77

𝐼𝑃𝑆!"#!

..
𝐼𝑃𝑆!"#"

𝐼𝑃𝑆!"##

Figure 5.5: Expected runtime model

relatively small, our method selects faster the maximum frequency comparing to greedy or

bisection approaches as both iterate more frequency values in order to find the optimal one.

Due to the nonlinear connection between power and frequency [35], operating at higher

frequency levels will increase operational risks. Finally, the MLP inference overhead is

approximately 10 µs.

5.4 EVALUATION

Regarding the evaluation of the proposed approach on the Odroid-XU3 board, we

tested nine application mixes with varying main memory bandwidth utilization, and we

78

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9
Workload Mixes

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

IP
S

0

4

8

12

16

B
us

B
an

dw
id

th
(G

B
/s

)

Bus Bandwidth

Performance

Interactive

Conservative

Ondemand

MRPI

Proposed (S ≥ 0.97)

Proposed (S ≥ 0.95)

Proposed (S ≥ 0.90)

Figure 5.6: Normalized IPS and shared bus bandwidth for all application mixes.

considered three scenarios for the IPCthr (i) maximum IPS drop of 3% (S ≥ 0.97),

(ii) maximum IPS drop of 5% (S ≥ 0.95), and (iii) maximum IPS drop of 10% (S ≥ 0.90).

In other words, these values of S indicate the minimum performance requirements for our

mixes. Each evaluated application mix consists of four simultaneously executing

benchmarks from the Polybench [76] and Stream [74] benchmark suites. Finally, we

compared the results of our method against: (1) Linux’s performance, interactive,

conservative, and on-demand governors and (2) the method presented in [37] which selects

the processor’s clock frequency based upon the Memory Reads per Instruction (MRPI) of

each application.

Figure 5.6 depicts the normalized IPS and bus bandwidth (right axis) for the nine

application mixes. For ease of representation, the mixes are arranged in increasing order

based on their shared-bus bandwidth utilization. Mix #1 is an aggressive, pure

memory-intensive mix which has the highest bandwidth utilization on the board. Contrary,

the Mix #9 is a pure compute-intensive group with minimum (almost 0) shared bandwidth

utilization. The IPS achieved by the Performance governor is used as baseline for Figure

5.6 because it is the most aggressive in terms of frequency scaling. Additionally, Figures

5.7(a)-(c) show the corresponding power consumption, MIPS/Watt, and normalized

energy consumption respectively.

79

Memory intensive application groups benefit the most from our proposed approach

due to their logarithmic relation between IPS and frequency. Specifically, for the

memory-intensive mixes #1 and #2, the proposed approach selected an operating frequency

that reduced power consumption by 14.6% and 16.5% (Figure 5.7(a)) and increased

MIPS/Watt by 20% and 22% compared to Linux’s performance governor. Additionally,

the IPS drop was only 2% at worst case, thus satisfying the IPSthr in all three scenarios.

For purely compute-intensive groups such as for Mix #8 and Mix #9 and S ≥ 0.97,

our method has the same behavior as Linux’s Performance governor. This happens because

the allowable performance drop is very small (only 3%) and any frequency change, below

2.0GHz, results in higher performance drop. However, if we increase the maximum

allowable IPS drop to 5% (S ≥ 0.95), Mixes #8 and #9 yield 20% and 18% reduction in

power consumption, and 24% and 19% increase in the MIPS/Watt respectively, while

experiencing an IPS loss of 5% each completely satisfying IPCthr.

For the Mixes #3 to #7 and S ≥ 0.97, the proposed approach selected a frequency

that yields an average gain of 9% reduction in power consumption and 16% increase in

MIPS/Watt compared to Linux’s Performance governor. Similarly, for a speedup factor of

S ≥ 0.95, Mixes #3 to #7 achieve 12% reduction in power and 22% gain in MIPS/Watt

compared to Linux’s Performance governor. In all cases, the proposed approach satisfies

the minimum performance requirements imposed by the speedup factor.

Finally, compared to the proposed approach, the MRPI-based approach [37] achieves

comparable speedup factor and lower power consumption for the purely memory-intensive

mixes (#1 and #2). This happens because MRPI selects the frequency of the workload

according to the most compute-intensive application in the mix in order to satisfy the

application-specific minimum performance requirements. However, if a mix of applications

contains even a single compute-intensive application (very low MRPI), the frequency of the

cluster is set to the maximum (or near-maximum) value. For that reason MRPI has higher

power consumption for mixes #3 to #9.

80

0

1

2

3

4

5

6

7

8

P
ow

er
(W

)

0

300

600

900

1200

1500

M
IP

S
/W

at
t

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9
Workload Mixes

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

E
ne

rg
y

Performance

Interactive

Conservative

Ondemand

MRPI

Proposed (S ≥ 0.97)

Proposed (S ≥ 0.95)

Proposed (S ≥ 0.90)

Figure 5.7: (a) Power consumption, (b) MIPS/Watt, and (c) Normalized energy.

5.5 CONCLUSION

The reduction of power consumption in modern CMPs is of utmost importance in

order to tackle a wide variety of engineering challenges. The proportion of dark silicon on a

chip, premature component aging/failure from heat, and increasing battery life for mobile

devices are among the major challenges.

This chapter proposes a machine-learning approach for runtime estimation of power

consumption of concurrently executing groups of applications on CMPs. The primary

objective of this approach is to estimate the minimum possible frequency on which an

application group (four concurrent applications) should run in order to satisfy a specified

performance threshold IPSthr. By avoiding unnecessary use of higher frequencies (in cases

81

where it would offer no performance gain), significant savings on power consumption can be

achieved.

82

CHAPTER 6

PERFORMANCE & POWER AWARE SCHEDULING

This chapter proposes a methodology to predict both power consumption and

performance for groups of concurrently executing applications at all available frequencies of

a CMP. The methodology uses a combination of hardware-based application profiling,

contention-aware scheduling, and multi-layer perceptron artificial neural networks in order

to implement a holistic power and resource-pressure aware scheduling mechanism. It builds

upon the machine-learning approach presented in Chapter 5.

6.1 INTRODUCTION

Clustered CMP architectures present system designers with two major challenges.

First, since all cores belonging to the same die must operate at the same voltage-frequency

level [2, 35], maintaining low power consumption while simultaneously satisfying

performance requirements becomes a non-trivial problem. This is due to different types of

applications reaching peak computational performance at different clock frequencies.

Second, concurrently executing applications suffer performance degradation if their

collective resource requirements exceed the total amount of resources available to the CMP

[21]. If resource allocation is not carefully considered, performance gains from having

multiple cores can be outweighed by the losses due to contention for shared resources

among concurrently executing processes.

Predicting system behavior in terms of application performance and power

consumption can help run-time resource managers satisfy specific thresholds by proactively

adjusting the operating frequency of the CMP. However, current techniques to predict

performance and power [92,93] are based on regression models, which only work for specific

voltage-frequency levels and ignore contention effects. Additionally, models that try to

predict the impact of shared-resource contention fail to provide consistent results for large

83

numbers of concurrently executing applications as the shared environment becomes more

noisy [94,95].

Therefore, we propose a resource management technique that quantifies the execution

characteristics of concurrently executing groups of applications for different frequencies of

the CMP. This method can then guide run-time resource managers to satisfy specific

performance/power thresholds by proactively adjusting the operating frequency of the

CMP.

6.2 PROPOSED METHODOLOGY

The proposed methodology aims to utilize regression-based Multi-Layer Perceptron

(MLP) artificial neural networks to pro-actively estimate the performance and power

consumption of simultaneously executing applications for all frequencies supported by the

CMP system. Then, based on these estimates and the required run-time power and

performance constraints, the appropriate frequency should be selected. Figure 6.1 depicts

an overview of the methodology, which is implemented in four stages: (1) training set

creation, (2) PMC event selection, (3) MLP neural network training, and (4) run-time

power and performance estimation.

6.2.1 Training Set Creation

The goal of this stage is to create an unbiased training set for our subsequent neural

networks. We start by selecting multiple benchmarks from the Polybench [76] and

Stream [74] benchmark suites to construct groups of concurrently executing applications

that exert varying amounts of pressure on the memory controller and cover as many

run-time scenarios as possible. Particularly, we modified the memory-intensive benchmarks

in order to have constant memory bandwidth with configurable size. Applications whose

performance does not rely upon shared resources (compute-intensive) scale linearly with

clock frequency, whereas the performance of memory-intensive benchmarks scales

84

Figure 6.1: Overview of the proposed methodology on the Odroid-XU3 board

85

Figure 6.2: Distribution of IPStotal and memory bandwidth of the created dataset on the
A15 cluster using kernel density estimation. Each group (denoted by a white cross) utilizes
all four cores of the cluster

logarithmically.For the A15 cluster, the frequency range was 1.1GHz to 2.0GHz, while for

the A7 was 0.5GHz to 1.4GHz. We chose this frequency range for A15 because the

memory speed is limited to 933MHz, thus making impractical all frequencies lower than

1.1GHz. For each group, we recorded the values of all the available PMCs (for both

clusters) along with power consumption. Figure 6.2 depicts the distribution of the

constructed dataset for the A15 cluster. Each plot visualizes the distribution of the

memory bandwidth in GB/s corresponding to IPStotal for different frequencies. We want

to highlight the following points:

1. for all the evaluated frequencies, the distribution of the memory- and

compute-intensive applications remains the same;

2. the pressure on the memory controller is diverse and well balanced (the whole

memory bandwidth spectrum is covered);

3. there are memory-intensive groups that saturate the memory controller; and

4. there are pure compute-intensive groups that increase IPStotal linearly with

frequency.

86

0x
04

0x
08

0x
0b

0x
11

0x
12

0x
13

0x
14

0x
1b

0x
1c

0x
40

0x
41

0x
57

0x
58

0x
66

0x
67

0x
70

0x
71

0x
72

0x
73

0x
75

L1D CACHE ACCESS: 0x04
INSTR RETIRED: 0x08

CID WT RETIRED: 0x0B
CYCLE COUNT: 0x11

BR PRED: 0x12
MEM ACCESS: 0x13

L1I CACHE ACCESS: 0x14
INST SPEC: 0x1B

TTBR WRITE RETIRED: 0x1C
L1D CACHE LD: 0x40
L1D CACHE ST: 0x41

L2D CACHE WB CLEAN: 0x57
L2D CACHE INVAL: 0x58
MEM ACCESS LD: 0x66
MEM ACCESS ST: 0x67

LD SPEC: 0x70
ST SPEC: 0x71

LDST SPEC: 0x72
DP SPEC: 0x73
VPF SPEC: 0x75 0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 6.3: Pearson’s Product Moment Correlation for a subset of A15’s PMCs.

Overall, the values of the PMC events depend on the actual workload. In order to

build a generic estimator that does not depend on the individual characteristic of an

application, we constructed our training set in a manner that represents as broad a range of

execution characteristics as possible. We accomplish this by creating application groups

that apply resource pressure over the entire spectrum of memory hierarchy for both the

A15 and A7 clusters. Since shared-resource utilization is one of the primary determinants

of application performance in CMPs, our dataset is well-equipped to capture execution

characteristics for groups of applications not explicitly included in the training set.

6.2.2 PMC Selection

We follow the approach presented in Chapter 5. Due to the limited number of PMCs,

one of the most important factors when choosing a set of events is the degree of

multicollinearity between them [96]. Multicollinearity occurs when two or more

87

Table 6.1: Power and IPStotal Error Percentage for A15 and A7 Clusters

Power IPS
Layers Layers

Neurons 1 2 3 1 2 3
A7

32 23.26 8.35 5.89 13.81 7.63 8.25
64 25.89 7.59 4.50 17.81 8.27 7.98
128 10.05 6.21 4.40 11.01 8.39 8.43

A15
32 23.98 16.11 18.94 9.58 7.04 10.71
64 13.45 5.89 5.80 12.20 5.02 5.78
128 11.01 5.44 5.61 7.64 5.65 5.41

independent variables in a linear-regression model have a substantial amount of correlation

between them. In the context of PMC events, two or more events with a high degree of

multicollinearity will record ‘overlapping’ information about the state of the processor and

the behavior of workloads. For example, choosing PMC events based solely on their

correlation with average CPU power results in a poor model as the PMC events that

correlate well with power also correlate well with each other [96]. Therefore, we follow the

approach presented in Chapter 5 that uses Pearson’s product-moment estimation as well as

other methods such as Ward’s variance minimization for hierarchical clustering. A subset of

Pearson’s correlation results for the A15 is depicted in Figure 6.3. A good selection of

events can be made by choosing the events with correlation values closest to 0.

6.2.3 MLP Training

The goal of this stage is to determine the best architecture for an MLP which will be

tuned to satisfy both performance and power criteria while also keeping execution overhead

low. Table 6.1 shows the error percentages obtained from testing MLPs with different

numbers of layers and neurons.

88

Figure 6.4: Example constraints for A15 cluster

6.2.4 Run-time power and performance estimation

The proposed methodology will be implemented as a user-space scheduler, on top of

the exploration tool presented in [96]. The trained MLPs will be triggered based on the

current operating frequency. The set of trained MLP neural networks should output the

frequency which best satisfies the performance and power thresholds imposed by the user.

Figure 6.4 shows an example of performance and power constraints for the A15 cluster.

6.3 EXPERIMENTAL RESULTS

We evaluate our proposed approach on the quad-core ARM Cortex-A15 and

Cortex-A7 clusters of a Samsung Exynos 5422 Octa SoC [97], embedded onto a Hardkernel

Odroid-XU3 development board [91] using Linux kernel version 3.10. Our motivation for

utilizing this specific combination of processor and board is two-fold: 1. the Samsung

Exynos 5422 processor with octa-core big.LITTLE architecture is similar to many of the

latest ARM-based embedded systems which contain clusters of both big (power-hungry)

and LITTLE (power-efficient) cores [98, 99], and 2. the built-in Power Monitoring Unit

(PMU) of the Odroid-XU3 allows for accurate measurement of power consumption for both

the A15 and A7 clusters separately. This functionality was discontinued for newer models

of Odroid/ Hardkernel development boards [100], resulting in XU3 being the only

commercially available board of the Odroid family that allows for power measurement in a

big.LITTLE-style processor. Additionally, we evaluate our method against the methods

described in [36,39,101], which are all validated on the Odroid-XU3 board running Linux

89

kernel 3.10 as well. This kernel version is the only one that allows us to access the PMU.

Thus, by utilizing the same board and Linux kernel version, we ensure consistency and

fairness in the comparison of evaluated results.

Our proposed approach comprises two steps. In the first step, we set separate power

and performance thresholds and we measured whether the selected frequency (after MLPs

estimations) violated the constraints and by how much. In the second step, we considered

joint power and performance constraints compared with Linux’s governors and three more

resource managers.

6.3.1 Workload description

We evaluate our proposed approach using 14 application mixes for the A15 cluster and

10 application mixes for the A7 cluster. Each application mix consists of four concurrently

executing benchmarks taken from the Polybench [76] and Stream [74] benchmark suites.

We selected these particular mixes for evaluation since they represent a broad spectrum of

shared-resource utilization for the A15 and A7 clusters. Tables 6.2 and 6.3 list the actual

benchmarks and their corresponding datasets that comprise each mix for the A15 and A7

clusters accordingly.

Overall our goal was to create a testing set of mixes comprising random benchmarks,

in order to provide operating conditions with varying pressure on the shared resources. To

that end, Figures 6.5 and 6.6 depict the memory bandwidth (shared-resource utilization)

for each of these mixes. In both cases, it can be observed that the selected mixes show

great variation in memory activity. Particularly for the A15 cluster (Figure 6.5), some

mixes are very memory-intensive (e.g., Mixes 13, 14), some consist of a combination of

memory- and compute-intensive benchmarks (e.g., Mixes 1, 2) and some comprise of more

compute-intensive benchmarks (e.g., Mixes 9, 10). Accordingly for the A7 cluster

(Figure 6.6), some mixes contain fully compute-intensive workloads (e.g., Mixes 1, 3, 9),

mixes of compute- and memory-intensive workloads (e.g., Mixes 2, 6) and mixes consisting

90

of entirely memory-intensive benchmarks (e.g., Mix 8). Note that the max memory

bandwidth on the Odroid-XU3 platform is 14.9 GB/s.

Table 6.2: Benchmarks & datasets used for the A15 cluster.

Mix App1 App2 App3 App4

1 gesummv 32M deriche 16K 2mm 16K stream 6M
2 gesummv 32M gemver 64M bicg 64M stream 6M
3 heat-3d 32M bicg 64M jacobi-2d 32M bicg 32M
4 heat-3d 32M fdtd-2d 64M gemver 64M bicg 32M
5 jacobi-1d 128M gemver 64M correlation 16K jacobi-2d 32M
6 jacobi-1d 128M seidel-2d 16K bicg 64M nussinov 16K
7 jacobi-1d 64M jacobi-2d 32M adi 16K gemm 128M
8 jacobi-2d 64M gemver 64M jacobi-2d 32M 3mm 16K
9 trisolv 128M gemver 64M cholesky 16K gemver 128M
10 trisolv 128M heat-3d 32M deriche 32M nussinov 16K
11 trisolv 128M jacobi-1d 128M deriche 32M bicg 64M
12 trisolv 128M jacobi-1d 128M fdtd-2d 32M bicg 32M
13 stream 22M stream 22M gesummv 32M stream 22M
14 stream 22M stream 22M stream 22M stream 22M

Table 6.3: Benchmarks & datasets used for the A7 cluster.

Mix App1 App2 App3 App4

1 3mm 16K syrk 16K adi 16K floyd-war 16K
2 bicg 32M trisolv 64M trisolv 128M heat-3d 32M
3 deriche 16K correlation 16K adi 16K floyd-war 16K
4 deriche 64M stream 4M symm 16K covariance 16K
5 gemm 128M gram 16K fdtd-2d 16K heat-3d 32M
6 gesummv 16K jacobi-1d 16K stream 6M ludcmp 16K
7 jacobi-1d 16K jacobi-2d 16K heat-3d 16K bicg 64M
8 jacobi-2d 32M gemver 128M gesummv 32M deriche 64M
9 symm 16K atax 16K jacobi-1d 16K 3mm 16K
10 trisolv 32K atax 16K 2mm 16K cholesky 16K

6.3.2 Evaluation on the A15 cluster

Regarding evaluation on the A15 cluster, we considered the two scenarios depicted in

Table 6.4. Regarding the tested applications, we constructed fourteen groups of

91

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Mix

0

2

4

6

8

10

12

14
G

B
/s

Memory Bandwidth

Figure 6.5: Memory bandwidth (shared-resource utilization) for applications mixes used for
the A15 cluster.

simultaneously executing applications which apply varying amounts of pressure on the

cluster’s available resources (Table 6.2). Similarly, these groups are not included in the

training set. Initially, the execution starts at 2GHz and the run-time manager uses PMC

counts as input to the MLPs in order to select a lower frequency that best satisfies both

constraints for each scenario.

We compare the achieved IPStotal, power consumption, and power-efficiency

(MIPS/Watt) of all groups against other approaches. We compare with the MRPI

Table 6.4: Joint run-time constraints for different scenarios on A15 cluster

Scenario Performance Constraint Power Constraint

Scenario #1 IPSmin
total ≥ 0.95 ∗ (IPS2GHz

total) Pmax ≤ 6W

Scenario #2 IPSmin
total ≥ 0.90 ∗ (IPS2GHz

total) Pmax ≤ 5W

92

Figure 6.6: Memory bandwidth (shared-resource utilization) for applications mixes used for
the A7 cluster.

approach [36] which uses Memory Reads Per Instruction as a metric for classification.

Additionally, we measure the outcome of the proposed method with the results given from

the MLP approach described in [39]. This method supports the training of separate neural

networks for different power thresholds.

Added into this analysis is also the SPARTA binning classification method presented

in [101]. Finally, we also compare the aforementioned methods with the returned results

from the governors supported by Linux’s completely fair scheduler: Performance,

Interactive, Conservative, and Ondemand.

Figure 6.7(a) depicts the comparison of all approaches regarding power consumption

on the A15 cluster. From the graph, we see that the proposed methodology managed to

satisfy the power constraints for all groups in both scenarios. Respectively, Figure 6.7(b)

shows the comparison of all approaches based on the achieved performance (IPS). The

93

0

2

4

6

8

P
ow
er

(W
)

0.7

0.8

0.9

1.0

N
or
m
al
iz
ed

IP
S

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10 Mix11 Mix12 Mix13 Mix14

0

150

300

450

M
IP
S
/W

at
t

MRPI

MLP (Scenario 1)
MLP (Scenario 2)
SPARTA

Performance
Interactive

Conservative
Ondemand

Proposed (Scenario 1)

Proposed (Scenario 2)

Figure 6.7: (a) Power consumption; (b) performance in terms of normalized IPS; and (c)
power efficiency in terms of MIPS/WATT for 14 random application mixes on the A15
cluster under two constraint scenarios (Table 6.4). Each mix consist of four concurrent
executing applications

0.6

0.7

0.8

0.9

1.0

N
or
m
al
iz
ed

IP
S

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10

0

200

400

600

800

1000

1200

M
IP
S
/W

at
t

MRPI MLP SPARTA Performance Interactive Conservative Ondemand Proposed

Figure 6.8: (a) Performance in terms of normalized IPS and (b) power efficiency in terms of
MIPS/WATT for 14 random application mixes on the A7 cluster for the selected scenario.
Each mix consist of four concurrent executing applications

baseline for our experiments is the IPS monitored when each mix is executed at the highest

possible frequency (2GHz).

The MLP method [39] manages to satisfy the power constraints in both scenarios,

since there are two different neural networks trained for different target frequencies to

94

match the power thresholds and is also characterized by power-awareness. The trade-off of

this method is that due to the lower predicted frequencies, the performance that is finally

achieved is also low. The authors do not use the absolute value of the power thresholds for

training, but a lower value which is referenced as safety net. For that reason their

predictions are more pessimistic. This method fails to satisfy Scenario #1 for 8 out of the

14 mixes (regarding the IPS threshold). It also violates Scenario #2 for half of the mixes.

The MRPI method [36] employs the metric of memory reads per instruction to classify

groups to frequencies, specifically the fraction. Therefore, it achieves lower power

observations for mixes that contain memory-intensive workloads. As a result, this method

achieves high performance in all mixes, while resulting in high power observations for 12

out of the 14 mixes. Overall, the MRPI method violates both of the Scenarios for these 12

mixes.

The classification method used in SPARTA [101] has two levels of bins, a bin

regarding memory-boundness and a bin regarding compute-boundness. SPARTA violates

Scenario #1 in 6 of the 14 mixes and only satisfies Scenario #2 in 4 of the cases. However,

in most of the the violating cases, SPARTA doesn’t exceed the predefined thresholds of

each corresponding scenario by significant percentages.

The proposed method completely satisfies both scenarios. Figure 6.7(b) shows that

even though our proposed methodology lowered the frequency in order to satisfy the power

thresholds (Figure 6.7(a)), it managed to select such a value so as to satisfy the IPS

requirements of Table 6.4 as well. Compared to Linux’s performance governor and

completely fair scheduler, our methodology was able to reduce the overall power

consumption of the A15 cluster by an average of 30.5%, with the highest power saving

percentage being 51.5% for Scenario #1. Respectively, our methodology reduced the power

consumption of the cluster by an average of 42.5%, with the highest power saving

percentage being 56.3% for Scenario #2.

Finally, Figure 6.7(c) depicts the comparison regarding power efficiency (MIPS/Watt).

95

As expected, the proposed approach achieves better efficiency than the Linux governors.

This is because Linux governors do not account for performance bottlenecks caused by

saturation on memory bandwidth. Contrary, with the usage of various workloads as

training set for the MLPs, we are able to detect at run-time the bandwidth saturation and

estimate the lowest possible frequency at which we still retain the required performance

and satisfy also power thresholds. Compared to Linux’s Performance governor, our

methodology achieved an average improvement of 29.3% and 38% regarding power

efficiency for scenarios #1 and #2 respectively, while also achieving the minimum required

performance. The MLP approach also achieves high MIPS/Watt observations, since it is

a energy-aware method that sacrifices performance for overall low power. Specifically, in

power efficiency terms the MLP method performs better by 11% and 14% for Scenario #1

and Scenario #2 respectively. However, our method manages to achieve high power

efficiency while satisfying all performance constraints defined in both scenarios. The MRPI

method shows higher power efficiency when the mixes are characterized by more

memory-intensive workloads since in this case it classifies workloads to lower frequencies

and consequently results in the satisfaction of the set performance thresholds. Compared to

MRPI, our method achieves an average of 17.1% and 25.8% higher power efficiency for

Scenario #1 and Scenario #2 accordingly. The SPARTA method accomplishes 6% higher

power efficiency than our method for Scenario #1, while we result in 3% higher power

efficiency than SPARTA for Scenario #2.

6.3.3 Evaluation on the A7 cluster

Since A7 is a low power processor, we consider power improvements in this cluster to

be of insignificant value, since all resulting power values are below 1 Watt. For this reason,

we choose just one Scenario for the A7 cluster as follows: Scenario 1:

IPSmin
total ≥ 0.90 ∗ IPS1.4GHz

total). For the MLP method, the same neural network architectures

were used with the corresponding PMC events of the A7 cluster. However in this case since

96

we do not have separate power threshold use cases, there was only one neural network

trained and evaluated. The MRPI method uses a similar MRPI-based classification method

for the A7 cluster which is also being used in this evaluation. The corresponding PMC

events used by SPARTA on the binning approach were also used on the A7 cluster for this

evaluation. Likewise, we again compare our methodology with the aforementioned methods

and the Linux governors.

Figure 6.8(a) shows the performance results for all methods. In all mixes (Table 6.3)

our methodology manages to satisfy the scenario defined for the A7. As aforementioned, A7

is a low power cluster and all of the tested groups resulted in power values less than 1W.

Therefore, we consider the comparison of raw power values redundant.

The MRPI method manages to also achieve 100% performance satisfaction based on

Scenario 1. On the contrary, the MLP method violated the performance threshold on the

majority of the groups, while SPARTA only violated the performance threshold on one

occasion. The low observed performance of the MLP method is again justified by the fact

that this is a power-aware method, hence achieving low power alongside with low

performance observations on both clusters.

Figure 6.8(b) depicts the comparison of all methods based on power efficiency terms.

Overall the MIPS/Watt values are higher in this case since the power values under

comparison are very low. As expected, the MLP approach achieves once again high

MIPS/Watt observations since the resulting power of the chosen operating frequencies is

in each group the lowest of all methods. The MRPI method achieves equivalent or higher

power efficiency when compared to the Performance governor. Our method obtains an

average of 23.9% overall increase in power efficiency compared to the Performance governor

as well. Overall, compared to the other three methods, the proposed methodology showed

an average increase of 11.4% in power efficiency on the A7 cluster.

97

6.4 CONCLUSION

Modern Chip Multi-Processors (CMPs) are required to be increasingly power efficient

while also offering higher performance and lower costs. A combination of Dynamic

Voltage-Frequency Scaling (DVFS) and sophisticated resource-aware scheduling is needed to

address the underlying problem of maximizing performance-per-Watt of CMP architectures.

In this chapter, we propose a methodology to predict the power consumption and

performance for groups of concurrently executing applications at all available frequencies of

a CMP. The methodology uses a combination of hardware-based application profiling,

contention-aware scheduling, and artificial neural networks. Experimental results on an

Odroid-XU3 board demonstrate an increase in average performance per Watt of 30.5%

(A15 cluster) and 11.4% (A7 cluster) over Linux’s Completely Fair Scheduler (CFS) and

power governors. In addition, our methodology outperforms three state-of-the-art resource

managers, yielding the highest performance-per-Watt in all evaluated use cases.

98

CHAPTER 7

CONCLUSION

7.1 REMARKS

Chip Multi-Processors were first developed to address the growing shortcomings of

single-core architectures in the late 1990’s/early 2000’s. Among the major challenges to

improving single-thread throughput were the diminishing returns on application

performance at higher clock frequencies and the growing difficulty of heat dissipation due

to unprecedented device densities on the die [2]. Manufacturers tried to “squeeze out”

additional performance from existing architectures by increasing parallelism at the

instruction level (ILP). Among the developments were deep execution pipelines, superscalar

architectures, Very Long Instruction Word (VLIW) architectures, and proprietary systems

such as Explicitly Parallel Instruction Computing (by Intel) [5]. While these approaches

improved single-thread performance, they came at the cost of greater hardware complexity

and a corresponding increase in power consumption. The approach of increasing ILP

through architectural additions would eventually yield diminishing returns on application

performance.

CMPs addressed the shortcomings of single-core architectures by integrating multiple

simpler cores onto a single die that share certain computing resources among them such as

last-level caches, data buses, and main memory. This enabled architectural simplicity while

also boosting performance for multi-threaded applications. However, a major trade-off

associated with this approach is that concurrently executing applications incur performance

degradation if their collective resource requirements exceed the total amount of resources

available to the system. Without dynamic resource-aware scheduling methodologies, the

potential performance gain from having multiple cores can be outweighed by the losses due

to contention for allocation of shared resources. Additionally, CMPs with inbuilt dynamic

voltage-frequency scaling (DVFS) mechanisms may try to compensate for the performance

99

bottleneck by scaling to higher clock frequencies. For performance degradation due to

shared-resource contention, this does not necessarily improve performance but does ensure

a significant penalty on power consumption due to the quadratic relation of electrical power

and voltage (Pdynamic ∝ V 2 · f).

This dissertation presented novel methodologies for balancing the competing

requirements of high performance, fairness of execution, and enforcement of priority, while

also ensuring overall power efficiency of CMPs. Specifically, we (1) Analyzed the problem of

resource interference during concurrent process execution and propose two fine-grained

scheduling methodologies for improving overall performance and fairness, (2) Developed an

approach for enforcement of priority (i.e., minimum performance) for specific processes

while avoiding resource starvation for others, and (3) Presented a machine-learning

approach for maximizing the power efficiency (performance-per-Watt) of CMPs through

estimation of a workload’s performance and power consumption limits at different clock

frequencies.

100

REFERENCES

[1] “microprocessor-trend-data/42yrs/42-years-processor-trend.pdf at master ·

karlrupp/microprocessor-trend-data · github,” https://github.com/karlrupp/

microprocessor-trend-data/blob/master/42yrs/42-years-processor-trend.pdf,

(Accessed on 09/14/2023).

[2] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Power

challenges may end the multicore era,” Commun. ACM, vol. 56, no. 2, pp. 93–102,

Feb. 2013. [Online]. Available: http://doi.acm.org/10.1145/2408776.2408797

[3] “Spec benchmarks and tools,” https://www.spec.org/benchmarks.html, (Accessed on

04/04/2024).

[4] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock rate versus ipc:

The end of the road for conventional microarchitectures,” in Proceedings of the 27th

Annual International Symposium on Computer Architecture, ser. ISCA ’00. New

York, NY, USA: ACM, 2000, pp. 248–259. [Online]. Available:

http://doi.acm.org/10.1145/339647.339691

[5] M. Schlansker and B. Rau, “Epic: Explicitly parallel instruction computing,”

Computer, vol. 33, no. 2, pp. 37–45, 2000.

[6] “31 stages: What’s this, baskin robbins? - intel’s pentium 4 e: Prescott arrives with

luggage,” https://www.anandtech.com/show/1230/3, (Accessed on 10/25/2023).

[7] L. MENABREA, C. Babbage, A. Lovelace, and A. L, Sketch of the Analytical Engine

invented by Charles Babbage ... with notes by the translator. Extracted from the

’Scientific Memoirs,’ etc. [The translator’s notes signed: A.L.L. ie. Augusta Ada

King, Countess Lovelace.]. R. & J. E. Taylor, 1843. [Online]. Available:

https://books.google.com/books?id=hPRmnQEACAAJ

[8] “Ibm100 - power 4 : The first multi-core, 1ghz processor,”

https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/, (Accessed on

101

https://github.com/karlrupp/microprocessor-trend-data/blob/master/42yrs/42-years-processor-trend.pdf
https://github.com/karlrupp/microprocessor-trend-data/blob/master/42yrs/42-years-processor-trend.pdf
http://doi.acm.org/10.1145/2408776.2408797
https://www.spec.org/benchmarks.html
http://doi.acm.org/10.1145/339647.339691
https://www.anandtech.com/show/1230/3
https://books.google.com/books?id=hPRmnQEACAAJ
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/

09/14/2023).

[9] T. Marinakis, A. Haritatos, K. Nikas, G. Goumas, and I. Anagnostopoulos, “An

efficient and fair scheduling policy for multiprocessor platforms,” in 2017 IEEE

International Symposium on Circuits and Systems (ISCAS), May 2017, pp. 1–4.

[Online]. Available: https://ieeexplore.ieee.org/document/8050758

[10] I. Galanis, T. Marinakis, and I. Anagnostopoulos, “Workload-aware management

targeting multi-gateway internet-of-things,” in Proceedings of the International

Conference on Omni-Layer Intelligent Systems. ACM, 2019, pp. 110–115.

[11] J. S. Koduri and I. Anagnostopoulos, “Spa: Simple pool architecture for application

resource allocation in many-core systems,” in 2018 Design, Automation Test in

Europe Conference Exhibition (DATE), March 2018, pp. 1364–1368. [Online].

Available: https://ieeexplore.ieee.org/document/8342225

[12] D. Olsen and I. Anagnostopoulos, “Performance-aware resource management of

multi-threaded applications on many-core systems,” in Proceedings of the on Great

Lakes Symposium on VLSI 2017, ser. GLSVLSI ’17. New York, NY, USA: ACM,

2017, pp. 119–124. [Online]. Available: http://doi.acm.org/10.1145/3060403.3060426

[13] G. E. Suh, S. Devadas, and L. Rudolph, “A new memory monitoring scheme for

memory-aware scheduling and partitioning,” in Proceedings Eighth International

Symposium on High Performance Computer Architecture, ser. HPCA ’02.

Washington, DC, USA: IEEE Computer Society, Feb 2002, pp. 117–128. [Online].

Available: http://dl.acm.org/citation.cfm?id=874076.876484

[14] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “L1-bandwidth aware thread allocation

in multicore smt processors,” in Proceedings of the 22Nd International Conference on

Parallel Architectures and Compilation Techniques, ser. PACT ’13. Piscataway, NJ,

USA: IEEE Press, 2013, pp. 123–132. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2523721.2523741

[15] S. S. Jha, W. Heirman, A. Falcón, J. Tubella, A. González, and L. Eeckhout, “Shared

102

https://ieeexplore.ieee.org/document/8050758
https://ieeexplore.ieee.org/document/8342225
http://doi.acm.org/10.1145/3060403.3060426
http://dl.acm.org/citation.cfm?id=874076.876484
http://dl.acm.org/citation.cfm?id=2523721.2523741

resource aware scheduling on power-constrained tiled many-core processors,” in

Proceedings of the ACM International Conference on Computing Frontiers, ser. CF

’16. New York, NY, USA: ACM, 2016, pp. 365–368. [Online]. Available:

http://doi.acm.org/10.1145/2903150.2903490

[16] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency scaling in

chip-multiprocessors,” in Proceedings of the 2007 International Symposium on Low

Power Electronics and Design, ser. ISLPED ’07. New York, NY, USA: ACM, 2007,

pp. 38–43. [Online]. Available: http://doi.acm.org/10.1145/1283780.1283790

[17] X. Wang and J. F. Mart́ınez, “Xchange: A market-based approach to scalable

dynamic multi-resource allocation in multicore architectures,” in 2015 IEEE 21st

International Symposium on High Performance Computer Architecture (HPCA), Feb

2015, pp. 113–125. [Online]. Available: https://ieeexplore.ieee.org/document/7056026

[18] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management of multiple

interacting resources in chip multiprocessors: A machine learning approach,” in

Proceedings of the 41st Annual IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO 41. Washington, DC, USA: IEEE Computer Society,

2008, pp. 318–329. [Online]. Available: https://doi.org/10.1109/MICRO.2008.4771801

[19] R. P. Pothukuchi, A. Ansari, P. Voulgaris, and J. Torrellas, “Using multiple input,

multiple output formal control to maximize resource efficiency in architectures,” in

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

(ISCA), June 2016, pp. 658–670. [Online]. Available:

https://ieeexplore.ieee.org/document/7551430

[20] T. Marinakis, A.-H. Haritatos, K. Nikas, G. Goumas, and I. Anagnostopoulos, “An

efficient and fair scheduling policy for multiprocessor platforms,” in Circuits and

Systems (ISCAS), 2017 IEEE International Symposium on. IEEE, 2017, pp. 1–4.

[21] T. Marinakis and I. Anagnostopoulos, “Performance and fairness improvement on

cmps considering bandwidth and cache utilization,” IEEE Computer Architecture

103

http://doi.acm.org/10.1145/2903150.2903490
http://doi.acm.org/10.1145/1283780.1283790
https://ieeexplore.ieee.org/document/7056026
https://doi.org/10.1109/MICRO.2008.4771801
https://ieeexplore.ieee.org/document/7551430

Letters, vol. 18, no. 2, pp. 1–4, 2019.

[22] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “Bandwidth-aware on-line scheduling

in smt multicores,” IEEE Transactions on Computers, vol. 65, no. 2, pp. 422–434,

2016.

[23] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory bandwidth

management for efficient performance isolation in multi-core platforms,” IEEE

Transactions on Computers, vol. 65, no. 2, pp. 562–576, 2015.

[24] A. Jaleel, H. H. Najaf-Abadi, S. Subramaniam, S. C. Steely, and J. Emer, “Cruise:

cache replacement and utility-aware scheduling,” in Proceedings of the seventeenth

international conference on Architectural Support for Programming Languages and

Operating Systems, 2012, pp. 249–260.

[25] N. El-Sayed, A. Mukkara, P.-A. Tsai, H. Kasture, X. Ma, and D. Sanchez, “Kpart: A

hybrid cache partitioning-sharing technique for commodity multicores,” in 2018

IEEE International Symposium on High Performance Computer Architecture

(HPCA). IEEE, 2018, pp. 104–117.

[26] Y. Kim, A. More, E. Shriver, and T. Rosing, “Application performance prediction

and optimization under cache allocation technology,” in 2019 Design, Automation

Test in Europe Conference Exhibition (DATE), 2019, pp. 1285–1288.

[27] J. Arora, E. Tovar, and C. Maia, “Shared resource contention aware schedulability

analysis for multiprocessor real-time systems,” in Design, Automation and Test in

Europe Conference (DATE 2023), 2023.

[28] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley, “A

predictable execution model for cots-based embedded systems,” in 2011 17th IEEE

Real-Time and Embedded Technology and Applications Symposium, 2011, pp. 269–279.

[29] G. Durrieu, M. Faugère, S. Girbal, D. G. Pérez, C. Pagetti, and W. Puffitsch,

“Predictable flight management system implementation on a multicore processor,” in

Embedded Real Time Software (ERTS’14), 2014.

104

[30] C. Maia, L. Nogueira, L. M. Pinho, and D. G. Pérez, “A closer look into the aer

model,” in 2016 IEEE 21st International Conference on Emerging Technologies and

Factory Automation (ETFA). IEEE, 2016, pp. 1–8.

[31] K. Fu, W. Zhang, Q. Chen, D. Zeng, and M. Guo, “Adaptive resource efficient

microservice deployment in cloud-edge continuum,” IEEE Transactions on Parallel

and Distributed Systems, vol. 33, no. 8, pp. 1825–1840, 2022.

[32] R. Xu, R. Kumar, P. Wang, P. Bai, G. Meghanath, S. Chaterji, S. Mitra, and

S. Bagchi, “Approxnet: Content and contention-aware video object classification

system for embedded clients,” ACM Trans. Sen. Netw., vol. 18, no. 1, oct 2021.

[Online]. Available: https://doi.org/10.1145/3463530

[33] K. Fu, W. Zhang, Q. Chen, D. Zeng, X. Peng, W. Zheng, and M. Guo, “Qos-aware

and resource efficient microservice deployment in cloud-edge continuum,” in 2021

IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2021,

pp. 932–941.

[34] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-aware performance

prediction for virtualized network functions,” in Proceedings of the Annual Conference

of the ACM Special Interest Group on Data Communication on the Applications,

Technologies, Architectures, and Protocols for Computer Communication, ser.

SIGCOMM ’20. New York, NY, USA: Association for Computing Machinery, 2020,

p. 270–282. [Online]. Available: https://doi.org/10.1145/3387514.3405868

[35] B. Donyanavard et al., “Gain scheduled control for nonlinear power management in

cmps,” in 2018 Design, Automation & Test in Europe Conference & Exhibition

(DATE). IEEE, 2018, pp. 921–924.

[36] B. K. Reddy, A. K. Singh, D. Biswas, G. V. Merrett, and B. M. Al-Hashimi,

“Inter-cluster thread-to-core mapping and dvfs on heterogeneous multi-cores,” IEEE

Transactions on Multi-Scale Computing Systems, vol. 4, no. 3, pp. 369–382, July 2018.

[Online]. Available: https://ieeexplore.ieee.org/abstract/document/8051086

105

https://doi.org/10.1145/3463530
https://doi.org/10.1145/3387514.3405868
https://ieeexplore.ieee.org/abstract/document/8051086

[37] B. K. Reddy, G. V. Merrett, B. M. Al-Hashimi, and A. K. Singh, “Online concurrent

workload classification for multi-core energy management,” in 2018 Design,

Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp.

621–624. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8342084

[38] I. Anagnostopoulos, J.-M. Chabloz, I. Koutras, A. Bartzas, A. Hemani, and

D. Soudris, “Power-aware dynamic memory management on many-core platforms

utilizing dvfs,” ACM Transactions on Embedded Computing Systems (TECS), vol. 13,

no. 1s, p. 40, 2013.

[39] T. Marinakis, S. Kundan, and I. Anagnostopoulos, “Meeting power constraints while

mitigating contention on clustered multi-processor system,” IEEE Embedded Systems

Letters, 2019.

[40] M. Mohammad and I. Anagnostopoulos, “Drop: Distributed run-time and power

constraint mapping for many-core systems,” in 2018 25th IEEE International

Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2018, pp. 245–248.

[41] N. El-Sayed, A. Mukkara, P.-A. Tsai, H. Kasture, X. Ma, and D. Sanchez, “Kpart: A

hybrid cache partitioning-sharing technique for commodity multicores,” in High

Performance Computer Architecture (HPCA), 2018 IEEE International Symposium

on. IEEE, 2018, pp. 104–117.

[42] F. Romero and C. Delimitrou, “Mage: Online and interference-aware scheduling for

multi-scale heterogeneous systems,” in 27th International Conference on Parallel

Architectures and Compilation Techniques, 2018, pp. 1–13.

[43] N. Kulkarni, F. Qi, and C. Delimitrou, “Leveraging approximation to improve

datacenter resource efficiency,” IEEE Computer Architecture Letters, vol. 17, no. 2,

pp. 171–174, 2018.

[44] S. Chen, C. Delimitrou, and J. F. Mart́ınez, “Parties: Qos-aware resource

partitioning for multiple interactive services,” in Proceedings of the Twenty-Fourth

106

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8342084

International Conference on Architectural Support for Programming Languages and

Operating Systems, 2019, pp. 107–120.

[45] N. Kulkarni, F. Qi, and C. Delimitrou, “Pliant: Leveraging approximation to improve

datacenter resource efficiency,” in 2019 IEEE International Symposium on High

Performance Computer Architecture. IEEE, 2019, pp. 159–171.

[46] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and C. Delimitrou, “Seer:

Leveraging big data to navigate the complexity of performance debugging in cloud

microservices,” in Architectural Support for Programming Languages and Operating

Systems, 2019, pp. 19–33.

[47] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared resource

contention in multicore processors via scheduling,” in Proceedings of the Fifteenth

Edition of ASPLOS on Architectural Support for Programming Languages and

Operating Systems, ser. ASPLOS XV. ACM, 2010, pp. 129–142.

[48] A.-H. Haritatos, N. Papadopoulou, K. Nikas, G. I. Goumas, and N. Koziris,

“Contention-aware scheduling policies for fairness and throughput,” in

COSH@HiPEAC, 2016.

[49] S. Kundan, O. Spantidi, and I. Anagnostopoulos, “Online frequency-based

performance and power estimation for clustered multi-processor systems,” Computers

& Electrical Engineering, vol. 90, p. 106971, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0045790621000045

[50] S. Kundan and I. Anagnostopoulos, “Priority-aware scheduling under shared-resource

contention on chip multicore processors,” in 2021 IEEE International Symposium on

Circuits and Systems (ISCAS), 2021, pp. 1–5.

[51] O. Spantidi, I. Galanis, and I. Anagnostopoulos, “Frequency-based power efficiency

improvement of cnns on heterogeneous iot computing systems,” in 2020 IEEE 6th

World Forum on Internet of Things (WF-IoT), 2020, pp. 1–6.

[52] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “Perf&fair: A progress-aware scheduler

107

https://www.sciencedirect.com/science/article/pii/S0045790621000045

to enhance performance and fairness in smt multicores,” IEEE Transactions on

Computers, vol. 66, no. 5, pp. 905–911, 2016.

[53] Y. Song, O. Alavoine, and B. Lin, “A self-aware resource management framework for

heterogeneous multicore socs with diverse qos targets,” ACM Transactions on

Architecture and Code Optimization (TACO), vol. 16, no. 2, Apr. 2019. [Online].

Available: https://doi.org/10.1145/3319804

[54] O. Spantidi, I. Anagnostopoulos, and G. Fainekos, “Efficient resource management of

clustered multi-processor systems through formal property exploration,” in 2021

Design, Automation Test in Europe Conference Exhibition (DATE), 2021, pp.

1673–1678.

[55] B. Salami, H. Noori, and M. Naghibzadeh, “Fairness-aware energy efficient scheduling

on heterogeneous multi-core processors,” IEEE Transactions on Computers, vol. 70,

no. 1, pp. 72–82, 2021.

[56] A. Gamatie, G. Devic, G. Sassatelli, S. Bernabovi, P. Naudin, and M. Chapman,

“Towards energy-efficient heterogeneous multicore architectures for edge computing,”

IEEE Access, vol. 7, pp. 49 474–49 491, 2019.

[57] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto, “Survey of

scheduling techniques for addressing shared resources in multicore,” ACM Computing

Surveys (CSUR), vol. 45, no. 1, p. 4, 2012.

[58] A. Jaleel, H. H. Najaf-abadi, S. Subramaniam, S. C. Steely, and J. Emer, “Cruise:

Cache replacement and utility-aware scheduling,” in 7th International Conference on

Architectural Support for Programming Languages and Operating Systems, ser.

ASPLOS XVII. ACM, 2012, pp. 249–260.

[59] Y. Xie and G. H. Loh, “Pipp: promotion/insertion pseudo-partitioning of multi-core

shared caches,” in ACM SIGARCH Computer Architecture News, vol. 37, no. 3.

ACM, 2009, pp. 174–183.

[60] S. Srikantaiah, R. Das, A. K. Mishra, C. R. Das, and M. Kandemir, “A case for

108

https://doi.org/10.1145/3319804

integrated processor-cache partitioning in chip multiprocessors,” in Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis.

ACM, 2009, p. 6.

[61] R. Lee, X. Ding, F. Chen, Q. Lu, and X. Zhang, “Mcc-db: minimizing cache conflicts

in multi-core processors for databases,” Proceedings of the VLDB Endowment, vol. 2,

no. 1, pp. 373–384, 2009.

[62] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and partitioning in a chip

multiprocessor architecture,” in Proceedings of the 13th International Conference on

Parallel Architectures and Compilation Techniques. IEEE Computer Society, 2004,

pp. 111–122.

[63] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory bandwidth

management for efficient performance isolation in multi-core platforms,” IEEE

Transactions on Computers, vol. 65, no. 2, pp. 562–576, 2016.

[64] D. Xu, C. Wu, P.-C. Yew, J. Li, and Z. Wang, “Providing fairness on shared-memory

multiprocessors via process scheduling,” ACM SIGMETRICS Performance

Evaluation Review, vol. 40, no. 1, pp. 295–306, 2012.

[65] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair queuing memory

systems,” in Proceedings of the 39th Annual IEEE/ACM international Symposium on

Microarchitecture. IEEE Computer Society, 2006, pp. 208–222.

[66] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis, “Heracles:

Improving resource efficiency at scale,” in ACM SIGARCH Computer Architecture

News, vol. 43, no. 3. ACM, 2015, pp. 450–462.

[67] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up: Increasing

utilization in modern warehouse scale computers via sensible co-locations,” in

Proceedings of the 44th annual IEEE/ACM International Symposium on

Microarchitecture. ACM, 2011, pp. 248–259.

[68] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using os observations to

109

improve performance in multicore systems,” IEEE micro, vol. 28, no. 3, pp. 54–66,

2008.

[69] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “Addressing fairness in smt multicores

with a progress-aware scheduler,” in Parallel & Distributed Processing Symposium,

2015 IEEE International. IEEE, 2015, pp. 187–196.

[70] L. Tang, J. Mars, and M. L. Soffa, “Contentiousness vs. sensitivity: Improving

contention aware runtime systems on multicore architectures,” in 1st International

Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era, ser.

EXADAPT ’11. New York, NY, USA: ACM, 2011, pp. 12–21.

[71] A.-H. Haritatos, K. Nikas, G. Goumas, and N. Koziris, “A resource-centric

application classification approach,” in Proceedings of the 1st COSH Workshop on

Co-Scheduling of HPC Applications, C. Trinitis and J. Weidendorfer, Eds., Jan 2016,

p. 7.

[72] A.-H. Haritatos, G. Goumas, N. Anastopoulos, K. Nikas, K. Kourtis, and N. Koziris,

“Lca: A memory link and cache-aware co-scheduling approach for cmps,” in Parallel

Architecture and Compilation Techniques (PACT), 2014 23rd International

Conference on. IEEE, 2014, pp. 469–470.

[73] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, and R. Iyer,

“Cache qos: From concept to reality in the intel® xeon® processor e5-2600 v3

product family,” in High Performance Computer Architecture (HPCA), 2016 IEEE

International Symposium on. IEEE, 2016, pp. 657–668.

[74] J. D. McCalpin, “A survey of memory bandwidth and machine balance in current

high performance computers,” IEEE TCCA Newsletter, 1995.

[75] H.-Q. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of NAS parallel

benchmarks and its performance,” 1999.

[76] L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,” URL: http://www. cs.

ucla. edu/pouchet/software/polybench, 2012.

110

[77] S. C. Woo et al., “The SPLASH-2 programs: Characterization and methodological

considerations,” in ACM SIGARCH computer architecture news, vol. 23, no. 2.

ACM, 1995, pp. 24–36.

[78] D. Pase, “The pchase benchmark page,” 2008.

[79] V. H. W.-J. Kell B., “An mdd approach to multidimensional bin packing,” in

Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2013),

ser. Lecture Notes in Computer Science, S. M. e. Gomes C., Ed. Berlin, Heidelberg:

Springer, 2013, vol. 7874, pp. 128–143.

[80] S. Gualandi and M. Lombardi, “A simple and effective decomposition for the

multidimensional binpacking constraint,” in Principles and Practice of Constraint

Programming (CP 2013), ser. Lecture Notes in Computer Science, S. C. (eds). Nelson,

Ed. Berlin, Heidelberg: Springer, 2013, vol. 8124, pp. 356–364.

[81] M. M.D., “Multidimensional bin packing revisited,” in Principles and Practice of

Constraint Programming (CP 2013), ser. Lecture Notes in Computer Science, S. C.

(eds). Nelson, Ed. Berlin, Heidelberg: Springer, 2013, vol. 8124, pp. 513–528.

[82] S. H. Mehta D., O’Sullivan B., “Comparing solution methods for the machine

reassignment problem,” in Principles and Practice of Constraint Programming (CP

2012), ser. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012,

vol. 7514, pp. 782–789.

[83] P. N. M. Berkelaar, K. Eikland, “Cran package ‘lpsolve’,” 2015.

[84] “Cruise: cache replacement and utility-aware scheduling: Acm sigarch computer

architecture news: Vol 40, no 1,” https://dl.acm.org/doi/10.1145/2189750.2151003,

(Accessed on 09/06/2023).

[85] N. El-Sayed, A. Mukkara, P.-A. Tsai, H. Kasture, X. Ma, and D. Sanchez, “Kpart: A

hybrid cache partitioning-sharing technique for commodity multicores,” in 2018

IEEE International Symposium on High Performance Computer Architecture

(HPCA), 2018, pp. 104–117.

111

https://dl.acm.org/doi/10.1145/2189750.2151003

[86] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and partitioning in a chip

multiprocessor architecture,” in Proceedings. 13th International Conference on

Parallel Architecture and Compilation Techniques, 2004. PACT 2004. IEEE, 2004,

pp. 111–122.

[87] T. Marinakis and I. Anagnostopoulos, “Performance and fairness improvement on

cmps considering bandwidth and cache utilization,” IEEE Computer Architecture

Letters, vol. 18, no. 2, pp. 1–4, 2019.

[88] J. Feliu et al., “Perf&fair: A progress-aware scheduler to enhance performance and

fairness in smt multicores,” IEEE Transactions on Computers, 2017.

[89] A. Yasin, “A top-down method for performance analysis and counters architecture,”

in 2014 IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), 2014, pp. 35–44.

[90] “Do the intel® xeon® processors come with cache allocation technology...”

https://www.intel.com/content/www/us/en/support/articles/000035900/

processors/intel-xeon-processors.html, 06 2020.

[91] “Odroid-xu3,” https://www.hardkernel.com/shop/odroid-xu3/.

[92] T. Mück et al., “Run-dmc: Runtime dynamic heterogeneous multicore performance

and power estimation for energy efficiency,” in Proceedings of the 10th International

Conference on Hardware/Software Codesign and System Synthesis. IEEE Press,

2015.

[93] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin,

“Power-performance modeling on asymmetric multi-cores,” in Proceedings of the 2013

International Conference on Compilers, Architectures and Synthesis for Embedded

Systems, ser. CASES ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 15:1–15:10.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2555729.2555744

[94] J. Feliu et al., “Addressing fairness in smt multicores with a progress-aware

scheduler,” in 2015 IEEE International Parallel and Distributed Processing

112

https://www.intel.com/content/www/us/en/support/articles/000035900/processors/intel-xeon-processors.html
https://www.intel.com/content/www/us/en/support/articles/000035900/processors/intel-xeon-processors.html
https://www.hardkernel.com/shop/odroid-xu3/
http://dl.acm.org/citation.cfm?id=2555729.2555744

Symposium. IEEE, 2015, pp. 187–196.

[95] D. Xu et al., “Providing fairness on shared-memory multiprocessors via process

scheduling,” in ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 1.

ACM, 2012, pp. 295–306.

[96] M. J. Walker et al., “Accurate and stable run-time power modeling for mobile and

embedded cpus,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 36, no. 1, pp. 106–119, 2016.

[97] “Exynos 5 octa 5422 processor: Specs, features — samsung exynos,”

https://www.samsung.com/semiconductor/minisite/exynos/products/

mobileprocessor/exynos-5-octa-5422/, (Accessed on 10/04/2020).

[98] “Smartphones with exynos processors — samsung exynos,”

https://www.samsung.com/semiconductor/minisite/exynos/showcase/smartphone/,

(Accessed on 10/04/2020).

[99] “big.little – arm,” https://www.arm.com/why-arm/technologies/big-little, (Accessed

on 10/04/2020).

[100] “Odroid xu4 onboard processor/dram power sensors - odroid,”

https://forum.odroid.com/viewtopic.php?t=18701, (Accessed on 10/04/2020).

[101] B. Donyanavard et al., “Sparta: Runtime task allocation for energy efficient

heterogeneous manycores,” in 2016 International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ ISSS). IEEE, 2016, pp. 1–10.

113

https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/showcase/smartphone/
https://www.arm.com/why-arm/technologies/big-little
https://forum.odroid.com/viewtopic.php?t=18701

VITA

Graduate School
Southern Illinois University Carbondale

Shivam Kundan

shivamkundan@hotmail.com

Southern Illinois University Carbondale
Master of Science, Electrical & Computer Engineering, May 2019

Dissertation Paper Title:
RESOURCE-OPTIMIZED SCHEDULING FOR ENHANCED POWER EFFICIENCY
AND THROUGHPUT ON CHIP MULTI-PROCESSOR PLATFORMS

Major Professor: Dr. I. Anagnostopoulos

Publications:

1. Shivam Kundan, Ourania Spantidi, Iraklis Anagnostopoulos, Online frequency-
based performance and power estimation for clustered multi-processor systems,
Computers & Electrical Engineering, Volume 90, 2021, 106971, ISSN 0045-7906,
https://doi.org/10.1016/j.compeleceng.2021.106971.

2. S. Kundan and I. Anagnostopoulos, ”Priority-Aware Scheduling under Shared-Resource
Contention on Chip Multicore Processors,” 2021 IEEE International Symposium
on Circuits and Systems (ISCAS), Daegu, Korea, 2021, pp. 1-5, doi: 10.1109/IS-
CAS51556.2021.9401337.

3. Shivam Kundan, Theodoros Marinakis, Iraklis Anagnostopoulos, and Dimitri Kagaris.
2022. A Pressure-Aware Policy for Contention Minimization on Multicore Systems.
ACM Trans. Archit. Code Optim. 19, 3, Article 40 (September 2022), 26 pages.
https://doi.org/10.1145/3524616

4. S. Kundan and I. Anagnostopoulos, ”A Machine Learning Approach for Improving
Power Efficiency on Clustered Multi-Processor System”, 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020, pp. 1-5, doi:
10.1109/ISCAS45731.2020.9180474.

5. T. Marinakis, S. Kundan and I. Anagnostopoulos, ”Meeting Power Constraints While
Mitigating Contention on Clustered Multiprocessor System”, in IEEE Embedded Sys-
tems Letters, vol. 12, no. 3, pp. 99-102, Sept. 2020, doi: 10.1109/LES.2019.2956990.

114

	Resource Optimized Scheduling For Enhanced Power Efficiency And Throughput On Chip Multi Processor Platforms
	Recommended Citation

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	Introduction
	Decline of Single-Core Architectures
	Chip Multi Processors
	Chip Multi Processor Challenges
	Conclusion
	Research Questions
	Contributions

	Literature Review
	Contention-Aware Scheduling
	Power-Aware Scheduling

	Contention-Aware Scheduling
	Shared-Resource Contention
	Motivation: The effect of finer-grain scheduling.
	Proposed Methodology
	Application Characterization & Interference Analysis
	Static Pressure-Aware Scheduling Policy
	Dynamic Pressure-Aware Scheduling Policy

	Experimental Results
	Experimental setup
	Single-Threaded Workload Performance
	Multi-Threaded Workload Performance
	Enabling hyper-threading
	Performance of Dynamic vs. Static Scheduling Policy

	Conclusion

	Priority-Aware Scheduling
	Introduction
	Proposed Methodology
	Application Characterization
	Progress
	Priority
	Application-to-Core Assignment

	Evaluation Setup
	Experimental Results
	High Priority Application Performance
	Overall Workload Performance
	Overhead

	Conclusion

	Power-Aware Scheduling
	Introduction
	Motivation
	Proposed Methodology
	Selection of PMC events
	Training of MLPs
	Run-Time Frequency Selection
	Comparison of classification approaches

	Evaluation
	Conclusion

	Performance & Power Aware Scheduling
	Introduction
	Proposed Methodology
	Training Set Creation
	PMC Selection
	MLP Training
	Run-time power and performance estimation

	Experimental Results
	Workload description
	Evaluation on the A15 cluster
	Evaluation on the A7 cluster

	Conclusion

	Conclusion
	Remarks

	REFERENCES
	VITA

