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TITLE: A NEW APPROACH TO SYNTHETIC IMAGE EVALUATION 

 

MAJOR PROFESSOR:  Dr. Khaled R. Ahmed 

This study is dedicated to enhancing the effectiveness of Optical Character Recognition 

(OCR) systems, with a special emphasis on Arabic handwritten digit recognition. The choice to 

focus on Arabic handwritten digits is twofold: first, there has been relatively less research 

conducted in this area compared to its English counterparts; second, the recognition of Arabic 

handwritten digits presents more challenges due to the inherent similarities between different 

Arabic digits. OCR systems, engineered to decipher both printed and handwritten text, often face 

difficulties in accurately identifying low-quality or distorted handwritten text. The quality of the 

input image and the complexity of the text significantly influence their performance. 

However, data augmentation strategies can notably improve these systems’ performance. 

These strategies generate new images that closely resemble the original ones, albeit with minor 

variations, thereby enriching the model’s learning and enhancing its adaptability. The research 

found Conditional Variational Autoencoders (C-VAE) and Conditional Generative Adversarial 

Networks (C-GAN) to be particularly effective in this context. These two generative models 

stand out due to their superior image generation and feature extraction capabilities. 

A significant contribution of the study has been the formulation of the Synthetic Image 

Evaluation Procedure (Algorithm 3), a systematic approach designed to evaluate and amplify the 

generative models’ image generation abilities. This procedure facilitates the extraction of 
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meaningful features, computation of the Fréchet Inception Distance (LFID) score and supports 

hyper-parameter optimization and model modifications.  
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CHAPTER 1 

INTRODUCTION 

Image processing involves the digital alteration of an image once it has been digitized 

and transferred to a computer. This manipulation is carried out by software programs to enhance 

the image’s usefulness, such as enabling image recognition. Image processing is a 

comprehensive field that includes topics like image/video processing, analysis, communications, 

sensing, modeling, computational imaging, electronic imaging, information forensics and 

security, 3D imaging, medical imaging, and machine learning applications to these areas. For 

several decades, image processing has been a hotbed of research and development, leading to 

numerous successful applications across various sectors like entertainment, digital photography, 

video conferencing, video monitoring and surveillance, satellite imaging, healthcare, distance 

learning, digital archiving, cultural heritage, and the automotive industry [22, 27, 64, 65, 98]. 

Optical Character Recognition (OCR) is a critical technology in numerous industries, as 

it enables the identification and conversion of printed or handwritten text into machine-readable 

formats. Arabic Handwritten Digit Recognition is a challenging task in the field of Optical 

Character Recognition (OCR). OCR is a technology used to convert different types of 

documents, such as scanned paper documents, PDF files, or images captured by a digital camera, 

into editable and searchable data. While OCR technology has made significant strides in recent 

years, the accuracy of Arabic Handwritten Digit Recognition remains a problem. Several factors 

contribute to this issue. Arabic numerals are cursive and context-sensitive, meaning their shape 

and form can change depending on their position in a word. This characteristic makes them more 

complex and challenging to recognize than Latin numerals. Additionally, variations in individual 

handwriting styles, writing tools, and paper quality can further complicate the recognition 
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process [5, 49]. Improving the accuracy of Arabic Handwritten Digit Recognition is an active 

area of research. Techniques such as deep learning, convolutional neural networks, and other 

machine learning algorithms are being explored to enhance recognition accuracy [61]. However, 

despite these efforts, achieving high accuracy remains a significant challenge [13, 31]. Optical 

Character Recognition (OCR) is a rapidly evolving technology with significant implications 

across various industries. However, the accurate recognition of distorted, low-quality, or noisy 

text remains a challenge, especially for handwritten text. Data augmentation and real-time 

monitoring are vital components in addressing these challenges and improving OCR 

performance [16, 32, 90, 94, 104, 112]. 

This research aims to explore the use of data augmentation techniques and real-time 

monitoring for enhancing the capabilities of OCR systems. Despite considerable advancements 

in machine learning and computer vision techniques, OCR systems continue to struggle with 

accurately interpreting distorted, low-quality, or noisy text, particularly in the case of 

handwritten text, which exhibits significant variability [16, 23, 112]. 

Data augmentation is essential for enhancing OCR performance due to a variety of 

reasons. By artificially expanding and diversifying the training dataset through the introduction 

of synthetic images with various variations, transformations, and noise levels, data augmentation 

techniques help train more robust and accurate OCR systems capable of handling diverse input 

data. One crucial aspect of data augmentation is supplementing the limited training data with 

synthetic data generated by generative models. Real-time monitoring ensures an optimal balance 

between the quality and quantity of generated images, allowing the OCR model to effectively 

learn from the augmented data without being negatively affected by poor-quality samples [37, 

95, 117]. Generative model training can be unstable, with the performance of the generator and 
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discriminator potentially fluctuating throughout the training process. Real-time monitoring is 

essential for tracking these changes and making necessary adjustments to maintain stability and 

avoid problems such as mode collapse or vanishing gradients. By continuously keeping track of 

the training process, real-time monitoring can provide valuable insights into the model’s 

performance and identify the appropriate intervention points [37, 76, 94]. 

Generated data can sometimes result in overfitting if the model begins to memorize the 

synthetic images rather than learning the underlying patterns. Real-time monitoring helps detect 

such issues early on and implement corrective action, such as reducing the amount of generated 

data or adjusting the training parameters. By ensuring that the model focuses on learning the 

essential features and patterns, real-time monitoring contributes to the development of a more 

robust and generalizable OCR system [74, 116]. 

Monitoring generative model performance in real-time also plays a significant role in 

improving efficiency by identifying when the model has achieved an acceptable level of quality 

and can cease the training process, thus saving time and computational resources. This 

optimization is particularly important when working with large-scale OCR systems or when 

training multiple models simultaneously, as it can lead to substantial time and cost savings [84, 

124]. 

Evaluating the impact of generated images on OCR performance during the training 

process is another important aspect of real-time monitoring. This assessment helps determine the 

effectiveness of the augmentation strategy and whether adjustments are needed to better address 

specific OCR challenges, such as recognizing distorted or noisy text. By continuously measuring 

the impact of synthetic data on OCR performance, researchers can fine-tune their models and 

improve overall accuracy [18, 121]. 
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Lastly, real-time monitoring facilitates the comparison of different generative models and 

hyperparameter settings based on their influence on OCR performance. This comparison allows 

for the selection of the most promising configurations for further refinement and optimization. 

Through the continuous evaluation of model performance and the identification of the most 

effective settings, real-time monitoring can significantly contribute to the development of more 

accurate and efficient OCR systems [26, 50]. 

The study aims to improve the performance of Optical Character Recognition (OCR) 

through the use of data augmentation techniques, specifically by incorporating synthetic data 

generated by generative models. It introduces real-time monitoring to achieve an optimal balance 

between the quality and quantity of generated images. Addressing instability issues encountered 

during generative model training, such as mode collapse or vanishing gradients, the research 

enhances the overall stability of the model. Measures are implemented to prevent overfitting, 

ensuring that the model doesn’t memorize synthetic images and instead improves its 

generalization capability. Efficiency is enhanced by determining the appropriate stopping point 

for the training process based on the model’s performance. The study continuously evaluates the 

impact of generated images on OCR performance and adjusts augmentation strategies, 

accordingly, ensuring the model’s adaptability. A comparative analysis of different generative 

models and hyperparameter settings is provided, which contributes to further optimizing the OCR 

system. 

In the following chapter, we delve into a detailed discussion on the existing works related 

to Arabic Handwritten Digit Recognition. We explore the methodologies and techniques 

employed in these studies, their contributions to the field, and the results they have achieved. 

Importantly, we also critically examine the limitations and shortcomings of these works, 
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identifying areas where they fall short or fail to address specific challenges in Arabic Handwritten 

Digit Recognition. This analysis will provide a comprehensive understanding of the current state 

of the field and pave the way for our research to address these gaps and contribute to the 

advancement of Arabic Handwritten Digit Recognition models.  
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CHAPTER 2 

BACKGROUND 

2.1 Optical Character Recognition (OCR) 

Optical Character Recognition (OCR) is a technology that aims to recognize text within 

digital images, such as scanned documents, photographs, or screenshots. It involves a process of 

converting images of text into machine-encoded text that can be easily edited, searched, or 

processed by computers. OCR systems have been widely used in various applications, such as 

digitization of historical documents, automatic license plate recognition, and text recognition in 

mobile devices [13, 91, 97]. 

The OCR process involves several steps, including image pre-processing, feature 

extraction, and text recognition. Image pre-processing involves enhancing the quality of the 

image by removing noise, correcting orientation, and resizing the image. Feature extraction is the 

process of identifying salient features of the image, such as edges, corners, and curves, that are 

relevant to the recognition task. Text recognition is the process of converting the image features 

into machine-encoded text using various algorithms, such as neural networks, decision trees, or 

rule-based systems [62]. 

OCR systems have been challenged by various factors that can affect the accuracy and 

robustness of the recognition process. One of the main challenges is the quality of the input 

image, which can be degraded by various factors such as lighting conditions, paper quality, and 

image distortion. 

Another challenge is the complexity and variability of the text to be recognized, which 

can include different fonts, languages, and writing styles. OCR systems also face challenges in 
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handling noise, skew, and other forms of image deformation, which can affect the recognition 

accuracy [77]. 

To address these challenges, researchers have explored various techniques and algorithms 

to improve the performance of OCR systems. These include feature extraction methods such as 

histogram of oriented gradients (HOG) [43], convolutional neural networks (CNN) [33], and 

deep learning-based approaches [81]. Other techniques involve using machine learning 

algorithms for text recognition, such as hidden Markov models (HMM) [47], support vector 

machines (SVM) [99], and Recurrent Neural Networks (RNN) [110]. Recently, researchers have 

also explored the use of image generation techniques, such as Variational Autoencoders (VAE) 

[73] and Generative Adversarial Networks (GAN) [55], to improve OCR system performance by 

generating synthetic images that are more robust to noise and distortion [95]. 

Overall, OCR systems play a critical role in various applications that require text 

recognition from images. However, they face challenges in handling image degradation, 

variability, and complexity. To improve OCR system performance, researchers have explored 

various techniques, including image pre-processing, feature extraction, text recognition 

algorithms, and image generation techniques. 

2.1.1 Deep Learning in OCR systems 

OCR systems have become an essential tool for digitizing text from scanned documents, 

images, and videos. However, traditional OCR systems often struggle with recognizing 

characters and words accurately in low-quality images, degraded texts, and noisy backgrounds. 

Deep learning techniques have shown significant promise in improving the performance and 

robustness of OCR systems. Deep learning is a subfield of machine learning that involves 

training artificial neural networks with multiple layers of neurons to extract and represent 
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complex features from input data. Deep learning techniques have been successfully applied to a 

wide range of OCR tasks, including text detection, segmentation, recognition, and post-

processing [133]. 

One of the main advantages of deep learning for OCR systems is its ability to 

automatically learn and extract high-level features from raw images, such as edges, textures, and 

patterns, without the need for hand-crafted features [126]. Deep learning models can also adapt 

and generalize to new and diverse OCR tasks and domains, making them highly versatile and 

scalable. Moreover, deep learning models can leverage large amounts of training data to improve 

their performance and accuracy, even in challenging and complex OCR scenarios. 

Some of the popular deep learning models used in OCR systems include CNNs, RNNs, 

and their variants, such as Long Short-Term Memory (LSTM) networks and Attention 

mechanisms. These models have shown remarkable progress in achieving state-of-the-art results 

in OCR benchmarks, such as the MNIST [39], CIFAR-10 [78], and ICDAR datasets [68]. 

However, these models are typically designed to operate on clean and well-defined input data, 

and may not perform well in real-world OCR scenarios, where the input data may be noisy, 

blurred, or distorted. 

Arabic Handwritten Digit Recognition is a challenging OCR task due to the variations in 

writing style, size, shape, and slant of different writers, as well as the noise and distortion in the 

images [6]. Arabic Handwritten Digit Recognition has many applications in fields such as office 

automation, check verification, postal address reading, and data entry. There are many methods 

that have been proposed for Arabic Handwritten Digit Recognition, using different features and 

classifiers.  Therefore, researchers have explored the use of deep generative models, such as 

Variational Autoencoders (VAEs) [54] and Generative Adversarial Networks (GANs) [41], to 
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generate synthetic images that can improve the robustness and adaptability of OCR systems. 

These models can generate realistic and diverse images that can simulate different OCR 

conditions, such as different fonts, sizes, resolutions, and backgrounds, allowing the OCR system 

to learn from a more comprehensive and diverse training set. In this literature review, we focus 

on comparing two conditional variants of VAE and GAN, namely Conditional VAE (C-VAE) 

[113] and Conditional GAN (C-GAN) [89], for their ability to generate high-quality synthetic 

images that can improve OCR system performance. 

Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN) are two 

popular generative models in deep learning. A VAE consists of two main components: an 

encoder that maps an input image to a latent space representation, and a decoder that maps the 

latent space representation back to an output image. During training, the VAE minimizes the 

reconstruction error between the input and output images, while regularizing the latent space 

distribution to follow a Gaussian distribution. This regularization encourages the VAE to 

generate diverse samples and enables it to perform various image generation tasks. 

On the other hand, a GAN consists of a generator and a discriminator network that play a 

two-player minimax game. The generator takes a random noise vector as input and generates a 

fake image, while the discriminator takes a real or fake image and outputs a binary classification 

result. During training, the generator learns to generate images that can fool the discriminator, 

while the discriminator learns to distinguish between real and fake images. The GAN framework 

has been shown to generate high-quality images in a variety of domains [2]. 

Conditional Variational Autoencoders (C-VAE) and Conditional Generative Adversarial 

Net- works (C-GAN) are extensions of VAEs and GANs that take additional input information, 

such as class labels or text descriptions, to generate images with specific attributes or styles. In 
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C-VAE, the encoder and decoder networks are conditioned on the input information, which is 

fed into the latent space as an additional input. This enables the C-VAE to generate images with 

specific attributes, such as digit classification. 

Similarly, C-GANs condition the generator and discriminator networks on the input 

information. The generator takes both the random noise and the input information as input, while 

the discriminator takes both the real or fake image and the input information as input. By 

conditioning the GAN on input information, C-GANs can generate images with specific 

attributes or styles, such as facial expressions or scene types [122]. 

Overall, VAEs and GANs, as well as their conditional variants, are powerful generative 

models that can generate diverse and high-quality images in various domains. By conditioning 

these models on input information, researchers can generate images with specific attributes or 

styles, making them valuable tools for image generation tasks, such as improving OCR systems. 

Present previous work in using VAEs, GANs, and their conditional variants for image generation 

and OCR system improvement [20]. 

Conditional Variational Autoencoders (C-VAE) are a type of generative model that can 

learn to generate new data samples with specific attributes. C-VAE consists of two main parts: 

an encoder that maps input data to a latent space, and a decoder that maps the latent space to the 

output space. In C-VAE, both the encoder and decoder are conditioned on additional 

information, such as class labels or attributes, to generate more specific and meaningful samples. 

This conditioning is achieved by incorporating the conditional information as additional inputs to 

the encoder and decoder networks [82]. 

During training, C-VAE minimizes the reconstruction loss between the input and the 

reconstructed output, as well as the Kullback-Leibler (KL) divergence between the learned latent 
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distribution and a prior distribution. The KL divergence encourages the learned latent 

distribution to be close to a prior distribution, such as a standard normal distribution, which 

regularizes the latent space and enables efficient sampling. The overall objective of C-VAE is to 

minimize the sum of these two losses [12]. 

One of the key features of C-VAE is its ability to perform latent space interpolation. This 

means that by traversing the learned latent space, C-VAE can generate smooth and meaningful 

transitions between different attributes or classes. For example, by interpolating between the 

latent vectors of "cat" and "dog", C-VAE can generate images that smoothly transform from one 

animal to the other [88]. 

C-VAE has been shown to be effective in various image generation tasks, such as 

generating realistic images of faces, digits, and objects with specific attributes. In addition, C-

VAE has also been applied to other domains, such as natural language processing, speech 

synthesis, and recommendation systems [34]. 

However, C-VAE has some limitations, such as difficulty in generating high-quality and 

diverse samples, and sensitivity to the choice of hyperparameters. In summary, C-VAE is a 

powerful generative model that can learn to generate specific and meaningful data samples by 

incorporating conditional information into the training process. Its architecture consists of an 

encoder and decoder that are conditioned on additional information, and it is trained by 

minimizing the reconstruction loss and KL divergence [36, 82]. 

C-VAE’s key features include latent space interpolation, which enables smooth 

transitions between attributes or classes, and its applicability to various domains. However, it 

also has limitations, such as difficulty in generating high-quality and diverse samples and 

sensitivity to hyperparameters [29]. 
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2.2 Conditional Variational Autoencoders (C-VAE) 

Conditional Variational Autoencoders (C-VAE) have gained popularity in recent years as 

a powerful tool for generating high-quality images with controllable attributes. One of the 

advantages of using C-VAE for image generation is its ability to capture and disentangle 

complex image features into a latent space that can be easily manipulated to generate new 

images with desired attributes. This is particularly useful in OCR system improvement as it 

allows for the generation of synthetic images that are similar to the real ones, but with enhanced 

attributes such as contrast, rotation, and skew [69]. 

Another advantage of C-VAE is its ability to handle incomplete or noisy data. This is 

particularly useful in OCR systems as images can be degraded due to various factors such as 

lighting conditions, image resolution, and perspective distortion. C-VAE can learn to reconstruct 

these images by filling in missing pixels or removing noise while preserving important features 

such as text and layout structure [44]. 

However, one of the main disadvantages of C-VAE is its tendency to produce blurry 

images, especially when dealing with complex or high-resolution images. This is because the 

reconstruction loss function used in C-VAE does not take into account the high-frequency details 

of the image, leading to blurriness in the generated images [25]. 

Another limitation of C-VAE is its dependence on the quality of the training data. C-

VAE requires a large amount of high-quality training data to learn the underlying distribution of 

the data and generate high-quality images. In the absence of such data, the generated images may 

suffer from artifacts and low-quality features [45]. 

Lastly, the training process for C-VAE can be computationally expensive, especially 

when dealing with high-resolution images or large datasets. The training process requires 
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multiple forward and backward passes through the network, which can be time-consuming and 

resource- intensive. This limits its scalability and practicality for large-scale OCR systems [128]. 

In summary, while C-VAE offers several advantages for image generation and OCR 

system improvement, such as its ability to capture complex features and handle incomplete data, 

it also has some limitations, such as its tendency to produce blurry images and its dependence on 

high-quality training data. Researchers and practitioners need to carefully consider these factors 

when deciding whether to use C-VAE for their OCR system improvement projects [25]. 

2.2.1 C-VAE applications in OCR systems 

Conditional Variational Autoencoders (C-VAE) have shown promising results in 

generating realistic and diverse images for various applications, including OCR systems. C-VAE 

allows for the generation of conditional samples by encoding the input image and conditioning 

the decoding process on the desired output. C-VAE outperforms traditional VAEs in generating 

high-quality, diverse images that are suitable for OCR tasks. The authors also noted that C-VAE 

provides better reconstruction accuracy than traditional VAEs, which is important for OCR 

applications [38]. 

Despite its advantages, C-VAE also has some limitations in OCR systems. The 

performance of C-VAE is highly dependent on the quality of the input image. The authors noted 

that if the input image is noisy or has low resolution, C-VAE may fail to generate accurate OCR 

results. Additionally, C-VAE requires a large amount of labeled data for training, which can be a 

challenge for OCR systems where the availability of labeled data is often limited [46]. 

However, C-VAE has demonstrated its effectiveness in enhancing OCR performance 

within certain domains. By employing C-VAE for handwritten digit recognition, notable 

advancements in OCR capabilities were observed in comparison to conventional techniques. 
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Moreover, the authors emphasized that C-VAE exhibits greater resilience to variations in 

handwriting styles and noise, further solidifying its superiority over traditional methods. [3]. 

C-VAE exhibits a noteworthy advantage in producing superior images while maintaining 

control over their variability. It proves to be a valuable tool for generating images with diverse 

styles, fonts, and backgrounds, offering significant support to OCR systems tasked with 

recognizing text in various settings. Moreover, the authors highlighted its capacity to generate 

images with adjustable levels of distortion, a feature that proves beneficial in augmenting 

training data and enhancing OCR performance [96]. 

In summary, C-VAE has shown great potential in improving OCR performance by 

generating realistic and diverse images. While it has some limitations, such as its dependence on 

input image quality and the requirement for labeled data, it has also demonstrated strengths such 

as its effectiveness in specific domains, controllability of generated images, and robustness to 

variations. These findings suggest that C-VAE is a promising tool for improving OCR systems 

and can be further developed and optimized for specific OCR tasks and domains. 

2.2.2 C-VAE challenges in OCR systems 

C-VAE has shown promising results in improving OCR systems by generating high-

quality synthetic images that can augment limited training data. However, there are still several 

challenges and limitations associated with using C-VAE in this context. One of the main 

challenges is the limited scalability of C-VAE models. As the size and complexity of the training 

data increase, C-VAE models may struggle to capture the underlying patterns and generate 

meaningful synthetic images [63]. 

Another challenge is the difficulty of selecting appropriate hyperparameters for C-VAE 

models. Tuning hyperparameters such as the number of latent dimensions and the learning rate 
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can significantly affect the performance of C-VAE models. However, there is no universally 

optimal set of hyperparameters for C-VAE, and determining the best values often requires 

extensive trial and error [103]. 

A related challenge is the sensitivity of C-VAE to the quality and quantity of the input 

data. If the training data is noisy, incomplete, or biased, C-VAE models may learn spurious or 

irrelevant features that negatively affect their performance. Moreover, C-VAE models may 

struggle to generalize to new data that is significantly different from the training data [10]. 

In addition to these challenges, there are several future directions for C-VAE research in 

OCR systems. One direction is to investigate the potential benefits of using different variations 

of C-VAE, such as Wasserstein C-VAE [125] or Variational Hierarchical C-VAE [129], for 

image generation and OCR system improvement [35, 137]. Another direction is to explore the 

use of C- VAE in conjunction with other deep learning techniques, such as transfer learning or 

reinforcement learning, to enhance its performance and scalability. 

Finally, there is a need for more research on the interpretability and explain ability of C-

VAE models in OCR systems. C-VAE models can generate high-quality synthetic images, but it 

is often unclear how they achieve this and what underlying patterns they capture. Developing 

methods to interpret and visualize the learned representations of C-VAE models can improve our 

understanding of their behavior and facilitate their adoption in real-world applications. 

2.3 Conditional Generative Adversarial Networks (C-GAN) 

There are several advantages and disadvantages to using Conditional Generative 

Adversarial Networks (C-GAN) for image generation and Optical Character Recognition (OCR) 

systems [52]. One of the main advantages of C-GAN is its ability to generate high-quality 

images that match specific semantic conditions [115]. This makes it a powerful tool for tasks like 
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image synthesis, data augmentation, and OCR system improvement. C-GAN has been shown to 

outperform other generative models, such as Variational Autoencoders (VAEs), in terms of 

image quality and semantic accuracy [131]. 

Another advantage of C-GAN is its ability to learn from unstructured data. Unlike some 

other deep learning models, C-GAN does not require labeled data or explicit annotations in order 

to learn. Instead, it can learn directly from raw image data, making it a powerful tool for tasks 

like image synthesis and OCR system improvement. This can save time and resources in data 

preparation and labeling [28]. 

However, one disadvantage of C-GAN is its high computational cost and training time. 

C- GAN requires large amounts of data and computing power to train effectively. This can limit 

its applicability in certain contexts where computational resources are limited. Additionally, C-

GAN can be sensitive to hyperparameters, such as the learning rate and batch size, which can 

impact its performance and stability [123]. 

Another potential disadvantage of C-GAN is its susceptibility to mode collapse [80]. 

Mode collapse occurs when the generator produces a limited range of output images, which can 

limit the diversity and quality of the generated images. While this issue can be addressed through 

various techniques, such as minibatch discrimination and feature matching, it remains a 

challenge for C-GAN and other generative models [53, 83]. 

In conclusion, C-GAN has several advantages and disadvantages for image generation 

and OCR systems. Its ability to generate high-quality images that match specific conditions and 

learn from unstructured data make it a powerful tool for these tasks. However, its high 

computational cost and sensitivity to hyperparameters and mode collapse are potential 
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limitations that must be addressed. Despite these challenges, C-GAN remains a promising 

avenue for improving OCR systems and generating high-quality images. 

2.3.1 C-GAN applications in OCR systems 

Conditional Generative Adversarial Networks (C-GAN) have demonstrated their 

potential in OCR systems, yielding promising outcomes. By leveraging C-GAN, the quality and 

diversity of synthetic images utilized for OCR training have been enhanced, consequently 

improving performance on real-world data. Notably, researchers successfully employed C-GAN 

to generate synthetic handwriting images for OCR system training, and the resulting system 

outperformed conventional OCR systems. These findings underscore the capability of C-GAN to 

significantly enhance OCR system performance [56, 115]. 

A prominent advantage of C-GAN in OCR systems lies in its capacity to generate images 

tailored to specific semantic conditions. For instance, C-GAN proves highly effective in 

producing images of handwritten digits or letters with precise styles, thickness, and orientation. 

This versatility enables OCR systems to be trained on a diverse range of image data, thereby 

enhancing generalization and robustness. Notably, GAN was employed to synthesize Chinese 

characters with distinct stroke styles and thickness, resulting in notable improvements in OCR 

system performance [30, 118]. 

Nonetheless, a potential drawback of employing C-GAN within OCR systems is its 

vulnerability to mode collapse, wherein the diversity and quality of generated images may be 

compromised, consequently affecting OCR system performance. To mitigate this concern, 

various approaches have been suggested, including gradient penalty regularization and feature 

matching. By implementing C-GAN with gradient penalty regularization, synthetic images of 
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handwritten digits were successfully generated for OCR system training, yielding notable 

enhancements in performance compared to conventional OCR systems [60, 106]. 

Additionally, C-GAN’s drawback in OCR systems lies in its considerable computational 

cost and extensive training time. Effectively training C-GAN necessitates substantial amounts of 

data and computational power, potentially restricting its suitability in certain scenarios. To tackle 

this challenge, several strategies have been put forth, including the utilization of pre-trained 

networks and transfer learning. By employing C-GAN with transfer learning, synthetic images of 

Chinese characters were successfully generated for OCR system training, resulting in improved 

performance and reduced training time [24]. 

In conclusion, C-GAN has shown promising results for improving OCR system 

performance by generating high-quality and diverse synthetic images. Its ability to generate 

images with specific semantic conditions is a key strength, but its susceptibility to mode collapse 

and high computational cost are potential limitations. However, several techniques have been 

proposed to address these issues, such as gradient penalty regularization and transfer learning. 

Future research can further explore the potential of C-GAN and other generative models for 

OCR system improvement. 

2.3.2 C-GAN challenges in OCR systems 

While Conditional Generative Adversarial Networks (C-GAN) show great promise for 

im- proving Optical Character Recognition (OCR) systems, there are still several challenges that 

must be addressed before their full potential can be realized. One challenge is the lack of large-

scale datasets for training and evaluating C-GANs for OCR systems. The lack of high-quality 

datasets with diverse and challenging images can limit the ability of C-GANs to learn and 
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generalize to new tasks. Developing new datasets and evaluation protocols that are tailored to 

OCR tasks can help address this challenge [115]. 

Another challenge is the selection of appropriate semantic conditions for generating 

images that improve OCR systems. Selecting the right semantic conditions, such as font style, 

size, and orientation, can have a significant impact on the performance of OCR systems. 

However, finding the right set of conditions can be a difficult and time-consuming process. 

Developing automated methods for selecting semantic conditions and evaluating their impact on 

OCR performance can help address this challenge [127]. 

A related challenge is the generalization of C-GAN models to new OCR tasks and 

domains. C-GANs trained on a specific OCR task or domain may not perform well on new tasks 

or domains. Developing methods for transferring and adapting C-GAN models across different 

OCR tasks and domains can help improve their generalization capabilities [102]. 

Another challenge is the integration of C-GANs into existing OCR systems. Integrating 

C- GANs into existing OCR pipelines can be a complex and challenging process that requires 

careful consideration of factors such as speed, accuracy, and scalability. Developing efficient and 

effective integration methods that balance these factors can help address this challenge [70]. 

In conclusion, while C-GANs show great promise for improving OCR systems, several 

challenges must be addressed before their full potential can be realized. These challenges include 

the lack of large-scale datasets, the selection of appropriate semantic conditions, the 

generalization to new tasks and domains, and the integration into existing OCR systems. 

Addressing these challenges will require the development of new methods and techniques that 

can improve the performance, scalability, and generalization capabilities of C-GANs for OCR 

tasks. 
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Table 1 summarizes the state of the art of image generation techniques in improving OCR 

performance. These methods offer various advantages, such as handling noise and distortion or 

generating high-quality, diverse images. However, they also have limitations, such as training 

instability, blurry image generation, or resource requirements. 

Model Description Advantages Limitations 

Variational 

Autoencoders 

(VAEs) 

A generative model that 

learns a latent 

representation of the input 

data, generating new 

samples. 

Effective at modeling 

complex data 

distributions 

Capable of handling 

noise and distortion 

Can produce blurry 

images. 

Less control over 

generated image 

features 

Generative 

Adversarial 

Networks 

(GANs)  

A framework where a 

generator and discriminator 

compete to improve the 

generated image quality. 

Generate high-quality, 

sharp images.  

Effective at generating 

diverse images 

Training can be 

unstable. 

Can suffer from mode 

collapse (limited 

variety in samples) 

Cycle-Consistent 

Adversarial 

Networks 

(CycleGANs)  

An unsupervised image-to-

image translation technique 

that leverages cycle 

consistency. 

Enables unsupervised 

learning for image 

translation. 

Can generate visually 

consistent images 

May struggle with 

complex 

transformations. 

Limited to paired 

domain mappings 

StyleGAN (and 

its variants)  

A GAN architecture that 

allows control over the 

generated image's style, 

content, and stochastic 

features. 

Enables fine-grained 

control over image 

generation. 

Generates high-quality 

images 

\Requires large datasets 

and computational 

resources. 

Potential overemphasis 

on style 

BigGAN  A GAN architecture that 

scales up in capacity and 

size, resulting in high-

quality images. 

Generates high-

resolution, high-

quality images. 

Capable of generating 

diverse images 

Requires large datasets 

and computational 

resources. 

Can suffer from mode 

collapse 

Table 1: Generative Models 

 

2.4 Comparative Analysis of C-VAE and C-GAN 

Conditional Variational Autoencoders (C-VAE) and Conditional Generative Adversarial 

Net- works (C-GAN) are two popular deep learning architectures used for image generation and 
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im- proving Optical Character Recognition (OCR) systems. Here is a comparison of the two 

methods based on several aspects: C-GAN is generally considered to produce higher-quality 

images than C-VAE due to its ability to generate sharp and detailed images. C-VAE tends to 

produce images that are smoother and more blurred [14]. 

C-VAE is generally faster and more computationally efficient than C-GAN due to its 

simpler architecture and training process. C-VAE also requires fewer samples to achieve good 

results than C-GAN. However, C-GAN can be trained on larger and more complex datasets due to 

its ability to learn from unstructured data [48] . 

C-VAE is generally more stable and easier to train than C-GAN due to its deterministic 

nature and use of an explicit loss function. C-GAN is more prone to mode collapse and other 

stability issues, which can make it more difficult to train. However, recent advancements in C-GAN 

training, such as Wasserstein GANs, have improved stability and convergence [87]. 

Both C-VAE and C-GAN are sensitive to hyperparameters, such as learning rate, batch 

size, and regularization. However, C-GAN is generally more sensitive to hyperparameters due to 

its more complex architecture and training process. Finding the optimal set of hyperparameters 

can be a time-consuming and challenging process for both [132]. 

Both C-VAE and C-GAN can be suitable for different OCR tasks and domains depending 

on the specific requirements and constraints. C-VAE is generally more suitable for tasks that 

require smooth and blurred images, while C-GAN is more suitable for tasks that require sharp and 

detailed images. Additionally, C-GAN can be more suitable for tasks that require learning from 

unstructured data, while C-VAE can be more suitable for tasks that require faster and more efficient 

training [105]. 
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Other factors to consider when comparing C-VAE and C-GAN include their 

interpretability, flexibility, and scalability. C-VAE is generally more interpretable than C-GAN, 

as it explicitly models the underlying latent space. C-GAN is more flexible than C-VAE, as it 

can learn from unstructured data and produce images that match specific conditions. C-GAN can 

also be more scalable than C-VAE, as it can be trained on larger and more complex datasets [85]. 

In conclusion, both C-VAE and C-GAN have their strengths and weaknesses when it 

comes to image generation and OCR system improvement. Choosing between the two methods 

depends on the specific requirements and constraints of the task at hand. While C-GAN tends to 

produce higher-quality images and is more suitable for learning from unstructured data, C-VAE is 

generally faster, more stable, and more interpretable. 

2.5 Evaluation Metrics for Generative Models 

Evaluation metrics play a crucial role in assessing the performance of generative models, 

allowing us to measure the quality, diversity, and fidelity of the generated samples. These metrics 

are designed to provide quantitative insights into how well the models capture the characteristics 

of the real data distribution. 

Evaluation metrics for generative models can be broadly categorized into two groups, 

shown below in the figure 1: 

 

Figure 1: Evaluation Metrics 
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2.5.1 Classifier-based Metrics 

These metrics utilize pre-trained classifiers to extract features from both real and 

generated samples, enabling a comparative analysis. Two commonly used metrics in this 

category are the Inception Score (IS) and the Fréchet Inception Distance (FID). 

Inception Score (IS): Measures the quality and diversity of generated samples by evaluating 

both the conditional and marginal distributions. It utilizes a pre-trained Inception model to extract 

features and provides an aggregate score that combines these two aspects [15]. 

The IS measures these two aspects as follows: 

Diversity: Good models should produce a variety of different images, not just variations of the 

same image. This is quantified by the entropy of the marginal distribution over labels. A higher 

entropy means more diversity. 

Quality: Good models should generate images that look like the training data. This is quantified 

by the conditional distribution of the labels given the generated images. If a model is good, the 

conditional distribution should have low entropy for each image (i.e., the model is confident about 

the label of the image). 

Let’s denote: 

• 𝑝 (𝑦|𝑥) as the conditional distribution of the label 𝑦 given the image 𝑥, produced 

by the Inception model. 

• 𝑝 (𝑦) as the marginal distribution over labels, obtained by integrating over all 

images 𝑥 in the generated data: 𝑝 (𝑦)  = ∫ 𝑝 (𝑦|𝑥)𝑑𝑥. 

The Inception Score is then defined as: 

𝐼𝑆 =  𝑒𝑥𝑝( 𝐸_𝑥[ 𝐾𝐿(𝑝(𝑦|𝑥) || 𝑝(𝑦)) ] ) 

where: 
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• E𝑥 denotes the expectation over all generated images 𝑥. 

• KL is the Kullback-Leibler divergence, which measures how one probability 

distribution is different from a second, reference probability distribution. 

Fréchet Inception Distance (FID): Quantifies the distance between the feature representations of 

real and generated samples, leveraging a pre-trained Inception model. The FID score provides a 

measure of similarity between the distributions and is particularly useful for assessing the overall 

fidelity and diversity of generated samples. The Fréchet distance is a metric for measuring the 

similarity between two curves. Mathematically, for two continuous curves 𝐶1 : [0, 1] → 𝑀 and 

𝐶2 : [0, 1] → 𝑀 in a metric space ( 𝑀, 𝑑), it’s defined as: 

𝐹(𝐶1, 𝐶2)  =  𝑖𝑛𝑓 𝑚𝑎𝑥 𝑑(𝐶1(𝛼(𝑡)), 𝐶2(𝛽(𝑡))), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  [0,1] 

The Fréchet Inception Distance (FID) score extends this concept to compare the 

distributions of real and generated images in the feature space of a pre-trained Inception 

model. The steps to calculate the FID score include preprocessing the images, passing them 

through the Inception model, and calculating the mean and covariance of the activations for both 

real and generated images. The FID score is then computed as: 

𝐹𝐼𝐷 =  𝑑2  +  𝑡𝑟𝑎𝑐𝑒 

where: 

• 𝑑2 =  ||𝜇𝑟𝑒𝑎𝑙 −  𝜇𝑔𝑒𝑛||
2
 is the squared Euclidean distance between the means. 

• 𝑡𝑟𝑎𝑐𝑒 =  𝑇𝑟(𝛴𝑟𝑒𝑎𝑙 + 𝛴𝑔𝑒𝑛  −  2 ∗ (𝛴𝑟𝑒𝑎𝑙 ∗ 𝛴𝑔𝑒𝑛)
1

2) is the trace of the sum of covariance 

matrices and their square root. A lower FID score indicates the generated images are of 

higher quality and more similar to the real ones. 
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Although we have provided an overview of its calculation here, a more comprehensive 

discussion of the FID score, particularly its fine-tuning to better suit specific datasets, will be 

elaborated in the Methodology chapter. This forthcoming section will provide detailed insights 

into how we adapt and apply the FID score in the context of our specific research and data. By 

optimizing this measure for our unique dataset, we aim to achieve a more precise evaluation of the 

performance of our generative models. Stay tuned for this in-depth exploration in the upcoming 

chapters. 

2.5.2 Divergence-based Metrics 

These metrics estimate divergences or distances between the distributions of real and 

generated samples, providing a more principled measurement of fidelity and diversity. Some 

commonly used metrics in this category include Kullback-Leibler divergence (KL), Jensen-

Shannon divergence (JS), Wasserstein distance (W), and Maximum Mean Discrepancy (MMD). 

Kullback-Leibler Divergence (KL): Measures the divergence between the distributions of real 

and generated samples. It quantifies the difference in information content between the two 

distributions [40]. The KL Divergence between two probability distributions 𝑃 and 𝑄 is defined 

as: 

𝐾𝐿(𝑃 || 𝑄)  =  ∑ 𝑃(𝑥)  ∗  𝑙𝑜𝑔 (
𝑃(𝑥)

𝑄(𝑥)
)  𝑓𝑜𝑟 𝑎𝑙𝑙  

It measures the difference in the information content between the two distributions, 𝑃 and 

𝑄. 

Jensen-Shannon Divergence (JS): Calculates the divergence between two probability 

distributions, typically the real and generated data distributions. It captures the similarity and 

difference between the two distributions [86]. 
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The JS Divergence is another method to measure the similarity between two probability 

distributions, 𝑃 and 𝑄. It’s defined as: 

𝐽𝑆(𝑃 || 𝑄)  =  1/2 ∗  𝐾𝐿(𝑃 || 𝑀)  +  1/2 ∗  𝐾𝐿(𝑄 || 𝑀) 

where 𝑀 is the average of 𝑃 and 𝑄, defined as: 

𝑀 =  1/2 ∗  (𝑃 +  𝑄) 

Wasserstein Distance (W): Also known as Earth Mover’s Distance, it measures the distance 

between the real and generated data distributions by computing the minimum cost of transforming 

one distribution into another [130]. 

The Wasserstein distance between two probability distributions 𝑃 and 𝑄 is defined as the 

solution of the following optimization problem: 

𝑊(𝑃, 𝑄)  =  𝑖𝑛𝑓 ∑ |𝑥𝑖  −  𝑦𝑖|  ∗  𝑃(𝑇 = 𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

where the infimum is taken over all joint distributions of (𝑋, 𝑌) with marginal distributions 

𝑃 and 𝑄. 

Maximum Mean Discrepancy (MMD): Measures the distance between the means of the real and 

generated data distributions in a reproducing kernel Hilbert space. It provides a principled way 

to measure the similarity between the two distributions [21]. 

The MMD between two distributions 𝑃 and 𝑄 in a reproducing kernel Hilbert space 𝐻 

with a kernel 𝑘 is defined as: 

𝑀𝑀𝐷(𝑃, 𝑄)  =  𝑠𝑢𝑝 ||𝐸𝑃[𝑘(𝑋, . )] − 𝐸𝑄[𝑘(𝑌, . )]||
𝐻
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Evaluation 

Metric 

Methodology Pros Cons 

Inception 

Score (IS) 

 

  

 

Uses a pre-trained 

Inception model to extract 

features from real and 

generated samples, 

compares the conditional 

and marginal distributions 

of generated data. 

Measures both the 

realism and diversity 

of the generated 

samples. 

Sensitive to the choice of 

classifier, potential bias 

towards certain types of data, 

does not account for issues 

like class-conditional 

generation or memorization. 

Fréchet 

Inception 

Distance (FID) 

Measures the distance 

between real and generated 

data distributions in the 

feature space of an 

Inception network. 

Provides a holistic 

view of the quality and 

diversity of generated 

samples, better 

correlation with human 

judgement than IS. 

Assumes high-level and 

complex features in images, 

may not be effective for low-

quality images. 

Kullback-

Leibler 

Divergence 

(KL) 

Estimates the divergence 

between real and generated 

data distributions. 

Provides a principled 

measurement of the 

fidelity and diversity of 

the generated samples. 

Computationally expensive, 

requires access to the true 

data distribution or its 

samples, difficult to interpret 

or compare across different 

models or datasets. 

Jensen-

Shannon 

Divergence 

(JS) 

Calculates the divergence 

between two probability 

distributions, typically 

between the real and 

generated data 

distributions. 

Symmetric measure, 

provides a principled 

measurement of the 

similarity between real 

and generated samples. 

Computationally expensive, 

requires access to the true 

data distribution or its 

samples, difficulty to 

interpret or compare across 

different models or datasets. 

Wasserstein 

Distance (W) 

Also known as the Earth 

Mover’s Distance, 

measures the distance 

between the real and 

generated data 

distributions. 

Provides robust and 

principled ways to 

measure the fidelity 

and diversity of the 

generated samples. 

Computationally expensive, 

requires a lot of resources 

and time, could be difficult to 

interpret. 

Maximum 

Mean 

Discrepancy 

(MMD) 

Measures the distance 

between means of the real 

and generated data 

distributions in a 

reproducing kernel Hilbert 

space. 

Does not require 

density estimation, 

provides a principled 

way of measuring the 

similarity between two 

distributions. 

Difficult to choose an 

appropriate kernel, requires 

access to the true data 

distribution or its samples, 

can be computationally 

intensive. 

Table 2: Evaluation Metrics for Generative Models 
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where sup denotes the supremum, 𝐸𝑃 and 𝐸𝑄 denote the expectations under the 

distributions 𝑃   and 𝑄, 𝑋 and 𝑌 are random variables with distributions 𝑃 and 𝑄 respectively, and 

|| .||𝐻 denotes the norm in the Hilbert space 𝐻. 

Divergence-based metrics offer a more rigorous and theoretically grounded approach but 

may be computationally expensive and require access to the true data distribution or its samples. 

When selecting evaluation metrics for generative models, researchers must consider factors such 

as the specific characteristics of the data, research goals, computational efficiency, and 

interpretability. Understanding the strengths and limitations of different metrics is essential to 

choose the most appropriate evaluation approach for a given scenario. Table 2 provides a 

comparative analysis for various evaluation metrics for generative models: 

As our research focuses specifically on real-time optical character recognition (OCR), it 

be- comes increasingly important to find an evaluation metric that not only accurately measures 

the performance of generative models but also does so quickly. Optical character recognition is a 

time-sensitive application where rapid generation and evaluation of synthetic images are crucial 

for efficient operation. Handwritten Optical Character Recognition (OCR) is a challenging task due 

to the high degree of variation in handwriting. Handwriting varies significantly from person to 

person, and even the same person’s handwriting can change over time or under different 

conditions. It can also be affected by factors such as the writing instrument used, the writing 

surface, and the speed at which the person is writing. This makes it more difficult for OCR systems 

to correctly identify characters, as there is no single ’template’ that can be used to match each 

character. 

Image generation, particularly through Generative Adversarial Networks (GANs) and 

Variational Autoencoders (VAEs), has the potential to aid in this task. Generative models can be 
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trained to generate a wide range of examples for each character, which can help an OCR system 

to learn the diversity of appearances each character can have. This can lead to a more robust OCR 

system that is better able to handle the variability in handwriting. 

However, the evaluation metrics for generative models, which are often used to assess 

the quality of generated images, have limitations when it comes to recognizing low-quality 

images. These metrics, such as the Inception Score (IS), Fréchet Inception Distance (FID), 

Kullback- Leibler Divergence (KL), and others, are designed to measure the overall quality and 

diversity of the generated images, rather than focusing on specific details that might be crucial for 

OCR [4, 58]. For example, a model might generate images that score highly on these metrics, 

indicating that they have high quality and diversity, but if the images are not high-resolution or 

clear enough, the OCR system may still struggle to correctly identify characters. 

Furthermore, these metrics can be computationally intensive, which makes it harder to 

use them in real-time applications or when dealing with large volumes of data. Therefore, while 

image generation can potentially improve the performance of handwritten OCR systems, there is 

still a need for improved evaluation metrics that can accurately assess the quality of generated 

images in the context of OCR, particularly when dealing with low-quality images or real-time 

applications. 

In this chapter, we conducted a thorough examination of the literature concerning 

Generative Models designed to enhance Optical Character Recognition (OCR) performance, as 

well as the assessment metrics employed for these models. In the following chapter, we will 

delve into the specific Generative Models we deployed to augment the Arabic Handwritten Digit 

Dataset in OCR. Additionally, we will introduce our innovative method for accurately calculating 
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the Fréchet Inception Distance (FID) score, providing a robust measure for the quality of the 

images generated.  
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CHAPTER 3 

METHODOLOGY 

The purpose of this methodology chapter is to provide a detailed and comprehensive 

explanation of the research design, data collection, and analysis methods employed in this study. 

These methodological components are essential for understanding the process and rationale 

behind the investigation into the effectiveness of Conditional Generative Adversarial Networks 

(C-GANs) and Conditional Variational Autoencoders (C-VAEs) for enhancing Optical Character 

Recognition (OCR) performance in Arabic handwritten digit recognition. 

In this study, we aim to compare C-GANs and C-VAEs for image generation, introduce a 

new approach to correctly calculate the FID score for monitoring the quality of generated images. 

We also propose another new approach to examine the performance of the improved OCR 

systems using Saliency Maps. The research design, data collection, and analysis methods will 

guide the investigation and ensure that the results can provide valuable insights into the use of 

generative models for OCR performance enhancement. 

3.1 Research Design 

The overall research design of this study is a comparative, quantitative, and experimental 

approach. This design was chosen because it allows for a systematic comparison of C-GANs 

and C-VAEs in generating synthetic images and enhancing OCR performance. By employing an 

experimental approach, we can measure and analyze the impact of different generative models 

on OCR systems and identify the most effective strategies for improving accuracy and efficiency. 

The choice of using GANs and VAEs for data augmentation in OCR systems is based on their 

proven effectiveness in quickly generating synthetic images and their potential for improving 

the performance of machine learning models. Both C-GANs and C-VAEs have been successfully 
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applied to a wide range of computer vision tasks, including image synthesis, style transfer, and image 

inpainting, making them relevant and promising candidates for enhancing OCR performance [9]. 

3.2 Dataset 

The dataset used for this study is the Arabic Handwritten Digits Dataset (AHDD), which 

was created by El-Sawy et al. [108] The dataset contains 60,000 grayscale images of handwritten 

Arabic digits, with each digit having 6,000 samples. The images are 28x28 pixels in size and 

represent Arabic digits ranging from 0 to 9 which is shown below in figure 2. This dataset is 

characterized by its variability in writing styles, as well as the presence of noise and distortions, 

which makes it a suitable choice for investigating the effectiveness of GANs and VAEs in improving 

OCR systems.  The dataset was divided into three subsets: training, validation, and test sets. 

Figure 2: Arabic Handwritten Digits Dataset 

Following the standard practice in machine learning research, 70% of the data was 

allocated to the training set, 15% to the validation set, and 15% to the test set [35]. This division 

ensures that the models are trained on a sufficiently large dataset while providing separate 

subsets for model selection and evaluation. 

3.3 Image Generation 

The process of generating synthetic images using C-GAN and C-VAE involved several 

steps, including pre-processing and hyperparameter tuning. The pre-processing steps included 

data normalization, which involved scaling the pixel values to a range between 0 and 1, and data 

augmentation through random transformations, such as rotation and scaling. For both C-GAN and 

C-VAE, various architectures and hyperparameter settings were explored to optimize the quality 
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of the generated images. Hyperparameters included learning rates, batch sizes, and the number of 

training epochs [42]. 

3.3.1 C-GAN 

The algorithm of the Conditional Generative Adversarial Network (C-GAN) [89] , as 

shown in figure 3, is an extension of the GANs architecture, which was initially proposed by 

Goodfellow et al. [55]. GANs consist of two neural networks: a generator that creates synthetic 

data samples and a discriminator that distinguishes between real and synthetic samples. These two 

networks are trained simultaneously in a min-max game, where the generator tries to create 

samples that can fool the discriminator, while the discriminator attempts to accurately classify 

the samples as real or synthetic. 

C-GANs incorporate additional conditional information (e.g., class labels) into both the 

generator and discriminator networks, allowing the model to generate samples based on 

specific conditions. The conditional information is typically concatenated with the input noise 

vector for the generator and with the data samples for the discriminator. This modification 

enables the generation of more targeted and diverse samples, making C-GANs particularly useful 

for various applications, such as data augmentation and image synthesis [51]. The Conditional 

Figure 3: C-GAN Architecture 
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Generative Adversarial Network (C-GAN) is described in Algorithm 1. The architecture of C-

GAN is illustrated in Figure 3. 

For C-GANs, the loss function is based on binary cross-entropy, which is the original 

GAN loss function proposed by Goodfellow et al. [55]. The C-GAN loss function aims to 

optimize the generator (G) and the discriminator (D) through a min-max game. The generator 

tries to create samples that can fool the discriminator, while the discriminator attempts to 

accurately classify the samples as real or synthetic. Conditional information, such as class labels, 

is incorporated into both the generator and discriminator networks. The C-GAN loss function 

can be expressed as: 

L(𝐺, 𝐷) = 𝔼𝑥,𝑦∼𝑝data(𝑥,𝑦)[log𝐷(𝑥, 𝑦)]

+𝔼𝑧∼𝑝𝑧(𝑧),𝑦∼𝑝data(𝑦)[log(1 − 𝐷(𝐺(𝑧, 𝑦), 𝑦))]
                     (1) 

The architecture of this Conditional Generative Adversarial Network (CGAN) consists of 

two main components: a generator and a discriminator. 

Generator: The generator is responsible for generating new synthetic data. It takes a random 

noise vector and a class label as input, which are then passed through a series of dense and 

transposed convolution layers. The output of the generator is a 28 × 28 grayscale image. The 

generated image is conditioned on the input class label through an embedding layer, a dense layer, 

and a reshaping operation, after which the label-informed tensor is concatenated with the generator 

input. 

Discriminator: The discriminator’s task is to differentiate between real and fake (generated) 

data. It receives an image and outputs two values: one indicating whether the image is real or 

fake, and the other indicating the class of the image. The architecture of the discriminator includes 

convolution layers, batch normalization, LeakyReLU activation functions, dropout layers, and 

finally, two dense layers for the two outputs. 
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C-GAN Parameters: 

Latent Dimension: The size of the random noise vector that is fed into the generator as an input. 

This random noise vector, often called a latent vector, is a crucial aspect of Generative Adversarial 

Networks (GANs). It provides the random seed or the initial point of randomness that the generator 

will use to produce an output. In this work, we used a latent dimension equal to 100. The size 

(i.e., the number of elements in the vector) is a hyperparameter and can be tuned for different 

results. 

Batch Size: Refers to the number of training examples utilized in one iteration. In this 

experiment, we used a batch size of 16. In the context of training deep learning models, a 

’batch’ refers to the subset of the dataset that is used for a single update to the model weights 

during training. Using a batch size of 16 means that the weights will be updated after 16 

examples have been processed. Choosing the right batch size impacts learning as it influences the 

accuracy of the model’s gradient estimate, the stability of the learning process, and the training 

time. 

Epochs: A measure of the number of times all of the training vectors are used once to update the 

weights in the model. We trained the model for 10 epochs. Running the training process for 10 
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epochs means going through this entire process 10 times. More epochs could lead to better 

learning up to a point, after which the model might just be overfitting. 

Optimizer: The optimizer is the algorithm used to change the attributes of the neural network 

such as weights and learning rate in order to reduce the losses. Adam is an optimization 

algorithm that can be used instead of the classical stochastic gradient descent procedure [8] to 

update network weights iteratively based on training data. The learning rate (0.001) controls how 

much to change the model in response to the estimated error each time the model weights are 

updated, and epsilon (1 × 10−8) is a very small number to prevent any division by zero in the 

implementation. 

Loss Functions: Loss functions are used to measure how well the model is doing at learning the 

mapping function. Binary Cross-Entropy loss [59] is used for binary classification problems. It 

is suitable when models output probabilities for the two classes. Sparse Categorical Cross-

Entropy loss is a form of categorical cross entropy that is very useful when dealing with large 

categorical output classes. It is used when the labels and predictions are in the form of integers 

rather than one-hot encodings. 

In the training loop, the discriminator and the generator are trained in an alternating 

manner. First, the discriminator is trained on a batch of real samples and a batch of fake samples 

(generated by the generator).  Then, the generator is trained using the combined GAN model, 

where the discriminator’s weights are frozen. 

The discriminator tries to correctly classify real and fake images, while the generator tries 

to generate images that the discriminator cannot distinguish from real images. Over time, both 

the generator and discriminator improve their capabilities, creating a kind of arms race, leading to 

the generation of more realistic images. 
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3.3.2 C-VAE 

A Conditional Variational Autoencoder (C-VAE) as shown in figure 4 is a variant of the 

VAE architecture introduced by Kingma et al. [73]. VAEs are generative models that learn to 

encode data samples into a lower-dimensional latent space and then decode the latent 

representations back into the original data space. VAEs consist of two main components: an 

encoder network that learns the approximate posterior distribution of the latent variables given 

the data, and a decoder network that learns the likelihood of the data given the latent variables 

[71]. 

C-VAEs integrate conditional information (e.g., class labels) into both the encoder and 

decoder networks, enabling the generation of data samples conditioned on specific variables. 

The conditional information is typically concatenated with the input data for the encoder and with 

the latent variables for the decoder. This modification allows the model to generate more diverse 

and context- specific samples, which can be beneficial for tasks such as image synthesis, data 

augmentation, and semi-supervised learning. 

Both C-GANs and C-VAEs have be implemented using popular machine learning 

frameworks like TensorFlow [101] . This facilitates efficient model development, training, and 

evaluation, enabling researchers to thoroughly investigate the performance of both generative 

models in various contexts, including OCR enhancement. The architecture of the C-VAE is 

illustrated in Figure 4. 

 

Figure 4: C-VAE Architecture 



 

 38 

For C-VAEs, the loss function is a combination of the reconstruction loss and the KL 

(Kullback- Leibler) divergence [12]. The reconstruction loss measures the difference between the 

input data and the generated data after encoding and decoding, ensuring that the C-VAE can 

accurately reconstruct the input samples. The KL divergence measures the difference between the 

approximate posterior distribution learned by the encoder and the prior distribution of the latent 

variables, encouraging the C-VAE to learn a smooth and structured latent space. The C-VAE 

loss function can be expressed as: 

 
𝐿C−VAE(𝑥, 𝑦) = 𝔼𝑧∼𝑞(𝑧|𝑥,𝑦)[log𝑝(𝑥|𝑧, 𝑦)]

−𝐷KL(𝑞(𝑧|𝑥, 𝑦)||𝑝(𝑧|𝑦))
                                                  (2) 

Both loss functions play a critical role in the training process and determine the 

effectiveness of the C-GAN and C-VAE models in generating synthetic images for data 

augmentation and improving the performance of OCR systems. 

The optimization algorithm used for both generative models and the OCR model was the 

Adam optimizer, which has been shown to be effective in training deep neural networks [138]. 

Training parameters, such as the learning rate, batch size, and the number of training epochs, were 

selected based on a of literature recommendations and empirical testing [19]. 

CVAE is structured with an encoder, a decoder, and a reparameterization step in the 

middle. The encoder converts the input data into a latent representation, while the decoder 

reconstructs the data back from the latent space.  

Encoder: The Encoder is defined as a class. It’s a neural network that transforms input data into 

two parameters in a latent space, which are means and log_vars (logarithm of variances). These 

parameters are used to sample a latent vector, 𝑧. If the CVAE is conditional (i.e., "conditional" is 

set to True), the encoder will consider the labels of the input data (encoded as one-hot vectors) 

along with the input data itself.  
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Decoder: The Decoder is also defined as a class. It’s another neural network that transforms a 

given latent vector back to the original data. If the CVAE is conditional, the decoder will 

consider the labels of the input data (encoded as one-hot vectors) along with the latent vector. 

The VAE model is defined to have the encoder and decoder as its components. The forward 

method of the VAE is where the encoder’s output is sampled (using the reparameterization trick 

to allow backpropagation) and passed through the decoder [66]. 

C-VAE Parameters: 

Number of Epochs: The C-VAE model is configured with 10 epochs. The term ’epoch’ refers 

to a single iteration where the whole dataset is exposed to the model, encompassing both forward 

and backward passes. Therefore, in this scenario, the entire dataset will make ten complete 

journeys through the model. 

Batch Size: The batch size has been set to 16. This configuration determines that during the 

training process, the model will receive sixteen samples from the dataset at every step, again 

covering both forward and backward passes. While smaller batch sizes may speed up the 

training process, it could also destabilize it, resulting in more fluctuations in loss. Striking a 

balance is crucial [114]. 

Learning Rate: A learning rate of 0.001 is established. The learning rate dictates the extent of 

alteration in the model parameters in response to the estimated error each time the model’s weights 

are updated. Setting it too high may cause the model to overshoot the optimal solution, while a 

too low rate may either slow down the training or cause it to stagnate. The value of 0.001, used 

here, is a common choice for many training scenarios. It is also important to note that the Adam 

optimizer is being utilized, with a learning rate of 0.001 and epsilon set at 1 × 10−8 [114]. 
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Encoder and Decoder Layer Sizes: The architecture of the model is defined by the encoder and 

decoder layer sizes. The encoder’s input layer consists of 784 neurons (28x28, reflecting the size 

of the input image), followed by a layer with 512 neurons. While this particular architecture is 

fairly simple with just two layers, more could be added for models that need to handle more 

complexity. The decoder part of the VAE is also delineated by layer sizes. Its input layer, linked 

to the latent space, has 512 neurons, followed by a layer with 784 neurons. This reflects a 

mirrored structure to the encoder but in the reverse sequence [134]. 

Latent Space Dimensionality: Lastly, the dimensionality of the latent space, otherwise known 

as the latent size, is set to 10. This parameter determines the size of the compressed 

representation of the input data. The selection of the latent size represents a trade-off; while a 

larger latent space might capture more complex representations, it also increases computational 

complexity and potentially heightens the risk of overfitting. 

The loss function used for training the CVAE is the sum of the reconstruction loss (Binary 

Cross Entropy) and the KL divergence, which is a measure of how one probability distribution 

diverges from a second, expected probability distribution. The Adam optimizer is used to 

minimize this loss. 

3.3.3 Optimization 

The Adam (Adaptive Moment Estimation) optimizer is a popular optimization algorithm 

for training deep neural networks, introduced by Kingma et al [72] . It is an extension of the 

stochastic gradient descent (SGD) algorithm [8] that adapts the learning rate for each parameter 

individually, based on the first and second moments of the gradients. This adaptive learning rate 

approach allows the optimizer to converge faster and achieve better performance compared to 

standard SGD. The Adam optimizer computes the first moment (mean) and the second moment 
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(uncentered variance) of the gradients using exponential moving averages. It then corrects the 

bias in these moment estimates and updates the parameters using the corrected moments. The 

update rule for each parameter can be expressed as: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡, 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2, 

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡, �̂�𝑡 =

𝑣𝑡

1−𝛽2
𝑡 𝜃𝑡 + 1 = 𝜃𝑡 − 𝛼

�̂�𝑡

√�̂�𝑡+𝜖
                  (3) 

Here, 𝑔𝑡 denotes the gradient at time step 𝑡, 𝛽1 and 𝛽2 are the exponential decay rates for 

the first and second moment estimates, 𝑚𝑡 and 𝑣𝑡 represent the first and second moment estimates, 

�̂� 𝑡 and 𝑣ˆ𝑡 are the bias-corrected moment estimates, 𝛼 is the learning rate, 𝜖 is a small constant 

to avoid division by zero, and 𝜃𝑡 is the parameter at time step 𝑡. The choice of the Adam 

optimizer for both the generative models and the OCR model in this study was based on its proven 

effectiveness in training deep neural networks. Training parameters, such as learning rate, batch 

size, and the number of training epochs, were selected based on a combination of literature 

recommendations and empirical testing [107]. 

3.4 Evaluation 

Fréchet distance, named after Maurice Fréchet, a French mathematician, is a measure of 

similarity between curves [7]. It captures the intuition that two curves are close if you can travel 

along both curves at the same time while keeping the leash (a line that connects the points on two 

curves) short. More formally, the Fréchet distance is defined as the minimum leash length that is 

sufficient for both ends of the leash to traverse their respective curves from start to end. One can 

imagine walking a dog on a leash: you can move at different speeds, pause, and even reverse, but 

you can’t teleport or leave the path. 
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In mathematics, the Fréchet distance between two curves in a metric space is a measure 

of the extent to which the curves are close to each other in their overall shapes rather than 

merely at individual points. This is particularly useful in many scientific fields, including 

computational geometry, computer graphics, and GIS systems, where comparing the similarity of 

different trajectories, paths, or time series data is important [57]. 

Mathematically, the Fréchet distance can be defined as follows: 

𝐿𝑒𝑡 𝐶1 ∶  [0,1] −>  𝑀 𝑎𝑛𝑑 𝐶2 ∶  [0,1] −>  𝑀 be two continuous curves in a metric space 

(𝑀, 𝑑), where d denotes the distance in M.  

We are looking for reparameterizations 𝛼, 𝛽 ∶  [0,1] −> [0,1], which are continuous and 

non-decreasing with 𝛼(0)  =  𝛽(0)  =  0 𝑎𝑛𝑑 𝛼(1)  =  𝛽(1)  =  1.  

The Fréchet distance is then defined as the infimum of all constants 𝜀 ≥  0 such that 

there exist reparameterizations α and β with the property: 

𝑠𝑢𝑝 𝑡 ∈  [0,1] 𝑑(𝐶1(𝛼(𝑡)), 𝐶2(𝛽(𝑡)))  ≤  𝜀    (4) 

The expression 4 represents the maximum length of the leash needed for a given pair of 

reparameterizations α and β. 

Therefore, the Fréchet distance is the minimum maximum leash length over all pairs of 

reparameterizations. In other words, it represents the shortest possible leash that would allow 

someone traversing the first curve and a dog traversing the second curve to stay connected by the 

leash for all possible ways of moving along the curves. In the case of discrete curves (also known 

as polygonal curves), the computation of the Fréchet distance is significantly simplified because 

the number of points on the curve is finite. We can imagine each curve as a sequence of points, 

and we’re interested in comparing these sequences in a way that respects the order of the points. 
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3.4.1 Fréchet Inception Distance (FID) Score 

The Fréchet Inception Distance (FID) score is a metric used for evaluating the quality of 

images generated by generative models. It calculates the distance between the real and generated 

images’ feature representations, where these representations are calculated using an Inception 

model [120]. 

The use of the Inception v3 model is crucial in the FID score calculation because it is 

capable of extracting high-level features from the images, allowing a meaningful comparison 

between the real and generated images. It’s also important to note that the Inception v3 model is 

used as a fixed feature extractor and is not trained or fine-tuned during the FID score calculation. 

Inception v3 is a convolutional neural network (CNN) developed by Google for image 

recognition tasks. This model is an enhancement of its predecessors, Inception v1 (also known 

as GoogLeNet) and Inception v2 [119]. 

The defining feature of the Inception v3 architecture is the use of "modules," or small 

clusters of layers, repeatedly deployed within the network. These "Inception modules" are 

designed to discern patterns at varying scales within the image. 

One such module utilizes factorized 7 × 7 convolutions to reduce computational 

complexity while preserving the capability to identify high-level features from the input. This 

is done by breaking down the 7 × 7 convolution into a sequence of 1 × 7 and 7 × 1 convolutions, 

reducing both the number of parameters and computational cost. 

The inception architecture is further extended with the integration of pool projection, an- 

other module that includes a pooling operation running parallel to convolution operations. This 

enhancement increases the model’s capacity to handle diverse inputs and combats overfitting. 
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The architecture begins with a standard convolutional and max pooling layer, succeeded by 

multiple inception modules. Auxiliary classifiers are included in the network, which helps 

propagate back gradient information into the deep network, mitigating the vanishing gradients 

issue. 

Generative models can leverage the Inception v3 model to extract features from various 

layers, enabling the computation of the Fréchet Inception Distance (FID) score. Inception v3, a pre-

trained model on the ImageNet dataset, serves as a foundation for feature extraction. The FID 

score is employed to assess the quality of images generated by these generative models. 

Rather than using the default "pool3" layer, corresponding to the 2048-dimensional final 

average pooling features, other layers can be used: 

• 64-dimensional features: These correspond to features extracted post the first max 

pooling layer. Such features will represent very basic image features such as edges and 

colors. 

• 192-dimensional features: These correspond to features extracted post the second max 

pooling layer. These features will capture more complex patterns compared to the first 

layer but will still be relatively low-level. 

• 768-dimensional features: These correspond to features extracted before the auxiliary 

classifier (pre-aux classifier features). These features represent a higher level of 

abstraction and are closer to the final classification layer. 
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• 2048-dimensional features: These correspond to features extracted from the final 

average pooling layer (this is the default in the FID score). These high-level features 

offer a good balance between low-level image features and high-level semantic content. 

Figure 5: ImageNet Features learned by Inception v3[100] 

Figure 5 illustrates the learned features from different level layers of Inception V3, which 

was trained on the ImageNet dataset. The depicted features span from basic characteristics found 

in the lower convolutional layers (left) to increasingly abstract features observed in the higher 

convolutional layers (right). 

The model culminates with an average pooling layer and a SoftMax layer providing the 

final classification results. 

Pre-training a neural network on a large-scale dataset like ImageNet allows the model to 

learn useful feature representations from the data. When applied to a specific task on a new dataset, 

it can be fine-tuned, meaning the weights learned during pre-training are minutely adjusted to align 

with the new data. This approach usually results in superior performance than training a model 

from scratch, especially when the new dataset is relatively small, as the pre-training assists in 

preventing overfitting. Thanks to its diverse and high volume of classes, the ImageNet dataset 

allows models like Inception v3 to learn a broad spectrum of feature representations. 

The process of calculating the Fréchet Inception Distance (FID) score starts by preprocessing 

the real and generated images to align with the input requirements of the Inception model. 

Typically, this preprocessing involves resizing the images to the input size expected by the 

model and normalizing the pixel values. 
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Next, a pre-trained Inception model is loaded. This model is often trained on a large dataset 

like ImageNet, providing it with a broad understanding of various image features. Once the 

model is prepared, the real images are passed through the Inception model. The activations from a 

selected layer are then obtained, capturing the high-level features of the real images. 

Similarly, the generated images are also passed through the same Inception model. 

Activations from the same selected layer are extracted, providing a representation of the high-

level features present in the generated images. 

The next step involves statistical analysis of these extracted activations. The mean of the 

activations from the real images, denoted as 𝜇real, and the mean of the activations from the 

generated images, denoted as 𝜇gen, are calculated. Subsequently, the covariance matrix of the 

activations from the real images, denoted as Σreal, and the covariance matrix of the activations from 

the generated images, denoted as Σgen, are computed. 

Further, the squared Euclidean distance between the means of the real and generated 

activations is computed. This is represented as: 

𝑑2  =  |𝜇𝑟𝑒𝑎𝑙 − 𝜇𝑔𝑒𝑛|
2
 

This measurement offers a quantifiable assessment of the difference between the features 

of the real and generated images. 

Following this, the trace of the sum of the covariance matrices and their square root is 

calculated. 

This is expressed as: 

𝑟𝑎𝑐𝑒 = (Σ𝑟𝑒𝑎𝑙  +  Σ𝑔𝑒𝑛 −  2 ∗  (Σ𝑟𝑒𝑎𝑙 ∗  Σ𝑔𝑒𝑛)
1
2) 

This calculation provides an additional measure of the difference in the dispersion of the 

real and generated image features. 
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Finally, the FID score is calculated using the following formula: 

𝐹𝐼𝐷 =  𝑑2  +  𝑡𝑟𝑎𝑐𝑒 

This score reflects both the difference in the mean and dispersion of the real and 

generated image features, providing a comprehensive measure of the similarity between the real 

and generated images. This score is used as a standard measure to evaluate the performance of 

generative models. The FID score measures the similarity between the feature distributions of the 

real and generated images. It takes into account both the differences in means (representing content) 

and the differences in covariances (representing variety) between the two distributions. 

The smaller the FID score, the closer the generated image distribution is to the real 

image distribution, indicating higher quality and similarity. Conversely, a larger FID score 

indicates greater dissimilarity between the distributions, implying lower quality and less 

resemblance to the real images. 

It is important to note that FID is generally used with Inception activations from a 

specific layer of the Inception model, typically the activations from the last layer. The activations 

represent high-level features extracted from the images, which are then used to compute the 

mean and covariance. This approach enables a meaningful comparison between the real and 

generated image distributions. 

3.4.2 FID Score Limits 

While the Fréchet Inception Distance (FID) score is widely used and provides a holistic 

view of the quality and diversity of generated images, it has its limitations. The traditional FID 

score calculation relies on high-level features extracted from the Inception model, which may not 

be suitable for low-fidelity or low-quality images [67, 75, 136]. 
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In our investigation, we discovered that the FID score can be significantly improved by 

using lower-dimensional Inception activations specifically tailored to low-quality images. By 

focusing on these lower-dimensional features, such as shapes and edges, which are more relevant 

and prominent in low-quality images, we can obtain a more accurate measure of image similarity 

that aligns better with human perception. 

However, this realization raises further questions that need to be addressed. We need to 

investigate the complexity of visual features present in our dataset, in this case, Arabic handwritten 

digit images, and determine the complexity of features in the pre-trained Inception model that 

should be used to calculate the FID score. This investigation will enable us to fine-tune the FID 

computation and enhance the evaluation of generative models in the context of real-time optical 

character recognition tasks. 

By exploring these questions and finding the optimal approach, our research aims to 

establish a more accurate and efficient method for evaluating generative models when generating 

images with different feature complexity, specifically focusing on the task of recognizing 

handwritten character images. The goal is to develop an evaluation method that aligns well with 

human perception and improves the performance of generative models in real-time optical 

character recognition applications. 

3.4.3 Low-dimensional Fréchet Inception Distance Score 

We have introduced the Low-dimensional Fréchet Inception Distance (LFID), which is a 

designed metric that evaluates the discrepancy between the distributions of real and generated 

images. By focusing on lower-level image features vital for character recognition, LFID allows for 

a detailed assessment of synthetic image quality in relation to its impact on Optical Character 

Recognition (OCR) systems. This metric is crucial during training, enabling model alterations to 
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yield images with optimal feature quality, thus improving OCR performance. Furthermore, 

LFID facilitates early termination of the learning process when models reach desired 

performance, helping to conserve resources required for model training. We have adapted the 

LFID to suit character recognition by lowering feature levels, thus reducing computational load 

when calculating the Fréchet distance. This modification enhances LFID’s suitability for real-

time data augmentation, despite its low dimensionality. Even with reduced dimensions, LFID has 

been shown to offer accurate image quality evaluations in comparison to the standard Fréchet 

Inception Distance (FID). By maintaining a robust correlation with human perceptual judgments, 

LFID guarantees reliable evaluations of generated images. The LFID allows for the quick 

evaluation of generated images without sacrificing accuracy, facilitating real-time monitoring and 

adjustments during training. This immediate feedback helps in spotting and addressing issues 

with the synthetic images, leading to changes in the model architecture or training parameters. 

Consequently, this enhances the quality of the generated images, improving OCR performance. 

In essence, LFID is an efficient and accurate alternative to traditional FID for monitoring image 

generation tasks, including OCR. It minimizes the dimensionality of Inception features, speeding 

up the evaluation of generated image quality without losing accuracy. Hence, it’s an ideal choice 

for real-time monitoring and adjustments during training. To assess the performance of C-GAN 

and C-VAE in producing synthetic images and enhancing OCR performance, we utilized a 

combination of innovative and conventional metrics. The LFID is a crucial part of this evaluation, 

effectively assessing the quality of images generated by the models during training. LFID’s 

design is computationally efficient while preserving the ability to precisely evaluate image 

quality. The study also implemented ablation experiments to assess the significance of different 

components of the generative models and the OCR systems. This method, which involves the 
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systematic removal or modification of specific components or hyperparameters, enabled the 

researchers to understand their influence on overall model performance. This broad assessment 

approach confirmed the findings and shed light on the aspects contributing to the improved OCR 

performance through generative-based data augmentation. 

3.4.4 Synthetic Image Evaluation Procedure 

This section on outlines the process for evaluating image quality generated by generative 

models, primarily using the Low-dimensional Fréchet Inception Distance (LFID) score. We’ll 

cover feature extraction with the Inception V3 model, visualizing learned features, selecting 

relevant complexity levels, and computing FID score. LFID measures the similarity between real 

and generated images’ feature distributions, guiding model adjustments and hyper-parameter 

tuning. Early stopping will be discussed as a strategy to prevent overfitting during model training. 

This section aims to provide a concise understanding of the evaluation process for low-

dimensional synthetic images. 

Feature Extraction: This initial phase of the evaluation process involves extracting meaningful 

features from images using a large, pre-trained model. The model is the Inception V3 

architecture, renowned for its proficiency in handling a wide variety of image-related tasks. 

Pretrained Model: We employ the Inception V3 model, which has been pre-trained on the 

ImageNet dataset [79]. 

Mathematically, the Inception V3 model works by convolving the image with learned 

kernels, applying batch normalization, and then a rectified linear unit (ReLU) non-linearity, 

following this general formula: 

𝑋_𝑛𝑒𝑤 =  𝑅𝑒𝐿𝑈(𝐵𝑁(𝐶𝑜𝑛𝑣(𝑋_𝑜𝑙𝑑, 𝑊)  +  𝑏)) 
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Here, Conv is the convolution operation with kernel 𝑊, BN stands for batch normalization, 

ReLU is the rectified linear unit non-linearity, and 𝑏 is the bias. This operation is performed 

several times throughout the model to extract and transform features from the image. 

Further in the model, these features are flattened and passed through a fully connected 

layer to generate a fixed-size vector for each image. If we denote the flatten operation as Flatten, 

and the fully connected layer operation as FC, this can be expressed as: 

𝑍 =  𝐹𝐶 (𝐹𝑙𝑎𝑡𝑡𝑒𝑛( 𝑋𝑙𝑎𝑠𝑡)) 

Here, 𝑋last is the last feature map generated by the convolution operations. The vector 

𝑍 then represents the extracted features from the image. 

The feature extraction process can be viewed as a function 𝑓 that takes an image 𝐼 and 

returns a feature vector 𝑍: 

𝑍 =  𝑓 (𝐼) 

This function 𝑓 is what we refer to as the Inception V3 model pre-trained on the ImageNet 

dataset. The vectors 𝑍 are what we use in the subsequent stages of the evaluation process. 

Feature Visualization 

After the feature extraction, the next phase involves visualizing the extracted features. This 

helps in understanding what kind of image properties the model has learned to identify and 

highlight. 

Visualizing Learned Features (ImageNet): We then move on to visualize the features that the 

Inception V3 model, pre-trained on ImageNet, has learned. This can provide crucial insights into 

the core patterns and structures the model perceives as significant in an image. 

Visualizing Learned Features (Fine-Tuned Model): This involves visualizing the features 

learned by the Inception V3 model, pre-trained on ImageNet, and subsequently fine-tuned on real 



 

 52 

𝑖 

images. Fine-tuning often leads to a model better suited to the specific task at hand, in this case, 

feature extraction. This step allows us to observe how this adaptation process has influenced the 

model’s feature recognition abilities. 

Selecting Relevant Complexity Level: Lastly, we identify and select the complexity level of the 

ImageNet features learned by Inception V3 that are most relevant to our real images, Arabic 

Handwritten Digit Dataset (AHDD). This provides a focal point to ensure the features maintain the 

essential characteristics found in the actual images, thereby improving the quality of the synthetic 

image evaluation. We do this by computing the variance of each feature across the dataset and 

ranking the features based on this variance. Mathematically, this can be expressed as: 

𝜎_𝑖^2 =  𝑣𝑎𝑟(𝑍[: , 𝑖]), 𝑓𝑜𝑟 𝑖 𝑖𝑛 {1, . . . , 𝑛} 

Where 𝑍 [:, 𝑖] represents the 𝑖-th feature across all images in the dataset. The var function 

computes the variance, and 𝜎2 is the variance of the 𝑖-th feature. n in this context represents the 

total number of features in the feature vector extracted from the images by the Inception V3 model, 

with i varying from 1 to n. These features represent the distinct characteristics learned by the 

model from the images. Inception V3 often is used to extract a 2048-dimensional feature vector 

from an image when using the final layer before the classification layer, implying that n would 

typically be 2048 in such a case, but it may vary depending on the specific implementation and 

layer chosen. Features with higher variance are typically considered more relevant since they 

capture more variability and, therefore, more information about the dataset Calculating LFID 

Real Images: Calculate the mean and covariance of the distribution of the lower-level features 

extracted from the real images. These statistical measures capture the central tendency and 

dispersion of the feature distribution. 
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Generated Images: Similarly, compute the mean and covariance of the distribution of the 

lower-level features extracted from the generated images. 

LFID: Use these statistical measures (mean vectors and covariance matrices) from both the real 

and generated images to compute the Fréchet distance. This distance quantitatively measures the 

dissimilarity between the two distributions, essentially capturing how far apart the real and 

generated images are in the feature space. 

𝑑2  =  |𝜇𝑟𝑒𝑎𝑙 − 𝜇𝑔𝑒𝑛|
2
 

𝑇𝑟 = (Σ𝑟𝑒𝑎𝑙  +  Σ𝑔𝑒𝑛 −  2 ∗  (Σ𝑟𝑒𝑎𝑙 ∗  Σ𝑔𝑒𝑛)
1
2) 

𝐿𝐹𝐼𝐷 =  𝑑2  +  𝑇𝑟 

Image Quality Evaluation: Use the LFID as a measure of the quality of the generated images. A 

lower LFID indicates that the generated images are more similar to the real images in terms of their 

lower-level feature distributions, suggesting higher quality. 

Model Adjustment: Adjustment: The need for model adjustment is determined based on the 

LFID score. From our experiments on the Arabic Handwritten Digit Dataset (AHDD), we have 

found that an LFID score less than 20 indicates significant similarity between the generated and 

real images. Therefore, if the LFID score exceeds this threshold, 𝑇 = 20, it suggests that the 

generated images are not sufficiently similar to the real images, warranting adjustments. This can 

be formally expressed as: 

𝐼𝑓 𝐿𝐹𝐼𝐷 >  𝑇, 𝑡ℎ𝑒𝑛 𝑎𝑑𝑗𝑢𝑠𝑡 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

Hyper-parameter tuning: The adjustments can encompass changes to the model’s architecture, 

modifications to the training parameters, or alterations in the method of image generation. This is 

typically conducted through an optimization process, such as grid search or Bayesian 

optimization, which aims to minimize the LFID score. 
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We search for the optimal values of the parameters used to train the C-GAN and C-VAE. 

The parameters of interest might include: 

• The architecture of the CNN, including the number of layers (n_layers), size of the filters 

(filter_size), the size of the stride (stride_size), batch size (batch_size), and optimizer 

(optimizer_type). 

• The latent dimension size (latent_dim). 

• The batch size (batch_size). 

Formally, this can be represented as a minimization problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝐹𝐼𝐷(𝑛_𝑙𝑎𝑦𝑒𝑟𝑠, 𝑓𝑖𝑙𝑡𝑒𝑟_𝑠𝑖𝑧𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒_𝑠𝑖𝑧𝑒, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟_𝑡𝑦𝑝𝑒, 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚)

Monitoring LFID: After each adjustment, we monitor the LFID to assess the impact on the 

image generation quality. Formally, we could express this as: 

𝐿𝐹𝐼𝐷_𝑛𝑒𝑤 =  𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝐿𝐹𝐼𝐷(𝐶 − 𝐺𝐴𝑁 𝑜𝑟 𝐶 − 𝑉𝐴𝐸 𝑤𝑖𝑡ℎ 𝑛𝑒𝑤 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

𝐼𝑓 𝐿𝐹𝐼𝐷_𝑛𝑒𝑤 <  𝐿𝐹𝐼𝐷_𝑜𝑙𝑑, 𝑡ℎ𝑒𝑛 𝑘𝑒𝑒𝑝 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

This iterative process of adjustment and monitoring continues until we reach a point where 

the LFID does not significantly decrease with further tuning, or we hit a preset limit on the 

number of iterations or time. 

3.4.5 Early Stopping 

The early stopping process is an integral part of model training, designed to halt training 

when the model’s performance starts to plateau or degrade. This process is driven by monitoring 

the LFID metric during the training of the generative models [135]. 

The LFID score offers a precise assessment of the synthetic image quality, especially in 

terms of their potential impact on OCR performance. Thus, it is used as a performance criterion to 
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determine when the models have attained optimal performance. Mathematically, the early 

stopping condition can be defined as follows: 

𝐼𝑓 | 𝐿𝐹𝐼𝐷_(𝑖)  −  𝐿𝐹𝐼𝐷_(𝑖 − 1) |  <  𝜀, 𝑓𝑜𝑟 𝑖 =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑝𝑜𝑐ℎ, 𝑡ℎ𝑒𝑛 𝑠𝑡𝑜𝑝 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 

Here, 𝜀 is a small threshold value that determines the sensitivity of the early stopping 

procedure. If the absolute change in the LFID score between two consecutive epochs (𝑖 − 1 and 𝑖) 

is less than 𝜀, the training is stopped. 

This strategy is especially beneficial in two main ways: First, it ensures efficient use of 

computational resources by avoiding needless training once the model performance has stabilized, 

as shown in Figure 6. Second, it helps prevent overfitting, a common pitfall where the model 

performs exceptionally well on training data but poorly on unseen data. 

This mechanism implies a balance between training the model to improve its performance 

(as measured by the LFID score) and preventing the model from overfitting to the training data, 

thereby generalizing poorly to new data. The early stopping technique, therefore, plays a critical 

role in ensuring that the trained model is both efficient and effective. 

Figure 6: Early Stopping 
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Please note that the parameter 𝜀 and the number of epochs before triggering early 

stopping (patience) should be chosen carefully, as too small a value might stop training 

prematurely, while too large a value might result in overfitting. 

Finally, the early stopping technique can be used in conjunction with other regularization 

techniques and the aforementioned model adjustment process, providing a comprehensive approach 

to controlling the complexity and improving the performance of the trained models. 

In the context of our Synthetic Image Evaluation Procedure algorithm, we use several 

abbreviations for brevity and to accommodate space constraints within the algorithm block. The 

following explains what each abbreviation stands for: 

• 𝑛_𝑙: Stands for the number of layers in the neural network. 
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• 𝑓 _𝑠: Represents the filter size used in the convolutional layers of the neural network. 

• 𝑠_𝑠: Denotes the stride size, which is the number of pixels shifts over the input matrix. 

• 𝑏_𝑠: Signifies the batch size used in the training process of the neural network. 

• 𝑜_𝑡: Corresponds to the type of optimizer used during the training process. 

• 𝑙_𝑑: Represents the latent dimension in the context of Generative Adversarial Networks 

(GANs) or Variational Autoencoders (VAEs). 

• 𝑋_𝑛: Stands for the new input tensor after applying the ReLU, BN and Conv operations. 

• 𝑋_𝑜: Denotes the original input tensor before any operation. 

• 𝑋_𝑙: Stands for the last layer’s output. 

• 𝜇_𝑟: Stands for the mean of the real data. 

• 𝜇_𝑔: Signifies the mean of the generated data. 

• Σ_𝑟: Represents the covariance matrix of the real data. 

• Σ_𝑔: Denotes the covariance matrix of the generated data. 

• 𝐿𝐹 𝐼 𝐷_𝑛: Corresponds to the new calculated LFID metric after parameter adjustment. 

• 𝐿𝐹 𝐼 𝐷_𝑜: Represents the old LFID metric before parameter adjustment. 

We believe that these abbreviations maintain the clarity of the algorithm while 

efficiently utilizing the available space. 

The Synthetic Image Evaluation Procedure (Algorithm 3) is a multi-phase algorithm for 

assessing the quality of images generated by generative models. It involves feature extraction 

using Inception V3, visualization of learned features, selection of relevant complexity levels, and 

computing the Low-dimensional Fréchet Inception Distance (LFID) score. The LFID score serves 

as a performance measure to optimize generative models through hyper-parameter tuning and 
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adjustments. Early stopping prevents overfitting. This systematic process improves generative 

models for low-dimensional synthetic image generation. 

3.5 Saliency Maps 

Convolutional Neural Networks (CNNs) have become a go-to solution for OCR due to 

their adeptness at handling image data. These networks use a series of filters to extract relevant 

features from images and then utilize these features to recognize and detect objects, including text 

characters. However, despite their efficacy, it’s often difficult to understand what specific features a 

CNN uses to detect or classify an object, which might be a problem in critical applications were 

knowing why a certain prediction was made is as important as the prediction itself. This lack of 

interpretability or transparency in decision-making is commonly referred to as the ’black box’ 

problem [17]. 

Saliency maps, introduced to tackle this problem, are a class of techniques that highlight 

the important regions in an image that contribute to the model’s final decision, thereby providing 

a graphical representation of how an AI system interprets visual data. Saliency maps can help us 

understand where the model is ’looking’ when it makes a decision, i.e., which regions of the image 

it perceives as salient or relevant. They indicate what the CNN model considers critical in an image 

when identifying an object or a piece of text [1]. 

Image saliency maps can be particularly effective in OCR systems built on CNNs, as they 

allow for the examination of the decision-making process of the model. By observing the areas 

highlighted by the saliency map, researchers and developers can interpret what visual features the 

model considers crucial for text detection and recognition. This can lead to better understanding of 

how the model functions, which in turn can be used to improve model performance and reliability, 

particularly in complex environments where OCR is often put to the test [109]. 
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The use of image saliency maps has the potential to move us a step closer to opening the 

’black box’ of AI, specifically in the realm of OCR, by offering a visual interpretation of what 

features are deemed significant by a model. This insight can be instrumental in enhancing not 

only model transparency but also in designing more efficient and reliable OCR systems in the 

future [92]. 

In the forthcoming sections of this dissertation, specifically in the "Experiments and 

Results" segment, we will provide a detailed account of how we utilize saliency maps as an 

interpretative tool to understand our experimental outcomes. This will encompass the 

methodology we employed to generate the saliency maps, their practical application in the 

interpretation of our model’s decisions, and the insights we gleaned about the salient features 

contributing to the model’s performance. This process will allow us to provide a comprehensive 

understanding of our CNN-based OCR model’s behavior and reasoning. By visually showcasing 

what parts of the image our model deemed significant during the detection and recognition 

process, we will demystify the ’black box’ problem and offer greater transparency into the 

workings of our model, substantiating its performance and reliability. 

In conclusion, the methodology chapter has outlined the systematic approach used to 

evaluate and enhance the image generation capabilities of Conditional Variational Autoencoders 

(C-VAE) and Conditional Generative Adversarial Networks (C-GAN). With a focus on 

improving Optical Character Recognition (OCR) systems, our experiments aimed to explore their 

effectiveness in the domain of Arabic handwritten digit recognition. The Synthetic Image 

Evaluation Procedure, as described in the preceding section, served as the foundation for 

conducting our experiments. This comprehensive algorithm allowed us to extract meaningful 

features, compute the Low-dimensional Fréchet Inception Distance (LFID) score, and optimize 
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the generative models through hyper- parameter tuning and adjustments. In the next section, 

"Experiments and Results," we will present and discuss the outcomes of these experiments. The 

results will shed light on the performance and potential of C-VAE and C-GAN for generating 

high-quality synthetic images, enabling us to gain valuable insights for enhancing OCR systems. 
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CHAPTER 4 

EXPERIMENTS AND RESULTS 

This section is dedicated to describing the series of experiments conducted to analyze and 

compare the effectiveness of Conditional Variational Autoencoders (C-VAE) and Conditional 

Generative Adversarial Networks (C-GAN) for image generation in the context of improving 

Optical Character Recognition (OCR) systems. The emphasis of our experiment was on Arabic 

handwritten digit recognition [108]. For our experimental approach, we used a pre-established 

dataset of Arabic handwritten digits. The dataset, exhibiting a wide range of handwriting styles and 

various degrees of distortion, presents a robust ground for testing the adaptability and efficiency of 

the OCR systems. 

In our initial experiment, we explored the capabilities of both C-VAE and C-GAN in 

generating diverse synthetic images that bear a resemblance to the original ones in the dataset. The 

generated images were then introduced into the OCR system to assess its recognition accuracy. 

The evaluation of synthetic image quality presents a critical challenge in this domain. To 

address this, we employed our proposed Synthetic Image Evaluation Procedure (Algorithm 3) 

. This evaluation procedure efficiently gauges the quality of the synthetic images 

produced by the generative models during the training phase. Crucially, it aids in identifying the 

point of optimal performance, allowing for timely termination of training—a vital aspect 

considering the usually protracted learning process of generative models. 

Furthermore, we adopted Saliency Maps to scrutinize the performance of the upgraded 

OCR systems. These maps provide insights into which parts of the images the OCR system finds 

most informative, hence highlighting areas where the system’s attention can be optimized. 
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The experimental results demonstrate that our proposed method of using most realistic 

synthetic data for enhancing OCR performance offers several advantages. However, it also poses 

some challenges. Understanding these strengths and limitations can guide future research efforts 

in this direction and help to devise more precise and efficient OCR systems. 

A key highlight of our experiments was the improved performance of the OCR system in 

recognizing Arabic handwritten digits. Both C-VAE and C-GAN contributed to this enhancement, 

though they exhibited unique strengths and weaknesses that we discuss in detail. Notably, our 

proposed evaluation procedure offered faster, and more accurate results compared to traditional 

FID scores, particularly in the context of OCR applications. 

As part of this research, we have strived to fortify the performance of Optical Character 

Recognition (OCR) systems by leveraging data augmentation techniques, primarily through 

synthetic data generated by generative models. By continuously monitoring and adjusting the 

balance between the quality and quantity of the images generated, we have aimed to tackle the 

instability issues that often arise during the training of generative models. The ultimate goal has 

been to improve the generalization capability of the models, enhance efficiency, and contribute 

to the optimization of OCR performance. 

4.1 C-GAN 

In this section we discuss the experiments and results for the C-GAN model: 

Discriminator: The input shape is set to (28, 28, 1) for monochromatic images. The class output 

is designated to have ten classes, signifying the ten Arabic numerals. The Discriminator uses a 

Random Normal distribution for weight initialization, with a mean of 0.0 and a standard 

deviation of 0.02. It is constructed with four convolutional layers, with filters set at 32, 64, 128, 

and 256 for each layer respectively. The kernel size is set to (3, 3) with a stride of (2, 2) and 
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’same’ padding to keep the output size consistent. Batch Normalization is applied after the 2nd, 

3rd, and 4th layers to stabilize and accelerate the learning process. The model utilizes the ’binary 

crossentropy’ loss function for real/fake classification and ’sparse categorical crossentropy’ for 

class label classification. The Adam optimizer, with a learning rate of 0.001 and epsilon of 1𝑒 − 08, 

is used to minimize the loss function. 

Generator: The Generator in the C-GAN model takes a 100-dimensional latent space vector as 

input. The Conv2DTranspose function is used for upsampling with strides of (2, 2). The ’ReLU’ 

activation function is used after Dense layers and the first Conv2DTranspose layer, while ’tanh’ is 

used after the final layer to constrain the output values within a suitable range (−1, 1). 

For the complete GAN model, similar to the Discriminator, ’binary crossentropy’ and 

’sparse categorical crossentropy’ are used as loss functions for real/fake and class label outputs 

respectively, and the Adam optimizer is again used with the same parameters. This setup ensures 

the network’s learning process is adequately controlled and guided towards generating 

realistic and distinct images. 

Training Challenges 

The C-GAN model faced significant challenges in generating authentic-looking Arabic 

Hand- written Digit images, as evidenced in Figure 7. This issue stems from the multifaceted 

nature of training Generative Adversarial Networks (GANs), which often necessitates strategic 

modifications to the model’s architecture. 

The process requires a delicate balance between the generator’s creativity in creating 

realistic images and the discriminator’s ability to discern real from fake. Achieving this balance can 

be a non- trivial task, and slight deviations can lead to unsatisfactory results. The training 
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challenges were surmounted through iterative experimentation and adjustment of various 

architectural elements, laying the groundwork for further analysis. 

Training Dynamics 

Training GANs can be likened to a two-player minimax game, involving the simultaneous 

training of two neural networks: the generator, responsible for creating images, and the 

discriminator, charged with differentiating between real and generated images. 

The delicate equilibrium between these two networks must be maintained, and 

disruptions in this balance can lead to instability in training. High values of loss functions, 

particularly in the initial phases of training, underscore this instability, as depicted in Figure 7 

Achieving convergence in this challenging scenario necessitates careful monitoring and adaptation 

of training strategies. 

Image Quality and Sharpness 

One of the redeeming features of the C-GAN model is its capability to generate images 

with pronounced sharpness. Through the adversarial training process, the generator learns to 

continually refine its output, leading to images with well-defined edges and contours. Figure 7 

showcases this ability, illustrating the model’s success in producing sharp and visually appealing 

images despite the noted training difficulties. 

OCR Performance 

An intriguing observation was that the enhanced sharpness did not lead to improved 

performance in OCR systems. Various metrics, such as accuracy, precision, recall, and F1 

score, as revealed in Figure 14, highlighted this inconsistency. A closer inspection reveals 

potential explanations: 
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Overlooking Crucial Features: The C-GAN might have sacrificed essential features 

needed for accurate digit recognition in its pursuit of visual appeal. The complexity of 

representing handwritten digits may have led to this oversight, emphasizing the need for a 

balanced approach. Mode Collapse: A phenomenon common in GANs, mode collapse, may 

have occurred. In this situation, the generator starts producing limited or identical images, failing 

to capture the diversity in the actual data. This lack of variety could hinder the OCR’s ability to 

generalize, explaining the subpar performance with the C-GAN-augmented dataset shown in 

Figure 7. 

Learning Time 

An additional point of interest is the discrepancy in learning time between C-GAN and C-

VAE, with the former taking 10 times longer, as seen in Figure 9. This difference emphasizes 

the complexities and challenges associated with GAN architecture, reflecting the intricate 

balance needed for successful GAN training. 

Focus On Unique Features 

The Saliency Maps in Figure 12 highlight that the C-GAN model does not concentrate on 

unique features within each digit. This lack of focus on critical attributes might contribute to the 

discrepancies in OCR performance, indicating a potential area for model refinement and further 

exploration. 
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Figure 7: Generated Images by the C-GAN Model (first half) 
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Figure 7: Generated Images by the C-GAN Model (second half) 

4.2 C-VAE 

In this section we discuss the experiments and results for the C-VAE model: 

The Conditional Variational Autoencoder (C-VAE) implemented in this experiment uses 

several parameters to guide the learning process. 
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The training process for the C-VAE model is configured to run for 10 epochs. An epoch 

represents a full pass of the entire dataset through the C-VAE model. The batch size is set to 8, 

indicating that the model processes eight samples at a time during the training process. 

Learning rate, a critical hyperparameter in any optimization algorithm, is set to 0.001. It 

dictates the size of the steps the model takes towards the minimum of the loss function. A smaller 

learning rate means the model will learn slowly, but it might result in better performance as it 

allows the model to fine-tune the weights. 

The encoder and decoder architectures of the CVAE model are defined by their layer sizes. 

The encoder layer sizes are set to [784, 512], which means that the encoder network first maps the 

input to a 784-dimensional vector, then further down to a 512-dimensional vector. The decoder 

layer sizes are set to [512, 784], indicating that the decoder network maps the latent representation 

from a 512-dimensional vector up to a 784-dimensional vector. 

The latent size, set to 10, refers to the dimensionality of the space into which the encoder 

compresses the input data, and from which the decoder generates the output. The loss function 

for this CVAE model is a combination of Binary Cross Entropy (BCE) and Kullback-Leibler 

Divergence (KLD). BCE measures the error between the model’s output and the actual data, 

while KLD measures how much the learned latent distribution deviates from a predefined prior 

distribution. 

Adam optimizer is used with a learning rate of 0.001 and epsilon of 1 × 10−8 to guide 

the learning process and ensure optimal convergence of the model’s weights. The ’classes’ 

parameter is set to 10, as there are ten classes of Arabic numerals for the model to learn and 

generate. 

Efficiency In Learning and Image Generation 
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The C-VAE model demonstrated an impressive ability to mimic the Arabic Handwritten 

Digit dataset swiftly. As seen in Figure 8, the model began to produce convincing images 

resembling real handwritten digits after just a single epoch of training. This rapid learning 

(shown in Figure 10) progression illustrates the efficiency of C-VAEs in understanding the 

specific underlying data distribution for this task. 

Blurriness In Generated Images 

Despite its efficiency, the C-VAE model was not without flaws. A notable shortcoming was 

the blur in the generated images, a common issue with C-VAEs, as shown in Figure 8. The origin 

of this blurriness is traced to the C-VAE’s architecture, which promotes a smooth, continuous 

latent space through the incorporation of a regularization term in the loss function. While this 

approach ensures continuity, it leads to averaged output over the distribution, resulting in the 

observed blur. 

Impact On OCR Performance 

Surprisingly, the blurriness in the generated images did not impede the OCR 

performance. As the metrics in Figure 14 demonstrate, the C-VAE-generated images 

contributed positively to OCR performance. This success can be attributed to the VAE model’s 

ability to retain the essential features necessary for accurate digit classification. Even with the 

blur, the key attributes distinguishing each digit remained intact, aiding the OCR model in 

successful recognition. 

Focus On Unique Digit Features: 

The Saliency Maps presented in Figure 13 further affirmed the C-VAE model’s focus on 

unique features within each digit. By concentrating on these characteristics, the model ensured 

that the crucial elements for digit classification were preserved. 
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Figure 8: Generated Images by the C-VAE Model (first half) 
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Figure 8: Generated Images by the C-VAE Model (second half) 

4.2 Training Procedure 

The training procedure for both C-GAN and C-VAE models consists of several crucial 

steps, designed to effectively train the models and optimize their performance in generating 

synthetic images for OCR tasks. These steps include: 

1. Mini-batch Preparation: The Arabic Handwritten Digits training dataset is preprocessed, 

and mini-batches of 64 real images and their corresponding class labels are created. 
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2. Noise and Label Sampling: For each mini-batch, random noise vectors are sampled for 

the C-GAN model, and latent vectors are sampled from the encoder’s output distribution 

for the C-VAE model. These vectors are combined with class labels. 

3. Generator/Encoder Training: The C-GAN generator is trained to generate synthetic 

images from noise vectors and class labels, while the C-VAE encoder is trained to encode 

input images into a latent space representation while considering class labels. 

4. Discriminator/Decoder Training: The C-GAN discriminator is trained to distinguish 

between real and generated images while considering class labels, and the VAE decoder 

is trained to reconstruct input images from sampled latent vectors and class labels. 

5. Latent Space Regularization: An essential component of C-VAE training is the 

regularization of the latent space using the KL divergence loss. This loss encourages the 

model to learn a smooth and meaningful latent space representation. 

6. Training Iterations: The training process involves updating the generator/encoder and 

discriminator/decoder weights to improve their performance progressively. Limiting the 

number of training iterations helps balance performance and computational efficiency, 

preventing overfitting. 
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Figure 9: Learning Time (C-GAN on the left and C-VAE on the right) 

4.3 Monitoring Progress and Loss Functions 

During the training process of GAN and VAE models, it is crucial to keep track of 

progress and loss functions to guarantee convergence, as well as to identify and address potential 

issues. This monitoring helps to optimize the models’ performance and provides valuable insights 

into the training dynamics. 

1. LFID Metric: Periodically calculating the LFID metric allows for the assessment of the 

quality of the generated images. This computationally efficient metric provides real-

time feedback on the performance of the models, which can be used to fine-tune the 

training process and make necessary adjustments to improve image generation quality. 

2. Model Losses: Tracking different loss components for each model type is essential 

for understanding how well the models are learning and adapting during the training 

process. 

• C-VAE it’s important to track both the reconstruction loss and the KL divergence 

loss. 
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The reconstruction loss measures the difference between the input images and their 

reconstructions, while the KL divergence loss enforces a smooth and meaningful latent space 

representation by ensuring it follows a specified prior distribution, typically a standard Gaussian 

distribution. 

• C-GAN monitoring the generator and discriminator losses is vital. The generator 

loss quantifies how well the generator is able to create realistic images, and the 

discriminator loss measures how accurately the discriminator can distinguish 

between real and generated images. 

By consistently monitoring progress and loss functions, the training process can be 

optimized, ensuring that the models converge and achieve the desired performance in generating 

synthetic images for OCR tasks. This monitoring process enables the identification of potential 

issues and allows for adjustments to the models or training parameters to improve overall 

performance. 

4.4 Early Stopping: 

Incorporating early stopping criteria based on the LFID metric or validation dataset 

performance can be employed to prevent overfitting and reduce training time if the models 

converge faster than anticipated. This strategy helps optimize the models’ performance by 

stopping the training process when further training would not lead to significant improvements, 

ensuring efficient use of computational resources. 
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Figure 10: Loss Functions (C-GAN on the left and C-VAE on the right) 

In summary, the detailed training procedure for GAN and VAE models focuses on 

optimizing their performance in generating synthetic images for OCR tasks. By incorporating 

mini-batch preparation, noise and label sampling, generator/encoder and discriminator/decoder 

training, latent space regularization, training iterations, monitoring progress, and employing early 

stopping criteria, the training process aims to effectively train the models, prevent overfitting, and 

achieve the desired balance between performance and computational efficiency. 

4.5 OCR 

A Convolutional Neural Network (CNN) is employed as the OCR model for Arabic 

handwritten digit recognition. The architecture of the CNN consists of two convolutional layers, 

each followed by a max-pooling layer, a dropout layer, and a fully connected layer for 

classification. The CNN is designed to learn and extract important features from the input 

images, facilitating accurate digit recognition. 

Training the OCR Model: To investigate the effects of data augmentation on the 

performance of the OCR model, the CNN is trained separately on the original dataset and each 

augmented dataset. The training process involves using mini-batch training with a suitable batch 
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size and training the model for a predefined number of epochs. This allows for a comparison of 

the OCR model’s performance when trained on different datasets, providing insights into the 

impact of the C-GAN and C-VAE-generated synthetic images on the model’s accuracy and 

generalization capabilities. 

By augmenting the dataset with synthetic images and training the OCR model on the 

original and augmented datasets separately, the study aims to assess the effectiveness of different 

data augmentation strategies and their impact on the performance of the OCR model. This 

approach helps to understand the potential benefits of using GAN and VAE-generated images for 

OCR tasks and identify the most effective augmentation strategy for improving model 

performance. 

4.6 Evaluation 

Evaluating the OCR Model: After training the OCR model on the original and 

augmented datasets, its performance is evaluated on a separate test dataset to assess 

generalization capabilities and compare the impact of different data augmentation strategies. 

Accuracy is used as the primary evaluation metric, but other metrics like precision, recall, and 

F1-score can also be reported to provide a more comprehensive assessment of the model’s 

performance, as shown in the Figure 14. 

Investigating the Impact of Synthetic Data: To understand the relationship between the 

quality of synthetic images, as measured by the LFID metric, and the improvement in OCR 

performance, the correlation between LFID scores and OCR model accuracy on the test dataset is 

investigated. A strong correlation would indicate that the LFID metric is effective in evaluating 

the quality of generated images and that higher quality images lead to better OCR performance. 
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Comparing OCR Features with Arabic Handwritten Digit Features: Another way to 

assess the impact of synthetic data on OCR performance is to compare the most critical features 

learned by the OCR model with the unique features of Arabic handwritten digits. This 

analysis can help identify whether the synthetic images generated by GAN and VAE models 

capture essential features needed for accurate digit classification. It also provides insights into 

the effectiveness of different generation loss functions and data augmentation strategies in 

preserving and enhancing these features for better OCR performance. 

By evaluating the OCR model on test data and investigating the correlation between 

LFID scores and model accuracy, as well as comparing important OCR features with the unique 

features of Arabic handwritten digits, the study aims to provide a comprehensive understanding 

of the impact of synthetic data on OCR performance. This approach helps to identify the most 

effective augmentation strategies and generation loss functions for improving model 

performance in OCR tasks. 

4.7 FID Scores 

The Fréchet Inception Distance (FID) score is a metric used to evaluate the quality of 

images generated by generative models. In essence, a lower FID score suggests that the 

distribution of features extracted from the generated images is closer to the distribution of features 

extracted from real images, indicating better quality. This study confirms that a lower 

dimensional FID (LFID) score correlates positively with the perceived quality of the images 

generated by the Conditional Variational Autoencoder (C-VAE) as compared to the Conditional 

Generative Adversarial Network (C-GAN). 

Two primary pieces of evidence support this claim. First, human perception of the 

similarity between generated and real images aligns with the LFID scores. Generated images from 
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the C-VAE model, which have lower LFID scores, are perceived as more similar to the real 

images than those generated by the C-GAN model with higher LFID scores. This perception of 

likeness suggests that the C-VAE model is more successful at creating images that closely mimic 

the properties of the real images. 

Second, the comparison of LFID scores provides quantitative support to this observation. 

The C-VAE model’s lower LFID score signifies a smaller statistical distance between the real 

and generated images, indicating that it has successfully learned a more accurate representation of 

the original data distribution. Conversely, the C-GAN model’s higher LFID score suggests a 

greater distance, indicating a less accurate representation. Thus, the LFID scores not only 

substantiate the human perception of image quality but also provide a quantifiable measure of the 

quality and realism of the images generated by these models. 

Adding to the argument of the effectiveness of lower dimensional Fréchet Inception 

Distance (LFID) over the traditional high-dimensional FID scores, our experimental results bring 

out an- other crucial aspect. It was observed that images generated through the Conditional 

Variational Autoencoder (C-VAE) significantly improved the performance of the Optical 

Character Recognition (OCR) system, as opposed to those generated by the Conditional 

Generative Adversarial Network (C-GAN), which, interestingly, had an adverse effect on OCR 

performance. 

The generated images from the C-VAE model, associated with lower LFID scores, 

contributed to enhancing the OCR’s ability to recognize and interpret the characters accurately. 

The generated images effectively enriched the training dataset and facilitated the OCR model in 

learning a more robust and generalized representation of the digit classes. 
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Figure 11: FID Scores 

Contrastingly, C-GAN, despite producing sharper images, couldn’t contribute positively 

to OCR performance. C-GAN generated images, which were associated with higher LFID 

scores, seemed to compromise the OCR’s interpretive capacity. This inverse relationship 

between the LFID scores and the OCR performance reaffirms the credibility of LFID as a more 

meaningful and insightful measure, especially in lower dimensions, in evaluating the quality and 

utility of images generated by these generative models. 



 

 80 

Therefore, our experimental results add another dimension to the advantages of LFID 

over high-dimensional FID, emphasizing its effectiveness not just in reflecting the perceptual 

similarity and the statistical likeness between the generated and real images, but also in predicting 

the utility of the generated images in improving the performance of downstream tasks, like OCR in 

this case. 

4.8 Saliency Maps Visualization 

The results displayed in Figure 12 and 13 highlight the visual interpretation of the 

learning process our model goes through while performing digit classification, using a technique 

known as Saliency Maps [111] . These maps illuminate the regions in an image that are most 

salient or relevant to making a particular classification decision. In our case, the model has to 

recognize and classify different handwritten Arabic digits [1]. 

The Saliency Maps thus represent how our model "sees" and interprets these digits, 

effectively acting as a heatmap of model attentiveness. Bright regions in the Saliency Maps 

signify areas where small changes in the pixel values significantly affect the classification 

outcome, denoting high sensitivity. In contrast, darker regions imply areas of lower sensitivity 

[93]. 

In the context of digit classification, these maps confirm that the unique, distinguishing 

attributes of each digit, such as the particular curves, edges, or other specific strokes that 

differentiate one digit from another, are the key factors influencing the correct identification and 

classification. These features appear to be the most salient or critical in the eyes of our model 

[11]. 

Notably, the successful recognition and highlighting of these unique digit attributes by 

the Saliency Maps further validate the high accuracy achieved by our Optical Character 
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Recognition (OCR) model. It was trained on a dataset augmented by the Conditional Variational 

Autoencoder (C-VAE), as these maps effectively demonstrate that the model correctly focuses 

on the most important and distinguishing features in its learning process. 

This outcome bolsters our confidence in the model’s learning process, its understanding of 

the data, and its subsequent performance. It also provides us with an intuitive way to visually 

verify and interpret the decision-making process of the model, thereby reaffirming the robustness 

and reliability of the OCR model’s high accuracy. 

Figure 12: C-GAN Saliency Maps 
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Figure 13: C-VAE Saliency Maps 

4.9 Summary 

The proposed methodology focuses on optimizing OCR performance for Arabic 

handwritten digit recognition and examining the impact of synthetic images generated by GAN 

and VAE models on model accuracy and generalization capabilities. This comprehensive 

approach includes several steps, such as model compilation, data preprocessing, data 

augmentation, model training, validation, hyperparameter tuning, and evaluation on the test 

dataset. 

By utilizing the LFID metric to assess the quality of synthetic images and evaluating the 

OCR model’s performance on augmented datasets, the study aims to provide valuable insights 

into the effectiveness of various generation loss functions and data augmentation strategies. 

Furthermore, it investigates the correlation between LFID scores and OCR model accuracy, as well 

as comparing the most critical OCR features with unique features of Arabic handwritten digits. 
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This in-depth analysis helps identify the most promising techniques for improving OCR 

performance and reveals the benefits and limitations of different synthetic data generation 

approaches in the context of OCR tasks. Ultimately, the study contributes to a better 

understanding of the factors that influence OCR performance and offers guidance for 

practitioners seeking to develop more accurate and robust OCR models using synthetic data 

augmentation. 

 

Figure 14: Classification Metrics 
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CHAPTER 5  

CONCLUSION 

In conclusion, our study highlighted the advantages of Conditional Variational 

Autoencoders (C-VAEs) over Conditional Generative Adversarial Networks (C-GANs) for 

improving real-time OCR performance, especially in the context of Arabic handwritten digit 

recognition. The VAE model’s superior performance can be attributed to its ability to generate 

synthetic images ten times faster than GANs, resulting in a more efficient training process. 

A significant contribution of our research is the development of the Synthetic Image 

Evaluation Procedure (Algorithm 3), an accurate and efficient alternative to traditional FID 

scores for monitoring the quality of synthetic images generated for OCR applications. The 

evaluation procedure enables real-time evaluation of model performance and supports early 

stopping during training, further optimizing the OCR system. 

Our analysis, corroborated by Saliency Maps, validated the improvement in OCR 

performance. We demonstrated that the enhanced OCR system effectively leverages unique 

features of Arabic digits for classification, confirming the system identifies and classifies the 

digits based on their true unique features, rather than relying on irrelevant or trivial patterns. 

By integrating generative data augmentation techniques like C-VAEs with innovative 

evaluation metrics such as LFID, our approach sets the stage for substantial advancements in 

OCR performance. These improvements are particularly valuable for real-time applications, 

where challenges such as noise, distortions, and limited training data availability often impede 

system accuracy. The insights derived from our research have the potential to guide the 

development of more advanced OCR systems capable of addressing a broader range of 

applications and adapting to various contexts. 
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Future work could explore other generative models and data augmentation techniques, as 

well as the application of our approach to other languages or domains. Additionally, further 

research could focus on improving the LFID metric, making it more robust and adaptable for 

different tasks and contexts. 
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