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VIRULIFORME OR RHIZOCTONIA SOLANI 
 

MAJOR PROFESSOR: Dr. Jason Bond 
 

Fusarium virguliforme (Aoki), the fungus that causes sudden death syndrome of 

soybeans (SDS), is prevalent in most of the soybean (Glycine max L. Merr.) production 

regions throughout the United States. Sudden death syndrome management has been 

limited to cultural practices and host resistance. Rhizoctonia solani (Kühn) is a fungus 

responsible for pre-emergence and post emergence damping off. Control methods include 

seed treatments and cultural practices.  

Several companies have advocated the use of in-furrow starter fertilizers in soybean 

production. Promoting root growth and emergence are a couple of the alleged benefits. It is 

unknown if the increased fertility in the root zone may actually increase or decrease the 

severity of root or seedling diseases.  

An objective of this study is to determine if the starter fertilizers (2-6-16), (7-12-

11), (3-10-13) Nachurs Alpine Solutions™ impacts seedling disease caused by Rhizoctonia 

solani and soybean yield. A second objective is to determine if starter-fertilizer influences 

the incidence and severity of SDS and soybean yield. One trial was infested with R. solani at 

the rate of 0.9 g of inoculum/30.5 centimeters of row. A second trial was infested with F. 

virguliforme at the rate of 2.25 g/30.5 centimeters of row. Inoculum consisted of sterilized 

white sorghum inoculated with either pathogen. Plots were 3.04 meters wide by 6.1 meters 

in length with row spacing of 0.76 meters. Trials took place during the growing season of 

2014 and 2015. In 2014, a randomized complete block design consisted of 4 treatments 
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that were replicated 6 times and planted into 4 row plots. Treatments consisted of treated 

(Metalaxl™, Fluxapyroxad™, Pyraclostrobin™, and Imidacloprid™) or non-treated seed 

(‘Asgrow 4730’) combined with either fertilizer (2-6-16) or non-fertilizer. Across both 

trials, there were no seed treatment and fertilizer rate interactions. In the R. solani trial, 

stand counts were similar between the fertilizer and non-fertilizer treatments. Stand 

counts were higher when the seed treatment was used. There was no significant difference 

in soybean yield regardless of treatment. In the F. virguliforme trial, stand counts were 

reduced in the fertilizer treatment when compared to the non-fertilizer treatment. Foliar 

symptoms of SDS and soybean yield were not affected by treatment. In 2015, there were 

changes in treatment structure due to additions of fertilizer treatments 7-12-11 and 3-10-

13. Seed treatments and randomized complete block design remained for 2015. Stand 

counts were higher in plots that received fertilizer treatments in the R. solani trial. Stand 

counts were lower in R. solani plots with treated seed. Yield was not influenced by seed 

treatment but was increased by 3-10-13 and 7-12-11 fertilizer treatments. For the F. 

virguliforme trial, reduced stand counts were found in the plots with seed treatments. Seed 

treatments did not influence yield. Fertilizer did not impact stand or yield. Foliar symptoms 

of SDS were not influenced by seed treatment or fertilizer.  
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CHAPTER 1 

INTRODUCTION/LITERATURE REVIEW 

 

With nearly 50 countries producing soybean, Glycine max L. Merr., it is the dominant 

oilseed crop produced and consumed in the world today. The United States is the number 

one producer of soybean, with 83.7 million acres planted and 3.97 billion bushels 

harvested in 2014. In the United States, soybean makes up 21% of the harvested cropland 

acreage and is also the 2nd most planted crop (NASS, 2015). Soybeans are yielding higher 

than ever before and soybean yield potential continues to increase as genetic technology is 

improved (Rowntree, et al., 2013). This increase in production drives a need for improved 

nutrient management in order to supply high yielding cultivars with appropriate amounts 

of nutrients, as well as timing of nutrient uptake. Improving efficiency of nutrient 

utilization can ultimately improve soybean productivity (Usherwood, 1998). 

 Like all plants, soybean requires 16 essential elements for development and 

completion of its life cycle. Obtained from the atmosphere, carbon, hydrogen, and oxygen 

are the three primary non-mineral nutrients needed for soybean production. The other 

thirteen essential elements are obtained from the soil and can be classified into three 

categories that are based off of the quantities used by plants. Nitrogen, phosphorus and 

potassium are known as macronutrients and are utilized by the soybean in large quantities. 

Calcium, magnesium and sulfur are known as secondary nutrients and are taken up in 

moderate amounts, while the other seven elements are categorized as micronutrients and 

taken up in minute amounts. The seven micronutrients are boron, chlorine, copper, iron, 

manganese, molybdenum, and zinc. Each mineral element has a particular role in soybean 
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development, some promoting vegetative growth while others assist in reproductive 

functions (Acquaah, 2002). 

 The three macronutrients, nitrogen (N), phosphorus (P) and potassium (K), are the 

most important crop nutrients used in agricultural systems (Chude et al., 2004). Most 

fertility programs that are directed towards increasing crop yield contain N, P and K 

fertilizers (Vera et al., 2002). Yield is the number one factor that determines removal of the 

soil nutrients required for the crop (Mallarino et al., 1999). A bushel of soybeans removes 

about 6.3 pounds of N, 1.5 pounds of P (P205), and 12.8 pounds of K (K2O) (Heatherly & 

Elmore, 2004). Portions of these amounts are supplied from the soil’s nutrient reserves and 

symbiotic nitrogen fixation, while the other amounts will come from crop residue 

decomposition and fertilizer applications (McGrath et al., 2013). 

Nitrogen is the most abundant mineral nutrient found in the plant and is key for 

growth and productivity (Acquaah, 2002). Nitrogen is a constituent for nucleic acids, amino 

acids and proteins and chlorophyll that promote vegetative growth (Zeiger, 2010). There 

are two forms of nitrogen that can be taken up by plants, ammonium (NH4+) and nitrate 

(NO3-) (Tisdale et al., 2013). Leguminous crops, such as soybean, meet their demand for 

nitrogen through a process called biological N fixation. A symbiotic relationship is formed 

between soybean and the soilborne rhizobia bacteria, Bradyrhizobium japonicum J. These 

rhizobia bacteria attach to soybean roots, colonize the plant and convert atmospheric 

nitrogen gas to ammonia, and then to nitrate (NO3-), which is a nitrogen form that is usable 

to the plant (McGrath, 2013). However, only 25 to 60% of N in soybean dry matter 

originates from symbiotic N2 fixation, with the remainder coming from nitrogen in the soil 

(Harper, 1974). The process of nitrogen fixation doesn’t begin until 14 days after soybean 
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germination. This information raises enthusiasm for possible benefits of additional 

nitrogen fertilizer applications to soybeans. Today, nitrogen fertilizer applications to 

soybean remain a complicated issue due to previous research showing contradicting 

results. While some research has proven that N applications have increased soybean 

growth and yield, other results have shown no response or even negative effects (Beard & 

Hoover, 1971; Diebert et al., 1979; Ham et al., 1975; Welch et al., 1973).   

Nitrogen has been the most extensively studied soil nutrient in relation to disease 

development. An abundant availability of nitrogen can boost the production of young, 

succulent growth, a lengthened vegetative period, and delayed maturity of the soybean. 

This can result in the plant being more susceptible to pathogens that are attracted to 

healthy tissues, as well as giving the pathogen a larger time frame to attack. On the other 

hand, plants that are deficient in nitrogen are weaker, slower growing and forced into early 

maturity, making them susceptible to pathogens that are best able to attack weak, slow 

growing plants. Limited availability of nitrogen has been proven to increase the 

susceptibility of tomato to wilt caused by Fusarium oxysporum f.sp. lycopersici S., early 

blight of many solanaceous plants caused by Alternaria spp. and damping off of seedlings 

caused by infections of Pythium spp. (Agrios, 1997).  

It is not only the amount of nitrogen that can affect disease development, but the 

form of available nitrogen to the host and pathogen can influence incidence and severity of 

disease as well (Huber & Watson, 1974). Pathogen infection can lead to alterations in host 

N metabolism and changes in tissue concentrations of both inorganic and organic N 

(Walters & Ayres, 1980, Walters, 1985). Therefore, the different types and concentrations 
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of nitrogen available to the pathogen, depends on the plant (host) species, the particular 

plant organ that is infected, and the type of pathogen (Walters & Bingham, 2007).   

The ammonium form of nitrogen has been shown to stimulate many diseases such 

as Fusarium tomato wilt (F. oxysporum), root rot of sugar beet caused by Rhizoctonia solani 

K., and root rot of pea and soybean (Aphanomyces euteiches f. sp. pisi D.). Nitrate arouses 

root rot of pea and corn caused by Pythium ultimum T., root rot in cotton (Phymatotrichum 

omnivorum D.) and tomato and tobacco wilt caused by Ralstonia solanacearum S. (Huber & 

Watson, 1974). Studies have shown that the two forms of plant available nitrogen, 

ammonium and nitrate, often have opposite effects on certain plant diseases. For example, 

while the nitrate N suppresses F. oxysporum of tomato, the ammonium form actually 

increases disease severity (Woltz & Jones, 1973). The effect of the form of nitrogen is linked 

to the pH of the soil. Ammonium fertilizer will decrease pH, encouraging diseases that are 

favored by acidic soil, while the nitrate fertilizer will do the opposite (Agrios, 1997, 

Sullivan, 2001). The effect of specific forms of nitrogen on disease severity depends on 

many factors and is not the same for all host-parasitic associations (Huber & Watson, 

1974).  

Phosphorus is the second nutrient most utilized in the soybean and its application 

has shown to improve growth, development and yield (Kakar et al., 2002). Phosphorus 

plays a role in photosynthesis, respiration, cell division and energy storage as well as root 

growth, nodulation, biological N fixation, and plant maturation (Snyder, 2000; Acquaah, 

2002). Phosphorus found in the soil is very low in solubility and not readily available to 

plants. The two forms of phosphorus that can be taken up by the plant are the 

orthophosphates H2PO4- and HPO42- (Tisdale, 2013). The orthophosphate form can easily 
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undergo phosphorus fixation, meaning that it is readily precipitated and adsorbed to soil 

particles, rendering it unavailable to the plant (Zhang, 2006). For the soybean to take up 

this nutrient in its available form, the root system must come in contact with the P 

compounds because phosphorus is immobile in the soil. When deficient in P, soybeans may 

be stunted and show dark green and purple plant parts.  

A sufficient supply of phosphorus is important for soybean growth and its ability to 

sustain or curtail disease, although increasing this nutrient doesn’t always lead to disease 

reduction. Phosphorus provides protection through its role in early root development and 

energy storage necessary for driving major plant functions. Vigorous roots and a well-

developed root system is one of the most important plant defenses against root diseases 

(Better Crops, 1999). Similar to nitrogen, research has shown contradictory results when 

looking at the relationship between plant-phosphorus nutrition and disease development. 

(Jones et al., 1989), showed that the increase of plant available phosphorus increased 

development of Fusarium oxysporum f. sp. vasinfectum (Atk.) Snyd. & Hans, causing wilt in 

cotton. Comparably, (Chauhan et al., 2000) documented that the increase in phosphorus 

nutrition in cauliflower led to an increase in damping off and stem rot caused by R. solani. 

Alternatively, a lack of phosphorus has been associated with an increase of anthracnose of 

cowpea, caused by Colletotrichum lindemuthianum Sacc. & Magnus. The impact that this 

nutrient has on plant disease development depends on the distinct crop-pathogen 

interactions. 

The third macronutrient, potassium, is known for promoting stem and root growth 

and plays a role in plant metabolism, protein synthesis, and chlorophyll development 

(Remison, 2005). Many plant enzymes require potassium for activation and this nutrient is 
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also critical for cell division, formation of carbohydrates, and translocation of sugars. 

Potassium is the primary element responsible for regulation of water control in plants, and 

is known to increase the resistance of certain plants to certain diseases (Acquaah, 2002). 

Past research has shown significant effects, such as increases in soybean yield in response 

to K fertilizer applications (Farhad et al., 2010). Potassium can be adsorbed between clay 

layers and remains relatively immobile due to its positive charge while the soil is 

negatively charged. The available form of potassium that can be taken up and utilized by 

the plant is (K+) (Tisdale, 2013). 

Potassium nutrition is also related to disease development. Just like the other two 

macronutrients, the involvement and influence that this nutrient has on plant disease is a 

complex matter.  When managing crop disease and soil fertility, the rate and form of 

potassium and its balance with other nutrients in the soil are factors to consider. K+ can 

have direct effects on different stages of pathogen establishment and development within 

the host. This nutrient can also promote the plant’s wound healing, indirectly effecting 

infection of certain pathogens. Potassium affects plant morphology such as hardening the 

tissues, which results in the improvement of resistance to disease penetration (Perrenoud, 

1990). An abundant level of potassium in soybean can delay maturity and senescence and 

result in allowing a larger time frame for certain pathogens to infect (Agrios, 1997).  

In many cases, potassium has been shown to reduce the severity of plant diseases, 

although high quantities of the nutrient can increase the severity of disease as well. A few 

diseases that are less effective in the presence of potassium are stem rust of wheat, early 

blight of tomato, and stalk rot of corn (Agrios, 1997). On the other hand, (Pacumbaba et al., 
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1997) found that increased levels of potassium led to an increase in soybean root and stem 

rot caused by Phytophthora sojae K. & G.  

Soil fertility and plant nutrition are important components to consider when 

managing soybean diseases. Nutrition affects the rate of growth and the state of readiness 

of plants to defend themselves against pathogenic attack (Agrios, 1997). However, in order 

for a pathogen to successfully colonize a soybean, it requires efficient utilization of nutrient 

resources that are present in the soybeans tissues (Snoeijers et al., 2000). Soybeans that 

are grown in soils rich with nutrients such as available N, P, and K, are apt for diseases. 

Fertilizer applications can cause nutrient-induced changes in both the host and pathogen, 

leading to an increase or decrease in development of plant disease. The components 

leading to these changes are diverse and complex and include the effects of mineral 

nutrients directly on the pathogen, on plant growth and development, and on plant 

resistance mechanisms (Huber & Wilhelm, 1988). 

One of the most important soybean diseases of North and South America, SDS, is 

influenced by soil fertility (Rupe et al., 1993). First documented in Arkansas in 1971 (Rupe 

et al., 1988), this disease has spread and continues to cause very large problems in most 

soybean production regions in the world today. The blue-pigmented soilborne fungus, 

known as Fusarium virguliforme (Aoki, 2003) is the pathogen responsible for causing 

sudden death syndrome. The fungus infects the soybean roots, colonizes the plant and 

produces a toxin that translocates throughout the plant. The fungus can colonize and infect 

roots as soon as two weeks after germination, however signs and symptoms of SDS do not 

usually appear until flowering or shortly after. Leaf symptoms often include puckering that 

can later lead to interveinal chlorosis and necrosis, as the major lateral veins remain green. 
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In severe cases, leaves will shrivel and defoliate, seed development will decrease, pods will 

abort seeds and plants can even experience premature death (Rupe et al., 1993; Rupe et al., 

1988; Yang & Lundeen, 1997). In the United States, yield losses caused by SDS have been 

recorded as high as 80% under favorable conditions (Roy et al., 1997).  

Some major factors that can influence SDS development are temperature and 

moisture of the soil, soybean cyst nematode population densities, planting date, soybean 

cultivar, maturity date, tillage practices and soil fertility (Rupe et al., 1993; Chong et al., 

2004). Management of SDS is limited because fully resistant soybean cultivars have not 

been developed, although, there are many cultivars available that are less susceptible to 

SDS. Fungicide seed treatments also have limited efficacy (Njiti, et al., 2002). Sudden death 

syndrome favors cool and wet conditions, therefore planting later in the spring when 

conditions are warmer and dry, can reduce incidence and severity of the disease (Roy et al., 

1997). Deep tillage has proven to reduce the incidence and severity of SDS, due to 

reduction in soil compaction, providing a more aerated root zone that promotes root 

growth and sets back root infection (Vick et al., 2003).  

Sudden death syndrome is often associated with high yielding production 

environments or increased soil fertility, indicating that soil chemical factors may have an 

effect on the incidence and severity of the disease. Studies have shown that severity of SDS 

increases under conditions for optimum host growth, such as high levels of available soil P, 

Mg, and organic matter (Rupe et al., 1993).  Research in Iowa indicated that increased K 

concentrations enhanced the severity of foliar symptoms of SDS (Scherm et al., 1998). 

Results from a study conducted in Tennessee suggested that increasing fertilizer 

application rates of potassium chloride (KCl), during planting, led to a decrease in 
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incidence and severity of foliar symptoms and root rot caused by SDS. The factor 

responsible for the decrease in disease symptoms turned out to be the chloride and not the 

potassium (Abney, 1993). Under a controlled environment, (Sanogo & Yang, 2000) found 

very similar results when looking at the effect of KCl on SDS severity, in which the 

application decreased symptoms by 36%. On the other hand, the authors found that 

disease severity was significantly increased by applications of calcium phosphate, 

potassium phosphate, potassium sulfate, sodium phosphate, and potassium nitrate. In this 

study, germination of Fusarium virguliforme was not affected by potassium or phosphorus 

treatments, but mycelial growth was enhanced (Sanogo & Yang, 2000).  

Rhizoctonia solani (Kühn) is a soilborne fungus that is devastating to soybean 

production in North and South America. This pathogen causes pre and post emergence 

damping-off as well as seedling blight, leading to a reduction in stand. Plants that become 

established and develop a root system may experience root rot and stunting, which can 

lead to a yield loss of up to 48% in the United States (Yang et al., 2008). 

When managing a soilborne fungal pathogen such as R. solani, it is important to be 

aware of the environmental factors such as the physical characteristics of the substrate that 

both the pathogen and host use for nutrition. The nutrition of both host and pathogen play 

large roles in the epidemiology of R. solani (Parmeter, 1970). This pathogen can grow 

saprophitically in the soil, on soil organic matter or plant debris (Papavizas et al., 1970). 

Levels of soil nutrition influence the soybean plant’s growth, development and 

susceptibility to soilborne pathogens. The mycelial growth of R. solani and its distribution 

of nutrients are also influenced by soil nutrition (Otten & Gilligan, 1998; Otten et al., 1999). 

If abundant nutrient levels increase the host’s disease resistance, yet enhance the 
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pathogen’s health, what is the best decision for nutrient management? Once again, a 

complex interaction between pathogen, host and environment is recognized (Anees et al., 

2010).  

It has been noted that R. solani will grow in dense colonies in areas that are 

sufficient in nutrients (Anees et al., 2010), however, young plants with access to abundant 

nutrients have a better chance of surviving early infections (Wherrett, 2016). It is common 

for diseased plants to first appear in areas that lack water and nutrients, with the 

additional stress favoring the pathogen (Yang et al., 2008). Deficiencies in soil nitrogen, 

phosphorus and calcium have shown to increase disease potential of R. solani (Parmeter, 

1970). Experimental applications of fertilizers to areas infested with R. solani have had 

contradictory results, and the mechanisms behind the effects have remained unclear 

(Parmeter, 1970; Anees et al., 2010). In some cases, application of fertilizers have shown to 

reduce the development and establishment of R. solani. Papavizas et al., (1975), found that 

the ammonium form of nitrogen actually decreased saprophytic survival and activity of R. 

solani root rot on table beet, while the nitrate form enhanced growth and activity. 

Application of ammonium sulfate, urea and sodium nitrate were shown to reduce bare 

patch and root rot of cereals such as wheat and oats (Hynes, 1937; De Beer, 1965; 

Chambers, 1966; Macnish, 1985). Combinations of nitrogen plus phosphorus and 

phosphorus plus potassium fertilizers, were shown to reduce severity of R. solani root rot 

in field peas (Srihuttagum & Sivasithamparam, 1991). N, P and K fertilizer affects on the 

health of soybeans infected with R. solani is a topic that requires investigation.  

Managing sudden death syndrome involves control of other pests that could be 

influencing the severity or impact of the disease. Soybean cyst nematode, Heterodera 
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glycines, is a plant parasitic, soil borne pathogen that infects soybean roots, causing 

stunting, yellowing of leaves and loss of yield (Davis & Tylka, 2000). Although the pathogen 

alone causes negative impacts to the soybean, the soybean cyst nematode (SCN) severely 

enhances symptoms of SDS if both pathogens infect the plant (McLean et al., 1993). There is 

no current data presenting evidence that SCN and R. solani have any interaction (Frohning, 

2013). Keeping a balanced nutrient program for soybeans can help limit the negative 

impacts caused by SCN (Riggs & Wrather, 1992). Adequate levels of potassium allow for 

thicker cell walls which increases defense against nematode feeding. Potassium does not 

reduce damage from SCN but helps maintain the plant’s defense against the yield robbing 

damages caused by the nematode (Snyder, 2000). While the nutrient requirements for SCN 

currently remain unclear (Goheen et al., 2013), the influence of nutrients on SCN also 

requires further research.  

Managing a soil and plant nutrient program requires strict attention towards the 

time of application, the placement of fertilizer, mineral selection and nutrient form. The 

management option of placing liquid fertilizer in furrow and in contact with the seed 

during planting is becoming more popular in soybean production, but has had limited and 

contradicting evaluations. This type of starter fertilizer application, known as “pop-up”, 

intends to provide nutrients that are unavailable to the soybean in its early growth stages. 

Placing the fertilizer in the furrow allows the young plant roots to immediately come in 

contact with nutrients, resulting in a robust root system and foliage that promotes higher 

yields.  

The majority of research conducted on liquid fertilizer that comes in contact with 

the soybean seed results in the conclusion that this method of application should be 
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avoided (Clapp & Small, 1967). Early studies have shown that direct contact of fertilizer to 

the seedling leads to salt toxicity and decreased emergence caused by the high salt 

concentration of N and K2O. Therefore, a more common starter application method known 

as 2x2 placement has become a popular alternative to in-furrow placement. The 2x2 refers 

to the 2 inches to the side and 2 inches below the placement of the seed, leaving a soil 

buffer, which is meant to prevent salt toxicity by the fertilizer. This method and other early 

season starter fertilizer methods such as broadcast applications have shown increases in 

soybean plant growth and/or grain yield (Sorensen & Penas, 1978; Bly et al., 1998; Starling, 

et al., 2000; Fu-ti et al., 2010). Over recent years, fertilizer companies have developed new 

in-furrow products that have very low salt concentrations and are advertised as non-

threatening to the soybean seedling.  

This raises new interest in the pop-up fertilizer application as a soybean nutrient 

management option. With this method increasing in popularity, further investigation is 

needed to understand its influence on other factors that contribute to successful soybean 

production. It is unknown if the increased fertility in the root zone may actually increase or 

decrease the severity of root or seedling diseases such as sudden death syndrome or R. 

solani in soybean.  

One objective of this study is to determine if in furrow applications of starter 

fertilizer impact seedling disease caused by R. solani and if the applications have impact on 

yield of soybean. A second objective is to determine if pop-up fertilizer influences the 

incidence and severity of SDS and soybean yield. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

The data collected from this trial include soil test nutrient analysis, stand counts, 

yield measurements, nematode counts, rainfall and soil temperature measurements. 

Accumulated precipitation amounts and statistics were provided by the Illinois State Water 

Survey and represent data for Carbondale, Illinois. Soil samples were taken just before 

planting and sent to a laboratory for nutrient analysis. Soil nutrient analysis was 

generalized over the whole field. Stand counts were taken three times, once a week for 

three weeks, shortly after emergence. The stand counts were used to establish a pre and 

post emergence damping-off rating. Yield was measured during harvest with a grain gauge.  

Soybean cyst nematode counts were measured from soil samples taken from each 

plot. Soil samples were filtered through a sieve and put through a centrifugal flotation 

extraction process, separating cysts from soil. Cysts were then put under a grinder and 

busted open, releasing eggs. The eggs were stained with a bright pink dye, enabling the 

human eye to easily detect and quantify the amount of nematode eggs under a microscope. 

This extraction technique was adapted from Jenkins, 1964.  

The inoculum used in this research was sterilized white sorghum infested with 

either pathogen. The sorghum seed was sterilized by undergoing 2 cycles of extremely high 

temperatures in an autoclave. Growing on potato dextrose agar, cultures of R. solani and F. 

virguliforme were transferred into blender cups with sterile distilled water and sterile 

potato dextrose broth. Remaining separate, each culture of fungus was homogenized in a 

blender and poured into 1.36 kg aluminum pans of sterile sorghum. The pans were 
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covered, sealed and placed in room temperature to grow for 7 days. Infested sorghum was 

air dried for 48 hours. The dry infested sorghum was placed in furrow with the soybean 

seeds during planting.  

Rhizoctonia solani Trial 

In 2014, forty-eight soybean plots were planted in Carbondale, Illinois at a seeding 

rate of 139,392 seeds per acre. Each plot was infested with R. solani during planting at the 

rate of 0.9 g of inoculum/30.5 centimeters of row. Plots were 3.04 meters wide by 6.1 

meters in length with row spacing of 0.76 meters. A randomized complete block design 

consisted of 4 treatments that were replicated 3 times and planted into 4 row plots. 

Treatments consist of treated (metalaxl™, fluxapyroxad™, pyraclostrobin™, and 

imidacloprid™) or non-treated seed (Asgrow 4730) combined with a formula of 2-6-16 

fertilizer or no fertilizer. In 2015, an addition of 2 fertilizer formulas were tested, 

increasing the treatments to 8 and remaining with 3 reps. Fertilizer treatments consisted of 

three fertilizer formulas: 2-6-16, 3-10-13, 7-12-11 or non-fertilizer. The 2-6-16 fertilizer 

ingredients were derived from urea, ammonia, phosphoric acid, potassium acetate and 

potassium hydroxide.  3-10-13 was derived from urea, ammonium hydroxide, ammonium 

thiosulfate, phosphoric acid, potassium hydroxide, potassium acetate and zinc EDTA. The 

ingredients that make up 7-12-11 are derived from ammonium hydroxide, urea, 

phosphoric acid, potassium acetate, and potassium hydroxide. Fertilizer treatments were 

applied in furrow, during planting, at the rate of 2 gallons per acre. Seed firmers and rubber 

tubing directed fertilizer placement by falling flush within the furrow.  
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SDS Trial 

Also located in Carbondale, Illinois and consisting of 48 soybean plots, this trial was 

planted at a seeding rate of 139,392 seeds per acre and infested with F. virguliforme at the 

rate of 2.25 g/30.5 centimeters of row. The trial design and treatments are exactly the same 

as the R. solani trial for both 2014 and 2015. Data collected from this trial include rainfall, 

soil temperature, soil nutrient analysis, stand counts, nematode counts and SDS foliar 

symptom ratings. All data were collected the same as the R. solani trial except for SDS 

ratings. 

Once foliar symptoms appeared, severity and incidence ratings were taken 

consistently, once a week for 3 weeks. Severity was rated on a scale from 0 to 9, based on 

the percentage of leaf area chlorotic, necrotic or defoliated (Gibson et al., 1994): 0 = no 

detectable leaf symptoms; 1 = 1 to 10% chlorotic or 1 to 5% necrotic; 2 = 10 to 20% 

chlorotic or less than 10% necrotic; 3 = 20 to 40% chlorotic or 10 to 20% necrotic; 4 = 40 

to 60% chlorotic or 20 to 40% necrotic; 6 = up to one third premature defoliation; 7 = one-

third to two-thirds premature defoliation; 8 = greater than two-thirds premature 

defoliation; and 9 = plants prematurely dead. Incidence, or the percentage of plants within 

the plot that show symptoms, was rated on a 0 to 100 percent scale. Multiplying incidence 

by severity and dividing by 9 calculates a foliar disease index rating.  

 

 

 

 

 



 

  

16

CHAPTER 3 

RESULTS 

 

Data collected for this research were analyzed using a factorial treatment structure 

and analysis of variance (ANOVA) using JMP® Pro 12.1.0 by SAS Institute Inc. There were 

no interactions between the factors: fertilizer or seed treatment (Table 2-5). Individual 

treatment means were separated using a Fisher’s protected t-test. Data from each year 

were analyzed separately due to different treatments being used across years.  

Accumulated precipitation amounts and growing season soil temperatures were 

provided by the Illinois State Water Survey and represent data for Carbondale, Illinois 

(Figure 1, Table 6). Trials were planted into warm soils and the growing season 

precipitation during both years was above the average rainfall for Carbondale, Illinois. 

Planting in June of 2014, there was an average soil temperature of 77.1˚ F and a total 

rainfall of 115 mm for the month. This level of precipitation is high compared to the 

average June rainfall recorded every year since 1998, which is 108.7 mm. In 2015, trials 

were planted in early May, with soil temperatures averaging 68.4˚ F for the whole month. 

The total rainfall for May 2015 was 105 mm, 2 mm higher than the normal May rainfall. 

June of 2015 hit record high levels of precipitation for the state of Illinois and July’s rainfall 

data was also above the average. 

2014 SDS Trial  

Plant stand was low across the whole SDS trial, ranging from 35,669 to 41,809 

plants/ha-1. In plots that received starter fertilizer, a significant decrease in stand was 

found in the first assessment date (Table 7). The second and third stand ratings followed a 
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similar trend but differences were not significant. Soybean yield was not affected by either 

the seed treatment or fertilizer. The soybean yield reached as high as 1,503 Kg/ha-1, which 

is much higher than the average soybean yield of 1,279 Kg/ha-1, harvested in Jackson 

County, Illinois, in 2014. Foliar symptoms of SDS increased with severity and incidence 

later in the season but overall disease pressure was low (Table 8). Foliar symptoms were 

significantly higher at the third evaluation date, during the R6 growth stage, in plots with 

the seed treatment. Soybean cyst nematode population densities were not affected by 

either the seed treatment or fertilizer. SCN egg densities ranged from 1,408 to 2,633 eggs 

per 100 cc of soil, 21 days after planting.  

2015 SDS Trial 

 Starter fertilizer applications did not affect stand. The plant population was low, 

ranging from 18,863 to 27,912plants/ha-1 (Table 9). Stand was significantly lower in plots 

that contained treated seed during the first and third ratings. Soybean yield was not 

influenced by fertilizer or seed treatment. The trial’s lowest yield was 1,690 Kg/ha-1. Foliar 

symptoms of SDS were not influenced by seed treatment or fertilizer application (Table 

10). The disease pressure in 2015 was even lower than what was experienced in 2014. 

Foliar symptoms of SDS were not visible until very late in the season, therefore, only two 

disease ratings were taken before senescence. Fertilizer or seed treatment did not impact 

SCN egg densities. In 2015, SCN egg samples were taken later in the season and were much 

higher compared to 2014 samples. The densities ranged from 3,183 to 3,716 SCN eggs per 

100 cc of soil. 
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Rhizoctonia Trial 2014 

 Soybean stand did not differ between the fertilizer treatments but stand was 

impacted by seed treatment (Table 11). Plant population was higher in plots that received 

seed treatment at the second rating interval. The first and third stand assessment intervals 

also had more plants in plots with seed treatment but these differences were not 

statistically different. Overall soybean stand was low compared to the seeding rate, ranging 

from 32,995 to 43,664 plants/ha-1 across the whole trial. Soybean yield was not influenced 

by seed treatment or fertilizer. Soybean cyst nematode densities were not influenced by 

seed treatment. SCN egg densities were relatively low ranging from 1,058 to 1,392 eggs per 

100 cc of soil. 

Rhizoctonia Trial 2015  

 In 2015, the R. solani trial was located in a different field than the previous year. 

Significant effects of fertilizer on stand were observed in all three rating intervals (Table 

12). At the first rating interval, plots with no fertilizer treatment had significantly less stand 

than the other three fertilizer treatments. On 5/27/15, stand in the no-fertilizer plots was 

significantly less than those which contained the 2-6-16 and 7-12-11 fertilizer treatments, 

but were not different than the 3-10-13 treatment. In 2015, seed treatment had the 

opposite affect on stand than it did in 2014. For the first two rating intervals, a significant 

decrease in stand was seen in plots that received seed treatment compared to the non-

treated plots. The third rating demonstrated a common pattern. Plant population ranged 

from 29,616 to 37,255 plants/ha-1 throughout the trial. Soybean yield was significantly less 

in the plots with no fertilizer and 2-6-16, as compared to the other two fertilizer 

treatments. Soybean yield ranged from 1,637 to 1,806 Kg/ha-1, much higher than the 
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average for the region. Soybean cyst nematode densities were not affected by seed 

treatment or fertilizer. However, they were much higher than densities found in 2014 

samples. SCN egg densities ranged from a count of 3,133 to 4,041 eggs per 100 cc of soil. 
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CHAPTER 4 

DISCUSSION/CONCLUSION 

 

In 2014 and 2015, both pathogen trials had low levels of stand counts compared to 

the seeding rate. Patches of bare soil were frequently witnessed throughout all trials and 

non-germinated seeds were dug up to confirm decay. The Acceleron seed treatment used in 

this research contains metalaxl, fluxapyroxad, pyraclostrobin and imidacloprid, claiming to 

control Rhizoctonia solani, Pythium, Phytophthora, and Fusarium seedling diseases. Low 

stand counts found in plots containing seed treatment suggests the possibility that all 

natural or artificially inoculated pathogens were not controlled. There are no published 

data supporting inconsistencies with this particular seed treatment. However, non-distinct 

results and even stand reductions in field trials receiving fungicide seed treatments have 

been reported (Bradley, 2008; Dorrence, 2003; Urrea et al., 2013).  

The Rhizoctonia trial exhibited symptoms of disease pressure through seed decay, 

pre and post emergence damping off in 2014. Damping off was observed along with red 

lesions on the hypocotyl of affected plants. Plots with treated seed had higher stand counts 

than non-treated plots; demonstrating seedling disease pathogens played a role in 

decreasing stands. The R. solani trial was located in a different field in 2015 and had lower 

incidence of post emergence damping off. Plant stand was low and pre-emergence damping 

off and seed decay was confirmed by digging up rotted seed. In 2015, stand was lower in 

plots that had seed treatment for both pathogen trials. These results contradict the data 

recorded in the 2014 R. solani trial and do not match up with results found in the 2014 SDS 

trial. When aiming to control soybean seedling diseases caused by Fusarium, Rhizoctonia, 
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Phytophthora, and Pythium spp., Bradley, (2008), reported that seed treatments consisting 

of azoxystrobin and metalaxyl had significantly decreased stand compared to non-treated 

seed in one of the trial locations. The researchers did not find similar results in other 

locations, indicating that environment played a role in stand establishment (Bradley, 

2008). The efficacy of fungicide seed treatment against R. solani is related to the 

environment, specific isolate and density of inoculum (Nelson, 1996). Published literature 

does not provide data on a chemical or biological fungicide product that administers 100 

percent control of R. solani in soybean. Seeing a stand decrease in seed treatment plots 

during 2015 but not in 2014, implies that differing weather conditions could have been a 

contributing factor. The fact that decreased stand establishment in seed treatment plots 

was seen in both pathogen trials, also indicates that environmental conditions played a role 

and not one single inoculated pathogen or the other. Interactions between indigenous 

beneficial microorganisms and plant pathogens may have been directly or indirectly 

influenced by seed treatment, possibly impacting stand. The rhizosphere is full of beneficial 

bacteria and fungi that affect the population density, movement and metabolic activities of 

plant pathogens by three types of interactions. These interactions are competition for 

space and nutrients, antagonism and hyperparasitism (Raaijmakers, 2009).  

If targeted pathogens are controlled, an ecological window may open for non-

targeted pathogens that compete for nutrition (Srivastava & Shalini, 2008). Estevez de 

Jensen C. et al, 2002, noted that a phenomenon of microbial antagonism causing 

suppression of disease often exists in the soil. Controlling or inhibiting soil microorganisms 

that have an antagonistic relationship and suppress disease may allow plant pathogens a 

greater chance of infection. It is possible that targeted pathogens such as R. solani may have 
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only been moderately controlled by seed treatment, especially in an environment with 

supplemental inoculation. If a fungicide only partially controls a fungal pest, this may put 

the organism under stress and prompt the use of defense mechanisms such as production 

of toxins that could be detrimental to plant health (Benbrook, 2006).  

Lack of emergence may have also been caused by high strength fungal inoculum in 

direct contact with the seed. Batches of inoculum made in a laboratory setting may have 

varying levels of pathogenic strength or ability, depending on the strain and density of 

inoculum.  For future reference, artificial inoculum should be evaluated for a calculation of 

colony forming units (CFU), estimating the number of viable fungal cells or spores located 

on each grain of infested sorghum.  

All trials had yields that were higher than the average yield for Jackson County, 

Illinois. Soil nutrient analysis revealed adequate levels of potassium and phosphorus 

required for the soybean life cycle in all fields over both years (Table 1). Research has 

shown that starter fertilizers are more likely to influence yield in nutrient deficient 

environments. Starter fertilizer is not a maintenance or build-up application, but is used to 

speed up the process of emergence and promote a uniform stand. Minimizing the delay of 

emergence and speeding up root growth and establishment decreases the window of 

infection for seedling and early season pathogens, possibly indirectly influencing stand or 

yield (Agrios, 1997; Nafziger, 2009).  

Significantly higher yield measurements were found in plots receiving the 7-12-11 

and 3-10-13 fertilizer treatments in the 2015 R. solani trial. The increased amount of 

accessible phosphorus in these two fertilizer treatments may have attributed to the cause 

of higher stand and yield measurements. Hankinson, (2015) found increases in soybean 
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yield when starter fertilizer consisting of triple superphosphate (TSP) and DAP was applied 

to soils with adequate phosphorus levels.  Although fields were adequate in phosphorus 

nutrition, phosphorus is immobile in the soil and may not be accessible to the plant until 

the root system covers more soil volume. The idea that direct contact of phosphorus 

application to the seed makes the nutrient easily attainable, speeding up growth and 

ultimately increasing yield, should be investigated.  

Sudden death syndrome disease pressure was low in both years. In fact, foliar 

symptoms were too low to discern any differences among treatments in 2015. Soil 

moisture and temperature are important factors in development and expression of SDS 

foliar symptoms. F. virguliforme most commonly causes SDS under cool, moist conditions 

(Hirrel, 1987; Rupe et al. 1993; Scherm & Yang, 1996). Although moist conditions have 

proven to create an environment that favors F. virguliforme, it is apparent that there is level 

of precipitation that disturbs that favorable environment. In 1995, Rupe and Gbur noticed 

that too much soil moisture during vegetative growth can reduce or delay development of 

SDS symptoms (Rupe & Gbur, 1995; Roy et al., 1997). It is possible that growing season 

precipitation was too high for the onset of disease in 2015. June totaled 229.1 mm of 

rainfall, which is a record high for the history of Illinois and much higher than the average 

collected over the past 18 years, which is 108.7 mm. July was also above average at 154.9 

mm compared to the normal 103.9 mm. Both years, trials were planted into soil 

temperatures between 20-25 C˚, which is a favorable temperature for the disease (Scherm, 

1996). With a goal to observe SDS foliar symptoms and discern differences amongst 

treatments, future research trials should be planted earlier in the season when 

temperatures are as cool as 15 C˚ and soils are moist but not overly saturated.   
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In the 2014 SDS trial, lower stand counts were observed in plots with fertilizer 

application during all 3 rating intervals, with the first rating significantly lower. These 

differences were not observed in the R. solani trials, which could indicate a synergistic 

relationship between fertilizer and the SDS inoculum, although, there are no published data 

to support this. In 2015, fertilizer did not impact stand in the SDS trial, pointing towards 

the possibility that the environment and weather conditions played an important role in 

the disease severity. Also in 2014, SDS foliar symptoms were more prominent in plots that 

received a seed treatment, possibly suggesting that the chemical treatment had controlled 

or influenced soil borne pathogens that are antagonists or compete with F. virguliforme for 

nutrition. The seed treatment included in this research was not a means of control for SDS. 

Removing antagonists or competitive organisms could possibly allow F. virguliforme to 

have a larger success rate in infecting its host, the soybean plant. Antagonistic and 

competitive relationships between soil microorganisms do exist (Estevez de Jensen et al. 

2002), but were not investigated in this research. When exploring seed treatment effects on 

F. virguliforme and development of SDS, Weems et al., (2015) noticed a reduction in seed 

germination when fungicide seed treatment was applied. Considerations for this 

explanation involved the idea that toxic effects from seed treatment could have reduced 

germination or that treatments could have had negative effects on beneficial 

microorganisms that aid in seedling development (Weems et al., 2015; Raaijmakers et al. 

2009).  

Artificial inoculum may have had a different level of strength between years. Effects 

on soybean germination with direct contact of artificial inoculum to the seed requires 

investigation. Natural occurring inoculum of pathogenic organisms should be identified and 
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density estimates should be calculated in order to further understand the influence that 

seed treatment has on non-targeted microorganisms and how it directly or indirectly 

impacts stand counts.  

Soybean cyst nematode egg counts were above the threshold of 500 eggs per 100 cc 

of soil in all trials over both years and were not influenced by any treatments. In 2015, the 

R. solani trial was located in a different field and could have been the reason for differing 

levels of SCN eggs between years. Differences in SCN egg densities were seen between 

years in both pathogen trials, possibly due to samples being taken later in the season in 

2015. Early season samples during 2014 had fewer SCN eggs. Shortly after planting, SCN 

eggs hatch due to stimulants being released by newly established soybean roots. Egg 

population increases later in the season when females mature and produce eggs (Davis & 

Tylka, 2000).  

This study was intended to give producers a better understanding of their returns 

when investing in starter fertilizers. Soybean producers who spend resources on nutrient 

inputs need to consider the interactions between supplemental nutrient content and 

microorganism activity in their soils. Sufficient information on the topic is currently lacking 

and requires further investigation. The lack of consistent results found in this research do 

not provide solid evidence that starter fertilizer benefits or hinders production of soybeans 

infested with Rhizoctonia solani or Fusarium virguliforme. However, these findings do not 

rule out such possibilities. This study benefits the agricultural community by contributing 

the only current data regarding this topic. Important factors and recommendations can be 

passed along to future researchers who aim to examine the influences of starter fertilizer 

applications on soybeans grown in pathogen-infested environments.  
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In field trials, soils should be sampled to identify and quantify naturally existing 

microorganisms that could play a role in the plant disease complex. To remove microbial 

variability and complication, greenhouse trials could be performed in sterilized soils where 

the only fungal pathogen present is the one of desired examination. In field and greenhouse 

trials, inoculum source, strength, CFUs and type of inoculum application should be 

considered. Analyzing the influence of starter fertilizer products on R. solani and F. 

virguliforme mycelial growth in a laboratory setting could help comprehend fungal nutrient 

uptake. If significant differences in growth are recorded, eventually the size of mycelium 

and quantification of CFUs could be tested for any interactions with incidence and severity 

of disease symptoms in a greenhouse or field trial. More accurately and efficiently, PCR 

could be used to quantify the abundance of DNA molecules that would possibly be 

influenced by fertilizer applications.  

Field trials need to be conducted in nutrient deficient soils and compared to soils 

with adequate nutrient levels. Current research suggests that stand and yield increase due 

to starter fertilizer application is more commonly recorded in nutrient deficient 

environments. An alleged benefit of starter fertilizer application is that producers can plant 

earlier in the season and have available nutrients when temperatures are cooler and soil 

nutrients have not undergone mineralization yet. This research study was planted into 

warm soils and did not explore impacts by temperature. Future trials should be planted 

into cool soils, insuring that mineralization has not occurred yet. Planting into cooler soils 

also delays emergence and creates an environment more suitable for many plant 

pathogens, allowing researchers to witness symptoms and possibly discern differences 

between treatments. According to the results found in this study, it would not be feasible 
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for soybean producers to invest in starter fertilizers when production soils are adequate in 

nutrients. 
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Table 1 

Soil Test Values for Fields Inoculated with Fusarium virguliforme and Rhizoctonia solani in 2014 and 2015 

Field Name Year pH P (kg/ha-1) K (kg/ha-1) Ca (kg/ha-1) O.M. (%) CEC (meq/100g) 

SIUC ARC 8E 2014 7.1 106.2 303.1 3,505.1 1.6 9.5 

SIUC ARC 8E 2015 7.3 104.5 315.4 4,316 1.8 11.4 
SIUC ARC 19N 2015 7.3 114.6 433.3 4,291.7 2.0 11.4 

 
Note. 8E was inoculated with F. virguliforme and 19N was inoculated with R. solani in 2015. 
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Note. Prob>F is the p-value for the effect test. There were no interactions between the factors: 
fertilizer or seed treatment. Individual treatment means were separated using a Fisher’s protected t-

test. 

  

Table 2 

Test of Fixed Effects on Plots Inoculated with Fusarium virguliforme in 2014, Using 

a Fit Model Analysis 

Plant Population-6/26/14    

Effect DF F Value Pr>F 

Replication 5 1.91 0.153 
Seed Treatment 1 0.03 0.875 
Fertilizer 1 4.84 0.044 

Seed Treatment * Fertilizer 1 0.46 0.509 
    
Plant Population-7/3/14    

Effect DF F Value Pr>F 

Replication 5 1.59 0.223 
Seed Treatment 1 0.09 0.767 

Fertilizer 1 3.24 0.092 

Seed Treatment * Fertilizer 1 0.35 0.563 

    

Plant Population-7/10/14    

Effect DF F Value Pr>F 

Replication 5 1.49 0.251 

Seed Treatment 1 0.55 0.469 

Fertilizer 1 3.17 0.092 

Seed Treatment * Fertilizer 1 0.59 0.455 

    

Yield    

Effect DF F Value Pr>F 
Replication 5 1.28 0.323 

Seed Treatment 1 2.54 0.132 

Fertilizer 1 0.03 0.853 

Seed Treatment * Fertilizer 1 0.14 0.713 
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Note. Prob>F is the p-value for the effect test. There were no interactions between the factors: 

fertilizer or seed treatment. Individual treatment means were separated using a Fisher’s protected t-

test. 

 

  

Table 3 
Test of Fixed Effects on Plots Infested with Fusarium virguliforme in 2015, Using a 

Fit Model Analysis 

Plant Population-5/20/15    

Effect DF F Value Pr>F 

Replication 2 1.61 0.213 
Seed Treatment 1 5.32 0.026 
Fertilizer 3 1.26 0.301 
Seed Treatment * Fertilizer 3 1.13 0.346 
    

Plant Population -5/27/15    

Effect DF F Value Pr>F 

Replication 2 1.24 0.300 

Seed Treatment 1 2.41 0.128 

Fertilizer 3 1.77 0.168 

Seed Treatment * Fertilizer 3 1.37 0.265 

    

Plant Population -6/3/15    

Effect DF F Value Pr>F 

Replication 2 0.42 0.660 

Seed Treatment 1 4.39 0.043 

Fertilizer 3 2.24 0.099 

Seed Treatment * Fertilizer 3 1.22 0.316 

    

Yield    

Effect DF F Value Pr>F 
Replication 2 3.87 0.029 

Seed Treatment 1 0.30 0.586 

Fertilizer 3 2.01 0.117 

Seed Treatment * Fertilizer 3 0.59 0.625 
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Note. Prob>F is the p-value for the effect test. There were no interactions between the factors: 

fertilizer or seed treatment. Individual treatment means were separated using a Fisher’s protected t-

test. 

 

  

Table 4 
Test of Fixed Effects on Plots Infested with Rhizoctonia solani in 2014, Using a Fit 

Model Analysis 

Plant Population-6/26/14    

Effect DF F Value Pr>F 

Replication 5 0.88 0.517 
Seed Treatment 1 4.07 0.063 
Fertilizer 1 0.55 0.471 
Seed Treatment * Fertilizer 1 0.01 0.965 
    

Plant Population-7/3/14    

Effect DF F Value Pr>F 

Replication 5 0.39 0.851 

Seed Treatment 1 5.13 0.040 

Fertilizer 1 0.45 0.512 

Seed Treatment * Fertilizer 1 0.02 0.899 

    

Plant Population-7/10/14    

Effect DF F Value Pr>F 

Replication 5 0.15 0.975 

Seed Treatment 1 2.44 0.141 

Fertilizer 1 0.90 0.358 

Seed Treatment * Fertilizer 1 0.02 0.899 

    

Yield    

Effect DF F Value Pr>F 
Replication 5 3.07 0.045 

Seed Treatment 1 0.08 0.781 

Fertilizer 1 0.01 0.924 

Seed Treatment * Fertilizer 1 0.98 0.339 
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Note. Prob>F is the p-value for the effect test. There were no interactions between the factors: 

fertilizer or seed treatment. Individual treatment means were separated using a Fisher’s protected t-

test. 

Table 5 
Test of Fixed Effects on Plots Inoculated with Rhizoctonia solani in 2015, Using a Fit 

Model Analysis 

Plant Population-5/20/15    

Effect DF F Value Pr>F 

Replication 2 11.8 0.0004 
Seed Treatment 1 3.99 0.0014 
Fertilizer 3 9.78 0.0145 
Seed Treatment * Fertilizer 3 0.22 0.8806 
    

Plant Population-5/27/15    

Effect DF F Value Pr>F 

Replication 2 11.4 0.0001 

Seed Treatment 1 10.3 0.0027 

Fertilizer 3 3.30 0.0300 

Seed Treatment * Fertilizer 3 0.33 0.8052 

    

Plant Population-6/3/15    

Effect DF F Value Pr>F 

Replication 2 7.43 0.0019 

Seed Treatment 1 3.26 0.0787 

Fertilizer 3 4.96 0.0052 

Seed Treatment * Fertilizer 3 0.54 0.6585 

    

Yield    

Effect DF F Value Pr>F 
Replication 2 11.8 0.0001 

Seed Treatment 1 0.18 0.6712 

Fertilizer 3 7.77 0.0004 

Seed Treatment * Fertilizer 3 0.09 0.4357 
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Table 6 
Average Soil Temperature Throughout the 2014 and 2015 Growing Seasons in 

Carbondale, IL.  

Year 2014 2015 

Month May June July August May June July August 

Temperature (˚F) 68.5 77.1 76.4 78.5 68.4 77.8 81.5 77.8 
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Table 7 
Soybean Stand and Yield as Influenced by Fertilizer and Seed Treatment in Plots 

Inoculated with Fusarium virguliforme in 2014 

Factor Plants/ha-1 Yield (Kg/ha-1) 

Date 6/26/14 7/3/14 7/10/14  

     

No Fertilizer 40,928 a 41,427 41,809 3,557 

Starter Fertilizer 35,669 b 37,049 37,578 3,591 

     

Prob>Fa 0.0438 0.0921 0.0952 0.8527 

     

Seed Treatment 38,107 38,871 38,812 3,439 

Non-Treated 38,489 39,606 40,575 3,708 

     

Prob>Fa 0.8751 0.7668 0.4695 0.1317 

 
Note. Means within columns followed by similar letters are not different (P ≤ 0.05) for each factor, 
according to Fisher’s protected LSD test 
 

aProb>F is the p-value for the test. There were no interactions between the factors: fertilizer or seed 
treatment. Individual treatment means were separated using a Fisher’s protected t-test. 
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Table 8 
Foliar Disease Symptoms of Fusarium virguliforme and Soybean Cyst Nematode Densities as Influenced by Fertilizer 

and Seed Treatment in 2014 

  9/5/14  9/12/14   9/19/14   7/9/14 

Factor DIb DSc DXd DIb DSc DXd DIb DSc DXd AUDPCe SCN Eggs/100ccf 

            

No Fertilizer 10.4 2.70 3.40 17.1 2.80 5.90 20.4 2.80 7.80 97.9 1,408 

Starter Fertilizer 12.3 2.30 3.80 22.2 2.50 7.00 29.2 3.20 9.80 113.8 2,633 

            

Prob > Fa 0.64 0.32 0.80 0.14 0.37 0.69 0.21 0.61 0.50 0.72 0.135 

 

Non-treated 8.50 2.30 2.31 14.3 2.60 4.00 19.2 3.10 5.70 67.1 1,650 

Seed Treatment 14.2 2.60 4.92 25.0 2.80 8.80 30.4 2.80 11.9 144.5 2,391 

            

Prob > Fa 0.17 0.55 0.12 0.47 0.65 0.11 0.11 0.41 0.05 0.09 0.354 
 
aProb>F is the p-value for the test. There were no interactions between the factors: fertilizer or seed treatment. Individual treatment 

means were separated using a Fisher’s protected t-test. 
  

bDI=Disease Incidence, rating 0-100% 

 

cDS=Disease Severity, rating 0-9; 0 = no detectable leaf symptoms; 1 = 1 to 10% chlorotic or 1 to 5% necrotic; 2 = 10 to 20% chlorotic or 
less than 10% necrotic; 3 = 20 to 40% chlorotic or 10 to 20% necrotic; 4 = 40 to 60% chlorotic or 20 to 40% necrotic; 6 = up to one 

third premature defoliation; 7 = one-third to two-thirds premature defoliation; 8 = greater than two-thirds premature defoliation; and 9 

= plants prematurely dead 
 

dDX=Disease Index=DI * DS/9 
 

eAUDPC=Area Under the Disease Pressure Curve 

 
fSoybean cyst nematode eggs per 100cc of soil 
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Table 9 
Plant Population and Yield as Influenced by Fertilizer and Seed Treatment in Plots 

Inoculated with Fusarium virguliforme in 2015 

Factor Plants/ha-1 Yield-Kg/ha-1 

Date 5/20/15 5/27/15 6/3/15  

 

No Fertilizer 27,912 27,794 26,502 4,178 

2-6-16 27,794 26,854 24,680 4,182 

3-10-13 22,095 20,861 18,863 4,468 

7-12-11 26,208 25,327 24,269 4,344 

     

Prob>Fa 0.3010 0.1687 0.0996 0.1174 

     

Non Treated 28,794 27,001 25,885 4,320 

Treated Seed 23,211 23,417 21,272 4,267 

     

Prob>Fa 0.0266 0.1286 0.0427 0.5863 
 

aProb>F is the p-value for the test. There were no interactions between the factors: fertilizer or seed 

treatment. Individual treatment means were separated using a Fisher’s protected t-test. 
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Table 10 
Foliar Disease Symptoms of Fusarium virguliforme and Soybean Cyst Nematode Densities as 

Influenced by Fertilizer and Seed Treatment in 2015 

Date  8/28/15   9/4/15   8/21/15 

Factor DIb DSc DX 1d DIb DSc DX 2d AUDPCe SCN eggs/100ccf 

          

No fertilizer 0.25 0.25 0.03 0.58 0.16 0.02 0.160 3,716  

2-6-16 0.16 0.16 0.02 0.16 0.25 0.06 0.288 3,317  

3-10-13 0.16 0.16 0.02 0.58 0.16 0.02 0.128 3,183  

7-12-11 0.66 0.66 0.15 0.66 0.83 0.20 1.225 3,650  

          

Prob>Fa 0.39 0.16 0.18 0.61 0.14 0.27 0.230 0.532  

          

Treated 0.33 0.21 0.04 0.33 0.25 0.07 0.401 3,487  

Untreated 0.29 0.42 0.06 0.41 0.45 0.08 0.500 3,695  

          

Prob>Fa 0.86 0.25 0.77 0.79 0.37 0.85 0.817 0.708  

 
aProb>F is the p-value for the test. There were no interactions between the factors: fertilizer or seed treatment. 

Individual treatment means were separated using a Fisher’s protected t-test. 
 

bDI = Disease Incidence, percentage of plants that show symptoms of SDS within plot; 0-100% 

 
cDS = Disease Severity, rating 0-9; 0 = no detectable leaf symptoms; 1 = 1 to 10% chlorotic or 1 to 5% necrotic; 2 = 
10 to 20% chlorotic or less than 10% necrotic; 3 = 20 to 40% chlorotic or 10 to 20% necrotic; 4 = 40 to 60% 

chlorotic or 20 to 40% necrotic; 6 = up to one third premature defoliation; 7 = one-third to two-thirds premature 

defoliation; 8 = greater than two-thirds premature defoliation; and 9 = plants prematurely dead 

 
dDX = Disease Index=DI * DS/9 

 
eAUDPC = Area Under the Disease Pressure Curve 

 
fSoybean cyst nematode eggs per 100cc of soil 
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Table 11 
Soybean Plant Population, Yield and Soybean Cyst Nematode Densities as Influenced by 

Fertilizer and Seed Treatment in Plots Inoculated with Rhizoctonia solani in 2014 

Factor Plants/ha-1 Yield-Kg/ha-1 SCN Eggs/100cc 

Date 6/26/14 7/3/14 7/10/14  7/9/14 

      

No Fertilizer 35,698 36,991 34,729 3,415 1,364 

Starter Fertilizer 38,636 40,050 40,107 3,398 1,383 

      

Prob>Fa 0.4707 0.5117 0.3587 0.9239 0.4468 

      

Seed Treatment 33,171 33,377 32,995 3,382             1,388 

Non Treated 41,163 43,664 41,841 3,415 1,356 

      

Prob>Fa 0.0634 0.0400 0.1409 0.7816 0.5196 
 

aProb>F is the p-value for the test. There were no interactions between the factors: fertilizer or seed 
treatment. Individual treatment means were separated using a Fisher’s protected t-test. 
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Table 12 

Plant Population, Yield and Soybean Cyst Nematode densities as Influenced by Fertilizer and Seed Treatment in 

Plots Inoculated with Rhizoctonia solani in 2015 

Factor Plants/ha-1 Yield (Kg/ha-1) SCN eggs/100cc  

Date 5/20/15 5/27/15 6/3/15  8/21/15 

No fertilizer 31,026 b 30,439 b 29,616 b 4,086 b 4,041  

2-6-16 36,550 a 35,962 a 33,729 ab 4,046 b 3,891  

3-10-13 35,081 a 33,024 ab 35,962 a 4,398 a 3,133  

7-12-11 37,255 a 35,669 a 36,844 a 4,462 a 3,216  

           
Prob > Fa 0.015  0.030  0.005  0.0004 0.418  

           

Non Treated 37,373 a 36,055 a 35,345  4,230  3,587  

Seed Treatment 32,584 b 31,497 b 32,731  4,263  3,554  

           

Prob > Fa 0.001  0.003  0.078  0.6712 0.942  

 
Note. Means within columns followed by similar letters are not different (P ≤ 0.05) for each factor, according to Fisher’s protected 

LSD test.  

 
aProb>F is the p-value for the test. There were no interactions between the factors: fertilizer or seed treatment. Individual 

treatment means were separated using a Fisher’s protected t-test. 
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Fig. 1. Comparison of rainfall received during the soybean growing season in 2014 

and 2015, and the average of growing-season precipitation during 1998-2015, at 

Carbondale, Illinois. 
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