8-1-2016

Funeral Home or Ritualistic Edifice? An Assessment of an Enigmatic Structure at the Late Pre-Hispanic Site of Panquilma, Central Coast Peru

Alysia Ashley Leon

Southern Illinois University Carbondale, aleon@alumni.flagler.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/theses

Recommended Citation

This Open Access Thesis is brought to you for free and open access by the Theses and Dissertations at OpenSIUC. It has been accepted for inclusion in Theses by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.
FUNERAL HOME OR RITUALISTIC EDIFICE? AN ASSESSMENT OF AN ENIGMATIC STRUCTURE AT THE LATE PRE-HISPANIC SITE OF PANQUILMA, CENTRAL COAST PERU

by

Alysia Ashley Leon

B.A., Flagler College, 2013

A Thesis
Submitted in Partial Fulfillment of the Requirements for the
Master of Arts in Anthropology

Department of Anthropology
in the Graduate School
Southern Illinois University Carbondale
August 2016
Funeral Home or Ritualistic Edifice? An Assessment of an Enigmatic Structure at the Late Pre-Hispanic Site of Panquilma, Central Coast Peru

By

Alysia Ashley Leon

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Arts in the field of Anthropology

Approved by:

Dr. Izumi Shimada (Chair)
Dr. Jonathan Hill
Dr. Enrique López-Hurtado
Dr. Mark Wagner

Graduate School
Southern Illinois University Carbondale
April 27, 2016
AN ABSTRACT OF THE THESIS OF

Alysia Ashley Leon, for the Master of Arts degree in Anthropology, presented on April 27, 2016, at Southern Illinois University of Carbondale.

TITLE: FUNERAL HOME OR RITUALISTIC EDIFICE? AN ASSESSMENT OF AN ENIGMATIC STRUCTURE AT THE LATE PRE-HISPANIC SITE OF PANQUILMA, CENTRAL COAST PERÚ

MAJOR PROFESSOR: Dr. Izumi Shimada

Mortuary remains within an archaeological context can illuminate the social and political aspects not only of the individual(s) buried, but also of the living who interred them. Although this is so, a consensus has not been reached in regard to the following questions: how can we determine the social identity of the living that interred the dead? What are the implications of the living-dead interaction, and how do mortuary practices alter social memory in order to fit political needs? This thesis constitutes an initial attempt to answer these questions while examining pre-internment mortuary practices, and associated ideologies regarding the afterlife based on data collected during the 2015 field season by members of the Proyecto de Investigación Arqueológica Panquilma (PIAP), under the direction of Dr. Enrique Lopéz-Hurtado, of the Instituto de Estudios de Peruanos Programa de Investigación. This project is centered at the Late Intermediate Period (LIP) to Late Horizon (LH) secondary Ychsma site of Panquilma in the mid-Valley of the Lurín River Valley, Central Coast of Peru.

This research aims to determine the time period and significance of a puzzling structure that was excavated at the cemetery’s margin at Panquilma in order to determine the building’s potential role in ancestral veneration practices of the lesser-elites. Upon first glance this structure appeared to have a layout of a household structure but was located near the cemetery, far from
the residential center of the site. A wide array and substantial quantities of exotic and/or ritual items such as sheet metal fragments, colorful bird feathers, orpiment, and manuports, as well as *Spondylus* sp. and *Nectandra* sp. beads were discovered within this building suggesting non-mundane or non-domestic usages. Was this structure used in the preparation and care of the funerary bundles? Did it house an important figure (e.g., a shaman) in both their life and death? Or did it serve as a workshop for preparing ritual items? In an effort to ascertain the significance of this structure, this thesis examines the aforementioned remains as well as its relative location and the results from portable X-ray Fluorescence (pXRF) analyses of some of the excavated artifacts in order to provide a deeper understanding of mortuary practices at Panquilma and thus the Ychsma’s concept of and interaction with the dead on the Central Coast of Peru.

The exact function of this structure cannot be concretely stated, but the diverse lines of evidence present appear to favor the first hypothesis in which this structure functioned as a funerary preparation area, but principally for elite and/or ritually significant bundle(s). This was ascertained due to the numerous exotic and/or ritual artifacts found associated within this Inkaic structure that likely served a ritualistic function in regard to water and agricultural fertility as well as serving as indirect evidence for elite ancestral veneration practices.
ACKNOWLEDGMENTS

I would first and foremost like to thank Dr. Enrique López-Hurtado as well as the Instituto Estudios Peruanos (IEP) and the Peruvian government who made this master’s thesis possible by allowing for this research to be conducted at Panquilma. In addition to all of the individuals, past and present, who have worked at Panquilma with the Proyecto de Investigación Arqueológica Panquilma (PIAP). Special thank you to Arturo Rivera and Bryan Núñez Aparcana for answering my numerous, seemingly never-ending questions throughout this research. Thank you to Nicholas Tripecevich for allowing PIAP to utilize the Bruker pXRF spectrometer as well as to Kayleigh Sharp and Melissa Litschi who assisted me in learning how to analyze the data acquired through pXRF analysis. Additional thanks to Melissa Litschi, Corin Pursell, and Amy Szumilewicz who gave their input and comments on the various stages of this thesis’ manifestation as well as Paul Welch who guided me in understanding the lithics found within this structure.

Thank you to my advisor and chair, Dr. Izumi Shimada, who has constantly met with me, ensured confidence in me, and helped this research concept flower into what it has become today. Additional gratitude to my committee members Dr. Jonathan Hill, Dr. Enrique López-Hurtado, and Dr. Mark Wagner for your input and reviews regarding this project. Thanks to all of my past and present professors, more specifically Dr. Gretchen Dabbs, Dr. Kathy Grant, Carl Halbirt, Dr. Bill Locascio, Dr. Enrique López-Hurtado, Dr. Scott Palumbo, Dr. Jeremiah Scott, Dr. Izumi Shimada, Dr. Sarah Taylor, and Dr. Paul Welch, who have encouraged me throughout my entire career in which I owe them for where I am at today.

Thank you to my wonderful family, Melonie, Patrick, and Payton for constantly supporting me through all of my crazy endeavors as well as pushing me to complete this process.
Thank you to my fantastic friends and feline, Mufasa, who have cheered me up during stressful times, and who have continuously been there throughout this entire graduate school experience.

Furthermore, I would like to thank Leslie Madden Masson and the rest of the individuals who helped sustain this research through various crowdsource funding websites.

Without all of you, none of this would have been possible and for that I am eternally grateful.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER I: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Research Objectives</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Thesis Organization</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER II: GENERAL THEORETICAL BACKGROUND</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Mortuary Archaeology</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Ancestral Veneration</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Summary</td>
<td>18</td>
</tr>
<tr>
<td>CHAPTER III: THE SITE OF PANQUILMA, ITS GEOGRAPHIC AND CULTURAL CONTEXTS</td>
<td>19</td>
</tr>
<tr>
<td>3.1 Geographic Setting</td>
<td>20</td>
</tr>
<tr>
<td>3.2 Flora and Fauna</td>
<td>24</td>
</tr>
<tr>
<td>3.3 The Ychsma</td>
<td>25</td>
</tr>
<tr>
<td>3.3.1 Typology of Ychsma Burials</td>
<td>26</td>
</tr>
<tr>
<td>3.4 Panquilma</td>
<td>28</td>
</tr>
<tr>
<td>3.4.1 Physical Layout and Functional Differentiation of Panquilma</td>
<td>29</td>
</tr>
<tr>
<td>3.4.2 Occupational History</td>
<td>31</td>
</tr>
<tr>
<td>3.4.3 Evidence of Ancestral Veneration at Panquilma</td>
<td>32</td>
</tr>
<tr>
<td>3.5 Prior Excavations Near Panquilma</td>
<td>35</td>
</tr>
<tr>
<td>CHAPTER IV: RESEARCH HYPOTHESES AND TEST IMPLICATIONS</td>
<td>40</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1. Central Coast Flora</td>
<td>98</td>
</tr>
<tr>
<td>TABLE 2. Central Coast Fauna</td>
<td>99</td>
</tr>
<tr>
<td>TABLE 3. Panquilma’s Sectors</td>
<td>100</td>
</tr>
<tr>
<td>TABLE 4. Spondylus sp. from Panquilma; 2015a Indicates Finds from the Structure.</td>
<td>100</td>
</tr>
<tr>
<td>TABLE 5. Artifacts Based on Context</td>
<td>101</td>
</tr>
<tr>
<td>TABLE 6. Original pXRF Spectrograms of Copper and Silver Alloyed Artifacts</td>
<td>102</td>
</tr>
<tr>
<td>TABLE 7. Ratios of Silver, Copper, Iron, Arsenic, and Tin against Titanium</td>
<td>102</td>
</tr>
<tr>
<td>TABLE 8. Ratios of Silver, Gold, Copper, Arsenic, and Tin against Uranium</td>
<td>103</td>
</tr>
<tr>
<td>TABLE 9. Ratios of Arsenic, Calcium, Iron, Mercury, Copper, and Potassium Against Strontium</td>
<td>103</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1. Peruvian Central Coast</td>
<td>104</td>
</tr>
<tr>
<td>FIGURE 2. Lurín River Valley Sites</td>
<td>104</td>
</tr>
<tr>
<td>FIGURE 3. Periphery Structures Bordering the Cemetery</td>
<td>105</td>
</tr>
<tr>
<td>FIGURE 4. Western Periphery Structure Bordering the Cemetery</td>
<td>105</td>
</tr>
<tr>
<td>FIGURE 5. The Enigmatic Structure- Aerial View</td>
<td>106</td>
</tr>
<tr>
<td>FIGURE 6. Panquilma Site Map</td>
<td>107</td>
</tr>
<tr>
<td>FIGURE 7. Panquilma Domestic Sector/Household Compounds</td>
<td>107</td>
</tr>
<tr>
<td>FIGURE 8. Panquilma Funerary Sector/Ychsma Stone Cist Cluster</td>
<td>108</td>
</tr>
<tr>
<td>FIGURE 10. Example of “bundle-with-reeds” from Armatambo (Diaz 2015:194)</td>
<td>109</td>
</tr>
<tr>
<td>FIGURE 11. Example of Inka Funerary Bundles from Purucucho-Huaquerones (Cock and Goycochea 2004:187)</td>
<td>109</td>
</tr>
<tr>
<td>FIGURE 12. 3D Reconstructed Overview and Unit Parameters of the Western Periphery Structure Bordering the Cemetery</td>
<td>110</td>
</tr>
<tr>
<td>FIGURE 13. pXRF Metal Samples</td>
<td>110</td>
</tr>
<tr>
<td>FIGURE 14. pXRF Pigment Samples</td>
<td>110</td>
</tr>
<tr>
<td>FIGURE 15. Enigmatic Structure- Frontal View</td>
<td>111</td>
</tr>
<tr>
<td>FIGURE 16. Map of the Enigmatic Structure</td>
<td>112</td>
</tr>
<tr>
<td>FIGURE 17. Inner Walls of AMB-77 (Main Room); View of Partially-Collapsed Wall from Looting Event; Arrow Pointing to Looter’s Pit</td>
<td>113</td>
</tr>
<tr>
<td>FIGURE 18. Offering Caches Found in the Enigmatic Structure</td>
<td>114</td>
</tr>
</tbody>
</table>
FIGURE 19. Closed *Spondylus princeps* Offering Under Floor, AMB-77 (Main Room) 115

FIGURE 20. Opened *Spondylus princeps* Offering Under Floor, AMB-77 (Main Room) 115

FIGURE 21. Offering (Rasgo 3), Underneath Rock, Under the Floor in AMB-77

(Main Room) .. 116

FIGURE 22. Rock on Top of Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room) . 116

FIGURE 23. Yellow *Nectandra* sp. Seed Beads from Offering (Rasgo 3) Under the Floor in

AMB-77 (Main Room) ... 117

FIGURE 24. *Nectandra* sp. Seed Beads from Offering (Rasgo 3) Under the Floor in AMB-77

(Main Room).. 117

FIGURE 25. *Spondylus* sp. Beads from the Offering (Rasgo 3) Under the Floor in AMB-77

(Main Room).. 118

FIGURE 26 A. *Spondylus* sp. Fragments from the Offering (Rasgo 3) Under the Floor in AMB-

77 (Main Room) .. 118

FIGURE 26 B. *Spondylus* sp. Fragments from the Offering (Rasgo 3) Under the Floor in AMB-

77 (Main Room) .. 118

FIGURE 27. Lithic Beads from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main

Room) ... 119

FIGURE 28. Clay with Red Pigment from the Offering (Rasgo 3) Under the Floor in AMB-77

(Main Room).. 119

FIGURE 29. Copper Alloy Metal Fragments from the Offering (Rasgo 3) Under the Floor in

AMB-77 (Main Room) ... 120

FIGURE 30. Copper, Silver, and Gold Alloy Metal Fragments from the Offering (Rasgo 3)

Under the Floor in AMB-77 (Main Room) .. 120
FIGURE 31 A. Silver Alloy Metal Ornamentations from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room) ... 121
FIGURE 31 B. Silver Alloy Metal Ornamentations from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room) ... 121
FIGURE 32. Gold Alloy Metal Fragments from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room) .. 122
FIGURE 33. Feathers Tied Together from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room) ... 122
FIGURE 34. Macaw (Psittacidae sp.) Feathers from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room) ... 122
FIGURE 35. Macaw (Psittacidae sp.) Feathers from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room) ... 123
FIGURE 36. Orpiment from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room) ... 123
FIGURE 37. Small Unidentified Seed Bead Necklace from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room) .. 124
FIGURE 38. Spondylus princeps Bead Necklace from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room) ... 124
FIGURE 39. Mummified Cuy (Cavia porcellus) Found Under the Floor in AMB-77 (Main Room) ... 125
FIGURE 40. Coca (Erythroxylum coca var.) Leaves Found Under the Floor in AMB-77 (Main Room) ... 125
FIGURE 41. Floor in AMB-77 (Main Room); Location of Tapia Column Indicated by Circle.126
FIGURE 42. Base of Tapia Column in AMB-77 (Main Room)................................. 127
FIGURE 43. Painted Tapia Colum Fragment in AMB-77 (Main Room) 127
FIGURE 44. Interpretation of Painted Tapia Column Fragment Found in AMB-77 (Main Room) ... 128
FIGURE 45. Collapsed Cane and Thatch Shelving on Floor in AMB-77 (Main Room) 129
FIGURE 46. Location of Collapsed Shelving and Small Ceramic Bowl Found on Floor in AMB-77 (Main Room) .. 129
FIGURE 47 A. Small Ceramic Bowl Found on Floor in AMB-77 (Main Room) 130
FIGURE 47 B. Small Ceramic Bowl Found on Floor in AMB-77 (Main Room).......... 130
FIGURE 48 A. Identical Small Ceramic Bowl Found in AMB-77 (Main Room) 131
FIGURE 48 B. Identical Small Ceramic Bowl Found in AMB-77 (Main Room) 131
FIGURE 49. Chakana (Step-Fret) Design Lapilli Stone Mano in AMB-77 (Main Room) 132
FIGURE 50. Large Lapilli Stone Metate with Shallow Holes in AMB-77 (Main Room) 132
FIGURE 51. Lapilli Potential Hammer Stone Found in AMB-77 (Main Room) 133
FIGURE 52. Lapilli Potential Hammer Stone Found in AMB-77 (Main Room) 133
FIGURE 53. Lapilli Potential Hammer Stone (Right) Found in AMB-77 (Main Room) 134
FIGURE 54. Lapilli Potential Hammer/Polisher Stones Found in AMB-77 (Main Room) 134
FIGURE 55 A. Large Lapilli Stone Humanoid Figure Found in AMB-77 (Main Room) 135
FIGURE 55 B. Large Lapilli Stone Humanoid Figure Found in AMB-77 (Main Room) 135
FIGURE 56. Large Lapilli Stone Found in AMB-77 (Main Room) 135
FIGURE 57. Large Lapilli Stone Found in AMB-77 (Main Room) 136
FIGURE 58. Large Lapilli Stone Found in AMB-77 (Main Room) 136
FIGURE 59. White, Red, and Yellow Pigments Found in AMB-77 (Main Room) 137
FIGURE 60. Calcite Fragments Found in AMB-77 (Main Room) .. 137
FIGURE 61 A. *Spondylus* sp. Fragments Found in AMB-77 (Main Room) 138
FIGURE 61 B. *Spondylus* sp. Fragments Found in AMB-77 (Main Room) 138
FIGURE 61 C. *Spondylus* sp. Fragments Found in AMB-77 (Main Room) 138
FIGURE 62. Material Remains of Shelf in AMB-77 (Main Room) .. 139
FIGURE 63. Niche Access from AMB-77 (Main Room) to AMB-76 (Storage Room) 139
FIGURE 64. Mandibular-shaped Worked Shell Found in AMB-76 (Storage Room) 140
FIGURE 65. Green Cotton Found in AMB-76 (Storage Room) ... 140
FIGURE 66. Potential Drill Tools Found in AMB-76 (Storage Room) 140
FIGURE 67 A. Large Lapilli Hammer Stone with Possible Wear Evidence Found in the
Corridor...141
FIGURE 67 B. Large Lapilli Hammer Stone with Possible Wear Evidence Found in the
Corridor...141
FIGURE 68. *Spondylus* sp. and Lithic (Chrysocolla/Turquoise) Beads Found in the Corridor. 142
FIGURE 69. *Nectandra* sp. Seed Beads Found in the Corridor .. 142
FIGURE 70. *Spondylus princeps* Offering Underneath Central Southern Patio Wall 143
FIGURE 71. Coca (*Erythroxylum coca* var.) Leaf Offering Bag from *Spondylus princeps*
Offering Underneath Central Southern Patio Wall... 143
FIGURE 72. Inside *Spondylus princeps* Offering Underneath Central Southern Patio Wall 143
FIGURE 73. Camelid (*Lama glama*) and Cuy Offering Underneath Patio Floor 144
FIGURE 74. *Nectandra* sp. Seed Bead Offerings Underneath Patio Floor 144
FIGURE 75 A. Northern *Nectandra* sp. Seed Bead Cache Offering Found Under Patio Floor .145
FIGURE 75 B. Southern *Nectandra* sp. Seed Bead Cache Offering Found Under Patio Floor..145
FIGURE 76. *Spondylus princeps* Valve with Punctures on its Auricles and Green Copper Staining Found on the Patio .. 146

FIGURE 77. *Spondylus princeps* Valve with Red Pigment Staining Found on the Patio 146

FIGURE 78. *Argopecten* sp. Valve Found on the Patio .. 147

FIGURE 79. *Argopecten* sp. Valve (a) and Potential Thatch Roof Remains (b) Found on the Patio ... 147

FIGURE 80. Niche (Right) Containing Large Lithics Found on the Patio .. 148

FIGURE 81. Niche Containing Large Lithics Found on the Patio ... 148

FIGURE 82. Human Foot-like Lapilli from Niche Found on the Patio .. 149

FIGURE 83. Zoomorphic Lapilli from Niche Found on the Patio .. 149

FIGURE 84. Possible Lithic Hammer Stones Found on the Patio .. 150

FIGURE 85. Possible Lithic Knives and Debitage Found on the Patio .. 150

FIGURE 86. Lithic Core Found on the Patio .. 150

FIGURE 87. Potential Fragmented Lithic Knife/File Found on the Patio ... 150

FIGURE 88 A. Potential Lithic Hammer Stone Found on the Patio ... 151

FIGURE 88 B. Potential Lithic Hammer Stone Found on the Patio ... 151

FIGURE 89. Lithic “Shell-Shaped” Lapilli Stone Found on the Patio .. 151

FIGURE 90. Ceramic *Chicha* (Maize Beer) Vessel Found on the Patio .. 152

FIGURE 91. Ceramic *Chicha* Vessel Maize Appliques Found on the Patio 152

FIGURE 92. Ceramic *Chicha* Vessel, Hole at Base, Found on the Patio 153

FIGURE 93. Ceramic *Chicha* Vessel, Gourd Plug Hole, Found on the Patio 154

FIGURE 94. Ceramic *Chicha* Vessel was Placed into on the Patio ... 154
FIGURE 96. Patio Walls... 155

FIGURE 97. Partial Chaîne Opératoire of Spondylus sp. Artifacts Within the Enigmatic Structure.. 156

FIGURE 98 A. Worked Faunal Long Bones, Possible Hallucinogenic Inhaling Tubes 157
FIGURE 98 B. Worked Faunal Long Bones, Possible Hallucinogenic Inhaling Tubes 157

FIGURE 99. Ratios of Copper, and Silver against Titanium within pXRF Samples............. 158
FIGURE 100. Ratios of Arsenic, and Tin against Titanium within pXRF Samples 158
FIGURE 101. Ratios of Gold, and Silver against Uranium within pXRF Samples 159
FIGURE 102. Chemical Composition of Ceramics from pXRF Samples.............................. 159
FIGURE 103. Ratios of Mercury, and Sulfur against Strontium within pXRF Samples 160
CHAPTER I

INTRODUCTION

The deceased do not bury themselves, as Leach (1979:122) noted, and graves often reflect the social position of the funeral organizers as much as that of the deceased. The analysis of excavated human remains with regard to their archaeological contexts is fundamental to their interpretation while allowing for questions regarding social differences, ethnicities, mortuary rituals, and life histories to be answered (Buikstra and Beck 2006). Arnold van Gennep (1960 [1909]) and Robert Hertz (1960 [1905-06]) compared the process of mortuary rituals and their final stages to an image frozen in time emphasizing the importance of funerary contexts in understanding social constructs for both the living and the dead. Funerary rituals are created socially, performed by the living, who apply the social identities of the dead through ritual and grave treatment. Burials not only are capable of reflecting the individual but also the political and social relationships within the living community (Buikstra and Beck 2006; Dillehay 1995; Parker-Pearson 1993; Shimada and Fitzsimmons 2015).

Two major approaches toward prehistoric mortuary practices have been developed: the representationist and misrepresentationist approaches (Brown 1995). The representationist stance claims that there is a positive correlation between funerary elaboration and social complexity that is viewed solely through individual treatments of the deceased. In addition, this approach posits the treatment of the deceased as reflecting the role and status achieved in one’s life. The
misrepresentationist view, on the other hand, shifted focus on the information that can be ascertained from individual burials to social constructions created by the living. Mortuary context is thus seen to offer an opportunity for the living to shape the treatment of the dead in order to express their sentiment and values thereby distorting or manipulating the social standing of the deceased.

In spite of differences between the representationist and misrepresentationist approaches, analysis of mortuary treatments can offer us general accounts of past populations, their practices, and way of life. But, how can we determine the social identity of the living that interred the dead? What are the implications of the living-dead interaction, and how do mortuary practices alter social memory in order to fit political needs? These questions have not been extensively researched in the Late Intermediate Period (A.D. 900-1475) chiefdom-level Ychsma culture, from the Central Coast of Peru. This thesis constitutes an initial attempt to answer these questions while examining pre-internment mortuary practices, and associated ideologies regarding the afterlife based on data collected by members of the Proyecto de Investigación Arqueológica Panquilma (PIAP), under the direction of the Instituto de Estudios de Peruanos Programa de Investigacion Proyecto Arqueológico Costa Central Peruana, at the Late Intermediate Period (LIP) to Late Horizon (LH) secondary Ychsma site of Panquilma in the mid-Valley of the Lurín River Valley, Central Coast of Peru (Appendix A).

1.1 Research Objectives

The overarching goal of the Instituto de Estudios de Peruanos (IEP) Programa de Investigacion Proyecto Arqueológico Costa Central Peruana and the Proyecto de Investigación...
Arqueológica Panquilma (PIAP), under the direction of Enrique López-Hurtado, is to study the role that the religious center of Pachacamac played in the development of varying power relations throughout the Lurín River Valley spanning from the LIP to the Colonial Period (1535-1600AD) (López-Hurtado et al. 2015).

Located on the periphery of the cemetery at the LIP-LH Ychsma site of Panquilma are two structures directly across from one another that are the focus of this proposed research (Figure 2). Prior to the 2015 summer excavations, I intended to excavate both of these structures in order to determine if they were utilized for mortuary preparation, due to their proximity to the edge of the cemetery and to each other as well as their relatively similar sizes (Figure 2; Figure 3). Upon surface analysis, it was determined that the structure on the eastern side of the cemetery was solely a funerary cist and thus only the western structure was excavated. The western structure is approximately 170 meters away from the public and residential structures at Panquilma (Figure 3). This structure is quite similar in layout to a residential structure, consisting of two rooms, a hallway and a patio, despite its location in the cemetery. At approximately 12 meters long by 4.5 meters wide, this fieldstone constructed building that was coated with yellow painted plaster is unique not only due to its location but also in the amount of cultural information collected (Figure 4).

This thesis aims to:

(1) analyze the contents discovered within the structure described above to test the two competing hypotheses of the significance of the structure (i.e., use for funerary bundle preparation, or as a shaman’s residence). The excavated contents include metals, pigments, manuport stones, jewelry, feathers, shell and botanical remains, and
(2) make inferences about the processing of Ychsma ancestors and their potential veneration practices.

According to Shimada and Fitzsimmons (2015:37), “the various relationships between the living and the dead reflect life and the broader physical, social, and symbolic worlds they occupy.” By analyzing where, how and who prepared and maintained the funerary bundles, archaeologists can better understand the politics involved within a society in addition to the culture’s means of reproducing a shared sense of identity and community. While some pre-Columbian buildings have been suggested to have been utilized in the preparation of the dead (i.e. The Temple of the Monkey at Pachacamac), the evidence has not been substantial enough to reach this definitive conclusion (Eeckhout 2002, 2007, 2012). Thus, the attainment of the first and the third aims will help illuminate the sequence of mortuary practices and collective identity of the Ychsma population at Panquilma, respectively.

Although the topic of ancestor veneration is one that has been extensively studied, and the term ancestor has been criticized as being too generously applied within archaeological interpretations, archaeological investigations have yet to extensively examine important questions regarding where and how the funerary bundles of eventual ancestors were prepared or who prepared them (Whitley 2002). Evidence of typical Andean prolonged ancestral veneration within Ychsma society has been limited. The lack of evidence regarding ancestral veneration could be due to numerous factors including the systematic abolishment of ancestral mummies during the Spanish conquest, the high frequencies of looting within the Lurin Valley as well as the lack of systematic excavations occurring on the Peruvian Central Coast, prior to the past five years, resulting in publications (Cobo 1990[1653]; Salomon and Urioste 1991). Therefore this
project aims to contribute to the understanding of ancestral veneration practices on the Central Coast in addition to the Ychsma society.

I hypothesize that this structure bordering the cemetery was an important ritual structure, accessible to all residents of the site, which functioned in the preparation and/or maintenance of the deceased as well as in shamanistic rituals that guided the deceased’s anima through their journey into the afterlife. The information regarding Ychsma funerary practices has been mostly collected from large centers, such as Pachacamac and Armatambo corpses (i.e Díaz 2004; Díaz and Vallejo 2005; Diaz 2015; Eeckhout 2000, 2010, 2013; Eeckhout and Feltham 2004; Eeckhout and Owens 2008, 2015; López-Hurtado 2011, 2012, 2015; Marcone 2000, 2004; Marcone and López-Hurtado 2002; Misiewicz and Makowski 2003; Rostworowski 1972, 1977, 1978, 1989, 1992, 1999, 2004; Shimada 1991, 2000; Shimada et al. 2004, 2005, 2006a, 2006b, 2007, 2010, 2015; Takigami et al. 2014; Uhle 1903, 1906, 1910). While exploration of these large religious and administrative sites is fundamental in understanding their roles within the Ychsma culture, it also skews understanding of the culture; they over-represent high elite activities and priorities and under-represent those of lesser-elites and commoners. Assessing secondary sites, such as Panquilma, allows archaeologists to fill a gap in the knowledge of Ychsma culture regarding lesser-elite and commoners, the bulk of society. Mortuary practices and their relationships to ancestral veneration are a fundamental part of Andean societies and thus it is necessary to assess not only elite practices but the commoner’s practices as well. As López-Hurtado (2011:49; 2015) states, “it is especially important to address, the nature of the rural elites that lived at the secondary sites [such as Panquilma] and the influence that the religious center [Pachacamac] had in the development of their power strategies” (Marcone and López-Hurtado 2015). Thus, the archaeological site of Panquilma is pertinent to understanding
how the Ychsma people functioned on a daily basis outside of the religious center of Pachacamac.

1.2 Thesis Organization

This thesis is organized into eight chapters followed by appendices with supplementary data, figures, tables, and charts. Chapter 2 emphasizes the theoretical basis for this thesis while focusing on a brief history of mortuary archaeology as well as ancestral veneration practices within the Andes. Chapter 3 discusses the Central Coast of Peru in regard to its geographical setting, local flora and fauna, and cultural occupations in order to better understand the site under examination, Panquilma, and other sites that have been studied within the Lurín Valley. Chapter 4 focuses on this thesis’ research hypotheses, test implications, and material correlates while Chapter 5 presents the methodology employed during this research in order to better assess the results that follow in Chapter 6. Chapter 7 then discusses the results and outlines the interpretations made based on Chapter 6 while Chapter 8 concludes the findings of this thesis.
CHAPTER II

GENERAL THEORETICAL BACKGROUND

Funerary contexts are frequently encountered, and have been said to contain more anthropological information per cubic meter than any other type of archaeological feature (Peebles 1977:124). Archaeologists have been studying the treatment and material remains of the dead since the early 19th century but until the past thirty years systematic and intensive analysis of skeletal remains and their social implications had not been explored. Physical anthropologists are capable of determining age, sex, physical attributes, diet, disease, and potentially cause of death of an individual while archaeologist are capable of analyzing the content of the burial, and the grave goods in order to reconstruct the series of acts and articles involved in the mortuary ritual. Precise documentation from both the archaeological and physical anthropological sides can allow for demographic as well as social reconstruction. Integration of these two fields is vital in order to maximize the potential for comprehensive interpretations of prehistoric and historic populations. At the same time, all archaeological inquiry must be set within a theoretical framework in order to guide interpretations. Until the late 1960s, archaeological mortuary theories were scarcely developed.
2.1 Mortuary Archaeology

During the era of processual archaeology, numerous efforts were made to address the relationship between mortuary variability and social complexity (Parker-Person 2000). In 1970, Arthur Saxe completed his PhD thesis concerning the social dimensions of mortuary practices in which he proposed eight cross-cultural hypotheses that he tested in three ethnographic situations. Saxe’s work was complemented by Lewis Binford’s (1971) cross-cultural study of 40 historical and contemporary societies, in which he proposed that treatment in death was determined predominantly by one’s social position throughout life. In addition to these studies, Binford (1971) argued that the visibility and elaborateness of graves increases with the complexity and size of the population. The combination of these two sets of hypotheses has been coined as the Saxe-Binford hypothesis or the “representationist” position (Brown 1995).

Lynne Goldstein (1980) further tested and refined Saxe’s (1970:119) well-known Hypothesis 8, which argued that formal cemeteries emerged due to increasing competition, and lineal descent groups claiming access to vital resources. Goldstein (1976) hypothesized that where land was scarce, the dead were buried in formalized cemeteries and where land was not limited, disposal practices were less formal. This hypothesis suggests a functional relationship between ecological factors and certain social responses (Parker-Pearson 2000). Joseph Tainter published a cross-cultural ethnographic study in 1978 of 103 societies in which he determined that certain funerary practices were consistently associated with social rank. From this, Tainter (1978) developed the idea of energy expenditure within burial contexts in which he found a correlation between the individual’s social rank and resource/estimated energy expenditure of her/his mortuary rites in 90% of his examined cases.
As archaeology approached the post-processualist era of the late 1970s, there was a shift away from functionalist and materialist attitudes and a narrowed focus on intrasite variability of the individual (Parker-Pearson 2000). Post-processualists argue that “burials do not simply or necessarily reflect sociopolitical structure but rather provide opportunities for the living to create and maintain that structure” (Shimada et al. 2004:3). This “misrepresentationist” view recognizes that burial context offers the living an opportunity to *distort or misrepresent* the social significance of the deceased and thus burials are not entirely indicative of the social position of the person buried or social complexity of the society involved (Brown 1995). Mortuary practices are seen as pliable and dynamic social constructs that may actually conceal the social complexity of the society that the dead represents and in turn indicate more about the living (Shimada et al. 2004). Unfortunately, this misrepresentationist view is based solely on ethnohistorical or ethnographic analysis and does not contribute to general methodological standards for mortuary archaeological investigation or the study of pre-literate societies (Matsumoto 2014). Given this representationist vs. misrepresentationist debate, mortuary analysis should be based on multiple lines of evidence (i.e., archaeological, bioarchaeological, ethnographic and ethnohistorical data) and be conducted regionally and diachronically to place it in its proper social and historical contexts.

Mortuary archaeology aids in interpretation of not only the individual’s, but also the society’s core religious opinions, worldviews, and social, economic, and potentially political aspects (Shimada and Fitzimmons 2015). Extensive archaeological research has taken place on the Central Coast of Peru in regard to the types of social structures that once existed, the extent to which ancestral veneration occurred outside of burial contexts, and the funerary preparations of corpses (i.e Díaz 2004; Díaz and Vallejo 2005; Díaz 2015; Eeckhout 2000, 2010, 2013;

2.2 Ancestral Veneration

In order to assess the ancestral veneration practices at Panquilma, one must understand to whom the term “ancestor” applies and how one was transformed into an ancestor. Individuals were typically altered into ancestors long after death and their entombment, thus primary burials without evidence of contact beyond the initial interment likely were not treated as an ancestor. Ceremonies, such as tributes and feasting, to maintain connections with the ancestors were not necessarily confined to the burial contexts themselves, but rather could have been performed within household compounds and public arenas as well. According to Shimada et al. (2015:139), many Central Coast, pre-Inka elite burials were easily accessible to modify and/or receive care from the living. Although these burials were accessible, interactions with the dead were not prevented in the event of damage, removal, loss or addition of individuals, and ceremonial activities such as offerings of food and drinks still occurred regardless of a physical separation from the dead (Shimada et al. 2015:139).
Ritual performances that transform the dead into ancestors are likely to be materially manifested in physical and symbolic ways, such as choice in secondary burial placement or manipulation of the dead, and the continual or periodic holding of ceremonies over an extended period of time (Matsumoto 2014:166). Transforming the deceased into an ancestor does not exist solely on a familial level but on a collective one as well due to their social significance within the community. This ancestor cult differs from the cult of the dead, which is a result of anguish from losing a loved one while hoping for their survival into the afterlife. The ancestor cult, in contrast, concentrates on reestablishing and maintaining communal social relations as well as kinship groupings at the time of death (Gluckman 1937). Thus, those select few who were chosen as ancestors commonly held positions and roles in life that were of broad communal importance.

Hertz’s (1960[1907]) widely cited mortuary theory aimed to create a generalized interpretive framework for the variety of secondary burial practices that have been found cross-culturally placing emphasis on the liminal phase within the van Gennep’s (1960[1908]) rites of passage. In doing so Hertz (1960[1907]) excluded the long-term living-dead interaction, including ancestor veneration. During the process of mummification, rather than marking the elimination of the corpse from the living world as Hertz (1960[1907]) suggests, Rakita and Buikstra (2005:105) argue that the process of mummification not only maintains the former roles between the mourners and the deceased but also sustains the soul’s position within the extended liminal phase. Once mummification has been completed, the living returns to their original social statuses regardless of the deceased’s departure while the ancestor’s soul “never entirely leave(s) this world but are nevertheless quite of this world” (Rakita and Buikstra 2005:106). Therefore by denying the biological decomposition of the deceased, the social structure is also denied
decomposition (Rakita and Buikstra 2005). Hertz’s (1960[1907]) mummification model is highly overgeneralized and does not consider varying cultural processes.

Weiss-Krejci (2011) notes that the formation of mortuary contexts is a complex process thus making specific mortuary categorizations obsolete, and unproductive for revealing human interactions with the dead. Due to the cross-cultural variations in which exact biological death occurs, it is not practical to categorize death within all cultures as the same. Practices of Inkan mummification as well as post-funerary processes of ancestral rites, veneration, and commemoration thus do not indicate the final biological departure of the individual due to the continued living-dead relationships. In order to access the living-dead interaction, one must keep in mind that archaeological evidence of ancestral veneration is not exclusive to the original burial site, and these practices could have occurred in any setting.

In the Andes, ethnographic and ethnohistorical sources indicate that death is not the end of life, but is an inevitable stage in the cycle of life that is marked as a transition from one stage to the next through a series of certain performed rituals. This concept may have extended well before the contact of the Spanish and Inka, but how far is undeterminable. Upon physical death, these rituals continue with the final burial of the individual and remain consistent throughout time in order to remember the dead as ancestors (Kaulicke 1997:7; Lau 2002:281). Death is therefore a fundamental part of continued social life for most societies, including those present in the Andes. According to Kaulicke (1997:8), death was regarded as a crisis that was capable of disrupting a society. The ancestral rituals performed by the living are believed to have aided in mitigating impacts of this transition by joining together the generations of ancestors thus preserving the Andean societies’ cyclical order (Matsumoto 2014:40). Andean individuals’ spiritual identity and power has long been thought to be located within the physical remains of
the dead. Those that had been transformed into ancestral mummies were considered vital to their community’s welfare and identified strongly with the area in which they were kept, thus it was forbidden to remove them (Allen 1988). The best-known evidence of ancestor veneration in the Andes pertains to the Inkas, thanks largely to writings of Juan de Betanzo (1996 [1576]) and Felipe Guaman Poma de Ayala’s (1980 [1615]) drawings. Although this ethnohistoric evidence has been presented, it must be complemented with archaeological investigations in order to obtain a complete understanding of ancestral veneration practices, particularly in the pre-Inka era and on the coast.

Evidence of ancestral veneration in the Lurín Valley has been discovered at the late Initial Period and Early Horizon site of Pampa Chica by Jalh Dulanto (2002). This evidence consists of buildings with various terraces constructed that supported different activities on each level. One of the terraces was built in order to facilitate the large-scale preparation and storage of food and likely chicha, maize beer, while another was utilized for ritual activities involving the “repeated burial, removal, manipulation, and reinternment of human remains” (Dulanto 2002:106). Additionally, another terrace facilitated the repeated burial of different types of food items. Evidence of these activities was concentrated in the presence of hearths that contained charcoal, ash and burned food remains as well as storage pits that contained fragmented neckless ceramic vessels in addition to burned and unburned food remains. Small offering pits that solely contained unburned food remains, and disarticulated, incomplete human burials also were used as indicators for the function of these terraces. Evidence of feasting and reburial of human remains are thus the strongest indicators for ancestral veneration at Pampa Chica. Additionally, Dulanto (2002:114) states that Pampa Chica has a clearly marked separation between areas that are more closed and secluded which were used to store human remains versus spaces which were
more open and accessible that would be used during gatherings. Within this study, Dulanto (2002) acknowledges the small sample utilized to make these inferences and calls for future excavations in order to determine varying degrees of ancestral cult practices and associated rituals present at Pampa Chica.

Another prime example of potential ancestral veneration practices in the Andes is the presence of *chullpas*, an above-ground burial tower that contained numerous individuals that could be accessed through a small doorway, distributed through much of the highlands. A survey of 170 *chullpas* from the Lake Titicaca region produced by Hyslop (1977) allowed for three important inferences to be made. First, *chullpas* emerged during the Late Intermediate Period (ca. 1100-1450 A.D.) which is thought to have corresponded to an increase of ancestor-related beliefs and rituals within the area. Second, *chullpas* located at a higher elevation belonged to higher status individuals and finally, these structures continued to be built, with increasing sizes, throughout the Late Horizon (ca. 1450-1550 A.D.)(Hyslop 1977:155). Since Hyslop’s (1977) study, *chullpas* have come to be seen as territorial markers for individual family units (Isbell 1997; Lau 2002). Through the combination of mortuary evidence, iconographic interpretations, and ethnohistorical documents, Isbell (1997) hypothesizes that *chullpas* were utilized by the living in order to maintain a connection with their ancestors kept within them. This evidence is of a later highland origin within the archaeological record and therefore cannot be applied to all of Andean history or area.

More recently, according to Allen’s (1988:59-62) ethnographic study near Cuzco, once an individual passes, their soul (*alma*) lingers around their home for eight days, and is thought to be malevolent and hazardous. Once the ancestral bones have been cleaned of flesh, the body enters a new mode of being where they exist in a parallel world from the living. Indigenous people in
the highlands occasionally save the bones of their ancestors to gain their care and protection over the health and fertility of livestock, crops, and family members. According to Allen (1988:63), the density of bones, stones, and statues maintain a state of preserved animation, thus hard, unusual stones (known as illas and istrillas) and skeletal remains are believed to be the most powerful sources of energy. Ancestors are still prevalent in Andean societies today and through the examination of the present, light can be partially shed on practices that may have occurred prior to the Spanish conquest.

Indications of ephemeral ancestral veneration practices have been located at the Central Coast site, Pachacamac. Lines of evidence suggesting this short-lived ancestral venerations at Pachacamac include a large funerary bundle located in front of the Temple of Pachacamac that appears to have been cared for over a span of 25 years in addition to a female burial discovered within the Temple of the Monkey which has been postulated, but lacks systematic dating, to have received re-wrapping approximately 50 years after death (Shimada et al. 2010, 2015; Takigami et al. 2014; Michczynski et al. 2007). Characteristics that are often employed as lines of evidence regarding ancestral veneration on the Central Coast of Peru, and within the Ychsma society, include communal gatherings in which feasting and musical activities occurred as well as the reopening of tombs, secondary burials, and extended care towards deceased individuals (Dulanto 2002; López-Hurtado 2011, 2015).

Coastal cases of pre-Inkaic ancestral worship and the living-dead interaction have been found not only at Pachacamac, but at the north coast sites of Sicán and Huaca Sialupe as well. At Sicán numerous monumental mounds have been excavated, and indications of ritual performances have been found as well as complex elite tombs. These ritual performances have been interpreted as public mortuary activities that consisted of large-scale food preparation and feasting (Shimada et
Additionally, “two large precious metal and arsenical copper workshops” that produced objects which have been found within funerary contexts have been discovered thus far at Sicán (Shimada et al. 2015:108). Therefore Sicán not only is the location of multiple intricate elite tombs, but it is also the location in which mortuary ritual activities and preparation likely took place.

Living-dead interactions have been identified from burials and enclosures found at Huaca Sialupe and Pachacamac. Rewrapping and the movement of post-interment mummy bundles occurred at both sites. Additionally at Pachacamac, enclosures surrounding cántaro (relatively large, short-necked jars with a globular body) vessels that contained offerings have been interpreted not only as “surrogate tombs” for deceased ancestors in order to renew the kin’s spiritual bond but also as potential areas in which funerary bundles were prepared, repaired and/or temporarily stored prior to the placement within the formalized cemetery (Shimada et al. 2015:130). Two additional structures were found at Pachacamac and are thought to have served as an area in which offerings of food and drink were given to the dead. The lighting of fires on top of both Pachacamac, and Sicán burials are postulated to have signified their closings from the liminal to post-liminal phases through a living-dead symbolic association (Shimada et al. 2015).

Shimada et al. (2015) thus were able to deduce that pre-Inka elite burials from the coastal regions were either physically or visually accessible to the living in order to maintain and/or alter the dead. This accessibility lead to diverse post-primary interment modifications, some of which lasted up to 500 years while ritual performances (i.e. feasting activities, intentional burnings) were utilized in order to form or reaffirm emotional and symbolic bonds with the deceased despite a physical separation (Shimada et al. 2015).
During the late 16th century Spanish chroniclers documented the indigenous practices present near the headwaters of the Lurín River Valley in the form of the Huarochirí Manuscript (Salomon and Urioste 1991). Once an individual died, their soul was thought to return in the form of flies in five days’ time. Mourners would then acquire a “small pebble” or conopa stone that would be taken back to the deceased’s home within the village, their house would be cleaned, and the recently deceased would be fed (Salomon and Urioste 1991:131). On the fifth night, a vigil of dancing and wailing would occur five times until dawn. Upon the transformation of maggots into flies from the deceased’s body, the spirit or anima left the corpse. Once these rites were completed, the conopa stone representing the individual would be thrown into the street to signify the departed soul. Had the deceased individual been transformed into an ancestor, a conopa stone would symbolize the lingering soul. During the transcription of this manuscript, the indigenous people believed the dead continued to exist as long as any of their body parts (i.e. hair, fingernails), clothing, or conopa stones were preserved. Particular individual’s mummies and associated items were housed within caves or specific buildings for the deceased. These maintained objects were then subjected to veneration practices in the form of dancing, singing, and libations of chicha, potatoes, red pepper seasoned jerky, toasted maize, and boiled meat. Even after the Spanish conquest, indigenous people continued these veneration practices within Christian cemeteries and were considered idolaters (Salomon and Urioste 1991).

On the north coast similar practices were observed by chroniclers and have been applied to the Moche (Gayoso-Rullier and Uceda 2015). Energy that was input into the deceased’s tomb was indicative of their social status. Upon death, the individuals would be dressed in new clothing every day without removing the previous layers of clothing. Then the mourners would bury the dead in a tomb which was accompanied by singing, dancing, and drinking. Libations
would be placed with the deceased individual, and occasionally animal and/or human offerings would be as well. A variety of thick and thin strips of copper alloys would be placed in the mouth or over various areas of the body and sometimes cinnabar would be painted on the individual (Gayoso-Rullier and S. Uceda 2015). The goods found within Moche graves on the north coast are quite similar to those found on the Central Coast.

Ancestral veneration practices have been related to agricultural production. Ancestral bones have been linked to the health and fertility of livestock, crops, and family members (Allen 2002:41-42, 45). Body part removal and/or replacement with plant remains has been noted at numerous sites located on the North Coast and throughout the Andes which potentially are linked with “hard, dried seeds or tubers” in an attempt to propagate or mimic life (Shimada et al., 2015: 154-155). Additionally, the Quechua term for ancestral bundles, mallqui, also translates to “seed”, “sapling” or “young plant” (Lau 2015:220).

2.3 Summary

This chapter has outlined the development of mortuary theory within archaeology as well as the practice of ancestor veneration within the Andes. Examining ancestral veneration remnants in the archaeological record can aid in the development of mortuary studies due to its cultural significance in the Andes. In order to wholly interpret the relationship between the living, the ancestral cult, and how mortuary architecture was utilized to maintain this connection, a holistic and integrative approach must be employed within the archaeological record to collect all possible information about the associated mortuary and ritual practices that took place upon an individual’s death.
CHAPTER III

THE SITE OF PANQUILMA, ITS GEOGRAPHIC AND CULTURAL CONTEXTS

This chapter will briefly describe/characterize the geographical setting, hydrology, Pacific Ocean, mineral resources, flora, and fauna of the Central Coast and in particular, the Lurín River Valley.

The Central Coast is characterized as the region spanning from the Chillón Valley to the Lurín Valley with the Rímac Valley in between (Villacorta 2004: 540). In pre-Columbian eras, the Lurín Valley was characterized by the presence of competing dispersed settlements with relative autonomy which were headed by local level community leaders (Marcone and López-Hurtado 2015). Two separate chronological periods have been identified within the Lurín Valley in terms of domestic architecture; the first spans from the Early Intermediate Period to the beginning of the Middle Horizon (ca. 500-800 A.D.) in which the population density was low, and the later spans the Late Intermediate Period and the Late Horizon with the presence of the Inka within the Valley (ca. 1100-1535 A.D.) (Marcone and López-Hurtado 2015). Although no settlements between these distinct periods have been distinguished within the Lurín Valley and the Central Coast of Peru, very early period sites spanning from hunter-gatherers to the Initial Ceramic Period (ca. 1600 B.C.) have been discovered within this region (Burger and Salazar-
Burger 1991; Mendoza 2012). As the Inka settled in the Valley so did their road system, known as Qhapaq Nān, thus connecting the coastal Valleys with the mountains beginning at Pachacamac (Cornejo 2000). This road network also allowed for the Lurín and Rímac River Valleys to connect in three areas: San Damian, Sisicaya and Cieneguilla (Cornejo 2000:161).

3.1 Geographic Setting

The Lurín River Basin is approximately 90 kilometers long, extending from the coast to the Andean mountain range, and is the southernmost of three river basins in the metropolitan area of Lima (Chapple and Montero 2013). This river Valley crosses the districts of Antioquia, Cieneguilla, Pachacamac, and Lurín before emptying into the Pacific Ocean (Chapple and Montero 2013). With a basin that covers an area of 1,670 square kilometers, the Lurín River Valley is one of the smallest coastal river Valleys with a permanent river. It is located on the Western Cordillera of the Andes (Vazquez Martínez 2015). The Valley can be divided into three sections: the lower, from the coast to the alluvial river fan, the middle, or chaupiyunga, an area spread between ca. 200 and 1,200 meters characterized by an abundance of sun and water for much of the year, and the higher Valley from Chontay to Antioch (Alvarez-Calderon 2008; Mendoza 2012). Due to the lower Lurín Valley’s low altitude and proximity to the sea, the seasons are more discernable than in the middle Valley.

The Central Coast is generally a dry desert that requires resourceful water management and irrigation in order to be habitable by large populations. The lower Lurín Valley’s weather during the spring and summer consists of sunny, humid conditions while in the autumn and winter the area is often covered with a dense fog causing the area to be wet, and chilly. The middle Lurín
Valley, *chaupiyunga*, is mountainous with a sunny and dry climate throughout the year that allows for the production of viable agricultural crops such as *aji* peppers, coca leaves, cotton, *lúcuma* maize, and *paca*. Settlements within the *chaupiyunga* region include: Hacienda, Tijerales, Huaca Grande, Cervasi, Villa Toledo, Panquilma, Molle Alto, Huaycán de Cieneguilla, Rio Seco, and San Francisco (Figure 1a and 1b). All of these settlements are located far from the Lurín riverbanks due to the flood prone area.

The *chaupiyunga*’s location is unique due to its meeting point between the highland and coastal groups thus acting as a mediator between polities while being influenced by both groups (Dillehay 2011). Sites located within the *chaupiyunga* likely controlled the main water intake of irrigation canals, or *Boca Madre*, thus indicating a control over water, a precious resource. Control over hydraulic systems may have been a result of increased population pressure as well as the amplified agricultural exploitation of resources that led to the coexistence of both highland and coastal groups (Rostworowski 1978, 1981, 1989). Specialized water diversion was not needed for canals because of the *Boca Madre*’s proximity to the ground surface level, control over this leads to a significant political edge especially on the coast where water is more finite (Rostworowski 1981, 2002; Shimada et al. 1985). During the 16th century highland and lowland groups competed for the rich *chaupiyunga* agro-ecological zone which led to intense pressures for both groups (Rostworowski 1961, 1990; Keatinge 1988).

The Lurín River Basin belongs to the Pacific Hydrographic System, and has its origin in the mountains and lakes of the Western Cordillera of the Andes at 4,200 meters (Vazquez Martinez 2015). This basin has an average length of 108.57 kilometers (km), and its route receives input from numerous rivers and streams, the most significant being Taquía, Llacomayqui, Tinajas, NumInkancha and Canchahuara from the left margin, and the Chamacna by the right margin.
(Vazquez Martinez 2015). Additionally, the Lurín River is a perennial river but has a rather small catchment area and therefore low annual discharge volume.

The mouth of the Lurín River lies 3km northwest of the town of Lurín, and the water rushes downhill towards the coastal watershed at an average speed of 1,500 liters per second (Mendoza 2012). The waters of the Lurín River come from the rainfall, natural springs, and the drainage of various lakes formed by glacial peaks. The annual rainfall in the lower Lurín River Valley region, the chala (0-500m), is between 0 to 50 millimeters (mm) with an occasional weak drizzle known as challani (Mendoza 2012). In the yunga region (500-2300m) of the Valley there is an abundance of rain during the summer months (January, February, and March) with an average annual rainfall between 250-600mm that can lead to intense snow and hail storms (Mendoza 2012). In the high Valley mountains, the glaciers Suerochocha (5312m), Chanape, and Otoshmicunan (5000m) feed the lagoons Suerochocha first, then Chanape, and finally the hamlets Huarascucua, Huasca, Azulcocha, Atococha and Tucto, which in turn are then sources of the tributaries originating high in the Lurin Valley (Mendoza 2012:17). Due to the increasingly higher temperatures associated with climate change, these glaciers have melted significantly subsequently contributing less to their connected lakes.

The Lurín River basin is one of fifty-two coastal Valleys that lead to the Pacific Ocean (Mendoza 2012). Within the Pacific Ocean lies the Humboldt Current (a.k.a. the Peruvian Current), one of the most biologically productive upwelling systems of the world, which causes cold nutrient rich water, phytoplankton, and oxygen to converge along the coast (Hartin et al. 2010). This current that spans from the southern tip of Chile to northern Peru before merging with the South Equatorial Current produces the vast ocean mists that are ever-present in this region, but particularly dense during the winter months, and allows for abundant plant cover,
lomas, on hills during the winter months (Hartin et al. 2010). These currents support an abundance of marine life which accounts for approximately 18-20% of the total fish caught worldwide (Penven et al. 2005). Additionally, this current is of relatively low salinity, and low coastal temperatures compared to the other eastern boundary currents. As the chilled air overlying the current blows inland, it is rapidly heated, increasing its ability to absorb moisture from the coast. It is this process that is largely responsible for the aridity that prevails in northern Chile, coastal areas of Peru, and southern Ecuador (Lowenstein et al., 2003).

Periodically, approximately every three to five years, a countercurrent of warm equatorial waters known as the El Niño/ Southern Oscillation (ENSO) shifts course and runs into the cold Humboldt Current. The El Niño countercurrent is accompanied by changes of air pressure in the eastern and western Pacific that cause climatic changes across the Pacific Ocean (NOAA 2012). Along with these changes, the El Niño waters are low in minerals, plankton, saline concentrations, and oxygen, thus temporarily reducing oceanic resources (Shimada 1994:48). Alternatively during this time, some tropical species of fish, crustaceans, and mollusks invade the Peruvian coast while some native species have increased mortality rates (Sandweiss et al. 1996).

Strong El Niño events have occurred several times a century for the last 5,000 years (Sandweiss et al. 1996). These events are typically accompanied by torrential rain which directly erode soil surfaces, cause flash floods, and have had detrimental effects to settlements for millennia. Not only does the torrential rain and flash flooding destroy the adobe architecture prevalent in this region, but it also destroys crops, and canal systems which may result in short term famines. Once the El Niño has passed, the positive long-term effects can be seen within the local environments leading to increased flora, fauna, and soil rejuvenation (Shimada 1994).
Although the El Niños produce constructive resources once they have ended, the detrimental effects that occur during the event outweigh the benefits. The Lurín Valley is situated fairly far south of where the ENSO originates and is thus adversely affected only at times of a severe, or mega, El Niño.

3.2 Flora and Fauna

Populations, flora, and fauna that are present in the Lurín River Valley quickly adapt to the humid winter conditions, due to the presence of a consistent fog/drizzle, or *garua*, from the months of May to November, as well as to the arid summer season, from November to April. The lower Lurín Valley has limited flora due to its sandy soils and lack of annual rainfall, while the mid- and high-Valley regions have fertile soils due to an abundance of rainfall and volcanic soils. For a detailed list of flora and their uses please see Table 1 (Feltham 1983; Mendoza 2012). Terrestrial fauna near the Central Coast has been relatively limited due to the desert climate while marine life has been rather abundant. The flora that is still present in these areas, although potentially sparse in some, was widely utilized in pre-Columbian times. Fauna in the area were not only valuable resources for sustenance and various byproducts, but many were ideologically important and appear within the iconography of the area. Species that are thought to have been present prior to Spanish colonization are listed on Table 2. Individuals that settled within this region quickly adapted and evolved to sustain dense populations within the dry desert of the Andean mountain range.
3.3 The Ychsma

According to ethnohistoric sources, the Ychsma (or Ichma, Ychima, or Ychma) were a single coastal polity, which was composed of various loosely integrated groups, that controlled the Lurín and Rímac River Valleys prior to the Inka conquest of the Central Coast (Charney 2001; Cobo 1990[1653]; Patterson 1983, 1991; Rostworowski 1972, 1973, 1977, 1999, 2000, 2002; Silva Sifuentes and Tello 2005). According to Rostworowski (2002:82) the term "Ychsma" means "achiote" and "cinnabar" – and thus signifies intense red in Quechua, one of the native languages. Political power in Ychsma society was centered at the religious site of Pachacamac, which controlled the lowlands of the Lurín and Rímac Valleys through a network of rural administrators (Eeckhout 2004; Villacorta 2004).

When the Inka conquered the region, the importance and prestige of the Oracle at Pachacamac was so pronounced they allowed the Ychsma priests to continue worshipping Ychsma (that was later re-named Pachacamac by the Inkas), and their main temple was kept in use until the fall of the Inka Empire in 1535 (Cieza de León 1986[1554]; Cobo 1990[1658]; Patterson 1985). When the Inka arrived in the Lurín region, the lives of the Ychsma transformed which was expressed in the form of readily recognizable provincial Inka ceramics, indicating their direct economic and political control over the region (Feltham 1984; López-Hurtado and Nesbitt 2010:2015). Sites in which the Inka established administrative centers at on the Central Coast include: Huaycán de Cieneguilla, Pachacamac, and Pueblo Viejo-Pucara.
3.3.1 Typology of Ychsma Burials

Mortuary studies of the Ychsma have been undertaken mostly at Pachacamac and the nearby Ychsma site of Armatambo, approximately 27.5 km northwest of Panquilma. Luisa Díaz and Francisco Vallejo (2005) created a typology of Ychsma burials, which suggested a chronological difference between cist and household burials. Díaz (2004) classifies two phases of late Ychsma burials known as A and B. The late Ychsma A burials are characteristic of cist interments that contain poor quality, as well as a limited amount, of grave goods, whereas late Ychsma B burials correspond to household entombments, rich in grave goods. These higher quality grave goods consist of reed mats, *Spondylus* sp. artifacts, red pigments (likely cinnabar), personal ornamentation (i.e. *Nectandra* sp. collars, rings, tweezers, *tupus*), and decorated ceramics.

Originally, it was thought that individuals interred within the funerary sector of Panquilma were of lower status and those within the domestic sector were of higher status due to Díaz and Vallejo’s (2005) typology. The recent funerary excavations in the funerary sector at Panquilma have challenged this view due to the presence of elaborate grave goods discovered in association with the looted remains (Leon 2014; van Gemert 2014). From the data collected, it appears that Díaz (2004) and Vallejo’s (2005) typology is not applicable to Panquilma. Eeckhout and Owens (2015:5) acknowledged the inconsistency of Ychsma funerary results as being likely due to a wide range of social variability within individual polities. They urge fellow Ychsma researchers [to acknowledge the inconsistency] as an incentive to increase yet further the diversity of academic approaches in establishing the intellectual topography of a field whose parameters are not yet fully understood, and must not come to believe that their results must match specific extant research to attain validity [Eeckhout and Owens 2015:5].
According to ethnohistoric sources and archaeological investigations, household items interred with deceased Inkaic Andean peasants during the late 16th and early 17th centuries from various regions of Peru were limited to basic clothing and utilitarian ceramics (Presta 2010). They lacked suitable baskets and bags for grain storage along with tools, and weaving materials. Only the elite members of society were accompanied by luxury items such as ornate textiles, brooches, fine metal objects, drinking vessels of silver or other precious metals for maize beer (chicha), and the spondylus sp. shell (mullu), which was utilized for food, necklaces, breastplates, and mortuary objects, as well as an offering to the gods (Presta 2010:50).

The grave goods in Panquilma’s domestic and funerary sectors have been similar in both quantity and quality to those reported by ethnohistorians and include cotton, shells (including Spondylus sp.), braided botanical rope, purple maize, peanuts, various cotton and wool textiles, copper alloy fragments, tweezers and tupus, gourds, limestone, various beads made from Nectandra sp., shells, and stones, red and yellow pigments, as well as osteological remains, coprolites, and fur from camelids and guinea pigs. In addition, various textiles, and tools such as spindles, spindle whorls, spheres of variously colored cotton thread, animal and plant fiber fabrics, and woven reed mats are often found accompanying burials at Panquilma.

In relation to Presta’s (2010) pairing of ethnohistoric documents with archaeological findings, both the domestic and funerary sectors at Panquilma have indicated “wealth” thus suggesting that the individuals buried held similar social statuses, unlike Díaz’s (2004) classifications of late Ychsma A and B burials (Leon 2014; van Gemert 2014). Due to the limited quantity of primary, non-looted burials excavated at Panquilma thus far, it is difficult to concretely determine differences in grave “wealths”. Although this is so, grave goods recovered from the looted contexts within the funerary sector appear to have received similar energy inputs
in their creation as the primary context burials discovered within the domestic sector. Of course the initial contexts from the looted graves will never be known due to looter’s targeting specific objects of value. López-Hurtado (2011), ascertains that due to the presence and coexistence of both Ychsma A and B funerary traditions at Panquilma, funerary rituals were likely structured around the cult of the dead and potentially ancestor veneration. Claims for ancestral veneration practices at Panquilma have been discussed by López-Hurtado (2015), but these claims are based on tenuous information. Therefore the potential presence of ancestral veneration practices requires further testing in order to concretely establish not only the funerary rituals that were associated with the deceased but to what extent the living interacted with the dead.

3.4 Panquilma

Panquilma (300,000 m²), a multi-component site, is located approximately 38 km southeast of the city of Lima within the district known as Cieneguilla and is a Late Intermediate (i.e., largely corresponding to the span of the Ychsma polity; A.D. 900-1475) and Late Horizon (i.e., brief period of the Inka dominance of the Andes; A.D. 1475-1533) secondary Ychsma community on the Peruvian Central Coast. Eeckhout (2008) has proposed that Pachacamac and Pampa de las Flores can be classified as primary sites while Panquilma, Huaycan de Cieneguilla, Molle, and Tijerales are secondary sites while Rio Seco and Chontay are considered tertiary sites. According to Marcone (2010:113), secondary and tertiary sites within the Lurín River Valley are classified by their centralized, complex organizational settlements and public architecture (i.e. Pyramids with Ramps), elite and commoner domestic units as well as ‘service areas’. Some disconnect between secondary and tertiary sites is still occurring. López-Hurtado (personal communication, 2016) is under the impression that Eeckhout (2004) classifies
Panquilma as a tertiary site and he stated that it is not conclusively proven. Marcone (2010) also claims Panquilma as a tertiary site while in other publications he states that it is a secondary site (Marcone 2004; Marcone and López-Hurtado 2015). Sites similar in size to Panquilma (30ha) include: Tijerales (24ha), Huaycán de Cieneguilla (31ha), Pampa de las Flores (21ha), Avillay (46.5ha), Rio Seco (47ha), and Chaimayanca (50ha)(Figure 1b)(Feltham 1983; López-Hurtado 2015; Moreno et al. 2013). Of these prior sites only Panquilma, Tijerales, and Huaycán de Cieneguilla have Pyramids with Ramps in addition to those found at Pachacamac (500ha)(Eeckhout 2004). I classify Panquilma as a secondary site due to its large occupational area as well as the presence of Pyramids with Ramps.

3.4.1 Physical Layout and Functional Differentiation of Panquilma

Panquilma is located within a ‘pocket’ of the chaupiyunga zone on the left bank of the Lurín River Valley and is 28 km up-Valley from one of the most important religious centers of the Andean coast, Pachacamac (Figure 1a) (). Panquilma is located on the dry bed of a big side Valley (quebrada) on the south margin of the Lurín River (Marcone and López-Hurtado 2002:377). Each portion of the site, except the northernmost, borders the tall mountainous slopes opposite the Lurín River.

Panquilma is composed of three sectors: public (Sector 01), private/domestic (Sector 02), and funerary (Sector 03) (Figure 5; Table 3). Within the public sector, there are three “Pyramids with Ramps” (PWR) and numerous rectangular structures that likely were storage rooms and dwellings associated with the pyramids (López-Hurtado 2011, 2015). There are currently three arguments regarding the function of the eighteen Pyramids with Ramps at Pachacamac which will be outlined in the next section. The public sector (S01) likely housed the high elites and is
separated from the private sector (S02) by a walled causeway (López-Hurtado 2015). The private/domestic sector consists of 15 presumable lower-elite residential compounds that are classified as either central or periphery (dependent on location) (Figure 6). These domestic compounds are classified by their rectangular rooms that had plastered walls which were located around a central patio and contained evidences of food consumption and other domestic activities. The funerary sector consists of approximately 48 clusters of four to five funerary stone cists (Figure 7; Figure 8) containing both Ychsma and Inka burials (López-Hurtado 2011). The funerary sector (03) has also been deemed the “probable non-elite domestic area” but due to its location in the steepest region of the Valley, it was severely affected by mudslides during past El Niño rains thus affecting archaeological preservation (López-Hurtado 2011, 2015:33). López-Hurtado (2011:53), Director of the Institute of Peruvian Studies archaeological research programs at Panquilma, concludes that “the lack of evidence towards a permanent occupation in Sector 03 indicates that the great majority of the population resided in the household compounds of Sector 02.” Currently, López-Hurtado (personal communication 2015) suggests that the funerary sector is likely not a commoners' domestic area due to the lack of economic distinctions; instead, the commoners are thought to have resided in Sector 02 with the lower-elites (See Table 3 for clarification).

The public and domestic sectors are divided by a system of internal, high-walled causeways and entrances that restricted access to the pyramidal complexes (López-Hurtado 2011). The public and domestic sectors are also separated from the funerary sector by another high-walled causeway. Five isolated buildings, including the one analyzed in this thesis, sharing similar construction techniques are located within the funerary sector, two on the western slopes and three on the eastern slopes (López-Hurtado 2011).
The architecture belonging to the public sector and domestic sector rather than abruptly ceases when approaching the funerary sector. In addition, differences of perceivable material wealth between the household compounds and the public sector have not been found. López-Hurtado (personal communication 2015) thus suggests that social ranking differentiation between various household compounds is not vertically based on material wealth, but horizontally distinguished by the length of the compound’s occupation. Whereas within the household compounds, individuals are vertically differentiated based on their relationship to the founding member of the household (Marcone and López-Hurtado 2015). Isbell (2004b) argues that, in the Andes, hierarchically organized extended families resided within household compounds. Thus, the closest kin to the founding ancestor of these domestic households held the highest social position within the family. Offerings to the ancestor, the household’s founding central member, would appease them in order to maintain social ties and the household’s well-being in this horizontally distinct corporate kinship system.

3.4.2 Occupational History

Panquilma was primarily occupied during the Late Intermediate Period (900-1475 A.D.) by the Ychsma society but an occupation by an Inka affiliated group has also been identified due to the presence of provincial Inka ceramics. López-Hurtado (2011, 2015) has concluded that the Inka occupation at the site was largely confined to the public sector. Evidence suggesting this occupation has been discovered within Pyramid with Ramp One and Pyramid with Ramp Three. The main platforms of these pyramids did not receive much use before they were extensively burned, which has been attributed to the Inka invasion, and abandoned (López-Hurtado 2011, 2015; Marcone and López-Hurtado 2015). Additionally, a structure located within the funerary
sector on the eastern side of the site, which was surveyed from 2002-2003 and from 2008-2009, produced “an abundance of Inka style [ceramic] sherds” but does not appear to have had an extensive occupational history (López-Hurtado 2011:42). The provincial Inka-style ceramics found at Panquilma were a hybrid with the local Ychsma ceramic traditions. López-Hurtado (2011) therefore has proposed that this structure’s construction occurred after the burning of the Ychsma’s Pyramids with Ramps as a direct product of Inka intervention at Panquilma (López-Hurtado 2011:42). The Inka primarily occupied the neighboring site of Huaycán de Cieneguilla, but members of an Inka-affiliated group likely did settle at Panquilma as well. Additional work is needed at Panquilma in order to conclusively judge the duration and the exact nature of an Inka-affiliated group’s occupation.

3.4.3 Evidence of Ancestral Veneration at Panquilma

Evidence of Ychsma ancestral veneration at Panquilma consists of open plazas and their contents within the household compounds that hosted feasting activities. Feasting facilitated the “redistribution mechanisms in the social organization of each compound” while religious paraphernalia such as rattles, whistles and figurines were utilized in rituals associated with ancestral veneration (López-Hurtado 2011:166-167; Eeckhout 2004). Feasting evidence has been exposed within both the public and domestic sectors, primarily in the household structures and their associated patios, but does not entirely indicate ancestral veneration (López-Hurtado 2011). The feasting is inferred from numerous serving vessels and organic remains that suggest preparation and consumption of large quantities of food (López-Hurtado 2015).

According to López-Hurtado (2011), Panquilma’s ruling elite competed for social prestige through feasting activities within their household compounds. These household compounds were
likely extended family compounds due to their large size and organization around a central patio (Figure 6). López-Hurtado (2011, 2015) believes that these feasting activities validated notions of political authority and ancestry through redistribution in association with above-ground funerary architecture located within household compounds (Marcone and López-Hurtado 2015). These conclusions, however, are based on a limited amount of data due to the lack of excavations of an entire domestic compound. Due to the lack of excavations within the funerary sector, in comparison to the domestic sector, at Panquilma, evidence of feasting activities has yet to be found within the cemetery.

Specialized burial structures did not guarantee security in the afterlife upon death unless the living cared for it regularly, regardless of whether the burial was located within the cemetery or in a household compound (Shimada and Fitzsimmons 2015). These feasting activities would thus act as a form of security in the afterlife through ancestor veneration (Hayden 1996, 2001; Goepfert 2011). Further investigation regarding evidence of potential ancestor veneration is needed in the funerary sector at Panquilma in order to determine if veneration practices occurred within all of the site’s sectors as well as if they were individually sponsored by diverse social groups.

Ethnohistoric descriptions of religious paraphernalia have indicated that musical instruments were used to summon ancestral spirits while figurines acted for and assumed the image of the ancestor (Arriaga 1968 [1621]:19; Lau 2008). According to López-Hurtado (2011:166), the presence of religious paraphernalia in feasting contexts within the household compounds reinforces the inference of the performance of ancestral veneration rituals. López-Hurtado (2011:120, 156) argues that this familial hierarchical organization occurred within the central and peripheral household compounds at Panquilma and that the members closely related to
founding members were in charge of “organizing labor, redistributing resources, and the performance of ritual activities such as ancestor veneration rituals.” Thus, these individual household compounds are thought to have functioned on distinct hierarchical levels.

Ychsma mortuary structures that display evidence of rituals associated with the inferred ancestor veneration have only been identified in the public and domestic sectors (López-Hurtado 2015). Funerary architecture at Panquilma is concentrated within the funerary sector but not restricted to it. Three different types of above-surface funerary architecture are present at the site based on the sector in which they are located (López-Hurtado 2015). Burials present in the public sector were interred inside rectangular units located above the surface in the public buildings (López-Hurtado 2015). These above-ground funerary rectangular structures are also present in the domestic sector but are smaller. As discussed previously, the funerary sector is composed of above-ground funerary cist clusters (Figure 7) with a few below-ground Inka burials (Figure 8).

Detailed analyses regarding the burial practices and rituals at the secondary site of Panquilma will allow for a better understanding of the Ychsma social identity outside of the religious center, Pachacamac. According to Shimada et al.’s (2015) recent research on the Peruvian coast, deceased individuals received numerous pre- and post-primary interment rituals that led to the dead having a fairly active social life. Although the research that has been completed in regard to the burials at Pachacamac and their social implications is thorough, it does not correlate with the Ychsma burials present at the site of Panquilma. Additional research is needed at other Ychsma sites to determine if there was in fact a standardized and/or formalized burial practice within this culture.
3.5 Prior Excavations Near Panquilma

A large portion of the Central Coast excavations (and of the Ychsma) are centered at one of the most important religious centers of the Peruvian Andean coast, Pachacamac. This religious site was the primary center for the cult of the Ychsma, an important and dreaded deity of Andean earthquakes (López-Hurtado 2011; Rostworowski 1972, 1973, 1999, 2000, 2002). Topa Inka Yupanqui’s conquest of the region around 1470 A.D. marked the beginning of the Late Horizon, and Pachacamac was incorporated into the Inka Empire (Eeckhout and Owens 2008). Once the Inka conquered the coastal site they adopted the Ychsma deity, which was renamed Pachacamac (Rostworoswki 1999). The Inka occupied the Central Coast with a tripartite capital organization within the Lurín River Valley, and both banks of the Rímac River Valleys during the Late Horizon (Cobo 1881[1639]).

Aside from Pachacamac, the Inka largely settled at the Lurín River Valley sites of Pueblo Viejo-Pucara and Huaycán de Cieneguilla (Makowski 2012; Marcone 2004; Ruales Moreno et al. 2013). Unlike Panquilma, the Inka occupation at these sites is clearly exhibited within the visibly distinct or diagnostic architectures. According to Marcone (2004:728), the presence of Inka architecture but the lack of genuine Inka sites within the Lurín Valley suggests,

Esto hace suponer la utilización de una estrategia de control indirecto por parte de los Inkas que, lejos de necesitar un sitio Inka administrativo, presenta edificios que marcan
su presencia y control en los sitios locales existentes, estableciendo control a través de las jerarquías locales, aunque transformándolas.¹

This, in-turn, demonstrates the integration of the Inka culture into the preexisting Ychsma culture of the Peruvian Central Coast.

Ethnohistoric documents from the Spanish conquest of central Perú have allowed for numerous interpretations of Pachacamac. Miguel de Estete (1968 [1535]), a chronicler and one of the Spanish conquistadors, noted in his 1534 report that countless pilgrims from various areas came to Pachacamac in order to pay their respects, to consult with, and to make offerings to the Pachacamac Temple oracle. The importance and prestige of the Oracle at Pachacamac was kept intact until the fall of the Inka Empire in 1535 (Cieza 1986 [1553]). Pedro Cieza de León and Pedro de la Gasca’s report of 1553 described how shelters surrounded this sanctuary for pilgrims and the tombs of lords and priests, who wished to be buried close to the deity they had worshiped. Regarding mortuary practices, Francisco de Avila (1980 [1608]: chapter 28:185) stated that the time between death and burial was set at five days, based on his exploration of the Early Colonial Period Checa and Upper Lurin River Valley cultures. These ethnohistoric documents provide insight into cultures that no longer exist, but are typically imbued with an ethnocentric perspective.

In more recent times, Max Uhle (1903, 1906, 1910) was the pioneering researcher of Pachacamac. His excavations in the sacred cemetery in front of the venerated Pachacamac Temple (now called the Painted Temple) helped to establish the building blocks of Andean

¹ This suggests the strategical use of indirect control by the Inkas who, far from needing an administrative Inka site, presents buildings that mark their presence, and control in existing local sites, establishing control through local hierarchies while transforming them [Translation by author].
Peter Eeckhout, Izumi Shimada, and their teams have conducted much of the recent research at Pachacamac. Eeckhout’s dissertation (1997) research at Pachacamac created the foundations for the Ychsma Archaeological Project, which has been carried out since 1999. In his dissertation, Eeckhout (1997) reassessed the function of the 18 Pyramids with Ramps (PWR) at Pachacamac and concluded that elite/local dignitaries who frequently held ceremonial feasts in the buildings and plazas occupied these structures. Upon the death of these elite, the structure was transformed into their tomb, ritually abandoned, and a new Pyramid with Ramp was built for the descendant's occupation. Although the architectural layout of these Pyramids with Ramps is reminiscent of temples, no signs of religious functions have been found (Eeckhout 2000:234), but extensive data suggesting ancestor veneration has been detected (Eeckhout and Owens 2008; Eeckhout 2013; Shimada et al. 2006, 2007, 2010, 2015; Shimada and Fitzsimmons 2015).

Two additional arguments regarding the function of the Pyramids with Ramps at Pachacamac have been presented. The first presented by Alberto Bueno (1982) and Arturo Jimenez Borja (1992) suggests that these PWR were religious embassies that represented varying Ychsma polities that worshipped the Oracle at Pachacamac. Within each of these PWR resided priests that performed rituals in addition to administering the necessary resources for maintaining the religious cult without conveying political or economic control over the local population. The final competing hypothesis has been proposed by Krzysztof Makowski (2008) who has suggested that the core of Pachacamac was built in the Late Horizon as an Inka administrative site in order to control the Rímac and Lurín Valleys and thus, the PWR were buildings that represented this foreign control. Over 40 PWR have been located at numerous sites in the Rímac and Lurín Valleys (Dulanto 2008:769). Eeckhout’s (1997) hypothesis, although lacking funerary
evidence consistent with Ychsma lords, is more plausible than that of Makowski (2008) which is contradicted by many radiocarbon dates. Furthermore, Shimada et al. (2004b) argue that the integration of various lines of evidence such as residential and mortuary studies becomes crucial in order to gain an overall comprehensive and dynamic image of Pachacamac.

Previous research provides details on the types of burials at Pachacamac and their social implications. However, they do not correlate with the Ychsma burials present at the site of Panquilma. Burials at Pachacamac are typically identified as either large funerary bundles or sacrificial burials lacking basic funerary procedures. Previous excavations at Panquilma have only yielded two large funerary bundles, one of which was classified as an Inka-period burial and the other as Ychsma. Burials commonly found at Panquilma include secondary burials and semi-flexed burials not characteristic of large funerary bundles.

A systematic settlement survey within the Lurín River Valley was presented in Jane Feltham’s 1983 dissertation in which she conducted an archaeological survey that spanned from the quebradas of Molle and Chaimayanca to the quebradas of Panquilma and Antapucro with the aims of locating, dating, and conducting a settlement pattern study of all the sites within the coastal river Valley from 400 to 1,000 meters (Feltham 1983:20). Feltham’s study then further concentrated on the effects of the Inka conquest on the Lurín Valley inhabitants during the Late Horizon through the analysis of ceramics, architecture, and ethnohistorical documents. Extensive exploratory excavations have also been conducted at the Lurín Valley sites: Huaycán de Cieneguilla, Tablada de Lurín, Pueblo Viejo-Pucara, Pampa Chica, Lote A, and Lote B (Dulanto 2002; Feltham 1983; Makowski 2002; Marcone 2000; Marcone 2004; Marcone and López-

\[2\] Due to heavy looting, the number of intact burials recorded to date at Panquilma does not necessarily indicate the original number of burials.
This chapter placed the site of Panquilma among other Ychsma sites within the Lurín River Valley as well as Panquilma’s archaeological investigations within the greater historical context of the Central Coast region’s archaeological framework.
CHAPTER IV

RESEARCH HYPOTHESES AND TEST IMPLICATIONS

My research will examine pre-internment mortuary activities and ideologies regarding the afterlife of the Ychsma, specifically at the site of Panquilma, through a detailed analysis of a unique structure located on the periphery of the cemetery (Figure 3; Figure 4). I aim to determine the significance of this partially excavated structure in order to provide a deeper understanding of mortuary practices at Panquilma and thus the Ychsma’s concept of and interaction with the dead on the Central Coast of Peru.

Based on the pertinent background discussion presented above, I hypothesize that:

(1) This structure bordering the western peripheral side of the cemetery was a location where the Ychsma lesser-elites and commoners prepared the dead for eventual burial in the adjacent cemetery.

The competing hypothesis to be tested is:

(2) This structure served as a residence of a shaman and a setting for his/her ritual performances.

If the first hypothesis is correct, then I would expect to find artifacts, ecofacts, and features such as:
• concave bivalve shells of the *Concholepas concholepas* species containing cinnabar or red ochre paint for decorating funerary bundles and their associated remains;
• sewing needles and yarn for preparing clothes and other parts of funerary bundles;
• metal working stones…, copper alloy scraps, and typical funerary fabrics that were likely to have been used in preparation of funerary bundles (Shimada et al. 2005; Shimada et al. 2007).
• Items similar to the grave goods commonly found at Panquilma, including items such as raw cotton, braided botanical rope, variously colored cotton and wool textiles (red, yellow, brown, blue, green), purple maize, corn husks, lucuma seeds, peanut shells, gourds, limestone and their associated gourd containers, quartz stones, various shells (including *Spondylus* sp.), *Nectandra* sp. seed beads, chrysocolla or turquoise lithic beads, shell beads, copper and silver alloy metal fragments, copper alloy tweezers and *tupus*, red and yellow pigments, as well as camelid and cuy osteological remains, spindles, ceramic spindle whorls, spheres of variously colored cotton thread (green, red, yellow, blue), and woven reed mats.

Architectural features that would be expected from a building specializing in mortuary preparation include:

• a well built, multi-room building with a principal processing room, and storage facilities that hold funerary bundle materials, an area such as a patio to conduct mortuary rituals.
• semi-restricted access to the building could also indicate mortuary preparation which could be indicated by high walls as well as entrance and room accesses not easily visible to all members of the public.
• For practical purposes, the facilities would be located further away or downwind from the town due to the potential smell of decomposing bodies, in addition to avoiding interaction
with the liminal, wandering souls that were preparing for their life after death. Francisco de Avila (1980 [1608]: chapter 28:185) noted that the Central Coast populations allocated burials to five days after death thus allowing for decomposition to begin, and potentially be completed depending on variables such as temperature, humidity/aridity, and insect access (Mann et al. 1990). Indications of intentional defleshing have yet to be discovered on the Central Coast but could have still occurred following mummification (Shimada et al. 2015).

In the event that this building was the residence of a shaman, thus supporting the competing hypothesis, I would expect to see evidence of subsistence activities such as charred ceramics, food refuse, dishes, and animal corrals as well as religious paraphernalia that would induce and/or create a theatrical atmosphere for ritual performances, and altered states of consciousness such as:

- whistles, drums, carved stones such as crystals, feathers, *Spondylus* valves, anthropomorphic or zoomorphic figurines, musical instruments, and rattles
- items designated for usage with hallucinogenic drugs such as decorated snuff trays, spoons or inhaling tubes (Díaz 2004; Díaz and Vallejo 2005; Eeckhout 2004; Montoya Vera 2015; VanPool 2009).
- botanical remains such as maize, peanuts, *Nectandra* sp. seeds and coca leaves would likely be found due to their rich historically religious significance (Allen 1988; Eeckhout 2006; Montoya Vera 2015).

Iconography that is commonly associated with shamanism and could be exhibited in this structure includes:

- entoptic phenomena (e.g. spirals, dots, and grids) and, anthropomorphic, guardian, and/or liminal figures (VanPool 2009).
The building itself would house ceremonial items in a private space such as a storage room or within a shrine (VanPool 2009). A large enough space would also be needed to conduct ceremonies in order for at least two or more people to fit within the structure. In order to determine if this structure was indeed used for shamanic purposes, ethnographic evidence will need to be evaluated in addition to the archaeological record.

In regard to the first hypothesis and set of test implications, Smith and Arias (2015) located an inferred Late Formative Period (200 B.C. -500 A.D.) funerary processing structure near Lake Titicaca in Bolivia. Evidence supporting this claim is extensively exhibited through an abundance of miscellaneous, fragmented human remains covered in a quicklime (calcium oxide) coating, some painted with a red pigment, in addition to the raw materials, and tools which were used to create as well as apply the substances. Additionally, the iconography of four carved sandstone monoliths depict the mortuary processes that can be seen within the interpreted structure. The conclusion drawn from the discovery of this mortuary processing center is that due to the careful processing and curation of the dead the social importance of the living-dead relationship is evident (Smith and Arias 2015:116). It is likely that these processes and relationships transpired and evolved as time progressed within the Lake Titicaca region. A Pyramid with Ramp at Pachacamac has been interpreted as a funerary processing center based on offerings of sacrificed animals, including a monkey, *Nectandra* sp. seeds, and textiles, large burnt ceramic vessels, exotic shells, and a mummy bundle (Eeckhout 2002 and 2006; Michczyoski et al. 2007; Eeckhout 2007, 2008; Eeckhout and Owens 2013). Although these findings are suggestive, it is not enough to conclusively deduce the structure’s function. Although clear evidence of a mortuary preparation structure has yet to be found on the Central Coast, it does not indicate a lack of such structure.
Evidence for funerary bundle preparation may vary depending on whether the structure belonged to the Ychsma or the later Inka. The cultural occupation of this building could be determined in regard to the type of raw materials present within the structure relating to mortuary preparation. As discussed above, Luisa Díaz (2004, 2005, 2015) has created a typology for Ychsma burials at Armatambo. Díaz (2015) led an extensive analysis of corpse preparation and mummy bundles in which she established the “bundle-with-reeds” as a notable Ychsma burial variant. This bundle consists of individuals placed in a flexed position with a strap holding the individual’s knees to his/her chest, packed with cotton, wrapped with various layers of cotton textiles, then filled with botanical materials and held together with cane reeds vertically on each side of the body. All of this was then potentially wrapped with a netted material and stuffed with more cotton or various botanical remains prior to the addition of several layers of cotton textiles (Figure 9). Similar Ychsma funerary bundles have been located at Pachacamac (Takigami et al. 2014) and according to Shimada et al. (2015), the practice of inserting a pair of symmetrically opposing vertical poles on the sides of funerary bundles, to stabilize their vertical positions, is unique to the Ychsma.

Central Coast Inkan funerary preparation documented at the site Purucucho-Huaquerones can help to determine the cultural affinity, and the time period of the funerary bundles at Panquilma (Cock and Goycochea 2004). General mortuary characteristics found at this site include: individuals buried in a flexed position surrounded with layers of cotton, that often had the seeds, and wrapped in various textiles and nets (Figure 10). These funerary bundles also occasionally had a false head, a mask-like item that was placed on top of the funerary bundle. Individuals were buried with ceramics, botanical remains, Spondylus valves, slings, textile implements, metal fragments, seed bead necklaces, and pigments (Diaz 2015). According to Diaz (2015) and
Cock and Goycochea’s (2004) analyses, burial implements for both the Ychsma and the Inka are very similar. However, the most reliable way to distinguish between the two groups is through the analysis of culture-specific artifacts such as high quality textiles with geometric designs that embody social relations (cumbi, awasca), and provincial Inka ceramics in forms of storage vessels (aribalos), two-handled deep dishes (cazuela), narrow-necked vessels, wide-mouthed vessels, ollas, pedestal-based plates, and cups (queros) as well as the presence of conopa or ilia stones (Bray 2003).

Determining who utilized this potential mortuary processing center could be done by the discovery of cinnabar-paint that would indicate corpse preparation for elites where-as an abundance of ochre-paint may indicate the preparation of commoners (Shimada et al. 2015:148). The prevalence of both types of pigments could indicate that the elites and commoners were processed in one centralized location. Discovery of other colored pigments would indicate craft production of goods that were placed within the graves. A lack of pigment within the structure does not necessarily indicate that the building was not utilized in mortuary preparation but that they could have been contained elsewhere, not used at the site, or that it could have decomposed or been taphonomically affected in a way that would have made its present invisible in the archaeological record.

Both hypotheses outlined are not mutually exclusive and evidence could exhibit the presence of shamanistic rituals within a funerary bundle preparation area.
CHAPTER V

METHODOLOGY

The excavation and analysis of the funerary sector structure is part of the ongoing Instituto de Estudios de Peruanos (IEP) Programa de Investigacion Proyecto Arqueológico Costa Central Peruana and the Proyecto de Investigación Arqueológica Panquilma (PIAP), which aims to reconstruct domestic activities in household compounds, ritual activities associated with monumental architecture, and funerary behaviors of the site as a whole. PIAP has been running consecutively as a summer archaeological field school open to the public for the past four years, from 2012 to 2015. Research questions guiding PIAP are: (1) how did Pachacamac interact economically and politically with the communities located within its area of influence? (2) to what extent were Inkan subjects occupying Panquilma?

The first visual assessment of the excavated enigmatic structure occurred in 2013, and it was chosen for excavation in 2015 due to its western peripheral location within the cemetery, its household-like design, and its proximity to various funerary cists. The research questions that guided this excavation include: (1) how can the social identity of the living that interred the dead be determined? (2) what are the implications of the living-dead interaction, and (3) how do mortuary practices alter social memory in order to fit political needs? The overall aims of this
excavation were to better understand the mortuary practices at Panquilma as well as the Ychsma’s concept of and interaction with the dead.

By testing the two competing hypotheses in order to answer the questions outlined above and achieve the outlined aims, I collected my data from the structure under consideration within the funerary sector at Panquilma from June 23-July 17, 2015. Originally it was decided that an 8 meter long by 2 meter wide area along the southern wall, oriented west to east, would be excavated due to the ability to examine seven corners of the rooms within a single unit. This unit (UE-22) consisted of three stratigraphic layers before the expansion of the excavation within the structure occurred. Expansion of the unit transpired due to the interesting nature of the structure, a few weeks of remaining allotted excavation time as well as the availability of the excavation crew. An approximately 7 meter long by 2 meter wide unit (UE-25) was opened along the northern wall, also oriented west to east, within this structure and three layers were also stratigraphically excavated until the soil was uniform with UE-22. A third unit (UE-23) was opened along the eastern patio wall of this structure and consisted of three stratigraphic layers as well. This third unit encompassed the remaining unexcavated eastern portions of the structure’s patio, oriented south to north, and was approximately 4 meters long by 3 meters wide (Figure 11). Unfortunately, time ran out during the summer field season and excavation was halted. Excavations within this structure were continued and finished from October 26-29, 2015 in order to finish the open stratigraphic layers that were begun two days prior to the final excavation dates. Once excavations resumed these three units (22, 23, and 25) were excavated uniformly across one another. All stratigraphic layers excavated within this structure are listed in Appendix E.
Within this structure are two designated rooms or ambientes (AMB-76 and AMB-77). Excavations occurred in both rooms as well as in the patio and corridor. Due to the lack of cultural remains discovered within the southern portion of the storage room (AMB-76) excavations did not continue in the room’s northern portion when unit 22 was extended to create unit 25 (Figure 11).

All soil from the excavation units was dry screened through a sieve with ca. 1/16” plastic mesh placed on top of a ca. 1/4” wire mesh. The wire mesh reinforced the plastic mesh, and resulted in less screen breakage, and artifacts slipping through the cracks. A wide array of artifacts and ecofacts such as ceramics, lithics, metal fragments, animal bones, roof fragments, beads, pigments, and shell remains were recovered within this structure. All artifacts and ecofacts were collected and stored in plastic bags that indicated its provenience and content (Appendix D), inside of cardboard boxes separated by material, and are awaiting storage at the Pachacamac Museum. A meticulous written, graphic and photographic record was used to record data in the field. Throughout the excavation, field journals were kept in addition to data collection forms that recorded the systematized excavation process. These data collection records indicate stratigraphic levels and special features (Appendixes B-C). Each excavated layer was precisely photographed at multiple angles in order to be processed through Agisoft PhotoScan, a 3D reconstruction software. Laboratory analysis consisted of cleaning, measuring, and cataloging all artifacts/ecofacts. Photographs of approximately 90% of all artifacts and ecofacts removed from the cemetery’s western peripheral structure were taken. Various measurements and detailed descriptions were recorded on a diversity of artifacts.

Selected artifacts, based on material composition, were then analyzed through the use of a Bruker Tracer Series Portable X-ray Fluorescence (pXRF) spectrometer that was loaned to IEP
and PIAP by Nicholas Tripcevich from the University of California, Berkley. Selected artifacts consisted of various pigments, beads, metal and ceramic fragments from the enigmatic structure in order to ascertain their chemical compositions (Figure 12; Figure 13). Specific chemical compositions, such as those in metal alloys, can determine whether the structure was contemporaneous to either the Ycshma or Inka occupation. Miscellaneous artifacts from two different burial locations excavated in 2014 were also analyzed with the pXRF in order to act as a comparative to the 2015 excavated materials.

Analyzed artifacts were non-invasively prepared (i.e. cleaning of the artifact’s surface area did not occur) for use in the pXRF analysis and therefore the results are qualitative or semi-quantitative. The pXRF machine was not specifically calibrated, and multiple samples of varying areas on the artifacts were not taken due to misunderstood use of properly preparing and conducting this analysis. Upon setting up the pXRF machine, with the help from Nicholas Tripcevich, artifacts were given specific provenience numbers that were synonymous with their catalog code (e.g. Pa485Pi_01, Pa674_01), weighed and photographed as well as the recording of general material types and comments (Figure 12; Figure 13). Once the prior was completed, this information was entered into a Microsoft Excel file. All artifacts were analyzed using a yellow filter (Ti/Al) with the High voltage/kV set at 40 and the Current/µA set at 10. Artifacts were then placed on the upright standing Bruker Tracer pXRF as is and covered with the radiation protective cap in order to begin analysis through the S1PXRF Tracer software. Once the raw data analysis was completed the information was placed into the ARTAX software separated by material (i.e. pigment, ceramic, lithic) and Bayseian Deconvolution commenced. Each material’s deconvoluted chemical composition was then exported into Microsoft Excel files for further analysis.
Once exported into Microsoft Excel files, each material was analyzed on the basic level of determining the ratios of each chemical compound present within the sample. As stated prior, due to the lack of appropriate preparation methods these ratios should not be interpreted as reliable compositional data as post-depositional weathering, corrosion and/or absorption (from the depositional matrices) could have affected the measurements taken. Although this is so, they do still hold value in qualitative assessment or determining the major chemical elements of artifacts, specifically metals and pigments, with the goal of defining the cultural occupation of the analyzed structure.
6.1 General

Located on the southwestern hillside of Panquilma’s cemetery away from the public and domestic sectors is this enigmatic structure (Figure 14; Figure 15). This structure has two designated rooms or *ambientes* (AMB-76 and AMB-77) and, in the eastern portion, a clear delineation of a patio, 4 meters long (south-north) by 7 meters wide (east-west). This structure would have been entered from the east through the patio to meet a northern oriented doorway (50cm wide) with an east-west access. Once this doorway was entered, an individual would turn south and continue along a short corridor, 4 meters long (south-north) by 0.60 meters (east-west), before approaching another doorway (45cm wide) positioned on their right side, or west. Upon entering the second doorway, the individual was met with a room (AMB-77) approximately 3.80 meters long (south-north) by 2 meters wide (east-west). To the west of AMB-77 on a north-south axis was AMB-76. AMB-76 appears to have been a storage facility that was accessed through a small southern window (50cm x 30cm). This storage facility was approximately 4 meters long (south-north) by 0.8 meters wide (east-west).
Proxemics analysis allows for the estimation of peoples that could fit within each room of this structure. This building’s patio at 28m² can fit 60 people at the most with a 0.46m²/person ratio, and 7 people comfortably at a 3.6m²/person ratio at any given time. The main room at 7.6m² can fit 16 people at full capacity at a 0.46m²/person ratio, and 2 people comfortably at a 3.6m²/person ratio while the storage room at a 3.2m²/person ratio can fit 6 people uncomfortably at a 0.46m²/person ratio, and impossibly less than one person, or potentially a subadult, at a 3.6m²/person ratio.

By mid-afternoon the wind coming from the north rapidly increases. Based on the positioning of the doorways and window, the strong afternoon winds were taken into consideration upon construction of this structure in order to avoid dust from entering the rooms. Burrowing owl nests are currently located near this enigmatic structure and also were likely present during this structure’s occupation. These owls may have acted as a form of pest control for the structure’s overseer.

The foundations of this structure were built upon large stones with walls consisting of small to medium sized field stones that were then covered in plaster and painted yellow both on the building’s interior and exterior (Figure 16). The tallest remaining wall within this structure is the western wall within the main room (AMB-77) at 2.3 meters while the patio walls are rather short at approximately 35cm high. The walls of this structure are relatively well preserved, but do exhibit distinct indicators of collapse, likely due to contemporary events. These walls likely once stood at least 2.5 meters tall. This structure is similar to household complexes within the domestic compound due to the building materials utilized as well as its “continuous walls enclosing clusters of storage facilities, small patios… [and] multiple rectangular rooms” (López-Hurtado 2011:110).
Evidence of contemporary human activity within the structure is indicated by a looter’s pit in the main room. This looter’s pit was either created through the intentional breakage of the northern wall or the collapse of the wall was caused due to looters digging under it thus causing stress on the wall’s foundations leading to partial collapse (Figure 15; Figure 16). Additionally, an array of modern artifacts, such as plastic, were found within this structure.

A majority of the artifacts, both primary and secondary contexts, within this structure consist of *Nectandra* sp. seed beads, *Spondylus* sp. beads and fragments, and various copper and silver alloyed metal fragments. Both *Nectandra* and *Spondylus* are considered infrequent artifacts within the archaeological record and have only been located at Panquilma periodically. 89.07% of the *Spondylus* found thus far at Panquilma comes from this structure (Table 4) while the total concentrations of *Nectandra* at Panquilma are unknown due to the lack of detailed botanical analysis and notes in past field seasons. A majority of the *Nectandra* sp. seeds discovered within this structure were cut lengthwise and a hole was drilled in the center of them in order to create beads while some were painted red or yellow. Although the exact concentration of *Nectandra* in the structure in comparison to Panquilma is unknown, the unusually large quantity of these seeds within this edifice is significant (over 2000 individual beads).

Rooms within this structure generally presented similar stratigraphic layers. The corridor, main room, and storage room each only presented one floor while the patio exhibited three successive floors. Subfloor material fills underneath the patio, corridor, and storage room floors were largely absent while the fill underneath the main room’s floor consisted of specialized artifacts (i.e. *Nectandra* sp. beads, *Spondylus* artifacts). Several offering caches were also located in and underneath the floors within both the patio and main room of this enigmatic structure.
6.2 The Main Room

Foundations of this structure’s main room were built on the basal slope of the neighboring mountain. Two offering caches were placed into the structure’s main room between the mountain’s basal slope, which was used as the structure’s foundation, and the prepared floor (Figure 17). The first offering cache (Rasgo 4) consisted of two whole *Spondylus princeps* valves placed anatomically on top of one another with the dorsal margins facing northwest approximately 80cm from the western wall and only 20cm from the second offering (Figure 17; Figure 18). Inside of these valves was a small concentration of *Nectandra* sp. seed beads and *Spondylus* sp. *chaquira* (small circular shell beads) beads (Figure 18a and 18b). The second offering (Rasgo 3) was situated near the center of AMB-77 and contained a wide array of intermingled items. At the bottom of this offering a 13cm layer of *Nectandra* sp. seed beads (some painted red and yellow) were placed with various artifacts (Figure 17, 19-36; Table 5). This offering was then marked by the placement of a medium-sized unaltered, ovoid granite stone, and coca leaves (Figure 20).

Aside from the two prior outlined caches, the subfloor fill abnormally consisted of rare and exotic items. These items were uniformly placed underneath a compacted clay floor and is unlike other subfloor fills found at Panquilma thus far. Therefore this subfloor fill may be indicative of ritual preparation prior to the floor’s construction. These items consisted of plain brown, yellow, and red *Nectandra* sp. seed beads, *Spondylus* sp. fragments and beads, lithic beads, silver-copper, copper-silver and gold alloy metal fragments as well as a mummified cuy (Figure 37), camelid bones, coca leaves (Figure 38), red and yellow likely macaw (*Psittacidae* sp.) feathers and brown feathers, possibly duck or vulture. Once the foundations of the main room within the structure
were placed, a thick clay floor approximately 2.50 cm was constructed (Figure 39). The construction of the floor coincided with the placement of a mostly circular tapia column that once stood at least 90cm tall (Figure 17, 39, and 40). This column was placed within the floor near the room’s doorway approximately 50cm west from the room’s eastern wall and 45cm north of the doorway along the eastern wall (with a 65cm hypotenuse). At one point in time this column was painted on at least two sides with a red and yellow checkerboard pattern with 8cm by 8cm squares (Figure 41; Figure 42). Unfortunately, this column had been broken into at least four pieces at the time of recording while one of these column fragments appeared to have thatch roofing fragments underneath it.

On top of the thick floor, along the eastern wall, were remnants of a collapsed cane and thatch shelving unit (Rasgo 2; Figure 43). This shelf unit was a series of long canes (Arundo donax) and maize stalks (Zea mays) that were tied together with twisted vegetal fiber rope and topped with palm fronds of some sort which likely extended to the tapia support column. Once completed, a layer of mortar was placed below and on top of the fronds and canes. Imprints from the thatching can be seen within the recovered mortar. Three Spondylus sp. valve fragments without spines, one shell bead, five pieces of copper-alloy, two silver-copper alloy and one gold metal fragments were also intermingled within the collapsed shelf. Additionally, near this collapsed shelf towards the center of the room was a whole ceramic vessel that was upside down on top of the floor (Figure 44).

This small ceramic bowl was tempered with crushed granite and mica, burnished, and painted with a red slip. This vessel was likely fired in an oxidizing atmosphere as the ceramic paste is orange in color. Additionally, this bowl had a thin, decorative incision near the rim and a broken hole at the bottom of the vessel while the lower half of the vessel had begun to
deteriorate. Around the rim of this vessel was two indents symmetrically opposed from one another, one of which was wider than the other (3.7cm wide and 4.95cm wide). These indents could have been the result of a lid or an area to hold a utensil over it, but no supporting evidence of this was located (Figure 45). Inside of this vessel was a fragment of copper and one *Spondylus chaquira*, a local term for small, perforated beads. Situated next to this ceramic vessel was a medium-sized, unaltered rock as well as thatch shelving fragments. Intermingled within this portion of collapsed shelf were remnants of *Argopecten* sp. and *Spondylus* sp. fragments, *Spondylus* sp. *chaquira*, *Nectandra* sp. seed beads, chrysocolla/turquoise beads, coca leaves, and four polishing stones. To the southwest of this whole ceramic vessel was an identical fragmented vessel. Although fragmented, this second vessel was less eroded than the first vessel and had wider indents around its rim (5cm wide and 5.4cm wide) (Figure 46). Mixed within these vessel fragments was also fragments from another vessel’s neck.

On top of the main room’s floor was an abundance of manuports which could have partially been a result of wall collapse. 65.21% of the stones found within this structure were centralized within this building’s main room. A majority of the manuports found within this structure are the result of volcanic activity and are known as ‘lava bombs’ or lapilli and therefore unlike the field stone that the structure was primarily constructed with (Figure 47-57). Due to the warped nature of these lapilli and the lack of visual evidence of lapilli within the structure’s current walls, they were likely not used in the wall’s construction and were therefore not situated in the room as a result of collapse. Certain manuports that appeared in this room resembled zoomorphic and anthropomorphic shapes while some appear to have served a utilitarian function. Lithics that potentially served a utilitarian function include one that resembles a *mano*, or pestle, with a step-fret (*chakana*) design (Figure 47), a large *metate*, or mortar, with shallows holes on its surface
(Figure 48), and several small potential polishing stones as well as hammer stones (Figure 49-52). The *chakana* stairway motif is thought to be a symbol of power (Cummins 2015; Montoya Vera 2015). Although it appears that this *mano* had an Andean cross-like *chakana* design, these designs were actually the result of jointing fractures due to natural weathering processes and not manufactured incisions (Paul Welch, personal communication 2016). The surface holes in the large *metate* could potentially have been due to the cracking of seeds or could have been used for the grinding of pigments, but this is not conclusive. One of the anthropomorphic-like lithics found in the surface layer of the southern portion of the main room appears to have a humanoid form to it, but also was naturally formed (Figure 53; Figure 54). One large, flat stone within this room could have also once been a lintel over the 50cm wide doorway. A similar stone was found in the wall rubble of the corridor.

Artifacts also discovered on top of this room’s floor include: red and yellow pigments (Figure 58), metal fragments (copper-silver alloys, silver-copper alloys, silver-gold alloys, silver, gold, and gold alloys), *Perumytilus* sp., *Argopecten* sp., and crab shell remains, various *Spondylus* sp. and lithic beads, corn cobs and husks, lucuma, carbon, gourd, cotton, cuy coprolites and fur, large white and brown feathers, and calcite fragments (Figure 59). A majority of the *Nectandra* sp. seed beads, *Spondylus* sp. beads and fragments (Figure 60 A-C), chrysocolla or turquoise beads, and gold fragments were recovered along the western wall within the main room.

As stated before, the northern portion of this room appears to have been looted at some point in time due to the presence of a looter’s pit. The looters either broke the northern wall during their search for artifacts or the partial wall collapse occurred after the looters dug too deep near the wall thus causing stress on the wall leading to collapse. This looting also resulted in the
breaking of the room’s floor in the northern portion and could be the result of the large superficial layer to the south of the room in which artifacts were scattered possibly due to the shoveling of cultural material to the other side of the room. The superficial layer within the southern portion largely consisted of large field stones from collapsed walls underneath very loose, sandy soil that had small artifacts intermingled together. Therefore this upper layer likely was the result of the shoveling of remains from the northern portion of this room. In addition, as stated before, the southern winds significantly increase and charge the structure from the north. The northern wall, which is partially collapsed, therefore would allow the winds coming from the north into the room, thus acting as a vortex, picking up loose soil resulting in a further scattered nature of the superficial layer.

The northern wall of this structure also contains material remains of a shelf that has since collapsed between the stones and mortar used to construct the wall approximately 1.40 meters from the room’s floor (Figure 61). Due to the short nature of this implementation within the wall from the room’s floor this has been ascertained as a shelf instead of a roof. Additionally, due to the remnants from the collapsed shelving unit having mortar on both sides of it, it likely held items on top of the upper mortar layer that scattered around this room once it collapsed. Thus indicating that the collapse of the shelving unit was responsible for the scattered nature of the artifacts within the room. Along the western wall, to the south, within the main room a window running approximately 50cm north-south by 35cm east-west was cut out in order to access the storage room (AMB-76) (Figure 62). This window may exhibit evidence of wear, but closer analysis is needed to determine this.
6.3 The Storage Room

Situated to the west within this structure, the storage room (AMB-76) was accessed through a window niche from AMB-77, but did not contain many cultural materials (Figure 62). Prior to the floor being laid within this room a fill that contained a fragment of chert, peanut shells, carbon, wood, *Argopecten purpuratus* fragments, *Nectandra* sp. seed beads, and non-diagnostic ceramic sherds was placed. A thin floor was then laid within the storage room. Remnants from the collapsed walls mainly made up the layer on top of this floor. Although the concentration of artifacts in this room was much lower than the other rooms within this structure a human mandibular-shaped worked shell (Figure 63), green cotton (Figure 64), and possible lithic drill tools (Figure 65) as well as shell remains from *Spondylus* sp., *Mesoderma donacium*, *Choromytilus chorus*, *Argopecten purpuratus*, *Perumytilus purpuratus*, and *Bostryx* sp. *lomas* land snails were found. Additional artifacts and ecofacts that were located within this room are listed on Table 5. This mix of artifacts is likely due to the inferred storage nature of this room. Due to the smaller concentration of cultural materials found within this room, as well as lack of time, excavations did not continue in the northern portion of this room.

6.4 The Corridor

Similar to the storage room, the corridor presented scarce quantities of cultural remains in comparison to the other rooms within this structure. Before the floor was laid, a thin layer of fill consisting of *Nectandra* sp. seed beads, non-diagnostic ceramic sherds, corn husks, cotton, gourd and wood fragments, lucuma, twisted vegetal cords, and small copper alloy metal fragments
were placed within the corridor. Due to the vast amount of rubble from the corridor’s collapsed walls the floor was broken upon excavation. In the southern portion of the corridor, a large lapilli, an inferred hammer stone, that exhibited wear was found where the broken floor remained (Figure 66) while in the northern portion of the corridor, higher concentrations of material remains were located consisting of camelid and lizard vertebrae, *Spondylus* sp. and lithic (chrysocolla or turquoise) beads (Figure 67), maize cobs, a cuy cranium and fur, *Nectandra* sp. seed beads (Figure 68), vegetal twine, and fragments associated with the maize vessel described in the patio section.

Thatch roofing remains also appeared in the northern portion of the corridor, which could indicate that the roof once extended across the northern portions of both the main room and corridor. All of these prior material remains were at an elevation that would have been close to the level of the broken floor.

6.5 The Patio

The construction of the patio occurred once an offering was placed partially underneath the central southern wall. This offering (Rasgo 2; Figure 17, 69) was laid on a shallow bed of *Nectandra* sp. seed beads and copper-silver alloy fragments. Next, an 11cm by 5cm rectangular, closed, beige-colored cotton bag containing coca leaves was placed on top of the *Nectandra* beads and metal fragments. Four yellow macaw feathers, one with remnants of red pigment, which appear to have once been tied together were then placed on top of the coca leaf cotton bag (Figure 70). Situated to the east of the coca leaf bundle was two whole *Spondylus princeps* valves placed anatomically on top of one another. Inside of these valves was *Nectandra* sp. seed
beads, discoidal *Spondylus* beads, and one large rectangular silver-copper alloy metal fragment (Figure 71). Once placed into the offering pit, this offering was surrounded by additional *Nectandra* sp. seed beads, discoidal *Spondylus* beads, a gold-copper alloy metal fragment, and a silver-copper teardrop shaped pendant. This entire offering contained over one hundred *Nectandra* sp. seed beads, ten of which had traces of yellow pigment, and over two hundred discoidal *Spondylus* sp. beads ranging from 1.7mm to 5mm in diameter. Additional offerings were placed underneath the patio’s floor possibly in order to sanctify the building’s construction.

Prior to the construction of the patio floor, additional subfloor offerings were placed in several areas (Figure 17). One of these offerings (Rasgo 3; Figure 72) consisted of a partial camelid and *cuy* burial along the patio-corridor wall in the southwestern corner. This multiple animal, primary in nature, did not consist of whole animals but rather partial ones. Partial commingled limbs, ribs, mandibles, cranial fragments, and vertebrae of juvenile (68%) and adult (16%) camelids primarily made up the assemblage while there were at least two intact *cuys* (Peltroche et al., 2016). At least 13 individual partial camelids were placed within this offering due to the presence of lower limbs (Peltroche et al., 2016). 92% of the analyzed camelid remains were aged between ten and twelve months old while 8% were categorized between the ages of twelve and fourteen months (Peltroche et al., 2016). Included in this burial were small metal fragments as well as *Nectandra* sp. seed beads, raw clay fragments, and some botanical remains. Additionally, a small concentration of *Nectandra* sp. seed beads was located southeast of the animal remains. Although the camelid and *cuy* offering was in-situ, evidence of a prepared floor was minimal and was concentrated near the southwest patio corner.

North of the prior offering laid an isolated whole *Spondylus princeps* valve externally oriented, with its dorsal margin facing northwest. Two caches of *Nectandra* sp. seed beads, some
of which were painted yellow, were placed symmetrically across from one another also within this same layer. The northern Nectandra seed bead offering, 14cm thick, was placed into a hole cut out within the floor while the southern Nectandra seed bead offering, 5cm thick, was placed in an area where the floor had been broken and on top of a rectangular silver-copper alloy metal fragment (Figure 73). Once the outlined offerings were placed the patio floor was laid. The distribution of these caches are illustrated in Figure 74.

In comparison to this structure’s main room, very few remains were present on the patio’s prepared floor surface. Remnants of reed thatch and mortar were present near the northwest corner of the patio as well as a small fragment of yellow and red painted mortar. This evidence suggests that there was a roof that extended over the corridor and potentially to the patio, but this is not definitive (Figure 78). The various artifacts found on the surface of the prepared patio floor can be seen in Table 5.

Situated at a higher elevation than Rasgo 2, approximately 67cm south of the northern patio wall and 73cm from the western patio wall, a right Spondylus princeps valve with puncture holes on each of its auricles and interior green staining from metal (copper or copper alloy) was found (Figure 75). Two additional whole Spondylus princeps valves were discovered at the same elevation as the prior Spondylus princeps valve (Figure 17). One right valve was located approximately 1.05m from the patio’s western wall and 20cm south of the northern wall, externally oriented, while one left valve, internally oriented, was approximately 10cm south and 20cm east of the right valve. The left valve contained remnants of red pigment inside of it while the right valve had a metal fragment underneath it (Figure 76). Other malacological remains, aside from the Spondylus sp. remains already described, within the patio included: Argopecten sp., Aulocomya ater, Brachyura chelipeds, Choromytilus sp., Chama pellucida, Gari solida,
Gastropoda sp., Lithophaga sp. fragments and a small petrified whole clam shell. Primarily towards the center of the patio, five whole valves of Argopecten sp. were positioned on top of the floor with their external side facing up (Figure 77; Figure 78).

The patio floor appears to have been broken in quite a few areas which could have been due to the collapse of field stone walls or potentially the result of looting. The northern and eastern portion of the patio (UE-25 and UE-23) had a succession of two floors which did not appear to be present in the southern portion of the patio (UE-22). These two floors were laid on top of one another and had very few cultural remains between them. Along the southern wall of the patio (in UE-22) there were two niches cut out in the floor. The western niche appears to have been located almost directly above Rasgo 2 while the eastern niche contained two large manuports (Figure 79; Figure 80). One of these manuports resembled a human foot in shape while the other one appears to have a zoomorphic shape to it (Figure 81; Figure 82). The foot-like manuport was placed along an east-west axis while the lapilli anthropomorphic-like manuport was situated on a north-south axis. Neither of these lithics were altered by human activity, but instead were formed naturally (Paul Welch, personal communication 2016). Near the center of the patio across from the niche in which the prior manuports were found, another cache was discovered on top of a fragmented floor that contained Spondylus fragments, Nectandra sp. seed beads, a canine/feline canine, wood, peanut shells, and two unidentified seeds. Scattered around the patio was likely chrysocolla or turquoise debitage, calcite fragments, river pebbles, potential lithic knives and files (Figure 84; Figure 86), a lithic core as well as debitage (Figure 84; Figure 85), a “shell-shaped” lapilli stone (Figure 89), and numerous lapilli potential hammer stones (Figure 83; Figure 87 A-B). Of the manuports and lithics discovered within this structure, 19.22% were solely from the patio.
Fragments of a large ceramic vessel began to surface on the uppermost floor of the patio approximately 20 to 60 cm south of the northwest wall as well as in the corridor entrance. Around these uppermost fragments were *Nectandra* seed beads and various animal bones. This vessel was fragmented into over 160 pieces. This red slipped, burnished ceramic vessel is tempered with mica and granite and was approximately 53.7 cm wide, at least 50 cm high, and is 0.45 to 0.7 cm thick. This vessel was likely fired in an oxidizing atmosphere since the ceramic paste is orange in color. Due to the inability to fully reconstruct this vessel, the height and exact positioning of the rim, handles, and appliques is unknown (Figure 89). Painted maize cob appliques once lined this vessel alternating between black (5) and white (5), which ranged in measurements between 2.2 and 2.7 cm thick, some of which appear to have been in line with one another while some were angled diagonally (Figure 90). The maize cob appliques varied in the amount of rows and kernels present. At the base of this vessel was a hole that measured 4 cm by 3.55 cm (Figure 92). Additionally a hole measuring 2.3 cm long by 1.5 cm wide was situated close to the base of the vessel and contained a gourd plug (Figure 93).

Once excavations were continued in October, more sherds from this vessel were discovered, one of which was a large sherd that also had a similar hole to the later one described and also likely once contained a gourd plug. A soil sample was taken from inside of this vessel, and will receive micro-botanical analysis at a later date. This vessel appears to have been intentionally placed into a large hole that was cut out in the patio, situated on top of a camelid cranium, pelvis and long bone as well as next to a grinding stone (Figure 94). Although this vessel appears to have been intentionally placed within the floor, fragments of this vessel did appear within the corridor. In order to enter the corridor one would have had to pass by this large ceramic vessel on their left (Figure 17). Since this vessel likely protruded from the floor’s surface it could have
potentially been kicked, or dislodged due to a collapsed roof and/or walls, resulting in the fragmented sherds within the corridor.

The wall that encloses the patio consists of large stones and was apparently not built to stand tall, but rather to mark this enigmatic structure’s space which could have acted as a territorial boundary (Figure 95). The northern, southern, and eastern patio walls did have mortar placed between the stones but were not plastered nor painted. The wall that divides the patio and the corridor did receive plaster and painted treatment and likely once stood as tall as the main room’s eastern wall. Additionally, the northern walls of both the corridor and main room, as well as the conjoining wall between the two places, were once the same height. The corridor’s northern wall, although significantly collapsed, gradually declined in height in order to reach the stature of the patio wall. Near the southeast corner of the patio (in UE-23) a slightly deteriorated adobe was discovered on the patio wall. This adobe is the only one discovered in the patio and was possibly a marker of some sort. Elevations within the patio were much higher than within the building’s rooms. For example, the lowest point excavated within the patio was at the base of the large hole the ceramic vessel was placed into and measured 1.53 meters while the lowest point excavated in the main room was 2.32 meters.

6.6 Results of pXRF Analysis

As exhibited in this thesis’ methodology section, pXRF analysis was not conducted as well as it could have been and is therefore preliminary data. Results from these analyses are thus not precise or reliable, but are approximate indicators of the basic chemical composition of artifacts recovered within this structure. The primary reasoning for conducting this type of analysis was to
determine the cultural occupation of this structure. For this purpose, metal alloy compositions can serve as diagnostic of a certain occupation. Had the building been occupied by individuals of Inka origin, or as a result of contact, alloys with substantial quantities of tin and/or bismuth over traces of arsenic would be expected within metal fragments while the contrary composition (arsenic over tin and/or bismuth) would likely indicate individuals of Ychsma origin (Gordon and Knopf 2006; Lechtman 1980, 1988).

6.6.1 Metals

Of the 19 copper-silver and silver-copper alloys analyzed from this structure (12.50 grams total), nine of these artifacts were classified as copper-silver alloys while six were silver-copper alloys and three were indeterminate copper alloys (Figure 98; Table 6). Seventeen of these samples presented higher concentrations of arsenic over tin (Figure 99). Ratios of these samples were compared to the presence of titanium within these artifacts (Table 7).

Nine samples (5.10 grams) of gold alloy metal fragments were also analyzed against the ratios of uranium (Table 8). Given the presence of copper, gold and silver, these gold-alloy pieces can be characterized more specifically as tumbaga. Two samples contained more silver than gold (ratios of 61.24 and 50.61) while the remaining seven samples had more gold than silver (Ratios ranging from 44.84-59.76) (Figure 100). Ratios of copper within these samples range from 2.17 to 8.64 making these pieces relatively high karat gold alloys. Trace elements also located within these samples include uranium, bromine, arsenic, iron, and tin.
6.6.2 Ceramics

One sample of the “maize vessel” discovered within the patio was sampled and compared to two samples from the 2014 field season that are known Ychsma style vessels. The chemical compositions of the three samples are relatively similar (Figure 101). This suggests that the clay utilized in the construction of each of these three vessels likely came from the same source. If this vessel had been produced during the Late Horizon (period of Inka domination) then the observed composition would support the view that this vessel was produced locally and not imported from Cuzco.

6.6.3 Pigments

Eight samples of red colored pigments and two samples of yellow colored pigments were analyzed from this structure while three additional red colored pigments were analyzed from other units at the site. Red pigment ratios for mercury, sulfur, iron, copper, and arsenic were taken against strontium due to the presence of strontium in each sample. Four of the eight samples had mercury ratios above 60 while the same four samples had ratios of sulfur above 0.40 (Figure 102). I believe that these ratios indicate that the four samples are samples of cinnabar (HgS) paint. Two additional reddish samples were analyzed from a funerary cist within the cemetery and neither have high ratios of mercury. The remaining four samples from the structure have high levels of strontium with minor ratios of mercury, iron, and copper which potentially could be classified as a red iron oxide (Fe₂O₃). Two samples of yellow pigments were also sampled and compared to ratios of lutetium (Table 9). Both have relatively high ratios of iron and trace ratios of mercury, calcium, and copper, and likely are indicative of yellow iron oxides (Fe(OH)₃), such as limonite.
CHAPTER VII

DISCUSSION AND INTERPRETATIONS

This thesis constitutes an initial attempt to answer questions about pre-internment mortuary practices, and associated ideologies regarding the afterlife based on data collected within an enigmatic structure at the LIP-LH secondary Ychsma site of Panquilma on the Central Coast of Peru. Additionally, this thesis aimed to assess the contents discovered within this enigmatic structure to test the two competing hypotheses of the significance of the structure (i.e., use for funerary bundle preparation, or as a shaman’s residence) with the intention of making inferences about the processing of Ychsma ancestors and their potential veneration practices as well as the relationship between the Ychsma lower-elite and commoners.

The contents of this structure can aid in the interpretation regarding the building’s function either as a funerary bundle preparation area or as a shaman’s residence. The function of this structure can then be used to determine to what extent the living-dead interaction occurred and the structure’s potential role in ancestral veneration practices. Below, I discuss the possible significance of the key items and features documented in this structure (Table 5) in relation to the two competing hypotheses. First examining the contents that are relevant to testing the first hypothesis concerning funerary bundle preparation.
7.1 Evaluating the Hypothesis of Funerary Bundle Preparation

Painted yellow, this building likely held important significance within the community. At the large temple at Huaca Pucllana, an Ychsma site within the modern city of Lima, yellow paint is believed to symbolize sacred spaces (Quilter 2014). Numerous painted structures within the Rimac and Lurín River Valleys have been found. At Cerro Culebra in the Rimac Valley a painted tapia wall was discovered having a fine yellow clay plaster while at Maranga the Palacio del Curaca had red and yellow painted walls (Bonavia 1985). Within the Lurín Valley, Pampa de las Flores has remnants of white motifs on a red background painted on a yellow wall, and evidence of yellow and red paint can still be seen on various structures at Pachacamac. U-shaped pyramids at earlier Central Coast sites, such as Cardal and Garagay (Initial-EH), were also painted in bright red and yellow colors. Numerous red, yellow, and white painted rooms have also been located at various sites within the Lurín Valley such as Challapampa (EIP-LH), Huaycán de Cieneguilla (LIP-LH), Pichicato (EIP-LH), and Panquilma (LIP-LH) (Feltham 1983).

The checkerboard painted column that once stood near the doorway of the enigmatic structure under study appears to be relatively unique in this region. During Jane Feltham’s (1983:151) doctoral survey of the Lurín River Valley she claimed to have found tapia columns within the domestic sector at Panquilma as well as at Huaycán de Cieneguilla and Molle (Ramos 2014). The exact locations of the purported columns at Panquilma were unfortunately not stated. Additionally, blue-painted columns have been reported at Pachacamac in the “Hall of Columns” (Bonavia 1985). At the Late Horizon site of Paramonga, located north of Panquilma, a wall was
covered with a red and pink checkerboard design and topped with a layer of yellow ochre as well as two groups of three red animals (Bonavia 1985). Bonavia (1985:178) does suggest that checkerboard patterns may have Middle Horizon antecedents. During the 2008 excavations at Panquilma it was noted that some of the walls in the domestic sector situated near three excavation units had traces of yellow pigments. Other intricate paintings within this structure potentially could have been present, but no traces have been found.

According to Diaz and Vallejo (2002:360) during the late Ychsma period, the construction techniques shifted to incorporate rectangular parallelepiped adobe bricks in varying medium to large sizes. Unlike Inka adobes, Ychsma adobes did not contain inclusions of fragmented ceramics, mollusks, or stones. This structure was primarily constructed with varying sized field stones and mortar with the presence of one adobe on the patio wall, potentially as a marker. The tapia that was found within this structure did not contain any inclusions. Archaeometric analyses conducted by Makowski et al. (2015) have located clay sources near the Rímac River Valley sites of Cajamarquilla and Armatambo as well as near Pueblo Viejo-Pucara in the Lurín River Valley which were likely utilized in the construction of tapia, adobes, and ceramics.

As illustrated in the preceding chapter, this structure contained fascinating assemblages within it (Table 5). The foundations of this structure were created on numerous offerings of *Spondylus princeps* and *Nectandra* sp. seed beads. Rasgo 2 within the patio was likely placed prior to the construction of the patio walls while Rasgo 3, of both the patio and main room, were probably placed prior to the construction of their associated floors. Overall, these offering caches were likely placed in order to initiate the construction of this building.

The bivalve, warm-water mollusk species *Spondylus* that was transported mainly from Ecuador has long been utilized within pre-Hispanic times throughout the Andes. Although
poorly understood in terms of ecology by archaeologists, this shell species has been regarded within the archaeological record as a precious and powerful object utilized in public ceremonies, personal ornamentation, as food for the gods, and as offerings to mark the creation and closure of structures as well as in principle burials (Glowacki 2005; Makowski & Lizarraga 2011:359).

Early carvings from Chavin de Huantar depict the highly sacral value and dualistic images of the *Spondylus* species. The importance of *Spondylus* within the Andes increased significantly during the transition from the Early Intermediate Period (EIP) to the Middle Horizon (MH) on the North Coast but reached its height during the Late Intermediate Period (LIP) and Late Horizon (LH).

By the time of the Spanish arrival in the New World, *Spondylus princeps* was considered more precious than gold and was found as far south as northern Chile in mountain-top sacrifices. According to Cobo (1964[1653]: 204), *Spondylus* was offered in relation to water,

… it was a very apropos sacrifice, being the daughters of the sea sources that the mother of the waters; and as had color, they offered for different attempts, sometimes whole, sometimes very crushed, broken and only other items, and also formed of powder and mass, some figures. They offered these sacrifices to said sources in finishing the planting, so they do not dry that year, but flow abundantly and water their crops, as had the other years.

Today, *Spondylus* is still used in traditional Quechua rituals in the form of whole shells, valves, small carved images, beads, and powder (Quilter 2014; Allen 1998).

Although not much is known in regard to the *Spondylus*’ ecology it has been proposed that these species migrated from Ecuador further south during warmer water El Niño events. Thus Shimada (1994:238) proposes that *Spondylus* appeared along the Peruvian coast in association
with rainfalls, and abundance in water sources leading to ritual offerings of imported *Spondylus* as a way to seek water without the devastating associated El Niño rains. One of the largest and most well-known pre-Hispanic mega-El Niño events occurred sometime between A.D. 1000-1100, during the beginning of the Ychsma culture’s rise on the Central Coast (Fagan 1996). *Spondylus* has been found depicted on Ychsma textiles from Armatambo and in various forms at Pachacamac potentially exhibiting the increased importance of non-destructive water rituals by the Ychsma (Frame et al. 2012).

Massive amounts of varying shaped *Spondylus* sp. beads (over 2272) as well as mineral beads (over 360) were also found within this structure. Different shapes include: circular, oval, square, rectangular, rhombus, teardrop, trapezoidal, triangular, tubular, tumi-shaped, and zoomorphic. An abundance of various *Spondylus princeps* fragments were also present within this structure in the form of spines, long rectangular fragments, and debitage. These *Spondylus* sp. beads were likely produced within this structure. In addition to *Spondylus* valves and beads, these fragments are potentially indicative of a partial chaîne opératoire sequence (Figure 96). Possible tools (i.e. hammer stones and drills) were also discovered within this structure that could indicate a production sequence that specifically occurred within this structure. It appears that some of the raw stones utilized in the production of these beads were either turquoise or chrysocolla. Very few of these beads were actually found associated with a completed adornment item. The *Spondylus* fragments within this structure thus could indicate not only the creation of *Spondylus* artifacts, but also potentially the grinding of the bivalve in order to create a powder. *Spondylus* powder has been known to be sprinkled on important pathways in the Andes (Cordy-Collins 1990).
Similarly, another offering like the one found within the main room of this structure (Rasgo 3) was found in 2013 in a different structure located in the public sector’s Pyramid with Ramp 3 at Panquilma. This offering consisted of *Spondylus* sp. beads (two trapezoidal, one incised teardrop, one circular, and one large circular), eight *Nectandra* sp. seed beads on a vegetal material string, and one probable sodalite cylindrical bead as well as three *Spondylus* fragments and was also placed underneath the room’s floor to mark the construction of the building (López-Hurtado et al. 2014).

Various additional offerings within the structure’s patio, consisting primarily of *Nectandra* sp. seed beads, likely also indicate ritual behaviors that coincide with the building’s construction due to their interment within subfloor pits. *Nectandra*, also referred to as ‘*amala*’, ‘*mishpingo*’ or ‘*ishpingo*’, is a fruit from the Amazon rainforest, similar to almonds, that has a very pungent smell (Arriaga 1968:211). Over 2500 individual pieces, and 1395+ grams, of *Nectandra* sp. seed beads were discovered within this structure. A majority of these seed beads were not painted but some did contain traces of yellow and red pigments. Additionally, some contained traces of vegetable fiber strings through their central perforations. Thousands of Nectandra seeds were also discovered at the Temple of the Monkey at Pachacamac leading Eeckhout (2002, 2006, 2013) to propose the building’s function as being the final preparation area for mummified individuals to be buried in the Pachacamac cemetery. Eeckhout (2002:140) argues that due to the *Nectandra*’s strong fragrance, similar to camphor, the odor from decomposing corpses would be masked.

Alternatively, Rostworoski (1989:249) claims that these analgesic seeds were used in rituals by sorcerers while Montoya Vera (2015:238) suggests *Nectandra* as being a luxury item included within graves as part of a ‘ritual offering complex’. In addition to having analgesic
properties, these seeds act as an anticoagulant, a psychotropic, and are lethal in high doses
(Eeckhout 2002; Montoya Vera 2015). According to Montoya Vera (2015:252), the consumption
of \textit{Nectandra} sp. powder produces a neurostimulant effect that is followed by a neurodepressive
phase which could be fatal. Both material and iconographic \textit{Nectandra} sp. seeds have been
discovered dating as far back as the 2nd or 3rd century A.D. within the Moche culture. Examples
have been recovered from numerous archaeological sites on the Central Coast, including
Pachacamac, Armatatambo, and Purucuco-Huaquerones within both ritual and funerary contexts
suggesting an importance within ideological and political contexts that lasted until the colonial
era (Montoya Vera 2015). Ethnohistorically, \textit{Nectandra} sp. seeds have been described as being
put into \textit{chicha} beverages to increase pain tolerance as well as heal the blood chambers in
addition to being used to pay tributes, and as an expensive, precious item that could not be sold
(Cobo 1990[1653]:195; Arriaga 1968[1621]:211). \textit{Nectandra} sp. seeds therefore have been
utilized in healing, ceremonial, and burial contexts.

A limited amount of \textit{Nectandra} sp. seed beads have been found at Panquilma in past field
seasons. Ones that have been found are primarily in burial contexts while a single bead has been
found in an offering cache. These seed beads have been located in burial contexts from both the
domestic and funerary sectors while the ones found in the public sector were found in offering
caches created in the floor in the plaza of Pyramid with Ramp 3 while one was found
miscellaneously strewn across the plaza of Pyramid with Ramp 2.

At Huaca Pucllana, in the heart of Lima, one of the \textit{huacas’} plaza floors was covered with
small cache holes that contained offerings of fishes and mollusks (Quilter 2014:184). Similar
offering caches have also been located underneath floors in the public and domestic sectors at
Panquilma. In the public sector an offering which contained five \textit{conopa} stones (two unidentified
forms, one double maize cob, and one bean pod) was found while in the domestic sector two separate conopa stone offerings were found in the floor dating to the Late Intermediate Period and early Late Horizon. The first consisted of five conopa stones (one feline and four birds), two bezoar stones, and a stuffed snake’s head individually wrapped in thin leather and consequently wrapped in two layers of cotton textiles, while the second was found in a vessel placed into the floor holding eight conopa stones (four camelids, one maize cob, and three unidentified forms). Conopa —small stones or metal objects that embody ancestral spirits, animals, or plants— stones in the form of maize cobs, have also been located at Pachacamac dating to the Middle Horizon (Lau 2008; Shimada 1991:XXXVII).

As indicated in the preceding chapter, various sized manuports were found within this structure. None of these lithic items were carved by human activity, but rather by natural processes. These manuports —natural objects that have been unmodified and carried to new locations as a result of human activities— were brought into this structure likely due to their resemblance to animals, organic, and humanoid figures. Because these stone manuports were the result of volcanic activities, they were transported from somewhere in the highlands, potentially at least 86 km away, and must have had a specific importance within the activities that took place in this structure. The prior distance estimate is in regard to Pariacaca, the closest documented dead volcano. Characteristic of Inka populations, sacred portable stones may represent huacas, deities, or ancestors (Meddens et al. 2010). Huacas typically consist of unusually shaped stones and llamas as well as mythological and historical things or places (Quilter 2014:269). At a Late Preceramic site in the lower Chillón Valley a large, red painted manuport stone resembling a human torso was found in a niche within a main ceremonial chamber and interpreted as a small huaca (Quilter 2014:90). Although the concept of huaca likely transformed dramatically by the
Inka era, the prior is an example of this concept spanning time periods. The lithic items found within this structure could be representations of stone *huacas* or *conopas*.

The large lithic *metate* that was found within the main room has a series of depressions that are similar to those found at Huaycán de Cieneguilla. These isolated depressions have been classified as one of the oldest rock arts known in the form of cups or domes (*tacitas o cúpulas*) that were created with a “technique of percussion, where the concentric circle design is the point struck the most”, in either a straight, curved or circular alignment (Ramos 2013:6). Although the function is unknown, it has been suggested that these groupings represent constellations (Guffroy 1999). The 15 known stones of similar characterization have been found at Huaycán de Cieneguilla acting as a boundary between sectors as well as within public spaces and near public roads (Ramos 2013). The presence of the large lithic metate within this structure thus could indicate this space being a public area, or as indicated in the results it could have been utilized in the processing of pigments and/or food items.

Another form of lithic that was highly present within this structure was calcite. At least 192 calcite specimens were collected. Calcite is typically used as an additive in the creation of pigments due to its “low colorant capacity, its opacity, and its refractive index” (Wright et al. 2015:7). Additionally, calcite could be used in the creation of calcium carbonate, or limestone, which was an integral part of coca leaf use (Brooks et al 2008). Coca leaves were also found in a few contexts within this structure, primarily underneath floors and associated with offerings. As documented in ethnographic studies and ethnohistorical accounts (Allen 1998; Cobo 1990[1653]), coca leaf use has been and is still socially, ritually, and politically significant within the Andes. Coca was considered a highly valued and restricted object that was utilized in religious rites (Betanzos 1996[1576]; Cobo 1990[1653]). Shortly after the Inka’s expansion onto
the Central Coast, coca plantations in the *chaupiyunga* of the Lurín Valley were seized by Tupac Yupanqui and presented to the Yauyos of Huarochiri (Rostworowski 2002:174).

Red, yellow, white, and blue pigments were discovered within this structure. Analysis of four samples of red pigments indicates that it is likely cinnabar. Cinnabar has been long used in funerary rituals as well as on murals, ceramics, and masks within the Andes. Some of the earliest uses of cinnabar dates to Initial Period (1800-800 B.C.) ceramics and painting on individuals within funerary contexts and spans into the Late Horizon, although use is thought to have decreased, in the form of face makeup and wall paintings (Brooks et al. 2008; Shimada and Griffin 2005). Red pigment within wall plaster has been found at numerous sites within the Lurín River Valley such as at Huaycán de Cieneguilla, Pampa de las Flores, Tambo Colorado, and Pachacamac while two known cinnabar mines have been located outside of Chavín de Huantar and Huancavelica (Bonavia 1985[1935]; Brooks et al. 2008; Quilter 2014). At Armatambo, Ychsma Phase B funerary bundles contained cinnabar painted on individual’s faces as well as behind the head and between bands that wrapped hands (Díaz and Vallejo 2002; Diaz 2015). Ychsma period funerary bundles with false heads and cinnabar-painted wooden masks have also been discovered at Pachacamac (Shimada et al. 2015; Takigami et al. 2014).

Within funerary contexts, cinnabar has been considered a high prestige object. This is likely due to its rarity in nature as well as its toxicity thus leading to risky extraction. Brooks et al. (2008:446) argues for cinnabar’s mortuary role in duality, as a preservative after death due to its toxicity while also symbolically signifying ‘life-over-death or life-giving’ due to its blood-red hue. According to Silva (1996:67), “blood is the most direct and objective link with life; the dead do not have blood and when blood is lost dies”. The color red is also considered to be the
principal color associated with mediations of space in order to protect the ritual participants and/or attract benevolent spirits (Stahl 1986:144).

Over 44 individual samples of orpiment, a yellow arsenic sulfide rock, were collected in both the main room and patio within this structure, but primarily in a subfloor offering cache and fill within the main room. Orpiment has been used all over the world for centuries in the production of pigments. This mineral was used in Pachacamac’s wall paintings. Additionally orpiment was found painted on the face of a young boy that was sacrificed in a capacocha ritual, an animal, object, and/or child sacrifice that took place on specific high mountain tops, by the Inka on top of El Plomo, and on a number of Inka keros (Dransart 1995).

As indicated in the pXRF results, the metal found within this structure, located in the superficial layer as well as above and below a prepared floor, is higher in arsenic content versus tin thus suggesting non-imperial Inka origins. Determinate metal artifact shapes were not highly present, but consisted primarily of rectangular, square, or circular objects that would have been ready to be strung together for necklaces, pectorals or other personal ornamentation or sewn onto clothing. A majority of this metal is comprised of miscellaneous fragments while one copper alloy needle, three needle fragments, one fishing hook and one possible fishing hook fragment, one possible ring, one whole tweezer and four tweezer fragments were also located, thus indicating sewing, grooming, and sustenance activities. The circular copper alloy fragments primarily have one hole on each of them as an attachment site. These artifacts are often seen attached to funerary garments. Additionally, there are numerous examples of folded metal alloy fragments which are often found within the hands of individuals from Ychsma period burials. Gold that was located within this structure is also the first examples of its kind to be discovered at Panquilma.
Subsistence activities present within this structure could be indicated by the presence of the large maize vessel discovered within the patio is not typical of Ychsma style ceramics nor Inka style. The large structure of this vessel somewhat resembles that of a diagnostic Inka *urpu* or *aribalo*, large vessels utilized in the fermentation of *chicha* that had conical bases to sit in the ground and had a large rim diameter (Bray 2003b). Due to the presence of maize cob appliques around this vessel as well as its size, it likely served a function involving *chicha*. The large hole in the base of this vessel likely rested on the medium sized grinding stone found associated with the broken vessel. This hole in the base would allow for *chicha* to slowly seep into the soil as an offering to mother earth or *Pachamama*.

In 2013 a maize cob applique fragment from a similar vessel was discovered within the domestic sector at Panquilma (Figure 91). This maize applique was found in conjunction with Ychsma style ceramic vessels and sherds as well as at least one provincial Inka style ceramic sherd. Unlike the maize appliques discovered in this structure, the maize applique found within the domestic sector displays evidence of burning. Another whole vessel was discovered in-tact in the same structure as the above maize cob applique which has a hole, that containing a gourd plug at one point, as well as a grinding stone on top of it similar to the large maize cob applique vessel found within the structure.

Examples of similar vessel decorations have been discovered at the Late Intermediate Period site of Cerro Azul also located on the Central Coast. Two ceramic types classified as Pingüino Buff and Camacho Reddish Brown have been found with lug modeled maize cob appliques on vessels associated with *chicha* production/storage that could hold 150 to 2000 liters of maize

3 As found in the photographic collection from the 2013 excavations at Panquilma, but not discussed in the final report (López-Hurtado et al. 2014).
beer (Marcus 2008). These large, almost complete *chicha* preparation vessels found at Cerro Azul had a similar shape to the one found in the structure. These large conical based vessels were partially buried into a structure’s floor and placed on top of a stone in order to minimize the flow of *chicha* into the soil. Relatively abundant, these vessels were interpreted as being situated in a *chicha* brewery. Due to the distinct lack of typical Ychsma and provincial Inka ceramic stylistic features within this vessel, I conclude that this ceramic vessel was the result of the Inka influence reaching Panquilma, and transforming the local ceramic style.

Chicha has long been produced and consumed within Andean societies within social and ceremonial contexts. According to Bray (2003:143-144; 2008:110), the production of *chicha* was one of the most elaborate culinary tasks in Andean cuisine and was mainly conducted by females. Roots of reciprocity have long been present in the production and offering of *chicha* to ancestral figures, human or supernatural, the cosmos, laborers, guests, and leaders (Jennings and Bowser 2008). *Chicha* has also been utilized in agricultural fields as a ceremonial offering to the cultivated terraces and to fertilize the soil by Inka elites in order to demonstrate their power as well as to form a political connection between the ritual participants and the ancestors (Cobo 1961[1653]; Goldstein et al., 2008; Goodman-Elgar 2008). Vessels that once contained *chicha* may also be ritually broken in order to mimic consumption (Bray 2008). The scattered breakage of the *chicha* vessel found within this structure may have been ritually broken upon abandonment.

Other products of consumption discovered consist of various malacological, faunal, and botanical remains. Malacological remains within this unit consisted of species such as: Peruvian scallop (*Argopecten purpuratus*), ribbed mussel (*Aulacomya ater*), saltwater clam (*Chama pellucida*), chorus mussel (*Choromytilus chorus*), conch, crab, clam (*Gari solida*), gastropods,
date mussel (*Lithophaga lithophaga*), surf clam (*Mesoderma donacium*), mussel (*Perumytilus purpuratus*), solid Semele (*Semele solida*), thorny oyster (*Spondylus princeps*), and razor clams (*Tagelus dombei*). Animal remains were equally present in the forms of camelids (*Lama glama*), guinea pigs (*Cavia porcellus*), lizards, and frogs. The range of faunal remains within this structure were primarily located within a single primary context which is discussed below. Although most of the faunal remains were found within one context, others were scattered in various areas on top of the patio’s floor. Food remnants throughout this structure include: maize (*Zea mays*), lúcuma (*Pouteria lucuma*), peanuts (*Arachis hypogaea*), avocado (*Persea americana*), and gourd (*Lagenaria* sp.). Faunal analysis did not present any evidence of consumption practices. Additionally, ceramic evidence that was evaluated within this structure did not exhibit evidence of burning indicative of culinary practices. Feasting activities potentially took place in this structure’s patio, but due to a lack of abundant botanical remains and serving vessels within this structure this inference is not conclusive.

A camelid and *cuy* burial was present within the patio of this structure and could indicate that consumption took place due to the lack of some skeletal elements. Furthermore, due to the location of this burial being under a partial floor, it is indicative of another offering that took place prior to the floor’s construction. Alternatively, the camelids and *cuys* burial found within the patio of this structure could have been placed once the structure was abandoned through the breakage of the floor and their internment into a shallow pit. Another offering consisting of a whole mummified cuy was also found underneath the floor in the main room of this structure close to the room’s eastern wall (Figure 37). Camelids and *cuys* were common within Andean households, but the meat from these animals was typically reserved for special occasions (Bray 2003b). Camelid sacrifices have been associated with numerous ritual events within Inkaic
society, including the veneration of the gods and ancestors as well as the celebration of rites of passage (Millaire 2015:54). Juvenile camelids, like those found within this structure, were commonly and carefully selected for sacrifice throughout the Andes for various ceremonies. The ritual abandonment of structures has also been linked to the sacrifice of juvenile camelids at the sites of Huanacaco, Huanchaco, Huambacho, Huaca Negra, Cerro de Huarpe, Cerro Blanco, and Huaca Santa Clara on the north coast of Peru (Millaire 2015).

Numerous artifacts and ecofacts found within this structure have also been located in varying graves at Panquilma, but many of the standard funerary items such as large cotton textiles, cotton stuffing, large supportive canes, and vegetal fiber cordage were not present. Although the prior items were not present it does not entirely rule out the building’s function in mortuary preparation. Vast amounts of wrapping materials are necessary for each individual mummy bundle and likely could have been stored elsewhere. The large quantities of various sheet metal artifacts, Spondylus sp. beads, Nectandra sp. seed beads, and cinnabar supports a portion of the manufacturing processes of mummy bundles in terms of small portable items for ornamentation.

7.2 Evaluating the Hypothesis of Shamanistic Activities

Copious amounts of ritually significant items have been found within this structure and may relate to the presence of shamanistic activities within this structure.

Functioning as both a noun and a verb, the term shaman is a transliteration of the Tungus-Mongol word šaman while the Indo-European verb root ša- means “to know.” Used as a noun šaman refers to “one who is excited, moved, raised” while as a verb, “to know in an ecstatic manner”. Therefore a shaman by definition is one who attains an ecstatic state (Pearson 2002:73-
Shamans have long been considered to be the mediators between both the physical and spiritual realms. The term shaman has been inconsistently defined and often obscures significant behavioral variation thus making it culturally insensitive to unique religious practices (VanPool 2009). As an abstract concept that can never fully be understood, the etic term shamanism is utilized in this thesis to describe individuals of religious or ritual significance within the community that directly interact with the spirit realm.

According to Pearson (2002:71), the shaman’s goal is to preserve the cosmic equilibrium by obtaining and applying knowledge as well as supernatural power in order to solve problems, aide the dead, and convey messages to and from other worlds. By maintaining interactions with cosmological forces, shamans can mediate ordinary events as well as environmental processes in order to ensure the well-being of the community (Pearson 2002:71).

In order to reach a shamanic state of consciousness, or a transformation into spiritual beings, an altered state of consciousness is obtained through dehydration, fasting, pain, blood loss, drumming, chanting, sleep deprivation, and/or the use of mind-altering substances (VanPool 2009). These practices are not mutually exclusive and can be combined. Shamanic rituals typically are accompanied by sacra such as drug paraphernalia, shrines or altars, sand paintings, rock carvings, ritual clothing, and musical instruments (VanPool 2009). Distinct archaeological evidence of shamanism is relatively limited for the Andes region while iconographic interpretation is abundant.

Early evidence of shamanistic activities within Peru were located at Huaca Prieta during the Viru Valley Project of 1946 in the form of bone snuff trays and bird bone inhaling tubes (Bird 1948). In the Moche Valley, ceramic iconographic analysis has led scholars to believe that psychoactive mushrooms (*Amanita muscaria*) were commonly depicted as well as San Pedro
cactus (*Echinopsis* sp. or *Trichocereus pachanoi*) and *vilca* (*Anadenanthera colubrine* and *Anadenanthera peregrina*) seed snuff during shamanistic rituals in addition to red pigments and small amulets (Quilter 2014; Torres 1995). Some of the best examples of Andean shamanism were located at the religious site of Chavín de Huántar. Numerous iconographic depictions of hallucinogenic San Pedro cactus and vilca snuff have been located on stone mortars, heads, and pestles as well as stelae (Weismantel 2013). The abundance of hallucinogenic iconography at Chavín indicates the prominent use of psychoactive substances in the development of their ideology (Torres 1995). Dualistic images are also highly present in the form of Strombus versus Spondylus species shells as well as other iconographic representations in the form of serpents (*amaru*), peanuts, chili peppers, and gourds at Chavín.

At Tiwanaku, located in the Titicaca basin in the Bolivian highlands, a shaman’s burial containing a puma-shaped ceramic, wooden snuff trays, spatulas, mortars, and pestles, bamboo and bone inhalation tubes as well as spoons, gourd containers for *vilca*, enema syringes, and pouches containing *Ilex guayusa* leaves was located dating to the Middle Horizon (A.D. 600-1000) occupation (Quilter 2014; Wassen 1972). According to Torres (2004), a basic Tiwanaku snuffing kit consists of a rectangular tray with a snuffing tube, a spoon, and leather pouches that held hallucinogenic *Anadenanthera* powder. In northern Chile, a ‘common type of snuffing kit’ was discovered in San Pedro de Atacama dating to c. 200-900 A.D. that was comprised of a wool textile bag containing Tiwanaku-style wooden rectangular snuff trays, a bone snuffing tube, a small spatula, and two leather pouches with snuff powder which are often found in burials of adult males (Sanchez-Young 2004; Torres 1995).

Hallucinogenic substances allow shamans to interact with spiritual beings that cannot be contacted by ordinary people, determine the true nature of life and the pathways to the land of
the deceased thus maintain the relationship between cosmic worlds (Pearson 2002:75). As discussed prior, some of the common psychoactive substances utilized in the pre-Hispanic Andes are the San Pedro cactus, *vilca*, mushrooms, and coca leaves. According to Calderon et al.’s ethnographic study (1999:60),

The shaman, himself, is important, primordial, and without substitution in the field of curing. He uses the San Pedro which affects special points of a person, and gives him a “sixth sense” in accord with the topic with which he is dealing. Taking San Pedro makes him leap into a special dimension. This explains why the ancients have reflected it in their ceramics and in their architecture.

San Pedro is still used in healing practices today. *Chicha* was also commonly utilized in conjunction with psychoactive substances to increase their potency. *Chicha* and various hallucinogens were prominent among ritual practices in the Yunga (coastal) region (Vallejo 2006). *Nectandra* sp. seed (*espingo, isphingo*) powder mixed with chicha was called *yale* and was drank by “sorcerers” leading them to enter a trance-like state (Cobo 1956[1653]). *Vilca* was also occasionally mixed with *chicha* and used in divination rituals by shamans at Manchay in the Lurín Valley (Polo de Ondegardo 1917). Carved bone tools associated with *vilca* snuff use have also been found at Tablada de Lurín (Mercedes Cardenas 1995). In various areas of the Andes, gourd rattles have been discovered and interpreted as shamanistic instruments that would allow of the ease into the altered hallucinogenic state of mind. Hallucinogenic paraphernalia present within this structure is close to non-existent, but two possible examples were found in the form of a worked faunal long bone (Figure 97). These worked long bones potentially were used as inhaling tubes, although we have no palates or other instruments for preparing or consuming hallucinogens.
Other items that have long been interpreted in ritualistic settings include *conopa*, or *illas*, stones described in colonial manuscripts as being stones that contained supernatural powers, that were venerated and passed down from generation to generation (Arriaga 1968 [1621]:20-30). These *conopas* have been found in numerous forms such as camelids, maize, and crystals. These stones are typically associated with Inka rituals regarding camelid fertility, offerings to the gods, or *apus*, and personal protection (Gow 1974:67). *Conopa* stones still hold sacred meaning in highland Andean societies today and are kept in hidden repositories within the household (Allen 1988:54). Bezoar stones, calcinated stones formed in camelid’s and wild deer’s stomachs and/or intestines, like *conopas* were considered sacred objects equivalent to offerings of precious metals, camelids, and children upon the Spanish conquest (Stephenson 2010). The various manuport stones found within this structure may be indicative of *conopa* stones. Additionally, quartz crystals have been found in numerous archaeological circumstances and interpreted as shamanistic weapons that would aid in transformational objects of both pre-Inkaic and Inkaic origins (Pearson 2002:143). The abundance of calcite fragments located in this building may have held a ritual significance similar to that of quartz crystals.

Contemporary accounts of shamans (*curanderos*) within Andean societies are not too far removed from known pre-conquest practices. Allen (1988) noted that religious practitioners, *pago*, *hampiq*, or *layqa*, spoke to the sacred places through the medium of coca leaves and burnt offerings. The cloths in which coca leaves were contained served as an area to read/interpret the meaning of the coca leaves. Similar cloths containing coca leaves were found within this structure and could have been utilized in a similar process. Themes of duality are still common within modern *curanderos* in Peru due to the balancing act that occurs through shamanism between various opposing forces (Calderon et al. 1999). Items present within the modern day
shaman’s tool-kit include: various staffs and swords, San Pedro brew, shells, *conopa* and *bezoar* stones, animal remains, cane alcohol, flint, ceramic sherd artifacts, whistles, gourd rattles, metal representations, herbs, clear rock crystals, bowls and cups, perfume, lime, tobacco, and carrying clothes (Calderon et al. 1999). A vast majority of the items present within this modern assemblage likely were present within past shaman’s tool-kits.

According to Arriaga (1920[1621]), the Ychsma creation story began when the sun fell to the ground and laid two eggs, one of a chief and one of all others, thus synonymous with bird figures. Some of the others were animated and given a magical, wise men spirit by either a falcon, condor, or swallow. This spirit was displayed in the power of shamanism, or *callpa*. The main iconographic interpretation of shamanism within Ychsma contexts is exhibited in the form of anthropomorphic spiral beings (Frame et al. 2012). Anthropomorphic spiral being imagery associated with Ychsma shamanistic contexts was not discovered within this structure.

An ethnographic study conducted by William (2005:152) allows for directional insight in regard to conducting ceremonial rituals in which the Four Winds are addressed prior to ritual initiation:

To the East, the place of insight and rebirth, I send a prayer.
To the West, the place of death and wisdom, I send a voice.
To the North, the place of clarity and cleansing, I offer respect.
To the South, the place were Amaru, the serpent spirit, dwells and teaches healing and spiritual powers of plants in the green place of reproduction and regeneration, I sing a song.
To the Four Winds, I cast my spirit, open my heart, release my soul, and surrender to my destiny.
Grant me the wisdom to understand the sacred in nature.

Numerous rituals conducted by contemporary indigenous Andean peoples are oriented east in order to honor *Pachamama* and other major deities while asking for good harvests and prosperity (Allen 2002; Bolin 1998; Calderon et al. 1999; Joralemon and Sharon 1993). Geographical east has also long been associated with the Inkan sun god, Inti, as well as serpents (Joralemon and Sharon 1993). Similar to this enigmatic structure’s construction, Coricancha-- an Inka temple located in Cuzco-- was constructed along a north-south access facing towards the eastern December solstice which may also be indicative of this structure’s ritualistic function (Zuidema 2007). The eastern directionality of this structure’s patio as well as entrance potentially could have been purposefully oriented towards the rising sun.

Comparable offering caches like those found within this structure, interpreted as a temple, have been located at the Middle Horizon Wari site Huaca del Loro in a circular structure with an east-facing doorway. The offerings in this circular structure that had a red-painted plaster floor consisted of “mummified macaws, llamas, guinea pigs, exotic bird feathers, unworked monoliths, and pregnant female figurines” (Cook 2015). Similarly, at the Lurin River Valley Late Horizon site of Pueblo Viejo-Pucara a similar circular structure containing offering caches consisting of gold beads, gold and silver sheet metals, *Spondylus princeps* fragments and a *conopa* stone shaped like a corn cob was found (Makowski and Ruggles 2011; Makowski 2015). These temple structures also likely held a ritualistic function potentially similar to the enigmatic structure analyzed within this thesis.

Although some of the defined artifacts associated with shamanism throughout various regions and time frames from Peru are present within this structure, there are also disparities in the items that were expected to be found if this structure was indeed related to shamanism. The
numerous stone manuports that were kept within this structure could have acted as conopas, while the Nectandra sp. seeds, chicha, and coca leaves found within this structure could have all been used in order to create a trancelike state of mind. As outlined in the test implications above, evidence of ritual paraphernalia such as musical instruments and hallucinogenic tools were not apparent and neither were depictions of entoptic phenomena (e.g. spirals, dots, and grids)4, and anthropomorphic, guardian, and/or liminal figures.

7.3 Relative Merits of the Two Competing Hypotheses

Although some of the material correlates of both hypotheses were missing, it does not indicate that either hypothesis is wrong. The proposed hypotheses are not mutually exclusive and the evidence within this structure could exhibit the presence of shamanistic rituals within a funerary bundle preparation area. Offering caches found within this structure in association with all other material evidence favors the first hypothesis, that this structure did conduct activities related to mortuary preparation, more specifically in regard to elite and/or ritually significant funerary bundles, but this evidence is not conclusive.

As for the precise function of this structure, direct conclusions cannot be made whereas inferences can. I infer that this structure held a strong ritual significance within the community at Panquilma due to it’s unique location, yellow appearance, large and specialized storage room, big patio, eastern entrance, and ritually noteworthy items left within the structure upon its abandonment. The postulation that this structure housed an individual of significance within the community is not farfetched due to the scant, but present evidence of subsistence practices,4 The presence of the metate with tacitas o cúpulas may be an example of entoptic phenomena.
although this refuse was likely relocated outside of the structure. Additional excavations would be needed outside of the structure as well as in the remaining portion of the storage room in order to fully understand what was happening within this structure at the time of abandonment.

7.4 Alternative Justifications

This enigmatic structure alternatively could have functioned as a mausoleum for an important individual that once resided at Panquilma due to the presence of numerous and sumptuous offering caches associated with elite contexts, its location within the cemetery, and the presence of potential libations utilized in funerary rituals. Due to this structure’s final occupation likely coinciding with the Late Horizon Inka presence within the Lurín River Valley it is possible that if an individual was buried within this structure then they were intentionally moved, along with other ritually significant objects that may have once also been located within this structure, once the population at Panquilma learned about the Spanish arrival at Pachacamac in January, 1533. The movement of this individual could have led to the ritual abandonment and intentional destruction of this important ritual structure to hide its importance from colonialists. Scattered artifact locations above the floor’s surface were likely the result of the shelving unit’s collapse which may have occurred when the painted tapia column fell, possibly due to kicking which may be indicated through the various fragment’s locations. The offering caches located underneath the thick floor of the main room were likely intentionally left in their locations during the abandonment not only due to the floor’s thickness and difficulty of demolition, but also to maintain the structure’s recognizable ceremonial significance within the community.
Another alternative to this structure’s purpose could be that it functioned as a storage facility for valuable objects. Similar to storage facilities found at the North Coast site of Chan Chan, this structure has a high threshold which is only seen in valuable storage facilities and is accessible, but meant to keep out vermin and moisture (Kolata 1990; Minelli 2000). Due to this high threshold and shelving structure, protection against the prior nuisances may have been established for the storage of high quality textiles, exotic ritual items such as Spondylus sp. artifacts, Nectandra sp. seed beads, and metal alloys in addition to a possible mummy bundle figure that could have function as a huaca. Unfortunately, these alternative functions, however plausible, cannot be firmly confirmed and evidences of these practices have likely since been lost.

7.5 Processing of Ychsma Ancestors and Potential Ancestral Veneration Practices

Next, this thesis aims to make inferences about the processing of Ychsma ancestors, and their potential ancestral veneration practices through the utilization of this cemetery-based structure. Although the ethnographic record regarding ancestor worship is fragmentary and problematic due to its assumed Andean uniformitarianism, three main spatial and material characteristics—landscape, public spaces, and mummified bodies—have been identified in regard to the “idealotypical image” of Andean ancestral organization (Dulanto 2002:98). Various features within the landscape such as mountains, islands, monoliths, and temples were often considered to be huacas, or ancestral superhuman idols, that were turned into stones at their place of origin or defeat. Natural environmental occurrences (e.g. rain, hail, lightning, fire) were believed to have been the confrontation of huacas. According to Dulanto (2002:98), ancestral spirits, both human
and superhuman, were related to one another through a complex genealogical network socially and politically connected (Rostworowksi 1999).

Uniform ideas that Dulanto (2002) presents can not concretely be applied to all Andean cultures due to their individual unique natures. Although this is the case, this source can act as a potential link that may indicate Ychsma ideals in regard to ancestral organization.

At the time of Spanish contact, public spaces or plazas that accommodated large numbers of people that gathered to venerate their ancestral figures in various rituals were present in communities of varying sizes. These public spaces were often permanent, clearly confined, highly visible buildings that had easy access to storehouses that contained ancestral mummies and “lesser holy objects, such as conopas” (Dulanto 2002:100). The mummified bodies that were incorporated into these public spaces were frequently manipulated through ritual ceremonies that often involved re-wrapping, sacrificing camelids and guinea pigs, dancing, and pilgrimages (Dulanto 2002). Based on historical accounts, according to Dulanto (2002:113), the larger the genealogical gap is between the ancestor and the descendants, the further the place of ancestor veneration takes place from their habitation area, but they do have a more inclusive group associated with that veneration location. Dulanto’s (2002) assumptions cannot uniformly be applied to pre-Inkaic societies due to their Inkaic ethnohistorical nature. Alternatively, recent investigations by Shimada et al. (2015) does not support this argument and revealed that ancestral veneration in some instances did occur over multiple generations without any changes in location.

This structure potentially functioned as a ‘public space’ at Panquilma which was then utilized in ritual ceremonies regarding the deceased due to the presence of camelids, guinea pigs, and conopa stones in addition to other outlined ritually significant items, but likely functioned as a
more private space solely for elite members who participated in exclusive rituals due to its relatively small size. Although human skeletal remains were not found within this structure it does not indicate that they were not once kept or brought there for maintenance. Situated in extremely close proximity, approximately one meter from the south and three meters from the north, to both Ychsma and Inka burial cists this structure was not entirely isolated, but rather in the peripheral heart of the cemetery. This structure easily could have been placed further south along the mountain range by about 80 meters in order to not be located near any funerary cists, but this was not the case. Alternatively, this structure could have been constructed prior to the erection of both the Ychsma and Inka funerary cists surrounding it which would indicate an age predating the secondary Ychsma phase at Panquilma and the desire to place one’s tomb near this structure.

Ancestral veneration practices likely did not occur within this structure due to the smaller nature of the space. Although this structure’s patio could hold a decent amount of people for gatherings, while others could stand around the outside of the patio due to the low walls, no evidence of feasting was found within the structure. Although feasting evidence is not present, the ornate artifacts that were held within this structure are historically known to be utilized in elaborate elite funerary bundles thus serving as indirect evidence for ancestral veneration practices.

Due to the ceramic styles found within this structure somewhat resembling those of provincial Inka origin as well as the presence of trace tin elements found within the analyzed metal artifacts, it is likely that this structure was occupied during the Late Horizon. Once the Inka overtook Pachacamac and the Lurín River Valley, they integrated the Ychsma into their own society and thus local artistic styles shifted. Since this enigmatic structure had been
somewhat looted only a partial vision has been obtained as to the function of this building. At the
time of abandonment there was a Late Horizon occupation, but this structure potentially could
have been constructed in the Late Intermediate Period.

7.6 Summary

The bright yellow painted walls (both inside and out) would have not only made this
structure shine in the sun, but also draw attention to it due to it’s apparent unique household-like
form. The eastern oriented entrance of this structure was likely intentionally chosen given the
ritual directional significances that have been documented from various archaeological sites and
through ethnographic fieldwork. This structure may have been deliberatly placed at the base of a
mountain, or *apu*, in order to be closer to the mountain gods who protected herds while providing
water and various weather conditions (D’Altroy 2015). In addition, rituals, including ancestral
veneration, involving water and agricultural fertility likely took place within this structure due to
the numerous artifacts commonly associated with these practices.

It is likely that this structure hosted events in its relatively large patio, as exhibited by the
large *chicha* vessel, but was restrictive in access to its rooms. The presence of numerous offering
 caches that were made prior to the structure’s use indicates a sacred or ritual area of considerable
importance. Due to the numerous artifacts within this building being sourced from varying
regions ranging from coastal Ecuador or northern Peru (*Spondylus* sp.) to the Amazon rainforest
(*Nectandra* sp. and macaw parrot feathers), and to the highlands or *chapiyunga* region (manuport
volcanic lapilli stones, *Nectandra* sp., and coca leaves) large trade networks to source these items
must have been present. The exact function of this structure cannot be concretely stated, but the
evidences present appear to favor the first hypothesis. This structure potentially functioned as a funerary preparation area for the elite and/or ritually significant bundle(s). Quality and quantities of the cache offerings present within this structure were likely too rare for an elite Ychsma context although such a context has yet to be found. Noting these evidences this structure appears to support a more Inkaic nature.
CHAPTER VIII

CONCLUSIONS AND BROADER SIGNIFICANCE

The 2015 field season excavations of this structure allowed for the opportunity to analyze the pre-interment rituals and conceptions regarding the dead of the central Peruvian coast to which little attention has been paid. By analyzing this enigmatic structure that appears to have been occupied during the Late Horizon, I was able to contribute a deeper understanding of Panquilma, and the mortuary activities of the Ychsma and Inka cultures. The research that has been completed in regard to the burials at Pachacamac and their social implications is thorough, but it does not match the Ychsma burials present at the site of Panquilma. Additional research is needed at other Ychsma sites in order to determine if there was a common burial practice that would establish a better understanding of the social complexity and organization of this culture than the current state. The discovery of a likely funerary preparation center in close proximity to the cemetery constitutes an important contribution to Central Coast archaeology.

Focusing on the deceased within the archaeological record presents a window through which to study the living at the time of death and burial. My research thus makes an important contribution to the advancement of archaeology and anthropology of burials and death of the Ychsma and Inka cultures, and the Central Coast region of Peru. The excavation of this ritualistic
structure allows for inferences to be made regarding the little known Central Coast mortuary preparations, maintenance, and rituals. Addressing these topics greatly enriches our understanding of the ancestor veneration and cult of the dead, and the broader mortuary archaeology of Peru, as well as the Ychsma society and how the culture that controlled the influential religious center of Pachacamac functioned on a daily basis.
TABLE 1. Central Coast Flora

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>English Common Name</th>
<th>Spanish/Quecha Name</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia macracantha</td>
<td>Porknut’ Huarango</td>
<td>Huarango</td>
<td>Roofing, Firewood</td>
</tr>
<tr>
<td>Amaranthus sp.</td>
<td>Amaranth Bledos, Kiwicha, Yuyo</td>
<td>Bledos, Kiwicha, Yuyo</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Baccharis sp.</td>
<td>Baccharises Romerillo, Chhillca, Chilco/a</td>
<td>Romerillo, Chhillca, Chilco/a</td>
<td>Basketry, Dyes, Spindles</td>
</tr>
<tr>
<td>Cactaceae lanatus</td>
<td>Peruvian Old Man Cactus</td>
<td>Chuna</td>
<td>Fibers</td>
</tr>
<tr>
<td>Cactus pitajaya</td>
<td>Peruvian Apple Cactus, Dragonfruit</td>
<td>Pitaya amarilla, Pitaja</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Caesalpinia tinctoria</td>
<td>TARA, Taro</td>
<td>TARA, Taro</td>
<td>Dye, Medicinal, Tanning</td>
</tr>
<tr>
<td>Campomanesia lineatifolia</td>
<td>Perfume Guava</td>
<td>Palillo</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Caxia sp.</td>
<td>Cassia</td>
<td>Cassia</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Chenopodium ambrosioides</td>
<td>Wormseed</td>
<td>Paico</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Cordia rotundifolia</td>
<td>Golden Cordia Membrillejo</td>
<td>Membrillejo</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Cyperus sp.</td>
<td>Sedge Junco</td>
<td>Cordage</td>
<td></td>
</tr>
<tr>
<td>Distichlis spicata</td>
<td>Seashore Saltgrass Huizapol</td>
<td>Seashore Saltgrass Huizapol</td>
<td>Fibers</td>
</tr>
<tr>
<td>Equisetum giganteum</td>
<td>Southern Giant Horsetail</td>
<td>Cola de Caballo, Pinku-pinku</td>
<td>Timber</td>
</tr>
<tr>
<td>Furcraea sp.</td>
<td>Maguey Penca, Fique</td>
<td>Penca, Fique</td>
<td>Fibers</td>
</tr>
<tr>
<td>Guadua angustifolia</td>
<td>Guada Bamboo Caña de Guayaquil</td>
<td>Guada Bamboo Caña de Guayaquil</td>
<td>Thatching, Wood</td>
</tr>
<tr>
<td>Inga feuillei</td>
<td>Pacay Pacae</td>
<td>Pacae</td>
<td>Sustenance, Stuffing fibers, Wood</td>
</tr>
<tr>
<td>Juncus sp.</td>
<td>Rush Achiwa-achiwa</td>
<td>Achiwa-achiwa</td>
<td>Fibers</td>
</tr>
<tr>
<td>Lucuma abobata</td>
<td>Eggfruit Lucuma</td>
<td>Lucuma</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Melocactus sp.</td>
<td>Melon Cactus Pumapa rurun</td>
<td>Melon Cactus Pumapa rurun</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Mimulus sp.</td>
<td>Monkey-flowers Berro</td>
<td>Berro</td>
<td>Sustenance, Medicinal</td>
</tr>
<tr>
<td>Opuntia sp.</td>
<td>Prickly pear Espino, Ppata-quisca, Tuna</td>
<td>Prickly pear Espino, Ppata-quisca, Tuna</td>
<td>Adornments, Dye, Sustenance</td>
</tr>
<tr>
<td>Persea gratissima</td>
<td>Avocado Palta, Aguacate</td>
<td>Palta, Aguacate</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Phragmites communis</td>
<td>Common marsh grass/reed</td>
<td>Carrizo</td>
<td>Mats, Spindles</td>
</tr>
<tr>
<td>Plantago imensis</td>
<td>Buckhorn Llantén</td>
<td>Llantén</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Psoralea sp.</td>
<td>Scurf Pea Culen</td>
<td>Scurf Pea Culen</td>
<td>Dye, Medicinal</td>
</tr>
<tr>
<td>Prosopis alba</td>
<td>Carob Algarrobo</td>
<td>Carob Algarrobo</td>
<td>Timber, Sustenance, and Firewood</td>
</tr>
<tr>
<td>Salicornia fruticosa</td>
<td>Scorpiurus soda Sosa alacranera</td>
<td>Scorpiurus soda Sosa alacranera</td>
<td>Salt</td>
</tr>
<tr>
<td>Salix sp.</td>
<td>Willow Sauce</td>
<td>Willow</td>
<td>Wood</td>
</tr>
<tr>
<td>Sapindus saponaria</td>
<td>Soapberry Cholloco, Choloque</td>
<td>Soapberry Cholloco, Choloque</td>
<td>Beads, Soap</td>
</tr>
<tr>
<td>Sesuvium portulacastrum</td>
<td>Shoreline purslane Cenicienta</td>
<td>Shoreline purslane Cenicienta</td>
<td>Medicinal, Sustenance</td>
</tr>
<tr>
<td>Schinus molle</td>
<td>California Pepper Tree Molle</td>
<td>California Pepper Tree Molle</td>
<td>Chicha, Fertilizer, Firewood</td>
</tr>
<tr>
<td>Tessaria integrifolia</td>
<td>Stinkwort Pajarobobo</td>
<td>Stinkwort Pajarobobo</td>
<td>Firewood</td>
</tr>
<tr>
<td>Tillandsia sp.</td>
<td>Alder River Baker, Qaqa wqontoi</td>
<td>Alder River Baker, Qaqa wqontoi</td>
<td>Fibers, Medicinal</td>
</tr>
<tr>
<td>Typha angustifolia</td>
<td>Cat-tail Enea/Totora</td>
<td>Cat-tail</td>
<td>Basketry, Mats, Rope</td>
</tr>
</tbody>
</table>
TABLE 2. Central Coast Fauna

<table>
<thead>
<tr>
<th>Genus Name</th>
<th>English Common Name</th>
<th>Spanish/Quecha Name</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engraulis ringens</td>
<td>Anchovies</td>
<td>Anchoveta</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Chiroptera sp.</td>
<td>Bat, Flying Fox</td>
<td>Murcielago</td>
<td>Divination, Fuel</td>
</tr>
<tr>
<td>Scombridae sp.</td>
<td>Mackerel</td>
<td>Caballa</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Athene cunicularia</td>
<td>Burrowing Owl</td>
<td>Chicuate</td>
<td>Divination</td>
</tr>
<tr>
<td>Mesodesma donacium</td>
<td>Clam</td>
<td>Macha</td>
<td>Adornment, Sustenance</td>
</tr>
<tr>
<td>Cilus gilberti</td>
<td>Corvina</td>
<td>Corvina</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Cervidae sp.</td>
<td>Deer</td>
<td>Ciervo/Taruga</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Canis familiaris</td>
<td>Dog</td>
<td>Perro</td>
<td>Pet</td>
</tr>
<tr>
<td>Falco peregrinus</td>
<td>Falcon</td>
<td>Halcon/Guaman</td>
<td>Divination</td>
</tr>
<tr>
<td>Campylorhynchus fasciatus</td>
<td>Fascinated Wren</td>
<td>Cucarachero Ondeado</td>
<td>Divination, Sustenance</td>
</tr>
<tr>
<td>Canis azarae</td>
<td>Fox</td>
<td>Zorro</td>
<td>Divinity, Fur</td>
</tr>
<tr>
<td>Turdus fuscater</td>
<td>Great Thrush</td>
<td>Mirla patinaranja</td>
<td></td>
</tr>
<tr>
<td>Larus modestus</td>
<td>Grey gull</td>
<td>Gaviota Gris</td>
<td>Fertilizer, Fuel</td>
</tr>
<tr>
<td>Lama guanicoe</td>
<td>Guanaco</td>
<td>Guanaco</td>
<td>Wool</td>
</tr>
<tr>
<td>Phalacrocorax bougainvilli</td>
<td>Guanay Cormorant</td>
<td>Guanay</td>
<td>Fertilizer, Fuel</td>
</tr>
<tr>
<td>Cavia porcellus</td>
<td>Guinea Pig</td>
<td>Cuy</td>
<td>Divination, Fur, Sacrifice, Sustenance</td>
</tr>
<tr>
<td>Gadiformes sp.</td>
<td>Hake</td>
<td>Gadella</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Trochilidae sp.</td>
<td>Hummingbird</td>
<td>Picaflor/Quenti</td>
<td>Feathers</td>
</tr>
<tr>
<td>Larosterna inca</td>
<td>Inca Tern</td>
<td>Zarcillo</td>
<td>Fuel</td>
</tr>
<tr>
<td>Concholepas sp.</td>
<td>Chilean Abalone</td>
<td>Locos</td>
<td>Adornment, Container, Sustenance</td>
</tr>
<tr>
<td>Lama glama</td>
<td>Llama</td>
<td>Llama</td>
<td>Dung, Fuel, Sacrifice, Sustenance, Transport, Wool</td>
</tr>
<tr>
<td>Mimus longicaudatus</td>
<td>Long-tailedMockingbirds</td>
<td>Chisco, Chaucato</td>
<td></td>
</tr>
<tr>
<td>Mytilus edulis</td>
<td>Mussel</td>
<td>Mejillón</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Didelphis azarae</td>
<td>Opossum</td>
<td>Oposum</td>
<td></td>
</tr>
<tr>
<td>Psilopsiagon a. aurifrons</td>
<td>Parrot</td>
<td>Perico</td>
<td>Feathers</td>
</tr>
<tr>
<td>Pelecanus tagus</td>
<td>Pelican</td>
<td>Pelicano</td>
<td>Fertilizer, Fuel</td>
</tr>
<tr>
<td>Puma sp.</td>
<td>Puma</td>
<td>Puma</td>
<td>Divination</td>
</tr>
<tr>
<td>Phalacrocorax gaimardi</td>
<td>Red-legged Cormorant</td>
<td>Cormorán Gris</td>
<td>Fertilizer, Fuel</td>
</tr>
<tr>
<td>Erithacus sp.</td>
<td>Robin</td>
<td>Petirrojo</td>
<td></td>
</tr>
<tr>
<td>Argopecten purpuratus</td>
<td>Peruvian Scallop</td>
<td>Concha de Abanico</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Odontesthes regia</td>
<td>Smelt</td>
<td>Pejerrey</td>
<td>Sustenance</td>
</tr>
<tr>
<td>Arctocephalus australis</td>
<td>South American Fur Seal</td>
<td>Lobo Marino Fino</td>
<td>Divination</td>
</tr>
<tr>
<td>Otaria flavescens</td>
<td>Southern Sea Lion</td>
<td>Lobo Marino Sudamericano</td>
<td>Divination</td>
</tr>
<tr>
<td>Loxosceles laeta</td>
<td>Spider</td>
<td>Araña</td>
<td>Divination</td>
</tr>
<tr>
<td>Trachurus murphyi</td>
<td>Jack Mackerel</td>
<td>Jurel</td>
<td>Sustenance</td>
</tr>
</tbody>
</table>
TABLE 3. Panquilma’s Sectors

<table>
<thead>
<tr>
<th>Sector 01 (Public)</th>
<th>Sector 02 (Private/ Domestic)</th>
<th>Sector 03 (Funerary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housed high-elite and potentially Ychsma lords in addition to three PWRs.</td>
<td>Housed both lower-elite and commoners within 15 household compounds</td>
<td>Originally believed to house commoners but is likely solely a cemetery.</td>
</tr>
</tbody>
</table>

TABLE 4. *Spondylus* sp. From Panquilma; 2015a Indicates Finds from the Structure

<table>
<thead>
<tr>
<th>Types</th>
<th>Artifact</th>
<th>2008</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015a</th>
<th>2015b</th>
<th>Totals</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Valves</td>
<td></td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>13</td>
<td>0.42%</td>
</tr>
<tr>
<td>Polisher Fragments</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>38</td>
<td>0</td>
<td>39</td>
<td>1.25%</td>
</tr>
<tr>
<td>Miscellaneous Fragments</td>
<td></td>
<td>0</td>
<td>118</td>
<td>21</td>
<td>95</td>
<td>452</td>
<td>7</td>
<td>693</td>
<td>22.28%</td>
</tr>
<tr>
<td>Beads</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circular</td>
<td></td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>59</td>
<td>14</td>
<td>1908</td>
<td>64.08%</td>
</tr>
<tr>
<td>Oval</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>91</td>
<td>2</td>
<td>93</td>
<td>2.99%</td>
</tr>
<tr>
<td>Rectangular</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>12</td>
<td>0.39%</td>
</tr>
<tr>
<td>Trapezoidal</td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>0.19%</td>
</tr>
<tr>
<td>Tubular</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>259</td>
<td>1</td>
<td>260</td>
<td>8.36%</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.03%</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>4</td>
<td>126</td>
<td>30</td>
<td>155</td>
<td>2770</td>
<td>25</td>
<td>3110</td>
<td>100.00%</td>
</tr>
<tr>
<td>Percentages</td>
<td></td>
<td>0.13%</td>
<td>4.05%</td>
<td>0.96%</td>
<td>4.98%</td>
<td>89.07%</td>
<td>0.80%</td>
<td>100.00%</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 5. Artifacts Based on Context

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonivertix Frag</td>
<td></td>
</tr>
<tr>
<td>Botanicals</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic Shards</td>
<td></td>
</tr>
<tr>
<td>C/S Metal Frag</td>
<td></td>
</tr>
<tr>
<td>C/T Beads</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Cuy Bones</td>
<td></td>
</tr>
<tr>
<td>Cuy Coprolites/Fur</td>
<td></td>
</tr>
<tr>
<td>Entire Ceramic</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>GA Metal Frag</td>
<td></td>
</tr>
<tr>
<td>Human Hair</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Nectandra Beads</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Ornament</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Orpiment</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Nectandra Bones</td>
<td></td>
</tr>
<tr>
<td>Painted Mortar</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Pigment (Red, Yellow)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Spondylus Beads</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Spondylus Vales</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Vegetal Fiber Cords</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Legend

<table>
<thead>
<tr>
<th>Key</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR</td>
<td>Main Room</td>
</tr>
<tr>
<td>N</td>
<td>North</td>
</tr>
<tr>
<td>S</td>
<td>South</td>
</tr>
<tr>
<td>Botanicals</td>
<td>Canes, Carbon, Corn, Cotton, Gourds, Lucuma, Peanuts</td>
</tr>
<tr>
<td>C/S Metal Frag</td>
<td>Copper-Silver Alloy Metal Fragments</td>
</tr>
<tr>
<td>C/T Beads</td>
<td>Chrysocolla/Turquoise Beads</td>
</tr>
<tr>
<td>GA Metal Frag</td>
<td>Gold Alloy Metal Fragments</td>
</tr>
<tr>
<td>SCA Metal Frag</td>
<td>Silver-Copper Alloy Metal Fragments</td>
</tr>
<tr>
<td>Spondylus Beads</td>
<td>Circular, Oval, Rectangular, Tubular</td>
</tr>
<tr>
<td>Spondylus Frag</td>
<td>Debitogae, Rectangular, Spines</td>
</tr>
</tbody>
</table>
TABLE 6. Original pXRF Spectrograms of Copper and Silver Alloyed Artifacts

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag K12</td>
<td>174142</td>
<td>206591</td>
<td>301596</td>
<td>626540</td>
<td>1019251</td>
<td>346338</td>
<td>478822</td>
<td>206448</td>
<td>325</td>
<td>3329723</td>
<td>848892</td>
<td>206848</td>
<td>1019251</td>
<td>4207</td>
<td>1162584</td>
<td>3782974</td>
<td>1807940</td>
<td>556</td>
</tr>
<tr>
<td>Cu K12</td>
<td>448</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>35</td>
<td>28525</td>
<td>26391</td>
<td>2632</td>
<td>6140</td>
<td>4207</td>
<td>125958</td>
<td>24880</td>
<td>1460</td>
<td>1</td>
</tr>
<tr>
<td>As K12</td>
<td>50793</td>
<td>32415</td>
<td>2667</td>
<td>3004</td>
<td>12346</td>
<td>25736</td>
<td>10465</td>
<td>7236</td>
<td>36</td>
<td>26391</td>
<td>2632</td>
<td>6140</td>
<td>4207</td>
<td>125958</td>
<td>24880</td>
<td>1460</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ca K12</td>
<td>17118</td>
<td>1521</td>
<td>1540</td>
<td>1536</td>
<td>14443</td>
<td>6468</td>
<td>4654</td>
<td>2246</td>
<td>8285</td>
<td>26391</td>
<td>2632</td>
<td>6140</td>
<td>4207</td>
<td>125958</td>
<td>24880</td>
<td>1460</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cl K12</td>
<td>2167</td>
<td>3677</td>
<td>19860</td>
<td>19564</td>
<td>14443</td>
<td>3759</td>
<td>1078</td>
<td>2246</td>
<td>8285</td>
<td>26391</td>
<td>2632</td>
<td>6140</td>
<td>4207</td>
<td>125958</td>
<td>24880</td>
<td>1460</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Er L1</td>
<td>1786</td>
<td>1791</td>
<td>1382</td>
<td></td>
</tr>
<tr>
<td>Er M1</td>
<td>1222</td>
<td>1224</td>
<td>1241</td>
<td></td>
</tr>
<tr>
<td>Fe K12</td>
<td>71</td>
<td>488</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>Hg L1</td>
<td>7364</td>
<td>2823</td>
<td>2353</td>
<td></td>
</tr>
<tr>
<td>Hg M1</td>
<td>1306</td>
<td>2832</td>
<td>2353</td>
<td></td>
</tr>
<tr>
<td>Mn K12</td>
<td>448</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>35</td>
<td>28525</td>
<td>26391</td>
<td>2632</td>
<td>6140</td>
<td>4207</td>
<td>125958</td>
<td>24880</td>
<td>1460</td>
<td>1</td>
</tr>
<tr>
<td>Mn K12</td>
<td>174142</td>
<td>206591</td>
<td>301596</td>
<td>626540</td>
<td>1019251</td>
<td>346338</td>
<td>478822</td>
<td>206448</td>
<td>325</td>
<td>3329723</td>
<td>848892</td>
<td>206848</td>
<td>1019251</td>
<td>4207</td>
<td>125958</td>
<td>3782974</td>
<td>1807940</td>
<td>556</td>
</tr>
<tr>
<td>Re L1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Re M1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sn K12</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sn L1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Th L1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Th M1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ti K12</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ti L1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 7. Ratios of Silver, Copper, Iron, Arsenic, and Tin against Titanium

<table>
<thead>
<tr>
<th>Catalog #s</th>
<th>Ag-Ti</th>
<th>Cu-Ti</th>
<th>Fe-Ti</th>
<th>As-Ti</th>
<th>Sn-Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME-09</td>
<td>27.74</td>
<td>49.76</td>
<td>1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-18</td>
<td>36.34</td>
<td>5.93</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-24a</td>
<td>30.72</td>
<td>3.15</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-24b</td>
<td>30.27</td>
<td>4.87</td>
<td>1.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-24c</td>
<td>46.75</td>
<td>8.48</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-26a</td>
<td>30.27</td>
<td>4.87</td>
<td>1.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-26b</td>
<td>46.75</td>
<td>8.48</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-26c</td>
<td>30.27</td>
<td>4.87</td>
<td>1.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-26d</td>
<td>46.75</td>
<td>8.48</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-27</td>
<td>29.25</td>
<td>23.13</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-29a</td>
<td>32.40</td>
<td>40.00</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-29b</td>
<td>30.75</td>
<td>34.75</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-29c</td>
<td>31.87</td>
<td>1.67</td>
<td>1.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OT-100</td>
<td>203.54</td>
<td>3.73</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 8. Ratios of Silver, Gold, Copper, Arsenic, and Tin against Uranium

<table>
<thead>
<tr>
<th>Catalog #s</th>
<th>Au-U</th>
<th>Ag-U</th>
<th>Cu-U</th>
<th>As-U</th>
<th>Sn-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME-03</td>
<td>44.84</td>
<td>61.24</td>
<td>3.05</td>
<td>0.00</td>
<td>0.08</td>
</tr>
<tr>
<td>ME-09a</td>
<td>50.18</td>
<td>45.58</td>
<td>6.65</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>ME-09b</td>
<td>49.02</td>
<td>47.69</td>
<td>4.69</td>
<td>0.81</td>
<td>0.02</td>
</tr>
<tr>
<td>ME-25</td>
<td>59.76</td>
<td>33.73</td>
<td>4.47</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>ME-29d</td>
<td>55.27</td>
<td>35.75</td>
<td>8.64</td>
<td>0.53</td>
<td>0.03</td>
</tr>
<tr>
<td>ME-34</td>
<td>56.27</td>
<td>32.87</td>
<td>6.07</td>
<td>0.59</td>
<td>0.03</td>
</tr>
<tr>
<td>ME-40</td>
<td>59.07</td>
<td>35.91</td>
<td>2.17</td>
<td>0.54</td>
<td>0.00</td>
</tr>
<tr>
<td>ME-47a</td>
<td>49.35</td>
<td>50.61</td>
<td>4.29</td>
<td>0.25</td>
<td>0.04</td>
</tr>
<tr>
<td>ME-47b</td>
<td>47.78</td>
<td>46.51</td>
<td>3.75</td>
<td>0.24</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Results from pXRF of Gold Alloys

TABLE 9. Ratios of Arsenic, Calcium, Iron, Mercury, Copper, and Potassium against Strontium

<table>
<thead>
<tr>
<th>Catalog #s</th>
<th>As-Sr</th>
<th>Ca-Sr</th>
<th>Fe-Sr</th>
<th>Hg-Sr</th>
<th>Mn-Sr</th>
<th>Cu-Sr</th>
<th>K-Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT-28</td>
<td>0.13</td>
<td>1.34</td>
<td>21.62</td>
<td>1.89</td>
<td>0.42</td>
<td>0.24</td>
<td>0.03</td>
</tr>
<tr>
<td>OT-164</td>
<td>0.81</td>
<td>0.56</td>
<td>118.69</td>
<td>4.87</td>
<td>0.50</td>
<td>0.87</td>
<td>0.46</td>
</tr>
</tbody>
</table>
FIGURES

FIGURE 1. Peruvian Central Coast

FIGURE 2. Lurín River Valley Sites
FIGURE 3. Periphery Structures Bordering the Cemetery

FIGURE 4. Western Periphery Structure Bordering the Cemetery
FIGURE 5. The Enigmatic Structure- Aerial View
FIGURE 6. Panquilma Site Map

FIGURE 7. Panquilma Domestic Sector/Household Compounds
FIGURE 8. Panquilma Funerary Sector/ Ychsma Stone Cist Cluster

FIGURE 10. Example of “bundle-with-reeds” from Armatambo (Diaz 2015:194)

FIGURE 11. Example of Inka funerary bundles from Purucucho-Huaquerones (Cock and Goycochea 2004:187)
FIGURE 12. 3D Reconstructed Overview and Unit Parameters of the Western Periphery Structure Bordering the Cemetery

FIGURE 13. pXRF Metal Samples

FIGURE 14. pXRF Pigment Samples
FIGURE 15. Enigmatic Structure- Frontal View
FIGURE 16. Map of the Enigmatic Structure
FIGURE 17. Inner Walls of AMB-77 (Main Room); View of Partially-Collapsed Wall from Looting Event; Arrow Pointing to Looter’s Pit
FIGURE 18. Offering Caches Found in the Enigmatic Structure
FIGURE 19. Closed *Spondylus princeps* Offering Under Floor, AMB-77 (Main Room)

FIGURE 20. Opened *Spondylus princeps* Offering Under Floor, AMB-77 (Main Room)
FIGURE 21. Offering (Rasgo 3), Underneath Rock, Under the Floor in AMB-77 (Main Room)

FIGURE 22. Rock on Top of Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)
FIGURE 23. Yellow *Nectandra* sp. Seed Beads from Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)

FIGURE 24. *Nectandra* sp. Seed Beads from Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)
FIGURE 25. *Spondylus* sp. Beads from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)

FIGURE 26 (A & B). *Spondylus* sp. Fragments from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)
FIGURE 27. Lithic Beads from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)

FIGURE 28. Clay with Red Pigment from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)
FIGURE 29. Copper Alloy Metal Fragments from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)

FIGURE 30. Copper, Silver, and Gold Alloy Metal Fragments from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)
FIGURE 31 (A & B). Silver Alloy Metal Ornamentations from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)
FIGURE 32. Gold Alloy Metal Fragments from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)

FIGURE 33. Feathers Tied Together from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)

FIGURE 34. Macaw (*Psittacidae* sp.) Feathers from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)
FIGURE 35. Macaw (*Psittacidae* sp.) Feathers from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)

FIGURE 36. Orpiment from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)
FIGURE 37. Small Unidentified Seed Bead Necklace from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)

FIGURE 38. Spondylus princeps Bead Necklace from the Offering (Rasgo 3) Under the Floor in AMB-77 (Main Room)
FIGURE 39. Mummified Cuy (*Cavia porcellus*) Found Under the Floor in AMB-77 (Main Room)

FIGURE 40. Coca (*Erythroxylum coca* var.) Leaves Found Under the Floor in AMB-77 (Main Room)
FIGURE 41. Floor in AMB-77 (Main Room); Location of Tapia Column Indicated by Circle
FIGURE 42. Base of Tapia Column in AMB-77
(Main Room)

FIGURE 43. Painted Tapia Column Fragment in AMB-77 (Main Room)
FIGURE 44. Interpretation of Painted Tapia Column Fragment Found in AMB-77 (Main Room)
FIGURE 45. Collapsed Cane and Thatch Shelving on Floor in AMB-77 (Main Room)

FIGURE 46. Location of Collapsed Shelving and Small Ceramic Bowl Found on Floor in AMB-77 (Main Room)
FIGURE 47 (A & B). Small Ceramic Bowl Found on Floor in AMB-77 (Main Room)
FIGURE 48 (A & B). Identical Small Ceramic Bowl Found in AMB-77 (Main Room)
FIGURE 49. *Chakana* (Step-Fret) Design Lapilli Stone Mano in AMB-77 (Main Room)

FIGURE 50. Large Lapilli Stone Metate with Shallow Holes in AMB-77 (Main Room)
FIGURE 51. Lapilli Potential Hammer Stone Found in AMB-77 (Main Room)

FIGURE 52. Lapilli Potential Hammer Stone Found in AMB-77 (Main Room)
FIGURE 53. Lapilli Potential Hammer Stone
(Right) Found in AMB-77 (Main Room)

FIGURE 54. Lapilli Potential Hammer/Polisher
Stones Found in AMB-77 (Main Room)
FIGURE 55 (A & B). Large Lapilli Stone Humanoid Figure in AMB-77 (Main Room)

FIGURE 56. Large Lapilli Stone Found in AMB-77 (Main Room)
FIGURE 57. Large Lapilli Stone Found in AMB-77 (Main Room)

FIGURE 58. Large Lapilli Stone Found in AMB-77 (Main Room)
FIGURE 59. White, Red, and Yellow Pigments Found in AMB-77 (Main Room)

FIGURE 60. Calcite Fragments Found in AMB-77 (Main Room)
FIGURE 61 (A-C). *Spondylus* sp. Fragments Found in AMB-77 (Main Room)
FIGURE 62. Material Remains of Shelf in AMB-77 (Main Room)

FIGURE 63. Niche Access from AMB-77 (Main Room) to AMB-76 (Storage Room)
FIGURE 64. Mandibular-shaped Worked Shell Found in AMB-76 (Storage Room)

FIGURE 65. Green Cotton Found in AMB-76 (Storage Room)

FIGURE 66. Potential Drill Tools Found in AMB-76 (Storage Room)
FIGURE 67 (A & B). Large Lapilli Hammer Stone with Possible Wear Evidence (B) Found in the Corridor
FIGURE 68. *Spondylus* sp. and Lithic (Chrysocolla/Turquoise) Beads Found in the Corridor

FIGURE 69. *Nectandra* sp. Seed Beads Found in the Corridor
FIGURE 70. *Spondylus princeps* Offering Underneath Central Southern Patio Wall

FIGURE 71. Coca (*Erythroxylum coca* var.) Leaf Offering Bag from *Spondylus princeps* Offering Underneath Central Southern Patio Wall

FIGURE 72. Inside *Spondylus princeps* Offering Underneath Central Southern Patio Wall
FIGURE 73. Camelid (Lama glama) and Cuy Offering Underneath Patio

FIGURE 74. Nectandra sp. Seed Bead Offerings Underneath Patio Floor
FIGURE 75A. Northern *Nectandra* sp. Seed Bead Cache Offering Found Under Patio Floor

FIGURE 75B. Southern *Nectandra* sp. Seed Bead Cache Offering Found Under Patio Floor
FIGURE 76. *Spondylus princeps* Valve with Punctures on its Auricles and Green Copper Staining Found on the Patio

FIGURE 77. *Spondylus princeps* Valve with Red Pigment Staining Found on the Patio
FIGURE 78. *Argopecten* sp. Valve Found on the Patio

FIGURE 79. *Argopecten* sp. Valve (a) and Potential Thatch Roof Remains (b) Found on the Patio
FIGURE 80. Niche (Right) Containing Large Lithics Found on the Patio

FIGURE 81. Niche Containing Large Lithics Found on the Patio
FIGURE 82. Human Foot-like Lapilli from Niche Found on the Patio

FIGURE 83. Zoomorphic Lapilli from Niche Found on the Patio
FIGURE 84. Possible Lithic Hammer Stones Found on the Patio

FIGURE 85. Possible Lithic Knives and Debitage Found on the Patio

FIGURE 86. Lithic Core Found on the Patio

FIGURE 87. Potential Fragmented Lithic Knife/File Found on Patio
FIGURE 88A. Potential Lithic Hammer Stone Found on the Patio

FIGURE 88B. Potential Lithic Hammer Stone Found on the Patio

FIGURE 89. Lithic “Shell-Shaped” Lapilli Stone Found on the Patio
FIGURE 90. Ceramic Chicha (Maize Beer) Vessel Found on the Patio

FIGURE 91. Ceramic Chicha Vessel Maize Appliques Found on the Patio
FIGURE 92. Ceramic Maize Applique Fragment Found in the Domestic Sector in 2013

FIGURE 93. Ceramic Chicha Vessel, Hole at Base, Found on the Patio
FIGURE 94. Ceramic *Chicha* Vessel, Gourd Plug Hole, Found on the Patio

FIGURE 95. Hole that Ceramic *Chicha* Vessel was Placed into on the Patio
FIGURE 96. Patio Walls
FIGURE 97. Partial Chaîne Opératoire of *Spondylus* sp. Artifacts Within the Enigmatic Structure
FIGURE 98 (A & B). Worked Faunal Long Bones, Possible Hallucinogenic Inhaling Tubes
FIGURE 99. Ratios of Copper, and Silver against Titanium within pXRF Samples

FIGURE 100. Ratios of Arsenic, and Tin against Titanium within pXRF Samples
FIGURE 101. Ratios of Gold, and Silver against Uranium within pXRF Samples

FIGURE 102. Chemical Composition of Ceramics from pXRF Samples
FIGURE 103. Ratios of Mercury, and Sulfur against Strontium within pXRF Samples
REFERENCES CITED

Allen, Catherine J.

Álvarez-Calderón Silva-Santiesteban, Rosabella Vita

Arguelles, P., P. Eeckhout, L. Higley, L.S. Owens, and K.J. Reinhard

Arriaga, Pablo Jose de

Avila, Francisco de

Betanzo, Juan de

Binford, Lewis

Bird, J.B.

Bolin, Inge

Bonavia, Duccio

Bray, Tamara L. (editor)

2003a *The Archaeology and Politics of Food and Feasting in Early States and Empires.*

Brooks, S. and J. Suchey

Brown, James A.

1995 On Mortuary Analysis—with Special Reference to the Saxe-Binford Research Program.

Bruhns, Karen O.

Buikstra, Jane E.

Buikstra, Jane E., and Lane Beck (editors)

Buikstra, Jane E. and Doug Ubelaker

Byers, Steven N.

Calderon, Eduardo, Richard Cowan, Douglas Sharon, F. Kaye Sharon

Carter, Benjamin P.

Chan, Keith

Chapple, Karen and Sergio Montero Munoz

Charney, Paul

Chicoine, David

Cieza de Leon, Pedro

Cobo, Bernabé

Cook, Anita G.

Cornejo Guerrero, Miguel Antonio

Corrucini, Robert S., and Izumi Shimada

Cummins, Thomas B.F.

D’Altroy, Terence N.

Díaz Arriola, Luisa E.

Díaz Arriola, Luisa E., and Francisco Vallejo

Dillehay, Tom D. (editor)

Dulanto, Jalh

Eekhout, Peter

Eeckhout, Peter (cont.)

Eeckhout, Peter, and Jane Feltham

Eeckhout, Peter, and Lawrence S. Owens

Eeckhout, Peter, and Lawrence S. Owens, editors

Estete, Miguel de

Fagan, Brian M. editor

Feltham, Patricia Jane

Frame, Mary, Francisco Vallejo, Mario Ruales, and Walter Tosso

Gaither, Catherine, Jonathan Kent, Victor Sánchez, and Teresa Tham

Gerdau-Radonić, Karina

Glowacki, Mary

Gluckman, Max

Goepfert, Nicolas

2010 The Llama and the Deer: Dietary and Symbolic Dualism in the Central Andes.

Goldstein, David J., Robin C. Colemon Goldstein, and Patrick R. Williams

Goldstein, Lynne G.

Goodman-Elgar, Melissa

Gow, David D.

1974 Taytacha Qoyllur Rit’i: Rocas y Bailarines, Creencias y Continuidad. *Allpanchis* 7:49-100.

Guaman Poma de Ayala, Felipe.

1615 *El primer nueva corónica y buen gobierno*. Ms. Gammel Kongelig Samling 2232, 4°.

Biblioteca Real de Dinamarca, Copenhague.

Hartin, Corrine, Atul Kapur, Damianos Mantsis, Xue Zheng, Arthur J. Mariano, Edward H. Ryan

Hayden, Brian

Hertz, Robert

Cohen & West, London.

Holmes, William H.

Hyslop, John

Isbell, William H.

Janusek, J.W.

Jennings, Justin, and Brenda J. Bowser (editors)

Joralemon, Donald, and Douglas Sharon

1993 *Sorcery and Shamanism: Curanderos and Clients in Northern Peru*. University of Utah Press, Salt Lake City.

Kaulicke, Peter

Keatinge, Richard W.

Kolata, Alan L.

Larsen, Clark Spencer

Lau, George F.

2015 The Dead and the *Longue Durée* in Perú’s Northern Highlands. In *Living with the Dead in the Andes*, edited by Izumi Shimada and James Fitzsimmons, pp. 200-244.

Leach, Edmund

Leon, Alysia

2013 Analysis of Three Funerary Contexts Found Within the Domestic Compounds at the Site of Panquilma in the Lurin Valley of Cieneguilla, Peru. Paper presented at the 78th Annual Society for American Archaeology, Honolulu.

2014 Social Structure Inferences from Funerary Remains Located at the Site of Panquilma in Cieneguilla, Peru. Paper presented at the 79th Annual Society for American Archaeology, Austin.

López-Hurtado Orjeda, Luis Enrique

López-Hurtado Orjeda, Luis Enrique and Jason Nesbitt

Lovejoy, C. Owen

Lowenstein, T.K., M.C. Hein, A.L. Bobst, T.E. Jordan, T.-L. Ku, and S. Luo,

Makowski, Krzysztof

2015 Pachacamac—Old Wak’a or Inca Syncretic Deity?: Imperial Transformation of Sacred Landscape in the Lower Ychsma (Lurín) Valley. In The Archaeology of Wak’as: Explorations of the Sacred in the Pre-Columbian Andes, edited by Tamara Bray, pp. 127-166. University Press of Colorado, Boulder.

Makowski, Krzysztof, Ivan Ghezzi, Hector Neff, and Gabriela Ore

2015 Networks of Pottery Production and Exchange in the Late Horizon: Characterization of Pottery Styles and Clays on the Central Coast of Perú. In Ceramic Analysis in the Andes, edited by Isabelle Drue, pp. 139-155. Deep University Press, WI.

Makowski, Krzysztof, and Manuel Lizarraga

Makowski, Krzysztof, and Clive L.N. Ruggles

Malet, E.B.

Mann, Robert W., William M. Bass, and Lee Meadows

Marcone, Giancarlo

Marcone, Giancarlo, and Enrique López-Hurtado Orjeda

Marstellar, Sarah and Giancarlo Marcone

Mariotti, V., F. Facchini, and M. Giovanna Belcastro

Matos Mar, Jose and Jose Portugal Mendoza

Matsumoto, Go

Mays, S.

Meddens, Frank M., Colin McEwan, and Cirilo V. Pomacanchari

Mendoza, Alberto Bueno

Meindel, R.S., C. Owen Lovejoy, R.P. Mensforth, and R.A. Walker

Michczynski, Adam, Peter Eeckhout, Anna Pazdur, and Jacek Pawlyta

Millaire, Jean-François

Minelli, Laura L., ed.

Misiewicz, Krzysztof and Krzysztof Makowski

Montoya Vera, Maria del R.

Narváez Luna, José Joaquin

Nilsson Stutz, Liv, and Sarah Tarlow, eds.

NOAA Climate Prediction Center

Ogden, Daniel

Patterson, Thomas

Parker-Pearson, Mike

1993 The Powerful Dead: Archaeological Relationships between the Living and the Dead.

2000 *The Archaeology of Death and Burial*. Texas A&M University Press, College Station, Texas.

Pearson, James L.

Peltroche, Mary Avila, Ali Altamirano-Sierra, and Bryan Nuñez Aparcana

Penven, P., V. Echevin, J. Pasapera, and J. Tam

Petersen, Georg G.

Polo de Ondegardo, Juan

1917 Informaciones acerca de la religión y gobierno de los Incas. En: Colección de libros y documentos referentes a la Historia del Perú. Tomos III y IV, 1º serie. Imp. y Lib. Sanmartí. Lima

Presta, Ana Maria

2010 Undressing the Coya and Dressing the Indian Woman: Market Economy, Clothing, and Identities in the Colonial Andes, la Plata (Charcas), Late Sixteenth and Early Seventeenth Centuries. *The Hispanic American Historical Review* 90(1):41-74.

Price, Neil

Pozzi-Escot, Denise

Quilter, Jeffery

Ramos Vargas, Mario A.

Rose, Jerome C. and Dolores L. Burke

189

Rostworowski de Diez Canseco, María

Rostworowski de Diez Canseco, María (cont.)

2002 *Pachacamac y el Senor de los Milagros, Una trayectoria milenaria; El Senorio de Pachacamac: El informe de Rodrigo cantos de Andrade; Senorios indigenas de Lima y Canta*; p. 409. Instituto de Estudios Peruanos, Lima.

2004 Costa Peruana prehispanica: prologo a conflicts over coca fields in XVIth century Perú.

Instituto de Estudios Peruanos, Lima.

Ruales Moreno, Mario, Mario Ramos Vargas, Roxana Gomez Torres, Ronald San Miguel, Fernandez and Alexis Solis Curi

Salomon, Frank, and Jorge Urioste (translators)

University of Texas Press, Austin.

Sandweiss, Daniel H., James B. Richardson III, Elizabeth J. Reitz, Harold B. Rollins, Kirk A. Maasch

Saxe, Arthur A.

Shimada, Izumi

1994 *Pampa Grande and the Mochica Culture.* University of Texas Press, Austin.

Shimada, Izumi, Yoshio Masuda, and Craig Morris (editors)

Shimada, Izumi, and J. A. Griffen

Shimada, Izumi, Rafael A. Segura, Maria Rostworowski, and Hirokatsu Watanabe

Shimada, Izumi, Rafael A. Segura, María Rostworowski and Hirokatsu Watanabe

Shimada, Izumi, Rafael A. Segura, and Go Matsumoto

2006a Living with the Dead: Conception and Treatment of the Dead at Pachacamac. Paper presented at the 34th Midwest Conference on Andean and Amazonian Archaeology and Ethnohistory, Nashville.
Shimada, Izumi, Rafael Segura, David Goldstein, Melody Shimada, Robert, Speakman, Ursel Wagner, and Hirokatsu Watanabe

Shimada, Izumi, Gabriel Cervantes, Carlos Elera, Rafael A. Segura, and Go Matsumoto

Shimada, Izumi, Rafael A. Segura, David J. Goldstein, Kelly J. Knudson, Melody J. Shimada, Ken-ichi Shinoda, Mai Takigami, and Ursel Wagner

Shimada, Izumi, and James Fitzsimmons (editors)

Shimada, Izumi, and James Fitzsimmons

Shimada, Izumi, Haagen Klaus, Rafael A. Segura, and Go Matsumoto

Silva Sifuentes, Jorge and Tello, Cecilia J.

Smith, Scott C. and Maribel Perez Arias

Stahl, Peter W.

Stephenson, Marcia C.

2010 From Marvelous Antidote to the Poison of Idolatry: The Transatlantic Role of Andean Bezoar Stones during the Late Sixteenth and Early Seventeenth Centuries. *Hispanic American Historical Review* 90(1): 3-.

Steward, Justin H. (editor)

Squier, Ephraim G.

New York.
Tainter, J.A.

Torres, Constantino Manuel

Towle, Margaret A.

Tripcevich, Nicholas and Kevin J. Vaughn (editors)

Trotter, Mildred

Tung, Tiffany

Ubelaker, Douglas H

1999 Human skeletal remains. Taraxacum Press, Washington, DC.
Uhle, Max

Department of Archaeology, University of Pennsylvania, Philadelphia.

Waisbard, Simone and R. Waisbard

1965 *Masks, Mummies, and Magicians: A Voyage of Exploration in Pre-Inca Perú.*

Translated by P. Russell. Oliver and Boyd Limited, Edinburgh.

Whitley, James

Wright, Veronique, Ignacio A. Meneses, and Eric Laval

VanPool, Christine S.

Van Gemert, Courtney

2014 An Attributed Analysis of Looted Skeletal Remains From the Site of Panquilma in the Lurin Valley of Peru. Unpublished undergraduate research thesis, Department of Anthropology, Texas A&M University, College Station.

Van Gennep, Arnold

Vass, Arpad A

Vásquez Martínez, Augusto Viviano

Vallejo Berrios, Francisco

Villacorta O., Luis Felipe

Wassen, S. Henry

Williams, J.E.

Zuidema, R. Tom

APPENDIX A. Andean Chronology, Adapted from Shimada et al. (2015:8)
APPENDIX B. Stratigraphic Layer Form

PROGRAMA DE INVESTIGACIÓN ARQUEOLÓGICA PANQUILMA
Ficha de Registro de Nivel Estatigráfico

Excavado por: ___________________________ Fecha: __________
Sector: __________ Unidad: __________ Estrato: __________ Ambiente: __________ Datum: __________

Descripción del estrato:
1. ¿Es un estrato natural o cultural?

2. ¿Cuál es la composición del estrato?

3. ¿Cuál es el color del estrato?
4. ¿Cuánto y qué tipo de material se encuentra asociado a este estrato?

5. Interpretación:

Rasgos Asociados:

Material cultural asociado

<table>
<thead>
<tr>
<th>Fragmentos de cerámica</th>
<th>Cerámica entera</th>
<th>Óseo Humano</th>
<th>Óseo Animal</th>
<th>Número total de bolsas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerámica entera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Óseo Humano</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Óseo Animal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lítico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botánico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MalacoMígeno</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muestra de tierra</td>
<td>Muestra de carbón (C14)</td>
<td>Metal</td>
<td>Otros</td>
<td></td>
</tr>
</tbody>
</table>

Croquis:

Dibujos asociados a este estrato: ___________________________
APPENDIX C. Feature Form

PROGRAMA DE INVESTIGACIÓN ARQUEOLÓGICA PANQUILMA
Ficha de Registro de Rasgo

<table>
<thead>
<tr>
<th>Excavado por:</th>
<th>Fecha:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector:</td>
<td>Unidad:</td>
</tr>
</tbody>
</table>

NÚMERO DE RASGO: __________

Descripción del rasgo:
(¿Qué es? un flogón, lente de cerámica, vasija entera, acumulación de un tipo específico de material, etc.)
__
__
__
__

Material cultural asociado

<table>
<thead>
<tr>
<th>Fragmentos de cerámica</th>
<th>Cerámica entera</th>
<th>Óseo Humano</th>
<th>Óseo Animal</th>
<th>Número total de bolsas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artefactos de madera</td>
<td>Textil</td>
<td>Lítico</td>
<td>Botánico</td>
<td>Mate</td>
</tr>
<tr>
<td>Muestra de tierra</td>
<td>Muestra de carbón (C14)</td>
<td>Metal</td>
<td>Otros</td>
<td></td>
</tr>
</tbody>
</table>

Croquis:

![Croquis](image)

Dibujos asociados a este estrato: __________ __________ __________ __________ __________ __________
APPENDIX D. Tags Utilized in Artifact, Ecofact, and Manuport Collections

APPENDIX E. Structure’s Harris Matrix

Harris Matrix
VITA

Graduate School
Southern Illinois University

Alysia Ashley Leon

aleon@siu.edu

Flagler College
Bachelor of Arts in Liberal Arts (Latin American History, History and Art History), and a Minor in Anthropology, December 2013

Special Honors and Awards:
Proactive Recruitment of Multicultural Professionals for Tomorrow (PROMPT) Fellowship

Thesis Title:
FUNERAL HOME OR RITUALISTIC EDIFICE? AN ASSESSMENT OF AN ENIGMATIC STRUCTURE AT THE LATE PRE-HISPANIC SITE OF PANQUILMA, CENTRAL COAST PERU

Major Professor: Dr. Izumi Shimada