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     We are the first lab to report the occurrence of a diet-induced transsulfuration (TS) blockade 

associating with elevated S-adenosylmethionine (SAM) synthesis, enhanced lifespan and 

enhanced reproductive capacity, in a vertebrate animal model. In this paradoxical study, we used 

LC-MS/MS-derived metabolomics data to report the effects of flaxseed (Linum usitatissimum) 

on one-carbon metabolism in White Leghorn laying hens (Gallus gallus). Flaxseed contains a 

vitamin B6-antagonizing molecule called “linatine” that is particularly effective at reducing 

vitamin B6 levels in small rodents and poultry. Linatine reduces TS flux due to its inhibition of 

the vitamin B6-dependent enzymes cystathionine beta synthase (CBS) and cystathionine gamma 

lyase (CSE). In this study, our flaxseed-fed hens displayed decreased 4-pyridoxic acid and 

decreased pyridoxamine, concomitant with over 15-fold elevated cystathionine. Homocysteine 

levels were stable in flaxseed-fed hens despite such highly elevated cystathionine. This is an 

astonishing finding, because mammalian models would predict the induction of 

hyperhomocysteinemia (i.e. elevated homocysteine) when cystathionine is so highly elevated (1). 

We are therefore reporting a phenomenon that might be unique to birds. Our metabolomics data 

indicate increased consumption of one-carbon donor molecules (e.g. choline, betaine, 

dimethylglycine, serine, etc) in flaxseed-fed hens, probably as a means of fueling the betaine 

homocysteine methyltransferase (BHMT) and methionine synthase-B12 (MS-B12) reactions. 
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This modeling approach provides a rationale that flaxseed-fed hens increase their rate of 

homocysteine remethylation via BHMT and MS-B12, and in turn this would maintain stable 

homocysteine levels in the animal. We observed that the culminating outcome is elevated 

synthesis of SAM and an elevated SAM:SAH ratio. The associated biological outcomes are 

extended lifespan and increased reproductive capacity (i.e. increased daily egg laying) in 

flaxseed-fed hens. Our data further indicate that flaxseed tremendously stimulates a glucagon-

like phenotype in hens. Specifically, flaxseed-fed hens exhibit 3-fold elevated glycated 

hemoglobin (HbA1c) (2), 2-fold elevated serum free fatty acids (FFAs), 10 to 14% reduced body 

weight, and slightly reduced plasma pyruvate. Interestingly, the HbA1c level of our flaxseed-fed 

hens (i.e. 6.2% HbA1c) (2) represents the highest HbA1c level ever reported in a wild-type avian 

species. These phenotypic markers suggest that elevated glucagon release could play a 

synergistic role in enhancing lifespan and reproductive capacity in flaxseed-fed hens. We suspect 

that linatine is responsible for stimulating this glucagon-like phenotype. Therefore, we conclude 

that the vitamin B6-antagonizing effects of linatine (via flaxseed dieting) improve liver function, 

body leanness, egg laying performance and animal survival, in a manner associated with 

increased SAM synthesis, increased blood FFAs and increased blood glucose, in laying hens. 

     The second part of this dissertation is used to test the hypothesis that polyunsaturated fatty 

acids (PUFAs) regulate lipid metabolism, increase mitochondrial respiration and decrease E-

cadherin expression, in laying hen ovarian tumors. Researchers are unaware of the mitochondrial 

effects of PUFAs within laying hen ovarian tumors, and only a few publications exist regarding 

the analysis of E-cadherin in laying hen ovarian cancer. The results of this present work suggest 

that dietary PUFAs accumulate within laying hen ovarian tumors, and these same tumors exhibit 

decreased gene transcripts that govern de novo lipogenesis (i.e. FASN). Simultaneously, these 
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tumors exhibit elevated transcripts for oxidative phosphorylation (OXPHOS) and decreased 

transcripts for phase 2 antioxidant enzymes. These patterns associated with decreased transcript 

levels of CDH1 (the gene for E-cadherin) in ovarian tumors, but no effect on full length 120kDa 

protein was observed by PUFAs versus our control diet. Interestingly, the effect of PUFAs on E-

cadherin occurred at the level of the cleaved 37kDa and 80kDa E-cadherin fragments, such that 

PUFAs reduced their levels in hen ovarian tumors. We therefore developed a system for 

depleting the 80kDa E-cadherin fragment from hen ascites fluid (i.e. fluid from a hen that had 

ovarian cancer), so that we could test our hypothesis that the 80kDa E-cadherin fragment is 

important for supporting mitochondrial respiration in normal ovarian surface epithelial cells 

(IOSE80s). Mitochondrial membrane potential was decreased in IOSE80s when the 80kDa 

fragment was removed from the ascites; however, there was no effect on basal oxygen 

consumption in subsequent tests using extracellular flux analysis with Seahorse XFp. During our 

analysis of microRNA-200a-3p (miR-200a) we did not observe any effect of diet on miR-200a 

within hen ovarian tumors; however, we did observe that miR-200a levels increased within the 

tumor when going from stage 2 to stage 4 disease. Overall, we observed reduced risk of ovarian 

cancer, stage 4 ovarian cancer, multiple peritoneal tumor involvement and cancer-associated 

mortality, in laying hens that consumed a diet that was supplemented with PUFAs. 
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CHAPTER 1 

INTRODUCTION 

1.1  Ovarian Cancer 

     Ovarian cancer is the 7th most common cancer in women worldwide and the 8th most common 

cause of cancer-related death in women. In 2012, ovarian cancer accounted for 239,000 new 

cancer cases and 152,000 cancer-related deaths worldwide (3). The 5-year survival rate for a 

patient diagnosed with ovarian cancer has remained consistently low, averaging between 30-50% 

in most countries (4). In the United States, a woman’s lifetime chance of developing ovarian 

cancer is 1 in 75, and meanwhile a woman’s lifetime chance of dying from ovarian cancer is 

almost equivalent at 1 in 100 (5). Said concisely, morbidity from ovarian cancer is tightly 

coupled to individual mortality. Ovarian cancer’s low survival rate is the result of late stage 

detection when the survival probability beyond five years reaches an abysmal 29% (5). In 1979, 

the etiology of ovarian cancer was argued as stemming from incessant (monthly) ovulation, 

whereby genetic mutations accrue over the reproductive lifetime of a woman in response to 

menstrual cycle-associated healing of the ovarian surface epithelium (6). In support of this 

hypothesis, the risk of ovarian cancer is inversely correlated with parity and the usage of 

pharmaceutical birth control (7,8). Therefore, a probable best route to deal with ovarian cancer is 

disease prevention and disease severity reduction, which our lab has pursued by employing the 

laying hen model for ovarian cancer and the flaxseed dietary intervention strategy. A valuable 

animal model for studying ovarian cancer is the egg laying hen model, because laying hens 

spontaneously develop ovarian cancer at around 2 years of age, an age when hens have ovulated 

nearly as many times as a woman approaching menopause (9–13). The incessant ovulation 

phenomenon was recapitulated in a study showing that restricted ovulation mutant hens develop 
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significantly less ovarian cancer than wild type laying hens (13). Furthermore, human epithelial 

ovarian cancer histotypes (e.g. serous, endometrioid, mucinous, etc) can be identified in hen 

ovarian cancer (9). Our lab has spent a number of years engaging the laying hen ovarian cancer 

model with a particular focus on pathological prevention and intervention through dietary 

enrichment with polyunsaturated fatty acids (PUFAs).  

1.2  Flaxseed for ovarian cancer 

     Our lab has shown that dietary flaxseed reduces the severity of ovarian cancer by regulating 

prostaglandin synthesis, steroid metabolism, cytochrome P450 enzymes, angiogenesis and 

intrinsic apoptosis in laying hen ovarian tumors (14–17). We observed that dietary whole 

flaxseed (WF), which is a rich source of alpha-linolenic acid (ALA), reduces ovarian cancer 

severity in laying hens via altering inflammatory activation and estrogenic signaling (15–19). 

Knowing that ALA can be desaturated and elongated several times until becoming 

docosahexaenoic acid (DHA), we have also sought to uncover the anti-ovarian cancer effects of 

DHA-rich sources such as fish oil (FSH). We observed that dietary FSH decreases inflammatory 

protein expression in pre-cancerous (normal) hen ovaries, suggesting a potential role in 

preventing ovarian carcinogenesis (20). Very recently we showed that DHA as well as WF 

exhibit anti-angiogenic and pro-apoptotic properties in the context of chicken embryogenesis and 

laying hen ovarian cancer (21). Our lab’s works indicate that WF’s mechanisms of action operate 

discretely and synergistically through WF’s omega-3 PUFA-rich component and lignan/fiber-

rich component. 

1.3  Major components of flaxseed 

     Flax (Linum usitatissimum) is a highly nutritious annual crop that provides fibers and oils to 

humans all over the world (22). Between 38 to 50% of the seed content of flax (i.e. flaxseed) 
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consists of oil (23–25), which is composed of ~50% ALA, ~20% oleic acid, ~15% linoleic acid 

(LA), 6% palmitic acid and 4% stearic acid (26,27). Thanks to novel work from George Burr and 

Mildred Burr in the early 20th century, we now observe that LA (28) and ALA (29) are essential 

fatty acids that must be derived from the diet (30). A myriad of long-chain omega-3 and omega-6 

polyunsaturated fatty acids (PUFAs) can be synthesized from ALA or LA through the activities 

of desaturase and elongase enzymes (31,32). It is through these elongation and desaturation 

activities that PUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can 

be derived. 

     Flaxseed consists of 20-30% protein by mass, with an amino acid index mostly similar to 

soybeans (33,34). Compared to soy, flaxseed contains more arginine, glutamic acid, glycine and 

methionine; however, flaxseed is less concentrated with lysine, aspartic acid, leucine and 

tyrosine (23,24,35); Flaxseed is sometimes referred to as a ‘protein-limited’ food due to its lower 

lysine content (35) and lower lysine:arginine ratio (36); however, the overall bioactivity of 

flaxseed proteins is high (>70%) (37), meaning that flaxseed proteins are efficiently digested and 

integrated into the metabolism. Defatted flaxseed (DF) varieties likely have the best protein 

digestibility, because the extraction of mucilage and oil during the defatting process improves the 

digestibility coefficient of flaxseed proteins (38). It is worth noting that chickens (like other 

avian species) have a gizzard to grind seed material (39), so they are ideal animals for consuming 

WF. This is a marked difference from mammals, because mammals lack a gizzard and therefore 

rely on the mastication (i.e. chewing) process to forcefully grind food. It’s as though the 

mammalian mouth is functionally analogous to the avian gizzard. 

1.4  Food toxins as a normal part of life 

     Food toxicity researcher Bruce Ames illustrated that humans receive the majority of their 
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biological pesticides from everyday foods (40), suggesting that exposure to plant-based toxins is 

a normal part of being an omnivorous animal. Plants contain a myriad of socalled ‘toxic’ 

molecules that protect them from predation, and animals have thankfully evolved detoxification 

systems to allow the safe digestion of many of these plant molecules (40,41). Such a 

detoxification regime requires the activity of cytochrome P450 (CYP450) enzymes in the liver 

(42). In humans, most prescription drugs are cleared from the liver by CYP450 enzymes, with 

CYP3A4 and CYP3A5 accounting for 37% of all drug clearance (43). Our lab has illustrated that 

flaxseed influences CYP1A1 and CYP3A4 expression, respectively, in the liver and ovary of the 

laying hen (16), suggesting that the components of flaxseed influence detoxification systems in 

chickens. Flaxseed contains numerous molecules that are recorded as toxic in the literature, such 

as linatine, cyanogenic glycosides, phytic acid and trypsin inhibitors (35,44). In Europe, a heated 

debate currently exists as to whether the cyanogenic glycosides in flaxseed are toxic to humans 

and, in particular, toxic to children (45). Cyanogenic glycosides, when catabolized by β-

galactosidase, can contribute to the formation of hydrogen cyanide within the animal (46). 

However, it is important to consider that cyanide is a commonly occurring molecule in many 

human foods (47,48), including flaxseed (49), suggesting that dietary cyanide might be an 

equivocal concern. A human study revealed that flaxseed does not elevate physiological cyanide 

levels to an appreciable concentration (50).  

1.5  Vitamin B6 metabolism 

     The discovery and elucidation of vitamin B6 happened in 1934, at a time when B vitamins 

were investigated in relation to “rat pellagra prevention factor” (51). The de novo synthesis of 

vitamin B6 occurs in plants, fungi and bacteria, but not in animals which makes B6 essential in 

the animal diet (52). The term ‘vitamin B6’ refers to six different B6 vitamer molecules that are 
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based on three structures: pyridoxine, pyridoxal and pyridoxamine. These three structures are 

differentiated based on the chemistry of the 4’ carbon of the pyridine ring. At the 4’ carbon, 

pyridoxine contains alcohol, pyridoxal contains aldehyde, and pyridoxamine contains amine 

(52). The naming of the B6 vitamer is based on the chemistry of the 4’ carbon; for example, 

pyridoxal has an “-al” suffix because of aldehyde at the 4’ carbon. These three B6 vitamers 

(pyridoxine, pyridoxal and pyridoxamine) can be further divided into two groups based on the 

phosphorylation status of their 5’ carbon. The three phosphorylated vitamers are: pyridoxine 5’ 

phosphate, pyridoxal 5’ phosphate (PLP), and pyridoxamine 5’ phosphate (53). A seventh 

molecule called 4-pyridoxic acid, which contains carboxyl at the 4’ carbon, represents an end-

point urinary excretion molecule among B6 vitamers. PLP is the active cofactor for B6-

dependent reactions (53). The aldehyde of PLP is necessary for forming a ‘Schiff base’ with the 

ε-amino group (i.e. C=N) on a lysine residue located on the exterior the B6-dependent enzyme. 

The formation of the Schiff base constitutes an internal aldimine whereby PLP is bound to the 

B6-dependent enzyme (54). An incoming amine-containing substrate (e.g. tyrosine) can then 

displace the lysine ε-group in the internal aldimine, producing an external aldimine that consists 

of PLP and the incoming amine substrate (e.g. PLP-tyrosine). This external aldimine can then 

use the amine substrate in a myriad of reactions (decarboxylation, racemization, transamination, 

α/β elimination, retro aldol cleavage, etc) to yield the final modified product plus pyridoxamine 

5’ phosphate (54). Two critical B6-dependent reactions within our current research include the 

two primary reactions of the transsulfuration (TS) pathway: 

 
Cystathionine beta synthase (CBS):  Homocysteine + Serine → Cystathionine + H2O 

Cystathionine gamma lyase (CSE):  Cystathionine + H2O → Cysteine + α-ketoglutarate + NH4
+ 

 

     Over 140 PLP-dependent enzymatic reactions are known in biology, comprising 4% of all 
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known enzymatic reactions (55). B6 vitamers also have roles outside of B6-dependent enzymatic 

reactions. For example, B6 vitamers function as potent reactive oxygen species (ROS) 

scavengers (56,57), similar to the activity of ascorbic acid and α-tocopherol. 

1.6  Linatine, a naturally-occurring vitamin B6-antagonist in flaxseed 

     Nature provides a myriad of direct and indirect ways for animals to encounter vitamin B6 

antagonism (i.e. molecules that reduce B6 levels in the animal) (58). Linatine, the putative 

vitamin B6-antagonizing molecule in flaxseed, was first isolated and characterized in 1967 (59). 

The cotyledon portion of flaxseed (as opposed to the mucilage or hull portion) is responsible for 

exerting flaxseed’s anti-growth effect (60). Linatine was named according to its discovery in 

‘linseed’ (AKA flaxseed) and according to the fact that the linatine molecule is a dipeptide (thus 

the “-ine” suffix). Klosterman et al. characterized linatine as 1-[(N-γ-L-glutamyl)amino]-D-

proline, which is essentially a glutamic acid associated with a D-proline through the γ-carboxyl 

of the glutamic acid (59). Upon acid hydrolysis, linatine disassociates into glutamic acid and 1-

amino D-proline (1ADP). The canonical B6-antagonizing effect is exerted through 1ADP’s 

ability to form an inert hydrazone with pyridoxal 5’ phosphate (PLP), thus removing PLP from 

the metabolism. 1ADP’s anti-growth properties are 50 times stronger than the L-proline 

enantiomer in terms of inhibiting growth (59). The first observation that flaxseed exerted anti-

growth effects was made in a study of flaxseed-fed chickens (chicks) in 1928 (61). By 1948, 

researchers realized that flaxseed’s anti-growth properties can be eradicated by soaking flaxseed 

meal in water for 18 to 24 hours prior to feeding chicks (62,63). At the same time, researchers 

discovered that pyridoxine supplementation ablates flaxseed’s antigrowth properties in chicks 

(62) and in turkey poults (64), suggesting that flaxseed’s anti-growth mechanism is mediated 

through antagonism of vitamin B6 (62,64). Later, in the 1980s, 1ADP was observed to interrupt 
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the synthesis of carnitine in perfused rat liver, indicating that carnitine synthesis is vitamin B6-

dependent (65). More recently, flaxseed extracts as well as synthetic 1ADP were studied as 

dietary constituents in rat models of vitamin B6 deficiency (1,66). The researchers wanted to 

investigate if flaxseed extracts or 1ADP are toxic to rats when the rats are provided a B6-replete 

diet or a B6-insufficient diet. The results of those works suggest that flaxseed extracts or 

synthetic 1ADP reduce the activities of CBS and CSE in hepatocytes in vitro and in vivo (1,66). 

Simultaneously, the same group of researchers observed that 1ADP decreased 4-pyridoxic acid 

levels while increasing cystathionine levels (a marker of TS inhibition) in rats consuming a B6-

sufficient diet. However, when 1ADP was combined with a B6-deficient diet, the rats exhibited 

lower body weight and they developed severe hyperhomocysteinemia (hyperHcy) and liver 

pathology (1,66). The conclusion from their work was that 1ADP perturbs TS even in B6-

sufficient rats, and the perturbation amplifies exponentially when the animal is fed a B6-deficient 

diet.   

1.7  One-carbon metabolism 

     One-carbon metabolism is the process of bio-synthesizing, donating, modifying and 

transferring single carbon units within, but not limited to, the folate cycle, the methionine (Met) 

cycle, TS, and phosphatidylcholine (PC) metabolism (67,68). One-carbon metabolism means 

something different depending on the pathway being considered, but in general it refers to the 

transfer and modification of a single carbon group bearing one to three hydrogen bonds. A wide 

variety and great number of reactions are supported by one-carbon metabolism. Homocysteine 

(Hcy) is arguably the most central molecule within one-carbon metabolic pathways, linking the 

folate cycle, Met cycle, TS, and PC metabolism. A model for one-carbon metabolism that relates 

specifically to the integration of these pathways can be seen in Figure 1.1. An in-depth one-
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carbon metabolic model that illustrates how these pathways are compartmentalized (i.e. cytosolic 

versus mitochondrial), minus TS, can be seen in Figure 1.2.  

     In most circumstances, Hcy is subject to one of two primary fates. One of these fates involves 

the remethylation of Hcy to form Met, depending on the methylation needs of the cell. This 

remethylation is performed by either betaine homocysteine methyltransferase (BHMT) or 

methionine synthase-B12 (MS-B12) complex. The second fate of Hcy is the irreversible 

conversion of Hcy to cystathionine via the TS pathway. Some authors have noted that Hcy is 

catabolized through the TS pathway depending on the redox status of the cell, suggesting an 

oscillation between cellular methylation needs and cellular redox state (69). Interestingly, Hcy is 

an exceptionally toxic molecule when it accumulates and induces a condition referred to as 

HyperHcy (70). HyperHcy inflicts its damage directly on the mitochondria by insulting 

mitochondrial polarization, culminating in mitochondrial dysfunction and intrinsic cell apoptosis 

(71–74). HyperHcy results in damage to vascular endothelial cells and cardiovascular smooth 

muscle which in turn drives a plethora of cardiovascular complications (75). One-carbon 

metabolism is wired to permit the continual movement of Hcy, whether the Hcy is moving 

through the Met cycle, TS, polyamine synthesis, protein translation initiation, protein autophagy, 

etcetera. This continual movement of Hcy prevents HyperHcy, but it requires a variety of 

essential cofactors (B3, B6, B12, FAD), minerals (Zn2+), and nutrients (folate), that must be 

derived from the diet. 
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Figure 1.1. Model of one-carbon metabolism, illustrating the integration of phospholipid 

metabolism, methionine metabolism, folate metabolism and transsulfuration. 
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Figure 1.2. Expanded model illustrating one-carbon metabolism at depth (minus TS), 

focusing on the role of phospholipid metabolism, folate cycle and methionine cycle. The 

image also allows the visualization of these pathways with regard to cytosolic and 

mitochondrial compartmentalization. 

 

1.8  Phospholipid metabolism: an emerging giant in the field of one-carbon metabolism 

     Phosphatidylethanolamine N-methyltransferase (PEMT) is the only known enzyme to provide 

de novo choline synthesis in biology, by way of converting phosphatidylethanolamine (PE) to 

PC. PEMT synthesizes PC from PE by using three S-adenosylmethionine (SAM) molecules to 

tri-methylate PE, converting PE’s NH2 terminal to a ‘nitrogen hub’ with three methyl groups,   
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N-(CH3)3 (76). The PEMT reaction is argued to be the greatest consumer of SAM in physiology 

(77–79). Therefore, PE is considered the primary ‘sink’ for excess SAM in physiology; a 

function that protects histones from hypermethylation (77). The CDP-choline “Kennedy” 

pathway, in contrast to the PEMT pathway, utilizes pre-existing choline to synthesize PC. 

Therefore, the Kennedy pathway does not provide choline biosynthesis. The PEMT pathway is 

how choline is made in physiology, even in algae (80). PEMT has been illustrated as a sensor of 

the choline status in mammals (81). When dietary choline is insufficient, PEMT is critical for 

synthesizing PC and protecting the animal from choline deficiency-associated liver pathology 

and starvation (82). PEMT’s evolutionary role is suspected to be the maintenance of PC levels 

during periods of starvation, pregnancy and lactation, in order to sustain processes such as bile 

secretion and lipoprotein formation (82). PEMT is almost entirely expressed in the liver. In non-

hepatic mammalian tissues, the activity of PEMT is usually less than 1% of what is observed in 

the liver (83,84). PEMT is located in the endoplasmic reticulum as well as in a membrane 

fraction associated with mitochondria but not physically a part of mitochondria (85), referred to 

as the mitochondria associated membrane (MAM). The rate of PEMT activity is dependent on 

the concentration of PEMT’s two primary substrates, PE and SAM (86,87). For these reasons, 

the researchers in (86,87) saw increased PEMT activity when ethanolamine (increasing PE 

synthesis) or methionine (increasing SAM synthesis) were added to their culture system. Murine 

hepatocytes derive 30% of their PC from PEMT, while the other 70% of PC is derived from the 

CDP-choline (Kennedy) pathway (88). Previous work indicates that choline deficiency strongly 

induces PEMT activity and in turn increases SAM consumption (81,89). 
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1.9  The methionine cycle: how sulfur-based amino acids regulate methylation capacity 

     It is helpful to realize that Met is, simply, methylated Hcy (i.e. Met = CH3Hcy). Hcy is the 

primary molecular scaffold for every molecule in the Met cycle. If we thought about the ‘Met 

cycle’ as a ‘Hcy cycle’, this is how the molecules would appear, in their order of reaction: 

 
‘Hcy cycle’ instead of ‘Met cycle’:  Hcy → CH3Hcy → Adenosyl-CH3Hcy → Adenosyl-Hcy → Hcy 

 

     Notice that Hcy is present in every molecule and that the cycle begins and ends with Hcy. 

This is a helpful way to understand that the Met cycle is based on the utilization of Hcy as a 

primary constituent. All molecules within the Met cycle contain Hcy. In contrast, this is how the 

canonical ‘Met cycle’ appears in common literature: 

 
‘Met cycle’ as it is taught today: Hcy → Met → Adenosyl-Met → Adenosyl-Hcy → Hcy 

 

     Notice that Met is a transient molecule that depends solely on the methylation status of Hcy. 

The remethylation of Hcy is possible because of the sulfonium center in Hcy that receives a 

methyl group during remethylation (90). 

     Animals are auxotroph for Met; they must acquire Met from the diet. The reason for this is 

that animals do not fix inorganic sulfur into amino acids to form cysteine or Hcy (plants do this) 

(91,92). Animals create Met only by remethylating Hcy; however, that Hcy molecule was first 

created by a plant (or bacterium or protist). In animals, the remethylation of Hcy is performed 

either via MS-B12 or BHMT, yielding Met (68,93). MS-B12 is a zinc-dependent matalloenzyme 

that utilizes 5-CH3THF as a methyl donor to conduct the remethyaltion of Hcy (94). MS-B12 is 

expressed in all tissues throughout the body, whereas BHMT expression is mainly restricted to 

the liver and kidney (95,96). BHMT is also zinc-dependent, like MS-B12, but it utilizes betaine 

as a methyl group donor to facilitate the remethylation of Hcy (96). After dietary provision of 
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betaine is depleted, all betaine must be derived from choline. In the liver, BHMT facilitates 50% 

of Hcy remethylation (97–100), the other 50% being facilitated by MS-B12. BHMT depletion 

culminates in HyperHcy within the animal, indicating the critical importance of this enzyme in 

the liver (101). Interestingly, BHMT expression increased 1.8-fold in the brains of late stage 

hibernating bats, likely because MS-B12 activity declines due to nutrient, cofactor or mineral 

deficiency during later stages of hibernation (102), indicating that the tissue expression of 

BHMT is context-dependent in mammals.  

     The majority of excess Met is acted on by methionine adenosyl transferase (MAT), an 

enzyme that consumes ATP as a cosubstrate to drive the adenosylation of Met, thereby forming 

SAM (103). In 1953, SAM was characterized as the adenosylated (i.e. ‘active’) form of Met that 

can transfer a methyl group to a receiving molecule due to the high energy nature of the 

sulfonium center to which the labile methyl group is bound (90). The liver is the primary organ 

of SAM synthesis given that 50% of methionine metabolism and 85% of all transmethylation 

reactions occur hepatically (103,104). In the methionine cycle, one-carbon metabolism is 

centered on several thousand methylation reactions that utilize SAM as the cell’s master methyl 

donor (103). SAM is the methyl donor for a plethora of methyltransferase reactions involving, 

but not limited to, PC synthesis (84), creatine synthesis (104), sarcosine synthesis (105), histone 

protein methylation (77), 5-methylcytosine DNA or RNA methylation (106,107), N6-

methyladenosine RNA methylation (108), catechol structure methylation (109), and many other 

molecular targets. S-adenosylhomocysteine (SAH) is produced after the completion of a SAM-

dependent methyltransferase reaction. SAH induces allosteric inhibition of numerous 

methyltransferase reactions (110), illustrating why the SAM:SAH ratio is important for 

determining the methylation index for lipid, RNA, DNA and protein methylation (111,112). The 
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enzyme S-adenosylhomocysteine hydrolase (SAHH) is essential for preventing the accumulation 

of SAH, because SAHH hydrolyzes SAH into Hcy and adenosine (112). In addition to 

methyltransferase reactions, SAM can also be catabolized in support of polyamine synthesis. The 

decarboxylated form of SAM (dcSAM) is required for polyamine synthesis (113). The rate 

limiting enzyme for polyamine synthesis is ornithine decarboxylase (ODC), a vitamin B6-

dependent enzyme that converts ornithine to putrescine. dcSAM can react with putrescine to 

produce the polyamine spermidine, and in turn another molecule of dcSAM can react with 

spermidine to produce the polyamine spermine. Reaction with either putrescine or spermidine 

causes dcSAM to be converted to methylthioadenosine (MTA), the first molecule of the Met 

salvage pathway (114). MTA, aside from being the first molecule of Met salvaging, is a cell-

permeable pan methyltransferase inhibitor (115) that has been used to inhibit enzymes such as 

protein arginine methyltransferase 5 (PRMT5), a histone methyltransferase implicated in 

numerous forms of cancer (116–118). 

1.10  The folate cycle: a super-highway of one-carbon metabolism 

     The folate cycle is crucial for the proper engagement of numerous physiological reactions 

throughout the cell. The name folate was derived because it was understood that the benefits of 

folate were obtained by eating green, leafy ‘foliage’ (119). As such, plants can biosynthesize 

folate, whereas animals cannot and therefore must consume it dietarily. Molecular folate 

(vitamin B9) is complex in terms of how it must be processed to become bioactive (120). 

Bioactive folate is referred to as tetrahydrofolate (THF). THF exists in its bioactive form as 2-

amino-4-hydroxy-pterdine linked to p-aminobenzoic acid conjugated with anywhere from one to 

nine glutamic acid residues (i.e. polyglutamate tail) (121). The majority of folate exists with a 

monoglutamate tail in order to favor entry into the cell, and furthermore, this folate is mostly 
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represented by 5-CH3THF (122). Once inside the cell, the folate molecule is converted to the 

polyglutamyl form so that the molecule can be retained intracellularly (93). Biological outcomes 

from the folate cycle appear when THF receives a one-carbon unit such as formyl (-HCO), 

methylene (CH2) or methyl (CH3), yielding the formation of 10-formyl-THF, 5,10-CH2THF and 

5-CH3THF, respectively. The prefixes ‘5’ and ‘10’ refer to the 5-nitrogen and 10-nitrogen within 

the THF moiety, both of which share a covalent bond with the newly introduced carbon unit 

(120). 5,10-CH2THF has been long considered the ‘active formaldehyde’ of the folate cycle 

(123), because 5,10-CH2THF is the immediate substrate for numerous enzymatic reactions such 

as methylene tetrahydrofolate reductase (MTHFR), thymidylate synthase (TYMS), serine 

hydroxymethyltransferase (SHMT), and bidirectional methylene tetrahydrofolate dehydrogenase 

(MTHFD2) (120).  

     MTHFR is a cytosolic FAD-dependent enzyme that uses NADPH to reduce 5,10-CH2THF to 

5-CH3THF. This is the only place in the metabolism where 5-CH3THF is found (121). The CH3 

group from 5-CH3THF is used by MS-B12 to remethylate Hcy, in a reaction that produces Met 

and THF. Methionine synthase (MS) must complex with cobalamin (B12), so that B12 can 

receive the methyl group from 5-CH3THF prior to passing this methyl group to Hcy (thus 

facilitating the remethylation of Hcy) (124). In this manner, the folate cycle supports Hcy 

remethylation, ensuring that SAM levels are high enough to sustain methyltransferases (125).  

     Serine, via SHMT, is the major carbon donor for the synthesis of 5,10-CH2THF. SHMT is a 

B6-dependent enzyme that consumes serine and THF as substrates in a reversible reaction that 

yields 5,10-CH2THF and glycine. SHMT includes a cytosolic (SHMT1) and a mitochondrial 

(SHMT2) isoform. SHMT2 is critical for determining the fate of cytoplasmic folate (126). 

Therefore, the remethylation capacity of the cell is heavily influenced by mitochondrial SHMT 
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The mitochondrial compartmentalization of SHMT2 might help to protect SHMT2’s catalytic 

activity, because SHMT2 exhibits 50% of maximum catalytic activity (i.e. 50% of Vmax) at a 

pH that is characteristic of the mitochondrial matrix (i.e. pH 7.8) where SHMT2 is located (127). 

Furthermore, SHMT2’s 100% Vmax was observed at pH 8.5 (127), suggesting that mitochondrial 

hyperpolarization might help to enhance SHMT2 catalytic activity and/or compensate for B6 

deficiency.  

     Several other enzymes are responsible for generating 5,10-CH2THF; those enzymes are 

dimethylglycine dehydrogenase (DMGDH) and sarcosine dehydrogenase (SDH) and the 4-

protein glycine cleavage system (GCS) (128,129). The BHMT reaction and the folate cycle are 

inextricably linked, because DMG (a product of the BHMT reaction) is catabolized along with 

THF via DMGDH to yield 5,10-CH2THF and sarcosine. Sarcosine is then catabolized via SDH 

in a reaction very similar to DMGDH, producing another molecule of 5,10-CH2THF and a 

molecule of glycine (128). Glycine then through the GCS produces another molecule of 5,10-

CH2THF (129). It is in this manner that the full oxidation of choline (oxidized all the way 

through DMG, sarcosine and glycine) forms three molecules of 5,10-CH2THF. DMGDH and 

SDH are flavoprotein-dependent enzymes located in the inner-mitochondrial membrane. The 

DMGDH and SDH reactions each result in the direct transfer of a single electron into the 

ubiquinone pool, skipping complexes 1 and 2 of the electron transport chain (ETC) (123,130). 

Researchers showed that this electron from DMGDH as well as the NADH from betaine 

aldehyde dehydrogenase (BADH), boost the production of ROS and ATP in the mitochondria 

(130). This is how choline oxidation and the BHMT reaction contribute indirectly to 

mitochondrial metabolism in a major way.  

     Another major enzyme in the folate cycle is thymidylate synthase (TYMS), which uses 5,10-
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CH2THF and 2’-deoxyuracil 5’-monophosphate (dUMP) to synthesize 2’-deoxythymidine 5’-

monophopshate (dTMP) and DHF (131). 5-fluorouracil (5-FU) is a popular chemotherapeutic 

drug that challenges DNA replication in cancer cells by inhibiting TS (131). TS is essential for 

providing ample dTMP to support nuclear and mitochondrial polymerization of thymidine into 

DNA (132). dTMP, after two subsequent phosphorylation events, is leveraged by DNA 

polymerases in the form of 2’-deoxythymidine triphosphate (dTTP) to drive the incorporation of 

thymidine into DNA (133). A supplemental pathway via thymidine kinase (TK) is available to 

supplement the cell’s dTMP needs. TK, in the form of TK1 or TK2, uses thymidine and ATP as 

substrates to yield dTMP (134). TK is primarily responsible for supplementing dTMP during the 

S-phase of the cell cycle, depending on the availability of ATP and the capacity of TS to meet 

the cell’s initial dTMP needs (134–136).  

1.11  Transsulfuration: a vitamin B6-dependent exit route from one-carbon metabolism 

     TS is a short, two-step pathway that is important for providing the cell with cysteine and 

hydrogen sulfide (H2S) (137). Besides remethylation via BHMT or MS-B12, the alternate fate of 

Hcy is the irreversible conversion of Hcy to cystathionine. Cystathionine is produced when Hcy 

and serine are catabolized by the B6-dependent enzyme cystathionine beta synthase (CBS) (138).  

Cystathionine is then converted to cysteine through the B6-dependent enzyme cystathionine 

gamma lyase (CSE). Elevated cystathionine is a classic symptom of B6 deficiency (139,140), 

due to CSE’s acute loss of catalytic activity when B6 levels are insufficient (141,142). An 

additional factor is that B6 deficiency accelerates the lysosomal degradation of apo-CSE (143), 

further driving the accumulation of cystathionine. Another name for CSE is ‘cystathionase’, thus 

explaining the three-letter acronym, CSE. The CBS and CSE reactions serve as a significant 

sources of the gasotransmitter signaling molecule hydrogen sulfide (H2S) (144). H2S availability 
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affects a myriad of physiological outcomes and processes such as hypertension (145), 

atherosclerosis (146), blood sugar (147), mitochondrial bioenergetics (148) and cancer 

metabolism (149). Recently, CBS was recognized as an important enzyme in several kinds of 

cancer with a particularly crucial role in the advancement of ovarian cancer (150–152). The TS 

pathway is the reason why cysteine is considered a non-essential amino acid in animals. Cysteine 

can be synthesized via CSE or it can be introduced to the metabolism through dietary cysteine. 

Given that cysteine is the rate-limiting substrate for the synthesis of glutathione (GSH), it can be 

argued that TS serves an imperative role in maintaining redox stability in the context of dietary 

sulfur amino acid insufficiency (153). 

1.12  The regulation of blood sugar and blood lipids in birds: the major role of glucagon 

      Avian species exhibit exceptionally high “normal” blood glucose (normal = 200 to 

400mg/dL) compared to mammals where normal is 90mg/dL (154–156). After controlling for 

body mass, birds still have exceptionally higher blood glucose than mammals (157). Researchers 

have proposed using birds as a model for pathology-free diabetes, given elevated blood glucose 

in the absence of diabetic pathology (158). Male White Leghorn chickens were observed to have 

fasted blood glucose levels of 218mg/dL (159). Despite having high blood glucose, chickens 

have low percentages of glycated hemoglobin (% HbA1c), between 1% and 2% HbA1c (2,160). 

This appears to be a common pattern in birds, where blood glucose levels are high while HbA1c 

is low. As an extreme example, hummingbirds have blood glucose levels ranging from 504 to 

756mg/dL after feeding, and these levels decline to about 306mg/dL in the fasted state (161). 

Surprisingly, those same hummingbirds have HbA1c ranging from only 3.7 to 4.6%!! These are 

low HbA1c values considering the high blood glucose level of the hummingbird. Therefore, 

birds appear to be less susceptible to advanced glycation end products than mammals, possibly 
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indicating why birds are protected from the canonical effects of diabetes. It is commonly 

understood that human diabetics have HbA1c exceeding 6.5%, meaning that a hummingbird with 

super-hyperglycemic blood sugar has an HbA1c value well below the threshold for diabetes in 

humans. The authors in (161) claim that the HbA1c values of their hummingbirds (i.e. 3 to 4.6% 

HbA1c) are the highest HbA1c values ever recorded in birds. However, our lab observed that 

White Leghorn hens fed either 15% defatted flaxseed (DF) or 15% whole flaxseed (WF) have 

HbA1c values of 5.3% and 6.2%, respectively (2). Our control-fed hens had an HbA1c value of 

1.9% (2). The HbA1c values that we reported for our flaxseed-fed hens are the highest HbA1c 

values ever reported in a wild-type bird. If birds provide a good animal model for the study of 

non-pathological diabetes, then the flaxseed-fed hen could be a diamond opportunity for 

metabolic researchers and cancer researchers, alike. All of this begs the question, “is a flaxseed-

fed hen actually a hummingbird dressed up in a chicken costume?” 

     How is blood sugar regulated in birds? Birds, in contrast to mammals, have greater 

dependence on glucagon than on insulin to regulate blood glucose. β-cells of the avian pancreas 

can be considered non-responsive to glucose, because “avian hyperglycemia” (~500mg/dL) is 

required to stimulate insulin release (162). Chickens have far more α-cells (glucagon releasing 

cells) than β-cells (insulin releasing cells) in the pancreatic islet; therefore, birds have 

exceptionally higher glucagon levels (~10 times higher) and exceptionally lower insulin levels 

(~10 times lower) compared to mammals (163,164). Somatostatin from the δ-cells of the 

pancreas is critical for negatively regulating glucagon release from the chicken pancreas (165). 

Therefore, somatostatin in the bird is analogous to insulin in the mammal, in terms of negatively 

regulating blood glucose levels.  

     Glucagon is used by chickens to dramatically stimulate glycogenolysis, gluconeogenesis and 
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lipolysis, and in turn this ensures that the animal has sufficient blood glucose and blood lipids 

(162). Intracardiac glucagon injection in chickens was shown to cause a 2-fold elevation in blood 

glucose and a 6-fold elevation in circulating FFAs (166), indicating that glucagon simultaneously 

elevates blood glucose and blood lipids in chickens. In geese and ducks, an infusion of glucagon 

increases plasma glucose, plasma FFAs, plasma TG and liver TG deposition (167). Similar 

lipolytic effects of glucagon were observed in fasting king penguins (168). Clearly, glucagon is a 

major stimulator of glucose formation and lipid mobilization in class aves. The baseline message 

from all of this is that birds, in particular chickens, depend on glucagon to maintain their normal 

hyperglycemic state. Fortunately for our lab, most of the research in avian metabolism is based 

on studies of chickens (i.e. domestic fowl). 

1.13  Mitochondrial metabolism 

     In the 1960s, mitochondria were appreciated as organelles that exert a biological effect 

through a coupled chemiosmotic system culminating in the production of energy-rich molecules 

such as ATP (169). Today we understand that mitochondria serve a myriad of roles that are 

essential to the proper maintenance of cell physiology, including bioenergetics, cell death, ROS 

signaling, calcium homeostasis, and macromolecule synthesis (170). Morphologically, the 

mitochondria consist of an outer membrane, inner membrane, intermembrane space (IMS), and 

unique tubular cristae that extend into a central space called the matrix (171,172). The IMS is 

rich with protons but overall represents the molecular composition of the cytosol, whereas the 

mitochondrial matrix consists of a unique subset of molecules geared toward the maintenance of 

chemiosmotic force (173,174). The inner membrane is impermeable to ions which aids in the 

maintenance of a high membrane potential of approximately -180mv, which is far more negative 

than typical transmembrane charges in biology. This impermeability of ions is likely due to a 
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uniquely high concentration of cardiolipin, a highly specialized glyceride molecule consisting of 

four LA (C18:2ω6) acyls (173,175). Cardiolipin is required for the formation of respiratory 

supercomplexes in the inner-mitochondrial membrane, including complexes 1, 2, 3 and 4 of the 

electron transport chain (ETC), as well as ATP synthase and ADP/ATP translocase (176). The 

chicken mitochondrial genome consists of 16,775 base pairs encoding 13 proteins, 2rRNAs, and 

22 tRNAs, all of which are found in the mitochondrial genomes of other vertebrates (177). Every 

protein that is encoded in the mitochondrial genome is required for proper functioning of the 

ETC (178). The chicken mitochondrial genome, similar to other vertebrates, encodes seven 

subunits for complex 1 (ND1, ND2, ND3, ND4, ND4L, ND5 and ND6); one catalytic subunit for 

complex 3 (CYTB); three catalytic subunits for complex 4 (COX1, COX2 and COX3) and two 

subunits for ATP synthase (ATP6 and ATP8) (179). The chicken nuclear genome consists of 8 

pairs of macrochromosomes, 30 pairs of microchromosomes and 1 pair of sex chromosomes (ZZ 

for male and WZ for female) (180). Among these chromosomes only 14 mitochondrial 

pseudogenes (i.e. impartial, non-coding mitochondrial DNA sequences) can be found (179). This 

is in comparison to the human nuclear genome which has possibly more than 1,000 

mitochondrial pseudogenes (181,182). 

     In 1904, biochemists observed that fatty acids undergo an oxidative reaction called beta-

oxidation, whereby two carbon units are successfully removed from the acyl molecule (183). 

Beta-oxidation, or fatty acid oxidation (FAO), occurs primarily in the mitochondria and to a 

lesser extent in peroxisomes. Peroxisomes contribute an important but minor role to total FAO 

(184,185). Peroxisomes help to produce medium and short-chain fatty acids that passively 

diffuse into mitochondria skipping the facilitative activity of carnitine palmitoyl transferase 

(CPT1) (186). CPT1 and CPT2 are necessary for the import of long chain fatty acids 
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(approximately 12 to 20 carbons) into the mitochondrial matrix (186,187); however, the CPT 

system is not effective at transporting very long-chain fatty acids (i.e. fatty acids with more than 

20 carbons) (188). Peroxisomes help in this situation by oxidizing very long-chain fatty acids 

(188) so that CPT1 can receive a fatty acid of 20 carbons or shorter. It is through this manner that 

very long-chain fatty acids such as DHA can be metabolized fully and contribute to the 

bioenergetic capacity of the cell.  

     In the mitochondrial matrix, each round of FAO yields one molecule of acetyl-CoA, NADH 

and FADH2 (189). Within the tricarboxylic acid (TCA) cycle, acetyl-CoA can be fully oxidized 

to yield three molecules of NADH and one molecule of FADH2 (190). NADH is an excellent 

electron donor to the ETC, because it contains two high energy electrons that rapidly reduce 

flavin mononucleotide (FMN) via complex 1 (NADH:ubiquinone oxidoreductase), forming 

FMNH2. FMNH2 transfers those electrons to an iron-sulfur cluster, and those electrons are 

subsequently transferred to ubiquinone. During the reaction between NADH and FMN, the FMN 

molecule receives one proton from NADH as well as one proton from the mitochondrial matrix 

(189,191,192). The proton that FMN receives from the matrix is how complex 1 facilitates the 

pumping of protons from the matrix to the IMS. Proton pumping is essential for maintaining a 

transmembrane chemiosmotic gradient (191). This gradient determines the proton motive force 

whereby protons are shuttled from the IMS to the matrix (i.e. antegrade flow) through complex 5 

(ATP synthase), resulting in the conjugation of ADP with inorganic phosphate, forming ATP 

(193). Complex 2, unlike complex 1, cannot pump protons from the matrix to the IMS; however, 

it can receive electrons from FADH2 as well as the sulfide signaling gas molecule hydrogen 

sulfide (H2S) (194). Within ATP synthase, several catalytic subunits regulate the synthesis of 

ATP. ATP synthase subunit B (ATP5B) is arguably the most important subunit for catalyzing the 
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synthesis of ATP, particularly because ATP5B regulates cristae formation and promotes 

mitochondrial elongation (195–197). The presence of subunit proteins determines the ability of 

ETC complexes to form, and in turn ETC complex formation determines function of the complex 

(198). This indicates that ETC complexes probably have different roles depending on the 

availability of subunit proteins and the degree to which complexes can form. 

     Complex 1 and complex 3 are the largest sources of superoxide (O2
.-) within the 

mitochondria, and therefore, they are two of the largest sources of reactive oxygen species (ROS) 

within the cell (199–201). Complex 1 produces superoxide when FMNH2 transfers a lone 

electron to diatomic oxygen (partially reducing diatomic oxygen), instead of successfully 

transferring an electron pair to the iron-sulfur cluster (199,202). Superoxide is also produced at 

high levels during the reverse electron transfer of electrons to NAD+, forming NADH, at 

complex 1 (203). Superoxide, as partially reduced diatomic oxygen, has an oxygen atom with 

one unpaired electron in its valence shell, giving the diatomic molecule a highly reactive 1- 

charge. ‘Superoxide’ is the perfect chemical name for this molecule. The Latin etymology of 

superoxide (‘su’, ‘per’ and ‘oxide’) depicts the chemical nature of the molecule. The prefixes 

‘su’ and ‘per’ translate to ‘below’ and ‘perfect’, respectively. ‘Oxide’ is an oxygen atom bound 

to another atom (e.g. could be bound to another oxygen atom). Therefore, “su-per-oxide” 

translates to “below-perfect-oxide,” such as an oxygen atom (within diatomic oxygen) being one 

electron below octet valence. Henceforth it can be declared that ‘superoxide’ is an excellent 

name for the superoxide molecule.  

     Complex 1, through its production of superoxide, engages in in a wide array of metabolic 

processes including ROS signaling (203), autophagy (204), cell death execution (205) and aging 

(206). Superoxide has an extremely short half-life and will either undergo spontaneous 
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disproportionation to form the hydroxyl radical (202), or it will react with superoxide dismutase 

(SOD) to form H2O2. The hydroxyl radical is an unstable electrophile that can rapidly attack 

almost any molecule within the cell (207), particularly membrane lipids and DNA (208). 

Therefore, it is imperative that SOD2 be available to reduce superoxide to H2O2, in order to 

prevent excessive cell damage from the hydroxyl radical (202). Cytosolic SOD (copper-zinc-

dependent SOD) is referred to as SOD1, while mitochondrial SOD (manganese-dependent) is 

referred to as SOD2 (202). H2O2 can then be converted to H2O and O2 by catalase (CAT), 

glutathione peroxidase (GPx), peroxinredoxin (PRX) and other antioxidant systems (209,210).  

1.14  Investigating mitochondrial membrane potential 

     Studies from Dr. Buck Hales, Dr. Karen Hales and Dr. John Allen, have shown that the 

maintenance of a high mitochondrial membrane potential is essential for steroid biosynthesis in 

MA-10 tumor Leydig cells (211). They showed that a variety of substances can be used to 

deplete mitochondrial membrane potential and thereby inhibit steroid biosynthesis. So, how can 

mitochondrial membrane potential be measured? Tetramethylrhodamine ethyl ester (TMRE) is a 

lipophilic cation that rapidly accumulates in the mitochondrial matrix due to TMRE’s attraction 

to negatively charged environments (212). The accumulation of TMRE in the matrix is a general 

measure of cellular respiration, such that more TMRE accumulation can be expected when 

cellular respiration is more active (due to a strong negative charge). Somewhat different from the 

concept of absolute charge is the concept of ‘mitochondrial (inner-) membrane potential’. The 

membrane potential is an expression of the mitochondria’s total capacity to conduct oxidative 

phosphorylation (OXPHOS) (213). Membrane potential is the strength of the charge differential 

from the mitochondrial matrix to the IMS. The TMRE experiment is designed to allow an 

estimate of this charge differential, which is an estimate of the transmembrane potential referred 
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to as “delta psi” (ΔΨ) (212). The transmembrane potential is directly correlated with proton 

motive force or chemiosmotic force. 

1.15  De novo fatty acid synthesis  

     In animals, acetyl-CoA cannot be converted to pyruvate; therefore, in mitochondria, acetyl-

CoA must be oxidized to citrate in the first step of the TCA cycle (190). Citrate is an essential 

substrate for de novo fatty acid synthesis. The de novo fatty acid synthetic pathway is a cytosolic 

pathway. This process begins when mitochondrial citrate effluxes to the cytosol through the 

citrate transporter. In the cytosol, ATP citrate lyase (ACYL) reacts with citrate and CoA to yield 

acetyl-CoA again. Acetyl-CoA can then be activated by acetyl-CoA carboxylase (ACC) to form 

malonyl-CoA (214) which is the substrate used to form palmitate (C16:0) via the pleiotropic 

enzyme fatty acid synthase (FASN) (215). Palmitate can then be readily elongated via the 

elongation enzyme called fatty acid elongase 6 (ELOVL6) (216) and/or desaturated by the 

desaturation enzyme called sterol CoA desaturase 1 (SCD1) (217), to rapidly generate C16:1n7, 

C18:0 and/or C18:1n9 depending on the cell’s needs for saturated or monounsaturated fatty 

acids. Sterol regulatory element binding protein 1 (SREBP1) is the primary transcription factor 

regulating the expression of lipogenic genes (e.g. ACYL, ACC, FASN, SCD1, etc) (218). Non-

cancerous tissues depend mainly on the systemic circulation for the delivery of fatty acids, and as 

such, de novo fatty acid synthesis is not upregulated in most normal tissues (215). However, 

cancerous tissues display exceptional upregulation of de novo lipogenesis to meet their lipid 

needs (215,219). Tumors of many kinds (including ovarian tumors) have upregulated de novo 

fatty acid synthesis to support their proliferative demand for lipid encapsulation (215,219). Not 

only does the membrane of a mitotic cell requires lipid encapsulation, but so does all of the new 

intracellular organelle mass. It has been argued that SREBP1 is required for the growth of 
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ovarian tumors (220). PUFAs are specific, negative regulators of de novo fatty acid synthesis 

(221–225). In mouse liver, PUFAs such as C18:2ω6, C20:5ω3 and C22:6ω3 negatively regulate 

the maturation of SREBP1 coinciding with reduced transcription of lipogenic genes such as 

ACC, FASN, ACLY and SCD1 (218). The processes that regulate cellular respiration within the 

mitochondria are also distinctly coupled to mechanisms that regulate cell death (226).        

1.16  E-cadherin, CDH1, microRNA-200a-3p and collective migration in ovarian cancer 

     In 1980, E-cadherin was first identified as a cell-surface adhesion molecule in liver 

hepatocytes of chickens, referred to as liver-cell adhesion molecule (L-CAM) (227). The 

following year, in 1981, researchers characterized a similar protein in mice (they called it 

Uvomorulin) that displayed Ca2+ dependent properties (228). In 1983, further cloning and 

specific characterization of the 124kDa chicken protein (L-CAM) (229) and 120kDa murine 

protein (Uvomorulin) were performed. It was through the works of these different labs that 

physiologists became aware that a wide array of calcium-dependent adherins junction molecules 

(i.e. ‘cadherins’) exist and share vast similarity.  

     E-cadherin (‘epithelial cadherin’) is the name for the physical cadherin protein, while CDH1 

(‘cadherin 1’) is the name of the gene for E-cadherin. E-cadherin is a type-1 transmembrane 

glycoprotein composed of a large extracellular domain, a transmembrane segment and a highly 

conserved cytosolic domain (230). The extracellular portion of E-cadherin consists of five 

extracellular cadherin domain repeats (referred to as EC domains) that encompass four Ca2+ 

binding sites. Upon Ca2+ binding the EC domains can engage in homophilic protein interactions 

with other cadherins, whether on opposing cells or with adjacent cadherins inserted in the same 

plasma membrane (231–233). Ultimately, these protein interactions form cadherin junctions that 

permit the formation of epithelial membranes that define the extent of an epithelial tissue. 
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Through cell adhesion, cadherins promote several process that drive cellular development and 

morphogenesis; those process are ‘adhesion tension’, ‘adhesion signaling’ and ‘adhesion 

coupling’ (234).     

     We now understand that advanced tumor malignancies are not restricted to mesenchymal 

phenotypes. Instead, advanced tumors commonly express differentiated epithelial states, at least 

in combination with mesenchymal features (235). For example, E-cadherin and members of the 

microRNA-200 (miR-200) family are strongly upregulated in epithelial ovarian cancers of White 

Leghorn laying hens and humans (14,236–238). Our lab has shown that the WF diet reduces the 

expression of miR-200a, miR-200b and miR-429 in laying hen ovarian tumors (14); however, it 

is unknown if these effects are based on flaxseed’s oil component, non-oil component, or 

perhaps based on a synergy of both components. The miR-200 family regulates CDH1 

transcription by inhibiting the protein translation of zinc finger E-box binding homeobox 1 

(ZEB1) protein. ZEB1 is a canonical inhibitor of the CDH1 promoter; therefore, miR-200a 

expression is often directly correlated with CDH1 expression (239,240). Members of the miR-

200 family are canonically considered regulators of the epithelial-to-mesenchymal transition 

(EMT) through a ZEB1/CDH1 axis (239,240). The growing field of “mechano-biology” is 

setting the stage for a new metabolic appreciation of E-cadherin and the miR-200 family that 

transcends canonical discussions of EMT (241).  

     Collective cell migration is the process by which metastases often extravasate from the 

primary ovarian tumor (237,242). Furthermore, collective cell migration is a very dynamic 

process. The process of cancer cell collective migration often requires cells to collectively 

penetrate extracellular matrices in order to leave a primary tissue of origin and/or to invade a 

distal tissue location (243). This collective process requires cells to maintain sticky junctions. E-
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cadherin-positive ovarian cancer cells (OVCAR5 cells) were shown to collectively migrate 

through 3D extracellular matrices in a serine protease dependent fashion, while maintaining cell-

to-cell contacts (244). A study of the murine mammary carcinoma cell line, 4T1, illustrated that a 

partial reduction (but not total knockdown) of E-cadherin expression correlated with increased 

collective cell migration, suggesting that moderate E-cadherin expression is still required for 

collective migration in some cell types (245). A collectively migrating unit of cells expresses a 

front-to-rear polarity via cell-to-cell and cell-to-ECM contacts that transduce tensional signals 

through the actin cytoskeleton (246). It has been shown that a “leader cell” is responsible for 

remodeling the matrix through which a group of collectively migrating cancer cells must transit, 

and that the leader cell carries a bulk of the energetic burden (247,248). Complimentary to the 

leader cell concept, a “front” of cells on the progressing side of the collective migratory unit is 

responsible for making biphasic, high-tension focal adhesion contacts with the ECM, leading to 

activation of a viniculin/integrin/actin signal transduction cascade, followed by cellular 

restructuring and ECM remodeling (249,250). The collective movement of the cellular aggregate 

appears to depend upon a pulling force exerted by frontal cells, instead of a pushing force from 

the distal/back cells (251). Frontal cells pull the distal/back cells in their forward-leading 

direction, enabling the aggregate to move as a group (252). In order for these mechanisms to 

work the cell must maintain its collective nature which requires the continued expression of 

adherins junction molecules like E-cadherin (253).  

     Mitochondrial respiration and mitochondrial fission/fusion machinery are determinants of 

ovarian tumor progression (254–256). Ovarian cancer mitochondria display a high degree of 

morphological plasticity (i.e. fluctuation between states of fission and fusion) especially during 

proliferation and stress (256–258). However, little is known about mitochondrial metabolism in 
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laying hen ovarian tumors or the effect that flaxseed has on mitochondria within hen ovarian 

tumors. Accumulating evidence suggests that E-cadherin and the miR-200 family regulate core 

metabolic components including energy sensing, mitochondrial morphology, inorganic 

phosphate transport into mitochondria, mitochondrial DNA replication, and cell respiration 

(241,259–262). Furthermore, miR-200a has been specifically shown to regulate mitochondrial 

morphology by promoting mitochondrial elongation (via fusion), thus enhancing cellular 

respiration in cancer cells (260,263). The metabolic role of E-cadherin and the miR-200 family 

might be affiliated with their distinct role in regulating collective migration in ovarian cancer 

cells. Analysis of epithelial ovarian cancer cells in 3D culture revealed that E-cadherin and the 

miR-200 family (mostly miR-200a, miR-200b, and miR-429) were upregulated within inclusion 

cyst formations (242), suggesting that E-cadherin and the miR-200 family could be indispensable 

during the collective migration of ovarian cancer cells. Still, it is unknown if E-cadherin and the 

miR-200 family play a bioenergetic role concomitant with a migration-regulating role. Our lab 

has shown that dietary flaxseed downregulates the expression of miR-200a, miR-200b and miR-

429, in laying hen ovarian tumors (14,264). If these downregulatory effects influence inclusion 

cyst formation, then our lab has likely identified a flaxseed-based mechanism that blunts the 

severity of ovarian cancer and reduces the risk of metastasis, in hens. 

1.17  Soluble E-cadherin and cancer 

     Soluble E-cadherin (i.e. 80kDa E-cadherin) represents the extracellular portion of full-length 

E-cadherin. The full length protein has a molecular weight of approximately 120kDa (229,265), 

making it no surprise that the complimentary fragment to 80kDa E-cadherin is a 37 to 38kDa 

protein (266). In the early 1990s, clinical researchers observed elevated levels of soluble E-

cadherin in the blood serum of patients with gastric cancer and hepatocellular carcinoma (267). 
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In their analysis, the majority of cancer patients had elevated soluble E-cadherin in blood 

compared to controls, suggesting that tumors exhibit enhanced proteolysis of E-cadherin. Since 

that time researchers have come to understand that soluble E-cadherin acts as an autocrine or 

paracrine signaling molecule that drives invasion and metastasis in a myriad of cancer types, 

including ovarian cancer (266). In ovarian tumors, soluble E-cadherin localizes to the surface of 

exosomes and heterodimerizes with VE-cadherin on endothelial cells thereby promotes the 

malignancy of ascites fluid and spread of the disease throughout the peritoneum (268). In skin 

squamous cell carcinoma, soluble E-cadherin (i.e. the 80kDa fragment) coimmunoprecipitated 

with receptor tyrosine kinases (RTKs) such as HER1, HER2 and IGF-1R, indicating the physical 

interaction between soluble E-cadherin and RTKs (269). Those authors further displayed that the 

physical interaction between soluble E-cadherin and RTKs promoted MAPK pathway activation 

and PI3K/Akt/MTOR activation, in both mouse and human tissues. The concentrations of 

soluble adhesion molecules (i.e. soluble ICAM-1, soluble CD44std and soluble E-cadherin) 

within ovarian cyst fluids are useful for distinguishing borderline and malignant ovarian tumors 

from ovarian cystadenomas (270). Similar results were observed by a group that observed higher 

soluble E-cadherin levels in malignant ovarian tumors versus benign ovarian cysts (271). These 

results indicate that soluble E-cadherin levels are elevated in the context of ovarian cancer 

pathogenesis, thus providing a rationale for further study of soluble E-cadherin in ovarian cancer. 

     Our model allows us to study the expression of several E-cadherin fragments, each bearing a 

unique molecular weight (i.e. 37kDa, 80kDa and 120kDa). The C-terminus of cadherin 

molecules is highly conserved in vertebrate species (272), meaning that an antibody that is 

antigenic for the C-terminus of E-cadherin has a good chance of positively detecting E-cadherin 

in different vertebrate animal models. Our lab has used a human antigenic C-terminus antibody 
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to detect E-cadherin protein in chicken ovaries (236). The fragments that have not been studied 

in laying hen ovarian cancer are the 37kDa and 80kDa fragments of E-cadherin. We recently 

received a very generous gift of 10mg of lyophilized rabbit polyclonal anti-chicken E-cadherin 

IgG, from Dr. Warren J. Gallin who recently retired at the University of Alberta, Canada. Dr. 

Gallin is one of the co-discoverers and co-characterizers of E-cadherin, although at the time they 

still referred to it as L-CAM (227,229). This E-cadherin antibody was designed to be polyclonal 

to the extracellular domain of E-cadherin (273). A diagram illustrating the molecular weights of 

E-cadherin that can be detected in hen ovarian tumors with our C-terminal and N-terminal 

antibodies can be seen in Figure 1.3.  
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Figure 1.3. Schematic diagram of western blot for the detection of the 37kDa, 80kDa and 

120kDa fragments of chicken E-cadherin, using antibodies for the C-terminus and N-

terminus. The 37kDa intracellular, transmembrane domain of E-cadherin (i.e. CTF1) is detected 

in our model with a mouse IgG that is monoclonal to a proprietary amino acid sequence in the C-

terminus of E-cadherin (shown in the western blot in red at 37kDa). The 80kDa extracellular 

domain of E-cadherin is detected with a rabbit IgG that is polyclonal to Ecadherin’s extracellular 

domain (shown in the western blot in green at 80kDa). Notice that the rabbit IgG and the mouse 

IgG are both immunogenic for the full-length 120kDa E-cadherin protein (shown in the western 

blot in yellow at 120kDa). 

 

      

 

 



33 

 

CHAPTER 2 

SPECIFIC AIMS AND HYPOTHESES 

STUDY 1: The effect of flaxseed on one-carbon metabolism, lifespan and reproductive 

capacity in White Leghorn laying hens 

     Problem statement: Our lab is aware that flaxseed improves the health of laying hens, but 

we are unaware of the exact metabolic pathways that facilitate this health improvement. 

     Hypothesis: The flaxseed diet induces a transsulfuration blockade that modifies one-carbon 

metabolism in a manner that associates with enhanced lifespan and enhanced reproductive 

capacity in White Leghorn laying hens. 

     Specific aim 1: Conduct complex biological systems analysis (utilizing LC-MS/MS-derived 

blood plasma metabolomics data) to test a rationale that the flaxseed diet increases homocysteine 

flux into the methionine cycle and thereby boosts S-adenosylmethionine levels. 

     Specific aim 2: Evaluate lifespan and reproductive capacity via statistical analysis and/or 

metabolomics analysis to determine if lifespan and reproductive capacity are regulated by 

flaxseed. 

     Specific aim 3: Develop a model that conveys the most probable one-carbon metabolic 

processes that are happening during flaxseed dieting in White Leghorn laying hens. 

STUDY 2: The effect of dietary polyunsaturated fatty acids (PUFAs) on mitochondrial 

metabolism and mir-200a/Cdh1/E-cadherin expression in laying hen ovarian tumors. 

     Problem statement: We a rough understanding of how miR-200a/CDH1/E-cadherin are 

regulated by PUFAs in hen ovarian tumors, but we want to extend this understanding to include 

the effects of PUFAs on mitochondrial metabolism in the hen ovarian tumor microenvironment. 

     Hypothesis: Dietary PUFAs regulate the expression of de novo lipogenic genes as well as the 
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levels of fatty acids, in ovarian tumors of the hen. 

     Specific Aim: Determine the expression of de novo lipogenic genes within hen ovarian 

tumors and then determine the concentration of fatty acids within that same set of tumors. 

Hypothesis: Dietary PUFAs elevate the expression of nuclear and mitochondrial genes that 

associate with mitochondrial electron transport chain activity (i.e. OXPHOS), in ovarian tumors 

of hens. 

     Specific Aim: Determine the expression of genes that are associated with mitochondrial ETC 

activity, ATP synthesis and oxidative stress response within hen ovarian tumors. 

     Hypothesis: Dietary PUFAs reduce the expression of microRNA-200a-3p, CDH1 and E-

cadherin, in ovarian tumors of the hen. 

     Specific Aim: Determine the expression of miR-200a, CDH1 and E-cadherin in hen ovarian 

tumors, and then evaluate the expression of miR-200a and CDH1 in human ovarian cancer cells 

after incubation with PUFAs. 

     Hypothesis: Mitochondrial metabolism in human ovarian surface epithelial cells is regulated 

by the presence of the 80kDa E-cadherin fragment (i.e. soluble E-cadherin) during incubation 

with laying hen ascites fluid. 

     Specific Aim: Determine mitochondrial membrane potential and oxygen consumption in 

IOSE80 cells that have been treated with hen ascites fluid that either contains or does not contain 

the 80kDa E-cadherin fragment. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1  Animal studies and diet descriptions 

     325-day diet study in 2.5-year-old hens: Single-comb White Leghorn laying hens (Gallus 

gallus) with 2.5 years of age were assigned to one of six isocaloric diets for 325 days. Diets 

included a control feed diet (CTL), 10% defatted flaxseed (DF), 15% whole flaxseed (WF), 5% 

flaxseed oil (FXO), 5% corn oil (CRN) and 5% fish oil (FSH), for 325 days. Dietary ingredients 

as well as the calculated energy contents of diets can be seen in Table 3.1 and Table 3.2, 

respectively. Daily mortality was monitored throughout the 325-day study by the animal care 

facility. Causes of death before the 325th day are unknown (i.e. necropsy not conducted). Eggs 

were collected from hens within each diet group every day of the study. Sample sizes of hens for 

each diet were as follows: CTL (n=182), DF (n=161). WF (n=161), FXO (n=161), CRN 

(n=175), FSH (n=165). Hens were housed in the animal care facility at the University of Illinois 

in Urbana-Champaign, in pecks of 5 hens with a 17h/7h light/dark cycle. On the 24th week of the 

study, a light-restriction molt was implemented via a light/dark cycle of 8h/16h for three weeks. 

Food was not restricted during the molt. Animal care, diet protocols and necropsy methods were 

approved by the Institutional Animal Care and Use Committees (IACUC) at both Southern 

Illinois University, Carbondale and University of Illinois at Urbana-Champaign.  

     9-week diet study of 2-year-old hens: In this animal study we assigned 30 single-comb White 

Leghorn laying hens (Gallus gallus) to one of seven isocaloric diets for nine weeks (210 hens 

total). The diets and their composition can be seen in Table 3.3 and Table 3.4. All of the animal 

model protocols were the same as we used in the 325-day study. One of the major exceptions is 

that we did not observe any tumors in the hens from this study during necropsy (which was to be 
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expected given the young age of these hens at harvest; ie 2 years and 9 weeks of age). 

 

Table 3.1. Diets and associated ingredients (g/100g), 325-day study. 

Ingredient 

Diet 

Control 

10% 
Defatted 

Flaxseed 
Meal 

15%    

Whole 
Flaxseed 

5%      
Flax Oil 

5%       
Corn Oil 

5% 

Menhaden        
Fish Oil 

 Corn 67.40 54.90 47.58 52.00 52.00 52.00 
 Flaxseed (whole)     15.00       
 Corn Gluten Meal 3.00     5.00 5.00 5.00 
 Corn Oil         5.00   
 Flax Oil       5.00     
 Fish Oil           5.00 
 Defatted Flax Meal   10.00         
 Qual Fat   3.80 2.50       
 Solka Floc 0.30 2.00 5.62 8.70 8.70 8.70 
 Each diet received the following in g/100g of diet:                                                                                            
 Soybean meal (18.3), Limestone (8.75), Dical (1.5), Salt (0.3),  
 Vitamin mix

1
 (0.2),Mineral mix

2
 (0.15),and DL-Methionine (0.1)  

 

1
Vitamin premix (per kg of diet): retinyl acetate, 4,400 IU; cholecalciferol, 25 mg; DL-

a-tocopheryl acetate, 11 IU; vitamin B12, 0.01 mg; riboflavin, 4.41 mg; D-
Capantothenate, 10 mg; niacin, 22 mg; and menadione sodium bisulfite, 2.33 mg.   
                                                                                                  
2
Mineral premix (mg/kg of diet): Mn, 75 from MnO; Fe, 75 from FeSO4·7H2O; Zn, 

75 from ZnO; Cu, 5 from CuSO4·5H2O; I, 0.75 from ethylene diamine dihydroiodide; 
and Se, 0.1 from Na2SeO3. 

 

 

 
 

Table 3.2. Calculation of nutrient percentages and total energy  

of diets (325-day study). 

Calculated           
Analysis 

Diet 

Control 
10%     

Defatted 
Flaxmeal 

15%      
Whole 

Flaxseed 
5%      

Flax Oil 
5%       

Corn Oil 
5%         

Fish Oil 
 TME

1
, kcal/kg 2,816 2,816 2,815 2,815 2,815 2,815 

 CP
2
, % 16.56 17.04 16.50 16.49 16.49 16.49 

 Calcium, % 3.73 3.77 3.75 3.73 3.73 3.73 
 aPhosphorus, % 0.38 0.40 0.38 0.37 0.37 0.37 
 Met + Cys, % 0.67 0.72 0.64 0.67 0.67 0.67 
 
1
TME= total metabolizable energy, 

2
CP= crude protein 
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Table 3.3. List of diets showing the ingredients and the percentage of calories  

derived from those ingredients (9-week study). 

Ingredient 

Diet 

Control 
15% 

Defatted 
Flaxmeal 

15% 
Whole 

Flaxseed 
5%      

Flax Oil 
5%     

Corn Oil 
5% SDA 
Soy Oil 

5%    
Soy Oil 

Corn 67.40 51.90 47.58 52.00 52.00 52.00 52.00 
Flaxseed (whole)     15.00         
SBM 18.30 18.30 18.30 18.30 18.30 18.30 18.30 
Corn Gluten Meal 3.00     5.00 5.00 5.00 5.00 
Corn Oil         5.00     
Soy Oil             5.00 
SDA Soy Oil           5.00   
Flax Oil       5.00       
Qual Fat   3.80 2.50         
Defatted Flax Meal   15.00           
Solka Floc 0.30   5.62 8.70 8.70 8.70 8.70 
 Each diet received the following percentage of calories from:                                                                                            
 Soybean meal (18.3%), Limestone (8.75%), Dical (1.5%), Salt (0.3%),  
 Vitamin mix

1
 (0.2%),Mineral mix

2
 (0.15%),and DL-Methionine (0.1%) 

1
Vitamin premix (per kg of diet): retinyl acetate, 4,400 IU; cholecalciferol, 25 mg; DL-a-tocopheryl 

acetate,11 IU; vitamin B12, 0.01 mg; riboflavin, 4.41 mg; D-Capantothenate, 10 mg; niacin, 22 mg; and 
menadione sodium bisulfite, 2.33 mg.                                                                                                                                                                          
2
Mineral premix (mg/kg of diet): Mn, 75 from MnO; Fe, 75 from FeSO4·7H2O; Zn, 75 from ZnO; Cu, 5 

from CuSO4·5H2O; I, 0.75 from ethylene diamine dihydroiodide; and Se, 0.1 from Na2SeO3. 

 

 

Table 3.4. Calculation of nutrient percentages and total energy of diets (9-week study). 

Calculated Analysis 

Diet 

Control 
15% 

Defatted 
Flaxmeal 

15% 

Whole 
Flaxseed 

5%      
Flax Oil 

5%    
Corn Oil 

5% SDA 
Soy Oil 

5%     
Soy Oil 

TME
1
, kcal/kg 2,816 2,816 2,815 2,815 2,815 2,815 2,815 

CP
2
, % 16.56 18.49 16.50 16.49 16.49 16.49 16.49 

Calcium, % 3.73 3.77 3.75 3.73 3.73 3.73 3.73 
aPhosphorus, % 0.38 0.40 0.38 0.37 0.37 0.37 0.37 
Met + Cys, % 0.67 0.72 0.64 0.67 0.67 0.67 0.67 
 
1
TME= total metabolizable energy, 

2
CP= crude protein 

 

 

 

3.2  Animal necropsy and tissue collection 

     Hens surviving to the completion of the 325-day study were prepared for manual necropsy. 
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Necropsy was not performed on hens that died prior to the completion of the study. Body weight 

was recorded in kilograms before sacrifice. Hens were sacrificed via carbon dioxide asphyxiation 

and cervical dislocation. Whole blood was collected from hens via heart puncture. Peritoneal 

pathologies were determined via manual necropsy, primarily looking for the presence of ovarian 

cancer, ascites fluid, GI cancer, oviductal cancer, liver cancer, and metastatic spread throughout 

the peritoneal cavity. Stages of ovarian cancer were assigned according to the International 

Federation of Gynecology and Obstetrics (FIGO) staging criteria (cancer.org). Tissue samples of 

each hen’s ovary, oviduct, and liver, were then collected and flash frozen in liquid nitrogren. In 

hens with ovarian cancer, tissue samples from ovarian tumors, ascites fluid, and/or peritoneal 

metastases were collected. Harvested tissues were flash frozen in liquid nitrogen at collection 

and stored at -80 Celsius at Southern Illinois University.  

3.3  LC-MS/MS analysis of blood plasma metabolites 

     Blood plasma was collected from hens on the 210th day of the 325-day study via wing vein 

puncture, centrifuged and flash frozen with liquid nitrogen. Regarding plasma collection, the 

sample sizes from each diet group were as follows: CTL (n=6), DF (n=5), WF (n=6), FXO 

(n=6), CRN (n=6) and FSH (n=4). Blood plasma samples were analyzed via liquid 

chromatography tandem mass spectrometry (LC-MS/MS) at the Lipid and Metabolite Mass 

Spectrometry Facility of the University of Texas Southwestern Medical Center. The procedure 

for LC-MS/MS analysis was previously described in detail (274). In summary, a targeted 

metabolite profiling approach was conducted by separating metabolites on a Phenomenex 

Synergi Polar-RP HPLC column with a Nexera Ultra High Performance Liquid Chromatography 

(UHPLC) system. An AB QTRAP 5500 mass spectrometer was used with electrospray 

ionization (ESI) source set to multiple reaction monitoring (MRM) mode. MRM data were 
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acquired using Analyst 1.6.1 software. MultiQuant 2.1 software was used to review 

chromatograms and peak areas. Peak areas were normalized for each detected metabolite against 

the total ion count of that sample to correct for any variations introduced by sample handling 

through instrument analysis and then converted to Variable of Importance Projection (VIP) 

scores. VIP scores are arbitrary units that are not representative of translatable concentrations. 

VIP scores, heat map and partial least squares-discriminant analysis (PLS-DA), were calculated 

using the software SIMCA-P (Version 13.0.1, Umetrics).  

3.4  Reanalysis of microarray feature data from a previous laying hen study 

      A separate, earlier diet study using 387 single–comb White Leghorn hens (2.5-years old at 

study initiation) was previously conducted and published (14). Hens were provided either a 10% 

whole flaxseed diet or a control diet for one year. Details of dietary ingredients and methods for 

tissue harvesting and processing were described in (19). Animal care, diet protocol and necropsy 

method were approved by the Institutional Animal Care and Use Committees (IACUC) at both 

Southern Illinois University, Carbondale and University of Illinois at Urbana-Champaign. 

Ovarian tissues from stage-matched hens were sampled from each of the following: whole flax 

normal (WFN) hens (n=6); whole flax cancer (WFC) hens (n=6), control normal (CTLN) hens 

(n=6), and control cancer (CTLC) hens (n=6). These ovaries were used for RNA extraction, 

labeling, hybridization and microarray analysis as described in (14). Two-tailed T-tests were 

performed to calculate fold-change expression differences of microarray features between groups 

(i.e. WFN versus CFN and WFC versus CTLC). In our present paper, we reanalyze those T-tests 

and illustrate the percentage of features that were downregulated or upregulated at the p<0.10, 

p<0.05 and p<0.01 levels of significance.   
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3.5  Protein Assay (blanket protocol for all protein assay work) 

     BCA reagent A (Pierce, 23228), BCA reagent B (Pierce, 1859078) and 2mg/mL BSA 

standard (Pierce, 23209), were used to conduct protein assays in 96-well plates. Protein standard 

concentrations were loaded in duplicate on each plate. Unknowns were also loaded in duplicate 

on each plate. The plate protocol was set as: temperature 37 degrees Celsius, shake plate for 5 

seconds, incubate plate for 30 minutes in reader (i.e. 30 minute read delay) and then measure 

absorbance at 562nm, using a Biotek Synergy plate reader. 

3.6  Gas chromatography analysis of fatty acids in hen ovarian tumors 

     Fatty acid isolation: 50mg samples of ovarian tumor tissue were isolated on dry ice and added 

to 5mL round bottom tubes. 1mL of 1mM Tris base was added to the tube and then homogenized 

with a tissue homogenizer. 100µL of this tissue homogenate was aloquated for BCA protein 

assay of the sample (to determine the ug of protein per microliter of sample). 200µL of the tissue 

homogenate was added to a fresh test tube and 100µL of 2mg/mL C17:0 (heptadecanoic acid) 

was added to the tube (total volume in tube = 300µL), C17:0 was used as an internal control to 

control for pipetting error. Then, add 1mL of chloroform to the tube (total volume in tube = 

1.3mL) and vortex. Add another 1mL of chloroform to the tube (total volume in tube = 2.3mL) 

and vortex. Two phases should be apparent now, with the lipid phase appearing in the bottom of 

the tube and the polar phase appearing in the top of the tube. Centrifuge tubes at 3400rpm for 10 

minutes at 4 degrees Celsius (this is Tube A). NOTE: I refer to the word “tube” in the singular 

case for simplification purposes, but you would have more than one tube if preparing more than 

one fatty acid sample. Prepare sodium sulphate filtration pipettes (with 5-inch Pasteur pipettes) 

according to the diagram in Figure 3.1. In short, inserting a small piece of tissue paper into the 

main cylinder of pipette. Push this piece of paper down the cylinder of the pipette until it can 
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travel no further. The goal is to “clog” the pipette so that sodium sulphate and large solids cannot 

pass through the pipette. Next, add a 1.5-inch stack of sodium sulfate on top of the tissue paper. 

The purpose of the sodium sulfate is to allow the polar substrate (i.e. sodium sulfate) to extract 

polar molecules from the lipid/chloroform phase. Next, use a pipette to slowly add the 

lipid/chloroform phase that appeared at the bottom of Tube A after centrifuging. The 

lipid/chloroform phase will pass through the sodium sulphate and tissue paper in the pipette and 

be collected in a new tube. Use a new tube with a screw cap to catch the filtrate (this is Tube B). 

Add one more mL of chloroform to the previous test tube from which the lipid/chloroform phase 

was extracted (i.e. Tube A). Vortex Tube A and centrifuge at 3400xG for 10 minutes. Repeat the 

procedure where the lipid/chloroform phase is pipetted through the sodium sulfate in the Pasteur 

pipette, and collect the filtrate again in Tube B. The volume in Tube B should be close to 1.5 to 

2mL of filtered lipid/chloroform. This is a good stopping point for the day if necessary. If 

stopping for the day, be sure to parafilm wrap Tube B for overnight storage at -20 degrees 

Celsius. 
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Figure 3.1. Pasteur pipette used for filtering lipid/chloroform phase through sodium 

sulfate. 

 

     Fatty acid methyl ester (FAME) preparation: To make the methylating reagent, slowly add 

5.6mL of acetyl chloride to 112mL of methanol. Do this with a magnetic stirring rod mixing the 

solutions. Evaporate the chloroform from Tube B with nitrogen gas. Be sure to ethanol wash the 

nitrogen gas nodule before inserting it into Tube B. After the chloroform is evaporated from 

Tube B, add 1mL of the freshly prepared methylating reagent into Tube B, return the screw cap 

to the tube and vortex. Then incubate Tube B in an oven at 70 degrees Celsius for one hour. 



43 

 

After incubation is complete, add 500uL of methanol to Tube B if it experienced complete 

evaporation of methylating reagent. 

     Isolation of methylated fatty acids: Add 2mL of hexane to Tube B and vortex. Add 1mL of 

milli-Q water to Tube B and vortex. Add 1mL of hexane to Tube B and vortex. Screw the cap 

back onto Tube B and centrifuge the tube at 3750xG for 10 minutes at 4 degrees Celsius. After 

centrifuging, a lipid/hexane layer should appear on the top of Tube B. Pipette this lipid/hexane 

layer to a new tube (this is Tube C). Evaporate the hexane from Tube C with nitrogen gas. Add 

150µL of hexane to Tube C and vortex. Put a 250µL glass insert into a 9mm chromatography 

autosampler vile, and then transfer 125µL of the lipid hexane from Tube C to the glass insert that 

is in the chromatography autosampler vile. Screw the lid onto the chromatography vile. This is 

also a good stopping point if necessary. Wrap the chromatography vile in parafilm wrap and 

store at -20 degrees Celsius, if stopping for the day.  

     Gas chromatograph analysis of methylated fatty acids: Fatty acids in the chromatography vile 

were analyzed using a Shimadzu GC-2020 gas chromatography instrument (Shimadzu Scientific 

Instruments Inc., Columbia, MD). This instrument utilizes a Supelco 100-m SP-2560 fused silica 

capillary column and a flame ionization detector. The linear velocity of the helium carrier gas 

was held constant at 23cm/s with a split ratio of 10:1. Oven temperature was set to 150 degrees 

Celsius for 80 minutes and incrementally increased by 3 degrees Celsius per minute until 

reaching a ceiling of 249 degrees Celsius. The temperature was held there for 10 minutes. 

Injector and detector temperatures were both held at 255 degrees Celsius. PUFA1 (Supelco, 

47033) and PUFA3 (Supelco, 47085-U) fatty acids were used as standards to identify unknown 

peaks in the ovarian tumor samples. These standards were included with every iteration with the 

gas chromatography instrument. Hexane was used to clear the column every 5 samples that were 
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analyzed. Peaks in the data were observed by contrasting unknown sample peaks with the peaks 

of a PUFA No. 1 standard (47033, Supelco) and a PUFA No. 3 standard (47085-U, Supelco). 

The area under the curve of each new peak was then normalized to the peak of the C17:0 internal 

control, and then normalized to the protein concentration that was determined for the sample 

during BCA analysis of the original tissue homogenate.     

3.7  Protein isolation 

     5 cryotubes containing frozen hen ovarian tumor tissue were randomly selected from each 

diet group. All stage 2, stage 3 and stage 4 ovarian tumors were eligible for selection, so stage 

was treated as a stochastic variable (with the exclusion of stage 1 samples that are often 

borderline tumors). Microsoft Excel’s random number generating tool was used to generate 

random numbers. Non-parametric Kruskal-Wallis ANOVA (with Dunn’s post-hoc test, p<0.05) 

was conducted to ensure that stages were not significantly clustered in any diet before 

proceeding. Approximately 50mg of hen ovarian tissue was collected from cryotubes containing 

frozen ovarian tissue; collected samples were then placed in 5mL round bottom, snapcap test 

tubes. Samples were immediately homogenized in a tissue homogenizer in 1mL of ice-cold lysis 

buffer. The lysis buffer consisted of (per 10mL) 8.9mL water, 1mL 1% SDS diluted in PBS, and 

0.1mL of 100x HALT protease and phosphatase inhibitor cocktail (ThermoFisher, 78440). After 

homogenizing samples, each sample was transferred to a 1.5mL Eppendorf tube and centrifuged 

at 3000xG for 5 minutes at 4 degrees Celsius. The supernatant was collected, aliquoted and 

frozen at -80 degrees Celsius.            

3.8  RNA isolation 

     For normal hen ovaries, 9 cryotubes containing frozen hen ovary samples were randomly 

selected from each diet group. Microsoft Excel’s random number generating tool was used to 
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generate random numbers. For cancerous hen ovaries, 9 cryotubes containing frozen ovary 

samples were randomly selected from each diet independent of cancer stage (i.e. all stages were 

eligible for selection). Non-parametric Kruskal-Wallis ANOVA (with Dunn’s post-hoc test, 

p<0.05) was conducted to ensure that stages were not significantly clustered in any diet before 

proceeding. For RNA isolation from hen ovaries, approximately 25mg of ovarian tissue was 

collected from cryotubes containing frozen ovarian tissue; collected samples were then placed in 

5mL round bottom, snapcap test tubes. 1mL of Trizol reagent (Thermofisher, 15596026) was 

added to each test tube, and then tissues were homogenized. For cell culture collections, cells 

were washed twice with 2mL of 1X Dulbecco’s phosphate-buffered saline (Corning, 20030CV), 

and then 1mL of Trizol reagent was added to each dish. Trizol was pipetted in each dish until 

cells were noticeably digested (i.e. a thick mucous-like homogenate was formed from all cells). 

From this point forward, I used the same steps for both hen ovary homogenates and cell culture 

homogenates. Homogenates (from ovaries or cells) were transferred to 1.5mL Eppendorf tubes 

and kept at room temperature (RT) for five minutes. 0.2mL of chloroform was added to each test 

tube, lightly mixed and then tubes were incubated at RT for 10 minutes. Tubes were then 

centrifuged at 12,000xG for 15 minutes at 4 degrees Celsius. After centrifuging, the top (aqueous 

phase) was transferred to a new 1.5mL Eppendorf tube, and 0.5mL of isopropynol was added to 

each new tube. New tubes were incubated at RT for 10 minutes and then centrifuged at 

12,000xG for 12 minutes at 4 degrees Celsius. The supernatant was then poured off from each 

tube, and the RNA pellet was retained. 1mL of 70% ethanol was added to each tube (in order to 

wash RNA pellets), and tubes were centrifuged at 12,000xG for 15 minutes at 4 degrees Celsius. 

Supernatant from each tube was then poured off, and tubes were allowed to air dry at RT for 15 

minutes. 100µL of milli-Q water was then added to each tube, and tubes were then incubated in a 
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water bath at 55 degrees Celsius for 10 minutes. RNA pellets were visually inspected to ensure 

that they were fully dissolved after water bath incubation. RNA was then precipitated in each 

tube by adding 125mL of 4 molar ammonium acetate and 300µL of 100% ethanol; tubes were 

lightly vortexed and then allowed to incubate at -80 degrees Celsius for 20 minutes. After 

incubation, tubes were centrifuged at 12,000xG for 10 minutes at 4 degrees Celsius. Supernatant 

was poured off from each tube, and 1mL of 70% ethanol was added to each tube; tubes were 

then centrifuged at 12,000xG for 10 minutes at 4 degrees Celsius. Supernatant was poured off, 

and RNA pellet was allowed to air dry at RT for 15 minutes. RNA pellets were resuspended in 

100µL of milli-Q water, and the concentration of RNA was measured by detecting the 

260nm/280nm ratio with a Nanodrop (Thermofisher). All RNA samples above 4000ng/µL were 

diluted to approximately 2000ng/µL, to ensure that the RNA concentration of the sample was in 

the detectable range of the Nanodrop. 

3.9  RNA quality check (agarose formaldehyde gel electrophoresis) 

     10X MOPS preparation: 500mL of 10X morpholino-propanesulfonic acid (MOPS) was 

prepared by combining 20.93 grams of 200mM MOPS, 2.05 grams of 50mM sodium acetate, 

and 1.86 grams of 10mM ethylenediaminetetraacetic acid (EDTA). These reagents were 

suspended in 250mL of milli-Q water and stirred with an electric stirring rod, and the pH was set 

to 7.0 with 5M NaOH (final volume of 10X MOPS = 500mL). 10X MOPS was wrapped in 

aluminum foil and protected from light. 

     1.2% agarose preparation: 400 mL of 1.2% agarose gel was created by combining the 

following reagents: 4.8 grams of electrophoresis grade agarose, 325mL of milli-Q water, and 

40mL of 10X MOPS. 

     Laying the 1.2% agarose gel: Boil the 1.2% agarose in a microwave for 4 minutes and allow 
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to cool to 65 degrees Celsius. Add 91.25mL of 1.2% agarose gel to a beaker and then add 9mL 

of 37% formaldehyde and 5uL of 10mg/mL ethidium bromide (EtBr). Mix these together with a 

glass stirring rod. Pour the gel mixture into a horizontal electrophoresis apparatus, add the lane 

“comb” and allow to solidify.  

     Preparing the running buffer: Combine 100mL of 10X MOPS, 87mL of 37% formaldehyde, 

and 813µL of milli-Q water. Final volume = 1 liter. 

     Preparing the samples and running the electrophoresis gel: Sample buffer includes the 

following, per sample: 7.5µL of Formamide, 2.5µL of 0.5mg/µL EtBr, 2.5µL milli-Q water, 

1.5µL of 10X MOPS, 1.5µL of 0.1% bromophenol blue (diluted in 50% glycerol), and 1.3µL of 

37% formaldehyde. Thaw RNA samples on ice and use Nanodrop to determine the volume 

required for 1 microgram (µg) of RNA. Add 1µg of RNA to 15µL of sample buffer. Heat each 

sample at 65 degrees Celsius for five minutes and then immediately place the sample on ice. 

Load 15µL of each sample into lanes of the 1.2% agarose gel and cover the gels with running 

buffer. Electrophorese the samples at 100V until the blue dye reaches the opposite end of the gel. 

Gels were then visualized using the EtBr setting on a Gel Doc EZ Imaging SystemTM (Bio-Rad, 

170-8270). 18S and 28S lanes were observed to evaluate the quality of the RNA sample. A 

prominent, well defined band for 18S and 28S RNA was investigated to determine the integrity 

of the RNA sample. RNA samples with indeterminant bands were re-isolated from their given 

tissue or cell culture sample. All other RNA samples were retained for further analysis (e.g. 

retained for cDNA synthesis). 

 3.10  cDNA synthesis 

     For mRNA analysis: RNA samples were thawed gently on ice, and the volume required to 

obtain 2ug of RNA was determined using a Nanodrop. cDNA synthesis samples included: 2µg of 
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sample RNA, 1µL DNAse and 1µL DNAse buffer (brought up to a total volume of 10µL with 

nuclease-free water). Samples were incubated in a thermocycler at 37 degrees Celsius for 30 

minutes. Samples were then treated with 1µL of DNAse stop solution (total volume 11µL), and 

samples were incubated in a thermocycler for at 65 degrees Celsius for 10 minutes. Reverse 

transcriptase master mix was then prepared, using (per sample) 3.2µL of nuclease-free water, 

2µL of 10x reverse transcriptase buffer, 2µL of 10x reverse transcriptase primers, 1µL of 

MultiscribeTM reverse transcriptase (Applied Biosystems, 4311235), and 0.8µL of 100mM dNTP 

mix. The reverse transcriptase buffer, primers and dNTP mix were part of a cDNA synthesis kit 

(A&B Biosystems, 4368814). 9µL of the reverse transcriptase master mix was added to each 

11µL sample containing freshly DNAse’d RNA (total volume 20µL now). These 20µL samples 

were incubated in a thermocycler using the following protocol: 25 degrees Celsius for 10 

minutes, 37 degrees Celsius for 90 minutes, 37 degrees Celsius for 30 minutes, 85 degrees 

Celsius for 5 minutes, and then immediately cooled to 4 degrees Celsius. cDNA samples were 

then diluted 10 times with nuclease-free water and stored at -20 degrees Celsius. 

     For microRNA analysis: RNA samples (same RNA samples used for mRNA analysis) were 

gently thawed on ice. RNA samples were then diluted to 5ng/µL using nuclease-free water. 

cDNA master mix was prepared using the Universal cDNATM Synthesis Kit (Exiqon, 203301). 

From this kit, 2µL of 5x reaction buffer, 5µL of nuclease-free water and 1µL of enzyme mix, 

were prepared per cDNA synthesis reaction (total volume = 8µL of master mix). These 8µL of 

master mix were added to 2µL of 5ng/µL RNA (total volume 10uL), and each sample was 

incubated in a thermocycler, using the following protocol: 42 degrees Celsius for 60 minutes, 95 

degrees for 5 minutes, and then immediately cooled to 4 degrees Celsius. Stored at -20 degrees 

Celsius. 
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3.11  qPCR analysis 

     Oligonucleotide primer design: Primers were designed using NCBI’s Primer Designing Tool 

(available at: https://www.ncbi.nlm.nih.gov/tools/primer-blast/). In general, oligonucleotides 

were designed so that the PCR product would be between 90 and 100 nucleotides in length. The 

primer melting temperatures were attempted to be as close as possible, with melting temperatures 

never being more than 2-degrees Celsius variable between forward and reverse primers. 60 

degrees Celsius was the average melt temperature sought. Oligonucleotides were blasted against 

the human (Homo sapiens) genome for human gene analysis and against the chicken (Gallus 

gallus) genome for chicken gene analysis. The max number of guanine or cytosine nucleotides 

(i.e. GC) permitted in the final five nucleotides of the 5’ end was three, in order to stabilize 

annealing strength. Nucleotide repeats exceeding four nucleotides (e.g. TTTT) were generally 

considered a disqualifying criterion. Otherwise, the default settings were utilized on the Primer 

Designing Tool, and the highest-ranking oligonucleotide pairs with minimal self-binding were 

purchased. All oligonucleotide pairs for mRNA analysis were ordered from Eurofins Genomics 

(eurofinsgenomics.com). Once received, all oligonucleotide primers were diluted to a 

concentration of 100 micromolar and stored at -20 degrees Celsius. A list of human (Homo 

sapiens) oligonucleotide primers can be seen in Table 3.5, and a list of chicken (Gallus gallus) 

oligonucleotide primers can be seen in Table 3.6. 

     Oligonucleotide primer efficiency analysis: For the analysis of cDNA amplification from 

mRNA-based samples, the goodness of fit of the 2(-Delta Delta C(T)) method for each 

oligonucleotide primer set was determined by creating amplification efficiency curves for the 

oligonucleotide primer set. A serial cDNA dilution was created (seven serial 2-fold dilutions) 

was used as the input template. In order to meet the efficiency requirments, the Ct values across 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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the dilutions needed to have an R-squared of at least 0.98. The percent efficiency of each 

oligonucleotide primer set, calculated as “(2^-(1/slope of Ct amplification))-1)”, needed to range 

between 95% and 110% in order to meet amplification efficiency requirements. All Ct values 

and melt peaks were analyzed using the CFX ManagerTM software. 

     qPCR analysis for measuring cDNA from messenger-RNA: Thaw the SsoFastTM EvaGreen® 

Supermix (Bio-Rad, 1725203) and protect it from light. Thaw the cDNA template samples 

(stored at -20 degrees Celsius) and the relevant oligonucleotide primer sets. This qPCR protocol 

uses 10µL reactions in a 384-well plate. Each 10uL qPCR reaction received 0.1µL of 100uM 

forward oligonucleotide primer (50nM forward primer), 0.1µL of 100µM reverse 

oligonucleotide primer (i.e. 50nM reverse primer), 5µL of SsoFastTM EvaGreen® Supermix 

(Bio-rad, 1725203), and 3.8µL of nuclease-free water, and 1µL of cDNA template (total reaction 

volume = 10µL). Also included in each plate were negative control samples that included 

forward and reverse oligonucleotide primers, EvaGreen® Supermix, and nuclease free water 

(total volume 10µL). All reactions were performed using a Bio-Rad CFX384TM thermocycler. 

The Evagreen was activated at 95 degrees Celsius for 10 minutes. Each round of amplification 

underwent 15 seconds of denaturation at 95 degrees Celsius and 20 seconds of annealing and 

extending at the appropriate annealing temperature (the annealing temperature was set to two 

degrees Celsius below the lowest melting temperature among the oligonucleotide primer pair). A 

photo was taken of the fluorescence following the completion of each round of amplification. A 

melt curve analysis was used after the completion of amplification, consisting of a 0.5-degree 

Celsius step from 65 degrees Celsius to 95 degrees Celsius, with a five second hold at each step 

and a photo of fluorescence. All Ct values and peaks were analyzed using the CFX ManagerTM 

software. 
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     qPCR analysis for measuring cDNA from micro-RNA: Thaw the Exilent Sybr Green PCRTM 

master mix (Exiqon, 203401) on ice and protect it from light. Thaw cDNA samples on ice and 

prepare dilutions of each cDNA containing 1:79 cDNA:nuclease-free water (i.e. add 5μL of 

cDNA to 395μL of nuclease-free water, total volume 400μL). Each qPCR reaction receives 5μL 

of master mix, 1uL of PCR primer mix (0.5uL miR-200a-3p primer and 0.5μL miR-455-5p 

primer), and 4uL of the 1:79 diluted cDNA template (total volume = 10μL per qPCR reaction). 

Each reaction was analyzed in a Bio-Rad CFX384TM thermocycler using 40 rounds of cDNA 

amplification. The DNA polymerase was activated at 95 degrees Celsius for 10 minutes. Each 

round of amplification underwent 10 seconds of denaturation at 95 degrees Celsius and 1 minute 

of annealing and extending at 60 degrees Celsius. A photo was taken of the fluorescence 

following the completion of each round of amplification. A melt curve analysis was used after 

the completion of amplification, consisting of a 0.5-degree Celsius step from 65 degrees Celsius 

to 95 degrees Celsius, with a five second hold at each step and a photo of fluorescence. All Ct 

values and peaks were analyzed using the CFX ManagerTM software. 

     qPCR data analysis: All Ct values and melt peaks were analyzed using the CFX ManagerTM 

software. All qPCR data were analyzed using the 2(-Delta Delta C(T)) method as described in 

(275). For chicken samples, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as 

a reference gene. For human samples, Tata-box binding protein (TBP) was used as a reference 

gene. 
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Table 3.5. List of oligonucleotide primers used in qPCR analysis of human samples. 

Abbreviation Gene name 5' to 3' sequence 

CDH1 Cadherin-1 
F: TGTGCTGGATGTGAATGAAG 
R: GCAGTGTAGGATGTGATTTC 

HO1 Heme Oxygenase 1 
F: CCAGAAGAGCTGCACCGCAA 
R: CGCTGCATGGCTCGTGTGTA 

NQO1 NAD(P)H Quinone Dehydrogenase 1 
F: TGACAAAGGACCCTTCCGGAGT 
R: TCATGTCCCCGTGGATCCCT 

SNAI1 Snail 
F: GGTTCTTCTGCGCTACTGCT 
R: GTTAGGCTTCCGATTGGGGT 

SNAI2 Slug 
F: TGGGCTGGCCAAACATAAGCA 
R: GGCGCCCAGGCTCACATATT 

TBP Tata-box Binding Protein 
F: GAGGATAAGAGAGCCACGAA 
R: GGACTGTTCTTCACTCTTGG 

VIM Vimentin 
F: AACTTAGGGGCGCTCTTGTC 
R: CGCTGCTAGTTCTCAGTGCT 

ZEB1 Zinc Finger E-Box Binding Homeobox 1 
F: CCTGCCAACAGACCAGACAGT 
R: CTTGCCCTTCCTTTCCTGTGTCA 
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Table 3.6. List of oligonucleotide primers used in qPCR analysis of chicken samples. 
Abbreviation Gene name 5' to 3' sequence 

ACC Acetyl CoA Carboxylase 
F: CCGCTGTACCGAGACGG 
R: GGCCGCACTTCCTCTGG 

ACYL ATP Citrate Lyase 
F: GACAGAACCGCCCGTCACA 
R: AGCAGACACCAGAAGTCGGAG 

ATP5A1 ATP Synthase F1 Subunit Alpha 1 
F: AAGCTGAAGGAAATAGTCACAAA 
R: TGATGGAGAGCACATAACAACA 

ATP5B ATP Synthase Subunit 5B 
F: CGGTTATTCGGTGTTCGCTG 
R: CCTGCGTGAAGCGGAAAATG 

CAT Catalase 
F: CCATCCTTCATCCATAGCCAGA 
R: AGACTCAGGGCGAAGACTCA 

CDH1 Cadherin-1 
F: GCAGAAGATCACGTACCGCAT 
R: ATGTACTGTTGATGGCGTGC 

DNM1L Dynamin 1 Like (DRP1) 
F: GTGACCCGAAGACCCCTTAT 
R: AGCATCTATCTCATTTTCATCTCCA 

FASN Fatty Acid Synthase 
F: CAACAGCCAGCTTGGAATGG 
R: TACCACCTCCCACTCTTGGT 

GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase 
F: ACAGCAACCGTGTTGTGGAC 
R: CAACAAAGGGTCCTGCTTCC 

MT-ATP6 ATP Synthase Subunit 6, mitochondrial 
F: AATTCTCAAGCCCCTGCCTA 
R: AGGAGGCCTAGGAGGTTAAT 

MT-ATP8 ATP Synthase Subunit 8, mitochondrial 
F: ATGCCCCAATTAAACCCAAAC 
R: TTAGGTTCATGGTCAGGTTCA 

MT-COX1 Cytochrome C Oxidase Subunit 1, mitochondrial 
F: TCCTTCTCCTACTAGCCTCA 
R: AGGAGTAGTAGGATGGCAGT 

MT-COX2 Cytochrome C Oxidase Subunit 2, mitochondrial 
F: AGGCTTTCAAGACGCCTCAT 
R: GTGAGATCAGGTTCGTCGAT 

MT-COX3 Cytochrome C Oxidase Subunit 3, mitochondrial 
F: TAGTTGACCCAAGCCCATGA 
R: GTAGGCCCTTTTGGACAGTT 

MT-CYTB Cytochrome B, mitochondrial 
F: TGCCTCATGACCCAAATCCT 
R: AGTGTGAGGAGGAGGATTACT 

MT-ND2 NADH:Ubiquinone Oxidoreductase Core Subunit 2, 
mitochondrial 

F: AGCATAACCAACGCCTGATC 
R: GATGTTAGGAGGAGGAGTGT 

NOS2 Inducible Nitric Oxide Synthase 
F: ACCCTGCAAGTGTGGAGTTC 
R: GATCTTGGCCGTTTGCTTGG 

PPARG Peroxisome Proliferator Activated Receptor Gamma 
F: TTGGCCCGTTAATTTTGGA 
R: GAAAAATCAACAGTGGTAAATGG 

SCD1 Sterol CoA Desaturase 1 
F: CTGGTACGCAAACACCCAGA 
R: ATCTCCGCTGGAACATCACC 

SLC25A4 ADP/ATP Translocase 
F: GACCGGCTCCCAGCATGAGT 
R: GGGCGACAGCCGTCTTGGAG 

SOD2 Superoxide Dismutase 2 
F: ACCTAAGTGGAAACGCACAC 
R: ACCAGCTACTACCAAAGACGA 

SREBP1 Sterol Regulatory Element Binding Protein 1 
F: GTGCTTTTCGGATGCGTTGG 
R: CAGGCCAGAGCTGATGGAC 
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3.12  Western blot analysis 

     Gel preparation: SDS-PAGE gels were electrophoresed using Mini-PROTEAN Tetra Cell 

vertical gel system, 1mm gel (Bio-rad, 1658005EDU). For 9.7% resolving gels, we used the 

following: 1.665mL 30% acrylamide, 1.425mL Tris buffer (8.8 pH), 2mL milli-Q water, 50μL 

10% APS, 5μL TEMED and 25μL trichloroethanol (TCE). TCE was added for the purpose of 

quantifying the total protein in the sample via fluorescent imaging. For stacking gels, we used 

the following: 450μL of 30% acrylamide, 660uL of Tris buffer (6.8pH), 1.5mL milli-Q water, 

15μL 10% APS and 3μL TEMED. 

     Sample preparation and electrophoresis: 30μg of protein were mixed into a 2X Laemmli 

buffer solution and loaded into separate lanes in the gel. This buffer was derived from a 4X 

Laemmli buffer consisting of 2.5mL of 0.25M Tris-HCl (pH 6.8), 2mL of 2-mercaptoethanol, 

0.8 grams of SDS, 2mL of glycerol, and 80uL of 0.1% bromophenol blue that was diluted to 2x 

in 50% glycerol. Samples were randomized on blots so as to reduce inter-blot bias. Loading 

controls were used in each blot in order to intercalibrate blot densitometry values. 

Electrophoresis was conducted using a running buffer consisting of 900mL milli-Q water and 

100mL of 10X buffer (1X buffer contained 14.4g glycine, 3g Tris-base and 1g SDS). Proteins 

were electrophoresed at 100 volts through the stacking lane until a thin horizontal blue lane 

formed at the foot of the stacking gel. Proteins were then electrophoresed at 120 volts through 

the separating gel. Electrophoresis continued until the proteins reached the foot of the separating 

gel. EZ-RunTM protein ladder (Fisher, BP3603-500) was used in all protein electrophoresis work 

to identify the molecular weight of protein bands. In 9.7% resolving gels, the visible weights in 

the protein ladder were 170kDa, 130kDa, 95kDa, 72kDa (usually difficult to see), 55kDa, 

43kDa, 34kDa and sometimes a small amount of 26kDa. 
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     Gel transfer and primary antibody incubation: Gels were then removed from the 

electrophoresis apparatus and placed in transfer cassettes, using transfer membranes and PVDF 

membrane to facilitate the transfer. Transfers were performed in a horizontal transfer apparatus 

using a transfer buffer consisting of 700mL milli-Q water, 200mL methanol, and 100mL of 

buffer (1L of buffer contains 30g Tris-base, 144g glycine and 1g SDS). Transfers were 

performed at 100 volts for 1 hour at RT, using an ice-cold block to control temperature rise. 

PVDF membranes were then washed in 1X TBS 3 times for 5 minutes. PVDF membranes were 

then visualized in the Gel Doc EZ Imaging System (Bio-Rad, 170-8270) using the gel setting for 

TCE in order to quantify the total protein per lane of the membrane. PVDF membranes were 

then blocked using 30% soy milk in 1X TBST (TBS with 0.01% Tween 20), for 20 minutes. 

Blocking solution was then poured off and membranes were incubated overnight at 4 degrees 

Celsius in the appropriate dilution of primary antibody in 30% soymilk + 1X TBST (total 

volume of primary incubating solution, 5mL). A list of primary antibodies used in this research 

can be seen in Table 3.7. The polyclonal E-cadherin antibody was a gratefully received gift from 

Dr. Warren J. Gallin’s lab. This antibody was generated against a fusion protein that 

encompassed the majority of E-cadherin’s extracellular domain (273), thus making this antibody 

ideal for studying the expression of the 80kDa E-cadherin fragment (because the 80kDa 

fragment is the extracellular domain of E-cadherin).  

 

Table 3.7. List of primary antibodies used. 

Name Host animal Antigen species Antigen location Dilution Source 
E-cadherin Mouse, monoclonal Human C-terminus 1:2000 BD Transduction Lab, #610181 
E-cadherin Rabbit, polyclonal Chicken N-terminus 1:1000 Dr. Warren J. Gallin (273) 
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     Secondary antibody incubation and visualization of fluorescence: The following day, the 

primary antibody was poured off and the membrane was washed in 10mL of TBST three times 

for five minutes. The membrane was then incubated in DyLight™ 680 conjugated goat anti-

mouse IgG antibody (H&L) and/or DyLight™ 800 conjugated goat anti-rabbit IgG antibody 

(H&L) secondary antibody at a concentration of 1:4000 in TBST, for one hour. Secondary 

antibody was then poured off and the membrane was washed in 10mL of TBST three times for 

five minutes. After the last wash, the membrane was imaged for infrared signal using Odyssey 

CLx imaging system (LI-COR Biosciences). Densitometry analysis was also conducted using 

this software.  

3.13  Immunoprecipitation of 80kDa E-cadherin fragment from hen ascites fluid and hen 

ovarian tumor 

     Ascites fluid preparation: Ascites fluid from a hen with ovarian cancer was thawed and 

filtered using a syringe with a 0.2µL filter to ensure the removal of solid matter and cellular 

fraction from ascites fluid. 5mL of the ascites fluid was then added to a protein concentrator with 

a 30kDa filtration cutoff (Pierce, 2162598) and centrifuged at 3750xG for 25 minutes. The 

filtrate was discarded, and the portion containing molecules greater than 30kDa was retained in 

Eppendorf tube aliquots.  

     Magnetic bead wash:  300uL of protein A magnetic beads (Pierce, 88845) was combined with 

300μL of 1X TBST (TBST with pH = 6.8) and gently hand-mixed for one minute and repeated 

once. Protein A beads are being used due to the high affinity between protein A and rabbit IgG. 

A magnet was then used to pull beads to the side of the tube, so that TBST wash fluid could be 

aspirated and discarded. All steps involving the removal of fluid (i.e. supernatant) from tubes 

containing magnetic beads necessarily require the usage of a magnet, otherwise beads would be 
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lost with the supernatant. This TBST wash step was repeated once. Beads were then washed with 

300μL of milli-Q water to remove remnant detergent.     

     Magnetic bead conjugation with either rabbit E-cadherin IgG or rabbit Control IgG: Two 

separate conjugations were prepared with magnetic beads; one bead conjugation was with a 

rabbit polyclonal chicken E-cadherin antibody, and the other bead conjugation was with a rabbit 

control IgG antibody. For the E-cadherin IgG-conjugated magnetic beads, 24μL of 10μg/μL 

rabbit polyclonal chicken E-cadherin IgG was added to washed beads and brought to a final 

volume of 300μL with a bead blocking solution (consisting of 5% BSA plus 0.05% NP40 diluted 

with 1XPBS). For the Control IgG-conjugated beads, 48µL of 5µg/µL rabbit Control IgG 

(Invitrogen, 026102) was added to washed beads and brought to a final volume of 300µL with 

bead blocking solution (also consisting of 5% BSA plus 0.05% NP40 diluted with 1XPBS). 

Beads were then incubated overnight on a roller at 4 degrees Celsius. After completing overnight 

incubation, the supernatant containing the blocking buffer and unbound antibody was discarded. 

The beads were then washed (gently mixed) 5 times with 300µL of milli-Q water to remove 

residual antibody and blocking solution. The final wash was discarded, and the 

immunoprecipitation step was started immediately. 

     Immunoprecipitation: 300µL of concentrated chicken ascites fluid was thawed and added to 

magnetic beads already conjugated with the chicken E-cadherin IgG (this is Tube A). Another 

300µL of concentrated chicken ascites fluid was thawed and added to beads already conjugated 

with the Control IgG (this is Tube B). Also, as a positive control, 50µL of hen ovarian tumor 

homogenate was thawed and added to magnetic beads already conjugated with E-cadherin IgG 

(this is Tube C). Each of these tubes was incubated at RT on a roller for one hour. After 

incubation, the ascites fluids were aspirated from tubes A and B and frozen at -80 degrees 
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Celsius. The ovarian tumor homogenate in tube C was discarded. The beads from tubes A, B and 

C were retained. The ascites fluid from tubes A and B represent the experimental treatment (i.e. 

E-cadherin depleted fluid) and control treatment (i.e. E-cadherin retained fluid), respectively. 

The ascites fluids from tube A and B are intended for use in TMRE experiments and Seahorse 

experiments that will be described later in the methods.  

     The beads that were collected from tubes A, B and C, were boiled in 100uL of 2X Laemmli 

sample buffer for five minutes at 100 degrees Celsius. The eluates (i.e. what separates from the 

beads during boiling) from beads A, B and C, were collected, aliquoted and frozen at -80 degrees 

Celsius. The eluates from beads A, B and C, will be used in western blotting to validate the 

efficiency of the E-cadherin depletion. The eluates from beads A and C will be used in 

proteomics to conduct peptide mass fingerprinting of the 80kDa molecular weight (to try to 

validate that we are investigating the 80kDa fragment of chicken E-cadherin). The results of the 

immunoprecipitation can be seen in Figure 3.2. In that figure, the last two 80kDa bands on the 

right (i.e. E-cadherin IgG ascites eluate & ovarian tumor homogenate eluate) are representations 

of the two 80kDa bands that were submitted for MALDI-MS peptide mass analysis. 
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Figure 3.2. Western blot verification of immunoprecipitation results. After completing the 

immunoprecipitation of hen ascites fluid with the E-cadherin IgG and the Control IgG, the 

aspirated ascites fluids (left side of blot) and the associated bead eluates (right side of blot) were 

electrophoresed in a 9.7% gel. The rabbit polyclonal chicken E-cadherin primary antibody was 

used with a rabbit 800nm secondary streptavidin fluorophore (the blot is the visualization of the 

blot at 800nm). The gel was preloaded with TCE so that protein expressions could be normalized 

to the total protein content. This is important, because the “Control IgG ascites” sample was 

underloaded. 

 

 

3.14  Proteomics analysis for 80kDa E-cadherin fragment 

     SDS-PAGE gel separation, Coomassie staining, western blotting and cutting of the band of 

interest: The goal here was to visualize the eluates from beads A and beads C, in order to 

identify the 80kDa band of interest (via Coomassie stain) and cut it out for proteomics analysis. 
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In brief, two gels were run in tandem; one gel was intended for western blot analysis to visualize 

the 80kDa E-cadherin band of interest, while the other gel was intended for Coomassie staining 

and protein band excision. The rationale for these two gels is that the 80kDa band needed to be 

visualized via western blot before performing the cutting of the band from the Coomassie stained 

gel. This tandem gel approach adds more reliability in the cut from the Coomassie gel.  

     The eluate from beads A should contain the ascites proteins that were bound to chicken E-

cadherin IgG. Similarly, the eluate from beads C should contain the ovarian tumor proteins that 

were bound to chicken E-cadherin IgG. Said concisely, the 80kDa E-cadherin protein should be 

present in both eluates.  For the SDS-PAGE gel separation, we utilized our western blot protocol 

for a 9.7% gel. 40μL of eluate from beads A and beads C were loaded into separate lanes on two 

different gels and electrophoresed at 120 volts until the bromophenol blue reached the foot of the 

gel. The gel intended for Coomassie staining was then transferred to 20mL of fixing solution that 

contained 25% isopropanol, 10% acetic acid and 65% milli-Q water, and incubated in this 

solution on a rocker at RT for 60 minutes. The fixing solution was then poured off and replaced 

with 20mL of Coomassie stain solution containing 10% acetic acid and 60mg/L of Coomassie 

Blue R-250 stain (Sigma, R-250). This is a more conservative Coomassie staining approach that 

allows more sensitive detection of proteins while limiting overstaining. The gel was incubated in 

this stain solution for two hours. The stain solution was then poured off and replaced with 20mL 

of destaining solution consisting of 10% acetic acid and 90% milli-Q water. The gel was 

destained on a rocker at RT for six hours. The destaining solution was then poured off, and the 

gel was stored in 7% acetic acid at 4 degrees Celsius, until the western blot protocol was 

complete on the second gel. That said, the second gel was processed through the western blot 

protocol (using rabbit polyclonal chicken E-cadherin IgG as the primary antibody, conjugated 
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with rabbit 800nm secondary fluorophore) to visualize the location of the 80kDa band in the 

eluates from beads A and beads C. The images from that western blot were used to target the 

location in the Coomassie-stained gel where the 80kDa band of interest was cut out with a sterile 

razor blade. The excised Coomassie-stained bands were stored in 1.5mL Eppendorf tubes and 

covered in 300µL of milli-Q water and frozen at -80 degrees Celsius, until transferred for 

proteomics analysis.  

     Proteomics analysis of 80kDa bands of interest: The frozen bands of interest from beads A 

and beads C were transferred to the SIUC mass-spectrometry facility (operated by Dr. Mary 

Kinsel), so that peptide mass fingerprinting analysis could be performed. The bands were 

digested overnight with trypsin. 7µL of 1% formic acid was added to each sample to stop the 

action of trypsin. The supernatant containing tryptic peptides was spun down, transferred to a 

0.5mL Eppendorf tube and placed on ice until analysis. 1µL of supernatant was spotted with 1µL 

of matrix (5mg -cyano-4-hydroxycinnamic acid in 50:50 acetonitrile: 0.1% trifluoroacetic acid) 

and allowed to dry at room temperature. The mass spectra of the tryptic peptides were acquired 

in the positive ion mode using a Bruker Daltonics MicroflexLR Time-of-Flight mass 

spectrometer. The tryptic peptide ion signals were searched against the SwissProt (updated 

2017_11) database using Protein Prospector MS-FIT (University of California San Francisco). 

The search parameters allowed two trypsin missed cleavages and included oxidation of 

methionine (+16Da) and carbamidomethylation on cysteine (+57Da) as variable modifications. 

The taxonomy was limited to Gallus gallus. The Pfactor (partial factor) of 0.3 was used to 

change weighting for missed cleavages. One unique protein was represented in the search results. 

Note, MOWSE protein scores greater than 63 (p <0.05).  
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3.15  Cell lines and cell culture conditions 

     The BG1 cell line was obtained from Dr. Ken Korach’s lab at National Institute of 

Environmental Health Sciences (NIEHS) (276,277). BG1 cells were originally isolated from a 

woman with ovarian adenocarcinoma, and they are an E-cadherin positive ovarian cancer cell 

line. The Immortalized Ovarian Surface Epithelial 80 (IOSE80) cell line was obtained from Dr. 

Joanna Burdette’s lab at the University of Illinois at Chicago (278,279). IOSE80 cells were 

isolated from a non-cancerous human ovary and immortalized via SV-40; they do not express E-

cadherin. HyClone DMEM cell culture medium, containing phenol red, 4mM glutamine, 25mM 

glucose and 1mM pyruvate, was utilized during the culturing of all cell lines (ThermoFisher, 

SH30604.02). BG1 cells were cultured in HyClone DMEM plus 10% fetal bovine serum and 

0.5% 1:1 penicillin:streptomycin. IOSE80 cells were cultured in Hyclone DMEM plus 10% fetal 

bovine serum, 0.5% 1:1 penicillin:streptomycin, and 11ng/100mL recombinant Epidermal 

Growth Factor (e.g.F) protein (Sigma, E5160). The rationale for using EGF was based on 

guidance from Dr. Joanna Burdette’s lab, from whom we received the IOSE80 cell line. Cells 

were cultured in 100mm dishes with a seeding density of 3x106 cells per well, and CO2 was fixed 

at 5% and the temperature was fixed at 37 degrees Celsius.  The passaging of cells was 

conducted using 0.25% trypsin-EDTA (Corning, MT25053CI). Extra cells were frozen down in 

cryotubes using 10% DMSO.  

3.16  DHA treatment experiments using BG1 ovarian cancer cells 

     BG1 cells were seeded at a density of 3X105 cells per well, in six-well (35mm well) plates 

and cultured using the aforementioned culture medium for BG1 cells. After 24 hours of seeding, 

the medium was aspirated and replaced with medium containing DMEM supplemented with 

10% fetal bovine serum and a DHA concentration of either 0µM, 25µM or 50µM DHA. DHA 
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was initially solubilized to 100mM with dimethyl sulfoxide (DMSO). Each of these DHA 

concentrations was applied in duplicate in the six-well plate. Cells were incubated for 24 hours in 

their respective treatments and cells were harvested for RNA isolation. The experiment was 

repeated four times on separate days (n=4). 

3.17  Mitochondrial membrane potential in IOSE80 cells treated with ascites fluid 

     Description of TMRE protocol for estimating mitochondrial membrane potential: A 

researcher first treats cells with TMRE and quantifies red wavelength (550nm excite / 590nm 

emit) to get an absolute measure of charge (call this “TMRE_1”). The researcher next 

depolarizes the mitochondria by treating the cells with a proton ionophore such as carbonyl 

cyanide 3-chlorophenylhydrazone (CCCP). CCCP forces the retrograde transport of protons (i.e. 

H+) from the IMS to the matrix (280). This retrograde flow of protons forces the efflux of TMRE 

from the matrix (i.e. TMRE ejection to the cytosol). The assumption is that TMRE efluxing from 

the matrix will be removed from the cell culture when the cells are washed and aspirated again. 

After washing and aspirating, the researcher measures the red wavelength (550nm excite / 

590nm emit) again to obtain a surrogate estimate of the depolarized charge (call this 

“TMRE_2”). The actual estimate of membrane potential, or ΔΨ, is the mathematical difference 

between TMRE_1 and TMRE_2 (212). This value is the ΔΨ. In almost all cases, TMRE_1 will 

be larger than TMRE_2, which will generate a positive value for ΔΨ. If ΔΨ is considerably 

negative, this could be an example of hyperpolarization; however, hyperpolarization is generally 

elicited by inhibitors such as oligomycin. 

     Initial cell seeding: IOSE80 cells were seeded in 96-well plates at a density of 10,000 cells 

per well, using 50µL of the aforementioned culture medium for IOSE80 cells, and incubated 

overnight at 37 degrees Celsius with 5% CO2.  
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     Serum and EGF starvation: After overnight incubation, the culture medium was aspirated, 

and the cells were washed twice with 50µL of 100% DMEM. Wells were then filled with 50μL 

of 100% DMEM (i.e. serum-starved and EGF-starved) and incubated at 37 degrees Celsius for 

24 hours. The rationale for removing serum and EGF from the culture medium is that we were 

trying to test the effects of the 80kDa E-cadherin (i.e. soluble E-cadherin) on the mitochondrial 

bioenergetics of the IOSE80 cells. Previous research illustrated that soluble E-cadherin has 

putative binding of receptor tyrosine kinases (RTKs) such as IGFR and EGFR (269); therefore, 

we wanted to remove serum growth factors and EGF for 24 hours prior to testing the effects of 

soluble E-cadherin treatment.  

     Ascites fluid treatment: After 24 hours of serum and EGF starvation, the culture medium was 

aspirated and replaced with DMEM containing, either: 1) E-cadherin-depleted ascites [ie ascites 

immunoprecipitated with rabbit polyclonal chicken E-cadherin IgG], or 2) E-cadherin-non-

depleted ascites [ie ascites immunoprecipitated with rabbit isotype control IgG]. The ascites 

treatments consisted of 30µL of the following: 0% ascites (100% DMEM), 1:159 ascites 

(99.375% DMEM), 1:79 ascites (98.75% DMEM) and 1:39 ascites (97.5% DMEM). Each of the 

ascites fluid treatments (e.g. 1:159, 1:79, 1:39) was tested in four replicates per plate. Ascites 

treatments were allowed to incubate for 24 hours at 37 degrees Celsius and 5% CO2.  

     Mitochondrial membrane potential measurement: After 24 hours of incubation, the ascites 

treatments were aspirated, and the cells were treated with 50µL of 30nm TMRE in DMEM and 

incubated for 5 minutes at RT and atmospheric CO2. Protect the 96-well plate from light during 

this incubation (i.e. perform your work with the hood light off if possible). After the 5-minute 

incubation, aspirate the medium and wash the cells twice with 100μL of 1X PBS. After the final 

wash, fill each well with 100μL of 1X PBS and measure fluorescence using a 96-well plate 
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reader (550nm excite / 590nm emit). After measuring fluorescence, aspirate the 1X PBS and fill 

all treatment wells with 50μL of 2.5μM CCCP (Tocris, 04-525-00) in DMEM. CCCP was 

suspended in DMSO. Once the CCCP treatments are added, incubate the cells for 20 minutes at 

37 degrees Celsius and 5% CO2. After this incubation, aspirate the medium and wash twice with 

1X PBS, and measure the fluorescence in a 96-well plate reader (550nm excite / 590nm emit). 

Next, aspirate the medium and very gently lyse the cells with 10μL of 0.1% SDS. Conduct a 

protein assay on the cells to determine the protein concentration (μg/μL) of each sample. Also 

included in the plate were cells receiving CCCP only (in 100% DMEM) and TMRE only (also in 

100% DMEM), in order to subtract the effect of reagent treatment on background fluorescence. 

     Experimental sample size: Each of these experiments was conducted 4 times on 4 separate 

days. 

     CCCP dose finding experiment: Before conducting the above TMRE experiment, we 

conducted dose response experiments to identify the optimal CCCP concentration to depolarize 

the mitochondria. We used the same cell culture conditions (i.e. serum starvation and EGF 

starvation) and applied a gradient of 0μM, 0.5μM, 1μM, 2.5μM, 5μM, 10μM and 20μM CCCP 

to identify the optimal dose at which the mitochondrial display maximum depolarization. This 

was decided as being 2.5μM CCCP.   

3.18  Oxygen consumption in IOSE80 cells treated with ascites fluid 

     Seahorse miniplate cell seeding: IOSE80 cells were seeded in Seahorse XFp (8-well) 

miniplates at 6,000 cells per well and cultured overnight at 37 degrees Celsius and 5% CO2, 

using 50uL of culture medium for IOSE80 cells. Two miniplates were seeded simultaneously. In 

both miniplates, well 1 and well 8 were not seeded with any cells (they were used as treatment 

background wells). Only wells 2 through 6 were seeded with cells (i.e. 6,000 cells per well). 
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Miniplates were then shaken in a 2-dimensional, horizontal cell shaker for one minute to ensure 

even cell distribution in each well. 

     Serum and EGF starvation: The following day, the culture medium was aspirated, and the 

cells were washed twice with 50µL of 100% DMEM. Wells were then filled to a final volume of 

50µL with 100% DMEM, and the cells were incubated for 24 hours at 37 degrees Celsius and 

5% CO2. These steps were performed for both miniplates.  

     Determining extracellular flux in response to an ascites dose gradient: 24 hours after serum 

starvation, the medium was aspirated from each well. The following treatment protocol was used 

to determine the dose response effect of ascites on extracellular flux. Wel1s 1 and 8 were used to 

measure extracellular background flux. Well 2 was filled with 100% DMEM (i.e. vehicle). Wells 

3, 4, 5, 6, and 7, received 1:159, 1:79, 1:39, 1:19 and 1:9 ascites fluid, respectively.  

     Determining extracellular flux in response to a specific ascites fluid concentration: 24 hours 

after serum starvation, the medium was aspirated from each well. The following treatment 

protocol was used to determine the effect of a single ascites concentration on extracellular flux. 

Wel1s 1 and 8 were used to measure extracellular background flux. Wells 2 and 3 were filled 

with 30µL of 100% DMEM (i.e. vehicle). Wells 4 and 5 were filled with 30µL of a predefined 

concentration (i.e. 1:159) of E-cad-depleted ascites; while wells 6 and 7 were filled with a 

predefined concentration (i.e. 1:159) of Ctrl IgG-treated ascites. 

    Seahorse assay: After 24-hours of incubating miniplates, the medium was aspirated from all 

wells, and each well was washed twice in 200µL of Seahorse assay medium (pH of 7.4 +/- 

0.1pH; containing 4mM glutamine, 1mM pyruvate and 25mM glucose). Each well was then 

filled with 80µL of Seahorse assay medium, and the miniplate was allowed to incubate at 37 

degrees Celsius at atmospheric CO2 for one hour. This was performed for both miniplates. 
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Seahorse assay cartridges were prepared to provide a final well concentration of 1µM 

Oligomycin, 0.5μM CCCP and 0.5uM Rotenone/Antimycin A. Oligomycin (Fisher, 

AAJ61898MA), CCCP (Tocris, 04-525-00), Rotenone (Sigma, R-8875) and Antimycin A (A-

8674) were suspended in DMSO. The Seahorse XFp instrument was utilized to measure basal 

oxygen consumption in triplicate time measurements; oligomycin-treated oxygen consumption in 

triplicate time measurements; CCCP-treated oxygen consumption in triplicate time 

measurements; and Rotenone/Antimycin A-treated oxygen consumption in triplicate time 

measurements. After the Seahorse assay was complete, all wells were aspirated, and cells were 

lysed in 10µL of 0.1% SDS. Culture miniplates were wrapped in parafilm and allowed to freeze 

overnight at -20 degrees Celsius prior to conducting BCA protein assay. These steps were 

performed for both miniplates.  

     Experimental sample size: All of the above experimental steps were performed for three 

different cell passages (i.e. n = 3 experiments). For example, in the first experiment, two 

miniplates were used with passage one (n = 4 replicates per treatment). In the second experiment, 

two miniplates were used with passage two (n = 4 replicates per treatment). In the third 

experiment, two miniplates were used with passage three (n = 4 replicates per treatment). For 

statistical purposes, each treatment received n = 12 replicates. 

     Data analysis: Seahorse Wave Desktop Software was used to calculate protein normalized 

oxygen consumption for each well. 

3.19  Statistical analysis 

     Statistical analysis was performed with R Statistical Software (version 4.0.3). Significant 

differences between diet groups were determined via One-way ANOVA and Duncan’s Multiple 

Range post-test (significant at p<0.05). When Bartlett’s statistic was significant at p<0.05, the 
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data were log10 transformed prior to conducting ANOVA. Non-parametric Kruskal-Wallis 

ANOVA with Dunn’s post-hoc test were used in a few instances during this study (p<0.05). 

Odds ratio analysis was used to calculate the risk of stage 4 ovarian cancer. Regarding 

metabolomics analysis, all VIP data are shown in graphs as normalizations to the CTL diet (i.e. 

the CTL is always set to 1.00, while the other diets are shown as fold changes to CTL). In some 

metabolites, significant outliers were removed using a z-score method of detecting significant 

outliers (p<0.05). Dendrogram clustering analysis was conducted via R package ‘dendextend’, 

using the default k-means algorithm. Kaplan-Meier survival analysis and Cox proportional 

hazard (Coxph) analysis were conducted via R packages ‘survival’ and ‘survminer’ (significant 

at p<0.05). Student’s T-test using Welch’s correction was used to compare cancerous body 

weights versus non-cancerous body weights; this test was also used to conduct two group 

comparisons of miR-200a expression (two-tailed, p<0.05). 

3.20  Power analysis 

     Based on preliminary observations, analysis of hen ovarian tumor homogenates requires a 

sample size of 7 to achieve a statistical power of 0.8 during one-way ANOVA analysis (6 group 

comparison, effect size=0.62, α=0.05). 
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CHAPTER 4 

RESULTS 

4.1  STUDY 1: FLAXSEED’S PARADOXICAL ROLE IN EXTENDING LIFESPAN AND 

REPRODUCTIVE CAPACITY IN WHITE LEGHORN LAYING HENS 

4.1.1  Metabolomics: heatmap and partial least squares discriminant analysis (PLSDA) 

     A targeted LC-MS/MS metabolomics approach was used to evaluate the dietary regulation of 

one-carbon metabolism within specific pathways. Tandem mass spectrometry analysis indicated 

108 significantly detected metabolites. A heat map depicting the standardized metabolite VIP 

scores can be seen according to dendrogram clustering in Figure 4.1.1. The heat map is 

organized according to two distinct dimensions. Dendrogram A organizes individual metabolites 

according to the correlations of their standardized VIP scores across diets, whereas dendrogram 

B organizes individual diet samples according to the correlation of their standardized VIP scores 

across metabolites (Figure 4.1.1). Two major families of metabolites emerged in dendrogram A, 

and two major families of diets emerged in dendrogram B. A partial least squares discriminant 

analysis (PLSDA) of standardized VIP scores was conducted to visualize clustering of individual 

diet samples on a two-dimensional quadrant (Q) surface (Figure Appendix S1).  
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Figure 4.1.1. Heatmap illustrating grouped hierarchies of metabolites and diet group 

observations. Metabolites (n=108) from hen plasma were analyzed via LC-MS/MS and 

organized based on the clustering of their VIP scores across diet. Metabolites are organized 

according to similarity with other metabolites across the diet samples (A). The diet samples are 

organized according to similarity with other diet samples across the metabolites (B). Green 

illustrates below average expression and red illustrates above average. 

 

4.1.2  Vitamin B6 antagonism concomitant with transsulfuration inhibition: the trigger 

     Vitamin B6 metabolism in the blood plasma was perturbed by the two diets containing the 

linatine molecule, DF and WF. The biggest effect appeared in 4-pyridoxic acid (4PA) which was 

significantly reduced by DF and almost (p<0.07) reduced by WF (Figure 4.1.2). Pyridoxamine, 

an inactive vitamin-B6 vitamer, was decreased by DF in contrast to FSH (Figure 4.1.2). We 

estimated glomerular filtration rate (GFR) by evaluating urea and creatinine metabolism and 

observed no effect across diets (Figure Appendix S2). TS activity was extensively perturbed in 

DF and WF hens, according to a 15.4-fold and 16.6-fold increase in cystathionine, respectively, 

in contrast to CTL hens (Figure 4.1.3). On average, the DF and WF hens exhibited 

approximately 190-fold, 200-fold and 20-fold elevated cystathionine versus FXO, CRN and FSH 

hens, respectively. In other words, cystathionine was elevated in DF and WF hens on an order(s) 

of magnitude scale depending on the reference group used. Cystine (a di-cysteine molecule used 

for transmembrane passage of cysteine) was not affected by diet (Figure 4.1.3). Among other 

thiol amino acids that are produced downstream of TS, taurine was significantly decreased by the 

WF diet (Figure 4.1.3). This might be expected given a TS perturbation due to flaxseed. Neither 

reduced glutathione (GSSG) nor homocysteic acid were affected by diet (Figure 4.1.3). 
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Figure 4.1.2. Plasma markers of vitamin B6 metabolism. Hen blood plasma samples 

measured via LC-MS/MS. VIP scores of metabolites were analyzed via one-way ANOVA 

(Duncan’s post-test, p<0.05). Groups without a similar letter are significantly different. n=4 to 6 

plasma samples from different hens per diet group. Error bars are +/- SEM. 

 

 
Figure 4.1.3. Plasma estimate of transsulfuration and subsequently produced sulfur 

metabolites. Hen blood plasma samples measured via LC-MS/MS. VIP scores of metabolites 

were analyzed via one-way ANOVA (Duncan’s post-test, p<0.05). Groups without a similar 

letter are significantly different. n=4 to 6 plasma samples from different hens per diet group. 

Error bars are +/- SEM. 
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4.1.3  The new fate of Hcy: increased flux of Hcy into the Met cycle, causing increased SAM 

synthesis 

     Interestingly, neither DF nor WF displayed hyperHcy despite 15-fold elevated cystathionine, 

because Hcy was stable across all diets (Figure 4.1.4A). Met was slightly increased in FSH hens 

versus CTL and CRN hens (Figure 4.1.4A). After observing that neither Hcy nor Met were 

affected by DF or WF, an exceptionally large 1.9-fold increase of SAM appeared in DF hens. 

Similarly, the SAM:SAH ratio (a proxy for the methylation capacity of the cell) was increased in 

DF versus all diets except WF (Figure 4.1.4B). It is meaningful to observe that the SAM:SAH 

ratio was statistically similar between DF and WF. Methyl 5-thioadenosine (MTA), a pan-

methyltransferase inhibitor (281) that is produced after decarboxylated SAM (dcSAM) 

participates in polyamine synthesis, was also significantly higher in DF hens (Figure 4.1.4D). 

SAH, the byproduct of SAM-driven methyltransferase reactions, was slightly decreased in WF 

hens when compared to FXO and FSH (Figure 4.1.4A). The activities of methionine cycle 

enzymes were also estimated by using ratios of relevant metabolites. The ratio of Hcy:SAH (a 

proxy for SAHH activity) was increased in WF above all other diets (Figure 4.1.4B). Parallel 

with this observation, the ratio of adenosine:SAH (another proxy for SAHH activity) was 

elevated in WF hens (Figure 4.1.4C). This is a consistent indication that the rate of SAH 

hydrolysis via SAHH might be exceptionally increased in WF hens. No effect on the ratio of Met 

to Hcy (a proxy for BHMT and/or MS-B12 activity) was observed; however, the ratio of SAM to 

Met (a proxy for MAT activity) was elevated in DF (Figure 4.1.4B). This suggests that as soon 

as Hcy was remethylated to Met, the Met was rapidly adenosylated to SAM.   
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Figure 4.1.4. Plasma estimate of methionine cycle metabolites and subsequently associated 

metabolites. Hen blood plasma samples measured via LC-MS/MS. VIP scores of metabolites 

were analyzed via one-way ANOVA (Duncan’s post-test, p<0.05). Groups without a similar 

letter are significantly different. n=4 to 6 plasma samples from different hens per diet group. 

Error bars are +/- SEM. The four methionine cycle metabolites (A) as well as their ratios (B) are 

depicted. Possible indication of SAHH activity (C) as well as MTA (D) is shown.  

 

4.1.4  Vast downregulation of microarray features in ovaries of 10% whole flax-fed hens 

     After seeing an increased SAM:SAH ratio in the blood plasma of flaxseed-fed hens, we 

hypothesized that flaxseed might influence mRNA levels at the global scale within the ovary of 

the hen. To challenge this, we reanalyzed a microarray feature dataset that was previously used 
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to measure microarray feature expression within the ovaries of 10% WF-fed hens versus control 

diet hens (14). This microarray dataset was designed to make two mean comparisons (i.e. T-test 

comparisons), to determine if a given microarray feature was significantly upregulated or 

significantly downregulated in 10% WF hens versus control-fed hens. The T-test results were 

filtered at different p-value cutoffs (p<0.10, p<0.05 and p<0.01), and the percentage of features, 

total features and average fold per feature, are shown in Table 4.1.1. We observed that, at these 

given p-value cutoffs, approximately 60-80% of features were downregulated in 10% WF hens 

versus control-fed hens, and the average downregulation ranged from about -1.6 to -2.0-fold 

change. This strong pattern of microarray feature downregulation persisted in both normal and 

cancerous hen ovaries, with a slightly more pronounced effect in normal ovaries (Table 4.1.1). 

 

Table 4.1.1. Feature expression in laying hen ovaries (10% WF versus CTL diet). 

Ovarian 
tissue type* 

p-value 
cutoff of  

T-test 
Total features (n) Percentage Avg fold change per feature 

Downregulated Upregulated Downregulated Upregulated Downregulated Upregulated 

Normal 
p < 0.10 3601 1587 69.4% 30.6% -1.66 +1.66 
p < 0.05 1720 532 76.4% 23.6% -1.79 +1.78 
p < 0.01 129 29 81.6% 18.4% -2.06 +2.04 

Cancerous 
p < 0.10 1744 1256 58.1% 41.9% -1.60 +1.57 
p < 0.05 774 438 63.9% 36.1% -1.75 +1.70 
p < 0.01 121 38 76.1% 23.9% -2.01 +1.90 

*n=6 hens per group (e.g. 6 normal ovaries from WF-fed hens; 6 normal ovaries from CTL-fed hens; 6 

cancerous ovaries from WF-fed hens; and 6 cancerous ovaries from CTL-fed hens). 

 

4.1.5  Methyl group donors required for the BHMT reaction 

     We suspect that the DF and WF hens leveraged the BHMT and MS-B12 reactions to maintain 

stable Hcy levels. BHMT and MS-B12 must be leveraged in order to prevent hyperHcy when 

Hcy is unable to exit the metabolism through TS. To evaluate the hypothesis that BHMT activity 

was increased we measured the levels of methyl group donors that fuel the BHMT reaction, 
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specifically choline and betaine. Choline was 39-52% lower in WF compared to all other diets 

except DF. Meanwhile, choline was reduced by DF in comparison to FXO (Figure 4.1.5). In 

other words, choline was decreased in both of the linatine-containing diets (i.e. DF and WF) 

versus FXO. The methyl group donor betaine was reduced by WF in contrast to FXO, while DF 

had no effect on betaine (Figure 4.1.5). The ratio of Met to betaine (a proxy for BHMT activity) 

was increased in WF compared to CTL and CRN (Figure 4.1.5).  

     Choline is a relatively limited nutrient, in its soluble form, because the majority of choline is 

stored in the form phosphatidylcholine (PC). Knowing that BHMT activity drives choline 

oxidation we wanted to contrast the body weights of hens with the levels of choline. We perceive 

that increased choline oxidation might be tightly coupled with PC catabolism, and therefore, 

increased BHMT activity might strongly correlate with hen body weight (i.e. increased choline 

oxidation = lower body weight). The post-hoc test results for hen body weight were nearly 

identical to the post-hoc test results for plasma choline, especially for the body weights of ‘ALL 

hens’ (Figure 4.1.6A). Body weight in the WF diet was significantly lower than all other diets, 

even lower than DF hens. DF hens weighed less than FXO hens when ‘ALL hens’ was 

considered. For ‘normal hens’, DF hens weighed less than CTL, FXO and CRN hens (Figure 

4.1.6A). Cancer itself reduced body weight when diets were aggregated; however, diet did not 

induce an effect on body weight during cancer (Figure 4.1.6A). The mean choline level in each 

diet showed a high, positive correlation with mean body weight. For ‘ALL hens’ and ‘normal 

hens’ the Pearson correlation between choline and body weight was R=0.94 and R=0.92, 

respectively (Figure 4.1.6B).  
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Figure 4.1.5. Methyl group donors in support of BHMT activity. Hen blood plasma samples 

measured via LC-MS/MS. VIP scores of metabolites were analyzed via one-way ANOVA 

(Duncan’s post-test, p<0.05). Groups without a similar letter are significantly different. n=4 to 6 

plasma samples from different hens per diet group. Error bars are +/- SEM. 
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Figure 4.1.6. Hen body weight and the correlation between plasma choline and body 

weight. Hen body weights were recorded for all surviving hens on the 325th day of the study. 

Body weight was grouped by cancer status (normal, cancer and all hens) and analyzed via one-

way ANOVA (Duncan’s post-test, p<0.05) Groups without a similar letter are significantly 

different (p<0.05). Body weight was also compared between normal cancer hens, using Welch’s 

T-test (two-tailed, p<0.05) (A). For body weights of ALL hens, the sample sizes (n) were as 

followes: CTL=123; DF=115; WF= 107; FXO=103; CRN=108; FSH=108. For body weights of 

Normal hens, the sample sizes (n) were as follows: CTL=88; DF=88; WF=72; FXO=84; 

CRN=62; FSH=73. For body weights of Cancer hens, the sample sizes (n) were as follows: 

CTL=29; DF=20; WF=22; FXO=22; CRN=29; FSH=21. Cancer was determined as any form of 

peritoneal cancer identified (e.g. ovarian, GI, oviductal, liver, etc). Scatterplots illustrate the 

linear correlations between average body weight and average choline content across diets (B).   
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4.1.6  Methyl group donors required for MS-B12 activity 

     Plasma DMG content was reduced 37% and 33% in DF and WF hens, respectively, in 

contrast to all other diets (Figure 4.1.7). DMG is a methyl group donor that is catabolized in the 

folate cycle via DMGDH to produce 5,10-CH2THF. DMG catabolism via DMGDH is essential 

for preventing the inhibition of BHMT, because DMG accumulation will shut down the BHMT 

reaction. SAM and MTA are also negative regulators of BHMT. Table 4.1.2 summarizes the 

estimate of BHMT inhibition according to SAM and DMG content. Through this perspective, 

WF hens should exhibit much higher BHMT activity while DF hens should experience 

moderately increased BHMT activity. Serine, a methyl group donor that yields 5,10-CH2THF in 

the folate cycle, was lower in DF hens compared to CRN hens (Figure 4.1.7). Perhaps more 

meaningfully, the ratio of serine to glycine was reduced in DF hens versus CRN hens, without 

any effect on glycine itself (Figure 4.1.7). The ratio of serine to glycine is relevant for estimating 

SHMT1 or SHMT2 activity in the folate cycle. Histidine, a methyl group donor that indirectly 

yields 5,10-CH2THF, was lower in DF and CTL hens in contrast to FSH hens (Figure 4.1.7). 

Thymidine, the nucleoside consumed in the dTMP salvage pathway via thymidine kinase (TK), 

was significantly higher in DF hens in contrast to all diets but FSH (Figure 4.1.7).  

     We wanted to test how the hens from each diet group clustered according to the carbon 

donors involved in the BHMT pathway (i.e. choline, betaine and Met:betaine ratio) 

simultaneously with the carbon donors involved in 5,10-CH2THF synthesis (i.e. serine, DMG, 

glycine, histidine and serine:glycine ratio). To evaluate this pattern, we conducted k-means 

clustering analysis and visualized the results via dendrography (Figure 4.1.8). The different letter 

groups represent significantly different clusters. Several dietary clusters emerged during this 

analysis. All FSH samples and five out of six CRN samples grouped into two adjacent clusters 



80 

 

(Figure 4.1.8A and B). DF distinguished itself by grouping within a single cluster (Figure 

4.1.8D). Notably, 16 out of 17 samples related to the flaxseed diet (i.e. DF, WF or FXO) were 

grouped into two adjacent clusters (Figure 4.1.8D and E). The CTL hens expressed high 

dispersion overall given that two CTL hens were unique enough to form distinct clusters on their 

own (Figure 4.1.8C and F). 

 

Table 4.1.2. Estimate of BHMT inhibition, via blood plasma level of SAM, MTA and DMG. 

BHMT inhibiting 
molecule 

Diet 
Control Defatted Flax Whole Flax Flax Oil Corn Oil Fish Oil 

SAM Moderate High Moderate Moderate Moderate Moderate 
MTA Moderate High Moderate Moderate Moderate Moderate 
DMG Moderate Low Low Moderate Moderate Moderate 

Net inhibition No change Increased Decreased No change No change No change 
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Figure 4.1.7. Folate cycle carbon donors as well as the thymidine content. Hen blood plasma 

samples measured via LC-MS/MS. VIP scores of metabolites were analyzed via one-way 

ANOVA (Duncan’s post-test, p<0.05). Groups without a similar letter are significantly different. 

n=4 to 6 plasma samples from different hens per diet group. Error bars are +/- SEM. 

 

 



82 

 

 
Figure 4.1.8. Dendrogram showing K-means clustering of one-carbon donating molecules. 

K-means clustering analysis was performed using Dendextend package in R. The VIP scores for 

choline, betaine, serine, glycine, DMG, histidine, Met:betaine ratio and serine:glycine ratio, were 

converted to Z-scores prior to conducing the K-means clustering analysis (k=6). Significantly 

different clusters are represented by different letters (A-F).  
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4.1.7  Indication of a glucagon-like phenotype in flaxseed-fed hens: plasma pyruvate, plasma 

C3, C5, C6 and C8-carnitine, and blood serum FFA 

     WF hens and DF hens exhibited HbA1c values of 6.2% and 5.3%, respectively, versus CTL 

hens that had 1.9% HbA1c (previously published in (2)). In other words, flaxseed resulted in 

approximately 3-fold elevated HbA1c! These HbA1c values exceed those of hummingbirds 

(161), possibly making the HbA1c value of a flaxseed-fed hen the highest HbA1c ever observed 

in a bird! In chickens, glucagon stimulates glycogenolysis, gluconeogenesis and lipolysis, with 

the effect of achieving systemic hyperglycemia and hyperlipidemia (166). We provide additional 

evidence that flaxseed induces a glucagon-like phenotype in hens. Firstly, we observed reduced 

plasma pyruvate in DF and WF hens (Figure 4.1.9A), possibly acting as a good proxy for 

gluconeogenesis. WF hens also exhibited elevated C3-carnitine (propionylcarnitine) and C5-

carnitine (isovalerylcarnitine), while DF hens displayed elevated C8-carnitine (octinoylcarnitine) 

(Figure 4.1.9B). C3, C5 and C8-carnitines were previously observed as markers of elevated 

blood glucose in humans (282). Birds could have a specialized tolerance for hyperglycemia, 

possibly because most birds biosynthesize ascorbic acid. Ascorbic acid has been shown to reduce 

the rate of protein glycation in humans (283) which might be one of the reasons why ascorbic 

acid might protect birds from advanced glycation end products. We detected an interesting 

pattern where ascorbic acid was highest in WF hens but lowest in DF hens (Figure 4.1.9C). Next, 

we evaluated blood serum FFA levels in hens from (2). We observed that hens consuming either 

DF or WF had elevated serum levels of oleic acid (C18:1ω9), linoleic acid (C18:2ω6) and 

docosahexaenoic acid (C22:6ω3), versus hens consuming either CTL or FXO (Figure 4.1.9D). 

Serum linolenic acid (C18:3ω3) was similar in hens consuming either DF, WF or FXO (Figure 

4.1.9D). Why is it meaningful that DF hens had high levels of serum FFAs? It is meaningful 
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because the DF diet included flaxseed that underwent cold-press fat extraction. The DF diet has 

50% less C18:2ω6 compared to the WF or FXO diets, and 80% less C18:3ω3 compared to the 

WF or FXO diets (Figure 4.1.9E). Simply put, the DF hens consumed far less dietary fatty acid 

than the hens that consumed WF or FXO, but yet, DF hens had 2-fold elevated serum C18:1ω9, 

C18:2ω6 and C22:6ω3, as well as equivalent serum 18:3ω3 (Figure 4.1.9D). Very meaningfully, 

the hens that we report in Figure 4.1.9D are the same exact hens that were previously published 

with nearly 3-fold elevated HbA1c (2). In other words, the DF and WF hens from our previous 

study concomitantly had elevated long term blood sugar and elevated blood lipids. Given the 

effect that glucagon has on serum FFAs and serum glucose in chickens (166), our observations 

(ie Figure 4.1.9A, B and D) support a hypothesis that flaxseed elevates glucagon secretion in 

hens. (166)  
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Figure 4.1.9. Plasma pyruvate, plasma ascorbic acid, plasma acyl-carnitines, blood serum  

lipids and dietary lipid content. Plasma pyruvate (A), plasma ascorbic acid (B) and plasma C3, 

C5, C6 and C8-carnitine (C), were measured via LC-MS/MS in hens from the 325-day study. 

Blood serum lipids were quantified via gas chromatography in hens from the 9-week study 

(previously unreported in (2)) (D). We also quantified the level of C18:2ω6 and C18:3ω3 within 

the diets from the 9-week study, to illustrate how lipid-depleted the DF diet is versus the WFX 

and FXO diets (E). VIP scores of plasma metabolites and the areas of gas chromatograph peaks 

were analyzed via one-way ANOVA (Duncan’s post-test, p<0.05). Sample sizes for A, B and C, 

range from n=4 to 6. Sample size for D is n=4. Sample size for E is n=5. Groups without a 

similar letter are significantly different. Error bars are +/- SEM. 

 

4.1.8  Hen survival and egg laying performance 

     Hen survival was monitored at the daily timescale throughout the 325-day study. Total 

survival and average egg laying performance are shown in Table 4.1.3. Single-integer percentage 

shifts are biologically meaningful in this study, because each diet began with an average of 168 

hens. Thus, a 1% shift in survival equaled 1.68 hens, on average. DF hens displayed better 

survival than all other diet groups by a range of 3.8% to 9.7% improved survival. 

Simultaneously, CRN exhibited lowest survival among diet groups, while CTL, WF, FSH and 

FXO displayed intermediate survival. We also observed daily egg laying performance as an 

indicator of biological vitality within animals (Table 4.1.3). Egg laying was significantly higher 

in WF hens versus all diets except FSH. Intermediate egg laying was observed in DF hens, while 

lowest egg laying occurred in CTL, FXO and CRN (Table 4.1.3). We developed a composite 

ranking system that integrated survival with reproductive performance as an indication of overall 

vitality (Table 4.1.4). Through this perspective, we observed an interesting pattern where the 
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“absolute difference” between survival ranking and egg laying ranking was equal to 2, for the top 

four best performing diets (i.e. DF, CTL, WF and FSH). FXO and CRN hens exhibited low 

survival concomitant with low reproductive capacity (Table 4.1.4). Overall, the DF and WF hens 

were tied for the best biological vitality by expressing the highest composite ranks for survival 

and egg laying (Table 4.1.4). 

     Kaplan-Meier survival analysis was conducted to compare survival patterns between diet 

groups (Figure 4.1.10). DF hens maintained a pattern of best cumulative survival except for 

several moments (i.e. a week or several days) when WF and FXO hens momentarily exhibited 

top survival. After the 28th day of the study, DF hens maintained better cumulative survival than 

CTL hens until study completion. DF was the only diet to outperform CTL as such. A 

significantly reduced Cox proportional hazard (exp{coef} = 0.685, p<0.05) was detected in DF 

hens when compared to CRN hens (Table 4.1.5 and Figure 4.1.10). Table 4.1.5 shows the 

proportional hazard of survival in each diet versus the corn oil diet (i.e. the corn oil diet is used 

as the reference). This Cox proportional hazard model meets the proportional hazard assumption 

that a global risk trend does not exist across time, according to a non-significant Schoenfeld test 

statistic (p=0.39).  

     Mortality in CRN hens started to accelerate at around day 150 and continued accelerating 

until day 190. This window of time coincided with the molting phase of the study, during which 

time egg laying declined and entered recovery in all diets. Although CRN hens displayed a 

negative response to the molt, molting is a natural physiological process that laying hens 

experience annually. Furthermore, hens across all diets were exposed to identical conditions 

during molt (i.e. light restriction but with full food access). 

     We observed two specific metabolites (i.e. glucuronate and glycerophosphorylcholine) and 
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one specific metabolite ratio (i.e. Met sulfoxide:Met ratio) that associate with increased lifespan 

and healthspan in human and non-human animal models (284–287). In DF hens, the               

Met Sulf:Met ratio was decreased concomitant with decreased glucuronate and decreased 

glycerophosphorylcholine (Figure 4.1.11). This pattern provides a biochemical validation of 

improved lifespan and healthspan in DF hens, because each of these markers has previously been 

used to evaluate lifespan and/or systemic oxidative stress.    

 

 

Table 4.1.3. Survival percentage and egg laying performance. 

Diet 

Survival Daily eggs               
per hen* Total 

survival 
Starting 

hens 
Surviving 

hens 
(%) (n) (n) (egg/day/hen) 

Defatted Flax 71.4% 161 115 0.384
b 
+/- 0.005 

Control 67.6% 182 123 0.365
c
 +/- 0.004 

Whole Flax 66.5% 161 107 0.401
a
 +/- 0.005 

Fish Oil 65.5% 165 108 0.394
ab

 +/- 0.005 
Flax Oil 64.0% 161 103 0.359

c
 +/- 0.005 

Corn Oil 61.7% 175 108 0.355
c
 +/- 0.004 

Average 66.1% 168 111 0.376 +/- 0.005 
*Statistical values determined via one-way ANOVA (Duncan’s 
Multiple Range post-test, p<0.05). Groups without a similar letter  
are significantly different. +/- SEM. 

 

 

 

Table 4.1.4. Composite ranking of biological performance, via total  

survival and egg laying capacity. 

Diet 

Rank of 
survival 

percentage      

Rank of   
daily egg 

laying            

Absolute 
difference                       
of ranks 

Overall ranking of 
survival and egg laying                             
(i.e. biological vitality)                   

(A) (B) Abs(A-B) Rank(median(A+B)) 
Defatted Flax 1 3 2 1 

Control 2 4 2 2 
Whole Flax 3 1 2 1 

Fish Oil 4 2 2 2 
Flax Oil 5 5 0 3 
Corn Oil 6 6 0 4 
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Figure 4.1.10. Kaplan-Meier survival analysis and Cox proportional hazard determination. 

Kaplan-Meier survival analysis was conducted on the rate of mortality within each diet group for 

the entire 325-day study. The # indicates a significantly different Cox proportional hazard 

between DF hens and CRN hens. Also shown in the graph is the timepoint at which we collected 

blood plasma for metabolomics analysis. 
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Table 4.1.5. Cox proportional hazard analysis of hen survival  

(using the corn oil diet as reference) 
 

Diet
Ψ exp(coef)

# 95% c.i. p-value 
Defatted Flax 0.685* 0.471 to 0.997 0.048 

Control 0.805 0.567 to 1.143 0.230 
Whole Flax 0.825 0.577 to 1.181 0.293 

Fish Oil 0.885 0.622 to 1.260 0.500 
Flax Oil 0.888 0.625 to 1.263 0.508 

Ψ
The corn oil diet was used as a reference group during Cox 

proportional hazard analysis (i.e. all hazards are referenced to the 
survival of hens consuming the corn oil diet) 
#
An “exp(coef)” below 1.0 indicates improved survival probability 

*Significantly reduced Cox proportional hazard (p<0.05)  
 

 

 

 

 
Figure 4.1.11. Metabolites indicating the process of aging and longevity. Hen blood plasma 

samples measured via LC-MS/MS. VIP scores of metabolites were analyzed via one-way 

ANOVA (Duncan’s post-test, p<0.05). Groups without a similar letter are significantly different. 

n=4 to 6 plasma samples from different hens per diet group. Error bars are +/- SEM. 

 

 

4.1.9 Physiological model of one-carbon metabolism in flaxseed-fed hens 

     We report for the first time of a TS blockade correlating directly with increased flux of Hcy 

toward SAM, correlating with enhanced survival and/or enhanced reproductive capacity in a 

vertebrate animal. Overall, our research indicates that the linatine molecule of flaxseed (via 

1ADP) severely perturbs hepatic TS, likely via inhibiting the B6-dependent enzymes CBS and 
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CSE. However, instead of inducing hyperHcy our data suggest that this TS perturbation forces an 

increased flux of Hcy toward Met (i.e. increased Hcy remethylation) that subsequently boosts 

SAM. In order to sustain this flux, our data possibly indicate elevated catabolism of the methyl 

group donors (i.e. choline) that drive the BHMT reaction and the MS-B12 reaction. A baseline 

model illustrating the core pathways (i.e. methionine cycle, folate cycle, phospholipid catabolism 

and TS) behind our research can be seen in Figure 4.1.12. 
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Figure 4.1.12. Model for one-carbon metabolism in hens consuming the WF or DF diets. 

The image illustrates a model by which flaxseed affects one-carbon metabolic activity in White 

Leghorn laying hens. The initial effect (bottom right quadrant) is instigated when linatine exerts 

an anti-vitamin B6 effect and reduces CBS and CSE activity. In turn this reduces flux through 

TS and causes cystathionine accumulation. An increased flux of Hcy into the Met cycle requires 

increased activity from BHMT and/or MS-B12. WF hens, having a high PUFA content, can 

synthesize a high level of PtdEth (PE). This means that WF hens have high access to the primary 

substrate for the PEMT reaction, which is PE. Therefore, WF hens should have increased 

capacity to hyperactivate PEMT. This capacity to hyperactivate PEMT is the suspected reason 

why SAM is not elevated in WF hens (i.e. excess SAM was consumed by PEMT). PEMT 

hyperactivation would then, in turn, enable BHMT hyperactivation and support increased flux of 

Hcy into the Met cycle. BHMT hyperactivation would require elevated choline synthesis (i.e. 

elevated PEMT activity), because choline is oxidized to make BHMT’s substrate, betaine. In 

other words, BHMT hyperactivation is likely contingent upon PEMT hyperactivation, especially 

in the context of fixed nutrient dieting. PEMT hyperactivation could be expected to accelerate 

the packaging and secretion of VLDL into the blood stream, because PC (the product of PEMT) 

is rate limiting for VLDL packaging and secretion. Accelerated delivery of VLDL into the blood 

stream might be required for accelerated egg yolk formation, because egg yolk lipids are derived 

from systemic VLDL. In turn this might enhance the egg laying capacity of the hen. Given the 

moderate PUFA content of the DF diet, DF hens would be expected to have only moderately 

elevated flux through PEMT, and therefore, only moderately elevated egg laying capacity. Due 

to the high PUFA content of the WF diet, WF hens would be expected the have high flux 

through PEMT, and therefore, have highly elevated egg laying capacity. Likewise, WF hens and 
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DF hens would be expected to have high flux and moderate flux through BHMT, respectively. 

High flux through BHMT would facilitate the majority of Hcy remethylation and thereby prevent 

exceptionally elevated flux into the folate cycle. However, a moderate flux through BHMT (as 

was suspected in DF hens) would cause a residual level of hyperHcy. Therefore, DF hens would 

require increased catabolism of one-carbon donating molecules (i.e. serine and DMG) into the 

folate cycle, so that MS-B12 could provide supplemental support for Hcy remethylation. 

Increased one-carbon input into the folate cycle would elevate 5,10-CH2THF synthesis and 

subsequently elevated 5-CH3THF synthesis, via MTHFR. 5-CH3THF then supports Hcy 

remethylation via MS-B12. The accumulation of excess SAM in DF hens might be the result of 

only moderately elevating PEMT hyperactivation, because highly elevated PEMT 

hyperactivation would be expected to deplete all excess SAM (as we suspect happened in WF 

hens). The accumulation of SAM in DF hens associates with increased lifespan, possibly via 

SAM-mediated changes in DNA, RNA or histone methylation. Overall, the entire cascade of 

events is instigated by linatine, and the resulting metabolic fluxes are determined by the total 

PUFA content of the diet. 

4.2  STUDY 2: THE EFFECT OF DIETARY POLYUNSATURATED FATTY ACIDS 

(PUFAS) ON LIPID METABOLISM, MITOCHONDRIAL BIOENERGETICS AND                   

E-CADHERIN EXPRESSION IN LAYING HEN OVARIAN TUMORS  

4.2.1  Cancer outcomes and cancer risks in hens according to diet 

     Upon the completion of our 325-day study, we conducted necropsy on all surviving hens. The 

number of hens that survived in each diet group and what this represents as a survival percentage 

can be seen in Table 4.2.1. Hens that died prior to study completion were not inspected. We 

recorded the presence of ovarian cancer, gastrointestinal (GI) cancer, liver cancer and oviduct 
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cancer, in all animals that lived until study completion. The frequency and percentage of hens 

with peritoneal cancers can also be seen in Table 4.2.1. CTL hens and DF hens displayed 

elevated risk of total ovarian cancer, stage 3&4 ovarian cancer, liver cancer and cancers with 

multiple organ involvement. CTL hens also displayed elevated risk of GI cancer. Cancer was just 

really bad in CTL hens, to be frank. All of the peritoneal cancer risks (except for oviductal 

cancer) were reduced by treatment diets versus CTL diet. The risk of ovarian cancer and the risk 

of stage 4 ovarian cancer were lowest in diet groups that were supplemented with the pure oil 

component (i.e. FXO, FSH and CRN). Furthermore, the risk of stage 4 ovarian cancer was 

lowest in FXO hens versus CTL hens, again suggesting that ovarian cancer burden might be 

decreased by dietary PUFA enrichment, particularly with ALA enrichment. The risk of ovarian 

cancer and the risk of stage 3&4 ovarian cancer were elevated when the dietary PUFA 

supplement was either non-existent (i.e. CTL) or mostly diminished (i.e. DF). Interestingly, CTL 

hens and DF hens displayed the 1st and 2nd highest ovarian tumor incidence, respectively, 

concomitant with the 2nd and 1st highest animal survival, respectively (Table 4.1.3). Inversely, 

CRN hens displayed lowest ovarian tumor incidence (tied with FSH hens), concomitant with 

lowest animal survival (Table 4.2.1). Said concisely, we detected a noticeable pattern where 

animal survival and ovarian cancer risk were paradoxically, positively correlated. The likelihood 

of observing stage 4 ovarian cancer was lowest in diet groups with lowest animal survival (i.e. 

FXO, FSH and CRN hens). Flaxseed, in general displayed a cluster of moderate ovarian cancer 

risk, because ovarian cancer risk was moderate in DF, WF and FXO hens. WF hens and FXO 

hens displayed identical total ovarian cancer risk (i.e. R.R. of 0.72). The percentage of hens with 

GI cancer were very similar in WF and FXO hens (7% in WF and 8% in FXO), suggesting that 

the flaxseed oil might similarly influence the risk of ovarian cancer and GI cancer, in hens.  
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Table 4.2.1. Peritoneal tumors recorded in hens at the time of necropsy. 

Diet 

Surviving 
hens (i.e. 

hens eligible 
for tumor 

collection)* 

Peritoneal cancers by site 
Multiple 

peritoneal 
tumors 

involved 

Ovarian cancer** 
GI 

cancer 
Liver 

cancer 
Oviduct 
cancer Total OvCa Stage 

1&2 
Stage 

3 
Stage   

4 
Stage 
3&4 

n / %
✢ n % R.R.

#

 % % % % % % % % 
Control 123 / 67.6 22 18 1.00 4 3 11 14 11 3 1 10 

Defatted Flax 115 / 71.4 16 14 0.78 2 3 9 12 3 2 1 4 
Whole Flax 107 / 66.5 14 13 0.72 3 0 10 10 7 1 1 3 

Flax Oil 103 / 64.0 13 13 0.72 3 6 4 10 8 1 3 2 
Fish Oil 
Corn Oil 

108 / 65.5 
108 / 61.7 

12 
12 

11 
11 

0.61 
0.61 

2 
1 

4 
4 

5 
6 

9 
10 

5 
2 

1 
0 

0 
4 

1 
3 

Average 111 / 66.1 15 13 0.69 3 3 8 11 6 1 2 4 
* These are the hens that we were able to conduct necropsy on (i.e. potentially collect tumors from) 
** Ovarian cancer stages determined according to FIGO staging criteria (amp.cancer.org). 
✢

All percentages (%) in this table are based on normalization to the number of surviving hens. 
#
 R.R. is relative risk (calculated as a treatment diet's total OvCa % divided by the control diet's total OvCa %). 
⚚
 Two of these hens (in control diet) died just prior to CO

2
 asphyxiation. 

 

4.2.2  Fatty acid metabolism in hen ovarian tumors 

     Genes representing the de novo lipogenic pathway were measured in laying hen ovarian 

tumor homogenates to challenge the hypothesis that dietary PUFAs regulate lipid metabolism in 

hen ovarian tumors. FXO, CRN and FSH exerted a strong (~70%) downregulation of fatty acid 

synthase (FASN) in hen ovarian tumors, while WF downregulated FASN by about 55% (Figure 

4.2.1). FASN expression in DF hens was similar to WF hens, but FASN expression was higher in 

DF hens compared to FXO, CRN and FSH hens. Simultaneously, there was no difference in 

FASN between CTL hens and DF hens. CRN was the only diet to reduce the expression of ACC 

and SCD1, by about 50% each. Neither ACYL nor SREBP1 were affected by diet. Ovarian 

tumors from FSH hens displayed higher transcripts for PPARg in contrast to the control diet 

(Figure 4.2.1).  
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Figure 4.2.1. Gene expression markers of de novo fatty acid synthesis and PPARg, in hen 

ovarian tumors. cDNA expression was calculated using ddCT values obtained from RT-qPCR 

for each gene. Statistical values were determined using one-way ANOVA (Duncan’s post hoc 

test, p<0.05). Groups without a similar letter are significantly different. Sample sizes ranged 

from n = 7 to 9 per diet group. Error bars are +/- SEM. 

 

     Gas chromatography analysis of hen ovarian tumors was conducted to assess the levels of 

fatty acid methyl esters within ovarian tumors (Figure 4.2.2). We observed that each diet’s 

dominant PUFA was most upregulated in hen ovarian tumors. For example, LA (C18:2ω6) was 

upregulated in the ovarian tumors of hens consuming the CRN diet, and this particular PUFA 

consists of nearly 50% of the PUFA content of corn oil. ALA (C18:3ω3) was first and second-

most upregulated in the ovaries of hens consuming the FXO and WF diets, respectively, and 
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linolenic acid comprises 50% of the PUFA content of flaxseed oil. C22:6ω3 was upregulated in 

the ovaries of hens consuming the FSH diet, and this PUFA comprises about 10% of the oil 

content in menhaden fish oil. We did not see any effect of diet on C20:5ω3 (EPA), although this 

PUFA is most enriched in the FSH diet. Furthermore, just like CTL diet, the DF diet had no 

significant effect on any PUFAs.  

     One of our goals of conducting gas chromatography analysis was to measure the 

concentrations of fatty acids that are canonically related to de novo lipid synthesis, and we were 

not able to detect any effect of diet on most of these species (i.e. C16:0, C16:1ω7, C18:0, 

C18:1ω9, or C20:0). The WF diet was able to slightly reduce the concentration of C20:1n11 in 

ovarian tumor homogenates. Other than C20:1ω11, there were no effects of diet on lipids 

associated with de novo lipogenesis (Figure 4.2.2).  
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Figure 4.2.2. Fatty acid concentrations in hen ovarian tumors. Gas chromatography was 

utilized to measure PUFA concentrations in hen ovarian tumors. Cancerous ovaries were 

collected from 3.5-year-old hens that were provided 46-week diets. Sample sizes in this 46-week 

analysis ranged from n = 6 to 8 ovaries per diet group. PUFAs were measured as fatty acid 

methyl esters (FAME). C17:0 was used as an internal control, and all samples were normalized 

to total protein. One-way ANOVA and Duncan’s Multiple Range Test (p<0.05). Groups without 

a similar letter are significantly different. Sample sizes ranged from n = 6 to 8 per diet group.  

Error bars are +/- SEM. 
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4.2.3  Gene transcripts associated with mitochondrial respiration 

     Our hypothesis also included the notion that dietary PUFAs would boost the level of genes 

that promote mitochondrial ETC activity (i.e. OXPHOS activity) with ovarian tumors of the hen. 

The transcription of mitochondrial genes that are most strongly associated with complex 3 

catalytic activity (i.e. MT-CYTB) and complex 4 catalytic activity (i.e. MT-COX1, MT-COX2 and 

MT-COX3) were vastly upregulated by dietary enrichment with PUFAs (Figure 4.2.3). 

Specifically, these mitochondrial genes were upregulated by WF, FXO, CRN and FSH. The DF 

diet only slightly increased the expression of MT-CYTB and MT-COX3, without affecting MT-

COX1 or MT-COX2. The expression of ATP5B, a gene associated with oxidative 

phosphorylation capacity and mitochondrial cristae formation, was strongly upregulated by WF, 

FXO, CRN and FSH. The largest enrichments of ATP5B were observed in FXO and CRN diets. 

Complementing this finding, the expression of ADP/ATP translocase 1 (SLC25A4) was 

upregulated in the ovarian tumors of FXO hens (Figure 4.2.3). Overall, this was a strong 

transcriptional message that nuclear and mitochondrial mRNA levels for ETC subunits might be 

heavily increased by dietary PUFAs. 
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Figure 4.2.3. Gene expression markers of mitochondrial respiration and oxidative 

phosphorylation, in hen ovarian tumors. cDNA expression was calculated using ddCT values 

obtained from RT-qPCR for each gene. Statistical values were determined using one-way 

ANOVA (Duncan’s post hoc test, p<0.05). Groups without a similar letter are significantly 

different. Sample sizes ranged from n = 7 to 9 per diet group. Error bars are +/- SEM. 

 

4.2.4  Genes transcripts associated with oxidative stress response 

     Overall, it seemed that dietary PUFA enrichment decreased the expression of phase 2 

antioxidant response enzyme genes in hen ovarian tumors (Figure 4.2.4). SOD2, CAT and 

inducible nitric oxide synthase (NOS2), were concomitantly lower in WF, FXO, CRN and FSH 

hens. SOD2 and NOS2 were also decreased in DF hens, while there was no effect of DF on CAT. 

Dynamin-like protein 1 (DNM1L), the gene for a protein commonly known as “DRP1” (which 
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regulates mitochondrial fission), was reduced by all treatment diets, including DF (Figure 4.2.4). 

The F1/F0-ATP synthase complex is influenced by the redox state of the cell (288), so we found 

it novel to include ATP synthase subunit 5A1 (ATP5A1), mitochondrial ATP synthase subunit 6 

(MT-ATP6) and mitochondrial ATP synthase subunit 8 (MT-ATP8), in the same figure as SOD2, 

CAT, NOS2 and DNM1L (mostly because of the similar pattern of expression). A consistent 

reduction of ATP5A1, MT-ATP6 and MT-ATP8, was observed in ovarian tumors from most 

treatment diets, including DF (Figure 4.2.4).  
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Figure 4.2.4. Gene expression markers of oxidative stress and associated ATP synthase  

subunits, within hen ovarian tumors. cDNA expression was calculated using ddCT values 

obtained from RT-qPCR for each gene. Statistical values were determined using one-way 

ANOVA (Duncan’s post hoc test, p<0.05). Groups without a similar letter are significantly 

different. Sample sizes ranged from n = 7 to 9 per diet group. Error bars are +/- SEM. 

 

4.2.5  MicroRNA-200a-3p and CDH1 expression in hen ovarian tumors 

     To test our hypothesis that dietary PUFA enrichment downregulates the expression of miR-

200a and CDH1 in hen ovaries, we conducted qPCR analysis of normal and cancerous hen 

ovaries after feeding these animals various PUFA enriched diets (Figure 4.2.5). The exception 

here is that the normal ovaries were from 2-year-9-week-old hens and the cancerous ovaries were 

from 3.5-year-old hens. A benefit to using 2-year-9-week-old hens is that these hens are much 
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less likely to have ovarian cancer; whereas the 3.5-year-old hens are well into the window of risk 

for ovarian cancer (18).  

     Each of the treatment diets, except WF, decreased the level of miR-200a in normal ovaries of 

the hen, with the most pronounced effect occurring in hens consuming SDA Soybean Oil (SDA 

Soy Oil) (Figure 4.2.5A). miR-455-5p was used as a reference microRNA when determining 

miR-200a transcript levels. SDA Soybean Oil is derived from a variety of soybean that possesses 

a delta-6 desaturase knock-in, allowing the soybean to generate stearidonic acid (SDA, 

C18:4ω3). SDA soybean-derived oil is beneficial for boosting the levels of EPA and DHA 

within the animal (289,290). Wild type plants cannot synthesize SDA; therefore, SDA Soy 

provides greater unsaturated oil content. In general, the data indicate that dietary exposure to 

PUFAs reduces the level of miR-200a in normal hen ovaries (Figure 4.2.5A); however, no effect 

of diet was observed on the level of miR-200a in ovarian tumors of hens (Figure 4.2.5B). The 

level of miR-200a in ovarian tumors was almost 15-fold higher than miR-200a expression in 

normal hen ovaries (Figure 4.2.5C). Ovarian tumor samples from Figure 4.2.5D were separated 

according to tumor stage (stage 2, 3 and 4), and then miR-200a levels were measured statistically 

in ovarian tumors according to stage 2, 3 or 4. The expression of miR-200a was increased in 

stage 4 ovarian tumors versus stage 2 ovarian tumors (Figure 4.2.5D). Lastly, BG1 ovarian 

cancer cells were incubated with 50µM DHA, and the level of miR-200a was measured. 50uM 

DHA elicited a small but significant decrease in the level of miR-200a in BG1 ovarian cancer 

cells (Figure 4.2.5E). 
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Figure 4.2.5. miR-200a-3p expression in hen ovaries, hen ovarian tumors and human 

ovarian cancer cells. Expression of microRNA was analyzed in microRNA cDNA libraries via 

qPCR for each sample. miR-200a was evaluated in 2-year-old normal hen ovaries (A) and in 3.5-

year-old cancerous hen ovaries (B); all values were normalized to their respective control diets. 

In A and B, sample sizes ranged from n = 5 to 7 per diet group. miR-200a expression was 

compared between normal ovaries of 2-year-old hens and cancerous ovaries of 3.5-year-old hens 

(both groups receiving the control diet); n= 7 per group (C). The effect of ovarian cancer stage 

on the expression of miR-200a was evaluated in hen ovarian tumors; all values are normalized to 

stage 2 tumors (D). Sample sizes in D ranged from n=8 for stage 2; n=10 for stage 3; and n=21 

for stage 4 (D). Lastly, the effect of DHA treatment on miR-200a expression was evaluated in 

BG1 ovarian cancer cells; all values normalized to 0μM DHA (E). Statistical values in A, B and 

D were determined using one-way ANOVA (Duncan’s post hoc test, p<0.05). Statistical values 

for C and E were determined used T-test with Welch’s correction. Groups without a similar 

letter are significantly different. Error bars are +/- SEM. 

 

     We then looked at CDH1 expression in normal and cancerous hen ovaries. CDH1 levels were 

reduced 60-80% in the normal ovaries of 2-year-old hens by all treatment diets (Figure 4.2.6A). 

In normal ovaries of 3.5-year-old hens, CDH1 levels were reduced in hens consuming FSH 

versus hens consuming WF (Figure 4.2.6A). In ovarian tumors of 3.5-year-old hens, CDH1 

levels were reduced by the FXO and FSH diets, by about 65% (Figure 4.2.6A). We detected an 

age effect on CDH1 levels in ovaries, when CDH1 increased about 5-fold in 3.5-year-old normal 

ovaries compared to 2-year-old normal ovaries (both groups fed CTL diet). CDH1 expression 

might be increased in early neoplastic ovaries, because we detected increased CDH1 levels in 

suspicious (i.e. early neoplastic) ovaries of 3.5-year-old hens versus normal ovaries. CDH1 
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increased again when going from suspicious ovaries to ovaries dominated by frank carcinoma 

(Figure 4.2.6B). Overall, it seemed obvious that the density of CDH1 transcripts increases in 

cancerous ovarian tissue, and FXO and FSH were able to downregulate this.  

 

 

Figure 4.2.6. CDH1 expression in normal and cancerous hen ovaries, by diet and age. 

Expression of CDH1 was measured in mRNA cDNA libraries constructed from normal and 

cancerous hen ovary homogenates, via qPCR. CDH1 was measured in normal and cancerous hen 

ovaries (A). CDH1 expression was also compared across ages (i.e. 2-year hen versus 3.5-year 

hen) and by degree of severity (i.e. normal, suspicious and frank carcinoma) (B). Suspicious 

ovaries were identified via H&E staining, specifically looking for anomalies such as hyper-

nucleation, increased gland formation and reduced endothelial/stromal compartment within the 

ovary. Statistical values were determined using one-way ANOVA (Duncan’s post hoc test, 

p<0.05). Groups without a similar letter are significantly different. Sample sizes ranged from 

n=7 to 9 per diet group. Error bars are +/- SEM. 

4.2.6  Effect of DHA treatment on genes regulating epithelial phenotype and redox response 

in BG1 cells 

     After observing that FSH reduces CDH1 transcript levels within hen ovarian tumors we 
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wanted to investigate the effect of 24-hour DHA treatment on CDH1 levels in BG1 human 

ovarian cancer cells. In addition to CDH1, we included several genes that are known to 

negatively regulate epithelial phenotype (i.e. SNAI1, SNAI2, ZEB1 and VIM) and also regulate 

redox response (NQO1 and HO1). We observed a significant downregulation of CDH1 at both 

25uM and 50uM DHA, and SNAI2 was downregulated at 50uM DHA (Figure 4.2.7). The redox 

response gene NQO1 was elevated at both 25uM and 50uM, and the redox response gene HO1 

was elevated at 50uM (Figure 4.2.7).  
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Figure 4.2.7. Effect of DHA treatment on the expression of genes regulating epithelial  

phenotype and redox response. RT-qPCR assay was conducted on BG1 cells that were treated 

with DHA for 24 hours in medium containing DMEM and 10% FBS. Tata-Box Binding Protein 

(TBP) was used as a reference gene. Four independent experiments (n=4) were conducted (in 

technichal duplicate per experiment) for the determination of CDH1. Three independent 

experiments (n=3) were conducted (in technical duplicate per experiment) for the determinantion 

of all other genes. Data in the graphs are normalized to 0µM DHA. One-way ANOVA and 

Duncan’s Multiple Range Test (p<0.05) were used to identify statistically significant differences 

between groups. Groups without a similar letter are significantly different. Central lines represent 

mean, and the error bars are +/- SEM. 

      

4.2.7 E-cadherin protein expression in hen ovarian tumors 

     We measured the level of 37kDa, 80kDa and 120kDa E-cadherin protein in hen ovarian 

tumors according to diet (Figure 4.2.8A). The 37kDa protein level was largely reduced by FXO 

and FSH, while the 80kDa protein was reduced by all treatment diets, with the biggest reduction 

of the 80kDa protein occurring in FXO hens. FXO and FSH were the only diets to reduce 37kDa 
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and 80kDa E-cadherin in ovarian tumors simultaneously. FXO exhibited a unique capacity to 

reduce the expression of 120kDa E-cadherin; however, this was versus WF hens, so it might be 

hard to interpret the meaning of that. Compositely, the FXO diet had the biggest effect on the 

expression of all molecular weights of E-cadherin (Figure 4.2.8A). All treatment diets reduced 

the ratio of 37kDa to 80kDa E-cadherin, while the ratio of 80kDa to 120kDa E-cadherin was not 

affected by diet (Figure 4.2.8B). The odds ratio of a hen having stage 4 ovarian cancer was 

significantly reduced by the FXO diet (O.R. = 0.32, c.i. 0.10 to 0.99, p=0.048), referenced to 

CTL hens. This distinguished the FXO diet, because no other diets displayed a significantly 

reduced risk of stage 4 ovarian cancer (Figure 4.2.8C). We then conducted non-parametric 

(Kruskal-Wallis) ANOVA on 37kDa and 80kDa E-cadherin in hen ovarian tumors (in order to 

appropriately compare 37kDa and 80kDa protein levels with the non-parametric odds ratio test), 

and the FXO diet was the only diet with a significantly reduced mean rank for the level of 37kDa 

and 80kDa E-cadherin, compared to CTL hens (Figure 4.2.8D). Said concisely, FXO hens 

exhibit reduced risk of stage 4 ovarian cancer concomitant with reduced levels of 37kDa and 

80kDa E-cadherin.   
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Figure 4.2.8. Expression of E-cadherin protein in hen ovarian tumors. E-cadherin protein 

was measured in hen ovarian tumor homogenates via western blot (n=5 per diet group). The 

37kDa and 120kDa E-cadherin proteins were evaluated with the mouse1 IgG for E-cadherin, and 

the 80kDa E-cadherin protein was evaluated with the rabbit2 IgG for E-cadherin (A). The ratio of 

the fragment to the full-length protein were then measured (B). One-way ANOVA with 

Duncan’s post-hoc test (p<0.05) was used in A and B. Odds ratio analysis was conducted, 

evaluating the odds of a hen having stage 4 OvCa normalized by the odds of a hen not having 

stage 4 ovarian cancer, referenced to the CTL diet (C). In order to appropriately compare the 

odds ratio of stage 4 OvCa with the expression of 37kDa and 80kDa E-cadherin proteins, we 

conducted non-parametric Kruskal-Wallis ANOVA on 37kDa and 80kDa E-cadherin (Dunn’s 

post-hoc test, p<0.05), in (D). Non-parametric ANOVA was used here, because odds ratio 

analysis is also non-parametric. Groups without a similar letter are significantly different. “*” 

denotes significantly reduced odds ratio. Error bars in A and B are +/- SEM. 

 

4.2.8 Proteomics analysis of the 80kDa band in hen ascites fluid and hen ovarian tumor 

     One-dimensional electrophoresis was performed on a hen ascites sample and on a hen ovarian 

tumor, and the 80kDa protein band from both of these samples was analyzed via peptide mass 

fingerprinting. The results of that work can be seen in Table 4.2.2. Overall, seven peptide masses 

were detected. 7 out of 7 of these peptide masses were identified in the hen ascites sample, and 5 

out of 7 of these peptide masses were identified in the ovarian tumor. Only two of the detected 

peptides (with masses of 718.233 and 1201.796) were within +/- 3 daltons of the in silico 

predicted peptide masses of the 80kDa E-cadherin protein. We used the amino acid sequence of 

the 80kDa extracellular domain for in silico trypsinized peptide mass prediction. If all two of 

these peptides are considered as hits, then we would only have 3.5% sequence coverage.  
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Table 4.2.2. Peptide mass fingerprint results from MS analysis of the 80kDa protein band 

from hen ascites fluid and hen ovarian tumor homogenate. 

Peptide mass detected                          
via MALDI-MS                      

(Da) 

Was the peptide 
detected in the 

80kDa band from  
hen ascites fluid? 

Was the peptide 
detected in the 

80kDa band from 
hen ovarian 

tumor? 

Nearest in silico predicted 
peptide mass that is within 

+/- 3 daltons of the detected 
peptide mass (Da) 

674.893 detected not detected none 
718.233 detected detected 720.864 
863.999 detected not detected none 
1201.796 detected detected 1201.408 
1634.058 detected detected none 
2261.290 detected detected none 
2688.726 detected detected none 

 

4.2.9 Mitochondrial membrane potential and oxygen consumption rate in ascites-treated 

IOSE80 cells 

     After hen ascites fluids were immunoprecipitated, we determined that the Control IgG ascites 

still contained the same concentration of 80kDa E-cadherin as the raw ascites fluid, whereas the 

E-cadherin IgG ascites fluid had only 8% of remnant 80kDa E-cadherin (Figure 3.2). We wanted 

to see the mitochondrial effects of using hen ascites fluid (with or ‘almost without’ the 80kDa 

fragment) on IOSE80 cells. We chose the IOSE80 cell line, because it is negative for E-cadherin 

(confirmed in our lab) while also being positive for EGFR (291). Most cells express receptor 

tyrosine kinases (RTKs), and this is the proposed receptor family for which 80kDa (i.e. soluble) 

E-cadherin is a putative activating ligand (269).  

     Mitochondrial membrane potential was measured in IOSE80 cells that were treated with 

Control IgG ascites or E-cadherin depleted ascites. Figure 4.2.9 illustrates the protein normalized 

fluorescence of IOSE80 cells that were treated with TMRE and CCCP, according to pre-

incubation with Control IgG ascites or E-cadherin depleted ascites. Figure 4.2.9 was designed to 

allow the visualization of the values that are used to calculate Delta Psi (ΔΨ), specifically this 
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figure allows the visualization of the “TMRE only” fluorescence and the “TMRE + CCCP” 

fluorescence. The mathematical difference between “TMRE only” and “TMRE+CCCP” is how 

we determined the actual ΔΨ. The ΔΨ values can be seen in Figure 4.2.10. Treatment with 1:159 

E-cadherin-depleted ascites increased the ΔΨ by 25%, in comparison to cells treated with 1:159 

Control IgG ascites. ΔΨ was also slightly elevated by 1:159 E-cadherin-depleted ascites, versus 

vehicle-treated cells. According to Figure 4.2.9, the reduction of ΔΨ in 1:159 E-cadherin-

depleted ascites was mainly due to a decrease of the “TMRE+CCCP” fluorescence. Treatment of 

cells with 1:39 E-cadherin-depleted ascites caused a 25% reduction of ΔΨ, in comparison to 

treatment with 1:39 Control IgG ascites. The 1:39 E-cadherin-depleted ascites also decreased ΔΨ 

versus the vehicle treatment. According to Figure 4.2.9, the reduction of ΔΨ in 1:39 E-cadherin-

depleted ascites was mainly due to a decrease of the “TMRE only” fluorescence. Lastly, neither 

of the ascites fluids affected ΔΨ at the 1:79 concentration.  
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Figure 4.2.9. Analysis of mitochondrial membrane potential (using TMRE and CCCP) in 

IOSE80 cells treated with different concentrations of either Ctrl IgG-treated ascites or E-

cad depleted ascites.  IOSE80 cells were serum-starved for 24 hours and then treated with 

Control IgG ascites or E-cad IgG ascites for 24 hours at different concentrations (i.e. 1:159, 1:79 

and 1:39). Mitochondrial membrane potential (ΔΨ) was then measured by calculating the 

difference between the TMRE-treated fluorescence and the TMRE+CCCP-treated fluorescence. 

All fluorescence values were normalized to total protein. The purpose of this figure is to allow a 

visualization of the baseline fluorescence (i.e. TMRE only) and the depolarized fluorescence (i.e. 

TMRE+CCCP) in IOSE80 cells, according to the concentration of ascites that was used to treat 

the cells. Each experiment was conducted four times with four technical replicates per treatment 

group (n=16 per treatment, in total). Error bars are +/- SEM. 
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Figure 4.2.10. Calculation of Delta Psi (ΔΨ) in IOSE80 cells treated with either Control IgG 

ascites or E-cad depleted ascites.  The ΔΨ values from Figure 4.2.9 were evaluated to 

determine the effects of ascites fluid on ΔΨ within IOSE80 cells. Statistical comparisons are 

between treatment groups of the same concentration (e.g. “Ctrl IgG 1:159” versus “E-cad IgG 

1:159”) or between treatment groups and the vehicle group (e.g. “E-cad IgG 1:159” versus 

“Vehicle”). Statistical comparisons were not made between treatments with different ascites 

concentrations (e.g. 1:159 versus 1:79). T-tests were used to detect differences between groups. 

Welch’s correction was used when variances were unequal between groups. “*” denotes p<0.05, 

and “**” denotes p<0.01. Each experiment was conducted four times with four technical 

replicates per treatment group (n=16 per treatment, in total). Error bars are +/- SEM. 

 

     We conducted a dose response curve with each concentration of ascites fluid to determine the 

effect on mitochondrial oxygen consumption rate (OCR) in IOSE80 cells. The range of OCR 

appeared to be different for cells that were treated with E-cadherin IgG ascites (i.e. E-cadherin-

depleted ascites) versus cells that were treated with Control IgG ascites (Figure 4.2.11A). For 

example, the OCR range for E-cadherin-depleted ascites cells was from 2pmol/min to 
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9pmol/min, whereas the OCR range for IgG Control ascites cells was from 0.5pmol/min to 

3.5pmol/min. Due to this difference in OCR range between the acites treatments, we decided to 

normalize all OCR values to the vehicle and utilize these normalized values for the graphing of 

basal OCR, ATP Synthase-associated OCR, proton leak, uncoupling, coupling efficiency and 

total mitochondrial OCR. In general, we observed that ascites fluid concentrations at 1:159 and 

1:79 had very comparable effects as compared to DMEM (vehicle), while ascites fluid 

concentrations of 1:39, 1:19 and 1:9, inhibited OCR in IOSE80 cells (Figure 4.2.11). The 

inhibitory effects on OCR increased substantially when going from ascites concentrations of 1:39 

to 1:9. Specifically, mitochondrial coupling efficiency and mitochondrial uncoupling were stable 

at 1:159 and 1:79, while mitochondrial coupling efficiency declined and mitochondrial 

uncoupling increased when going from 1:39 to 1:9 ascites. Coupling efficiency can be defined as 

the proportion of ratio of ATP Synthase-dependent OCR divided by basal OCR, and uncoupling 

can be defined as non-mitochondrial OCR divided by basal OCR. Although this experiment (i.e. 

Figure 4.2.11) was only conducted one time, it helped us to realize that mitochondrial oxygen 

consumption is mostly stable at 1:159 and 1:79 ascites fluid concentrations. Given this, in 

addition to the observed effect of 1:159 E-cadherin-depleted ascites on ΔΨ, we chose to conduct 

further OCR analysis in IOSE80 cells treated with 1:159 ascites for 24 hours (i.e. Figure 4.2.12). 

In this experiment, the OCR parameters (e.g. basal respiration, ATP production, proton leak, 

coupling efficiency, uncoupling and mitochondrial OCR) were all normalized to vehicle before 

running statistical tests. Treatment with 1:159 Control IgG ascites increased the mitochondrial 

coupling efficiency and decreased mitochondrial uncoupling in IOSE80 cells, in contrast to 

vehicle (Figure 4.2.12). No further effects of 1:159 Control IgG ascites was detected. Given that 

we observed an effect of 1:39 ascites on ΔΨ, we also decided to conduct OCR analysis of 1:39 
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ascites. We were not able to detect any effect of 1:39 ascites on basal OCR, mitochondrial OCR 

or non-mitochondrial OCR (Figure 4.2.13).       

      

 

Figure 4.2.11. Dose response in IOSE80 cells treated with a gradient of ascites fluid. The 

Mitochondrial Stress Test was performed to evaluate the metabolic response of IOSE80 cells 

exposed to a series of 2-fold ascites fluid dilutions (n=1 experiment). The Seahorse line graphs 

show the protein normalized OCR values in response these serial dilutions of ascites fluid (A). 

Different cell respiratory parameters were calculated using the protein normalized OCR values in 

A, to illustrate the mitochondrial response in IOSE80 cells exposed to hen ascites fluid (B).  
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Figure 4.2.12. Metabolic response of IOSE80 cells treated with 1:159 ascites. The 

Mitochondrial Stress Test was performed to evaluate the metabolic response of IOSE80 cells 

exposed to a 1:79 dilution of hen ascites fluid (n=3 experiments). The line graphs show the 

protein normalized OCR values of IOSE80 cells given this treatment (A). Different cell 

respiratory parameters were calculated using the protein normalized OCR values in A, to 

illustrate the mitochondrial response in IOSE80 cells exposed to hen ascites fluid (B). One-way 

ANOVA with Duncan’s post-hoc test was used (p<0.05). Graphs show means with error bars 

representing +/- SEM. 
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Figure 4.2.13. Oxygen consumption in IOSE80 cells treated with either 1:39 Control IgG 

ascites or 1:39 E-cad IgG ascites.  IOSE80 cells were serum-starved for 24 hours and then 

treated with 5% ascites fluid (either Control IgG or E-cad IgG) and incubated for 24 hours, prior 

to conducting oxygen consumption analysis with Seahorse. The basal, non-mitochondrial and 

mitochondrial oxygen consumption rates were recorded for each treatment. Each experiment was 

conducted three times (n=3) in technical duplicate. One-way ANOVA with Duncan’s post-hoc 

test was used (p<0.05). Error bars are +/- SEM. 

 

4.2.10  Final model for the effects of dietary PUFAs within laying hen ovaries and human 

ovarian surface epithelial cells 

     We developed a final model for lipid metabolism, mitochondrial gene expression and phase 2 

antioxidant gene expression, in hen ovarian tumors (Figure 4.2.14). Next, we developed a model 

that illustrates the effect of dietary PUFAs on miR-200a, CDH1 and E-cadherin expression, in 

laying hen ovaries. This model also indicates the effect that reduced levels of the 80kDa E-

cadherin protein have on mitochondrial membrane potential and oxygen consumption in IOSE80 

cells (Figure 4.2.15).  
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Figure 4.2.14. Model for the dietary regulation of fatty acid content, lipid metabolism, 

mitochondrial respiration and oxidative stress, in hen ovarian tumors. 
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Figure 4.2.15. Model of dietary PUFA effects on miR-200, CDH1 and E-cadherin in laying 

hen ovarian tumors. Also shown: the effect of 80kDa E-cadherin on mitochondrial 

bioenergetics in ovarian surface epithelial cells (IOSE80 cells).  
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CHAPTER 5 

DISCUSSION & FUTURE DIRECTIONS 

5.1  STUDY 1: FLAXSEED’S PARADOXICAL ROLE IN EXTENDING LIFESPAN AND 

REPRODUCTIVE CAPACITY IN WHITE LEGHORN LAYING HENS 

5.1.1  Linatine: the “Trojan horse” that initiated the effect 

     Our hypothesis is that the anti-vitamin B6 molecule ‘linatine’ enhances lifespan and 

reproductive capacity in White Leghorn laying hens. Linatine is found in the cotyledon 

compartment of flaxseed (i.e. it can be found in DF and WF) (59). Therefore, our general 

hypothesis is that DF and WF enhance lifespan and/or reproductive capacity in laying hens  

through the effects of the linatine molecule. Our specific aims were to: 1) build a metabolic map 

that elucidates linatine’s effects on one-carbon metabolism in laying hens, and 2) develop a 

rationale that either refutes or supports the hypothesis that linatine increases lifespan and/or 

reproductive capacity in laying hens. In brief, we observed daily mortality, daily egg laying and 

endpoint body weights in hens consuming one of six isocaloric diets for 325 days. On the 210th 

day of the study we collected blood plasma samples from hens and utilized LC-MS/MS to 

measure 108 plasma metabolites. We have conducted several previous studies where we used 

flaxseed with White Leghorn hens, and the results of those studies are used to help us interpret 

our current plasma metabolomics-based study. 

5.1.2  Decreased vitamin B6 concomitant with a transsulfuration blockade: the canonical 

effect of linatine 

     Researchers propose using a combination of direct vitamin B6 markers (i.e. PLP, PL, etc) and 

functional B6 markers (i.e. cystathionine, glycine, etc) when evaluating a patient’s vitamin B6 

status (292). The reason for using direct markers and functional markers is that other factors such 
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as glomerular filtration might obscure a single B6 marker. During our analysis, plasma 4-

pyridoxic acid (4PA) was decreased concomitant with elevated cystathionine, in DF and WF 

hens. Therefore, we have evidence of direct and functional effects associated with variation of 

vitamin B6. The plasma 4PA perturbation was strongest in DF hens, while this effect was near 

significant (p<0.07) in WF hens. Regardless of significance, the cystathionine elevation in DF or 

WF hens exceeded 15-fold versus CTL hens and approached 200-fold versus FXO and CRN 

hens. Said concisely, cystathionine was elevated by ‘order(s) of magnitude’ in DF and WF hens. 

Other researchers have observed a similar pattern of effect in rats consuming synthetic 1ADP 

(1). We did not assay the concentration of linatine in our DF or WF diets at the time of our study 

(year 2014); however, other researchers confirmed via UPLC-MS that linatine is a naturally-

occurring molecule in flaxseed, independent of geographic cultivar (293). Our 10% DF diet and 

15% WF diet were calibrated to provide a similar mass of flaxseed’s non-oil component (i.e. the 

hull, lignan, fiber, cotyledon portion that contains linatine). 4PA and cystathionine were stable in 

FXO hens, supporting a lack of effect in our most appropriate negative control group (i.e. FXO 

hens). Cystine (a di-cysteine molecule) did not appear to be affected by diet; however, flaxseed’s 

natural cysteine content (35,294) might appropriately supplement cysteine and prevent cysteine 

depletion. Researchers in rats observed that cysteine was not affected by high dose 1ADP (1), 

similar to our work with flaxseed-fed animals. Our data also suggested that glycine (an amino 

acid that is essential for glutathione synthesis) was not affected by diet. This is without surprise 

because flaxseed is a rich source of glycine (35). We can argue that flaxseed should not inhibit 

glutathione synthesis in hens, because we see no effect at the level of cystine or glycine. More 

research is needed to determine if flaxseed reduces TS flux to an extent that makes cysteine an 

‘essential’ amino acid that must be acquired through the diet. In our metabolomics, the level of 
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reduced glutathione (i.e. GSSG) was not affected by diet, but GSSG alone cannot provide 

sufficient information about the total glutathione content. Further work would need to be 

performed to determine flaxseed’s effects on glutathione synthesis, but preliminarily it seems 

that flaxseed does not insult key anabolic substrates used in glutathione synthesis (namely 

cystine and glycine). Interestingly, taurine was slightly lower in WF hens. Taurine biosynthesis 

requires two additional B6-dependent reactions beyond CBS and. In other words, taurine 

synthesis requires four B6-dependent reactions including those of the TS pathway, suggesting 

that taurine might be lower in WF hens due to anti-B6 burden. Another possibility is that taurine, 

as a facilitator of oxidative reactions such as fatty acid oxidation (FAO) in mitochondria (295), 

might be lower in WF hens due to increased taurine catabolism supporting mitochondrial FAO. 

Future work needs to evaluate if taurine is regulated more so by catabolic or anabolic processes. 

This would also help researchers to understand taurine because the taurine-related literature is 

fairly lacking.  

     A comparison of our study with previous work conducted in rats led us to suspect that 

transsulfuration might be more easily perturbed in laying hens versus rats. Our DF hens 

displayed 63% reduced 4PA levels with 15-fold elevated cystathionine. Rats consuming the anti-

B6 molecule 1ADP displayed 68% reduced 4PA levels but only 4-fold elevated cystathionine 

(1). More information is needed, but this introduces the notion that chicken CSE and chicken 

CBS might have lower binding affinities for PLP compared to rat, and therefore, slight 

perturbations of B6 might have dramatic effects on TS activity in chickens.  

     The researchers in (1) also showed that 1ADP-fed rats have 4-fold elevated cystathionine with 

1.4-fold elevated Hcy (1). If 4-fold elevated cystathionine can correlate with 1.4-fold elevated 

Hcy, then it seems very expected that 15 to 16-fold elevated cystathionine (as we saw in DF and 
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WF hens) would be accompanied with elevated Hcy. However, we saw no elevation of Hcy in 

DF and WF hens, giving us reason to suspect that Hcy is fluxing back into the Met cycle. 

5.1.3  The new fate of Hcy: increased flux of Hcy into the Met cycle (causing elevated SAM) 

     HyperHcy did not accompany the vastly elevated cystathionine in DF and WF hens. Murine 

studies suggest that hyperHcy is a common outcome of  TS inhibition (1,66,296–298). In the 

absence of hyperHcy, and without any indication of Hcy fluxing toward SAH, the most probable 

outcome appears to be an increased flux of Hcy into the Met cycle (i.e. increased Hcy 

remethylation). This Hcy flux is similar to the idea of “thiol recycling” within the Met cycle, 

presumably at a rate that is inversely proportional to TS flux. A key effect of this flux of Hcy 

remethylation appears to be elevated SAM production in DF and WF hens. DF hens exhibited 

the first evidence of this flux, with 1.9-fold elevated SAM. DF hens also displayed a 1.9-fold 

elevated SAM:SAH ratio. The SAM:SAH ratio was statistically similar between WF hens and 

DF hens, suggesting that methylation capacity might be somewhat similar between DF and WF 

hens.  

     All diets were supplemented with equal DL-Met (i.e. 0.1% calories as DL-Met), so hens 

consumed a comparable level of Met across diets. Our DF diet had a marginally higher 

calculated Met+Cys content (i.e. 0.72% TME versus 0.67% TME, as Met+Cys). Previous work 

in laying hens indicates that this percentage difference in Met+Cys does not elicit appreciable 

differences in amino acid profiles, feed intake, feed efficiency, egg production or weight gain, in 

chickens (299). Furthermore, this slight difference in Met+Cys is a “calculated difference” and 

might not have an actual metabolic effect. 

     In the metabolomics, why is SAM not elevated in WF hens? If linatine induces a flux of Hcy 

into the Met cycle, we would expect SAM to be elevated in WF hens as well as DF hens. We 
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suspect that excess SAM was catabolized by PEMT, in WF hens. We discuss this in much 

greater detail in sections referring specifically to the role of PEMT. 

5.1.4  Anecdotal evidence of increased methylation capacity in flaxseed-fed hens 

     We observed several anecdotal phenomena that complement our observation of 1.9-fold 

elevated SAM:SAH ratio in hens consuming 10% DF. Firstly, during our current reanalysis of 

microarray features previously published in (14), we detected a high percentage of significantly 

downregulated microarray features in normal and cancerous ovaries when hens consumed 10% 

WF. Those hens also displayed sharply downregulated microRNA-200 family members (miR-

200a, 200b, and 429) in cancerous ovaries (14). In other words, laying hens consuming 10% WF 

display a concomitant downregulation of microarray features and microRNA species. This 

suggests that flaxseed regulates the levels of RNA molecules either pre-transcriptionally and/or 

post-transcriptionally. The increased methylation capacity of a flaxseed-fed hen might play into 

this process. Histone protein methylation (300,301) and DNA methylation (68) are specific 

means by which one-carbon metabolism regulates RNA expression pre-transcriptionally. 

Scientists are also becoming more aware of the post-transcriptional regulation of RNA molecules 

via the abundant N6-methyladenosine mark that can guide RNA molecules (mostly mRNA) 

through the YTHDF2-mediated RNA decay pool (108,302). The N6-methyladenosine mark also 

guides mRNA molecules through the YTHDF1 and YTHDF3-mediated protein translation 

pathways. In light of these processes, we can hypothesize that the methylation capacity of a 

flaxseed-fed hen influences chromatin structure, transcriptional binding, RNA half-life and 

protein translation, in the ovary of the hen (independent of pathology) and culminates in widely 

downregulated RNA transcription and/or decreased RNA half-life. 

     Our lab previously observed that dietary flaxseed boosts the level of 2-methoxyestradiol (2-
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MOE) in the serum of hens (16). This finding might indicate higher methylation capacity in 

flaxseed-fed hens, given that 2-MOE is produced during the SAM-dependent methylation 

reaction between catechol-O-methyltransferase (COMT) and 2-hydroxyestradiol. The 2-

hydroxylated carbon of 2-hydroxyestradiol is methylated by COMT to a 2-methyl carbon, 

forming 2-methoxyestradiol (303). Our lab has also illustrated that 2-MOE induces proapoptotic 

and antiangiogenic effects in laying hen ovarian cancer and in human ovarian cancer cell lines 

(21). 2-MOE has been implemented in several human cancer clinical trials with tolerable effects 

and positive results (304). 

5.1.5  The BHMT pathway: supporting increased flux of Hcy into the Met cycle  

     Betaine can be derived directly from the diet or it can be synthesized via choline oxidation. In 

the liver, a large amount of choline is irreversibly oxidized to support betaine synthesis. Betaine 

drives the BHMT reaction that culminates in the remethylation of Hcy. We observed a high 

correlation between choline and betaine in our metabolomics (r=0.81), suggesting that choline 

oxidation might be increased in support of betaine synthesis. Increased BHMT activity in WF 

hens was suggested by their elevated Met:betaine ratio (Met is output of BHMT). Therefore, the 

vastly lower choline level and slightly lower betaine level in WF hens might be the result of 

elevated oxidation of choline in support of BHMT activity. In WF hens, the expression pattern of 

BHMT’s negative regulators (DMG, SAM and MTA) favor net loss of inhibition of BHMT (i.e. 

gain of function), which compliments the increased Met:betaine ratio in WF hens. Altogether, 

the metabolomics provide a surrogate indication that BHMT activity might be increased in WF 

hens. In DF hens, choline was slightly decreased while betaine was not affected. Given that DF 

hens had only slightly reduced choline and no effect on betaine, we feel that DF hens had 

moderate flux through BHMT. The expression pattern of BHMT’s negative regulators suggest a 
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net gain of inhibitory capacity against BHMT, which fits in line with the finding that choline was 

only slightly reduced while betaine was not affected. The fact that choline was lower in both WF 

and DF hens versus FXO hens suggests that the “non-oil compartment” (i.e. linatine 

compartment) of flaxseed might be responsible for reducing choline levels in hens. Interestingly, 

the negative effect on choline was noticeably larger than the negative effect on betaine, possibly 

reflecting the specialized ability of hepatocytes to store betaine thus making it harder to deplete 

betaine. Soluble choline, on the other hand, would be easier to spontaneously deplete. Choline 

depletion has been shown to activate PEMT, the master regulator of de novo PC synthesis 

(81,89,305). The observation of 39% reduced choline in WF hens helped us to consider the 

possibility of elevated PEMT activity. 

     Choline is likely undergoing net catabolism in WF and DF hens: This is an important point to 

make, because our model suggests that choline is being oxidized to support BHMT. Therefore, it 

behooves of us to strengthen our argument that choline is undergoing net catabolism. The 

complete oxidation of choline culminates in numerous reactions that produce “dissipative 

structures” that can readily contribute to mass loss. Those specific reactions are shown here, with 

dissipative structures underlined in bold: 

 
Betaine aldehyde dehydrogenase:  Betaine Aldehyde  →  Betaine + NADH 

Dimethylglycine dehydrogenase:  Dimethylglycine + THF  →  Sarcosine + 5,10-CH2THF + e
- 
(Ub pool) 

Sarcosine dehydrogenase:  Sarcosine + THF  →  Glycine + 5,10-CH2THF + e
- 
(Ub pool) 

Glycine cleavage system:  Glycine + THF + NAD+  →  5,10-CH2THF + CO2 + NH3 + NADH + H
+ 

 

     In line with Ilya Prigogine’s Nobel prize-awarded theory of dissipative structures in 

biological systems (306,307), the outputs of choline oxidation can dissipate from the physical 

body in the form of metabolic water, CO2, NH4
+ or radiant heat, and thereby contribute to mass 
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reduction from the organism. This perspective assumes that NADH has a high capacity for 

oxidation at complex 1 of the ETC, yielding NAD+, e-, and H+ (with e- and H+ ultimately 

forming metabolic water). In our study, the positive correlation between hen body weight and 

choline was strong across diet groups (R=0.94). Choline oxidation is also tightly coupled to the 

oxidation of de-esterified free fatty acids (FFAs) originating from the PC molecule. One 

molecule each of NADH, FADH2, and acetyl-CoA, is created for every two acyl carbons that are 

consumed via mitochondrial beta-oxidation. NADH and FADH2 each contribute an 2 electrons 

into the ETC, while acetyl-CoA can be oxidized in the TCA to generate 3NADH and FADH2. 

These molecules can then contribute to mass reduction from the body, primarily in the form of 

metabolic water and CO2. It is likely that the correlation between choline and body weight is a 

surrogate correlation between the beta-oxidation of PC-derived FFAs and body weight, because 

the mobilization of choline from PC probably generates a significant pool of FFAs that must be 

oxidized by the mitochondria in order to prevent intracellular lipotoxicity.  

     Regardless, choline oxidation is a contributor to mass reduction. We think that the level of 

choline observed in WF and DF hens indicates net increased catabolism of choline, particularly 

given the correlation between choline and physiological weight of the hen. In our previously 

published study of 2-year-old hens (2), the body weights of WF and DF hens were 14% and 7% 

lower than control hens, respectively. In our current study of 3.5-year-old hens, the body weights 

of WF and DF hens were 10% and 5% lower than control hens, respectively. These results 

indicate that younger hens might lose more weight than older hens when consuming a flaxseed 

diet, but the ratio of weight loss is approximately 2:1 for WF hens versus DF hens, at either age. 

5.1.6  MS-B12 in our model: supplemental help to BHMT 

     The metabolomics suggests that DF hens might have slightly elevated BHMT activity. After 
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observing how strongly WF hens might be utilizing BHMT, we think it is very reasonable to 

predict that DF hens need slightly elevated MS-B12 activity in order to supplement Hcy flux into 

the Met Cycle. Our assumption is that the Hcy burden in WF and DF hens is similar, given the 

similarly high cystathionine in both groups of hens. After accounting for all factors (i.e. urinary 

loss of DMG in addition to the complete oxidation of DMG to glycine), one molecule of DMG 

might culminate in the methylation of 0.25 to 0.50 molecules of Hcy via MS-B12. In DF hens, 

this would not be enough remethylation support from MS-B12 to prevent hyperHcy, and 

therefore, additional 5,10-CH2THF input from carbon donors such as serine would be required. 

We predict that a moderate flux through MS-B12 combined with a moderate flux through BHMT 

might be the way in which DF hens maintain stable Hcy levels. WF hens, contrarily, might be 

hyperactivating BHMT to a degree that diminishes the need for supplemental support from MS-

B12. Accelerated MS-B12 activity would likely require increased flux of one-carbon units into 

the folate cycle in order to yield more 5,10-CH2THF as substrate for MTHFR. In DF hens, we 

observed lower DMG levels, slightly lower serine levels, slightly lower serine:glycine ratio and 

possibly lower histidine levels. It is powerful to see this entire group of metabolites decreased in 

this manner, because we would predict increased catabolism of these molecules in support of 

5,10-CH2THF synthesis (to drive enhanced MS-B12 activity), in DF hens. The decreased DMG 

levels observed in DF and WF hens might represent increased DMG catabolism via DMGDH, 

which would indicate increased 5,10-CH2THF synthesis. The slightly lower serine level and 

slightly lower serine:glycine ratio in DF hens might suggest enhanced SHMT1 and/or SHMT2 

activity in support of 5,10-CH2THF synthesis. The challenge here is that flaxseed (via linatine) 

moderately affects B6 levels, and SHMT1 and SHMT2 are B6-dependent enzymes. We observed 

63% reduced 4PA levels in DF hens, and we do not know whether PLP (active B6) was 
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perturbed in either DF or WF hens. Research in rats suggests that plasma PLP can be statistically 

stable even when plasma 4PA is reduced by 68% (in rats consuming B6 sufficient diets) (1). 

According to our results, flaxseed perturbs B6 metabolism within healthy animals; however, the 

effect might not cause significantly perturb the ‘active B6 vitamer’, PLP. Research suggests that 

human SHMT2 maintains catalytic activity in the presence of moderate B6 deficiency (140,308). 

If SHMT2 can resist moderate B6 deficiency, then it might not be possible for a 15% WF diet or 

10% DF diet to perturb SHMT2 in animal models. And therefore, SHMT2 activity might be fully 

in-tact in flaxseed-dieting hens, and the decreased level of serine and the decreased 

serine:glycine ratio in DF hens might be the result of increased SHMT2 consumption of serine. 

This could lead to a large contribution of one-carbon units toward the synthesis of 5,10-CH2THF, 

which would help to elevate Hcy flux through MS-B12.  

     Interestingly, DF hens had increased thymidine levels. Thymidine is the substrate for 

thymidine kinase (TK). TK supplements Thymidylate Synthase (TYMS) when dTMP needs 

cannot be met solely by TYMS alone. Therefore, if thymidine is being spared due to reduced TK 

activity that might suggest increased TYMS activity, in DF hens. Two specific factors might be 

driving elevated TYMS activity in DF hens. In other words, the elevated thymidine in DF hens 

might be the result of elevated flux of 5,10-CH2THF through the folate cycle. Elevated 5,10-

CH2THF flux through the folate cycle could be the result of increased SHMT activity 

contributing to the synthesis of 5,10-CH2THF, in DF hens. Another explanation for increased 

TYMS activity could be the role of SAM as an MTHFR inhibitor, forcing increased flux of 5,10-

CH2THF through TYMS. Increased flux through TYMS might allow ample dTMP synthesis, 

thus keeping TK activity low and thymidine levels high, in DF hens. Perhaps both phenomena 

(i.e. increased SHMT activity and increased MTHFR inhibition) might be occurring 
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simultaneously in DF hens, and that might explain the statistically higher level of thymidine.  

5.1.7  Clustering of diets according to one-carbon donor molecules 

     K-means hierarchical clustering analysis was performed to illustrate how individual plasma 

samples cluster according to one-carbon donating molecules. Nearly all (16 of 17) plasma 

samples from hens consuming either DF, WF or FXO were grouped into two adjacent clusters, 

suggesting a global similarity of flaxseed’s effect on one-carbon donors. DF hens formed a tight 

cluster, suggesting a unique effect of flaxseed’s “non-oil” component. Several WF hens were 

closely related to DF hens, further indicating a unique effect of flaxseed’s “non-oil” component. 

FXO hens were more distanced from DF hens, and we found this to be sensible because DF has 

low oil content. WF and FXO hens were generally clustered, indicating a somewhat unique 

effect of flaxseed’s oil component. CRN hens and FSH hens were grouped into two clusters that 

were distant from all flax-based clusters, suggesting that CRN and FSH had similar effects on 

one-carbon donors but those effects were quite different from the effects observed in flax-based 

diets.  

5.1.8  PEMT: an unexpected ‘juggernaut’ in flaxseed-dieting hens?  

     Our suspicion is that PEMT hyperactivation drove the depletion of excess SAM in WF hens. 

PEMT was recently elucidated as the primary SAM consumer in physiology, with PEMT’s 

substrate, PE, acting as the primary ‘sink’ for excess SAM (77). PEMT consumes up to 50% of 

all physiological SAM, with PEMT and Guanidinoacetate Methyltransferase (GAMT; ie creatine 

synthesis) compositely accounting for 85% of total SAM consumption (78,79,104,309). We 

observed no indication that GAMT activity was affected by diet (Figure Appendix S3), and 

therefore, PEMT would be the most probable enzyme to explain why SAM was not elevated in 

WF hens. 



134 

 

5.1.9  Phenotypic evidence of PEMT hyperactivation in flaxseed-fed hens 

     As far as we know, we are the first lab to observe that flaxseed might induce PEMT 

hyperactivation in a wild-type vertebrate animal model. We observed three examples of 

phenotypic evidence that the flaxseed diet induces PEMT hyperactivation in hens. 

     1) Flaxseed hens have a high PC:PE ratio: A high PC:PE ratio is a canonical marker of 

elevated PEMT activity. In laying hens, a WF diet elevates the hepatic PC:PE ratio to 3.78 (310). 

Anyone who is familiar with physiological PC:PE ratios would recognize that 3.78 is somewhat 

high. However, when the researchers in (310) added a choline supplement on top of the WF diet, 

the PC:PE fell from 3.78 to 2.31 due to 39% less hepatic PC (310). This 39% reduction of 

hepatic PC is tremendously eye-opening, because our WF hens had 39% lower plasma choline 

compared to hens consuming our CTL diet. Did the choline supplement from (310) fill a ‘39% 

choline deficit’ in WF-fed hens and thereby provide a 39% negative feedback to PEMT, causing 

PC synthesis to decline 39%? Choline deficiency is already known to stimulate PEMT activity, 

simply because PEMT is the only enzyme that can biosynthesize choline (81,89). Therefore, we 

hypothesize that, “the flaxseed diet, by forcing increased oxidation of choline to support elevated 

BHMT activity, queues PEMT to produce a proportionally higher amount of PC (i.e. 39% more 

PC).” Interestingly, a 39% decrease in hepatic PC (as was observed in (310)) is also analogous to 

the inhibition of PEMT, because PEMT normally provides 30% of hepatic PC (88). The 

researchers in (310) also observed severe liver pathology in their WF-fed hens that were 

provided a choline supplement, supporting the notion that the 39% decrease of hepatic PC was 

likely due to PEMT inhibition. PEMT, as a synthesizer of PC, is critical for the packaging and 

secretion of VLDL from the liver, illustrating why PEMT inhibition vastly elevates the risk of 

hepatic steatosis (311–314). This might be precisely what the researchers in (310) experienced 
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with their WF-fed hens that were provided a choline supplement. 

     2) Improved liver health concomitant with elevated blood glucose: Recent work shows that 

wild-type mice have exceptionally improved liver health with the offsetting effect that blood 

sugar rises, particularly when mice consume a high fat diet (314,315). Our lab has already shown 

that our 15% WF diet and (to a slightly lesser extent) our 15% DF diet promotes excellent liver 

health in hens (2). Both the WF and DF hens presented with 80% lower hepatic AST levels, 

while the WF hens also had 29% lower liver weight and overall decreased scores for hepatic 

steatosis and non-alcoholic fatty liver disease (NAFLD) (2). Simultaneously, the WF and DF 

hens had 6.23% and 5.34% glycated hemoglobin (HbA1c) levels compared to 1.90% in control 

diet hens (2). In other words, flaxseed caused a 3-fold elevation of long-term blood glucose in 

hens. This elevation in HbA1c is higher than the HbA1c values observed in hummingbirds (161), 

meaning that flaxseed converts the metabolism of the chicken to a hummingbird-like 

metabolism. This phenotype of improved liver function with elevated blood glucose is similar to 

the phenotype of PEMT+/+ mice (314,315), where hepatic health was improved at the cost of 

increased blood glucose during high fat dieting. We did not measure HbA1c in the hens from our 

current study; however, the DF and WF hens were previously observed with nearly 3-fold 

elevated HbA1c. In our current study, the DF and WF hens displayed slightly reduced pyruvate 

(possibly indicating gluconeogenesis), concomitant with elevated C3-carnitine 

(propionylcarnitine), C5-carnitine (isovalerylcarnitine) and C8-carnitine (octinoylcarnitine). C3, 

C5 and C8-carnitine are markers of elevated HbA1c in diabetic humans (282), suggesting that 

blood glucose might be elevated in the WF and DF hens in accordance with elevated acyl 

carnitines. We do have some evidence that liver function was improved by flaxseed in our 

current study; the WF hens from our current study exhibited 40 to 60% lower blood AST (316). 
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     3) The WF diet appears to induce SAHH activity: SAHH is the enzyme that hydrolyzes SAH 

into the byproducts Hcy and adenosine. In our current study, the Hcy:SAH ratio and the 

adenosine:SAH ratio were simultaneously elevated in WF hens, suggesting increased hydrolysis 

of SAH by SAHH. The levels of adenosine and dAMP (dAMP is formed from adenosine) were 

also elevated in WF hens, further supporting increased SAHH output. Accelerated SAH 

hydrolysis via SAHH is essential to sustaining elevated PEMT activity, because SAH functions 

as a potent inhibitor of methyltransferases (110). It is already known that PEMT is a major 

activator of SAHH given the tremendous amount of SAH produced by PEMT (79,317). PEMT 

hyperactivation increases SAHH mRNA and SAHH protein levels in eukaryotic cells, likely in 

support of accelerated SAH hydrolysis (77).  

5.1.10  Laying hens are a good animal model for studying PEMT, because PEMT is positively 

regulated by estrogen 

     Postmenopausal women and all men are at higher risk of organ (e.g. liver) pathology 

associated with choline deficiency, whereas premenopausal women have lower risk of choline 

deficiency (318). The idea behind this is that the human PEMT DNA locus has been shown to be 

positively regulated by estrogen (likely via estrogen response elements, EREs) (319,320). The 

notion that PEMT is regulated by estrogen originated (although unknowingly at the time) from a 

study of White Leghorn hens and roosters in 1940, when blood phospholipid levels increased 

following treatment with natural and synthetic estrogens (321). Similar results were repeated in 

1981 when synthetic estrogen stimulated PC synthesis in roosters (322). Our lab identified (via 

NCBI Genbank) a complete ERE palindrome +424bp from the transcription start site of chicken 

(Gallus gallus) PEMT including five AP-1 enhancers between -1,510bp and +42,485bp from the 

start site (Figure 5.1.1). Further studies are needed to investigate the functionality of these 
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potential binding sites. Laying hens have diurnal LH surges every 24 hours (323), aligning 

diurnal estrogenic activity with daily egg laying tempo. It is possible that PEMT is a critical 

enzyme for supporting the daily egg laying tempo of laying hens.  

 

 

 
 

Figure 5.1.1. Estrogen response element (ERE) and AP-1 enhancers within the locus of 

PEMT (Gallus gallus). The PEMT locus (Gallus gallus) was investigated for EREs and AP-1 

enhancers. A complete ERE is located 424bp downstream of the transcriptions start site. Chicken 

PEMT is coded on the reverse strand. Also, two AP-1 enhancers were identified upstream of the 

start site, and three AP-1 enhancers were identified downstream of the start site but within the 

PEMT locus. 

 

5.1.11  Glucagon-like phenotype in DF and WF hens 

     Glucagon is a strong stimulator of glycogenolysis, gluconeogenesis and lipolysis in hens 

(162). In a previous study (2), the DF and WF hens from nearly 3-fold elevated HbA1c. 

Complimenting this, in our current study the DF and WF hens exhibited slightly reduced blood 

plasma pyruvate concomitant with elevated C3, C5 and C8-carnitine. Interestingly, blood FFA 
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levels (i.e. C18:1ω9, C18:2ω6 and C22:6ω3) were elevated in DF and WF hens concomitantly 

with 3-fold elevated HbA1c! This is furthermore surprising given the substantially lower fatty 

acid content of the DF diet. Therefore, knowing that blood glucose and blood FFAs are regulated 

primarily by glucagon in chickens (166), we can derive that flaxseed probably increases 

glucagon secretion in hens. It could also be important to determine if flaxseed influences 

glucocorticoid metabolism, because this could have significant effects on blood sugar levels. 

Another important consideration is whether flaxseed influences the secretion of somatostatin 

from the pancreas, because somatostatin is critical for negatively regulating glucagon release in 

hens (165). Also notable was the observation of increased plasma ascorbic acid in WF hens. 

Ascorbic acid might be important for protecting WF hens from the pathological effects of 

advanced protein glycosylation. Ascorbic acid has been shown to reduce protein glycosylation in 

humans (283); therefore, the natural ability of birds to biosynthesize ascorbic acid might serve a 

protective role during flaxseed dieting. 

5.1.12  Brief note about feed intake in flaxseed-fed hens 

     On the topic of “feed intake,” numerous research groups provide evidence that flaxseed-fed 

laying hens have higher feed intake and lower body weight (324–326). You read that correctly; 

flaxseed-fed hens eat more and weigh less. Therefore, the result of body weight reduction in a 

flaxseed-fed hen is probably not the result of decreased prandial food consumption. We want to 

make this point regarding feed intake, because we did not directly measure feed intake in our 

animals. 

5.1.13  Lifespan and methylation capacity in flaxseed-fed hens 

     Since the mid-1990s, animal class aves has been proposed as a model for the investigation of 

lifespan and aging (327). Birds live longer than equal-sized mammals, and they manage 
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oxidative stress and advanced glycation end products more efficiently (156,328). We analyzed 

hen survival over a 325-day period using 2.5-year-old hens. Our survival analysis is strengthened 

by the large sample size of animals, as well as the frequent occurrence of mortality (i.e. 35%) 

across diets. On average, each diet included 168 hens at study onset; therefore, a whole integer 

shift (i.e. 1% shift) in survival percentage is equivalent to 1.68 hens, meaning that survival 

differences can be interpreted to a resolution of 0.7% difference in survival percentage. DF hens 

displayed the highest cumulative survival with 71.4% survival. Prior to that study, our lab 

observed strikingly similar survival results (i.e. 72.1% survival) in 2.5-year-old White Leghorn 

hens consuming 10% WF (19). The 0.7% difference of survival between WF hens (72.1%) and 

DF hens (71.4%) is equivalent to approximately one animal. Something similar might be taking 

place in the metabolism of hens consuming either 10% DF or 10% WF. 

     DF hens displayed improved daily survival compared to CRN hens, according to a 

significantly reduced Cox proportional hazard. Very notably, from day 30 until day 325, the 

cumulative survival of DF hens was higher than CTL hens. No other diet accomplished this feat. 

Between day 70 to day 325, WF hens and FXO hens were the only animals to momentarily 

replace DF hens for top survival, suggesting that flaxseed-related diets performed well, in 

general. 

     Organism lifespan has been shown to be regulated by histone methylation, DNA methylation 

and RNA methylation (107,329–331). Future research should investigate linatine’s biochemical 

role in regulating methyltransferase reactions involving histones, DNA and/or RNA. 

Mechanistically, the focus should be to determine if linatine influences methyltransferase activity 

at the level of SAM. Are the products of methyltransferase reactions elevated in flaxseed-fed 

hens? For example, do flaxseed-fed hens have increased PC:PE ratio, increased 5-CH3Cytosine 
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in DNA and increased Ω6-CH3Adenosine in RNA? Our prediction is that linatine boosts 

methyltransferase activity of the hen by inducing a flux of Hcy into the Met cycle which in turn 

boosts SAM content and thereby boosts the SAM:SAH ratio.  

     Soaking ground flaxseed in water for 24 hours nullifies the bioactivity of linatine within the 

bird (62,63); therefore, an appropriate investigation would be the comparison of the effects of 

ground flaxseed that has been soaked in water for 24 hours versus ground flaxseed that was not 

soaked in water. Another investigative option would be to determine the enzyme that is 

responsible for generating linatine within flaxseed and to develop a heterozygote or knockout 

flax strain. This type of information on flaxseed is currently unknown, so it might be advisable 

for current researchers to propose developing grants to identify the means by which flaxseed 

produces linatine. These hypotheses could be challenged in a linatine knockout (or linatine 

heterozygote) variety of flaxseed, and we could compare outcomes with the parental wild-type 

flaxseed. Advisors should be advised that linatine concentration vary slightly between flaxseed 

cultivars (293), so researchers should control for cultivar within experimental designs. 

5.1.14  Metabolic markers of improved lifespan and healthspan, in DF hens 

     Our study is the first to demonstrate that a TS blockade concomitant with elevated SAM 

synthesis corresponds with elevated lifespan and elevated reproductive capacity in hens. 

Augmentation of TS, caloric intake and/or Met consumption are means by which other 

researchers have achieved lifespan extension in model animal systems. Experiments in fruit flies 

indicate that lifespan is increased via elevated TS flux (332); however, our work suggests that TS 

flux is dispensable for increased lifespan, in hens. Caloric restriction models show promise 

toward improving lifespan and healthspan in humans and non-human primates (333–335), and 

Met restriction models have been used to increase lifespan and healthspan in murine animals 
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(336,337). However, calorie restriction and Met restriction are not relevant to our study.  We 

observed that a high SAM:SAH ratio correlated with increased lifespan in DF hens. An increased 

SAM:SAH ratio has not been previously determined to serve as a marker of extended lifespan; 

therefore, our work might be among the first to suggest that an increased methylation capacity 

promotes longevity. Decreased glucuronic acid is associated with increased lifespan and 

healthspan in mice and humans (285), and we detected vastly lower glucuronate (deprotonated 

glucuronic acid; essentially the same molecule) in DF hens. A metabolomics study in humans 

indicated that low glycerophosphorylcholine (GPC) levels reflect healthy aging in centenarians 

who are at least 100 years of age (286), and we detected vastly lower GPC in DF hens. Clinical 

researchers suggest that the ratio of Met sulfoxide to non-oxidized Met is a potential clinical 

biomarker of oxidative stress in humans (287), and we noticed that the Met Sulfoxide:Met ratio 

was lower in DF hens in comparison to CRN hens. Similarly, we also observed a significantly 

lower serine:glycine ratio in DF hens versus CRN hens. Given that DF hens had significantly 

reduce Cox hazard compared to CRN hens, it might be deduced that a lower Met Sulfoxide:Met 

ratio and a lower serine:glycine ratio indicate reduced aging in laying hens. Altoghether, 

glucuronate and GPC as well as the ratios of SAM:SAH and Met Sulfoxide:Met, in DF hens, 

support findings in the literature regarding aging and lifespan. These metabolites might be useful 

for assessing longevity in avian species, particularly in laying hens. 

5.1.15  Reproductive capacity (egg laying performance) 

     We measured egg laying performance in advanced-age hens that were already one-year 

beyond their reproductive prime when the study began. Therefore, the improvements in 

reproductive capacity that we observed in WF, FSH and DF hens, are likely exceptional. WF 

hens and FSH hens exhibited best egg laying during the study, indicating that OM3-PUFAs and 
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particularly long-chain ω3-PUFAs such as EPA and DHA assist egg laying capacity. We already 

know that EPA and DHA are enriched in the livers and eggs of WF-fed hens (338,339), 

including the livers of hens consuming our 15% WF diet (2). To no surprise, hens consuming 

fish oil also display elevated EPA and DHA in egg yolk (340). FSH hens have the advantage of 

consuming EPA and DHA directly through the diet. WF hens, on the other hand, need to 

generate EPA and DHA via desaturation and elongation of ALA in the endoplasmic reticulum of 

hepatocytes. The need to desaturate and elongate ALA would pose a time delay in terms of 

enriching egg yolks with EPA and DHA, in WF hens. Accelerated VLDL trafficking of lipids to 

the egg yolk might be necessary to compensate for this time delay. In order to accelerate VLDL 

packaging and secretion it would be necessary to accelerate PC synthesis, because PC 

availability is rate-limiting for VLDL biosynthesis. This is primarily because PC represents 60-

80% of the phospholipid within the external phospholipid leaflet of VLDL (341,342). In other 

words, PC is essential for VLDL encapsulation. This is where PEMT hyperactivation would 

serve a paramount role in WF hens. Mice that lack PEMT secrete 70% less VLDL-TG when fed 

a high fat diet (311). Similarly, TAG and apoB100 secretions are reduced 50-70% in mouse 

hepatocytes lacking PEMT (312). DF hens displayed moderately improved egg laying 

performance, but it was not as high as WF hens. Our opinion is that DF hens might only have 

moderately elevated PEMT activity, and therefore, DF hens would have moderately elevated 

access to PC. This would in turn moderately elevate VLDL secretion to support egg yolk 

formation, culminating in the moderate enhancement of egg laying in DF hens. A strength of our 

study is that we observed egg laying capacity in aged hens that are well beyond their prime years 

of egg laying, meaning that the acute effects of the diet could be more apparent. 
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5.1.16  Overall ranking of biological vitality (i.e. survival and reproductive capacity) in hens 

     Biology displays two common priorities: 1) do not die right now, and 2) if you did not die, 

then maybe consider reproduction. A simple physiological metaphor could be the duality of fight 

and flight versus rest and digest. This perspective suggests that an overall scoring of biological 

vitality should consider animal survival as well as reproductive capacity. Although none of the 

hens in our study were provided the opportunity to experience oocyte fertilization, we might gain 

insight from using unfertilized egg laying capacity as a surrogate for hen reproductive capacity. 

Through this lens we observed an interesting pattern in which the absolute value of the 

difference between a diet group’s survival rank and egg laying rank was equal to 2, suggesting a 

common “trade off magnitude” or compensation between survival performance and reproductive 

performance. For example, the DF hens exhibited #1 survival and #3 egg laying (absolute 

difference of 2). This pattern of “trade off” was apparent for DF, WF, CTL and FSH hens 

(absolute difference of 2), validating the notion that survival and egg laying might combine as a 

valid indication of total biological vitality. The general biological well-being of FXO hens and 

CRN hens seemed to have deteriorated to a level where survival and reproduction suffered, with 

the most pronounced effect appearing in CRN hens. This observation suggests that dietary 

enrichment with flaxseed oil or corn oil, alone, is not beneficial to the well-being of hens. Given 

the low performance of CRN hens, we might also suggest that dietary enrichment with omega-6 

PUFA is not a desirable approach with aged hens. After factoring survival rank and egg laying 

rank together, the animals with #1 biological vitality were DF and WF hens. We argue that it 

might be the synergistic relationship between linatine and OM3-PUFA that allows flaxseed-fed 

hens to display superior biological vitality, in direct relationship with forcing a flux of one-

carbon unit inputs into the Met cycle and providing the hen with greater access to the master 
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methylating molecule SAM. In the future, researchers should measure the linatine concentration 

of the flaxseed cultivar that they utilize, because variations between studies might be due to 

different concentrations of linatine across cultivars. That said, a linatine effect should be 

expected independent of cultivar, as previously indicated by HPLC-MS/MS analysis (293).  

5.2  STUDY 2: THE EFFECT OF DIETARY POLYUNSATURATED FATTY ACIDS 

(PUFAS) ON LIPID METABOLISM, MITOCHONDRIAL BIOENERGETICS AND               

E-CADHERIN EXPRESSION IN LAYING HEN OVARIAN TUMORS  

5.2.1  Overall cancer risks 

     The enrichment of the diet with PUFAs (either ω-3 or ω-6) had a particularly strong anti-

cancer effect in hens. Total ovarian cancer risk, liver cancer risk, multiple peritoneal tumor risk, 

and the risk of stage 3&4 ovarian cancer, were all highest in the CTL and DF diet groups. CTL 

and DF also had the lowest oil content of all diets, suggesting that a diet with lower dietary 

PUFA content associates with increased risk of morbidity from ovarian cancer or otherwise 

peritoneal cancer, in hens. If our model captured true cancer risk, then we would argue that the 

pure oil component (independent of omega-3 or omega-6 PUFA) exerts the most powerful anti-

ovarian cancer effect. The diet groups with greatest hen survival were most likely to have a 

higher percentage of hens with ovarian cancer, suggesting that ovarian cancer risk in our study 

might be biased by survival. Our data suggest that ovarian cancer-associated mortality might be 

lowest in diet groups with highest overall survival. For example, the risk of ovarian cancer-

associated mortality might be decreased in CTL, DF and WF hens, because these animals 

displayed the best survival despite having the greatest risk of stage 4 ovarian cancer. This 

possibly indicates that CTL hens, DF hens and WF hens, lived longer with late-stage ovarian 

cancer. Inverse to this pattern, FXO hens, FSH hens and CRN hens, might have significantly 
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elevated ovarian cancer-associated mortality given that they displayed the lowest overall survival 

concomitant with the lowest percentage of hens with stage 4 ovarian cancer.   

     However, our model is challenged by the fact that we do not know the cause of death of any 

animal that died before the completion of our study. Approximately 33.9% of our hens died prior 

to study completion, or 341 out of 1005 hens. This certainly limits our ability to infer cancer risk 

or cancer-associated mortality risk. Future work could repeat our research model with the 

modification of analyzing cause of death in all birds that die during the study, otherwise it is 

difficult to make inferences with confidence. The uncertainty within our inferences is 

particularly high (i.e. 33.9% of animals have no known cause of death); furthermore, we detected 

significantly different Cox proportional survival hazards between some of our diets (i.e. DF 

versus CRN).  

     Despite the presence of uncertainty within our data, it seemed that the diets with lower PUFA 

content were at greater risk of stage 4 ovarian cancer and greater risk of ovarian cancer in 

general. Another interpretation is that ovarian cancer risk was biased by overall survival, causing 

a higher percentage of hens to be found with tumors when the diet enhanced survival in hens. 

This perspective also suggests that fewer tumors are likely to be found when the diet displays 

low survival. 

5.2.2  Lipid metabolism in hen ovarian tumors 

     A big takeaway from our analysis is that the WF diet, FXO diet, CRN diet and FSH diet, were 

able to accumulation fatty acids in ovarian tumors if those fatty acids were already enriched in 

the diet (e.g. C18:3ω3 accumulation in ovarian tumors of FXO-fed hens). This is a helpful “case 

in point” type of rationale, helping us to make the argument that the PUFAs form the diet serve a 

bioactive role in ovarian tumors of the hen. The dietary effects on lipid metabolism within these 
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tumors might be the result of specific lipid species accumulating with the tumor. WF hens also 

exhibited an increase in arachidonic acid (C20:4ω6), which is the elongation and desaturation 

product of LA (C18:2ω6). In other words, WF hens had elevated C18:3ω3 as well as C20:4ω6. 

     PUFAs have been suggested for quite some time as negative regulators of lipogenic gene 

transcription in liver (218) and in glioma cancer cells (343); however, not so much is known 

about the influence of PUFAs on de novo lipogenic gene transcription within solid tumors. The 

broad downregulation of FASN expression seen in WF, FXO, CRN and FSH hens, indicates that 

dietary PUFAs (omega-3 and omega-6) might exert negative feedback on FASN expression in 

ovarian tumors of hens. Intriguingly, FASN expression in these tumors, by diet, was very similar 

to the risk of total ovarian cancer across the diets, where risk decreased as the PUFA content of 

the diet increased. CRN hens also exhibited a capacity to downregulate ACC and SCD1, in 

addition to FASN, suggesting a superior role of C18:2ω6 in the downregulation of genes in the 

de novo lipogenic pathway. 

     Although we observed dietary effects on de novo lipogenic gene expression in hen ovarian 

tumors, we did not observe any effect of diet on the fatty acid species that are canonically 

regulated in the de novo lipogenic pathway (e.g. C16:0, C18:0 and C18:1). The only effect was a 

small decrease in C20:1ω11 within tumors of WF hens. WF hens also had elevated C20:4ω6 

which can exert anti-lipogenic effects along with other PUFAs such as C18:3ω3. Therefore, it is 

possible that WF hen are expressing negative feedback to de novo lipogenesis due to lower levels 

of C20:1ω11. 

     In FSH hens, the expression of PPARg and the concentration of DHA were concomitantly 

higher in ovarian tumors. Dietary omega-3 PUFA enrichment, in general, encouraged higher 

average PPARg expression, although the FSH diet was the only diet to significantly elevate 
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PPARg. PPARs have been referred to as lipid sensors (344), and long-chain PUFAs function as 

ligand-like activators of PPARα and PPARg (345,346). EPA and DHA are suggested to function 

as activators of PPARs in a ligand-dependent manner (347,348). DHA positively regulates 

PPARg activity in peripheral blood mononuclear cells (PBMCs) of humans with T2DM (349). 

PPARg expression might be higher in ovarian tumors of FSH hens due to DHA’s ability to 

activate PPARg. Future works should investigate how dietary PUFAs regulate PPAR binding to 

PPAR response elements within hen ovarian tumors and test how this effects PPAR-dependent 

gene transcription.   

5.2.3  Gene transcripts associated with mitochondrial respiration 

     In the 1920s, Otto Warburg postulated that tumors have dysfunctional mitochondrial 

respiration (“injured mitochondria”), such that tumors leverage glucose fermentation at a high 

rate despite oxygen tension being ample (350,351). This is the basis for the concept of aerobic 

glycolysis. In the 1950s, Joanna Budwig theorized that Warburg’s so-called mitochondrial injury 

was the result of mitochondria having insufficient access to respiratory substrates such as fatty 

acids and sulfhydryl groups (352). It was from this perspective that researchers such as Joanna 

Budwig and Bill Henderson advocated including flaxseed oil as a primary constituent of the anti-

cancer diet (352,353). Up front, our data suggest that PUFAs upregulate the transcripts for ETC 

complex 3, 4 and 5 as well as the ADP/ATP translocase were elevated in the PUFA-enriched 

diets (especially the FXO diet). Interestingly, the FXO hens also exhibited reduced odds ratio of 

stage 4 ovarian cancer, indicating that they had a boost in OXPHOS-related genes as well as a 

significantly reduced risk of late-stage disease. This observation suggests that PUFAs might 

reduce ovarian cancer risk in an ETC dependent manner, and this would not be a surprise 

because the mitochondrial beta oxidation of PUFAs would necessarily increase ETC activity. 
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Our results support the recommendations of Budwig and Henderson, both of whom believed that 

the dietary consumption of flaxseed oil can help to amplify mitochondrial function in tumors 

(352,353).   

     Why are we observing elevated OXPHOS genes in the ovarian tumors of hens consuming 

either WF, FXO, CRN or FSH? Our strongest evidence is that these four diets were effective at 

concentrating their corresponding PUFA (i.e. C18:2ω6 for CRN hens) within ovarian tumors, 

and the concentration of these PUFAs might amplify mitochondrial beta-oxidation. In turn, beta-

oxidation (in combination with the TCA) would yield a tremendous amount of NADH and 

FADH2 that elevate the need for ETC complex formation. A substantial elevation of beta-

oxidation within tumors has been considered by other researchers as the “reversal of the Warburg 

Effect,” whereby tumors reduce their glycolytic activity in favor of mitochondrial beta-oxidation 

(354). This is our workflow for postulating why OXPHOS-related genes are heavily amplified in 

the ovarian tumors of hens consuming either WF, FXO, CRN or FSH. 

     The expression of FASN was opposite to the expression of MT-CYTB, MT-COX1, MT-COX2, 

MT-COX3, ATP5B and SLC25A4, in hen ovarian tumors. This could be an expected outcome, 

because FASN represents lipid anabolism (i.e. de novo lipid synthesis), whereas increased 

OXPHOS would be stimulated by lipid catabolism (i.e. increased mitochondrial FAO). Anabolic 

lipid programs and catabolic lipid programs are not simultaneously upregulated (or 

downregulated) within the cell. For example, it is commonly known that malonyl CoA (the 

substrate utilized by FASN to make C16:0) is a potent CPT1 inhibitor, meaning that de novo 

lipid synthesis inhibits the transport of long-chain fatty acids into the mitochondria (thereby 

inhibiting mitochondrial beta-oxidized in the matrix) (355). Therefore, our gene transcript data 

regarding OXPHOS and de novo lipid synthesis are physiologically congruent. 
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5.2.4  Gene transcripts associated with oxidative stress response 

     In the mitochondria, SOD2 converts superoxide to hydrogen peroxide. Then, throughout the 

cell, CAT converts hydrogen peroxide to water and oxygen. These two enzymes provide a 

significant amount of the cell’s phase 2 (i.e. enzyme-mediated) antioxidant response. The lower 

expression of SOD2 might suggest lower superoxide production in ovarian tumors from hens 

consuming DF, WF, FXO, CRN or FSH. Similarly, the lower level of Cat might suggest reduced 

production of hydrogen peroxide in the tumors of hens consuming WF, FXO, CRN or FSH. The 

proteins for inducible nitric oxide synthase (NOS2) and SOD2 have been shown to be 

simultaneously elevated in AIDS-related Kaposi sarcomas (356), suggesting a direct correlation 

between nitration stress response and oxidative stress response in cancer. As such, our results 

suggest that protein nitration stress might be lower in the ovarian tumors of hens consuming DF, 

WF, FXO, CRN or FSH. Furthermore, just as was observed in (356), we detected elevated SOD2 

and NOS2 in ovarian tumors of our CTL hens. DNM1L (also known as DRP1) is a master 

regulator of mitochondrial fission (357). DNM1L is activated post-translationally by 

phosphorylation and (via the promotion of mitochondrial fragmentation) acts as an important 

step by which cancer cells upregulate oxidative stress and mitophagy (358).  

     Cancer cells utilize antioxidant defense systems to protect themselves from aberrantly high 

levels of ROS (359). Meanwhile, cancer cells also utilize ROS-associated oxidative stress to 

promote metastasis away from the primary tumor (360). The F1/F0-ATP synthase complex, 

which produces the vast majority of cellular ATP, is tightly regulated by the redox status of the 

cell (288). Cysteine 294 of canine ATP5A1 (the α-subunit of the F1 complex) can be modified by 

disulfide bond formation, S-glutathionylation or S-nitrosation, depending on the redox status of 

the mitochondria (361). This observation very closely relates ATP synthase function with redox 



150 

 

environment. Furthermore, the activity of ATP synthase depends on the structural association of 

17 different proteins (193,362). It has been suggested that the function of inner membrane 

complexes (such as ATP synthase) depends on the availability of subunit proteins, because the 

availability of  subunit proteins informs the degree to which inner membrane complexes can be 

fully assembled (198). The F1 catalytic domain of ATP synthase consists of α, β, γ, δ and ε 

subunits, and these subunits occur with a stoichiometry of 3:3:1:1:1, in mammals (363). The 

transcripts for ATP5B (the F1 β-subunit) were 3 to 5-fold higher in ovarian tumors of hens 

consuming WF, FXO, CRN or FSH, while the transcripts for ATP5A1 (i.e. the F1 α-subunit) 

were concomitantly 80% to 90% lower in those same diets. This idea a flip-flop between 

ATP5A1 and ATP5B expression might be an indicator of metastatic risk and/or tumor severity, 

according to published work. In humans, colon tumor metastases have high ATP5A1 expression 

compared to primary tumors of origin (364), and more advanced colon tumors have reduced 

ATP5B expression (365,366). High ATP5A1 expression concomitant with low ATP5B 

expression might be a marker of increased tumor severity and/or metastatic burden, in hens. The 

ovarian tumors of hens consuming our CTL diet had high ATP5A1 expression and low ATP5B 

expression. Our CTL hens also suffered the worst ovarian cancer morbidity (i.e. 18% of CTL 

hens had ovarian cancer) as well as the highest rate of multiple peritoneal organ involvement (i.e. 

10% of CTL hens had multiple organs involved). MT-ATP6 and MT-ATP8 are mitochondrially 

encoded genes for ATP synthase subunits 6 and 8. These two subunits help to anchor the stalk of 

ATP synthase into the mitochondrial inner-membrane (193,362). Mutations in MT-ATP6 and 

MT-ATP8 have been shown to influence ROS production specifically in the context of cancer 

and cell function (367–369).  

     Future research should evaluate the protein expression of ATP5A1, ATP5B, MT-ATP6 and 
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MT-ATP8. Our data suggest that dietary PUFA enrichment decreases the expression of 

ATP5A1, MT-ATP6 and MT-ATP8, while increasing the expression of ATP5B. This apparent 

flip flow in ATP synthase subunit expression might have specific relevance to the redox status of 

the cell. 

5.2.5  CDH1 and miR-200a-3p expression in hen ovaries and BG1 cells 

     We illustrated that the DHA concentration of hen ovarian tumors is increased by the FSH 

diet. In addition to fish oil, flaxseed can also enhance DHA concentrations via the stepwise 

elongation and desaturation of C18:3ω3. Our results suggest that omega-3 PUFAs downregulate 

CDH1 levels in normal and cancerous hen ovaries. We also saw an age-dependent effect on 

CDH1 in normal hen ovaries, suggesting that CDH1 expression might increase with greater age 

of the animal. This is not the first age-dependent effect that we observed in our animal model. 

Our lab has observed an age-dependent increase in prostaglandin E2 (PGE2) in the ovaries of 

laying hens (370), possibly correlating PGE2 regulation with miR-200/CDH1/E-cadherin 

regulation. 

     CDH1 levels were decreased by 25µM DHA and 50µM DHA in BG1 ovarian cancer cells, 

suggesting that dietary PUFAs (specifically omega-3 PUFAs) might reduce CDH1 levels in 

human ovarian cells. miR-200a was also decreased at 50µM (we did not measure effects at 

25µM), indicating that the decrease of CDH1 might be in response to decreased miR-200a 

levels. miR-200a is a known inhibitor of ZEB1 which is transcriptional repressor of the CDH1 

promoter. NQO1 was decreased at 25uM and 50uM DHA while HO1 was decreased at 50µM 

DHA, suggesting that CDH1 levels might decline in response to cellular redox response. We 

have already observed that BG1 ovarian cancer cells have intact mitochondrial respiration during 

oxygen consumption analysis with Seahorse XFp; therefore, they would be expected to 
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efficiently oxidize DHA in the mitochondria. DHA treatment might elevate mitochondrial FAO 

in BG1 cells, which could in turn enhance ETC activity and result in an upregulation in NQO1 

and HO1. NQO1 is one of the most redox sensitive enzymes in the cell (371), and we noticed 

that the transcripts for CDH1 and NQO1 were simultaneously decreased at 25µM and 50µM 

DHA, while HO1 levels were not affected until 50µM. HO1 provides negative feedback to 

heme-dependent metabolism, and also helps to increase the availability of carbon monoxide, 

iron, biliverdin and bilirubin, as antioxidants (372). Furthermore, the transcription of NQO1 and 

HO1 is mostly regulated by NRF2, a transcription factor that is activated when redox-sensitive 

cysteine residues on the sequestering protein, KEAP1, are modified by electrophilic attack from 

molecules such as H2O2 (373). The modification of these cysteine residues leads to the 

stabilization of NRF2 and the subsequent nuclear translocation of NRF2 where it binds to 

antioxidant response elements, such as those for NQO1 and HO1. We cannot speculate further on 

this mechanism, but we suspect that dietary PUFAs might regulate CDH1 in ovarian tumors by 

increasing FAO and thereby inducing a redox response that affects CDH1 expression. Future 

studies should attempt to utilize glutathione-boosting supplements such as N-acetyl cysteine 

(NAC) to test if the effect of DHA on CDH1 expression in BG1 cells is dependent upon redox 

status. 

     We also detected decreased levels of miR-200a in BG1 cells that were treated with 50µM 

DHA (we did not test the effects of 25µM DHA on miR-200a expression in BG1 cells). miR-

200a increases the transcription of CDH1 by inhibiting the CDH1 inhibitor ZEB1. Therefore, 

future studies should also investigate the role of redox sensitive systems in regulating the 

expression of miR-200a in ovarian tumors. We did not detect an effect of diet on miR-200a 

expression in ovarian tumors of the hen. Our lab previously indicated that miR-200a levels are 
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decreased in hen ovarian tumors during 10% WF dieting (14); however, we could not repeat 

those results. One possibility is that the authors in (14) ensured that all hen ovarian tumor 

samples were stage-matched (i.e. all stage 4), while we analyzed a random mixture of ovarian 

tumor stages in our current study. PUFA-enriched diets downregulated miR-200a detection in 

preneoplastic (i.e. normal) hen ovaries; however, the expression of miR-200a was much lower in 

normal versus cancerous tissues. miR-200a detection was correlated with the stage of the hen 

ovarian tumor, such that miR-200a was more abundant in stage 4 ovarian tumors versus stage 2 

ovarian tumors. Strikingly, in humans, miR-200a is also higher in ovarian tumors versus normal 

ovaries, and miR-200a levels are also higher in more advanced stage ovarian tumors (374). 

Therefore, miR-200a expression seems to progress similarly in ovarian tumors of hens and 

women regarding neoplastic evolution of the tissue. Our lab previously illustrated that E-

cadherin protein expression increases as the hen ovary becomes more neoplastic, just as what can 

be observed in human ovarian cancer (236). The works from (14,236) in combination with this 

current study further solidify the epithelial similarity between human ovarian cancer and laying 

hen ovarian cancer. More recent publications suggest that the miR-200 family and E-cadherin 

play a major role in the process of ovarian tumor metastasis (collective migration) (237,242). 

Also, in collaboration with researchers from Harvard, our lab recently elucidated the utility of 

miR-200 family members as blood biomarkers for the early detection of ovarian cancer (238).     

5.2.6  E-cadherin protein levels in hen ovarian tumors  

     The analysis of E-cadherin protein in hen ovarian tumors produced some interesting results. 

The FXO and FSH diets were unique in their ability to reduce the level of 37kDa and 80kDa E-

cadherin protein fragments, suggesting that omega-3 PUFAs might be particularly effective at 

reducing the cleavage of full-length (120kDa) E-cadherin in hen ovarian tumors. Previous 
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studies indicate that omega-3 PUFAs reduce the activity of extracellular cleavage enzymes such 

as matrix metalloproteinases (MMPs) and disintegrin and metalloproteinase with 

thrombospondin motifs (ADAMTS) (375,376). FSH hens had increased PPARg transcripts in 

hen ovarian tumors. PPARg is a known NF-kB inhibitor, and NF-kB can drive the expression of 

cytokines, MMPs and ADAMTS (377,378). Therefore, FSH (or specifically EPA and/or DHA) 

might act to decrease E-cadherin cleavage in a PPARg/NF-kB-dependent manner. Future work 

would need to consider the expression and activity of these cleavage enzymes in hen ovarian 

tumors, as they were not assessed in our current study. Our FXO hens were exceptionally unique 

in their ability to reduce the odds ratio of having stage 4 ovarian cancer while also having 

reduced 37kDa and reduced 80kDa E-cadherin during non-parametric analysis. This might 

suggest that the FXO diet reduces the severity of ovarian cancer by reducing the expression of 

the E-cadherin cleavage fragments. All of our treatment diets reduced 80kDa E-cadherin levels 

in hen ovarian tumors, a finding that correlates well with our observation that ovarian cancer risk 

was reduced by all of our treatment diets, in general. These results might indicate that PUFAs 

regulate the progression of ovarian cancer, because 80kDa (i.e. soluble) E-cadherin is very 

intimately related with the development and progression of human cancers (266,269,379).  Our 

study indicates that PUFAs (omega-3 and omega-6) reduce 80kDa E-cadherin levels in hen 

ovarian tumors, and this reduction might be important for diminishing the severity of the disease. 

The 37kDa protein also has relevance in the context of cancer, given that the cytosolic portion of 

E-cadherin (i.e. 37kDa fragment) provides a scaffolding anchor for the beta-catenin complex. 

Cleavage of 37kDa E-cadherin can promote beta-catenin activation and subsequent downstream 

transcriptional activities (380,381). Perhaps inferences about beta-catenin activation could be 

made based on studies of either 37kDa or 80kDa E-cadherin.  
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5.2.7  Proteomics analysis of the 80kDa band in hen ascites fluid and hen ovarian tumor 

     It was helpful to observe similar peptide masses in the hen ascites fluid and the hen ovarian 

tumor. However, based on the low sequence coverage of the peptide mass analysis, we cannot 

conclude that we have strong evidence that the 80kDa band represents 80kDa E-cadherin. 

However, knowing that we do see the 37kDa E-cadherin fragment, we still have a very 

reasonable argument that we are working with 80kDa E-cadherin. We do expect to see 80kDa E-

cadherin in both the tumor homogenate and in the ascites fluid, which is what our western blots 

indicated. Furthermore, our anti-chicken E-cadherin antibody binds to both the 80kDa fragment 

and the 120kDa fragment; this would be expected for an antibody that binds to the extracellular 

portion of the full-length E-cadherin protein. Future work might want to consider a 2-

dimensional gel electrophoresis of soluble E-cadherin, in an attempt to isolate the 80kDa protein 

according to isoelectric focusing. The original characterization of 80kDa chicken E-cadherin 

indicated an isoelectric point (pI) of 4.0 to 4.5 (229). Therefore, the isoelectric focusing has 

already performed with our antibody in chicken tissues. 

5.2.8  Mitochondrial membrane potential and OCR in ascites-treated IOSE80 cells 

     Hen ascites fluid seemed to harshly affect oxygen consumption at ascites fluid concentrations 

of 1:19 and 1:9, given the profound elevation of proton leak and mitochondrial uncoupling at 

1:19 and 1:9 concentrations. Therefore, we conclude that hen ascites fluid at concentrations of 

1:19 and 1:9 are toxic to IOSE80 cells. Interestingly, 1:39 ascites had mixed effects on OCR and 

mitochondrial membrane potential (ΔΨ), such that 1:39 E-cadherin-depleted ascites reduced ΔΨ 

but had no effect on basal OCR, mitochondrial OCR or non-mitochondrial OCR. Future 

experiments should also evaluate the effect of 1:39 E-cadherin-depleted ascites on ATP Synthase 

dependent OCR, via the utilization of oligomycin. This approach might reveal that 1:39 E-
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cadherin-depleted ascites does affect OCR. Otherwise, as it stands, 1:39 E-cadherin-depleted 

ascites has no effect on OCR despite reducing ΔΨ in IOSE80 cells. 

     Possibly to our observations, other studies have observed pro-apoptotic (382) and anti-

angiogenic (383) properties of human ovarian cancer ascites fluid when applied in vitro at 

concentrations of 1:19 and 1:9. We suspect that hen ascites fluid imparts a negative effect on 

IOSE80 cells at concentrations of 1:19 and 1:9. However, other studies have observed pro-

migration (384) and pro-survival (385) effects of human ovarian cancer ascites fluid in vitro; 

therefore, ovarian cancer ascites fluid is sometimes helpful and harmful to cell metabolism. Our 

dose response experiment revealed that OCR was stable and “healthy” at ascites concentrations 

of 1:159 and 1:79, indicating that 1:159 and 1:79 were likely non-toxic to IOSE80 cells. 

Mitochondrial membrane potential experiments supported this finding by evidencing that ΔΨ 

was maintained at ascites fluid concentrations of 1:159 and 1:79. Furthermore, the E-cadherin-

depleted ascites fluid even increased ΔΨ at a concentration of 1:159, suggesting that a slight 

treatment of with E-cadherin-depleted ascites promotes mitochondrial polarization, in IOSE80 

cells.  

     Opposite to the effect of 1:159 ascites, the E-cadherin-depleted ascites fluid at a 1:39 

concentration decreased ΔΨ. These findings suggest that a slight addition of E-cadherin-depleted 

ascites (i.e. 1:159) boosts mitochondrial metabolism, whereas a more concentrated addition of E-

cadherin-depleted ascites (i.e. 1:39) reduces mitochondrial metabolism, in IOSE80 cells. 

Interestingly, during extracellular flux experiments, the 1:159 concentration of Control IgG 

ascites reduced mitochondrial uncoupling and increased mitochondrial coupling efficiency, 

versus vehicle-treated cells. This might suggest that a slight addition of E-cadherin-containing 

ascites (i.e. 1:159) elevates mitochondrial metabolism. However, our results make it hard to 
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determine if the presence or absence of the 80kDa E-cadherin fragment in ascites enhances or 

decreases mitochondrial metabolism in IOSE80 cells. This is mainly because 1:159 E-cadherin-

depleted ascites increased ΔΨ, while 1:159 Control IgG ascites increased mitochondrial coupling 

efficiency. These are both phenomena that indicate elevated mitochondrial metabolism. If we 

assume that extracellular flux analysis of OCR (which is used to determine coupling efficiency) 

is more definitive of mitochondrial phenotype than ΔΨ analysis, then we might suggest that a 

1:159 treatment with E-cadherin-containing ascites improves ATP-dependent cellular respiration 

in IOSE80 cells. Regardless, it would be nice if the ΔΨ data had more parallel agreement with 

our extracellular flux OCR data.  

     Future work should also conduct immunohistochemistry with an antibody that is monoclonal 

to the extracellular domain of chicken E-cadherin (such as antibodies used in (229)), in order to 

visualize if the 80kDa chicken E-cadherin fragment colocalizes with EGFR or other RTKs such 

as IGF-1R. Experiments should also be conducted to evaluate the activation of these receptors 

and downstream Akt activation.  
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CHAPTER 6 

CONCLUSION AND SUMMARY 

6.1  STUDY 1: FLAXSEED’S PARADOXICAL ROLE IN EXTENDING LIFESPAN AND 

REPRODUCTIVE CAPACITY IN WHITE LEGHORN LAYING HENS 

     This research provides a comprehensive and integrative summary of work that has emerged 

from our lab over the past 12 years. Our lab has completed numerous flaxseed studies during that 

timeframe. We feel that it is imperative to share this information before the lab shifts its focus 

into new areas of research. All labs have a beginning, so all labs have an ending. A key strength 

in our work is that we always used the same animal and diet model (White Leghorn hens with 

flaxseed); therefore, we anticipate that our research is very repeatable. A vast number of 

hypotheses are made possible by this study. Furthermore, this work indicates that a completely 

paradoxical phenomenon might be possible with flaxseed-dieting in laying hens. That paradox 

involves the anti-vitamin B6 effects of linatine, whereby linatine severely perturbs 

transsulfuration and might enable a flux of Hcy into the Met cycle, thereby boosting SAM levels 

and possibly allowing PEMT hyperactivation. The resulting effect is increased egg laying and/or 

increased lifespan, depending on how much PUFA is included in the flaxseed diet. We predict 

that the PUFA content is the pivotal factor determining whether excess SAM is depleted 

(favoring egg laying) or accumulated (favoring lifespan). Previous literature indicates that the 

PUFA-rich nature of the WF diet should enhance the PE synthesis capacity of the animal, and PE 

is a rate-limiting substrate for PEMT. In the presence of excess SAM, we predict that elevated 

PE synthesis would fuel PEMT hyperactivation. Recent research indicates that this is precisely 

what should occur (77). PEMT hyperactivation would in turn provide elevated access to soluble 

choline, via PC synthesis. Soluble choline can then be oxidized to help facilitate Hcy 
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remethylation via BHMT. We suspect that PEMT hyperactivation is highest in WF hens, and this 

in turn would support elevated BHMT activity. We suspect that the 10% DF diet only 

moderately stimulated Pemt hyperactivation, and therefore, DF hens could only slightly elevate 

BHMT activity. If DF hens have only slightly elevated BHMT activity, then MS-B12 would 

need to facilitate the remethylation of the remaining amount of Hcy. Flux through MS-B12 

requires increased carbon input to the folate cycle (e.g. increased serine catabolism via SHMT) 

to drive Hcy remethylation via MS-B12. Our data suggest that increased catabolism of serine 

might have occurred in DF hens. This perspective observes BHMT as a primary mediator of Hcy 

remethylation in the context of a TS blockade, and places MS-B12 in a supplemental role to 

facilitate remethylation that cannot be performed by BHMT. Such a perspective is interesting, 

because MS-B12 is responsible for conducting the majority of Hcy remethylation under normal 

circumstances. However, the context of a TS blockade is not a normal circumstance. These 

results suggest that BHMT might be able to enhance its contribution to Hcy remethylation in 

correlation with the degree to which the diet is enriched with PUFA. Serine might be the 

dominant source of carbon that is powering Hcy flux through MS-B12, in DF hens. If this is the 

case, then our results suggest that B6 levels are not perturbed badly enough to inhibit SHMT 

activity, likely referring to SHMT2. We hope that our results motivate researchers to validate our 

hypothetical framework in laying hens and further investigate whether these results can be 

duplicated with flaxseed-dieting in other animals, including humans. Future experimenters 

should consider using synthetic linatine (or 1ADP) alone and in combination with an ω3-PUFA 

supplement such as flaxseed oil, in hens. We envision the possibility of discovering a unique 

form of “dietary technology” that can be used to custom tailor a particular outcome in the test 

subject, possibly increasing lifespan, healthspan or otherwise biological performance. As a 
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precautionary note, researchers have observed that B6-deficient rats are susceptible to negative 

hepatic effects when a high concentration of 1ADP is included in the diet (1). That said, our 

work suggests that flaxseed does not induce a B6 difficiency, although it certainly induces some 

form of B6 perturbation. The TS enzymes (i.e. CBS and CSE) might be sensitive to the anti-B6 

effects of linatine, suggesting that TS might be an early signal to the metabolism that vitamin or 

nutrient deficiency is occurring. It would make sense that the metabolism would be proactively 

selected by nature to provide an early warning that starvation is beginning, and TS might be a 

specific pathway for providing this signal (e.g. vastly elevated cystathionine). Does cystathionine 

elevation provide an early warning to the pancreas that a starvation-like state is present? Can the 

α-cells of the pancreas interpret elevated cystathionine as hyperaminoacidemia? In turn, does this 

promote the enhanced secretion of glucagon from α-cells? These are important questions because 

our work indicates that flaxseed induces a dramatic elevation of both cystathionine and HbA1c, 

in hens. An appreciation of avian and mammalian glucagon activity would be helpful for 

researchers who are comparing avian and mammalian models because most avian species have 

an exaggerated response to glucagon and a blunted response to insulin (compared to mammals.  

     In closing, we are excited about the future investigations that can be imagined given the 

present findings about flaxseed’s metabolic effects in laying hens. Do you find it bizarre that 

flaxseed converts the hen’s metabolism to that a hummingbird, possibly via elevating glucagon 

release? Or that flaxseed extends avian life, possibly via boosting the level of the master methyl 

donor, SAM? Or that flaxseed enhances egg laying capacity, possibly as a result of 

hyperactivating PC synthesis via PEMT? Future research needs to take these questions into 

account when designing hypotheses and specific aims; furthermore, future work needs to 

evaluate the effects of defatted flaxseed and whole flaxseed on a finer gradient (i.e. 5%, 7.5%, 
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10%, 12.5% and 15% defatted flaxseed, and the same gradient for whole flaxseed). Future 

research should consider the variations of linatine content that occur in flaxseed across varieties 

or cultivars. If the linatine concentration is not controlled for, then the results across studies will 

likely not be repeatable. This might be one of the biggest contributors to inconsistencies in 

flaxseed chicken research. A wide array of human pre-clinical, nutritional biochemistry-oriented, 

veterinarian-based, avian wildlife-based, agricultural, plant biological, or otherwise chemistry-

based research labs, need to sink their teeth into this animal/diet model. No one has ever 

modelled this type of a phenomenon in a vertebrate animal, so this is the dawning of a new 

perspective. Researchers have used flaxseed with laying hens for a long time, but they have not 

been aware of the phenomena that we elucidated in this present body of work. Investigators who 

have already conducted research with flaxseed in chickens might want to interpret their results 

given this new one-carbon metabolic perspective. 

6.2  STUDY 2: THE EFFECT OF DIETARY POLYUNSATURATED FATTY ACIDS 

(PUFAS) ON LIPID METABOLISM, MITOCHONDRIAL BIOENERGETICS AND                           

E-CADHERIN EXPRESSION IN LAYING HEN OVARIAN TUMORS 

      This work indicates that dietary PUFAs associate with an accumulation of PUFAs within hen 

ovarian tumors. These accumulated PUFAs reflect the fatty acid composition of the diet. For 

example, ALA (C18:3ω3) was higher in the tumors of FXO and WF-fed hens. ALA happens to 

be very concentrated in flaxseed oil, so it makes sense to see highest levels of ALA in ovarian 

tumors of hens fed either FXO or WF. This pattern was reflected in the ovarian tumors of CRN 

and FSH hens also. The accumulation of PUFAs within hen ovarian tumors associated with 

decreased levels of transcripts for de novo lipogenic genes and increased levels of transcripts for 

genes that support OXPHOS. The interesting aspect here is that de novo lipogenesis reflects lipid 
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anabolism while OXPHOS, in this context, would more likely reflect lipid catabolism that might 

result from elevated beta-oxidation of PUFAs within the tumor. Therefore, we have a succinct 

gene transcriptional message in which lipid catabolism might be high while lipid anabolism 

might be decreased in ovarian tumors when the hens consume a PUFA-supplemented diet. The 

genes that associate with oxidative stress response (i.e. phase 2 antioxidant enzymes) were vastly 

lower in PUFA-supplemented ovarian tumors, possibly suggesting that oxidative stress is lower 

in tumors when the OXPHOS machinery is activated to a higher level. This framework might 

indicate that our CTL-fed hens suffered extreme oxidative stress and highly glycolytic 

metabolism (i.e. largely quieted OXPHOS) within ovarian tumors that exhibited a strong lipid 

anabolism program (i.e. to support growth and replication). Accordingly, we observed the 

highest ovarian cancer risk in the CTL-fed hens, as well as highest GI cancer risk, liver cancer 

risk and risk of presenting with multiple peritoneal tumor sites. We even observed two CTL-fed 

hens died at the necropsy, prior to their CO2 asphyxiation, due to complete peritoneal cavity 

tumor involvement. Without equivocation, ovarian tumor severity and peritoneal tumor burden 

were almost exponentially worse when PUFAs were not somehow incorporated into the diet. 

From this perspective, we can say that dietary PUFAs reduced the risk of peritoneal cancer and 

also associated with a molecular phenotype that might be reminiscent of reversing the Warburg 

Effect. If only Joanna Budwig could be here today. 

     This study suggested that dietary PUFAs might not affect the level of miR-200a within hen 

ovarian tumors. Previous work from our lab (14) showed that WF-fed hens have reduced levels 

of miR-200a, 200b and 429, in ovarian tumors. One takeaway from our study suggests that miR-

200a expression might increase across stages. Future work should evaluate stage-related changes 

in expression of the miR-200 family in hen ovarian tumors. We observed an effect of PUFAs on 
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miR-200a and CDH1 within 2-year-old normal ovaries, which might suggest that PUFAs begin 

to regulate the early pre-neoplastic state of the ovary. Cell culture experiments indicated that 

CDH1 expression might be reduced by treatment with as little as 25μM DHA, which is in the 

physiological range for DHA. NQO1 and HO1 expression suggest that CDH1 gene expression 

might be regulated in a redox-sensitive manner that is associated with mitochondrial FAO and 

OXPHOS. These results might reflect what we observed in ovarian tumors of the hen, because 

FXO and FSH decreased the expression of CDH1 in those tumors. However, when we looked at 

the protein level, we did not detect any effect on the expression of full-length (120kDa) E-

cadherin. Furthermore, although we detected an effect of 50uM DHA on miR-200a levels in 

BG1 cells, we did not observe any effect of diet on miR-200a expression in hen ovarian tumors.  

     Strikingly though, the level of the cleaved E-cadherin fragments (i.e. 37kDa and 80kDa) were 

decreased widely by our PUFA-enriched diets, with the biggest effects coming from FXO and 

FSH. Therefore, the CDH1 level of the hen ovarian tumor correlated with the 37kDa and 80kDa 

E-cadherin fragments, at least in FXO and FSH hens. FSH hens also had elevated PPARg 

expression, and PPARg is a known NF-kB inhibitor. By inhibiting NF-kB this might reduce 

MMP and ADAMT activity and culminate in reduced cleavage of 120kDa E-cadherin. Future 

experiments should investigate the role of ALA and DHA in regulating the cleavage of E-

cadherin and determine if this happens in a PPARg/NF-kB-dependent manner. 

     The low sequence coverage of our peptide mass fingerprinting probably provides little 

confirmation that we are working with the 80kDa E-cadherin protein. The researcher (Warren 

Gallin) who developed the N-terminus antibody has already conducted the 2-dimensional 

isoelectric focusing work (229); therefore the pI for 80kDa E-cadherin is already known. Dr. 

Gallin, in the middle of his recent retirement, kindly gifted us with 10mg of N-terminus 
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polyclonal E-cadherin antibody. We were successful at developing an 80kDa E-cadherin-

depleted ascites fluid. We observed mixed results with regard to the effect of ascites fluid on 

mitochondrial metabolism in IOSE80 cells. E-cadherin-depleted ascites fluid increased the ΔΨ of 

IOSE80 cells when the ascites concentration was small (i.e. 1:159); however the ΔΨ of IOSE80 

cells decreased when the concentration of E-cadherin-depleted ascites was higher (i.e. 1:39). The 

story became more mixed after observing that treatment with 1:159 ascites increases 

mitochondrial coupling efficiency and decreases mitochondrial uncoupling. Therefore, we 

observed pro-mitochondrial effects at an ascites concentration of 1:159, whether or not the E-

cadherin fragment was present in the ascites. Perhaps it is more conclusive to observe increased 

mitochondrial coupling efficiency in IOSE80 cells treated with 1:159 Control IgG ascites, 

because estimates of extracellular oxygen tension reflect cell physiological function. It seems 

very clear that ascites concentrations of 1:19 and 1:9 are certainly toxic to IOSE80 cells, 

meaning that it is more helpful to conduct experiments in the 1:159 and 1:79 range of ascites 

fluid. Treatments at the 1:39 level might be borderline toxic and therefore difficult to interpret. 

Future work should focus on treatments at 1:159 and 1:79 when using the hen ovarian cancer 

ascites fluid that we are experimenting with. Future work should also evaluate the activation of 

growth factor receptors such as EGFR and IGF-1R, to see if the 80kDa fragment in hen ascites 

fluid activates these RTKs. 

 



165 

 

CHAPTER 7 

INDIVIDUAL PERSPECTIVE 

7.1  The 15% whole flaxseed diet as an ideal diet for fueling PEMT hyperactivation, in hens 

     The WF diet satisfies several prerequisites and conditions that promote PEMT 

hyperactivation (summarized in Table 7.1). The first mandatory prerequisite is excess SAM 

availability. We already indicate the presence of a TS blockade in the absence of hyperHcy or 

elevated SAH, in DF and WF hens, strongly suggesting that Hcy fluxed into the Met cycle. 

Supporting the existence of this flux, SAM was elevated 1.9-fold in DF hens. We propose that 

Pemt hyperactivation catalyzed the consumption of all excess SAM in WF hens. The second 

mandatory prerequisite for PEMT hyperactivation is enhanced PE synthesis capacity. In a study 

of primary rat hepatocytes, the PC created by PEMT (i.e. PC coming from PE) contained a wide 

variety of unsaturated acyls such as C18:1, C18:2, C20:4, C22:5 or C22:6, with a preference for 

longer chain PUFAs (88). What a lucky situation for flaxseed! Flaxseed is densely packed with 

C18:1, C18:2 and C18:3, and furthermore, C18:3 can be desaturated and elongated to C22:5 and 

C22:6. In White Leghorns, a 15% WF diet enriches the PE and PC fractions of egg yolks with 

C18:3, C20:5, C22:5 and C22:6 (338). It is commonly known that egg yolk phospholipids comes 

from the liver (i.e. come from liver VLDL), so the PE and PC fraction enrichments observed in 

(338) suggest that a 15% WF diet enriches hepatic PE and PC with long-chain PUFAs, in hens. 

Our 15% WF diet was already shown to elevate hepatic EPA and DHA content in White 

Leghorns (2), and similar results have been reported by others (339,386). We certainly expect 

vastly enhanced PE synthesis capacity in the livers of White Leghorns consuming 15% WF. 

However, we would not make this claim about our 10% DF diet. The 10% DF diet has 26.7% of 

the lipid content as the 15% WF diet, per gram of input (quantified by our lab via gas 
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chromatography). Due to nearly 75% less lipid content in the DF diet, we expect PEMT activity 

to become rate-limiting for DF hens at the level of PE synthesis. The predicted outcome would 

be less PEMT hyperactivation, and therefore, increased SAM accumulation in DF hens, as was 

supported by the 1.9-fold elevation in SAM. 

 

Table 7.1. Molecules and enzymes that influence PEMT activity, including their predicted 

effect on PEMT activity in WF and DF hens. 

Molecule or 

enzyme Effect on PEMT 
Status of molecule or enzyme Favored effect on PEMT activity 

in WF hens in DF hens in WF hens in DF hens 

Phosphatidyl-
ethanolamine               

(PE)  
Substrate for PEMT 

Suspected to be very 
enhanced (due to highly 

elevated PUFA) 

Suspected to be 
moderately enhanced 
(due to moderately 

elevated PUFA) 
+  +  + +                           

(rate limiting) 

S-adenosyl-
methionine     

(SAM) 
Substrate for PEMT 

High SAM potential    
(due to flux of Hcy    

into Met cycle) 

High SAM potential 
(due to flux of Hcy   

into Met cycle) 
+  +  + +  +  + 

S-adenosyl-
homocysteine 

(SAH) 
Inhibits PEMT Slightly lower level    

was detected No change detected + No effect 

S-adenosyl-
homocysteine 

hydrolase                 
(SAHH) 

SAHH decreases the  
SAH level and thereby 

increases PEMT             
activation 

High activity is 
suspected (due to       

high Hcy:SAH and 
Adenosine:SAH) 

No change detected +  +  + No effect 

Choline Choline depletion 
activates PEMT 

Much lower level       
was detected 

Slightly lower level    
was detected +  +  + + 

Betaine 
homocysteine 

methyltransferase     
(BHMT) 

Bhmt increases choline 
depletion and thereby 

activates PEMT 

High activity is    
suspected (due to high 

Met:Betaine and      

lower choline &   
betaine levels) 

Slightly higher activity 
is suspected (due to 

slightly lower                
choline level) 

+  +  + + 

   --------------------------------------- Summed Effect -------------------------------------- 
Highly 

increased 

PEMT activity 

Moderately 

increased PEMT 

activity 
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7.2  Model for flaxseed’s induction of glucagon secretion in hens 

     Although we did not measure systemic glucagon in flaxseed-fed hens, our data in 

combination with previously published work (2) suggest phenotypically that glucagon secretion 

could be highly elevated in WF and DF hens. The role of glucagon is likely important in our 

model, because glucagon has the ability to heavily stimulate lipolysis in hens. Elevated lipolysis 

could be critical during flaxseed dieting in hens, because the production of soluble choline 

requires phospholipase activity on PC. It is unknown if glucagon stimulates phospholipase 

activity in hens, but this hypothetical model synergizes glucagon activity with the larger model 

regarding Hcy remethylation. This synergistic model can be seen in Figure 7.1. 
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Figure 7.1. Glucagon’s integration into the larger model of flaxseed’s effect on one-carbon 

metabolism in laying hens. We have ample evidence to argue that glucagon secretion might be 

highly elevated in hen’s consuming either DF or WFX. This evidence includes elevated HbA1c, 

reduced plasma pyruvate, elevated blood lipids and reduced body weight. Glucagon secretion 

might be accelerated in flaxseed-fed hens for several reasons, such as plasma 

hyperaminoacidemia, elevated plasma enterolactone or enterodiol and/or decreased plasma 

choline. A primary takeaway from this flow chart is that accelerated glucagon secretion might be 

critical for enabling accelerated phospholipase activity on PtdChl, so that soluble choline can be 

continuously produced in support of elevated flux through BHMT. Said concisely, this model 

predicts a synergy between glucagon and linatine at the level of phospholipase activity on PtdChl 

(in terms of producing soluble choline and allowing elevated flux of Hcy through BHMT). 

 

7.3  What is it about flaxseed that might be causing elevated glucagon release? 

     A primary role of pancreatic α-cells is the monitoring of amino acid levels in the liver (387). 

When α-cells detect elevated amino acids (i.e. hyperaminoacidemia) they respond by strongly 

increasing their release of glucagon into the systemic circulation, at least in mammals (387,388). 

The liver has the highest level of TS activity among all organs (389); therefore, cystathionine (as 

a TS metabolite) might be easily detectable by pancreatic α-cells. An important question then is, 

“does elevated cystathionine stimulate α-cells to increase their secretion of glucagon?” This is a 

big question for future research to explore. If the pancreas interprets 15-fold elevated 

cystathionine as hyperaminoacidemia (and hyperaminoacidemia enhances glucagon secretion 

from α-cells), then this might explain the nearly 3-fold elevated HbA1c values in DF and WF 

hens. 
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     An alternative hypothesis (alternative to the hyperaminoacidemia idea) is that glucagon 

secretion was increased by enterodiol (ED) and/or enterolactone (EL) in DF and WF hens. We 

already know that ED and EL are highly elevated concomitantly with elevated HbA1c, in DF and 

WF hens (2). ED and EL are phytoestrogens that are produced after the enteric fermentation of 

seicoisolariciresinol diglucoside (SDG) (390). Flaxseed is the richest natural source of SDG, 

explaining why our DF and WF hens have high blood levels of ED and EL. In mice, ED and EL 

have been observed to exert estrogenic effects (391), but it is unknown if ED and EL exert 

estrogenic effects in chickens. 17-β estradiol promotes proglucagon-derived peptide secretion 

from human and mouse α-cells (392), so it is possible that ED and EL might influence glucagon 

release in an estrogenic manner. Further studies are needed to determine if ED and EL influence 

glucagon release in hens. It would certainly be interesting to explore whether 

hyperaminoacidemia (e.g. elevated cystathionine) in conjunction with elevated ED and EL, cause 

highly increased glucagon secretion from avian α-cells.   

     Lastly, the α-cells of the pancreas might be sensitive to the choline content of the animal. If 

amino acid sensing is a primary function of α-cells (387), then they might be able to detect 

choline depletion. Choline is somewhat amino acid-like. Nonetheless, low choline levels such as 

those observed in WF hens (and to a lesser extent in DF hens) might contribute to enhanced 

glucagon secretion from the pancreas, particularly if the lipolysis enhancing effects of glucagon 

promote the mobilization of choline from PC (via phospholipase activity). 

7.4  Could a positive feedback loop exist between cystathionine and glucagon? 

     Why on Earth is cystathionine elevated over 15-fold in DF and WF hens? The first, and 

obvious explanation, is that CSE activity was decreased due to linatine’s B6 antagonizing effect, 

thereby reducing TS flux. However, a 15-fold elevation of cystathionine suggests the presence of 
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a positive feedback loop. We propose a positive feedback loop between cystathionine and 

glucagon, assuming that elevated cystathionine is interpreted by the pancreas as 

hyperaminoacidemia. As already noted, hyperaminoacidemia induces glucagon release from α-

cells, at least in mammals (387,388). In turn, glucagon exposure increases CBS gene 

transcription and catalytic enzyme activity (393,394). Recall that CBS synthesizes cystathionine. 

     One hypothetical model is that linatine exposure stimulates an elevation of cystathionine that 

is interpreted by the pancreas as hyperaminoacidemia, and this activates a positive feedback loop 

between cystathionine and glucagon, culminating in 16-fold elevated cystathionine. Assuming 

that a hen just consumed a flaxseed meal (either DF or WF) and the initial anti-B6 effects have 

already taken place, the positive feedback loop might look like:  

 

4-fold elevated cystathionine → more glucagon release → more hepatic CBS activity →                                               

8-fold elevated cystathionine → more glucagon release → more hepatic CBS activity →                                             

16-fold elevated cystathionine → END OF LOOP (blood glucose is so elevated at this                     

point that pancreatic somatostatin blocks further glucagon release) 

 

7.5  Are DF hens at risk of developing aggressive tumors? 

     This is where courage counts. The synthesis of 5,10-CH2THF from SHMT might be elevated 

in DF hens, given their slightly reduced serine:glycine ratio. This would provide more one-

carbon substrate for reactions within the folate cycle, especially the Ts reaction where dTMP is 

synthesized. DF hens exhibited a thymidine-sparing effect that might suggest elevated TYMS 

activity (as a result of reduced TK activity). Furthermore, the elevated SAM in DF hens suggests 

that the cytosolic 5,10-CH2THF will preferentially react with TYMS and SHMT1. Compositely, 
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these observations suggest anecdotally that TYMS activity might be elevated in DF hens. Would 

this cause elevated dTMP synthesis, or would it simply mean decreased TK supplementation and 

stable dTMP synthesis? This is a complex question but important to consider in the context of 

cancer. dTMP must be incorporated into the DNA to ensure proper DNA replication during the 

S-phase of the cell cycle. As such, elevated dTMP synthesis would provide a pro-proliferative 

advantage to tumors. Highly active TYMS is a prognostic risk factor for reduced survival in 

various forms of cancer (395–397). Chemotherapeutic substances such as 5-fluorouracil (5-FU), 

when converted to 5-fluoro-2'deoxy-5' monophosphate, prevent TYMS from synthesizing dTMP 

and thereby exert anti-proliferative effects in solid tumors (398,399). Further research is needed 

to determine if TYMS activity is regulated by the DF diet in a manner that promotes tumor 

development. Ironically, if TYMS activity is upregulated in DF hens, it could make DF hens a 

useful animal model for studying TYMS-inhibiting drugs in the context of ovarian cancer. Some 

research suggests that our DF hens might be useful as a positive control for studying the 

refractory effects (i.e. upregulated folate cycle proteins) of platinum chemotherapy in human 

ovarian cancer (400). 

7.6  Could serine be lower in DF hens in support of gluconeogenesis or glycogen synthesis? 

     We propose in our model that serine catabolism via SHMT is increased, in DF hens, in 

support of 5,10-CH2THF synthesis (helping to aid in Hcy remethylation). However, we have a 

strong phenotypic indication that glycogenolysis and gluconeogenesis are elevated in DF and 

WF hens (by way of 3-fold elevated HbA1c and slightly decreased pyruvate). Is it possible that 

DF hens have slightly decreased serine in support of gluconeogenesis and/or glycogen synthesis 

(to replace rapidly broke-down glycogen). If DF hens are consuming serine in support of glucose 

and/or glycogen synthesis, then that might challenge our model’s proposition of increased 
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SHMT activity in DF hens. What does the literature have to say about this? 

     The kidney is the primary organ for gluconeogenesis in chickens, while the liver is the 

primary organ for gluconeogenesis in mammals (401). In chickens, lactate carbon (via the Cori 

cycle) is the primary contributor to hepatic gluconeogenesis, because the cytosolic form of 

phosphoenoylpyruvate carboxykinase (PEPCK) is not active in chicken liver (which probably 

explains why chickens conduct gluconeogenesis primarily in the kidney) (402). Pyruvate and 

certain amino acids (glutamine, glutamate, alanine, aspartate and proline) are contributors to 

gluconeogenesis in the kidneys of starving chickens, while serine and glycine are not 

contributors (402). A different lab observed that gluconeogenesis is supported in starving 

chickens by administration of the following amino acids: alanine > glycine > aspartate > serine > 

glutamate > arginine (403). Those researchers observed that hyperglycemia was supported in 

starving chickens by administration of lactate, glycerol or pyruvate, in the order of lactate > 

glycerol > pyruvate (403). They also observed that serine administration was the only substrate 

that increased glycogen synthesis in starving birds (403). 

     Overall, it seems that serine is not a good candidate for the support of gluconeogenesis or 

hyperglycemia in chickens. It might be possible that the catabolism of serine is increased in 

support of glycogen synthesis; however, this idea would be based on previous studies that were 

conducted in 48 hour fasted chickens (i.e. starved animals). Those starved chickens would likely 

have elevated glucagon secretion. However, the animals in our study were not starved 

whatsoever, so we do not know how comparable starvation studies would be with our work. 

Nonetheless, it certainly is interesting to fathom that glycogenolysis and gluconeogenesis are 

upregulated in DF and WF hens (i.e. non-fasted animals). This is such a rare perspective on 

physiology…the ability to study upregulated glycogenolysis and gluconeogenesis in non-fasted 
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animals (i.e. DF and WF hens). Glycogenolysis and gluconeogenesis typically occur during the 

fasted state, so this might infer that flaxseed dieting induces a “fasting like” metabolic effect in 

hens. This would be truly paradoxical. 

     Future work is needed in this area to determine if the flaxseed diet causes hens to increase 

their catabolism of serine in support of gluconeogenesis, hyperglycemia or glycogen synthesis, in 

hens. From our study, there was no significant effect of diet on the following amino acids: 

alanine, aspartate, glutamate, arginine, asparagine or proline. Lactate was also not affected by 

diet. Pyruvate, however, was slightly decreased in DF hens and WF hens, suggesting a possible 

contribution of pyruvate toward renal gluconeogenesis. Without any affect on other major 

candidates, such as alanine or lactate, it seems somewhat less likely that serine catabolism was 

elevated in support of anabolic glucose metabolism.   

7.7  Could a high SAM:SAH ratio be pathological in DF hens? 

     It is reasonable to ask if hypermethylation might serve a pathological role in flaxseed-fed 

hens. Too much methylation, particularly too much DNA methylation, induces a number of 

diseases in humans (404). As a counterbalance to the risk of hypermethylation, we detected 

significantly elevated levels of MTA in DF hens. MTA (a derivative of dcSAM) is a cell-

permeable, pan-methyltransferase inhibitor that has been used extensively in the context of 

preventing histone arginine hypermethylation (115,117). MTA could serve a role in balancing 

the methylation capacity, and thereby prevent hypermethylation-associated pathology in DF 

hens. This also suggests that DF hens might be useful as an in vivo positive control for testing the 

effects of methyltransferase inhibitors. 
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7.8  What might this research mean about chicken metabolism, in general? Furthermore, how 

might Galloanserae (i.e. chickens and ducks) have survived the Cretaceous-Paleogene 

boundary mass extinction event 66 million years ago? 

     I would like to take a moment to address a key extrapolation of my research findings. It is 

without equivocation that we identified a paradoxical metabolic outcome in chickens that eat 

flaxseed. Flaxseed-fed hens display multiple predictable perturbations: one of reduced vitamin 

B6 level and the other of elevated cystathionine level. Up front, it is apparent that the TS 

pathway (where cystathionine is produced) could be an early warning that a starvation-like 

condition is present in the bird. And how could this be? Consider vitamin B6. Vitamin B6 is 

arguably one of the most important prosthetic groups (or cofactors) in biology (55), meaning that 

vitamin B6 is present in practically all forms of life. Given the common availability of vitamin 

B6 in biological organisms, it is very uncommon for a person to experience vitamin B6 

deficiency when food is adequately available (405). Life eats life, so the mere act of eating is the 

act of consuming vitamin B6. Without attempting to sound sarcastic, a medical clinician’s first 

question to a patient who exhibits a vitamin B6 deficiency should be, “are you eating food?” 

Through this perspective, one could fathom that reduced levels of B6 within an animal induce a 

starvation-like response. We observed starvation-like effects in flaxseed-fed hens, such that 

flaxseed-fed hens weighed significantly less (e.g. they weigh 10% less than control-fed hens). 

This likely indicates that flaxseed-fed hens increase their phospholipid catabolism, triglyceride 

catabolism and fatty acid oxidation, in response to the anti-vitamin B6 effects of flaxseed. Our 

evidence suggests that flaxseed increases lipolysis in hens, as evidenced by elevated circulating 

blood plasma free fatty acids. This is probably the result of increased glucagon secretion. In 

support of elevated glucagon secretion, our flaxseed-fed hens also had 3-fold elevated HbA1c 
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and slightly reduced plasma pyruvate. These were likely the result of elevated glycogenolysis 

and elevated gluconeogenesis. Altogether flaxseed’s anti-B6 effects associated with a phenotype 

of elevated glucagon secretion, in hens.  

     The glucagon-like phenotype of flaxseed-fed hens could be a metabolic adaptation in hens (or 

perhaps birds, in general) that are exposed to vitamin B6 antagonism, or B6 deficiency. This 

informs me that the TS pathway functions as both a “sensor” and “signal” of starvation, in hens. 

The B6-dependent enzymes, CBS and CSE, function as “sensors” of starvation given their 

catalytic dependence on vitamin B6. Subsequently, an elevation of plasma cystathionine 

functions as a TS-mediated “signal” of starvation, because elevated cystathionine is the 

downstream result of insulted B6 levels within the TS pathway. This sensor and signal process 

might be particularly conserved within the TS pathway of ornithine species. When food 

availability is challenged due to seasonal disparity or due to environmental pressure, the TS 

pathway can serve in a capacity that announces the presence of vitamin deficiency.  

     Recent evidence indicates that extant birds of today (i.e. “crown birds” or members of 

Galloanserae such as landfowl and waterfowl) were likely alive prior to the Cretaceous-

Paleogene (K-Pg) boundary event 66 million years ago. The most reliable “neo-ornithine” fossil 

is an in-tact, 3-dimensionally preserved skull fossil of a crown bird sharing phenotypic qualities 

of a turkey, duck and chicken (ie “turducken”), dating 66.7 to 66.8 million years ago (406,407). 

The authors of (406) provided this neornithine bird with the taxonomical name Asteriornis 

maastrichtensis; they also referred to the bird colloquially as a ‘Wonderchicken’ (406). The skull 

fossil from A. maastrichtensis provides evidence that this bird lived prior to the K-Pg boundary 

mass extinction, while also indicating phenotypically similar presentation as modern-day 

Galloanserae. What does this mean? It means that modern day Galloanserae (chickens and 



176 

 

ducks) might be very directly descended from survivors of the K-Pg boundary extinction! This is 

a tremendous observation.  

     The K-Pg boundary (precision-dated to 66.02 million years ago (408)) represents the 

consequences of a 10km-wide meteor impacting Earth at the Chicxulub site near the Yucatan 

Peninsula. The Chicxulub meteor impact forced a tremendous plumage of stratospheric soot 

(409) that blocked incoming solar radiation by 80-90% and caused rapid global cooling (i.e. 

caused Earth’s “impact winter”) (410). This loss of solar radiation concomitant with vast cooling 

elicited an 88% extinction amongst terrestrial animals, primarily due to widespread loss of plants 

(411,412). In other words, the K-Pg mass extinction was mostly the result of widespread 

starvation beginning at the level of primary producers. Birds, like other terrestrial animals, were 

heavily subjected to the selective pressure of mass extinction during the K-Pg boundary 

(413,414). It is my current opinion that modern day Galliformes (i.e. chickens) respond to 

vitamin B6 antagonism in a way that helps us to understand how pre-K-Pg crown birds like 

Asteriornis maastrichtensis might have responded to the tremendous selective pressure of mass 

starvation during the K-Pg boundary extinction. In the presence of reduced B vitamin availability 

(i.e. in the presence of starvation-like conditions), we would expect pre-K-Pg crown birds to 

exhibit reduced TS flux, elevated Hcy remethylation (via BHMT and MS-B12) and increased 

oxidation of PC, choline, betaine, DMG and serine. The presence of a complete ERE in the DNA 

locus of chicken PEMT (as we observed in our current study) is another factor that likely 

protects chickens (especially hens) from starvation (82). The ability of females to regulate PEMT 

via estrogen signaling is suspected to be a chief reason why PEMT protects females from 

pathologies associated with choline deficiency (82).  

     All of this means that pre-K-Pg crown birds would have been more protected from the risk of 
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starvation-induced hyperHcy. Pre-K-Pg crown birds would also be more able to maintain a 

viable methylation index (i.e SAM:SAH ratio) and a viable epigenome, despite exposure to the 

B-vitamin-deficient conditions of starvation. Therefore, crown birds would have been better 

adapted to deal with the severe starvation conditions that were faced by terrestrial animals in 

response to the Chicxulub meteor impact. Famine and B-vitamin deficiency are associated with 

severe pathologies such as cardiovascular diseases in humans (415,416). I am suggesting that 

crown birds would have been less vulnerable to the development of B-vitamin deficiency-

associated pathologies, allowing crown birds to survive the extreme selective starvation pressure 

of the K-Pg boundary extinction. One can fathom that, in the aftermath of the K-Pg boundary 

extinction, crown birds would be “metabolically suited” to successfully recover their populations 

and fill new ecological niches.                

     Pre-K-Pg crown birds would not be expected to survive excessive B vitamin deprivation, so 

there are realistic limitations to this hypothetical framework. However, up to a certain point of B 

vitamin deficiency, pre-K-Pg crown birds would be expected to display a paradoxical 

sustainment of biological vitality (ie egg laying and lifespan). Is it tremendously wild to make 

metabolic assumptions about animals that lived over 66 million years ago? Yes, it is wild. It is 

also exciting and possible. As a scientist who is versed in environmental, biological, molecular, 

biochemical and geographic studies, I feel that it is within my capacity to ontologically connect 

biological information about extant species today and paleontological information about past 

species. 

     Biology is a continuous process of natural selection, and nothing is more selective than mass 

extinction. The selective pressure of mass extinction might be better understood through the term 

“mass starvation.” The essential question is, “why have certain species survived the universe's 
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repeated attempts at biological eradication?” All life that exists today holds information that can 

help us to answer this question, especially with regard to the K-Pg boundary extinction. Animals 

that are alive today might be, in general, well adapted to conditions of nutrient deprivation or 

blatant starvation. An individual who wants to understand the biological nature of the world (as 

in, have true "gnosis" of biology), would do well to appreciate why certain species displayed 

tremendous survivorship during the K-Pg boundary extinction. Certain physiological factors 

such as flying ability (i.e. increased land sampling), omnivorous eating behavior and small body 

size, were beneficial factors that probably improved animal survival during the K-Pg boundary 

extinction. By no means do I discredit the importance of those factors. My argument is that 

certain metabolic adaptations within crown birds (i.e. the ability to tolerate B6-vitamin 

deficiency) were important factors that determined survival and reproductive capacity during the 

tremendous starvation pressure that emerged after the Chicxulub meteor impact 66 million years 

ago. Furthermore, if pre-K-Pg crown birds had not displayed physiological resistance to B-

vitamin deficiency, I predict that more crown bird species would have fallen extinct during the 

K-Pg boundary extinction event (despite being small, omnivorous creatures of flight). 

     Future researchers should investigate the role of transsulfuration as an early-stage sensor of 

nutrient deprivation in birds. This might be one of the integral reasons why birds have displayed 

such high resilience in the face of environmental changes that would have otherwise spelled 

localized and/or generalized species extinction. How can humans harness this biotechnological 

information? Can this flaxseed-based biotechnology be used to help with the breeding of 

endangered vertebrate species? Zoological organizations might be able to leverage our findings 

to help expand endanger species populations, specifically because this natural biotechnological 

approach focuses on improving animal survival and animal reproductive capacity. 
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Figure Appendix S1. Partial least squares discriminate analysis (PLSDA). 

VIP scores from the metabolites were used to cluster plasma samples according to PLSDA 

analysis. WF hens displayed the highest degree of clustering (notably, two WF samples perfectly 

coincident in Q1), followed by DF, FSH, FXO and CTL. DF hens were the most unique in terms 

separation from all other diets. Dietary enrichment with flaxseed oil (i.e. WF and FXO) caused a 

high degree of two-dimensional overlap. CRN was the least clustered, displaying a pattern of 

dispersion across Q1, Q2 and Q3. The mean center (i.e. the average XY dimension) for WF was 

located in Q4 near the origin (x=0, y=0). Similarly, FXO’s mean center was also near the origin. 

DF’s mean center showed a strong left shift beyond all other diets and was placed slightly into 

Q4. The mean centers of WF, FXO and DF (i.e. the flax diets) displayed similar horizontal y-axis 

alignment. The mean center of FSH extended separated itself further into Q1. Lastly, CRN and 

CTL displayed proximal mean centers located in Q2. 

 

 

 

 
Figure Appendix S2. Plasma estimate of renal clearance. Hen blood plasma samples 

measured via LC-MS/MS. VIP scores of metabolites were analyzed via one-way ANOVA 

(Duncan’s post-test, p<0.05). Groups without a similar letter are significantly different. n=4 to 6 

plasma samples from different hens per diet group. Error bars are +/- SEM. 
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Figure Appendix S3. Creatine metabolism and estimate of GAMT activity. Hen blood 

plasma samples analyzed via LC-MS/MS. VIP scores of metabolites were analyzed via one-way 

ANOVA (Duncan’s post-test). Samples without a similar letter are significantly different 

(p<0.05).  
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