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Computational demands are continuously increasing, driven by the growing resource

demands of applications. At the era of big-data, big-scale applications, and real-time

applications, there is an enormous need for quick processing of big amounts of data. To

meet these demands, computer systems have shifted towards multi-core solutions.

Technology scaling has allowed the incorporation of even larger numbers of transistors

and cores into chips. Nevertheless, area constrains, power consumption limitations, and

thermal dissipation limit the ability to design and sustain ever increasing chips. To

overpass these limitations, system designers have turned towards the usage of hardware

accelerators. These accelerators can take the form of modules attached to each core of a

multi-core system, forming a network on chip of cores with attached accelerators.

Another option of hardware accelerators are Graphics Processing Units (GPUs). GPUs

can be connected through a host-device model with a general purpose system, and are

used to off-load parts of a workload to them. Additionally, accelerators can be

functionality dedicated units. They can be part of a chip and the main processor can

offload specific workloads to the hardware accelerator unit.

In this dissertation we present: (a) a microcoded synchronization mechanism for

systems with hardware accelerators that provide distributed shared memory, (b) a

Streaming Multiprocessor (SM) allocation policy for single application execution on
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GPUs, (c) an SM allocation policy for concurrent applications that execute on GPUs, and

(d) a framework to map neural network (NN) weights to approximate multiplier accuracy

levels. The aforementioned mechanisms coexist in the resource management domain.

Specifically, the methodologies introduce ways to boost system performance by using

hardware accelerators. In tandem with improved performance, the methodologies explore

and balance trade-offs that the use of hardware accelerators introduce.

ii



ACKNOWLEDGMENTS

At this point, I would like to thank the persons that contributed invaluably to my

studies in the Southern Illinois University, and the completion of this effort.

To begin with, I would like to thank my academic advisor, Dr. Iraklis

Anagnostopoulos. His guidance and support were invaluable for the completion of this

research. He made sure to provide me with all the necessary tools in order to successfully

research the area of performance improvement. He was present and more than willing to

help when I got stuck or doubts arose towards the direction of research. His experienced

insight contributed majorly in the completion of the presented methodologies, and was

critical to push research forward at moments of uncertainty. I thank him sincerely for all

the help, knowledge and opportunities he provided me with. I am also thankful for the

interesting, enriching and professional collaboration we had, throughout these five years.

Additionally, I would like to thank my lab mates. Together we shared many

moments and experiences. We learned a lot from each other, and developed our skills.

Their company made my PhD experience more pleasant and enriching.

I would like to thank my family. My mother for her constant support and for always

being there for me, overcoming her difficulties to support me. My sisters, for their love

and support through the period of the PhD. I thank them deeply for caring about me. I

want to thank also my godfather and his family. They are probably the main reason I

chose to study in the United States. They have helped me enormously and gave me so

much. I am not sure if I can thank them enough or even return the help I have received.

Finally, I thank all of my friends, for the fun moments we shared. They made the

PhD experience much more pleasant.

iii



DEDICATION

My dissertation is dedicated to my family, for supporting and inspiring me through

all these years.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Synchronization for multi-core systems . . . . . . . . . . . . . . . . 3

1.2.2 Streaming Multiprocessor allocation for single application execution 5

1.2.3 Streaming Multiprocessor allocation for concurrent applications

execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 Weight oriented approximation for neural network inference

acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Dissertation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Novelties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Synchronization for multi-core systems . . . . . . . . . . . . . . . . 16

2.2.2 Streaming Multiprocessor allocation for single application execution 17

2.2.3 Streaming Multiprocessor allocation for concurrent applications

execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Weight oriented approximation for neural network inference

acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



3 Message-Passing Synchronization for Distributed Shared Memory Architectures 23

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Kernel-Based Resource Allocation for Improving GPU Throughput While

Minimizing the Activity Divergence of SMs . . . . . . . . . . . . . . . . . . . . . 32

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.2 Aging model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Application and kernel characterization . . . . . . . . . . . . . . . . 38

4.2.2 Adaptive SM allocation . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Single application evaluation . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Diverse workload evaluation . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Performance-Based and Activity-Aware Resource Allocation for Concurrent GPU

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Problems in concurrent application execution . . . . . . . . . . . . 59

5.1.2 Concurrent application execution on GPUs . . . . . . . . . . . . . . 62

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Application characterization . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Run-time resource allocation on the GPU . . . . . . . . . . . . . . 67

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vi



6 Weight-Oriented Approximation for Energy-Efficient Neural Network Inference

Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Weight-Oriented Mapping . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 Message-Passing Synchronization for Distributed Shared Memory

Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Kernel-Based Resource Allocation for Improving GPU Throughput While

Minimizing the Activity Divergence of SMs . . . . . . . . . . . . . . . . . . 98

7.3 Performance- and Activity-Aware Allocation for Concurrent GPU

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.4 Weight-Oriented Approximation for Energy-Efficient Neural Network

Inference Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vii



LIST OF TABLES

3.1 Total time per request execution for all synchronization models . . . . . . . . 28

4.1 Set-up for the Fermi micro-architecture . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Set-up for the Tesla micro-architecture . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Application classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Kernel information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Experimental set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 Average energy gain comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 95

viii



LIST OF FIGURES

1.1 Throughput per core for scaling number of cores [7] . . . . . . . . . . . . . . . 4

1.2 IPC per application [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Framework organization overview . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 DSM platform and proposed synchronization [68] . . . . . . . . . . . . . . . . 24

3.2 Stack [68] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Queue [68] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Deque [68] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Binary max heap [68] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Motivational observations [75] . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 An overview of the developed methodology [75] . . . . . . . . . . . . . . . . . 37

4.3 Worst (highest) relative delay change (Equation 4.1) among the 60 SMs of the

GPU after three years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Normalized lifetime estimation per benchmark . . . . . . . . . . . . . . . . . . 49

4.5 GPU throughput comparison per queue, Fermi micro-architecture . . . . . . . 51

4.6 Relative delay incurred by aging per evaluated workload, Fermi

micro-architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Activity factor per SM for each evaluated workload, Fermi micro-architecture [75] 54

4.8 Normalized average power per evaluated workload, Fermi micro-architecture . 55

4.9 GPU throughput comparison per queue, Tesla micro-architecture . . . . . . . 55

4.10 Relative delay incurred by aging per evaluated workload, Tesla micro-architecture 56

4.11 Activity factor per SM for each evaluated workload, Tesla micro-architecture [75] 57

4.12 Normalized average power per evaluated workload, Tesla micro-architecture . . 58

5.1 Overall flow of the proposed methodology [88] . . . . . . . . . . . . . . . . . . 63

5.2 Application activity factor for different configurations [8] . . . . . . . . . . . . 64

5.3 GPU throughput comparison per queue [88] . . . . . . . . . . . . . . . . . . . 73

ix



5.4 Normalized and absolute IPC per application [88] . . . . . . . . . . . . . . . . 74

5.5 Relative delay projection for a period of three years [88] . . . . . . . . . . . . 76

5.6 Activity factor per SM for each method and each queue [88] . . . . . . . . . . 77

6.1 Overview of the proposed methodology [90] . . . . . . . . . . . . . . . . . . . 80

6.2 Weight-oriented mapping of approximation modes . . . . . . . . . . . . . . . . 82

6.3 Impact of whole layer approximation on accuracy . . . . . . . . . . . . . . . . 84

6.4 Accuracy and energy savings of ResNet-20 under different methods that utilize

approximate multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 Accuracy and energy savings of ResNet-32 under different methods that utilize

approximate multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 Accuracy and energy savings of ResNet-44 under different methods that utilize

approximate multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Accuracy and energy savings of ResNet-56 under different methods that utilize

approximate multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.8 Accuracy and energy savings of MobileNet-v2 under different methods that

utilize approximate multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

x



CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Modern computing and embedded systems are moving away from super scalar and

multi-core architectures and follow the many-core paradigm or heterogeneous system

approaches, in order to provide high throughput and meet application demands.

The many-core paradigm is characterized by the constant increase in the number of

integrated processors, e.g., 48 [1] and 5772 [2] cores. To achieve high communication

performance for the cores, many-core systems adopt schemes such as Network-on-Chip

(NoC) connectivity to reduce communication cost and allow users to harness the full

potential of the underlying cores. At the scale of decades or even hundreds of cores,

memory access can introduce an important bottleneck. A large number of cores trying to

access simultaneously memory can create a noticeable slow-down during execution. To

overpass this problem, system designers have introduced Distributed Shared Memory

(DSM) for many-core systems. By saving data in multiple memory locations, cores can

reduce the probability of trying to access the same location, thus improving performance.

Unfortunately, DSM has limited applicability due to its cost, for on-chip solutions, and

the performance overhead that data consistency mechanisms introduce.

Graphics Processing Units (GPUs) are one of the most popular choices to accelerate

execution on heterogeneous systems. Initially, GPUs where designed to help with

graphics processing and rendering. Nevertheless, since the initial GPU models, computer

engineers understood that the underlying computational power of GPUs can be harnessed

for a great variety of applications. Nowadays GPUs are used to accelerate and execute

applications from a wide range of domains, e.g., image recognition, neural networks and

crypto-mining. GPUs derive their remarkable computational power from the thousands of

processing cores that they incorporate, for example 5120 CUDA cores in NVIDIA Tesla
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V 100 PCle [3] and 4096 cores for AMD Radeon RX Vega 64 [4]. Although GPUs can

yield high performance, their distinct architecture and programming model requires

special programming practices and different approaches towards resource handling,

compared to conventional CPUs.

GPUs adopt the Single Instruction Multiple Thread (SIMT) paradigm to achieve

high parallelism. From a hardware perspective, GPUs incorporate multiple Streaming

Multiprocessors (SMs) which in their turn consist of Streaming Processors (SPs). SPs are

the operational units that execute application threads. From a software perspective,

applications that intend to utilize a GPU are organized in computational kernels. These

kernels are offloaded to the GPU. The threads of the kernels are organized in thread

blocks that are sent to SMs. Within these blocks, threads are organized in groups, usually

called warps. Due to the SIMT model, the SPs of an SM can only execute threads of a

specific warp at each moment, spatial sharing of SPs among different warps is not

possible.

An additional case of the heterogeneous paradigm is a host-target scheme.

Specifically, a device or System on Chip (SoC), representing the host, can contain

functionality specific modules, representing the target, that are used to offload specific

workload and accelerate execution. One example of target modules are Neural or Tensor

Processing Units (NPUs or TPUs). NPUs are hardware accelerators dedicated to improve

Artificial Intelligence (AI) tasks, for example NN workloads, machine learning and

machine vision. A subcategory of NNs are Convolutional Neural Networks (CNNs). The

main operation during inference on CNNs is multiply-accumulate (MAC). To accelerate

inference calculation, NPUs comprise many MAC units that can very efficiently execute

the MAC operation.

The complexity of modern deep NNs requires NPU accelerators to integrate

thousands of MAC units in order to provide significant performance improvement. For

example, the embedded-oriented Samsung’s NPU uses 1K MACs [5] and Google’s Edge

2



TPU comprises 4K MACs [6].

1.2 MOTIVATION

In this section, we provide the motivation that led us engage with the

aforementioned domains, and research techniques that improve system performance while

considering trade-offs.

1.2.1 Synchronization for multi-core systems

As stated earlier, memory access can introduce significant delays in execution, for

multi-core systems. In certain applications, multiple cores need to access the same data.

For example, in an application that many cores read and write data, from and to a

common data structure, certain guarantees need to be provided, either at the operating

system (OS) level or the application level. If the access to the shared data structure is not

protected and orchestrated with guarantees, consistency issues can arise. Even though

multiple reads of shared data can be served by modern systems without errors, when we

encounter scenarios of multiple writes or combinations of reads and writes, discrepancies

can appear. The sequence at which the read and write operations are served, affect

immediately the condition and consistency of the data structure.

Synchronization mechanisms have been developed in order to avoid the

aforementioned problems and provide a consistent image of the saved data. Primitive

synchronization techniques such as coarse-grain locks, provide the necessary guarantees

but limit significantly performance and scalability. One of the simplest synchronization

mechanisms is a lock, requiring every core that needs access to the structure to acquire it

before implementing transactions with the data structure. Although a lock can be simple

to implement and is supported by many modern computer systems, it limits performance.

When multiple cores compete to acquire the lock, processing time is lost during the

competition. Additionally, while a core holds the lock, the rest of the cores have to

3



Figure 1.1: Throughput per core for scaling number of cores [7]

remain idle until the lock is freed. This is translated to even more lost processing time.

Adding to all that, a single key protecting a data structure is a significant hurdle when

applications need to scale. In case an application needs to scale and more cores have to

be used to process data, there is a point where performance can break down, due to a

huge amount of latency per core in order to acquire the lock. To highlight the importance

of efficient synchronization mechanisms we provide Figure 1.1. In this Figure we can

observe that popular OSs experience a performance breakdown when the number of cores

on a system increases, thus demonstrating scalability bottlenecks. This observation

supports our claim that improved synchronization mechanisms are necessary to guarantee

data integrity, combined with high performance. Finally, coarse-grain locks are vulnerable

in other aspects too, for instance they introduce a single point of failure that can be a

vulnerability for certain applications.

Additional synchronization mechanisms include memory coherency mechanisms.

Coherency techniques guarantee that the system manages to maintain a coherent state of
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the data, among different memory locations. From the programmer’s point of view, such

mechanisms are very convenient because the underlying system is responsible for the data

coherency. Usually the programmer does not need to give any instruction, the system

orchestrates the necessary mechanism that will guarantee data coherency among multiple

core memories. Unfortunately, even though memory coherency mechanisms are

convenient for the programmers, they present certain limitations. These mechanisms do

not scale well and have a performance impact. Considering computing systems with many

cores, using memory coherency mechanisms would introduce a significant delay when data

has to be kept consistent among all of the cores of the system.

As a consequence of the limitations that the initial synchronization techniques

demonstrate, there is a demand for synchronization mechanism that can allow high

performance while guaranteeing correct data. Improvements in computer architecture,

such as DSM, allow researchers and system engineers to experiment with more elaborate

synchronization schemes and achieve improved performance for many-core systems. This

is the reason hardware accelerators present a promising alternative, in order

to overcome current limitations and offer higher throughput for multi- and

many-core systems. The area of utilizing hardware accelerators to implement

synchronization techniques has to be further researched because it can yield

interesting and useful results.

1.2.2 Streaming Multiprocessor allocation for single application execution

GPUs are excessively used to accelerate applications on various domains. Utilizing

the resources of a GPU at their maximum potential is not a trivial task, due to the

unique GPU architecture and differences in the GPU programming model, compared to

general purpose CPU programming. Allocating all the available SMs to an application

can result in suboptimal performance.

In Figure 1.2 we can see that certain applications, e.g. FFT and BLK, drop or
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Figure 1.2: IPC per application [8]

maintain constant their performance when SMs beyond a threshold are offered to them.

Providing more information about the content of Figure 1.2, we executed the Rodinia

benchmarks [9] individually on a GPU, allocating each time a different number of SMs,

from 5 to 55, with a step of 5 SMs. For each configuration we plot the Instructions Per

Cycle (IPC) of each application.

The observations from Figure 1.2 demonstrate that there is a motive, in terms of

performance, to limit the number of available SMs for certain applications. Aside of the

performance gain, when SMs are not being used, they can be clock-gated. By clock-gating

SMs, we can limit their active cycles, thus reducing their material degradation.

Degradation in chips is caused by transistor degradation. Activity on SMs translates to

switches of transistor state. These switches mean that electric current passes through the

transistors. As a result of this current activity, there is a small but permanent

degradation in the material of the transistors. Clock-gating SM results in divergence of
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SM usage and activity. This can lead to varying degradation among the SMs. Material

degradation over time leads to aging which in turn causes among other issues, slower

frequency and reliability issues. Recent SM allocation policies do not consider the activity

history of SMs while allocating them. Partially this can be because most allocation

policies allocate all the available SMs for each application.

Combining the analysis from the previous paragraphs, there is research

space to be explored in terms of SM allocation policies. Allocating different

number of SMs for each application can lead to improved overall performance.

Additionally to improving performance, reducing the number of allocated

SMs enables the option of reducing the activity divergence among SMs.

Nevertheless, the SM allocation mechanism should be aware of the activity condition of

each SM, in order to be able balance activity among them. Imbalances in SM activity are

unwanted in a GPU because they lead to significant differences on SMs over the time.

These differences can reduce performance, cause premature system failures and reduce

reliability. Concluding, there is a motivation to develop an SM allocation policy that will

provide improved performance while balancing activity among SMs.

1.2.3 Streaming Multiprocessor allocation for concurrent applications

execution

Until recently, two or more applications were not able to run simultaneously on a

GPU. This means that computational resources can remain underutilized. As mentioned

in Section 1.2.2, GPU resources can remain underutilized by certain applications because

there are not enough tasks to take full advantage of all the SMs.

To elaborate, underutilization can occur because different applications have different

computational needs. Some applications are computationally intensive, improving their

performance when more SMs are made available to them. On the other hand, other

applications can be memory bounded, which means that their performance is coupled
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with the available memory bandwidth. Even if more SMs are available to applications

that belong to the latter type, their performance will not improve. As a consequence,

there is an incentive to determine the computational needs of applications. GPU

performance can be improved by resource sharing when a system needs to execute

multiple applications that demonstrate different computational needs. Instead of

executing sole applications on the GPU, SMs can be shared between multiple applications

in order to harness as much computational power as possible.

Nevertheless, running different applications on the SMs causes different activity rates

among the SMs. Activity on SMs translates to switches of transistor state. When SMs

are allocated to multiple applications executing concurrently, their activity can vary

significantly. This can lead to varying degradation among the SMs. The variance among

SM degradation can be further exacerbated by the effects of process variation (PV), these

are material differences caused during the manufacturing process.

Combining the aforementioned facts, there is a motivation to craft an

allocation policy for SMs on GPUs. Taking advantage of concurrent execution

of applications on a GPU, system performance can be improved. In addition to

improving performance, the developed SM allocation policy should not overlook activity

divergence among SMs. Together with improved performance, the allocation policy

should aim at activity balancing among SMs, in order to avoid future inequalities of SM

condition.

1.2.4 Weight oriented approximation for neural network inference

acceleration

As stated previously, NPUs are composed of thousands of MAC units in order to

achieve high performance. Nevertheless, the power consumption of thousands of MAC

units can prove to be a constrain for embedded devices with limited power capacities.

Unless power consumption can be withheld between certain limits, embedded devices
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cannot harness the maximum potential in performance improvement, offered by NPUs.

A way to achieve low power consumption combined with high performance during

NN inferences is through leveraging approximate computations. NNs demonstrate

inherent error resilience [10, 11] thus can leverage the benefits of approximate computing

without significant impacts on the end result. On its core, the approximate computing

paradigm is based on the use of approximate circuits to execute addition and

multiplication operations. The approximate circuits trade result accuracy for reductions

in execution time and power consumption. The aforementioned reductions are achieved

by simpler circuitry, which is the source of result approximation as well. Given that

CNNs comprise thousands of MAC operations, the use of approximate computations can

contribute in significant power savings, as long as the overall result error is withheld is

acceptable limits. Additional power gains can be achieved if the approximate MAC unit

offers multiple approximation levels that can be altered during run-time. The existence of

multiple approximation levels allows the system engineer to alter the level of

approximation during inference. As a result, the introduced error in the result can be

better controlled. For example, layers that are critical and have a greater impact on the

inference result can be calculated with low level of approximation or exactly. Less

significant layers can utilize higher approximation, thus yielding more power gains.

Existing analyses explore the impact of error in NNs [12], make use of fixed

approximation multipliers [10, 11], or develop a layer-based approximation that tries to

find the right approximation level separately for different convolution layers [13]. The

aforementioned approaches can be time consuming due to required retraining of the NN

or may not leverage the full potential of approximate MAC units, due to fixed

approximation levels and lack for input-adaptive run-time support. A way to surpass the

above issues can be weight oriented approximation. In other words, instead of choosing

an approximation level for whole convolutional layers, we can explore a finer grain

mapping. Specifically, within the same convolutional layer, we can assign different weights
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to various approximation levels, provided that the approximate MAC allows run-time

approximation level configuration.

If we follow the facts stated in this section, we deduce that NN inference

performance can be improved by using hardware accelerators, i.e., NPUs.

Specifically, for the embedded device domain, there is an incentive to explore

resource management for NPUs in order to achieve power savings. The area

of weight oriented approximation is promising power savings, while at the

same time inference error can be held within acceptable limits.

1.3 DISSERTATION OVERVIEW

The issues discussed in the previous section, Section 1.2, reside under the umbrella of

run-time resource management for hardware-accelerated systems. Specifically, depending

on the application domain, different hardware accelerators are suitable in order to achieve
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better performance or have energy savings. The variety of hardware accelerators and

software applications, demands separate solutions that take into consideration how to

best leverage the benefits that each accelerator offers, for example GPUs offer massive

parallelisms whereas NPUs offer energy efficient calculations. Furthermore, each

application domain presents separate challenges and each type of accelerator introduces

different trade-offs. The methodologies presented in this dissertation take all these

challenges and trade-offs into consideration and propose solutions to mitigate their effect.

In Figure 1.3 we depict the generic directives that guide a framework design for hardware

accelerated systems. It includes constrains and specifications regarding the baseline

hardware platform, the application dependencies and requirements when executed on

hardware accelerated systems, as well as user defined requirements. Albeit accelerators

and applications belong in different domains and demonstrate structural differences, the

sequence of steps and considerations when designing a framework are similar, for all the

types of accelerators used in this work. Thus, the same process can be followed to

determine how to best leverage the benefits of a hardware accelerator while mitigating to

the best extend the trade-offs introduced by its usage.

The introduction chapter is completed at this point, the remaining chapters in the

dissertation are organized as follows:

• Chapter 2 presents the novel contributions of this dissertation, as well as a concise

description of the already available works in the areas we researched.

• Chapter 3 presents in detail a synchronization model for multi core systems that

have hardware accelerators attached to each core. Each hardware accelerator

contains distributed shared memory and enables microcode usage.

• Chapter 4 introduces a framework for SM allocation under the scenario of executing

single applications. The framework balances optimal performance for applications

executing on a GPU while it also reduces aging divergence among the SMs of the
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GPU.

• Chapter 5 presents an SM allocation policy for the scenario of concurrently

executing applications on GPUs. The policy decides on how to partition SM

between two applications in order to minimize slowdown caused by resource sharing.

Additionally, the policy takes into consideration aging divergence among the SMs

and tries to minimize it.

• Chapter 6 introduces a time-efficient framework that can map CNN weights to

approximation levels of a reconfigurable approximate multiplier. The framework

achieves energy savings while it introduces a small accuracy loss on inferences.

• Finally, Chapter 7 is the conclusion of this dissertation. It summarizes the main

contributions and provides future possible extensions for the presented

methodologies.
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CHAPTER 2

CONTRIBUTION

2.1 NOVELTIES

In this section we highlight the novel contributions presented in this dissertation.

The four main contributed methodologies can be summarized into: i) a synchronization

model for multi-core systems; ii) an SM allocation policy for single application execution

on GPUs; iii) an SM allocation policy for concurrently executing applications on GPUs;

and iv) a weight oriented mapping framework for approximate multipliers with multiple

approximation levels.

The novel contributions for the synchronization model are:

• A microcoded synchronization model for concurrent data structures that achieves

higher performance, fair access to the shared data structures, less idle cycles per

core, and lower power consumption.

• The development of a client-server model that leverages DSM, and is based on

message-passing.

• The use of a hardware dual-microcoded controller (DMC) to accelerate the

processing of client requests to the server.

• The proposed synchronization model achieves up to 88× less idle cycles, serves

requests at least 1.39× faster and consumes at leas 5× less power, compared to

single lock and other state-of-the-art synchronization mechanisms.

The novel contributions for the SM allocation policy for single application execution

on GPUs are:

• A methodology to determine a set of optimal and close-to-optimal configurations for

the kernels of an application.
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• A kernel-level allocation policy that makes the methodology more adaptive to the

differences between kernels of an application.

• An algorithm for SM allocation that keeps track of the activity factor history of the

SMs and re-adjusts the SMs of the GPU at run-time in order to achieve higher

throughput and minimize activity imbalances.

• A decision mechanism to clock-gate SMs based on the characteristics of the

executing kernel. SMs that do not contribute in higher performance of a kernel are

clock-gated in order to reduce their activity. Thus, relative delay incurred by aging

is decreased.

• The proposed allocation policy improves GPU throughput by at least 13.8% and

reduces aging divergence among the SMs by up to 89.6%, compared to

state-of-the-art aging aware scheduling policies.

The novel contributions for the SM allocation policy for concurrently executing

applications on GPUs are:

• A methodology to choose how applications should be paired together before

executing them on a GPU.

• A concrete algorithm to decide how to partition SMs between two co-executing

applications, based on profiling data collected off-line.

• A process to decide which SMs to pick for each executing application, in order to

mitigate aging imbalances among the SMs of a GPU.

• An overall methodology to improve performance and manage aging imbalances

while executing concurrent applications on GPUs. The proposed methodology takes

into consideration the effects of PV.
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• The proposed allocation policy achieves up to 27% higher GPU throughput for

applications executing concurrently, compared to other aging-aware scheduling

policies. Additionally, it can achieve 5.9× lower aging deviation, compared to other

state-of-the-art aging aware scheduling policies.

Finally, the novel contributions for the weight oriented mapping framework for

approximate multipliers with multiple approximation levels are:

• a time efficient methodology that maps different approximation levels of a multiplier

to NN weights per convolutional layer.

• a run-time framework that given a trained NN can map weights to approximation

levels. The framework receives as an input an error threshold that needs to be

satisfied. Within the allowed error margin, the framework achieves power gains

while it incurs negligible time overhead.

• The proposed framework, combined with a reconfigurable approximate MAC unit,

can achieve up to 20.2% energy gains while reducing accuracy by 0.5% to 2.0%,

comparing to inferences calculated with exact circuits. The required overhead to

apply the weight exploration of the proposed framework can reach up to 2 hours

which is an acceptable trade-off, considering alternative methods.

The next section presents existing approaches that deal with the issues of leveraging

performance improvement form hardware accelerators. We highlight the strengths of the

existing approaches, as well as the parts that can be improved or can be addressed with

the methodologies presented in this dissertation.

2.2 RELATED WORK

There is rich literature on resource management for hardware accelerated systems.

In this section we present existing works that dealt with the topics of synchronization
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techniques for concurrent data structures, SM allocation and SM aging for single and

multiple applications, as well as weight oriented acceleration for NN inferences on

approximate hardware.

2.2.1 Synchronization for multi-core systems

There is high interest in the evaluation of performance and synchronization

techniques for data structures. However, software is not yet able to scale at the same

pace, [14]. As presented in [15, 7], non-scalable locks can severally degrade the

performance of commercial software.

A detailed presentation of different aspects of synchronization techniques and a

theoretical approach to multi-core synchronization scalability was made in [16]. The

author presents many different ideas and approaches towards synchronization and

analyzes why some techniques fail to scale after a certain number of cores. Many

synchronization concepts unfortunately cannot be implemented due to hardware

limitations. A thorough comparison of synchronization techniques takes place in [17]. The

authors evaluate the performance of various synchronization models on different types of

computer systems and state the type of system that is appropriate to achieve better

performance for the various models.

The authors in [18], explored and evaluated the performance of message passing

algorithms in embedded systems. Message passing can be an alternative to shared

memory techniques and can provide solutions for certain architectures and configurations.

As stated in [16], message passing solutions can also scale-up for a certain amount of

cores. In [19, 20], the authors proved that by using microcode they can provide efficient

solutions for dynamic memory management on distributed shared memory systems.

However, the aforementioned solutions use single-locks for synchronization. The use of

microcoded synchronization as we propose, could farther improve performance.

In [21], the authors evaluate and compare many synchronization techniques but they
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only use queue type data structures. Additionally, they do not provide any results for the

fairness of the synchronization technique and their solution implies the existence of

compare-and-swap (CAS) supporting hardware. Furthermore, in [22], the authors

compare state of the art synchronization algorithms but they do not have a big variety of

structures that they evaluate and the platform used for their experiments supports cache

coherency. That can be a limiting factor for the applicability of many synchronization

techniques. Also, they mainly focus on inter-thread synchronization. Finally, in [23],

although the authors provide a lock free synchronization technique for multicore systems,

their evaluation is based on a general purpose chips. Their solution implies that the

hardware supports CAS operations and requires extra hardware components to be present

in the processor or in the directory module.

2.2.2 Streaming Multiprocessor allocation for single application execution

Various research works have focused on improving GPU throughput. The authors

in [24] pinpoint that the GPU resources are not fully utilized during run-time and the

throughput of the system is less than the highest achievable throughput. In order to

overcome this problem, they propose FineReg, a GPU architecture that improves the

overall throughput by increasing the number of concurrent threads. Even though their

method considers optimization at the kernel level, FineReg requires hardware

modifications. Similarly, the methodologies presented in [25, 26] increase GPU

throughput but require significant hardware modifications and they do not consider the

effect of increased relative delay. Furthermore, the authors in [27] proposed a

methodology to increase the warp size in order to address the memory divergence

problem and reduce the effect of branching, while the authors in [28] leverage the

performance cost of accessing memory. Although these methods improve performance,

they do not consider aging imbalances among the resources of the GPU. In the long term,

this can lead to performance degradation for the GPU.
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As a way to better understand the behavior of GPU applications, the authors in [29]

presented a methodology to classify applications depending on the usage of the memory

controller and cache. This classification was used to execute concurrent GPU applications

in order to minimize the slowdown. However, this methodology uses a coarse-grain

approach by utilizing the overall behavior of the application without taking into

consideration the differences between the kernels of the application. Also, the latter

method works only for concurrent applications on GPUs. Moreover, the authors in [30]

extract the optimal points of operation for several GPU applications and use this

information in order to allocate the appropriate number of SMs. However, the latter

methodology, similar to [29], does not utilize kernel-based information, leaving more room

for improvements. A different approach to improve performance is followed in [31]. The

authors present a compiler framework that improves application performance by

by-passing caches in the GPU. This methodology does not consider the imbalances of

execution that affect the aging of the computational components. Thus it fails to

distribute aging among the cores of a GPU in a balanced way. In [32], authors improve

GPU performance by proposing an alternative thread block scheduling and execution of

concurrent kernels on the same SM. This methodology as well, does not explore the

effects of kernel differences on resource pressure which can lead in aging imbalances.

Regarding modeling aging on electronic devices, [33, 34] present how it can affect

performance. Numerous solutions have been proposed to reduce aging effects on GPU

components and address the imbalance of aging rate among its components. However, the

focus of existing solutions is mostly on balancing aging, while the optimization of the

GPU throughput is not considered. Specifically, the authors in [35] present a register file

design for GPUs that leverages data redundancy in order to mitigate NBTI effects.

Additionally, in [36] the authors present a methodology that groups SPs and then

clock-gates the group with the highest aging impact. In that way, the authors achieve

lower aging-incurred relative delay without a significant overhead on execution. The
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authors extended their methodology in [37] by considering process variation as well.

However, in both approaches the focus is given only on the reduction of aging, while

optimizing GPU throughput is not considered. Also, the authors in [38] introduce a

methodology that finds the number of SMs that provide the optimal performance. They

choose to execute the applications with fewer SMs that the total available, in order to

reduce the aging-incurred threshold voltage (Vth) shift on transistors of a GPU, while also

reducing power consumption. Even though this approach increases the GPU throughput

and balances aging, it works on the application level (coarse-grain) without taking into

consideration kernel-based information (fine-grain).

Furthermore, the authors in [39] present a resource allocation policy that reduces the

variation on SPs speed caused by process variation and aging due to activity. This work

though, focuses on improvements at the SP level and does not consider the kernel

structure of applications. In addition, the performance improvement is derived by the

prolonged life and higher frequency of operations. The allocation policy does not consider

the characteristics of each application in order to provide an allocation scheme of SPs

that will boost performance. Moreover, the authors in [40] propose an aging-aware

compilation method that combats delay-induced faults caused by the NBTI phenomenon

on GPUs. This method though does not improve performance and in many cases adds an

overhead in applications execution time. Overall, the aforementioned research works focus

either on the SP level or register files of GPUs, or they do not serve the double goal of

performance improvement coupled with aging divergence reduction.

2.2.3 Streaming Multiprocessor allocation for concurrent applications

execution

Regarding GPU throughput optimization, a methodology to reduce contention on

GPUs by assigning the appropriate memory bandwidth is presented in [41]. In [42], the

authors explain how performance can be increased while executing simultaneous kernels
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and preempting them. However, the above mentioned research works do not consider

aging effects and process variation that significantly affect the GPU throughput in the

long run.

Modeling of aging on electronic devices and its effect on performance are presented

in [34, 43]. The authors in [44] present a methodology to accurately calculate the average

stress ratio of each transistor, considering the effects of different input configurations.

Authors in [45] present a framework that calculates BTI variabilities caused by thermal

variabilities among the components of a system. Furthermore, there are several proposed

techniques to mitigate aging effects on electronic components. The authors in [46]

propose heterogeneous components for mobile-platforms to counter aging effects. In [38],

the authors present a profiling-based technique that mitigates aging on GPUs while

improving power consumption. However, GPU performance is not optimized, and the

authors focus only on single application execution. As presented in [47], aging depends on

data patterns, and application schedulers can impact many-core systems greatly by

determining the sequence of the applications [33]. If two processors experience the same

stress at different time points, the aging rate is different in each case [33]. This makes the

calculation of aging effects difficult on systems that employ a great number of processors

and suffer from contention on shared resources.

Regarding PV, the authors in [48, 49] provide two models to calculate the effects of

PV on multi-core systems, starting from the transistor level and moving up to the chip

level. Additionally, in [50] the authors present a methodology to calculate PV correlations

among different parts of a chip. The authors in [51] demonstrate the impacts of PV on

frequency and throughput, whereas in [52] the authors present how PV affects

performance for multi-core chips. Moreover, the authors in [53] present a workload

partitioning algorithm that considers PV. The algorithm works on the SM level, but it

does not mitigate aging imbalances.
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2.2.4 Weight oriented approximation for neural network inference

acceleration

In order to achieve accuracy reconfiguration during NN inference, the authors in [13]

proposed a heterogeneous architecture built upon several static approximate

multipliers [54]. Specifically, they apply at run-time a layer-wise approximation and they

power-gate any approximate multipliers that are not used. However, this approach

requires a heterogeneous architecture design, weight tuning, and it also has a high area

overhead resulting in throughput loss due to the underutilized hardware. In [55],

Simulated Annealing is used to produce approximate reconfigurable multipliers for NN

inference by combining gate-level pruning [56] and wire-by-switch replacement [57].

Nevertheless, similar to [13], the approximate multipliers generated are optimized for the

Mean Relative Error (MRE) metric and they apply only layer-wise approximation

limiting the potential benefits. In [58] approximate reconfigurable circuits are generated

using wire-by-switch replacement and by identifying closed logic island regions. The

authors in [59] used reconfigurable bloom filters in order to support approximate

layer-based pattern matching.

Previous methodologies have also tried to control the accuracy of the approximations

at run-time by enabling reconfiguration [57, 60, 61, 62, 63, 64]. Particularly, the methods

in [60, 61, 62] apply power gating to achieve reconfiguration. Considering that thousands

of MACs are integrated in NN accelerators, such fine-grained power-gating approach is

inefficient. In [65], the authors presented a NN accelerator which integrates approximate

multipliers along with a compensation module in order to reduce energy consumption.

Similarly, the authors in [11] analyzed the impact of error in NNs by utilizing

approximate multipliers to different convolutional layers. However, the latter two

approaches considered the LeNet NN, which is swallow comparing to current sate-of-art

architectures, and the developed multipliers offer a single level of approximation thus not

being flexible for deeper NNs. Moreover, the error compensation proposed in [65] requires
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the addition of an extra accumulation row in the MAC array, increasing thus its size as

well as its computational latency. Additionally, the method in [11] requires retraining

after the approximation has been performed in order to help NN adapt to the changes.

The authors in [10] proposed approximate multipliers based on the concept of

computation sharing to reduce energy consumption. Nevertheless, the introduced concept

of Multiplier-less Artificial Neuron also requires network retraining in order to correct the

accuracy loss due to the use of approximation. In [66], the authors study the impact of

approximate multiplications on Capsule Networks (CapsNets) and compare their error

resilience with convolutional NNs. However, they follow a layer-wise approach and the

utilized multipliers support a single operational mode. Finally, as a way to accelerate the

exploration process of approximate circuits for deep NNs, the authors in [67] proposed an

emulation method optimized for GPUs. However, their solution considered approximate

circuits with single approximation levels.
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CHAPTER 3

MESSAGE-PASSING SYNCHRONIZATION FOR DISTRIBUTED

SHARED MEMORY ARCHITECTURES

In this chapter we present in details the orchestration of the microcoded

synchronization mechanism. We also present extensive experimental results that compare

the developed mechanism with other synchronization mechanisms.

3.1 METHODOLOGY

The development of concurrent data structures provides various challenges,

especially in systems with limited synchronization primitives. Assume that we have a

DSM platform which is composed of Processor-Memory (PM) nodes interconnected via a

packet-switched mesh network, as depicted in Figure 6.1. Additionally, each node

employs a DMC, a programmable hardware accelerator [69] which allows the programmer

to implement custom microcoded functions and trigger them by corresponding C-level

APIs. Specifically, the DMC consists of two mini-processors. Mini-processor A which is

responsible for inter-core tasks and memory accesses of the local core, and mini-processor

B, responsible for accessing remote cores and serving shared memory requests by remote

cores. The utilized platform follows the principle of industry-driven

architectures [1, 70, 71] that adopt the DSM architecture with limited synchronization

primitives, e.g., no Compare-And-Swap (CAS) support.

The proposed synchronization model is based on the idea that a single core plays the

role of the “server” and it is the only one that accesses the data structure directly. The

rest of the cores that need to access the concurrent data structure are “clients”. Instead

of accessing the data structure, they send requests to the server and wait for its response,

if necessary. The server, as soon as it receives a request, performs the operation on behalf

of the client and then sends a response to the client from which the request came from. In
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lw *A6, A4
set A1, {server_ID}
set A2, {server_command}
set A3, {Data}
nop
mp A1, A2, A4, A3
nop
end 1

int micro_delete(volatile unsigned int *local_addr) {
  volatile unsigned int x;
  *command_to_DMC = 21;
  x = *(local_addr);
  return x;
}

PM

R

R

PM

Bus

DMC

Leon3 
processor

...

...

PM
R R

PM

R

PM

...R

PM

int main(){
  int a, b;
  ...
  b = delete();
  ...
}

Function call 
from client

...PM
R

R

PM

PM
R...

Local Memory 
(Private/Shared) 

1

C library

Data 
structure 

APIs

Interface
to DMC

 int delete(){
   int val;
   volatile unsigned int *local_mem
   local_mem = 0x40200024;
   ...
   val = micro_delete(local_mem);
   ...
   return val;
 }

2

3

C to microcode 
interface

Triger 
Command Lookup Table 
(21st block)on DMC

Local DMC 
microcode

;server node           
… ;operations
… ;operations
lw *a5, A4
nop
sw *A1, A4
nop
end 1

Triger local DMC

5
Triger 

server DMC

4

Message passing 
instruction

Figure 3.1: DSM platform and proposed synchronization [68]

the proposed method, the data structure is initially stored in the local private memory of

the server, in order to save time, as there is no need to translate memory addresses. If the

server needs more space, then it utilizes the shared memory of the system (starting from

its local shared) defined during the initialization of the system.

The steps of the proposed synchronization model are displayed in Figure 6.1. The

application developer calls in the C level the appropriate function to either add

(insert()/push()) or remove (delete()/pop()) an element from the structure ( 1 ).

This call triggers our C library that contains the functions and the appropriate

Processor-to-DMC interfaces for the used data structures. This function in its body

contains a call to the microcoded function. At that point ( 2 ), the microprocessor,

attached to the core requesting a transaction (client), is notified and gets the control of

the transaction. It is important to mention here that the microcoded functions are stored

as command blocks in the control store of the accelerator and they are dynamically
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loaded by using a specific load command and the id of that block ( 3 ). When the

microcoded block has been loaded ( 4 ), the mini-processor A fetches the

microinstructions. Then, through the mini-processor B of the client, the communication

with the server is initiated. Communication is based on message-passing, which means

that the client sends a message to the server with its request and any additional required

arguments. Specifically, message-passing communication was implemented with the usage

of the mp reg1, reg2, reg3, reg4 command. This message passing command allows to

send a message directly from the mini-processor of a client core to the mini-processor of

the server. The arguments of the command in order of presence are:

i) the destination node (server) of the message;

ii) the number of the microcoded block, stored in the server’s control store, to be

executed;

iii) the address where the returned data is expected; and

iv) the data of the client.

At that point ( 5 ), the DMC of the server is triggered and starts executing the

corresponding microcoded function (insert or delete). It is important to mention here

that all the actions of the server are performed by the hardware accelerator, at the

microcode level, and not by the processor (C level). Particularly, according to the received

message, the DMC of the server triggers the appropriate command block in the control

store and performs the requested operation. Finally, when the client receives the

extracted data, in case of delete()/pop(), it finalizes the execution of the microcode

function and the control returns to the main processor.

Apparently, the server serializes all operations. However, the presented model has a

number of advantages that compensate for the decreased parallelism that it provides. As

depicted in Figure 6.1, the concurrent data structure is initially allocated in the local
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private memory of the server, making the access to the data structure faster. Therefore,

the number of memory accesses in remote memories is limited for both the server and the

clients. Apart from the memory allocation issues, the primary reasons for performance

improvement of the proposed synchronization method are:

i) In the case of an insert()/push() operation, when the client sends its request to

the server, there is no need to wait for a response. Thus, in contrast with the typical

lock-based implementations, an insert operation is getting blocked by an insert from

another client, only if the server’s mini-processor buffer is full and the message

passing command blocks.

ii) The reduction in the instruction overhead (the synchronization details are hidden

from the high C-level).

iii) The exploitation of the DMC for performing memory operations, thus alleviating the

main processor’s workload.

The proposed method can be applied to data structures with low level of parallelism,

e.g., queues, stacks and heaps, which are widely used and found in applications and

operating systems, but it cannot be straight-forward applied effectively [17] to data

structures that allow multiple-write and/or multiple-read operations at the same time.

3.2 EVALUATION

The hardware platform used to implement the synchronization models is described

in [20, 69]. Each node consists of a LEON3 processor, a hardware accelerator DMC and

memory, shared between the nodes. The nodes are interconnected by Nostrum [72], a

packet-switched mesh network, and see a continuous logical address space for the shared

memory. To access the shared memory, nodes perform an address translation, accessing a

lookup table to obtain the physical address and the number of the node holding this part

of the memory.
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To evaluate the proposed synchronization model, we compare it with four

synchronization models that focus on pure or distributed shared memory systems and

work at the C-level

i) a coarse grain model of a single-lock;

ii) a client-server model, called delegation model presented in [16];

iii) a clustered client-server model, inspired by the idea of flat-combining presented

in [73]; and

iv) a modified DSM-sync model, presented in [17], with two h-factor values, 1 and 10,

where each core acts as a server, in a round robin way, for h requests.

Each of these methods was implemented on the same hardware platform and to be fair,

the DMC was used to accelerate memory operations in all cases. Additionally, we chose

node (0, 0) (the first node in a mesh topology) as the server for our implementation and

the one initializing the structure.

Table 3.1 presents the actions for each synchronization model. TLEON3 is the

command execution time on LEON3 processor, including cache lookup time or time spent

at the bus until reaching the microprocessor, while Tv2p is the time for virtual-to-physical

address translation. Tlsm stands for the time to access local shared memory and Trsm is

the time to access remote shared memory. Trem is the time to launch a remote read

request, Tpoll is the polling time for the lock and nl are the times that a core polls for it.

Tlpm is the time to access local private memory. Tcom = Tcsd + Tcds is the communication

latency where Tcsd is the latency from source to destination and Tcds is the latency from

destination to source. Parameter β = 0 means the structure is located in local shared

memory, while β = 1 corresponds to remote shared memory and α = 1 for memory read

and 0 for a memory write. Last, γ = 0 means that the structure is in, local or remote,

shared memory whereas for γ = 1 it is located in local private memory.
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Table 3.1: Total time per request execution for all synchronization models

Synchron. model Total time
Single lock model Ttotal = TLEON3 + Tv2p + Trem + Tpoll ∗ nl + Tcom︸ ︷︷ ︸

acquiring lock

+TLEON3 + Tv2p + β ∗ Trsm + (1− β) ∗ Tlsm︸ ︷︷ ︸
inserting/extracting element

Client-server Ttotal = TLEON3 + Tv2p + Trsm︸ ︷︷ ︸
checking if a request exists

+ TLEON3 + Tv2p + Trsm︸ ︷︷ ︸
reading/writing requested element

model [16] +TLEON3 + γ ∗ Tlpm + (1− γ) ∗ (β ∗ Trsm + (1− β) ∗ Tlsm)︸ ︷︷ ︸
accessing the data structure

Clustered Ttotal = TLEON3 + Tv2p + Trsm︸ ︷︷ ︸
checking if a request exists

client-server +TLEON3 + Tv2p + Trem + Tpoll ∗ nl + Tcom︸ ︷︷ ︸
acquiring lock

model [73] + TLEON3 + Tv2p + Trsm︸ ︷︷ ︸
reading/writing requested element

+TLEON3 + Tv2p + β ∗ Trsm + (1− β) ∗ Tlsm︸ ︷︷ ︸
accessing the data structure

DSM-sync Ttotal = TLEON3 + Tv2p + Trsm︸ ︷︷ ︸
checking if a request exists

+ TLEON3 + Tv2p + Trsm︸ ︷︷ ︸
reading/writing requested element

model [17] +TLEON3 + Tv2p + β ∗ Trsm + (1− β) ∗ Tlsm︸ ︷︷ ︸
accessing the data structure

Proposed model Ttotal = TLEON3︸ ︷︷ ︸
initiating the microcoded model

+ Tv2p + Trem︸ ︷︷ ︸
accessing remote core

+ γ ∗ Tlpm + (1− γ) ∗ (β ∗ Trsm + (1− β) ∗ Tlsm) + Tcsd + a ∗ Tcds︸ ︷︷ ︸
accessing data structure

To evaluate and compare the proposed microcoded synchronization model, we

utilized the data structures of stack, queue, deque [74], and binary max heap. The

metrics we used are

i) the total execution time;

ii) progress, defined as the average number of cycles per request;

iii) core utilization, defined as the number of idle cycles of a core while waiting for its

request to be completed; and

iv) power gain, defined as the power consumption gain achieved over the single-lock.
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Figure 3.2: Stack [68]
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Figure 3.3: Queue [68]

As input, we utilized the benchmarks presented in [17], which consist of sequences of pairs

of insertion and extraction operations.

Figures 3.2(a), 3.3(a), 3.4(a) and 3.5(a) depict total execution time. Beyond 4 cores,

the lock model experiences a breakdown in performance due to lock congestion validating

previous approaches [16]. We observe that the clustered client-server model performs

better than the client-server model and many times it outperforms DSM-sync

implementations. The clustered client-server model combines principles from the

client-server and lock model and its efficiency is explained by the fact that clients are
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Figure 3.4: Deque [68]
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Figure 3.5: Binary max heap [68]

grouped under two servers and only these compete for the lock, leading to low congestion.

The DSM-sync models have lower performance which is a result of server transitions,

leading to wasted cycles. The microcoded model performs better than the rest of the

synchronization techniques, for the queue with 14 cores, performs 3.7× faster than the

DSM-sync model with h-factor = 10, and for 22 cores 2.2× faster than the clustered

client-server model. This performance is achieved by utilizing the hardware accelerator

for longer periods, bypassing main cores and using message passing to achieve

communication between remote nodes.

Regarding progress, the microcoded model achieves gains compared to the other

models. In Figures 3.2(b), 3.3(b), 3.4(b), and 3.5(b) we measured the average number of

cycles for each request. The baseline is the number of cycles for the single lock model,

which is used in many conventional systems. The proposed method performs a request

1.39× faster than the DSM-sync model with h-factor = 10 for the stack and demonstrates

even better results compared to the lock model.

The core utilization is presented in Figures 3.2(c), 3.3(c), 3.4(c), and 3.5(c), where

the baseline is the number of cycles for the single lock implementation. The proposed

microcoded model uses the message passing command, which saves cycles by bypassing

the upper execution level and allows a direct communication with the node hosting the

data structure. Specifically, for the deque structure and 14 cores, the microcoded model

has 88× less idle cycles compared with the lock model, 9.8× compared with DSM-sync
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model and 5.6× less idle cycles than the clustered client-server model.

Figures 3.2(d), 3.3(d), 3.4(d), and 3.5(d) present the power gains over the single-lock

model. The proposed model demonstrates greater power gains due to the significant

performance improvement and due to the fact that it utilizes the hardware accelerator for

longer periods, as a result, processors remain idle. Specifically, the proposed model

achieves an average gain of 5× for stack, 5× for queue, 8× for deque and 10× for binary

max heap.

Overall, the proposed method achieves better results for the list-type structures and

the tree-type structure, and provides promising performance, fair progress and greater

power gain. According to [17] developing fully non-blocking techniques for tree-type

structures is a cumbersome task and requires support of advanced synchronization

primitives. The proposed method offers an efficient alternative for these structures, does

not require advanced synchronization support and imposes an area overhead of up to

351k NAND gates per node [69].

3.3 SUMMARIZING

In this chapter we presented an efficient, hardware-accelerated, scalable

synchronization model for distributed shared memory systems. Specifically, the presented

synchronization mechanism is a contribution towards the implementation of concurrent

data structures in architectures that provide limited synchronization primitives support,

but have DSM available. Experimental results show that the proposed message-passing

based client-server model provides increased performance, better throughput, better core

utilization and greater power gains even in cases of high contention.
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CHAPTER 4

KERNEL-BASED RESOURCE ALLOCATION FOR IMPROVING GPU

THROUGHPUT WHILE MINIMIZING THE ACTIVITY DIVERGENCE

OF SMS

In this chapter we present the developed methodology for SM allocation considering

execution of single applications on a GPU. The methodology aims at improving overall

system throughput while balancing activity among SMs. Balanced activity will lead to

equal aging among the SMs, which is a desired property for systems. The methodology

takes decisions at the kernel level of each application, thus providing a fine-grain

approach that yields better results than other, state-of-the-art methodologies. In this

chapter, we present as well, extensive experiments that evaluate the efficiency of the

developed methodology.

4.1 PRELIMINARIES

4.1.1 Motivation

In this section, we present the motivation that led us investigate methods to increase

GPU throughput while minimizing the divergence of aging among the SMs of the GPU.

Observation 1: Allocating all the SMs of a GPU to an application is not always

beneficial in terms of GPU throughput. The default scheduler of many commercial GPUs

allocates for each application all the available SMs and distributes the tasks (thread

blocks) among them. In Figure 4.1a we present the IPC for three benchmarks of the

Rodinia suite [9], GUPS, SAD and BLK. We executed the benchmarks giving them each

time a different number of available SMs (60 SMs was the total number of SMs on the

GPU). The observation that we make is that the three benchmarks have different

behavior as the number of available SMs changes. Specifically, GUPS has optimal IPC

with 10 and 15 SMs but its IPC drops after that point. On the contrary, SAD
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Figure 4.1: Motivational observations [75]

continuously increases its IPC as more SMs are available. Finally, BLK increases its

performance to reach the optimal point at 25 SMs and 30 SMs. After that point there is a

small drop at its IPC as the number of available cores increases. This can be explained

due to the different nature of the benchmarks. Some benchmarks execute more

computational instructions, thus their performance increases when more SMs are

available. Other benchmarks depend significantly on loading/storing data from/to

memory, thus allocating more SMs to them does not improve performance. As a result,

certain benchmarks can improve their performance when fewer SMs are allocated to them.

Observation 2: Reducing the SMs per application may increase GPU throughput but

creates imbalance in the activity of the SMs. In Figure 4.1b, for the same benchmarks

that we plotted their IPC, we plot their activity factor. As activity factor we define the

fraction of active cycles over total cycles for an SM. We plot the activity factor of each

SM after executing each of the three benchmarks with 10, 30 and 60 SMs. We generally

observe that the more SMs a benchmark has available, the lower the average activity

factor of SMs is. Also the activity is distributed in a balanced way among the SMs. As

the number of allocated SMs is reduced, certain areas of the GPU have higher activity

where other areas have very low activity. The comment that we make though is that for
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certain benchmarks, for example GUPS, the change of activity among SMs is negligible

for the different execution scenarios. Additionally for BLK, the increase in average

activity among the SMs from 60 to 30 SMs is not significant. In this work, we quantify

the aging effects as relative delay incurred to the SMs of the GPU, due to the degradation

of the materials (Section 4.1.2). Increased relative delay due to aging causes performance

degradation [36, 37, 38] as well as it severely affects the lifetime of a system [33, 76].

Additionally, imbalanced activity among the SMs of the GPU creates highly diverse aging

rate. Combining the observations for IPC and activity behavior, we reach the following

conclusions:

i) There is a double incentive to limit the available SMs for certain benchmarks. Their

IPC can increase and we also get the opportunity to leave some SMs unused, thus

reducing their activity while the average activity of the GPU does not increase.

ii) If we choose to reduce the available SMs for an application, we need to find a

mechanism for allocating SMs in order to distribute the activity equally among them.

If an application utilizes fewer SMs than all the available, activity divergence will

appear among the SMs of the GPU causing imbalanced aging in the long term.

Observation 3: Kernels of an application can have diverse behavior, further affecting

overall GPU throughput and increasing the activity imbalance of the SMs of the GPU. In

Figure 4.1c we plot the IPC for each of the three kernels of SAD. The IPC of each kernel

is normalized to the value of the optimal IPC for the same kernel. We observe that the

performance of each kernel can also vary, within the same benchmark. For SAD, kernel 1

continuously increases its IPC as more SMs are being available, reaching its optimal value

for 60 SMs. On the contrary, kernel 2 has optimal IPC for 15 SMs and kernel 3 has

optimal IPC for 30 and 40 SMs. We conclude that choosing the same number of

operating SMs for all the kernels of an application can actually hinder performance and

constrain the ability to evenly distribute activity among SMs.
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4.1.2 Aging model

Current that passes through transistors and their switching activity stress the

transistor material. Two phenomena that cause aging-induced wear on transistors are

Negative-Bias Temperature Instability (NBTI) [77] and Hot-Carrier Injection (HCI) [78].

NBTI affects mostly P-type Metal-Oxide-Semiconductor (PMOS) transistors and results

in permanent threshold voltage (Vth) shift, while HCI affects mostly N-type

Metal-Oxide-Semiconductor (NMOS) transistors.

To estimate the results of aging on the SMs of a GPU, we utilized the model

presented in [34]. The aging effect is translated as relative delay incurred to a system, due

to the degradation of the material of its computational blocks. We assumed that all the

transistors of a SM have the same dimensions and are affected seamlessly by aging. This

assumption is in line with other similar works such as [36, 37, 8]. The assumption is vital

in order to simplify the underlying GPU model that we use to evaluate the developed

methodology.

Equation 4.1 is used to calculate the relative delay of a block, caused by the

threshold voltage (Vth) shift:

∆reldTB(t) =
(

1− ∆Vth(t)

Vdd − Vth(t0)

)r
− 1 (4.1)

Vdd stands for the supply voltage, Vth(t0) is the threshold voltage at the initial state,

∆Vth(t) is the threshold voltage shift caused by aging at time t and r is a technology

dependent parameter. The average threshold voltage shift caused by the NBTI

phenomenon is calculated by Equation 4.2:

∆avgVth(t) ≤
∫ 1

0

ANu(Vdd)
(v(TB) · δB · δe · tm)n

w(δB · δe, TB, t)2n
dδe (4.2)

where δB is the duty cycle of the block, δe is the effective duty cycle, TB is the block
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temperature and tm is the period between two measurements. AN is a technology

dependent parameter. As demonstrated in Equation 4.3, as duty cycle of a block we

consider

δB =
tstress,B
ttotal

=
cyclesstress,B
cyclestotal

(4.3)

We consider the effective duty cycle, δe, to be uniformly distributed between 0 and 1

among the different transistors of a block. The functions u, v and w are shown in

Equations 4.4, 4.5 and 4.6 respectively:

u(Vdd) = (Vdd − Vth) · e(
Vdd−Vth

E0
)

(4.4)

v(T ) = ξ4 · e(
−Ea
kT

) (4.5)

w(δ, T, t) = 1−
(

1−
ξ1 +

√
ξ3 · v(T ) · (1− δ(t)) · tm
ξ2 +

√
v(T ) · t

) 1
2n

(4.6)

where Ea is the activation energy, k is the Boltzmann constant, T is the temperature, δ(t)

is the duty cycle at a specific moment t, E0 and ξi are technology dependent constants.

Regarding the effect of the HCI phenomenon, Equation 4.7 calculates the threshold

voltage shift:

∆Vth(t) = AH ·
√
αavg,B · u(Vdd) · v(TB) ·

√
αB · f · t (4.7)

f is the frequency of a block, AH is a technology dependent variable, aB is the activity

factor of a block and aavg,B represents the average activity factor of a block. Equation 4.8

expresses the relation that calculates the activity factor of a block B.

αB =
tactive,B
ttotal

=
cyclesactive,B
cyclestotal

(4.8)
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Figure 4.2: An overview of the developed methodology [75]

4.2 METHODOLOGY

An overview of the developed methodology is presented in Figure 4.2. The goal of

the presented methodology is to improve GPU throughput and minimize the divergence

of relative delay among the SMs. As GPU throughput, we define TGPU = IT
CT

, where IT

stands for the total number of instructions executed on the GPU during CT total cycles.

The methodology consists of two phases: i) the application and kernel characterization,

and ii) the adaptive SM allocation. During the first phase, applications are profiled and

classified. Information such as IPC, Memory Bandwidth, and the activity factor per SM

are collected for each application for various SM configurations. The characterization

phase collects information both at the application and the kernel level. During the second

phase, we utilize the information extracted during characterization. Based on this

information, the host (main processor) decides the number of SMs assigned to each

kernel. The number of active SMs during a kernel execution is crucial for the GPU

throughput and the aging distribution among SMs. The host monitors and records the

activity of each SM in order to estimate its aging. We consider that on-chip delay

monitors [38] provide input to the host regarding the status and the history of the SMs in

terms of activity factor. Similar to [37], an on-chip power-gating unit [79] is used for

clock-gating unused SMs. In this way, we achieve improved performance and balanced

distribution of SM activity at the same time.
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4.2.1 Application and kernel characterization

The goal of this phase is to collect the necessary information in order to guide the

adaptive resource allocation to optimally allocate SMs. As demonstrated in Section 4.1.1,

there is a double incentive for limiting the available SMs to a kernel. On the one hand,

certain applications and kernels demonstrate higher IPC when they are executed on a

limited number of SMs, instead of all the available SMs on the GPU. On the other hand,

by limiting the available SMs to a kernel, we can clock-gate SMs that are not utilized by

an application. By clock-gating computational resources we reduce their activity, thus we

have the opportunity to distribute activity among the cores in a more balanced way. As a

result, aging-induced relative delay is contained in smaller ranges, leading to a uniformly

aged GPU. The purpose of the application characterization is to extract the acceptable

configurations for the kernels of an application and for the application as a whole, for a

specific GPU micro-architecture. Additionally, this step is executed only once and the

extracted configurations will serve as the operating points for the SM allocation. This

means that once the operating points are extracted, they can be shared and utilized by

multiple GPU systems under different hosts, as long as the GPUs exhibit similar

architectural characteristics. The operating points can be included as parts of the

compiler and launcher. This is common in large scale deployments (e.g., cloud and server

farms), where GPUs of the same type are used for back-end calculations for seamless

integration and orchestration.

For each application, providing 5 up to 60 SMs with a step of 5, we collect the

necessary profiling information1. As acceptable configuration of an application/kernel, we

define the number of SMs that do not result in more than 10% IPC degradation,

compared to the optimal IPC (IPCOPT ) that an application/kernel can achieve on a

certain GPU. In other words, the collected operating points must satisfy

IPC ≥ 0.9 · IPCOPT . Provided that more than one operating points might achieve

1The detailed experimental setup of the GPU appears in section 4.3
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optimal IPC, we define as optimal operating point for an application/kernel the

configuration that provides the highest IPC (IPCOPT ) with the fewer possible SMs. The

10% IPC margin that we allow provides us enough space to explore configurations

without sacrificing performance. At the same time, the potential to clock-gate enough

SMs and reduce aging divergence becomes available.

As aforementioned, this step is executed only once and its duration for our

experiments did not take more than a day. Thus, the aging and power impact of the

characterization phase can be considered negligible. Executing applications on a GPU for

one day does not significantly impact the aging condition of the device as the first

noticeable impact on performance appears after 1.5 years of usage (Section 4.3).

The information extracted during the profiling phase, for an application A, is

represented by the following tuple, A(ν, IPC,AcCyc, TotCyc,MB,L2 → L1,MCr, κ, lst),

where:

• ν is the number of SMs of the optimal operating point,

• IPC is the IPC of the optimal operating point,

• AcCyc is a ν size array of the active cycles for each SM, for the optimal operating

point, and

• TotCyc is the number of total cycles of execution for an application, for its optimal

operating point.

Additionally,

• MB stands for the memory bandwidth usage for the optimal operating point,

• L2 → L1 is the L2 to L1 cache bandwidth usage, and

• MCr is the memory to computational instructions ratio.
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The latter three numbers are used to classify applications, based on the methodology

presented in [29].

• κ, stands for the number of kernels that application A consists of.

Finally, lst is an array of lists of tuples, containing the necessary information for all the

acceptable operating points for each kernel of an application. Each list contains tuples

that represent the acceptable operating points of a kernel. The structure of each tuple is

(λ, IPCkrnl, AcCyckrnl, T otCyckrnl), the description and the size of each member of the

tuple are:

• λ is the number of SMs for an operating point of a kernel, an 8 bit unsigned integer,

• IPCkrnl is the kernel’s IPC, for this operating point, a 16 bit unsigned integer,

• AcCyckrnl is a λ size array of the active cycles of each SM for this operating point of

a kernel, an array of 64 bit unsigned integers, and

• TotCyckrnl are the total cycles for the execution of a kernel, a 64 bit unsigned

integer.

For application A, lst is an array of size κ and each element of this array is a list of

tuples. The tuples of each list are ordered in descending order according to the number λ.

For example, lst[5] would be a list of tuples, describing the characteristics of the fifth

kernel of the specific application. Thus, traversing the lst array for every application, the

adaptive SM allocation algorithm can find the necessary values to decide the operating

point for a kernel. The space requirements to hold this information, for a GPU with 60

SMs, is up to 3.3KB per kernel. Considering the 10% IPC margin for the acceptable

operating points, it is probable that for most of the kernels of an application, the

acceptable solutions are fewer than all the possible operating points. Thus, the memory

needed for the tuples of a kernel can be less than 2.3KB, for a GPU with 60 SMs. This

means that the information of a kernel can fit in the cache of a regular desktop computer.
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4.2.2 Adaptive SM allocation

The goal of the adaptive SM allocation is to improve GPU throughput and minimize

the divergence of relative delay among the SMs. The tasks of this phase are:

i) monitoring the activity history and temperature of SMs;

ii) selecting the operating configuration for a kernel among the acceptable ones;

iii) SM allocation;

iv) clock-gating of unused SMs; and

v) updating the activity history of each SM after the termination of a kernel.

Activity and temperature monitoring

The initial step in order to launch the kernels of an application on the GPU is to

monitor the activity state of the SMs and the temperature of the GPU. These parameters

are essential in order to estimate the status of the platform in terms of aging. The aging

condition of the SMs is detrimental for the selection of the operating point as the number

of used SMs for a kernel affects both GPU throughput and aging distribution. Before the

host launches a kernel, it starts the aging estimator module. In this step, the estimator

reads the timing, activity and temperature information form the GPU performance

counters. Data describing the current GPU condition such as frequency, temperature and

SM activity is stored by the estimator module. A thread of the estimator constantly polls

the on-chip delay and temperature units to acquire this information. The estimator is

then able to determine the current relative delay of each SM of the GPU using the aging

model presented in Section 4.1.2. This information is used during the next task, combined

with kernel profiling information, to estimate the aging condition of the GPU and select

an operating configuration. The polling is performed in 30us windows. If a kernel has a

duration less than the polling time, the estimator will use the previously acquired GPU
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information to determine the operating point and sort the SMs for the next kernel to be

executed. We believe that this polling overhead is negligible as (i) GPU temperature

cannot significantly change during a kernel execution of less than 30us; and (ii) a kernel

that executes for less than 30us (e.g., for 700MHz that is equal to 21, 000 cycles) does

not significantly affect the condition of the SMs as applications have larger kernels that

dominate the SM condition.

Configuration selection

In this task, the host chooses the appropriate operating point of SMs, by utilizing

the information extracted in the application and kernel characterization phase

(Section 4.2.1) and the aging condition of the SMs provided by the aging estimator.

Choosing the configuration that provides the highest IPC per application is not

necessarily the best choice, as it can have unpredictable and undesired results in terms of

aging. That is the reason we allow the 10% IPC drop at the profiling phase. We set this

threshold experimentally as we believe that it represents a good trade-off. Even though

we set it to 10%, the proposed methodology works for any threshold value the designer

may choose. For each kernel of an application, the operating point configurations are

explored and decided individually. We perform this step because a general operating

point extracted based only on the overall application performance can restrict specific

kernels, leading to suboptimal throughput (Observation 3, Section 4.1.1).

Algorithm 1 describes in details the steps and decisions for selecting the operating

configuration for a kernel. For each kernel of an application, all the tuples of the kernel

list are traversed in order to decide the operating configuration. For a GPU with 60 SMs

and operating points collected with a step of 5 SMs, the maximum number of tuples for a

kernel are 12 and the time needed for this search is in the range of 1us. For instance, for

kernel krnl of application A, all the tuples of the list lst[krnl] are explored before

choosing a configuration. In order for the host to determine a configuration for a kernel,
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the first step is to estimate the projected aging condition of the GPU if a specific

configuration is used. To achieve this, the aging estimation module is provided with

kernel profiling information: the active cycles (AcCyckrnl) and total cycles (TotCyckrnl)

for the configuration under consideration. Having this information, the estimator module

can project the aging condition of the GPU if the specific configuration is used. The

aging module returns the standard deviation of the aging-incurred relative delay and the

average relative delay of all the SMs (line 9). As the focus of this work is to minimize the

activity divergence of the SMs, we prioritize the configuration that minimizes the

standard deviation of the relative delay. From the acceptable configurations, members of

lst[krnl], we choose the one that will result in a GPU with minimum standard deviation

of the relative delay (line 10). Prioritizing this choice guarantees that the SMs of the

GPU will age as homogeneously as possible. Balanced aging among the cores is essential

to avoid performance and reliability issues. If more than one configurations minimize the

standard deviation of the relative delay (RelDel std), we choose the one that provides the

minimum average relative delay (line 16). With this choice, the methodology aims to

reduce the overall aging of the platform, since balanced aging can be achieved by more

than one configurations. In case that there are multiple configurations that minimize the

relative delay standard deviation, combined with minimum average relative delay, we

choose the one that achieves the highest IPC with fewer SMs (line 21). This decision aims

to provide higher performance, if the prerequisites for homogeneous and low aging are

met. When the configuration is decided, the next step is to allocate the required SMs.

SM allocation

When this step is reached, the host has chosen the configuration for the SMs and it

is time to allocate the computational resources for the kernel to be executed. If the

chosen configuration requires all the SMs of the GPU, then all the SMs are assigned to

the executing kernel and execution proceeds. If the configuration asks for κ SMs, where κ
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Algorithm 1 Operating configuration selection

1: procedure Configuration selection(A, krnl, ProfInfo, GPU cond)
. Application A, kernel krnl of A, ProfInfo is the profiling information for A, GPU cond are
the characteristics of the GPU

2: RelDel std = +∞;
3: RelDel avg = +∞;
4: config = 0;
5: maxIPC = 0;
6: crrnt RelDel std = 0.00;
7: crrnt RelDel avg = 0.00;
8: for all tuples in lstA[krnl] do
9: (crrnt RelDel std, crrnt RelDel avg) = agingmodule(AcCyckrnl,TotCyckrnl)

10: if crrnt RelDel std < RelDel std then
11: RelDel std = crrnt RelDel std;
12: RelDel avg = crrnt RelDel avg;
13: maxIPC = IPCkrnl;
14: config = λ;
15: else if crrnt RelDel std == RelDel std then
16: if crrnt RelDel avg < RelDel avg then
17: RelDel avg = crrnt RelDel avg;
18: maxIPC = IPCkrnl;
19: config = λ;
20: else if crrnt RelDel avg == RelDel avg then
21: if IPCkrnl > maxIPC then
22: maxIPC = IPCkrnl;
23: config = λ;

return config

is less than the total number of SMs, the first step is to order the SMs according to their

aging. Considering the current state of the SMs provided by the aging estimator module,

the host orders the SMs based on their activity factor. For a GPU with 60SMs, the time

overhead for this sorting is less than 1us. The κ SMs with the lower activity factor are

allocated by the kernel to be executed. The rest of the SMs are left to be clock-gated in

the next step. By ordering the SMs and allocating the ones with lower activity factor, we

achieve better balancing of the aging. The SMs with higher activity factor will be

clock-gated, thus their activity will remain the same. On the other hand, the SMs with

lower activity factor, will execute more instructions, thus increasing their active cycles.

As a result, with this choice the proposed methodology decreases the activity gap among
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the SMs of a GPU.

SM clock-gating

In this step, the configuration of the SMs has been chosen and the allocation of SMs

has taken place. If the chosen configuration does not utilize all the available SMs, the

remaining SMs are clock-gated during the execution of the kernel to reduce activity and

idle power. As shown in [80], clock-gating can happen with 1 cycle of wake-up latency.

This latency is equal to the time needed to reactivate an SM after it has been clock-gated.

Thus, the approach of clock-gating SMs can significantly improve aging distribution

among SMs, and reduce power, while not affecting performance. After the SMs are

clock-gated, the execution of the kernel begins.

Activity status update

When a kernel completes its execution, the host checks whether there are more

kernels of the same application remaining to be executed. The host does not initiate the

execution of a new application unless all the kernels of the previous one have finished.

To guarantee the correct estimation of the relative delay for the SMs, the activity

history of each SM is updated after a kernel terminates. The cycles that each SM was

active are added to the active cycles so far for each SM. Additionally, the total cycles for

each SM are updated according to the sum of active cycles+ idle cycles per SM, for the

last executed kernel. In this way, the host maintains an updated and consistent view of

the status of each SM. As aforementioned, in case a kernel has a very short duration,

shorter than 30us, the aging estimator module uses the previously stored information to

choose the operating point for the next kernel.

Similar to all functioning electronic components, the host experiences aging too.

However, with this methodology we do not consider the aging impact of the host. A

methodology for minimizing activity divergence on CPUs would require all functional
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Table 4.1: Set-up for the Fermi micro-architecture

Fermi GPU micro-architecture

# of SMs 60 Core frequency 700MHz
Warps per SM 48 Blocks per SM 8
Shared Memory 48kB L1 Data cache 16kB per SM
L1 Instr. cache 2kB per SM L2 cache 768kB
Warp scheduler GTO [81]

Table 4.2: Set-up for the Tesla micro-architecture

Tesla GPU micro-architecture

# of SMs 60 Core frequency 600MHz
Warps per SM 24 Blocks per SM 8
Shared Memory 16kB L2 cache 196kB
L1 Instr. cache 4kB per SM Warp scheduler GTO [81]

blocks of the CPU to age with the same rate which is out of the scope of the presented

research. Additionally, based on the aforementioned overhead analysis, the tasks that the

host executes, e.g., aging estimation, temperature reading, SM ordering, are far less

demanding compared to the GPU workload. As a result, the host does not experience

intensive workloads under the scenario of the proposed methodology.

4.3 EVALUATION

To evaluate our solution we conducted extensive experiments using the open-source

GPGPU-Sim [82] simulator and the Rodinia benchmarks [9]. The benchmarks were

compiled with CUDA 3.2 and the simulator set-up allowed only single kernel launching

per application. This means that for every application, only one kernel was executing at a

time. GPGPU-Sim allows users to use different GPU architectures and configure various

aspects of the GPU. To evaluate the developed method, we used the NVIDIA Fermi and

Tesla micro-architecture. Specifically, in Table 4.1 we present the exact set-up of the

Fermi micro-architecture, whereas in Table 4.2 we present the set-up of the Tesla

micro-architecture.

To acquire the necessary temperature measurements that are required by the
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aging-model, GPUWattch [83] was used to extract power measurements for each

simulation. Providing the power measurements and a GPU floorplan, the HotSpot [84]

tool was used to estimate the temperature among the components of the GPU. Finally,

we utilized the ExtraTime aging framework to estimate the relative delay [34]. We

evaluated the proposed methodology under the following cases:

i) We considered that the GPU was executing a single application for a period of three

years. In this step, the focus was given on evaluating the worst case relative delay for

the SMs of the GPU.

ii) We created a more realistic scenario. In order to further evaluate the performance

benefits of the proposed methodology as well as the impact on the aging divergence,

we created seven queues of applications that we used as workload for the GPU. Four

queues follow an application distribution according to the classification presented

in [29], while the rest three mixes are composed of randomly picked applications from

a benchmark pool.

For both cases, we compared the proposed methodology against four other approaches.

Default: In this approach each application was assigned all of the available SMs.

This approach is an aggressive policy, meaning that the scheduler does not consider the

activity factor of the SMs when assigning thread blocks to them.

Profiling [30]: Every application is profiled and we extract the configuration that

yields the optimal IPC. Then, this number of SMs are assigned to the application.

However, this method does not take into consideration the possible inequality of activity

among the SMs.

Aging-aware [38]: In this method, the optimal configuration per application is also

extracted. Then, the authors choose to apply an up to 8% performance loss margin in

order to reduce the allocated SMs and always clock-gate some SMs. This approach orders

the SMs based on their degradation rate and assigns the less degraded to the executing
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Figure 4.3: Worst (highest) relative delay change (Equation 4.1) among the 60 SMs of the
GPU after three years

application, in accordance with the optimal number and the performance loss margin.

However, they always select less number of SMs, compared to the optimal configuration

which may not be the best solution for equal distribution of activity factor, especially for

memory intensive applications.

Performance- and Aging-aware [85]: A methodology for SM allocation that

boosts the overall performance and reduces the activity imbalances among SMs. It

achieves these goals by clock-gating SMs. This methodology though, does not consider

the kernel characteristics of applications. It considers applications at a coarse-grain level,

overlooking the differences in performance and activity among the kernels of an

application. Note that [85] presents an initial version of the presented technique.

4.3.1 Single application evaluation

The experiments in this section were conducted using only the Fermi

micro-architecture set-up. Equation 4.1 describes the relative delay that an SM of the

GPU suffers due to NBTI and HCI phenomena. Figure 4.3 depicts, for all the evaluated

methods, the worst (highest) relative delay change (Equation 4.1) among the 60 SMs of
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Figure 4.4: Normalized lifetime estimation per benchmark

the GPU after three years (1095 days). We plot this relative delay, normalized to the

worst case relative delay of the Default methodology. The proposed methodology has the

smallest impact, approximately 9.4% on the worst case relative delay comparing to all

other approaches. Specifically, the Profiling method has the worst impact on the GPU

with an average impact of 12.6%. This can be explained by the fact that it tries to

maximize the performance without taking into consideration the activity and the history

of the SMs. The Aging-aware approach manages to reduce the relative delay in the long

run by applying a performance loss margin in order to reduce the number of allocated

SMs. However, the number of SMs that this method utilizes is not the best solution for

equal distribution of the activity factor, as further experiments (Section 4.3.2, Diverse

workload evaluation) reveal. Finally, the Performance- and Aging-aware achieves similar

worst case average relative delay comparing to the proposed methodology. However, for

specific benchmarks, e.g., LUD and FFT, it results in greater worst case relative delay.

This happens because, this method tries to balance performance and aging looking only

at the application level (coarse-grain optimizations) rather than at the kernel-level.

Based on the worst case relative delay, Figure 4.4 depicts the normalized lifetime of

the GPU. In order to calculate the lifetime, we utilized the method presented in [39].
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Table 4.3: Application classification

Class Benchmarks Class Benchmarks
M BLK, GUPS C BFS2, SPMV

MC 3DS, BP, FFT, LPS, RAY A HS, LUD, NN, SAD

Specifically, the lifetime of the GPU is defined as the time elapsed before at least one SM

reaches the critical point. We set this critical point, as the worst relative delay among the

SMs under the Default method at seven years. Overall, the proposed approach increased

the lifetime of the GPU by 18% on average, while the Aging-aware method was the

second best with an increase of 9% on average.

4.3.2 Diverse workload evaluation

In order to further explore the trade-offs of all the approaches and evaluate in depth

the performance benefits of the proposed methodology as well as the impact on the aging

divergence, we created a more realistic scenario. Specifically, we created seven queues of

applications that we used as workload for the GPU. The applications are profiled and

characterized before execution. To characterize the applications we used the methodology

presented in [29]. Particularly, all applications belong to one of the four classes:

(1) M-oriented: memory intensive applications that access regularly the memory and

demand large amounts of data to be transferred. (2) MC-oriented: memory-cache

intensive applications have high memory activity, not high enough though to belong to

the M category. Additionally they demonstrate high cache activity. (3) C-oriented:

cache-intensive applications that utilize heavily data from the L2 cache. (4) A-oriented:

compute-intensive applications that demonstrate low main memory and cache utilization;

applications in this category perform a high number of computational instructions.

Table 4.3 explicitly shows in which class each application belongs to.
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Figure 4.5: GPU throughput comparison per queue, Fermi micro-architecture

Fermi micro-architecture

Figure 4.5 depicts the total GPU throughput for the utilized queues during our

experiments. The overall observation is that the proposed method always achieves higher

throughput than the Default method. This is explained by the approach we follow for the

SM allocation. Unlike the default approach, we profile applications at the kernel-level.

After obtaining the required information, we can provide each application with the

number of SMs that achieves optimal IPC, allowing a 10% IPC loss margin. The margin

is necessary to keep aging balanced as much as possible. The proposed methodology

achieves lower throughput than the Profiling and Aging-aware methodologies. For the

former, this is explained because the Profiling methodology picks always the configuration

that provides the highest application IPC, thus leading to the highest GPU throughput.

Though, this decision does not come at no cost as the Profiling methodology does not

consider the aging deviation among the SMs. For the latter, the Aging-aware

methodology achieves higher GPU throughput as a result of a smaller performance

trade-off. The Aging-aware methodology considers as acceptable, configurations that have

up to 8% lower IPC than the optimal. This smaller space of acceptable configurations

leads to higher GPU throughput but has a cost at balancing aging among the SMs.

Comparing with the Performance- and Aging-aware methodology, for the MC and C
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workloads, the proposed methodology achieves marginally lower GPU throughput,

whereas for the A workload the two methods achieve the same GPU throughput. For the

M workload though, the proposed methodology achieves 9% higher GPU throughput.

The differences between these two methods have to do with the kernel-level tuning. The

Performance- and Aging-aware methodology picks an overall configuration for all the

kernels of the applications, instead of the proposed methodology approach that picks

configurations for each kernel individually. Memory-intensive applications demonstrate in

general low IPC due to their data-bounded nature. Some kernels of a memory-intensive

application might execute many calculations though, having a high IPC. As these

applications demonstrate low IPC, the optimal configurations for the overall application

consist of few SMs. This can severely impact a kernel that is compute-intensive but

belongs to a memory-intensive application. The proposed methodology will not hinder

the performance of such a kernel as it can choose a configuration with many SMs for the

specific kernel and later restrict the available SMs for memory-intensive kernels. The

same trend follows the three random mixes. Overall, the proposed methodology achieves

increased GPU throughput by an average of 18% compared to the Default method.

Figure 4.6 depicts the relative delay caused by the SM activity, over the course of

three years for all seven workloads. The coloured area corresponds to the activity

divergence among the SMs. In other words, the smaller the area of a method is, the more

balanced the activity is among the SMs. Generally we observe that the proposed

methodology demonstrates smaller divergence comparing to all other approaches. The

Default method presents lower values for the relative delay which is expected and

explained by a low activity factor of the SMs. As Figure 4.5 shows though, this low

activity factor means that throughput is kept low. The proposed method causes 89.8%

lower standard deviation of the activity factor comparing to the Aging-aware approach

together with 5.9% lower average activity factor for the MC-dominated queue. This is

translated to 89.6% decrease in relative delay divergence among the SMs and 3.1%
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Figure 4.6: Relative delay incurred by aging per evaluated workload, Fermi
micro-architecture

decrease of average relative delay for the MC-dominated queue. Additionally, the

proposed method causes 87.3% lower standard deviation of the activity factor comparing

to the Performance- and Aging-aware for the C-dominated queue, due to the fact that it

takes into consideration the characteristics of the kernel employing a more fine-grain

optimization.

Furthermore, Figure 4.7 presents the distribution of the activity factor among the

SMs for all the evaluated approaches per queue. We can see that due to the fact that the

Profiling method does not take into consideration the activity factor, it creates great

activity inequalities among the SMs of the GPU. Also, the proposed method balances

activity factor better among the SMs than the Aging-aware and Performance- and

Aging-aware approaches creating a continuous spectrum of SM activity.

Last, Figure 4.8 depicts the normalized average power overheads for all the evaluated

techniques for the seven workloads. On average, the proposed technique uses 1.4% more

power than the Default method. This overhead is explained by the improved performance

demonstrated by the proposed technique. Higher throughput means that the same
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micro-architecture [75]

amount of work is executed in shorter periods of time. As a result, SMs are active for a

higher percentage of their total time while a kernel is executed. However, by clock-gating

SMs, the proposed method succeeds in mitigating power overheads. Further mitigation of

power overheads can be achieved by allowing a higher IPC margin during the

characterization phase. Nevertheless, a higher IPC margin for acceptable operating points

will result in lower throughput gains during execution. An overhead of 1.4% greater

power on average, comparing to the Default method appears as a reasonable trade-off in
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Figure 4.8: Normalized average power per evaluated workload, Fermi micro-architecture
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Figure 4.9: GPU throughput comparison per queue, Tesla micro-architecture

order to achieve 18% higher throughput on average, compared to the same method.

Tesla micro-architecture

In this section, we present the experimental results while using the Tesla

micro-architecture. We observe similar behavior of the proposed technique for the GPU

with the NVIDIA Tesla micro-architecture as in the experiments conducted with the

Fermi micro-architecture. Specifically, Figure 4.9 presents the normalized GPU

throughput experimental results. On average, the proposed technique outperforms the

Default approach by 13.8%. Additionally it outperforms the Performance- and

Aging-aware technique except for the Mix 1 workload. We observe that all the methods

improve their throughput against the Default approach by a lower percentage than for
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Figure 4.10: Relative delay incurred by aging per evaluated workload, Tesla
micro-architecture

the Fermi micro-architecture GPU. This is a result of smaller caches, except for the L1

instruction cache, smaller shared memory, and fewer warps per SM. Due to these

architectural characteristics, the comparing methodologies do not achieve as high

performance as achieved for the Fermi micro-architecture.

Figure 4.10 depicts the span of relative delay change among the SMs, during a

period of three years. The proposed method demonstrates lower relative delay divergence

compared to the rest of the methods, except for the C queue, where it demonstrates

97.5% higher divergence than the Default method, and 3.9× higher divergence than the

Performance- and Aging-aware method. Although, for the specific queue, the proposed

method achieves higher throughput than the aforementioned methods. The higher

throughput achieved by the proposed method causes a higher relative delay divergence

among the SMs.

Accordingly to Figure 4.7, Figure 4.11 depicts the distribution of the activity factor

among the SMs for the Tesla micro-architecture. For the majority of the queues, the

proposed methodology demonstrates more balanced activity among the SMs, compared to
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the other approaches. Comparing to the experiments on the Fermi micro-architecture, we

observe that the maximum value of the activity factor is lower for the Tesla

micro-architecture. This is a direct result of the lower overall performance demonstrated

for the Tesla micro-architecture, by all the methods.

Finally, Figure 4.12 presents the power results for the experiments on the Tesla

micro-architecture. Overall, the proposed methodology demonstrates on average a 0.8%

power overhead compared to the Default approach. However, the proposed methodology
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outperforms the other three compared methods by achieving lower average power

overhead per queue, for all the workloads used.

4.4 SUMMARIZING

In this chapter we presented an allocation methodology for SMs. The execution

scenario for this methodology considers single application execution on GPUs. The

developed methodology aims at improved GPU throughput and activity balancing for the

SMs. It provides a fine-grain mechanism to allocate SMs, based on the kernel-level needs

of each application. Profiling information per application is first gathered at an off-line

stage. This information is necessary to decide the configurations per application and per

kernel during execution. Experimental results for the NVIDIA Fermi and Tesla GPU

micro-architectures demonstrate that the proposed methodology achieves its goals.

Compared to the default approach for SM allocation, and state-of-the-art allocation

policies, the proposed methodology achieves higher throughput and balances activity

among the SMs. Even though on average, power consumption is higher when using the

proposed methodology compared to the default allocation policy, that is an acceptable

trade-off, given the higher performance that is achieved by the proposed methodology.
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CHAPTER 5

PERFORMANCE-BASED AND ACTIVITY-AWARE RESOURCE

ALLOCATION FOR CONCURRENT GPU APPLICATIONS

In this chapter we present the developed methodology for concurrent applications,

executing on a GPU. The methodology focuses at improving system throughput while

balancing aging among the SMs. We first present some necessary background

information. Then we thoroughly present the methodology, and finally we evaluate it

with extensive experiments.

5.1 PRELIMINARIES

5.1.1 Problems in concurrent application execution

Concurrent application execution faces two major challenges. First, the throughput

of the GPU can vary significantly depending on the pairing of the applications and the

configuration of the processing units to each application. Second, the computing activity

among the processing units is highly non-uniform, leading to aging divergence in the

course of time.

GPU’s throughput and applications’ performance can change considerably

depending on the characteristics of the applications that are executed together and the

SM partitioning between them. Specifically, applications vary in terms of number of

commands, the nature of these commands, e.g., compute or memory intensive, the

memory bandwidth they utilize, last level cache misses etc. Based on these metrics, we

can classify applications and measure their inter-application interference [29].

Particularly, computationally intensive applications require a large number of SMs, as

they have to execute more compute-based instructions. Consequently, the more SMs they

have available the higher throughput they can achieve. On the contrary, memory

intensive applications do not need a high number of SMs to achieve the highest possible
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throughput as memory bandwidth utilization is the most important resource for them.

Thus when executing applications concurrently on the same GPU, we need to take into

consideration the types of the applications when placing them together, as this will

significantly affect the overall system throughput. Additionally, a very important aspect

that determines the system’s throughput is the partition of the number of SMs between

two co-executing applications. Partitioning the SMs equally between the two applications,

although it might seem fair, it cannot guarantee high throughput in application or system

level. Applications with low inherent IPC harm the system’s overall throughput and they

do not benefit from a higher number of SMs. Nevertheless, applications that can achieve

high IPC, benefit from the use of more SMs and will contribute in a higher throughput

for the system.

The second problem of concurrent application execution on GPUs is that SMs

demonstrate varying levels of activity during execution. Due to the different nature of

each application (e.g., computationally or memory intensive) and the different number of

instructions executed per application, SMs are utilized non-uniformly. In the worst case

scenario, if every time we execute a pair of applications, the application with the less

active cycles gets mapped on the same SMs, the system will demonstrate a bipolar image

in terms of activity and as a consequence aging. The effects of aging can be even

intensified by the existence of PV. PV describes the differences that can occur in chips

and electronic components, even on the same wafer. These differences occur due to

material impurities or imperfections during the fabrication process.

Specifically, the inability to control manufacturing parameters and processes in

sub-wavelength lithography has significantly affected PV [86]. PV negatively affects the

maximum frequency of transistors and, consequently, the core frequency and the leakage

power. As described in [49], PV consist of two main components, Die-to-Die (D2D) and

Within-Die(WID). D2D variations equally affect all the transistors of a die, and they are

a result of within-wafer, wafer-to-wafer, and lot-to-lot variations during fabrication. WID
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variations affect transistors of a die in different ways, and are further divided into random

and systematic.

In [52], the authors introduced the concept of Core-2-Core (C2C) variations, which

are a result of spatially correlated WID variations. Due to the diminishing size of cores,

allowed by progress in material and fabrication technologies, more SMs than ever are

integrated in a GPU. This increment in the number of SMs negatively affects process

variations, as it subsequently increases the probability of spatially correlated phenomena

among cores.

In this work, we focus on C2C variation effects by considering SMs as the

computational cores. As presented in [48], for GPUs consisting of NSMs identical SMs,

the chip surface is represented by a Nchip ×Nchip grid. The process variation value pij of a

grid cell (i, j ∈ [1, Nchip]) can be defined as a Gaussian random variable. Furthermore, the

process variation values of two points on the grid demonstrate correlation. This

correlation is measured by the correlation coefficient of variation which is described by

Equation 5.1:

ρij,kl = e−α
√

(i−k)2+(j−l)2 ,∀i, j, k, l ∈ [1, Nchip] (5.1)

where α represents how quickly spatial correlations die out.

The scope of the developed methodology focuses on SMs, which is a higher

abstraction level than the transistor-level. As shown in [87], the frequency of a SM, which

is affected by process variation, can be approximated by the worst-case delay of identical

critical paths. To facilitate calculations and allow the methodology to be adaptive to

run-time changes, we assume that the gates of a critical path lie within a grid cell and

that critical paths are uniformly distributed within a SM. We base these assumptions on

previous research approaches [48, 87], where similar PV estimation models were utilized.
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Thus, the maximum frequency of each SM i ∈ [1, NSM ] is:

fMAX
i = K ′ min

k,l∈SCP,i

(
1

pkl

)
(5.2)

In Equation 5.2, K ′ is a technology-dependent constant, and SCP,i stands for a set of grid

cells that contain critical paths in SM i. The initial operating frequency of each SM is

estimated by Equation 5.2. SM frequency directly affects threshold voltage shift

(Equation 4.7) as well as δB (Equation 4.3) and αB (Equation 4.8). Consequently, PV

affects the operating frequency of the SMs and eventually the relative delay incurred by

aging (Equation 4.1). Due to PV, the SMs of a GPU demonstrate different operating

frequencies. Disregarding the PV effects will lead to inaccurate estimation of aging

induced relative delay. Accordingly, inaccurate estimation of relative delay will lead to

unpredictable allocation of SMs. Thus, the activity of the applications will not be

distributed in a way that can balance the aging condition of the SMs. Specifically,

compute intensive applications tend to demonstrate high activity, contributing in a more

aggressive aging. Thus, if the aging condition of SMs is not accurately estimated, any

effort to balance aging among SMs will fail, and the aging imbalances of the GPU

components will worsen.

Ultimately, the aging imbalance can cause unexpected delays in execution, reduce

reliability and even cause malfunction to a system due to some parts of it being very aged

while the others have not yet reached a critical point. Thus the Mean-Time-To-Failure

(MTTF) for a GPU can shorten, even though the system has areas that are underutilized.

5.1.2 Concurrent application execution on GPUs

Multi-application execution can greatly affect the performance of GPUs, due to

contention on shared resources (e.g., L2 cache, memory controller), and at the same time

significantly affects the aging rate of the platform in a non-uniform way. The goal of the
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Figure 5.1: Overall flow of the proposed methodology [88]

proposed methodology is to increase the throughput of a GPU under concurrent

application execution while balancing the aging on the computing components. As

throughput we define T = IT
CT

, where IT is the total number of instructions and CT is the

total number of cycles.

Figure 5.1 presents an overview of the proposed methodology. The starting point is

application characterization where the goal is to gather information regarding the

performance, e.g., Instructions Per Cycle (IPC), memory bandwidth utilization,

Memory-to-Compute instructions ratio, and the activity factor per SM for various

applications. Based on this information we extract operating configurations per

application that will drive the next steps. Assuming a queue of incoming applications for

execution and given the process variation map of the GPU, we:

i) Select pairs with low inter-application contention;

ii) Decide the number of SMs per kernel per application in order to further increase

GPU’s throughput; and

iii) Allocate the SMs based on the compute and aging history of the SMs of the

platform, the activity factor of each application and the GPU’s PV.

iv) Clock-gate SMs during the execution of different kernels if overall throughput is not
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Figure 5.2: Application activity factor for different configurations [8]

significantly affected.

After the end of an application or pair of applications, the aging history of each SM is

updated based on the impact of the activity factor on the utilized SMs.

5.2 METHODOLOGY

5.2.1 Application characterization

The first step of the proposed methodology consists of information extraction for

GPU applications. Given a GPU with ntot number of SMs, we profile applications for

different SM configurations. Metrics regarding application performance and

characteristics are extracted in order to serve the run-time SM allocation and

management.

For a given application A, we execute it on the GPU starting from 5 SMs up to 55

with a step of 5 SMs. For each configuration, we collect, among other information, the

IPC and activity factor. At a finer level, for each application we also collect the IPC for
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Table 5.1: Kernel information

Applicat. # of kernels Kernel IPC compared to application IPC
3DS 1 1

BFS2 12 0.40, 0.06, 0.36, 0.06, 0.28, 0.18, 1.28, 0.12,
1.53, 0.18, 1.15, 0.03

BLK 1 1
BP 2 0.69, 1.51

FFT 8 1.31, 1.12, 1.13, 0.94, 0.89, 0.86, 0.92, 0.88
GUPS 1 1

HS 2 0.99, 1.01
LPS 1 1

49.21, 1.79, 0.10, 41.28, 1.70, 0.09, 41.28, 1.83,
0.10, 41.28, 2.16, 0.12, 41.28, 2.16, 0.12, 41.28,

LUD 46 2.37, 0.11, 41.28, 2.63, 0.13, 41.28, 2.96, 0.13,
41.28, 3.39, 0.15, 41.28, 3.95, 0.17, 41.28, 4.74,
0.21, 41.28, 5.92, 0.25, 41.28, 7.89, 0.30, 41.28,
11.84, 0.82, 41.28, 22.21, 1.97, 41.28

RAY 1 1
SAD 3 0.56, 17.32, 18.94

SPMV 1 1

all its kernels. Figures 1.2 and 5.2 depict the IPC and the activity factor respectively, for

each application and for all the tested configurations. Also, Table 5.1 presents how many

kernels each application has, and the application IPC
kernel IPC

ratio for the configuration in which the

application had the highest IPC. From Table 5.1, we notice that certain kernels

demonstrate higher IPC than the actual IPC of the application (application IPC
kernel IPC

< 1). This

is explained by the fact that the duration of some kernels is significantly shorter than the

duration of the application, e.g., 100× shorter. As a result a kernel’s contribution to the

application IPC can be minimal. Based on Figures 1.2, 5.2 and Table 5.1, we make the

following observations.

Observation 1 : Applications can be divided in three categories in terms of their

IPC behavior: In Section 5.2.2, applications of a queue are matched into pairs. After

that, in Section 5.2.2, SMs are partitioned among the applications of a pair and in

Section 5.2.2, specific SMs are allocated to each one of them. At (i) applications that
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continuously increase their IPC when more SMs are available, e.g., HS; (ii) applications

whose IPC remains constant after a certain number of SMs, e.g., GUPS; and

(iii) applications that decrease their IPC after the available SMs exceed a threshold, e.g.,

FFT. To summarize, in order to increase application IPC, there is an incentive to provide

more SMs to certain applications, whereas in other cases there is incentive to limit SMs

up to a certain number.

Observation 2 : Regarding the activity factor, applications can be divided into two

categories: (i) applications whose activity factor continuously drops as the number of

available SMs increases, e.g., 3DS; and (ii) applications whose activity factor remains

constant or demonstrates a negligible change as more SMs are available, e.g., GUPS.

Thus, increasing the available SMs for an application is very beneficial when the activity

factor drop is combined with an IPC increase.

Observation 3 : Kernel IPC compared to application IPC varies significantly, e.g.,

it can be up to 49× smaller.

Observation 4 : The IPC among kernels of the same application might vary

significantly, e.g., up to 417×. This difference is explained as kernels can perform

distinctively different tasks. For example, one kernel may fetch data from memory, thus

being memory-bounded and demonstrating low IPC. On the other hand, a different kernel

of the same application may perform heavy computations thus demonstrating high IPC.

Observations 1 and 2 can be justified by the behavior of the applications.

Computationally-intensive applications will benefit by large number of SMs as they can

increase throughput.In Section 5.2.2, applications of a queue are matched into pairs.

After that, in Section 5.2.2, SMs are partitioned among the applications of a pair and in

Section 5.2.2, specific SMs are allocated to each one of them. At At the same time, the

activity factor of the SMs will be reduced, as the workload will be distributed among

more SMs. On the other hand, applications whose IPC does not increase as the number

of SMs increases are more memory bounded and their activity factor remains relatively
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unaffected.

For each application, we define as ν the minimum number of SMs that provides the

maximum IPC for an application. The ideal configuration for an application A is

represented as Aν(IPC,MB,L2 → L1,MCR,AcF, κ), where IPC is the Instructions Per

Cycle, MB is the memory bandwidth, L2→L1 is the L2 to L1 cache bandwidth, MCR is

the memory to compute instructions ratio, and AcF is the activity factor. Last, κ (κ < ν)

describes the number of SMs for which the IPC of A does not drop more than 20% than

the ideal configuration. This threshold is determined experimentally, and it is a trade-off

between system throughout and application progress. A lower threshold would deprive

the run-time system of the necessary flexibility during SM partition, as compute intensive

applications would throttle applications with low SM requirements. A higher threshold

would harm the overall system throughput as compute intensive applications would allow

high margins of IPC drop, thus reducing overall system throughput. Additionally, the

IPC per kernel of A is collected. For every kernel x of A, we keep the following

information: Aix(IPC), i ∈ [5, ν].

5.2.2 Run-time resource allocation on the GPU

The proposed GPU run-time resource management provides improved performance

and minimizes the aging divergence of SMs. The steps that are executed during this

phase are the following: i) application pairing, ii) SM partitioning, iii) allocation of SMs,

and iv) kernel level tuning.

Application pairing

Assuming a queue of applications, the first step of the run-time methodology is to

decide how to pair applications in order to increase the GPU throughput. According

to [29], applications can be classified in four categories based on their behavior. We use

the information obtained off-line, IPC,MB,L2 → L1 and MCR, as well as a modified
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version of the ILP methodology presented in [29] to pair the applications of the queue, in

a way that will minimize slowdown during concurrent execution. Given an initial queue of

applications, the resource manager pairs the applications and selects for execution the

pair with the lowest slowdown. During this stage, the composition of the queues, in terms

of applications, as well as the arrival time or sequence of applications is not known a

priori. More applications may arrive to the queue while a pair of applications is executing

on the GPU. Once the pair finishes (non-preemptive execution), the algorithm

recalculates the best matching of applications and pushes to the GPU the pair with the

lowest slowdown. Minimizing slowdown serves a double purpose. First, it leads to higher

overall GPU throughput, and second, it has less contribution to aging since lower

slowdown is equivalent to less activity of the SMs.

SM partitioning

After deciding the application matching, the run-time resource allocator decides,

based on the profiling information, how many SMs will be allocated by each application.

The goals of this step are the following: i) to provide high GPU throughput, and ii) to

minimize activity divergence among SMs in order to balance aging effects. Having to

partition ntot SMs between two applications A and B, we distinguish the following cases:

• if νA + νB ≤ ntot, we provide each application with the SMs of its ideal configuration.

In case νA + νB < ntot, the surplus of SMs will be clock-gated after SM allocation.

• if νA + νB > ntot, we decide to favor the application with higher ideal IPC. This

choice is based on Observations 1, 2 and the fact that the application with higher

IPC will contribute to higher overall throughput. In this scenario we can distinguish

the following cases. Assume that IPCν
A > IPCν

B.

– If νA + κB ≤ ntot, we assign νA SMs to application A and nB SMs to

application B, where κB ≤ nB < νB and nB + νA = ntot.
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– If κB + νA > ntot, we check whether κA + κB ≤ ntot. If the last inequality is

satisfied, we proceed with the allocation. If not, application B requests fewer

SMs, down to the limit of 5. If again 5 + κA > ntot, then application A requests

fewer SMs, until both applications request a sum of fewer than ntot SMs.

By prioritizing the needs of the application with higher ideal IPC, we achieve better

distribution of the activity factor among the SMs (Observation 2 ), and we avoid small

regions of very high activity. Such regions would lead to fast, regional aging. We avoid

system performance degradation due to concurrent execution i) by using a modified

version of the pairing methodology presented in [29] that minimizes system slowdown,

and ii) by favoring the needs of the application with higher ideal IPC. Even if an

application of a pair is executed on 5 SMs, system throughput will remain high.

Allocation of SMs

Once the number of SMs per application is decided, in this step we determine

exactly which SMs will be tied to each application. During this process, the ntot SMs are

ordered according to their aging condition. We estimate the aging of a SM, based on

Equation 4.1, by keeping track of their activity factor, their operating frequency as

determined by PV, and their temperature. Specifically, temperature contributes in the

calculation of Equations 4.5 and 4.6, which in their turn contribute in Equations 4.2

and 4.7 that calculate the threshold voltage change caused by NBTI and HCI phenomena

respectively. The SMs with lower relative delay are less aged, compared to SMs with

higher relative delay. We assume that application A allocates nA SMs, application B nB

SMs, and AcF nA
A > AcF nB

B . The inequality states that the average activity factor, of

application A for nA SMs, is greater than the corresponding average activity factor for B,

configured with nB SMs. After the SMs are ordered according to their aging condition,

the most aged SMs will be given to the application that demonstrated lower activity
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factor during profiling. In our example, the nB most aged SMs will be given to application

B. If nA + nB is less than the total number of SMs, the remaining SMs are clock-gated.

The application with higher activity factor will benefit by allocating the less aged

SMs both in terms of performance and aging balancing. According to the correlation

observed from Figures 1.2, 5.2, applications with high activity factor demonstrate also

high IPC. Less aged SMs function in higher frequencies. Thus, the application with

higher activity factor will utilize them more efficiently. Furthermore, the less aged SMs

will be more active and as a result their activity factor will increase, leading to aging

balance among SMs.

Our approach provides higher throughput while balancing aging comparing to [53],

which considers only the variation of each SM and assigns the SMs with higher frequency

to the application with higher IPC. Even though SMs with higher frequency benefit the

application with high IPC, the nominal frequencies suffer from fluctuations due to aging.

As a result, it is more accurate to order SMs according to their aging, considering also

their initial PV.

Kernel level tuning

In this step, we present a fine-grain kernel-based tuning. First, we decide whether to

clock-gate SMs that are already assigned to an application. Second, we reorder the SMs

allocated by an application, thus achieving better distribution of aging.

If a kernel does not contribute to high application IPC, we clock-gate SMs during its

execution so as to reduce the activity of the SMs, without sacrificing significant

performance. Before a kernel is launched, its IPC is compared to the IPC of the

application. The decision regarding whether and how many SMs will be clock-gated is

taken by the following statement. For a kernel x, of application A, with nA SMs

allocated, if z · IPCnA
x ≤ IPCnA

A , z ∈ N, clock-gate the greatest number of SMs µ,

satisfying 5 ≤ µ < nA and IPCµ
x ≥ p · IPCnA

x , p ∈ Q ∧ p ∈ (0, 1). With the
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aforementioned statement, we clock-gate SMs only if the kernel has IPC at least z× lower

than the IPC of the application. Additionally, we clock-gate as many SMs as possible,

without sacrificing more than 1− p of the kernel’s IPC achieved with nA SMs.

Furthermore, before executing each kernel, we order the application SMs based on

their aging. This ordering is driven by SM activity, frequency and temperature. This

allows for finer balancing of aging, given that some SMs can be clock-gated during certain

kernels. Thus, we take full advantage of clock-gating by distributing aging among SMs as

equally as possible.

As a closing remark, the proposed methodology reduces aging divergence on SMs

regardless of the input of the application. The scope of the proposed methodology focuses

on SMs as the fundamental component block. We need to mention that focusing on the

SM level does not allow us to consider circuit inputs at the gate level. For that reason, we

adopted the model from [34] that estimates aging at the SM level. As previous research

works have shown, this aging model, which works on component blocks, achieves an

adequate aging estimation for the SMs [36, 37, 38, 85]. However, the resource allocator

can handle different inputs for the applications by updating the activity factor of SMs in

frequent intervals and ordering SMs according to their relative delay. Consequently, even

if an application changes behavior due to a different input, the proposed methodology will

adapt and balance aging among the SMs.

5.3 EVALUATION

To validate our methodology, we performed extensive simulation experiments using a

modified version of GPGPU-sim [82] that supports concurrent application execution, and

Rodinia [9] benchmarks as high performance parallel applications. We used the

GPUWattch [83] simulator to acquire power measurements. The power measurements

together with the GPU floor-plan are given as input to HotSpot [84], which outputs the

temperature of the GPU. The experimental GPU set up is described in Table 5.2.
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Table 5.2: Experimental set up

GPU Architecture

# of SMs 60 Core frequency 700MHz
Warps per SM 48 Blocks per SM 8
Shared Memory 48kB L1 Data cache 16kB per SM
L1 Instr. cache 2kB per SM L2 cache 768kB
Warp scheduler GTO [81]

In order to evaluate the proposed methodology, we created five queues with incoming

applications based on Rodinia benchmarks. The benchmarks were profiled off-line to

extract the necessary characterization information. Profiling is a process that can be

completed in a few hours utilizing the GPGPU-Sim simulator. Following the classification

in [29], the queues are:

• M-oriented workload: Memory-bounded applications dominate the queue.

• MC-oriented workload: Memory-cache applications dominate the queue.

• C-oriented workload: Cache-bounded applications dominate the queue.

• A-oriented workload: Compute intensive applications dominate the queue.

• Equal distribution: The queue contains equal number of applications from the 4

classes.

For a queue to be characterized as oriented towards a specific class, at least 60% of the

applications of the queue need to belong to the certain class. To incorporate PV into our

experiments, we produced 50 PV maps. The results we present are an average value of

the throughput, relative delay, and activity factor for the 50 PV maps.

We compare the proposed methodology to the following ones:

• a First Come First Served (FCFS) approach that co-executes applications based on

their arrival order and distributes the SMs equally between applications.
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Figure 5.3: GPU throughput comparison per queue [88]

• the ILP-SMRA method presented in [29]. This approach follows a classification

scheme for the selection of the pairs and initially divides the SMs equally among the

applications. At run-time, SMs are reallocated in order to maximize the GPU

throughput.

• an Aging aware method based on [38]. This method focuses on optimizing aging

and power of the GPU. It is initially designed for one application being executed on

the GPU, but to tune it for two concurrent applications, we profiled each

application for up to 30 SMs. Then, we paired the applications on a FCFS way and

we divided the SMs equally, 30 for each application. Each application used only the

necessary number of SMs to achieve the maximum IPC possible, clock-gating the

rest of the SMs.

• a Performance/Aging aware method presented in [8]. This methodology improves

performance while it tries to keep aging divergence of SMs low. Nevertheless, this

methodology does not consider PV effects and does not make SM allocation

decisions based on kernel characteristics.

Figure 5.3 presents the GPU throughput comparison for the five queues. For each
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queue, the throughput is normalized based on the FCFS method. An initial comment is

that the proposed method always outweighs the FCFS and the Aging aware methods in

terms of performance. This is expected as the latter methods do not emphasize on

improving performance. The proposed method achieves up to 30% higher GPU

throughput compared to the FCFS method, and up to 27% higher throughput compared

to the Aging aware method. Comparing to ILP-SMRA, for the MC and C queues, the

proposed method achieves 6% lower throughput at the worst-case. However, it achieves

up to 16% higher throughput for the other three queues. The improved performance of

the proposed algorithm comparing to ILP-SMRA can be explained by the allocation

method we follow. The proposed method utilizes profiling information to partition SMs in

a way that favors applications with high IPC. In contrast, ILP-SMRA starts by

partitioning equally SMs and re-adjusts them at run-time. We argue that precious time

and throughput can be lost until the re-allocation algorithm decides to transfer SMs.

Additionally, to transfer a SM, all currently running threads must finish their task. This

limitation delays scheduling of future threads, thus under-utilizing SMs. The proposed

method outperforms the Performance/Aging aware method for four out of the five

queues. This is expected as the kernel level optimization of the proposed method yields

improved usage of SMs.
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Figure 5.4 presents information about IPC per application used in the experiments.

The upper sub-figure shows the normalized IPC. We first collect the IPC per application

for all the pairs that the application participated. Then, we calculate the average

application IPC and normalize it by the ideal IPC for that application. We notice that for

certain applications, e.g., BFS2 and LUD, the proposed methodology achieves lower IPC

than the ideal configuration and the compared methods. As it has already been

mentioned, the presented methodology favors applications with high inherent IPC during

the SM allocation. As a consequence, applications that achieve low ideal IPC are

disadvantaged during allocation. Thus, these applications demonstrate lower IPC than

with the compared methodologies. Absolute values of application IPC are illustrated in

the lower sub-figure of Figure 5.4. We notice that, with the exception of BP and LPS, for

all the applications with ideal IPC higher than 500, the proposed methodology achieves

higher average IPC than the compared methodologies. From the lower sub-figure, we can

also notice the effect of contention caused by concurrent application execution. There is

no application for which any methodology achieves equal or greater IPC than the ideal.

Figure 5.5 depicts the relative delay caused on SMs, projected in a period of 3 years.

To calculate the relative delay, we utilized the average activity factor per SM, for the 50

PV maps, after the execution of a whole queue. The bold lines of each sub-figure

correspond to the relative delay caused by the average activity factor among the 60 SMs

±standard deviation. In other words, each sub-figure demonstrates the span of relative

delay among the SMs of a GPU. The smaller the colored area, the more uniformly

distributed the aging is among SMs. Observing Figure 5.5 we can see that the proposed

methodology demonstrates significantly more balanced aging, compared to FCFS and

ILP-SMRA methods. This is expected as the latter two methods do not consider

equalizing aging distribution during execution. Thus, the SMs of the GPU can

demonstrate high divergence in terms of aging. On the best case, the proposed

methodology achieves 36× lower standard deviation of relative delay than the FCFS
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Figure 5.5: Relative delay projection for a period of three years [88]

method (M-queue) and 34× lower standard deviation of relative delay than the

ILP-SMRA method (M-queue). Comparing to the Aging aware method, the proposed

methodology demonstrates 1.74× higher standard deviation of relative delay for the

C-queue, but for the M-queue the proposed methodology achieves 5.9× lower standard

deviation. This happens as the proposed methodology reorders SMs at a finer-level and

dynamically clock-gates SMs at kernel level in order to decrease aging divergence. Even

though the proposed method demonstrates higher worst-case aging than the Aging aware

method for three queues, it generally achieves lower aging divergence. Higher worst-case

aging is a result of higher performance that the proposed method achieves compared to
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the Aging aware method, as high activity factors are coupled with high performance.

Finally, compared to the Performance/Aging aware method, the proposed method

achieves lower relative delay divergence for three out of the five queues. For the two

queues that the proposed method demonstrates higher divergence, it does not exceed 50%

than the relative delay divergence of the former method.

Figure 5.6 depicts the activity factor of all the SMs on the GPU, and we can observe

the activity divergence of SMs. The proposed methodology distributes activity factor in a

more balanced way among SMs, comparing to the other methodologies. Balanced activity

for the SMs will lead to balanced aging for the GPU, as duty cycle and activity factor are

parameters of the aging model, Equations 4.2 and 4.7. The proposed methodology

achieves balanced activity by ordering and allocating SMs both at the application and at
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the kernel level. We also observe that in certain cases, e.g., A queue, the SMs at the

proposed methodology demonstrate higher average activity factor. This is a result of the

high throughput that the proposed methodology achieves for these cases.

5.4 SUMMARIZING

In this chapter we presented an SM allocation methodology for applications that

execute concurrently on GPUs. The methodology intents to improve system throughput

while balancing aging among the SMs. The experiments we conducted demonstrate that

the methodology achieves its goals by improving performance and keeping aging balanced

among the SMs. Compared to other SM allocation policies, the developed policy achieves

higher throughput and decreases aging divergence for the SMs while it also takes into

consideration PV on the GPU.
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CHAPTER 6

WEIGHT-ORIENTED APPROXIMATION FOR ENERGY-EFFICIENT

NEURAL NETWORK INFERENCE ACCELERATORS

In this chapter we present a time-efficient methodology that maps NN weights to

approximation levels, during inference. Provided a hardware accelerator that consists of

approximate multipliers, the presented weight-oriented methodology decides which

approximation level to use, in order to achieve higher energy gains, compared to an

inference from exact hardware.

6.1 PRELIMINARIES

The error tolerant nature of NN inference presents a potential candidate for

approximate computation. Specifically, the use of approximate multipliers allows energy

savings as a trade-off of accuracy. Accuracy during NN inference is highly input

dependent and, as NNs become deeper, the error induced by approximate multiplications

has more impact on the inference accuracy. Particularly, for deep NNs static approximate

multipliers fail to meet tight accuracy constraints. To this end, a methodology that

efficiently utilizes approximate multipliers while keeping inference accuracy high, can

significantly improve the energy efficiency of deep NNs.

6.2 METHODOLOGY

Figure 6.1 depicts an overview of our proposed methodology. Given a NN-oriented

approximate multiplier design, we perform a weight-to-approximation mode mapping

(Section 6.2.1). Specifically, we consider an inference accelerator similar to Google

TPU [89], that employs a systolic MAC array and we replace the exact multipliers with

the approximate multiplier. However, note that our methodology is not bound to a

specific accelerator architecture. Already trained NNs are quantized to 8-bit fixed point

79



NN-oriented approximate
multiplier design

Variance-based
quality function

Circuit
simulation

Netlist to
graph

Power
analysis

Generate .c
function

Accuracy drop
threshold

Final mapping

Weight mapping

Trained NN

Quantize

Override
multiplication

operator

Extract layer
significance

Fine-grain weight
mapping

Threshold
achieved
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(both weights and activations) to enable their execution on the considered accelerator.

Then, we override the exact multiplication with a C-description of the approximate

multiplier and we extract the significance of each layer. Based on an accuracy drop

threshold we perform a fine-grain weight mapping, rather than layer-based, in order to

extract the final run-time configurations.

Specifically, the proposed methodology considers an approximate multiplier with

three accuracy levels. The multiplier uses a 2-bit input control signal to select the desired

accuracy level. By using different control signals the multiplier can achieve multiple
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varying accuracy levels [55].

6.2.1 Weight-Oriented Mapping

The proposed methodology focuses on mapping the different approximation modes

based on the weight values of the NN. Specifically, given an accuracy drop threshold, the

methodology decides which approximation mode will be used for each weight value, for

each layer of the NN. The mapping is such that the final accuracy of the NN during

inference satisfies the error threshold, and the energy consumption is minimized.

This mapping problem is very challenging due to its high complexity. Modern NNs

employ tens to hundreds convolutional layers consisting of thousands to millions of

different weight values. Taking also into consideration the different approximate modes of

the given multiplier, an exhaustive exploration is infeasible. In an attempt to reduce the

search time and space, previous approaches [13] utilize evolutionary algorithms and

perform a layer-oriented mapping. However, such solutions try to solve the problem in a

stochastic way being very time consuming in order to satisfy a specific accuracy threshold.

In order to find an efficient weight-to-approximate mode mapping and reduce the

number of evaluated solutions, we employ a four-step methodology based on the concepts

of layer significance and weight magnitude [91, 92]. The overview of the methodology can

be seen in Figure 6.2. The significance of a layer is determined based on how much

accuracy drop we have during inference if all the multiplications of that layer were

executed with most aggressive approximate mode. The idea behind weight magnitude is

that weights with small absolute value contribute little to the final result [93]. Thus, they

can tolerate more error and can be mapped to the mode with the highest approximation.

This concept has also been used in weight pruning where any value less than a threshold

is set to zero. The four steps of the methodology are presented in detail in the following

subsections. Additionally, Steps 1 and 2 are also presented in Algorithm 2 and Steps 3

and 4 in Algorithm 3. Before we present the methodology in detail we clarify that LVL0
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represents the exact mode of the multiplier, calculations with this mode yield exact

results. LVL1 represents an intermediate level of approximation, there are energy gains

when using this mode, together with a small accuracy loss. Finally, LVL2 represents the

most aggressive level of approximation. The energy gains in this mode are the greatest for

the multiplier. As a result though, there are high inaccuracies in the result, due to the

high approximation level.

Step 1 - Determine layer significance: The focus of this step is to extract and

82



Algorithm 2 Significance extraction and coarse mapping

1: function Layer Significance(NN, dSet, convLayers, LVL0, LVL2)
2: set all convLayers to LV L0
3: (exactAccuracy, multNumberPerLayer)← execute(NN, dSet)
4: i← 0
5: for layer in convLayers do
6: set layer to LV L2
7: accuracy ← execute(NN, dSet)
8: significanceList[i]← (layer, (exactAccuracy − accuracy)÷ exactAccuracy)
9: set layer to LV L0

10: i = i+ 1

11: sort significanceList
12: return significanceList

13:

14: function Approximate Layer Mapping(NN, dSet, significanceList, LVL0, LVL2,
threshold)

15: for layer, in significanceList do
16: set layer to LV L2
17: accuracy ← executeWBias(NN, dSet)
18: if accuracy ≥ threshold then
19: approximateLayer ← layer
20: else
21: set layer to LV L0
22: break

return approximateLayer

store the significance of each convolution layer. Initially, we map all weights of all the

convolution layers to LVL0. The NN is executed and the accuracy is recorded along with

the number of multiplications performed in each convolution layer. The accuracy of the

network, using LVL0 for all the layers, is necessary in order to calculate the layer

significance. Additionally, the number of multiplications per layer is useful in cases where

the significance of multiple layers is the same. Moving forward, we map the weights of

each convolutional layer separately, one at a time, to LVL2, which is the most aggressive

approximate mode and yields higher energy gains. We record the accuracy achieved while

a whole layer (L) was approximated and we calculate the significance (S) of this layer,

using the metric

SL =
ACCall layers→LV L0 − ACCL→LV L2

ACCall layers→LV L0
(6.1)
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Layers with low significance value are not considered important as they do not affect the

accuracy of the NN. When the significance of all the convolution layers is extracted, we

sort them based on the calculated values in an ascending order. In case multiple layers

demonstrate the same significance value, the parity is broken by considering the number

of multiplications in the layer. Layers with fewer multiplications are considered more

significant. As an example, Figure 6.3 shows the accuracy of each separate convolutional

layer for ResNest-20 [94] and ResNet-56 [94] NNs, under the dataset CIFAR-10 [95], while

mapped under LVL1 and LVL2 approximate modes. We can see that some layers are more

significant than others, e.g., layer 7 of ResNet-20 and layer 21 of ResNet-56, remarkably

affecting the accuracy of the NN. The last point in x-axis corresponds to the case where

all layers are approximated.

Step 2 - Map entire convolution layers to LVL2: This step aims at mapping
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multiple layers at the same time to LVL2. The reasoning behind this design choice is that

layers of lower significance can potentially be configured entirely to the most approximate

mode, thus yielding high energy gain without impeding high accuracy. Starting from the

least significant layer, we map the next most significant one from our list to LVL2. It is

important to mention that at this point we update the biases of the filters in order to

compensate the error induced by the employed approximate multiplications. After

recording the achieved accuracy during inference, we check whether the current

configuration satisfies the required threshold. If the threshold is met, the current layer is

saved as the last layer that can be entirely mapped to LVL2. In case that for a convolution

layer, the achieved accuracy fails to meet the required threshold, we stop the layer search

since it is expected that by adding more layers to the approximate configuration, accuracy

will only be reduced. At the end of this step, we have extracted the most significant layer

up to which we can configure entire layers to LVL2, while satisfying the required threshold.

Step 3 - Map ranges of weights per convolution layer to LVL2: The goal of

this step is to determine how weights per layer will be mapped to the various modes of

the approximate multiplier, for the layers that have not been entirely mapped to LVL2 in

the previous step. Specifically, we determine which ranges of weights will be mapped to

the LVL2 and which will mapped to LVL0. The range approach is an important aspect of

the proposed methodology. The intuition behind mapping specific ranges of weights per

layer to be multiplied approximately derives from the weight pruning based on

magnitude [91, 92]. Weight pruning based on magnitude relies on the concept of removing

neurons with weights of small magnitude, close to the value zero. The pruned NN results

in more compact representation without sacrificing significant levels of accuracy. The

developed approach takes advantage of the fact that certain weights do not affect the

overall accuracy, even if they are removed. Thus, we approximate the multiplication of

weights with small magnitude, close to zero, in an attempt to achieve energy gains. In

that way, even though approximate multiplications will insert error to the calculations,
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Algorithm 3 Approximate Weight Mapping

1: function Initial Weight Mapping(NN, dSet, approximateLayer, significanceList,
LVL0, threshold)

2: totLayers = len(significanceList)
3: i← 0
4: layer = significanceList[i][0]
5: while layer 6= approximateLayer do
6: i = i+ 1
7: layer = significanceList[i][0]

8: j = i+ 1
9: while j ≤ totLayers do

10: configs[j] = determine Config(NN, dSet,
significanceList, LV L0, threshold, j,
range1, range2, range3)

11: if configs[j] is NULL then
12: break
13: j = j + 1

return configs

14:

15: function Fine Weight Mapping(NN, dSet, approximateLayer, significanceList,
LVL0, threshold, weightConfigs)

16: totLayers = len(significanceList)
17: i← 0
18: layer = significanceList[i][0]
19: while layer 6= approximateLayer do
20: i = i+ 1
21: layer = significanceList[i][0]

22: j = i+ 1
23: while weightConfigs[significanceList[j][0]] not NULL do
24: j = j + 1

25: k = j
26: while k ≤ totLayers do
27: configs[k] = determine Config(NN, dSet,

significanceList, LV L0, threshold, k,
range4, range5, range6)

28: if configs[k] is NULL then
29: break
30: k = k + 1

return configs

the overall accuracy will not be significantly impacted. Additionally, if we map a weight

to an approximate mode, the more it appears in a layer, the higher the probability of

deteriorating overall accuracy of the NN. The ranges we use depend on the introduced
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31:

32: function Determine Config(NN, dSet, significanceList, LVL0, thr, lr, rangeA,
rangeB, rangeC)

33: set layer = significanceList[lr][0] to rangeA
34: accuracy ← executeWBias(NN, dSet)
35: if accuracy < thr then
36: set layer = significanceList[lr][0] to rangeB
37: accuracy ← executeWBias(NN, dSet)
38: if accuracy < thr then
39: set layer = significanceList[lr][0] to rangeC
40: accuracy ← executeWBias(NN, dSet)
41: if accuracy < thr then
42: set layer = significanceList[lr][0] to LV L0

return NULL
return rangeC

return rangeB

return rangeA

error of LVL1 and LVL2. For the LVL2, the range of weights is more conservative,

compared to LVL1, due to the higher error. After the 8-bit quantization and based on the

maximum accuracy drop threshold that we set for our experiments/inference, we

experimentally derived the weight value ranges to map to LVL2 as range3 = 0± 101,

range2 = 0± 5 and range1 = 0. We start exploring configurations using a wider weight

range, range3, and we gradually move to more narrow ranges, range1, until the accuracy

threshold is met. Using LVL2 on weights outside range3 had a strong effect on the

accuracy and for that reason they were omitted. Once the configurations that satisfy the

accuracy threshold have been found, the weight mapping is performed and the biases are

updated for the respective mapping. The bias correction has to be performed every time

we update the weight mapping in a particular filter.

Step 4 - Map ranges of weights per convolution layer to LVL1: The goal of

this final step is to find which of the remaining weights, that are still assigned to LVL0,

can be mapped to LVL1. Similarly to the previous step, we create ranges of weight values.

1Initially, the weights had float values in the range of [−1, 1]. Thus, the value of 0 depends on the
applied quantization. For example, for 8-bit quantization in [−128, 127], 0 = 010, while for quantization in
[0, 255], 0 = 12810.
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Since LVL1 introduces smaller error than LVL2, the NN can tolerate more weights to be

approximated per layer. Thus, the range of the weight values that we search in this step

is greater. Specifically, given the maximum accuracy drop threshold set, we have two

additional ranges for LVL1 range5 = 0± 30 and range4 = 0± 20. We start exploring

configurations using a wide range (range5), and we gradually move to more narrow

ranges until the accuracy threshold is met. Although the ranges in Steps 3 and 4 are

overlapping, if a weight is mapped in Step 3, then it is not considered in Step 4. Again,

each time a weight mapping is performed we update the biases.

Our experimental analysis showed that, for all the examined NNs, the weights’

values are distributed around 0. Hence, our range-based approach enables identifying a

large number of weights to be assigned to an approximate mode and thus, boosts the

energy savings. Nevertheless, by just increasing the size of the examined ranges we can

also cover cases that the weights are not concentrated around 0. Finally, note that our

proposed framework (steps 1-4) needs to be executed only once at design time. After Step

4, for each weight at each layer the corresponding accuracy level of the approximate

reconfigurable multiplier (e.g., LVL0, LVL1, or LVL2) is extracted and the biases are

updated. Then, during run-time inference, the extracted accuracy level is selected for

each approximate multiplier of the NN accelerator.

6.3 EVALUATION

In order to test the effectiveness of the proposed fine-grain weight mapping, we

evaluated our framework on the ResNet-20, ResNet-32, ResNet-44, ResNet-56 [94], and

MobilNet-v2 [96] neural networks. For the evaluation, we utilized four datasets

CIFAR-10 [95], CIFAR-100 [95], GTSRB [97], and LISA [98]. In total, our framework is

evaluated against 20 different models. Initially, all NNs were trained on the

aforementioned datasets using the Tensorflow machine learning library. Then, the NNs

were frozen and quantized to 8-bit. In order to perform the weight mapping, we overrode
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the convolution layers of the quantized networks and replaced the exact multiplication

function with software descriptions to emulate the results of an approximate multiplier.

Figures 6.4-6.8 depict the results of our experiments in terms of energy savings for the

multiplication operations and achieved accuracy during inference. The methods used for

the quantitative evaluation of the presented framework are:

1) Accurate: This method is the baseline of our experiments, utilizing exact multipliers

in all layers;

2) ALWANN [13]: This method utilizes the fixed approximate multipliers of the

state-of-the-art library EvoApproxLib [54] and applies weight-tuning to minimize the

Mean Absolute Error incurred by using approximate multipliers;

3) RETSINA [55]: This method follows a layer-oriented weight mapping (i.e., the

multiplications of each convolution layer are performed at the same accuracy level but

different layers might use different accuracy level) utilizing MRE-based approximate

reconfigurable multipliers with three modes: exact, 0.5% MRE, and 1.5% MRE;

4) Proposed layer-wise w/ Bias: This method utilizes an approximate multiplier, namely

LVRM, with three approximation modes, presented in [90], and applies error

correction through bias update. However it follows a layer-oriented weight mapping;

5) Proposed fine weight mapping w/o bias: This method utilizes the LVRM multiplier

and the proposed fine-grain weight mapping (Section 6.2.1), without bias update;

6) Proposed fine weight mapping w/ bias: This is our proposed method that utilizes the

LVRM multiplier, fine-grain weight mapping, and bias update.

At this point it is important to mention that, in our framework, we selected four

values for the accuracy drop threshold, 0.5%, 0.7%, 1.0%, and 2.0%. Additionally, in

Figures 6.4-6.8 all configurations of (2)-(4) that resulted in accuracy loss up to 3% are
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also depicted. Accuracy loss of more than 3% is not acceptable based on our threshold

values. Note that, since different layers feature different significance, in ALWANN [13] a

heterogeneous architecture is proposed that comprises several fixed approximate

multiplier types of [54]. In order, to achieve reconfiguration at run-time, each convolution

layer uses a specific multiplier type and the rest are power-gated. However, this approach

leads to highly increased area and to high loss in throughput due to the underutilized,

power-gated hardware. Moreover, to achieve high accuracy a different architecture is

generated for each considered NN, i.e., approximate multiplier of multiple types are

selected. On the other hand, in this work, we target a generic homogeneous inference

accelerator, similar to [89] and [5]. This enables us to achieve high throughput and to be

NN independent, i.e., any convolutional NN can be executed on the proposed

approximate reconfigurable accelerator. Therefore, for the fairness of the evaluation, we

consider a homogeneous architecture for ALWANN [13] and thus, the same approximate

multiplier type is used in all the convolution layers. Nevertheless, we consider all the 32

Pareto optimal approximate multipliers of [54]. In other words every design point in

Figures 6.4-6.8 regarding ALWANN uses a different approximate multiplier from [54]. All

the examined approximate multipliers are synthesized at the critical path delay of the

exact multiplier [54] and thus, all the reported energy gains originate from the achieved

power reduction.

Figure 6.4 compares different configurations of the ResNet-20 NN for the four

selected datasets. As an overall observation, we see that the proposed methodology always

produces configurations with the highest energy gain, within the examined accuracy loss

margin. Specifically, for the CIFAR-10 dataset, the accurate configuration achieves 89.1%

accuracy. The proposed framework achieves up to 17.5% energy gain for an accuracy loss

of 1.7%. The configuration with closest energy gain, for the 2.0% accuracy loss margin,

comes from the “Proposed layer-wise w/ Bias” method with 14.7% energy gain for an

accuracy loss of 1.3%. Regarding the CIFAR-100 dataset, the proposed framework
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Figure 6.4: Accuracy and energy savings of ResNet-20 under different methods that utilize
approximate multipliers

produces configurations with up to 17.2% energy gain with an accuracy loss of 1.7%.

Comparing methodologies ALWANN and RETSINA, they do not produce configurations

with greater energy gains than 10.2% and 4.2% respectively. For the GTSRB dataset, the

proposed framework produces configurations with 16.9% energy gain for an accuracy loss

of 0.5%, while in the same region of accuracy loss. The next best configurations

considering energy gains, for the GTSRB dataset, are produced by the “Proposed fine

weight mapping w/o bias” and the “Proposed layer-wise w/ Bias” methods, with energy

reduction 14.7% and 14.5% respectively. Again we observe that the proposed

methodology produces configurations with the highest energy gain, respecting the

accuracy thresholds that have been set. For the LISA dataset, the proposed methodology

achieves up to 20.1% energy gains. ALWANN, RETSINA, and the “Proposed fine weight

mapping w/o bias” cannot produce configurations that achieve more than 16.5% energy

gain, even by dropping accuracy lower than the proposed methodology. The “Proposed

layer-wise w/ Bias” performs very close to the proposed methodology, however achieving

1.1% lower energy gain. In addition, note that sometimes using approximate multipliers
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Figure 6.5: Accuracy and energy savings of ResNet-32 under different methods that utilize
approximate multipliers

yields higher accuracy than the accurate method [99, 13].

Figure 6.5 depicts the comparison of the different methods for the ResNet-32 NN.

For this network as well, we can see that the proposed approach finds solutions that

achieve the highest energy gains, while respecting the up to 2.0% accuracy drop

thresholds. Particularly, for the CIFAR-10 dataset, the proposed framework achieves up

to 18.6% energy gain for an accuracy loss of 1.8%. The configuration with the closest

energy gain is again the “Proposed layer-wise w/ Bias” with 15.3% energy gain for an

accuracy loss of 1.7%. Regarding the CIFAR-100 dataset, the proposed method produces

configurations that reduce energy consumption by 18.0% with an accuracy loss of 1.9%.

ALWANN and RETSINA do not produce configurations with greater energy gains than

10.2% and 4.2% respectively. For the GTSRB and LISA datasets, the behavior is similar

as before, the proposed methodology achieves the best trade-offs between energy

consumption and accuracy.

Figures 6.6-6.7 depict the comparison of the different methods for the remaining two

ResNets, ResNet-44 and ResNet-56 respectively. Similarly, the proposed approach finds
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Figure 6.6: Accuracy and energy savings of ResNet-44 under different methods that utilize
approximate multipliers
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Figure 6.7: Accuracy and energy savings of ResNet-56 under different methods that utilize
approximate multipliers
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Figure 6.8: Accuracy and energy savings of MobileNet-v2 under different methods that
utilize approximate multipliers

solutions that achieve the highest energy gains, while respecting the accuracy drop

thresholds. Particularly, for the ResNet-44 NN the proposed framework achieves up to

16.2%, 16.7%, 16.4%, and 19.7% energy gains for the four selected datasets, while

respecting the accuracy loss margin of 2.0%. For the ResNet-56, the respective gains are

17.0%, 16.5%, 17.5%, and 21.8%.

Finally, Figure 6.8 depicts the results for the MobileNet-v2 NN, which is designed for

next generation mobile devices and for that reason reducing energy consumption is very

important. For the CIFAR-10 dataset, the proposed framework achieves up to 19.3%

energy gain for an accuracy loss of 1.2%. It is noteworthy that, for this dataset, all

methods that utilize the LVRM approximate multiplier have increased energy savings.

For the CIFAR-100 dataset, the proposed framework produces configurations with up to

19.1% energy gain with an accuracy loss of 1.7%. Regarding the GTSRB dataset, we can

see that the “Proposed layer-wise w/ Bias” method has the best energy consumption.

However, that comes with the cost of dropping accuracy more than 2.0%, i.e., the

threshold we set to our framework. Finally, ALWANN, RETSINA, and the “Proposed
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Table 6.1: Average energy gain comparison

Method
Average energy gain

0.5% thr. 2.0% thr.
ALWANN [13] 8.5% 10.4%
RETSINA [55] 4.0% 5.9%
Proposed Layer-Wise w/ Bias 15.4% 16.5%
Proposed Fine Weight Mapping w/o Bias 10.3% 14.8%
Proposed Fine Weight Mapping w/ Bias 17.6% 18.2%

fine weight mapping w/o bias” cannot produce configurations that achieve more than

15.7% energy gain, even by dropping the accuracy lower than the proposed methodology.

The layer-wise exploration can produce slightly more accurate configurations for the LISA

dataset, achieving 0.3% higher accuracy but consuming 0.1% more energy than the most

accurate configuration of the proposed methodology.

As an overall comparison of the five methods, we provide Table 6.1. This table

depicts the average energy gain for each method, across all the examined NNs on all the

datasets. We provide the average energy gain for the configurations that achieved the

0.5% accuracy error threshold, as well as the average energy gain per methodology for the

configurations that achieved the 2.0% accuracy error threshold. Overall, based on the

performed evaluations we reach the following conclusions:

1) Even though both RETSINA and “Proposed layer-wise w/ Bias” are layer-oriented

methods, the latter delivers better solutions due to the utilization of the LVRM

multiplier and the error correction through the bias update;

2) the proposed method (“Proposed fine weight mapping w/ Bias”) is better than

“Proposed layer-wise w/ Bias” as the layer-oriented approaches are very coarse grain

and can miss optimal solutions;

3) the proposed method is better than “Proposed fine weight mapping w/o Bias” as it

was able to identify different configurations that satisfy the accuracy thresholds while

consuming lower energy, by taking advantage of the bias correction method, thus
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allowing to perform more approximate multiplications; and

4) even for deep NNs, where the effect of approximate multiplications is difficult to

quantify, the proposed method achieved considerable energy gains, for example 17.2%

on average for the ResNet-56 NN. The proposed fine-grained weight-oriented approach

is not affected by the NN size and efficiently identifies the proper approximations by

mapping weights to approximate modes. The latter is also verified by the fact that for

the tight accuracy loss thresholds examined, compared to the other methods, the

proposed framework delivers more consistent results as it features the highest energy

gains along with the lowest energy reduction variance.

6.4 SUMMARIZING

In this chapter we presented a methodology that maps approximation modes of a

multiplier to NN weights. During inference, approximate calculations can be used to

reduce energy consumption, with a trade-off on accuracy. The presented methodology

achieves higher energy gains compared to state-of-the-art methodologies for inference on

approximate hardware accelerators, while it satisfies user defined accuracy loss thresholds.

To satisfy tight accuracy requirements, the proposed methodology explores mappings

based on weights per layer which is a finer level approach, compared to existing

approaches. By focusing the space exploration on specific weight ranges, the developed

framework delivers mapping configurations that achieve high energy gains without the

need of excessive run-time. As a result, the presented methodology is efficient and can

yield significant improvements for inferences on approximate multipliers.
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CHAPTER 7

CONCLUSION

This dissertation is focused on improving performance while keeping track of various

trade-offs, for hardware-accelerated systems. In this chapter we will highlight the

characteristics of the developed methodologies, the results that we gathered from our

experiments, what can be achieved by using these methodologies, and future extensions

that we plan on researching.

7.1 MESSAGE-PASSING SYNCHRONIZATION FOR DISTRIBUTED

SHARED MEMORY ARCHITECTURES

In Chapter 3 we presented a synchronization mechanism for multi-core systems that

are connected via a mesh grid. Additionally, each core has a hardware accelerator

attached to it. The hardware accelerator provides DSM and can be programmed using

microcode. The DSM allows for data to be kept distributed thus, reducing the traffic in

the mesh. The microcoding capabilities allow the programmer to implement functions

that work on a lower level, bypassing the need for compilation by the core. As a result,

the accelerators can be programmed to implement utilities that remove execution burden

from the cores.

Synchronization is essential for multi-core systems as it guarantees data integrity

and provides deterministic behavior when needed. Nevertheless, on many-core systems,

an efficient synchronization mechanism is a non trivial task. As the number of cores on a

chip scales up, synchronization starts posing an important bottleneck on performance.

Traditional synchronization techniques do not scale well and limit performance gains on

many-core systems.

With our research, we contribute a synchronization mechanism that is based on a

client-server model. It leverages DSM and microcoding functionality on the accelerators to
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provide an efficient synchronization scheme. One of the cores plays the role of the server

and the rest of the cores are the clients. The developed mechanism works for traditional

data structures that demonstrate low levels of concurrency. Only the server has access to

the data structure, while the clients interact with the server via message requests.

The developed mechanism was evaluated by synchronizing accesses to a stack, queue,

deque and binary heap. As the experimental results demonstrate, it reduces the total

execution cycles even when 22 cores are used. Thus it provides higher performance than

the other synchronization models used. Additionally, the developed mechanism provides

fairness, as all the requests are processed by the server in an almost serial way. Finally,

the developed mechanism demonstrates valuable power gains. By minimizing the time

wasted on network transfers between the cores, as well as the idle time lost by cores, and

the lost time for spin-lock acquiring competition, the proposed mechanism achieves power

gains combined with higher performance.

To sum up, the presented synchronization mechanism is an efficient choice for

multi-core systems. It requires accelerators with DSM and microcoding capabilities

attached to the cores of a system. If the developed mechanism is used, it will provide

higher throughput for systems, fairness in execution and power gains. As a consequence,

the developed mechanism can be adopted by embedded systems too, as the power

constraint is of high importance for such systems.

7.2 KERNEL-BASED RESOURCE ALLOCATION FOR IMPROVING

GPU THROUGHPUT WHILE MINIMIZING THE ACTIVITY

DIVERGENCE OF SMS

In Chapter 4 we presented an SM allocation policy that considers the scenario of

single applications executing on the GPU. The allocation policy aims at improving

performance, and balancing aging among SMs. It provides a fine-grain approach by
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taking actions based on application metrics, as well as kernel level metrics.

The main idea behind the developed allocation methodology lies in the fact that

application performance can actually improve when less SMs are available to certain

applications. Exploratory experiments show that specific applications achieve higher

performance when a restricted number of SMs is available to them. The latter

observation allows higher performance while giving the potential to clock-gate unused

SMs. As a result of clock-gating, the option of distributing activity among SMs is

available. Equally distributed activity leads to balanced aging among SMs. High aging

divergence is an undesired condition since aging affects the life-span of a GPU as well as

its performance, heavily aged SMs function in lower frequencies.

The developed SM allocation methodology is based on application information

collected off-line. Before an application can be executed, we collect information about its

performance on the application level as well as at the kernel level. When the information

on all the applications is collected, execution can start. The initial step of the

methodology is to decide the exact SM configuration for each kernel of an application.

When the number of SMs per kernel is decided, specific SMs are allocated. The latter is

determined by the activity and aging condition of each SM. For kernels that do not utilize

all the available SMs, the methodology undertakes the task of clock-gating the idle SMs.

Finally, once the execution of a kernel is completed, the methodology is responsible for

updating the activity history of the SMs. Additionally, the allocation methodology is

responsible for monitoring the temperature of SMs, in order to derive accurate

estimations of aging from the aging estimator module.

Experimental results on NVIDIA Fermi and Tesla micro-architectures demonstrate

that the developed methodology achieves its goals. Specifically, on average it achieves

higher GPU throughput than the default approach of allocating all the available SMs to

each application. Furthermore, it achieves the best results of reducing aging and activity

divergence among the SMs, compared with other state-of-the-art SM allocation policies.
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Finally, the average power overhead is negligible, if we consider the important

performance gains that the methodology achieves.

To conclude, the developed SM allocation methodology provides a promising

solution. It can be used to improve GPU performance while introducing a small power

overhead. Simultaneously, it contains aging divergence in small ranges, leading to reduced

probability of hardware failure due to aging. The presented methodology can be used by

modern GPUs in order to enhance their performance. As a results, GPUs can become a

more prevalent option for execution acceleration.

7.3 PERFORMANCE- AND ACTIVITY-AWARE ALLOCATION FOR

CONCURRENT GPU APPLICATIONS

In Chapter 5 we presented an SM allocation policy for applications executing

concurrently on a GPU. The allocation policy consists of multiple steps and aims at

improving system performance. In addition to performance, the allocation mechanism

takes into consideration PV and the aging effects that occur during the life time of a GPU.

Until recently, GPU schedulers did not consider spatial multitasking. Even if

multiple applications were scheduled to SMs, at a given moment only a single application

was executing on the SMs. The rest of the scheduled applications were idle, waiting for

the executing application to finish or halt. That scheduling policy leaves resources

underutilized thus, limiting the improved performance that GPUs can offer.

The methodology we developed utilizes information collected about each application,

as well as PV information about the GPU. This information is collected only once, at a

stage before execution. During execution, the methodology decides which applications to

pair together for execution, how many SMs to allocate per application and which exact

SMs to allocate for each application, depending on the aging condition of the SMs.

Experimental results demonstrate that the developed methodology for concurrent

applications achieves higher GPU throughput for different application queues with
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multiple characteristics, compared to state-of-the-art SM allocation policies. Additionally,

it reduces the aging divergence of SMs, compared with other SM allocation policies.

All in all, the presented methodology can be used by GPUs that do not harness

spatial multitasking. It can provide high throughput, and at the same time minimize

aging divergence among SMs. This will lead to faster execution of applications that are

offloaded to GPUs, while at the same time it will prolong the usage life of the GPU. By

balancing aging among SMs, the probability of hardware failure is reduced and the

expected lifetime of GPUs is increased.

As a future extension, we would like to investigate ways to add a fine-grain approach

to the methodology. For example, after the pairs of applications are formed, SM

allocation can be tuned according to the kernel needs of each application. For kernels

that demonstrate low performance, application allocated SMs can be clock-gated, while

for high performing kernels, all the allocated SMs can be used, to boost performance.

7.4 WEIGHT-ORIENTED APPROXIMATION FOR

ENERGY-EFFICIENT NEURAL NETWORK INFERENCE

ACCELERATORS

In Chapter 6 we presented a framework that maps NN weights to approximate

modes on multipliers. The presented framework is time-efficient and platform

independent, meaning that it does not depend on a specific accelerator. Additionally, it

explores the use of multiple accuracy levels on the hardware accelerator. The produced

mappings improve energy efficiency during NN inference while achieving accuracy

comparable to inferences on exact hardware.

The increasing need for NN inference on edge devices and other resource restricted

hardware creates a subsequent need for energy efficient computations. Hardware

accelerators can leverage the principles of approximate computing to deliver computation
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at a lower energy cost. Albeit approximate computing can lower energy demands,

inference accuracy can not be sacrificed. Furthermore, the complexity of modern NNs

demands solutions that can scale and serve deep NN.

The proposed framework achieves the goals of energy efficiency while the user can

select how much accuracy can be sacrificed, compared to inferences calculated with exact

hardware. The framework applies a fine grain methodology and explores weight mappings

per NN layer. By exploring ranges of the most frequently used weights, it achieves higher

energy gains than other state-of-the-art methodologies, with an acceptable run time. An

additional advantage of the developed framework is that the NN does not require

retraining. The proposed framework was evaluated using multiple NNs, combined with

multiple datasets.

The presented methodology can be used by system designers of NPUs or other

hardware accelerators, targeting NN inferences. Using this methodology will yield energy

gains that can allow inferences to be computed on resource constrained devices, as well as

can enable the use of hardware accelerators on more domains that benefit from NN usage.
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