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AN ABSTRACT OF THE DISSERTATION OF

Beruwalage Lakshika Kumari Gunawardana, for the Doctor of Philosophy degree in Math-

ematics, presented on June 22, 2020, at Southern Illinois University Carbondale.

TITLE: LOCALLY PRIMITIVELY UNIVERSAL FORMS AND THE PRIMITIVE

COUNTERPART TO THE FIFTEEN THEOREM

MAJOR PROFESSOR: Dr. Andrew G. Earnest

An n-dimensional integral quadratic form over Z is a polynomial of the form f =

f(x1, · · · , xn) =
∑

16 i, j 6n aijxixj where aij = aji ∈ Z. An integral quadratic form is

called positive definite if f(α1, · · · , αn) > 0 whenever (0, . . . , 0) 6= (α1, · · · , αn) ∈ Zn. A

positive definite integral quadratic form is said to be almost (primitively) universal if it

(primitively) represents all but at most finitely many positive integers. In general, almost

primitive universality is a stronger property than almost universality. Main results of this

study are: every primitively universal form nontrivially represents zero over every ring

Zp of p-adic integers, and every almost universal form in five or more variables is almost

primitively universal. With use of these results and improving a result of G. Pall from

1946, we then provide criteria to determine whether a given integral quadratic lattice over

a ring Zp of p-adic integers is Zp-universal or primitively Zp-universal. The criteria are

stated explicitly in terms of a Jordan splitting of the lattice. As an application of the local

criteria, we complete the determination of the universal positive definite classically integral

quaternary quadratic forms that are almost primitively universal, which was initiated in

work of N. Budarina in 2010. Finally, with the use of these local results, we identify 28

positive definite classically integral primitively universal quaternary quadratic forms which

were not known previously, introducing a conjecture obtained by a numerical approach,

which could possibly be the primitive counterpart to the Fifteen Theorem proved by J.H.
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Conway and W.A. Schneeberger in 1993.
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INTRODUCTION

0.1 BACKGROUND AND HISTORY

A positive definite integral quadratic form f is said to be almost universal if it repre-

sents all sufficiently large positive integers; that is, if the excluded set of positive integers

not represented by f is finite. The systematic study of forms with this property was initi-

ated by Ramanujan over a century ago. In a groundbreaking 1917 paper [16], he determined

all diagonal quaternary forms of the special type ax2 + ay2 + az2 + dt2 which have this

property. Among them is the form x2 + y2 + z2 + 9t2 which represents all positive integers

with the single exception of the number 7. Halmos [11] subsequently determined all diag-

onal quaternary forms for which the excluded set consists of a single integer. There are 88

such forms ax2 + by2 + cz2 + dt2 with a ≤ b ≤ c ≤ d. It has now been proved that there

are exactly 73 pairs of positive integers that can occur as the excluded set of some positive

definite classically integral quadratic form [1].

More recently, Bochnak and Oh [3] completed the determination of effective criteria

whereby it can be decided whether or not a general (not necessarily diagonal) positive

definite quaternary integral quadratic form f is almost universal. It can be seen that a

necessary condition for f to be almost universal is that it be everywhere locally universal;

that is, that for every prime p, the equation f(x1, . . . , x4) = a is solvable over the ring Zp of

p-adic integers for every a ∈ Zp. Indeed, if this local condition does not hold for some prime

p, then f fails to represent an entire arithmetic progression of positive integers. However,

for quaternary forms f , these local conditions are not sufficient to guarantee that f is almost

universal. For example, the form f = x2 + y2 + 52z2 + 52t2 is everywhere locally universal

but fails to represent the integers of the type 3 · 22k, where k is any nonnegative integer.

Note that this f fails to represent zero nontrivially 2-adically; that is, it is anisotropic over

Z2. Bochnak and Oh refer to almost universal forms that are anisotropic for some prime

p as exceptional and prove that this terminology is indeed appropriate, in the sense that
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there are only finitely many equivalence classes of such forms. The 144 diagonal quaternary

forms of this type were essentially determined by Kloosterman [13].

In light of classical theorems of Tartakowsky [19] and Ross and Pall [17] (see [5,

Theorem 1.6, page 204]), the stronger condition that f primitively represents all integers

over Zp for all primes p does imply that f is almost universal; in fact, such a form primitively

represents all sufficiently large integers. A positive definite integral quadratic form f is said

to be almost primitively universal if for all sufficiently large positive integers a, there exist

x1, . . . , xn ∈ Z such that f(x1, . . . , xn) = a and g.c.d. (x1, . . . , xn) = 1. While it is clear from

the definitions that almost primitive universality implies almost universality, the converse

is not true. For example, the form f = x2 + y2 + z2 + 9t2 mentioned in the first paragraph

does not primitively represent the number 8 over Z2, and consequently does not primitively

represent any member of the arithmetic progression 8+64k over Z. So this form f is almost

universal, but not almost primitively universal.

As noted above, the identification of almost primitively universal forms reduces com-

pletely to a local problem; that is, a positive definite integral quadratic form is almost

primitively universal if and only if it is everywhere locally primitively universal. In the pa-

per [4], Budarina began a detailed investigation of the local problem of determining when

a form over Zp is primitively universal, and used these results to derive some criteria for

a form of odd discriminant to be almost primitively universal. For example, in the spirit

of the celebrated Fifteen Theorem of Conway and Schneeberger (see [6], [2]), Budarina

proved: a classically integral quadratic form in at least four variables with odd squarefree

discriminant is almost primitively universal if and only if it primitively represents the in-

tegers 1, 4 and 8. In this dissertation, we will extend this line of inquiry, revisiting and

generalizing the local investigations of Budarina. In the process, we produce new, more

elementary proofs of the main results in the paper [4], and extend the results there to

the case of forms of even discriminant. In contrast to Budarina’s arguments, which draw

heavily on Zhuravlev’s extensive general work on minimal indecomposable representations,
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as described in [20] and the references therein, our methods make use of nothing more

advanced than standard local theory as presented, for example, in the foundational books

of O’Meara [14] and Gerstein [10].

Some results which appear in Chapter 3 overlap with those obtained by Pall [15] and

Budarina [4], and in a recent paper of Xu and Zhang [20]. In such situations we have

chosen to include those results here for the sake of completeness and uniformity. Criteria

for Zp-universality, stated in the classical language of integral quadratic forms, can be found

in Lemma 1 of [15]. However that paper does not contain proofs for the assertions which

appear in that lemma, and results are stated explicitly only for those 2-adic forms in four

variables that admit a diagonal decomposition. Here we generalize Pall’s result to include

all 2-adic forms and forms of arbitrary rank, and provide complete proofs to cover all cases.

The corresponding problem of determining criteria for primitive Zp-universality was taken

up by Budarina in [4], but only partial results were obtained there for the 2-adic case.

Completing that work is the main goal of Chapter 3.

As an application of these local results, we complete work initiated by Budarina [4]

to determine which universal classically integral quaternary quadratic forms are almost

primitively universal. In this process we identify three primitively universal quaternary

forms which were not known previously.

0.2 STATEMENT AND SUMMARY OF MAIN RESULTS

We will state here some of the main results of this study in the traditional language of

quadratic forms, although the proofs will subsequently by presented from the more modern

geometric perspective of quadratic lattices. The first two theorems hold for arbitrary inte-

gral quadratic forms f =
∑

1≤i≤j≤n aijXiXj with aij ∈ Z, with no additional assumption

on the cross-term coefficients aij, i 6= j.

Theorem 0.2.1. If a positive definite integral quadratic form is almost primitively univer-

sal, then it non-trivially represents zero over Zp for all primes p.

3



Thus, no almost universal forms of the exceptional type of Bochnak and Oh can be

almost primitively universal. The next result shows that the distinction between almost

universality and almost primitive universality is no longer present when the number of

variables exceeds four.

Theorem 0.2.2. If a positive definite integral quadratic form in five or more variables is

almost universal, then it is almost primitively universal.

As an application of this theorem and our 2-adic computations, we prove the following

result, which extends Theorem 6 and Corollary 2 of [4]. For this statement, we restrict

to forms that are classically integral, in the sense that the cross-term coefficients are even

integers.

Theorem 0.2.3. Let f be a positive definite classically integral quadratic form in n vari-

ables such that f represents an odd integer and the discriminant of f is not divisible by

pn−2 for any prime p. If n ≥ 5, or if n = 4 and the discriminant of f is even, then f is

almost primitively universal.

Moreover, although the main focus of our study is on positive definite forms, the local

computations that yield the proof of Theorem 0.2.2 can be applied to arbitrary integral

quadratic forms in the indefinite case as well, to obtain the following result:

Theorem 0.2.4. Let f be an indefinite integral quadratic form in five or more variables.

If every integer is represented by the genus of f , then every nonzero integer is primitively

represented by f .

The proofs of Theorem 0.2.1 through 0.2.4 will be presented in Section 3.3.

The primary goal of Chapter 3 will be to give criteria for local universality and local

primitive universality. These will be presented in the language of quadratic lattices. A

quadratic Zp-lattice L will be said to be (primitively) Zp-universal if it (primitively) repre-

sents every (nonzero) element of Zp. Complete criteria, in terms of a Jordan splitting of the

4



lattice, will be presented for both Zp-universality and primitive Zp-universality. For odd

primes p, the criteria for Zp-universality appear in Proposition 3.1.5 (for lattices of rank

at most 3) and 3.1.6 (for rank at least 4). The corresponding criteria for Z2-universality

appear in Proposition 3.2.13 and Theorem 3.2.14, respectively. The criteria for primitive

Zp-universality for odd primes p are given in Proposition 3.1.8, and those for primitive

Z2-universality are given in Proposition 3.2.20 (for rank at most 3) and Theorem 3.2.21

(for rank at least 4).

In Chapter 4, the local criteria developed in Chapter 3 will be applied to complete

the determination of which of the universal positive definite classically integral quaternary

quadratic forms are almost primitively universal. The results are summarized in Proposi-

tions 4.2.5 and 4.3.6.

Finally, Chapter 5 contains a detailed analysis of the integers that are primitively rep-

resented by each of the universal positive definite classically integral quaternary quadratic

forms. Here the results of numerical explorations will be presented, along with proofs of

primitive universality for 28 of the forms of this type. The list of these 28 forms appears

in Proposition 5.3.1. The numerical data lead us to formulate the following conjecture of

a potential counterpart to the Fifteen Theorem:

Conjecture 0.2.5. Let f be a positive definite classically integral quadratic form. If f

primitively represents the set of numbers; {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 24,

25, 32, 48, 49, 64 } then f is primitively universal.

0.3 ORGANIZATION

The organization of this dissertation will be as follows:

In Chapter 1, we introduce the notations and the terminologies we use throughout

our study. Also, we review a few facts regarding p-adic integers and orthogonal splittings

of lattices over Zp.

Chapter 2 consists of a discussion on universality and isotropy of Zp-lattices. In this
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chapter we establish an improved result of [9, Proposition 3.1] which leads to a proof that

all primitively Zp-universal lattices are isotropic.

Chapter 3 will be primarily devoted to determining local criteria for primitively uni-

versal quadratic forms. We begin by developing criteria for Zp-universal forms of all ranks

and then discuss about their primitive Zp-universality. Here we introduce local criteria for

dyadic and the non-dyadic cases separately. The chapter will be concluded by supplying

proofs of the theorems stated in Section 0.2.

The application of the local criteria for primitive universality to complete the determi-

nation of which among the classically integral positive definite quaternary quadratic forms

are almost primitively universal will be presented in Chapter 4.

Finally, in Chapter 5 we discuss the methodology we followed to come up with the

new conjecture, present the results of our numerical investigations, and provide proofs of

the primitive universality of 28 forms we have identified in this study.
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CHAPTER 1

PRELIMINARIES

1.1 NOTATION AND TERMINOLOGY FOR LATTICES

From now on, we will abandon the language of forms, and instead adopt the geometric

language of lattices. Unexplained terminology and notation will follow that presented in

the books of O’Meara [14] and Gerstein [10]. To set the context, let R be an integral

domain with field of quotients F of characteristic not 2. By an R-lattice L, we will mean a

finitely generated R-submodule of a nondegenerate quadratic space V over F equipped with

a quadratic map q and corresponding symmetric bilinear form B for which q(v) = B(v, v)

for all v ∈ V . We will say that the R-lattice is integral if q(L) ⊆ R, where q(L) = {q(v) :

v ∈ L}. A vector v ∈ L is primitive in L, denoted v
∗
∈ L, if {α ∈ F : αv ∈ L} = R. An

element a ∈ F is said to be represented (primitively represented, resp.), denoted a → L

(a
∗−→ L, resp.), if there exists v ∈ L (v

∗
∈ L, resp.) such that q(v) = a. For a set S of

elements of F , the notation S → L (S
∗−→ L, resp.) will be used to indicate that a → L

(a
∗−→ L, resp.) for all a ∈ S. The notation S 6→ L will mean that there exists at least one

element a ∈ S such that a 6→ L, and analogously for S 6 ∗→ L.

For our purposes, the ring R will always be either the ring Z of rational integers or a

ring Zp of p-adic integers for some prime p. Since these rings are principal ideal domains,

all lattices under consideration will be free. If B = {v1, . . . , vn} is a basis for a lattice L, the

matrix (B(vi, vj)) is the Gram matrix of L with respect to B. For a symmetric n×n-matrix

M , we will write L ∼= M to indicate that there exists a basis for L such that M is the

Gram matrix of L with respect to that basis. In particular, L ∼= 〈a1, . . . , an〉 will mean

that L has an orthogonal basis for which the Gram matrix is the diagonal matrix with the

indicated diagonal entries. When L is a Z-lattice, all Gram matrices of L have the same

determinant, which is called the discriminant of L and denoted dL. When L is a Zp-lattice,

the determinants of all Gram matrices of L lie in the same coset of Q̇p/(Z×p )2, where Z×p
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denotes the group of units of Zp. This coset is the discriminant of L, again denoted by

dL. The notation dL is also used to denote the determinant of a specific Gram matrix of

L, with the exact meaning generally clear from the context.

1.2 THE P -ADIC INTEGERS

In this subsection we will review a few facts regarding the p-adic integers that will be

used frequently. Further discussion of the topics here and in the next subsection can be

found, for example, in the books of O’Meara [14] or Gerstein [10]. For a prime p, Qp will

denote the field of p-adic numbers (that is, the completion of the rational number field Q

with respect to the p-adic metric | · |p) and Zp will denote the ring of integers of Qp (so

Zp = {α ∈ Qp : |α|p ≤ 1}). This ring is a local ring with unique maximal ideal pZp, and

all fractional ideals of Zp in Qp are of the form (pZp)j for some j ∈ Z; hence the nonzero

fractional ideals of Zp in Qp are linearly ordered by inclusion.

The group of units of Zp will be denoted by Z×p ; thus, Z×p = {α ∈ Zp : |α|p = 1}. So a

typical element a ∈ Zp can be written uniquely as a = pordpaa0 with ordpa ∈ N ∪ {0} and

a0 ∈ Z×p . We will make frequent use of the Local Square Theorem, which in the present

context asserts that for α, β ∈ Z×p , if α ≡ β(mod 4pZp) then α ∈ β(Z×p )2 (e.g., see [10,

Theorem 3.39]). From this it follows that when p is odd, the group Z×p consists of two

squareclasses; that is, Z×p = (Z×p )2 ∪∆(Z×p )2, where ∆ denotes any fixed nonsquare in Z×p .

For p = 2, the group Z×2 consists of four squareclasses with representatives 1, 3, 5 and 7.

If α, β ∈ Z×2 , then α ∈ (Z×2 )2 if and only if α ≡ 1(mod 8Z2), and α(Z×2 )2 = β(Z×2 )2 if and

only if α ≡ β(mod 8Z2). For nonzero α, β ∈ Z2, we will write α ∼= β when α/β ∈ (Z×2 )2.

1.3 ORTHOGONAL SPLITTINGS AND INVARIANTS OF LATTICES

OVER ZP

In the case of lattices over Zp, there are several invariants that will frequently be used

in the arguments that follow. For such a lattice L, we let sL, nL and vL denote the scale,

8



norm and volume ideals, respectively, associated to the lattice L, as defined in [14, §82E].

When a lattice can be decomposed as an orthogonal sum of sublattices whose norm ideals

are distinct, it is sometimes possible to transfer information on representations between the

entire lattice and the sublattices. For example, we will make frequent use of the following

results:

Lemma 1.3.1. Let L be an integral Zp-lattice such that L ∼= M ⊥ K for nonzero sublattices

M and K of L.

i) If M ∼= 〈ε〉, for some ε ∈ Z×p , and nK ⊆ 2pZp, then Z×p 6→ L.

ii) If Z×p → L and nK ⊆ 4pZp, then Z×p →M .

iii) If pZ×p → L and nK ⊆ 4p2Zp, then pZ×p →M .

Proof. i) When p is odd, it follows from the Local Square Theorem that the only units that

are represented by L are in ε(Z×p )2. For p = 2, any unit represented by L is congruent to ε

modulo 4Z2. Hence at most two squareclasses of units can be represented by L.

ii) Let µ be a unit represented by M ⊥ K. Then µ = q(x) + q(y) for some x in M

and y in K. Since nK ⊆ 4pZp, we have µ congruent to q(x) modulo 4pZp. So there exists

λ ∈ Z×p such that µ = λ2q(x) = q(λx) ∈ q(M).

iii) Similar argument as ii).

The following two lemmas will be used frequently in the remainder of this paper.

Lemma 1.3.2. Let L be an integral Zp-lattice such that L ∼= M ⊥ K for nonzero sublattices

M and K of L. If Zp →M , then α
∗−→ L for all 0 6= α ∈ Zp.

Proof. Suppose M is Zp-universal. For any α ∈ Zp and any v
∗
∈ K, we have α− q(v) ∈ Zp.

So α− q(v)→M ; hence α
∗−→M ⊥ K ∼= L.

Lemma 1.3.3. Let K be an integral Zp-lattice such that Z×p → K. Then for any ε ∈

Z×p , α
∗−→ 〈ε〉 ⊥ K for all 0 6= α ∈ Zp.
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Proof. If λ ∈ pZp, then λ− ε ∈ Z×p . So λ− ε→ K and λ
∗→ 〈ε〉 ⊥ K.

The norm and scale of a lattice are related by the following containments:

2sL ⊆ nL ⊆ sL.

In particular, when p is odd it is always the case that nL = sL, and when p = 2 there

are two possibilities, namely nL = sL or nL = 2sL. The scale and volume of a lattice are

related by the containment vL ⊆ (sL)n, where n is the rank of L. When equality holds, the

lattice is said to be sL-modular. A Zp-modular lattice is called unimodular, and a lattice

is referred to simply as modular if it is A-modular for some fractional ideal A. Thus, a

Zp-lattice L is paZp-modular if and only if the scaled lattice La
−1

is unimodular (here the

notation Lα denotes the scaled lattice, as defined in [14, §82J]). For an odd prime p, a

modular lattice over Zp can always be written as an orthogonal sum of rank 1 sublattices

(that is, such a lattice is diagonalizable); a modular lattice over Z2 can be written as an

orthogonal sum of modular sublattices of rank 1 or 2 [14, 93:15]. The modular lattices L

over Z2 which are diagonalizable are precisely those for which nL = sL; these are referred to

as proper. In the case of an improper unimodular lattice L over Z2, one can more precisely

say that L has an orthogonal splitting

L ∼= H ⊥ . . . ⊥ H ⊥ P, (1.1)

where H denotes a hyperbolic plane with matrix ( 0 1
1 0 ) and P is a binary lattice isometric

to either H or the lattice A with matrix ( 2 1
1 2 ) (e.g., see [10, Corollary 8.10]).

An arbitrary lattice over Zp can always be decomposed as an orthogonal sum of modu-

lar sublattices. By grouping the sublattices having the same scale, one obtains the so-called

Jordan splitting for the lattice. For our purposes, we will be considering only Zp-lattices

L for which nL = Zp. Thus sL will be either Zp or 1
2
Zp by the fundamental containment

noted above. The Jordan splitting of such a lattice can thus be written as

L ∼= L(−1) ⊥ L(0) ⊥ L(1) ⊥ . . . ⊥ L(t), (1.2)
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where each Jordan component L(i) is either piZp-modular or 0.1 Here L(−1) = 0 unless

p = 2. The existence of Jordan splittings and the extent to which such splittings are

unique are discussed in detail in [14, §91C]. Of relevance for our purposes is the fact that

the ranks, norms and scales of the Jordan components are invariants of the lattice. The

rank of the component L(i) will be denoted by ri. When L is a Z2-lattice with nL = Z2,

the leading Jordan component of L will be either an improper 1
2
Z2-modular lattice L(−1) if

sL = 1
2
Z2, or a proper unimodular lattice L(0) if sL = Z2. In order to describe the improper

1
2
Z2-modular lattices, it will be convenient to introduce the notations Ĥ and Â to represent

the lattices obtained from H and A, respectively, by scaling by 1
2
. So

Ĥ ∼=
(

0 1
2

1
2

0

)
and Â ∼=

(
1 1

2
1
2

1

)
.

1Note that our convention for the indexing of the components differs from that of [14].
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CHAPTER 2

UNIVERSALITY AND ISOTROPY OF ZP -LATTICES

2.1 BASIC DEFINITIONS AND EXAMPLES

In this section we will establish some results regarding the set q∗(L) = {q(v) : v
∗
∈ L}

when L is an integral Zp-lattice. The nature of this set depends heavily on whether the

lattice L is isotropic (that is, there exists a 0 6= v ∈ L such that q(v) = 0 or, equivalently,

0 ∈ q∗(L)) or anisotropic, as the following examples of binary modular lattices illustrate.

Example 2.1.1. For any prime p, q∗(Ĥ) = Zp (e.g., see [9, Proposition 3.2]).

Example 2.1.2. For p = 2, q∗(Â) = Z×p . To see this, let Â have the Gram matrix given

above with respect to the basis {v1, v2}; so q(a1v1 + a2v2) = a2
1 + a1a2 + a2

2. If one or both

of the ai are in Z×2 , then a2
1 + a1a2 + a2

2 is also in Z×2 , thus giving the containment q∗(Â) ⊆

Z×2 . To see the reverse containment, it is only necessary to check that the expression

a2
1 + a1a2 + a2

2 takes on values from the four squareclasses in Z×2 . We further note that

q(Â) = {α ∈ Zp : ordpα is even}.

Example 2.1.3. For any prime p, let L ∼= 〈ε1, ε2〉 be anisotropic, where ε1, ε2 ∈ Z×p .

Then q∗(L) ∩ 4pZp = ∅. To see this, let {v1, v2} be the basis for which the Gram matrix

is 〈ε1, ε2〉. Suppose that v = a1v1 + a2v2

∗
∈ L. Without loss of generality, suppose that

a1 ∈ Z×p . If q(v) ∈ 4pZp, then also a2 ∈ Z×p . Then a2
1ε1 + a2

2ε2 ≡ 0 (mod 4pZp), and it

follows that −ε1ε
−1
2 ≡ (a−1

1 a2)2 (mod 4pZp). By the Local Square Theorem, there exists

λ ∈ Z×p such that −ε1ε
−1
2 = λ2. But then q(v1 + λv2) = 0, contrary to the assumption that

L is anisotropic.

An integral Zp-lattice L will be said to be Zp-universal if q(L) = Zp. Note that L

is Zp-universal if and only if Z×p ∪ pZ×p ⊆ q(L). Further, L is said to be primitively Zp-

universal if for each 0 6= α ∈ Zp, there exists v
∗
∈ L such that q(v) = α. It is clear that
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primitive Zp-universality implies Zp-universality, but the converse is not true, as can be

seen from the following examples.

Example 2.1.4. Consider L ∼= 〈1, 1, 3, 3〉 over Z3. It is easily seen that L represents

1, 2, 3 and 6, which are representatives of the four squareclasses in Z×3 ∪ 3Z×3 ; thus, L is

Z3-universal. On the other hand, write L = M ⊥ K, where M ∼= 〈1, 1〉 and K ∼= 〈3, 3〉,

both of which are anisotropic over Z3. Let v
∗
∈ L. Then v = x+ y, where x

∗
∈M or y

∗
∈ K.

If x
∗
∈ M , then q(x) ∈ Z×3 by Example 2.1.3, and hence q(v) ∈ 3Z×3 . Otherwise, x ∈ 3M

and y
∗
∈ K. In that case, q(x) ∈ 9Z3 and q(y) ∈ 3Z×3 , again by Example 2.1.3, and hence

q(v) ∈ 3Z×3 . So q∗(L) = Z×3 ∪ 3Z×3 and L is not primitively Z3-universal.

Example 2.1.5. Consider L ∼= Â ⊥ A over Z2. Then L is Z2-universal, but not primitively

Z2-universal and q∗(L) = Z×2 ∪ 2Z×2 . The verifications are as in the previous example.

2.2 PRIMITIVELY ZP -UNIVERSAL LATTICES ARE ISOTROPIC

We are now ready to state the main result of this chapter.

Proposition 2.2.1. Let p be a prime and L an anisotropic integral Zp-lattice. Then there

exists l = l(L, p) ∈ N such that q∗(L) ∩ plZp = ∅.

Before proceeding to the proof of Proposition 2.2.1, we prove the following lemma.

Lemma 2.2.2. Let L ∼= M ⊥ K be a Z2-lattice with M ∼= A2a, K ∼= 〈2bβ〉 ⊥ 〈2cγ〉, where

a, b, c are non-negative integers and β, γ ∈ Z×2 . If sL = Z2 and L is anisotropic, then a, b, c

are all even and β + γ ≡ 4(mod 8Z2).

Proof. If a, b had opposite parity, then, for k such that 2k + b ≥ a + 1, we would have

22k+bβ → K and −22k+bβ → M , and it would follow that L is isotropic. So a, b have the

same parity, and, similarly, a, c have the same parity. Since sL = Z2, at least one of a, b, c

equals 0, so all of a, b, c must be even. To prove the second assertion, suppose first that

β + γ ≡ 0(mod 8Z2). Then β(Z×2 )2 = −γ(Z×2 )2 and it would follow that K is isotropic. If
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β + γ ≡ 2(mod 4Z2), then K would represent an element of odd order and again L would

be isotropic. Since β + γ ∈ 2Z2, this leaves β + γ ≡ 4(mod 8Z2) as the only remaining

possibility, thus completing the proof.

Proof of Proposition 2.2.1 Note that the result for binary lattices is covered by Examples

2.1.2 and 2.1.3, and for ternary lattices the proof is given in [9, Proposition 3.1]. Moreover,

the assertion is vacuous when rk L ≥ 5 since every Zp-lattice of rank exceeding 4 is isotropic.

So we need only consider the case of lattices L of rank 4. Further, by scaling if necessary,

we may assume that sL = Zp. So L has a Jordan splitting

L ∼= L(0) ⊥ . . . ⊥ L(t),

for some non-negative integer t, where L(0) 6= 0 and L(t) 6= 0. Throughout the proof, we let

{v1, . . . , v4} be a basis for L that gives rise to the indicated Jordan splitting.

Our goal will be to prove that the conclusion of the proposition holds for l = t + 3,

although in some cases a smaller exponent would suffice. So suppose there exists 0 6= v
∗
∈ L

such that q(v) ∈ pt+3Zp. Write v =
∑4

i=1 bivi, where b1, . . . , b4 ∈ Zp and bk ∈ Z×p for at

least one index k.

Consider first the case when vk occurs in the orthogonal basis for a diagonalizable

Jordan component of L; say q(vk) = pekεk, with εk ∈ Z×p . Writing v = bkvk + w, where

w =
∑

i 6=k bivi, we have

b2
kp
ekεk + q(w) = q(v) ≡ 0(mod pt+3Zp).

It follows that ordpq(w) = ek and

−p−ekε−1
k q(w) ≡ b2

k(mod pt−ek+3Zp).

Since t−ek+3 ≥ 3, it then follows from the Local Square Theorem that there exists λ ∈ Z×p

such that

−p−ekε−1
k q(w) = λ2.
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Then

q(λvk + w) = λ2pekεk + q(w) = 0,

contrary to the assumption that L is anisotropic.

This completes the proof when p is odd, and when p = 2 and L is diagonalizable. So

we need only further consider the case that p = 2 and L has at least one improper Jordan

component. Since L is assumed to be anisotropic, this component must be isometric to

A2s , for some non-negative integer s.

Consider first the case that L ∼= A ⊥ A2t . If t is even, then L is isotropic; so it

suffices to consider odd t. Let v
∗
∈ L; say v = x + y with x ∈ A, y ∈ A2t . If x

∗
∈ A,

then q(v) ∈ 2Z×2 . Otherwise, y
∗
∈ A2t and q(y) ∈ 2t+1Z×2 . Since q(x) has odd order,

ord2q(x) 6= ord2q(y) = t+ 1. So

ord2q(v) = ord2(q(x) + q(y)) = min{ord2q(x), t+ 1} ≤ t+ 1.

So we conclude that q(v) 6∈ 2t+3Z2.

In all other cases, the Jordan splitting of L has the form considered in Lemma 2.2.2

for suitable integers a, b, c and units β, γ. By Lemma 2.2.2, we need only consider the

case when a, b, c are all even and β + γ ≡ 4(mod 8Z2). So L ∼= M ⊥ K, with M ∼= A2a ,

K ∼= 〈2bβ〉 ⊥ 〈2cγ〉 in the basis {u,w}. Let v
∗
∈ L, and write v = x + αu + δw, x ∈ A2a ,

α, δ ∈ Z2. Moreover, we may assume that x
∗
∈ A2a , as the other cases are covered in the

first part of the proof. So q(x) ∈ 2a+1Z×2 . Write α = 2lα0, δ = 2kδ0, α0, δ0 ∈ Z×2 . Then

q(αu+ δw) = 22l+bα2
0β + 22k+cδ2

0γ.

If 2l + b 6= 2k + c, then ord2q(αu + δw) = min{2l + b, 2k + c}. If 2l + b = 2k + c, then

ord2q(αu + δw) = 2l + b + 2 since β + γ ≡ 4(mod 8Z2). In either case, ord2q(αu + δw) is

even; hence ord2q(αu+ δw) 6= ord2q(x) = a+ 1, since a+ 1 is odd. So

ord2q(v) = min{a+ 1, ord2q(αu+ δw)} ≤ t+ 1.

Once again we conclude that q(v) 6∈ 2t+3Z2, and the proof is complete.
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Corollary 2.2.3. If L is an anisotropic integral Zp-lattice, then L is not primitively Zp-

universal.

2.3 ISOTROPY CRITERIA FOR ZP -LATTICES

If L is primitively Zp-universal, then L is isotropic. To see when this is the case, it

is important to have criteria to recognize when a local lattice or space is isotropic. When

the dimension is at least 5, such spaces are known to always be isotropic. For spaces of

dimension 3 and 4 explicit conditions in terms of the discriminant and the Hasse symbol

of the space are well-known. Such conditions can be found in [10]. We will restate them

here for convenient reference.

Let p be a prime and let V be a nondegenerate ternary quadratic space over Qp. Then

by [10, Proposition 4.21], V is isotropic if and only if

SpV = (−1,−dV )p. (2.1)

Here for a, b ∈ Q̇, (a, b)p denotes the p-adic Hilbert symbol and SpV denotes the Hasse

symbol of the space V , as defined in [10, §4.2].

For later use, we will apply this criterion to derive conditions under which a particular

type of ternary space over Qp is isotropic.

Lemma 2.3.1. Let ε1, ε2, ε3 ∈ Z×2 and let V be a quadratic space over Q2 such that V ∼=

〈ε1, ε2, ε3〉. Then V is anisotropic if and only if ε1 ≡ ε2 ≡ ε3(mod 4Z2).

Proof. As isotropy is preserved under scaling, we may assume without loss of generality

that ε1 = 1. To prove the forward implication, assume that it is not the case ε1 ≡ ε2 ≡

ε3(mod 4Z2); say ε2 ≡ 3(mod 4Z2). Then

S2V = (ε2, ε3)2 = (−1, ε3)2 = (−1,−ε2)2(−1, ε3)2 = (−1,−ε2ε3)2 = (−1,−dV )2,

and it follows from (2.1) that V is isotropic. To prove the converse assume that ε2 ≡ ε3 ≡

1(mod 4Z2). Then S2V = (ε2, ε3)2=1 and (−1,−dV )2 = (−1,−1)2 = −1, and it follows

from (2.1) that V is anisotropic.
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Now, let V be a nondegenerate quaternary quadratic space over Qp. Then by [10,

Proposition 4.24] V is anisotropic if and only if

dV = 1 and SpV = −(−1,−1)p. (2.2)

The following result will provide a useful tool for showing that certain lattices are not

primitively Zp-universal. Although we will be applying this result only for p = 2 case, we

will provide a general proof.

Lemma 2.3.2. Let V be a quadratic space of dimension 3 over Qp, for some prime p. If

V is anisotropic, then −dV 6→ V .

Proof. Consider the quaternary space W ∼= V ⊥ 〈dV 〉. Since dW = 1, the value of the

Hasse symbol SpW will determine whether or not W is anisotropic. By the general formula

given in [10, Proposition 4.18],

SpW = SpV · Sp(〈dV 〉) · (dV, dV )p.

Here Sp(〈dV 〉) = 1 by definition, and SpV = −(−1,−dV )p since V is anisotropic, by

(2.1). So

SpW = −(−1,−dV )p(dV, dV )p = −(−1,−1)p.

It follows that W is anisotropic, by (2.2), and hence −dV 6→ V by [10, Proposition

2.27].
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CHAPTER 3

LOCAL CRITERIA FOR UNIVERSAL, PRIMITIVELY UNIVERSAL

QUADRATIC FORMS

3.1 (PRIMITIVELY) UNIVERSAL ZP -LATTICES - NON-DYADIC CASE

Throughout this section, we assume that p is an odd prime and L is an integral

Zp-lattice. So in particular nL = sL ⊆ Zp and L has a Jordan splitting of the form

L ∼= L(0) ⊥ . . . ⊥ L(t),

where each Li has an orthogonal basis. In this case, L has an orthogonal basis and we

write L ∼= 〈pα1ε1, p
α2ε2, . . . , p

αnεn〉, where α1 ≤ α2 ≤ . . . ≤ αn are non-negative integers

and ε1, ε2, . . . , εn ∈ Z×p .

Recall that (a, b)p, for a, b ∈ Q̇2
p, denotes the p-adic Hilbert symbol. So, in particular,

for δ ∈ Z×p , we have δ ∈ (Z×p )2 if and only if (δ, p)p = 1. Thus, for ε1, ε2 ∈ Z×p , the lattice

〈ε1, ε2〉 is isotropic if and only if (−ε1ε2, p)p = 1.

Lemma 3.1.1. Let L be unimodular.

i) If rk L = 2, then Z×p → L.

ii) If rk L ≥ 3 or if rk L = 2 and L is isotropic, then L is primitively universal.

Proof. i) is simply a restatement of [14, 92:1(b)]. For ii), it suffices to note that either

L ∼= H or L ∼= H ⊥ 〈1, . . . , 1,−d〉, where dL = d(Z×p )2, by [14, 92:1], and apply the result

of Example 2.1.1.

Proposition 3.1.2. Let p be an odd prime and let L be an integral Zp-lattice with rk L ≥ 5.

If L is Zp-universal, then L is primitively Zp-universal.
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Proof. Assume that L is Zp-universal. Then nL = sL = Zp and, by Lemma 1.3.1 i),

r0 ≥ 2. If L(0) is isotropic, then L is primitively Zp-universal by Lemma 3.1.1 ii). So

we need only consider further the case when r0 = 2 and L(0) is anisotropic. In this case,

q∗(L(0))∩ pZp = ∅ by Example 2.1.3. If r1 = 0, it would follow from Lemma 1.3.1 iii) that

pZp 6→ L, contrary to the assumption that L is Zp-universal. So to complete the proof we

consider three possibilities for r1 = rkL(1):

r1 = 1: Since L(0) is anisotropic, pZ×p → L(0) ⊥ L(1) holds if and only if pZ×p → L(1) ⊥

pL(0). But Z×p 6→ (L(1) ⊥ pL(0))
1/p by Lemma 1.3.1 i). Hence pZ×p 6→ L by Lemma 1.3.1

iii), contrary to the assumption that L is Zp-universal.

r1 = 2: In this case, Z×p → L(0) and pZ×p → L(1) by Lemma 3.1.1 i). So L(0) ⊥ L(1) is

Zp-universal and hence L is primitively Zp-universal by Lemma 1.3.2 since rk L ≥ 5.

r1 ≥ 3: By Lemma 3.1.1 ii), pZp
∗→ L(1). Since Z×p → L(0) by Lemma 3.1.1 i), it

follows that L is primitively Zp-universal.

Remark 3.1.3. The conclusion of Proposition 3.1.2 does not hold when rk L = 4, as seen

by Example 2.1.4.

Remark 3.1.4. The arguments in this section would be unchanged if Zp were replaced by

any non-dyadic local ring.

Proposition 3.1.5. If rk L = n ≤ 3, then L is Zp-universal if and only if α1 = α2 = 0

and at least one of the following holds:

(−ε1ε2, p)p = 1; (3.1)

n = 3 and α3 = 0. (3.2)

Proof. The sufficiency of the stated conditions is proven in Lemma 3.1.1 ii). (In fact,

it is shown there that under these conditions L is primitively Zp-universal.) To show

the necessity, note first that if α2 ≥ 1, then q(L) ∩ Z×p = ε1(Z×p )2, by the Local Square
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Theorem, and so L cannot be Zp-universal. So in order for L to be Zp-universal, it must be

that α2 = 0. So suppose that α2 = 0 but condition (3.1) fails. Then 〈ε1, ε2〉 is anisotropic,

and it must be that n = 3 and α3 ≤ 1, since otherwise q(L) ∩ pZ×p = ∅, by Example 2.1.3.

However, if α3 = 1, then it would follow from the Local Square Theorem and Example 2.1.3

that q(L)∩ pZ×p = pε3(Z×p )2. Hence, α3 = 0 and (3.2) holds. This completes the proof.

Proposition 3.1.6. 1 If rk L = n ≥ 4, then L is Zp-universal if and only if α1 = α2 = 0

and at least one of the following holds:

α3 = 0; (3.3)

(−ε1ε2, p)p = 1; (3.4)

α3 = α4 = 1. (3.5)

Proof. Throughout the proof, let T denote the sublattice 〈pα1ε1, p
α2ε2, p

α3ε3〉. If α1 =

α2 = 0 and either (3.3) or (3.4) holds, then T is Zp-universal (in fact primitively Zp-

universal) by the preceding proposition. If α1 = α2 = 0 and (3.5) holds, then Z×p → 〈ε1, ε2〉

and pZ×p → 〈pε3, pε4〉 by Lemma 3.1.1 i). This establishes the sufficiency of the stated

conditions.

To prove the necessity, note first that if it is not the case that α1 = α2 = 0, then

Z×p 6→ L and L cannot be Zp-universal. So we may assume that L is Zp-universal and

α1 = α2 = 0. If α4 ≥ 2, then L Zp-universal implies that Z×p ∪ pZ×p → T by Local Square

Theorem and hence T is Zp-universal, which implies that either (3.3) or (3.4) holds by the

preceding proposition. If α4 = 0 or 1, then either (3.3) or (3.5) holds. This completes the

proof.

Remark 3.1.7. The preceding proposition shows that any Zp-universal lattice of rank

exceeding 4 over Zp is split by a Zp-universal sublattice of rank at most 4. This in turn

1This statement is essentially (14) in Lemma 1 of [15].
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guarantees the primitive Zp-universality of such a lattice, as was shown in Proposition 3.1.2.

Also, as noted in the proof of Proposition 3.1.5 above, any Zp-universal lattice of rank less

than 4 over Zp is again primitively Zp-universal. However, as shown by Example 2.1.4, this

is no longer the case for quaternary lattices. The following proposition shows that this is

essentially the only situation in which there is a distinction between Zp-universality and

primitive Zp-universality when p is odd.

Proposition 3.1.8. Let L be a Zp-lattice with rk L ≥ 2. If L is Zp-universal then L is

primitively Zp-universal except when

rk L = n = 4, α1 = α2 = 0, α3 = α4 = 1 and (−ε1ε2, p)p = (−ε3ε4, p)p = −1.

In the exceptional case, L is not primitively Zp-universal.

Proof. Since L is Zp-universal, it must fall into one of the cases in Proposition 3.1.6. It was

noted in the proof of that proposition that if α1 = α2 = 0 and either (3.3) or (3.4) holds,

then L is primitively Zp-universal. So we need only consider the case when α1 = α2 = 0,

and (3.3) and (3.4) fail but (3.5) holds. So L ∼= 〈ε1, ε2, pε3, pε4〉 with (−ε1ε2, p)p = −1. If

(−ε3ε4, p)p = 1, then K ∼= 〈pε3, pε4〉 is isotropic and pZp
∗−→ K by Lemma 3.1.1 ii). Since

Z×p
∗−→ L, by Lemma 3.1.1 i), it follows that L is primitively Zp-universal. That L is not

primitively Zp-universal in the exceptional case follows exactly as in Example 2.1.4.

3.2 Z2-LATTICES

This section is divided into four subsections. The first subsection gives a complete anal-

ysis of the Z2-universality and primitive Z2-universality of modular Z2-lattices of various

ranks. The second subsection is devoted to identifying Z2-lattices that are Z2-universal, us-

ing basic computations. These results will play a key role in the proof of Proposition 3.2.12.

We provide criteria to identify universal and primitively universal Z2-lattices in the third

and fourth subsections, respectively.
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Throughout this section L will denote a Z2-lattice. Recall that, since nL = Z2 when-

ever L is Z2-universal there are two cases to consider: sL = Z2 or sL = 1
2
Z2.

Note first that in order to prove that an integral Z2-lattice is Z2-universal, it suffices

to show that it represents all units and elements of order one (i.e., elements of the set

2Z×2 ). For if Z×2 → L (or 2Z×2 → L), then L represents all elements of Z2 of odd (or even)

order. We will refer to a set of elements of Z2 as being independent if they are in distinct

squareclasses. So, in order to prove that an integral Z2-lattice is Z2-universal, it suffices

to show that L represents a set of four independent units and a set of four independent

elements of 2Z×2 . Throughout this section, the letters ε, εi or δ will always denote elements

of Z×2 .

3.2.1 Modular Z2-lattices

In this subsection we determine which modular Z2-lattices are either Z2-universal or

primitively Z2-universal. In particular, such a lattice L must have nL = Z and hence must

be either an improper 1
2
Z2-modular lattice or a proper unimodular lattice.

Proposition 3.2.1. Let L be an improper 1
2
Z2-modular Z2-lattice of rank n.

i) If n > 2, then L is primitively Z2-universal.

ii) If n = 2, then L is primitively Z2-universal if and only if L is Z2-universal.

iii) If n = 2 and L is anisotropic, then q∗(L) = Z×2 and q(L) ∩ 2Z×2 = ∅.

Proof. These results follow immediately from (1.1) and Examples 2.1.1 and 2.1.2.

Proposition 3.2.2. Let L be a proper unimodular Z2-lattice of rank 2. Then L is not

Z2-universal. Moreover,

i) if dL ≡ 3 (mod 4Z2), then Z×2 → L and q(L) ∩ 2Z×2 = ∅;

ii) if dL ≡ 1 (mod 4Z2), then q(L) ∩ Z×2 6= ∅ and

q(L) ∩ Z×2 = {α ∈ Z×2 : α ≡ ε (mod 4Z2)}.

for any ε ∈ q(L) ∩ Z×2 .
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Proof. i) Let L ∼= 〈ε1, ε2〉. Then it can be verified that ε1, ε2, ε1 + 4ε2, ε2 + 4ε1 form an

independent set of four units represented by L. For example, suppose that ε2 ≡ ε1 +

4ε2 (mod 8Z2). Then −3ε2 ≡ ε1 (mod 8Z2), and it would follow that ε1ε2 ≡ 5 (mod 8Z2),

contrary to the assumption that dL ≡ 3 (mod 4Z2). The other verifications are similar. For

the final assertion, it suffices to note that for any x, y ∈ Z×2 , ε1x
2 +ε2y

2 ≡ ε1 +ε2 (mod 8Z2)

and ε1 + ε2 ≡ 0 (mod 4Z2) since ε2 ≡ −ε1 (mod 4Z2) in this case.

ii) In this case, the underlying space V is anisotropic since dV 6= −1. Since L is

a Z2-maximal lattice on V , it follows from [14, Theorem 91:1] that q(L) = q(V ) ∩ Z2.

Let L ∼= 〈ε1, ε2〉. For any α ∈ Z×2 , by comparing the Hasse invariants of the Q2-spaces

〈ε1, ε2〉 and 〈α, ε1ε2〉, we see that α → V if and only if (α,−ε1ε2)2 = (ε1, ε2)2. Since

−ε1ε2 ≡ 3 (mod 4Z2), the value of the symbol (α,−ε1ε2)2 is determined by the congruence

of α modulo 4Z2, which verifies the assertion.

Corollary 3.2.3. Let L ∼= M ⊥ K, with M proper unimodular of rank 2 and sK ⊆ 2Z2.

If L is Z2-universal, then nK = 2Z2.

Proof. If dM ≡ 3 (mod 4Z2) and nK ⊆ 4Z2, then it follows from Proposition 3.2.2 i) that

q(L) ∩ 2Z×2 = ∅, and so L is not Z2-universal. So consider the case dM ≡ 1 (mod 4Z2)

and let ε ∈ q(M) ∩ Z×2 . Suppose that nK ⊆ 4Z2 and λ is any unit represented by L.

Then λ = µ + κ, where µ ∈ q(M) ∩ Z×2 and κ ∈ q(K) ⊆ 4Z2. By Proposition 3.2.2 ii),

λ ≡ ε (mod 4Z2). Thus, Z×2 6→ L and L is not Z2-universal.

Proposition 3.2.4. Let L be a unimodular Z2-lattice of rank 3. Then the following are

equivalent:

i) L is Z2-universal;

ii) L is primitively Z2-universal;

iii) L ∼= 〈ε1, ε2, ε3〉 and there exist i, j ∈ {1, 2, 3} such that εi ≡ −εj (mod 4Z2).

Proof. ii) =⇒ i) is clear, and iii) =⇒ ii) follows from Proposition 3.2.2 i) and

Lemma 1.3.3. So it remains to prove i) =⇒ iii). For this, suppose that iii) is not
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true. So L ∼= 〈ε1, ε2, ε3〉 with εi ≡ εj (mod 4Z2) for all 1 ≤ i, j ≤ 3. Let λ ∈ q(L) ∩ Z×2 .

So λ =
∑3

i=1 a
2
i εi with ai ∈ Z2 and either one or all three of the ai’s units. If exactly one

ai ∈ Z×2 , then λ ≡ εi (mod 4Z2); if all ai ∈ Z×2 , then λ ≡ ε1 + ε2 + ε3 (mod 8Z2). Hence,

L can represent at most three squareclasses of units and so L is not Z2-universal. This

completes the proof.

Proposition 3.2.5. Let L be a proper unimodular Z2-lattice of rank 4. Then

i) L is Z2-universal;

ii) L is primitively Z2-universal if and only if {4, 8} ⊆ q∗(L).

Proof. There is a splitting L ∼= 〈ε1, ε2, ε3, ε4〉. If εi ≡ −εj (mod 4Z2) for some i 6= j, then

L is primitively Z2-universal by Proposition 3.2.4 and Lemma 1.3.3.

i) It remains to show that L is Z2-universal when εi ≡ εj (mod 4Z2) for all 1 ≤ i, j ≤ 4.

By scaling L by a unit if necessary, it suffices to consider the possibilities L ∼= 〈1, 1, a, b〉,

where a, b equal 1 or 5. In these cases, it is routine to show that L represents the four

squareclasses of units and the four squareclasses of twice units.

ii) It suffices to prove the “if ” statement. So assume that L is not primitively Z2-

universal. So εi ≡ εj (mod 4Z2) for all 1 ≤ i, j ≤ 4. Let λ ∈ q∗(L). So λ =
∑4

i=1 a
2
i εi with

all ai ∈ Z2 and at least one ai ∈ Z×2 . If exactly one or three of the ai’s are in Z×2 , then λ ∈

Z×2 ; if exactly two of the ai’s are in Z×2 , then λ ∈ 2Z×2 , since εi ≡ εj (mod 4Z2). So if λ ∈ 4Z2,

it must be that ai ∈ Z×2 for all i = 1, . . . , 4 and it follows that λ ≡ ε1 + · · ·+ ε4 (mod 8Z2).

Moreover ε1 + · · ·+ ε4 ∈ 4Z2 since εi ≡ εj (mod 4Z2). If ε1 + · · ·+ ε4 ∈ 4Z×2 , then 8 6 ∗→ L.

If ε1 + · · ·+ ε4 ∈ 8Z2, then 4 6 ∗→ L. This completes the proof.

Proposition 3.2.6. Let L be a unimodular Z2-lattice of rank exceeding 4. Then L is

primitively Z2-universal.

Proof. Follows from Proposition 3.2.5 i) and Lemma 1.3.3.

Remark 3.2.7. Corollary 2 of [4] follows immediately from Lemma 3.1.1 ii), Proposi-

tion 3.2.5 ii) and Proposition 3.2.6.
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3.2.2 Basic computations and observations on Z2-universal lattices

The goal of this subsection is to build up an inventory of integral Z2-lattices that are

Z2-universal. We begin by identifying lattices that represent all units or twice units.

Lemma 3.2.8. All Z2-lattices of the following types represent Z×2 :

i) 〈ε1, 2ε2, λε3〉, where λ = 1 or 4;

ii) 〈ε1, ε2, ε3, λε4〉, where λ = 1 or 4;

iii) 〈ε1, 2ε2, 2ε3, 2ε4〉.

Proof. i) It suffices to prove the result for the lattice L ∼= 〈ε1, 2ε2, 4ε3〉. In this case, it can

be routinely verified that ε1, ε1 + 2ε2, ε1 + 4ε3, ε1 + 2ε2 + 4ε3 form an independent set of

four units represented by L.

ii) It suffices to prove the result for the lattice L ∼= 〈ε1, ε2, ε3, 4ε4〉. By Proposi-

tion 3.2.4, it suffices to consider the case ε1 ≡ ε2 ≡ ε3 (mod 4Z2). Then ε2 + ε3 ∈ 2Z×2 and

it follows that ε1, ε1 + ε2 + ε3, ε1 + 4ε4, ε1 + ε2 + ε3 + 4ε4 form an independent set of four

units represented by L.

iii) Let L ∼= 〈ε1, 2ε2, 2ε3, 2ε4〉. At least two of ε2, ε3, ε4 are congruent modulo

4Z2; without loss of generality, by re-indexing if necessary, we may assume that ε3 ≡

ε4 (mod 4Z2). If also ε2 ≡ ε3 (mod 4Z2), then ε2 +ε3 ∈ 2Z×2 and ε3 +ε4 ∈ 2Z×2 . From this it

follows that ε1, ε1+2ε2, ε1+2ε2+2ε3, ε1+2ε2+2ε3+2ε4 form an independent set of four units

represented by L. Otherwise, ε2 ≡ −ε3 (mod 4Z2). Then ε1, ε1 +2ε2, ε1 +2ε3, ε1 +2ε3 +2ε4

form an independent set of four units represented by L.

Lemma 3.2.9. All Z2-lattices of the following types represent 2Z×2 :

i) 〈ε1, ε2, ε3〉;

ii) 〈ε1, 2ε2, λε3〉, where λ = 2 or 8;

iii) 〈ε1, 2ε2, 4ε3, λε4〉, where λ = 1 or 4;

iv) Â ⊥ 〈2ε1, λε2〉, where λ = 2, 4, 8.
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Proof. i) By Proposition 3.2.4, it suffices to consider the case ε1 ≡ ε2 ≡ ε3 (mod 4Z2).

Under this condition, we have εi + εj ∈ 2Z×2 for all 1 ≤ i, j ≤ 3. Then it can be shown that

ε1 + ε2, ε1 + 9ε2, ε1 + ε2 + 4ε3, ε1 + 9ε2 + 4ε3 form an independent set of four elements of

2Z×2 represented by L.

ii) It suffices to consider L ∼= 〈ε1, 2ε2, 8ε3〉. Let λ ∈ Z×2 . By Lemma 3.2.8, there exist

a1, a2, a3 ∈ Z2 such that λ = a2
2ε2 + 2a2

1ε1 + 4a2
3ε3. So 2λ = (2a1)2ε1 + a2

2(2ε2) + a2
3(8ε3) ∈

q(L).

iii) It suffices to consider L ∼= 〈ε1, 2ε2, 4ε3, 4ε4〉. Let λ ∈ Z×2 . By Lemma 3.2.8,

there exist a1, a2, a3, a4 ∈ Z2 such that λ = a2
2ε2 + 2a2

1ε1 + 2a2
3ε3 + 2a2

4ε4. Then 2λ =

(2a1)2ε1 + a2
2(2ε2) + a2

3(4ε3) + a2
4(4ε4) ∈ q(L).

iv) Consider first L ∼= Â ⊥ 〈2ε1, 4ε2〉. Let λ ∈ Z×2 . If λ−ε1 ∈ 8Z2, then 2λ ∈ 2ε1(Z×2 )2

and 2λ ∈ q(L). If λ−ε1 ∈ 2Z×2 , then 2λ−2ε1 ∈ 4Z×2 ⊆ q(Â) and 2λ ∈ q(L). If λ−ε1 ∈ 4Z2,

then 2λ − 2ε1 ∈ 8Z2. So 2λ − 2ε1 − 4ε2 ∈ 4Z×2 ⊆ q(Â). So in all cases, 2λ ∈ q(L). It

remains to consider L ∼= Â ⊥ 〈2ε1, 8ε2〉. Since Z×2 → Â, the result in this case follows from

ii).

Combining results from the preceding two lemmas and results for unimodular lattices

from the previous subsection, and applying Lemma 1.3.3 where necessary, we obtain the

Z2-universal lattices in the following lemma. We note that those in i) through iv) can be

obtained from [15, Lemma 1]; however, that lemma is stated without proof and we have

chosen to include the arguments here for the sake of completeness.

Lemma 3.2.10. All Z2-lattices of the following types are Z2-universal.

i) 〈ε1, ε2, ε3, λε4〉, where λ = 1, 2, 4;

ii) 〈ε1, ε2, 2ε3, λε4〉, where λ = 2, 4, 8;

iii) 〈ε1, 2ε2, 2ε3, λε4〉, where λ = 2, 4;

iv) 〈ε1, 2ε2, 4ε3, λε4〉, where λ = 4, 8;

v) Â ⊥ 〈ε〉;
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vi) Â ⊥ 〈2ε1, λε2〉, where λ = 2, 4, 8.

For the proof of Proposition 3.2.12, it will also be useful to identify several lattices

that fail to represent Z×2 or 2Z×2 .

Lemma 3.2.11. Z×2 6→ 〈ε1, 2ε2, 2ε3〉, 2Z×2 6→ 〈ε1, 2ε2, 4ε3〉, and 2Z×2 6→ Â ⊥ 〈2ε〉.

Proof. First consider L ∼= 〈ε1, 2ε2, 2ε3〉. If λ ∈ Z×2 ∩ q(L), then there exist a1 ∈ Z×2 and

a2, a3 ∈ Z2 such that λ = a2
1ε1 + 2a2

2ε2 + 2a2
3ε3. If a2, a3 ∈ 2Z2, then λ ≡ ε1 (mod 8Z2).

If a2 ∈ Z×2 and a3 ∈ 2Z2, then λ ≡ ε1 + 2ε2 (mod 8Z2). If a2 ∈ 2Z2 and a3 ∈ Z×2 , then

λ ≡ ε1 + 2ε3 (mod 8Z2). If a2, a3 ∈ Z×2 , then λ ≡ ε1 + 2ε2 + 2ε3 (mod 8Z2). When ε2 ≡

ε3 (mod 4Z2), it follows that ε1 +2ε2 ≡ ε1 +2ε3 (mod 8Z2). Otherwise ε2 ≡ −ε3 (mod 4Z2),

and ε1 ≡ ε1+2ε2+2ε3 (mod 4Z2). So in either case, L represents at most three squareclasses

of units. Hence, Z×2 6→ L.

Next consider L ∼= 〈ε1, 2ε2, 4ε3〉. If λ ∈ Z×2 is such that 2λ ∈ q(L), then there exist

a1 = 2b1 ∈ 2Z2 and a2, a3 ∈ Z2 such that 2λ = a2
1ε1 + 2a2

2ε2 + 4a2
3ε3. From this it follows

that λ = 2b2
1ε1 + a2

2ε2 + 2a2
3ε3. So 2Z×2 → L would imply that Z×2 → 〈ε2, 2ε1, 2ε3〉, which

we have just shown to be impossible.

Finally consider L ∼= Â ⊥ 〈2ε〉. Suppose 2ε + 8 → L. Then there exist v ∈ Â

and µ ∈ Z2 such that 2ε + 8 = q(v) + 2µ2ε. It must be that v ∈ 2Â, since otherwise

q(v) ∈ Z×2 and hence q(v) + 2µ2ε ∈ Z×2 . Also, µ ∈ Z×2 , since otherwise q(v) + 2µ2ε ∈ 4Z2.

So µ2 ≡ 1 (mod 8Z2); that is, there exists ξ ∈ Z2 such that 1− µ2 = 8ξ. Thus,

q(v)− 8 = 2ε(1− µ2) = 16εξ.

But ord2q(v) is even, so that ord2(q(v)− 8) = 2 or 3, a contradiction. So 2ε+ 8 6→ L, and

the assertion is proved.

We will now prove the 2-adic analogue of Proposition 3.1.2.

Proposition 3.2.12. Let L be an integral Z2-lattice of rank n ≥ 5. If L is Z2-universal,

then L is primitively Z2-universal.
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Proof. Since L is Z2-universal, it must be that nL = Z2 and so sL = Z2 or 1
2
Z2. We first

consider the case when sL = 1
2
Z2. So L(−1) 6= 0 and L ∼= L(−1) ⊥ K, where sK ⊆ Z2. If

r−1 > 2, or r−1 = 2 and L(−1) is isotropic, then L is split by Ĥ and it follows that L is

primitively Z2-universal. So we need only consider further those lattices L for which there

is a splitting of the type L ∼= Â ⊥ K, where sK ⊆ Z2. If nK ⊆ 4Z2, then Â ⊥ K cannot

represent any element of 2Z×2 and is thus not Z2-universal. So 2Z2 ⊆ nK, and it follows

that sK = Z2 or 2Z2. If sK = Z2, then L primitively Z2-universal follows from Example

2.1.5, Lemma 3.2.10 v) and Lemma 1.3.2. So we are left to further consider only those

lattices for which sK = nK = 2Z2. So

L ∼= Â ⊥ K ∼= Â ⊥ 〈2ε〉 ⊥ K ′, with sK ′ ⊆ 2Z2.

By Lemma 3.2.11, the sublattice Â ⊥ 〈2ε〉 does not represent all elements of 2Z×2 . Since L

is Z2-universal, it follows from Lemma 1.3.1 that nK ′ ⊇ 8Z2. Hence,

8Z2 ⊆ nK ′ ⊆ sK ′ ⊆ 2Z2.

If nK ′ = sK ′ = 2tZ2 for t = 1, 2, 3, then L is split by a sublattice Â ⊥ 〈2ε1, 2
tε2〉. All such

lattices are Z2-universal by Lemma 3.2.10 v), and it follows from Lemma 1.3.2 that L is

primitively Z2-universal, since n ≥ 5. Finally, consider the case when nK ′ = 8Z2 = 2sK ′.

Then L is split by Â ⊥ 〈2ε〉 ⊥ P , where P ∼= ( 8 4
4 8 ) or ( 0 4

4 0 ). Note first that 8Z×2
∗→ P . If

λ ∈ 4Z×2 , then for any v
∗
∈ P , λ− q(v) ∈ 4Z×2 → Â; hence, λ

∗→ Â ⊥ P . If λ ∈ 16Z2, then

λ − 8ε ∈ 8Z×2
∗→ P ; hence, λ

∗→ 〈2ε〉 ⊥ P . This completes the argument in the case that

sL = 1
2
Z2.

Now we consider the case when sL = Z2. Then r−1 = 0 and r0 > 0. We break down

the argument according to the size of r0.

r0 ≥ 4: L is split by a proper unimodular sublattice of rank 4, which is Z2-universal

by Proposition 3.2.5. Since n ≥ 5, it follows from Lemma 1.3.2 that L is primitively

Z2-universal.
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r0 = 3: L ∼= 〈ε1, ε2, ε3〉 ⊥ K, where sK ⊆ 2Z2. Since 2Z×2 → 〈ε1, ε2, ε3〉 by Lemma

3.2.9, we need to consider only the case when Z×2 6→ 〈ε1, ε2, ε3〉, since otherwise 〈ε1, ε2, ε3〉

is Z2-universal and L is primitively Z2-universal by Lemma 1.3.2. Since L is Z2-universal,

we must then have nK ⊇ 4Z2, by Lemma 1.3.1. So we have

4Z2 ⊆ nK ⊆ sK ⊆ 2Z2.

If nK = sK = 2tZ2, for t = 1, 2, then L is split by 〈ε1, ε2, ε3, 2
tε4〉 which is Z2-universal.

Otherwise, nK = 4Z2 = 2sK, in which case L is split by 〈ε1, ε2, ε3〉 ⊥ P , where P ∼= ( 4 2
2 4 )

or ( 0 2
2 0 ). Then 4Z×2

∗→ P . If λ ∈ 8Z2, then λ − 4ε1 ∈ 4Z×2 and so λ
∗→ 〈ε1〉 ⊥ P . That

completes this subcase.

r0 = 2: L ∼= 〈ε1, ε2〉 ⊥ K, with sK ⊆ 2Z2. Since L is Z2-universal, we have nK =

sK = 2Z2 by Corollary 3.2.3. So r1 > 0 and L(1) is proper. So if r1 ≥ 2, L is split by a

sublattice 〈ε1, ε2, 2ε3, 2ε4〉, which is Z2-universal by Lemma 3.2.10 ii) and the conclusion

follows. So we further consider the case r1 = 1; that is,

L ∼= 〈ε1, ε2, 2ε3〉 ⊥ K ′, with sK ′ ⊆ 4Z2.

We further assume that 2Z×2 6→ 〈ε1, ε2, 2ε3〉, since otherwise 〈ε1, ε2, 2ε3〉 is Z2-universal and

there is nothing to prove. So, since L is Z2-universal, we must have nK ′ 6⊆ 16Z2. So

8Z2 ⊆ nK ′ ⊆ sK ′ ⊆ 4Z2.

If nK ′ = sK ′ = 2tZ2, with t = 2, 3, then L is split by a Z2-universal lattice of the type

〈ε1, ε2, 2ε3, 2
tε4〉. Otherwise, nK ′ = 8Z2 = 2sK ′ and L is split by a lattice of the type

〈ε1, ε2, 2ε3〉 ⊥ P , with P ∼= ( 8 4
4 8 ) or ( 0 4

4 0 ). So 8Z×2
∗→ P ; let v

∗
∈ P such that q(v) = 8.

If λ ∈ 4Z×2 , then λ − q(v) ∈ 4Z×2 → 〈ε1, ε2, 2ε3〉 (since Z×2 → 〈ε1, ε2, 2ε3〉), and λ
∗→ L.

Finally if λ ∈ 16Z2, then λ− 22 · 2ε3 ∈ 8Z×2 and so λ− 22 · 2ε3
∗→ P and λ

∗→ 〈2ε3〉 ⊥ P .

r0 = 1: L ∼= 〈ε1〉 ⊥ K, with sK ⊆ 2Z2. Since L is Z2-universal, nK = sK = 2Z2

(since otherwise q(L) ∩ 2Z×2 = ∅). So r1 > 0 and L(1) is proper. We consider the various
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possibilities for r1. If r1 ≥ 3, then L is split by 〈ε1, 2ε2, 2ε3, 2ε4〉 which is Z2-universal.

If r1 = 2, then L ∼= 〈ε1, 2ε2, 2ε3〉 ⊥ K ′, with sK ′ ⊆ 4Z2. Since L is Z2-universal and

Z×2 6→ 〈ε1, 2ε2, 2ε3〉 by Lemma 3.2.11, it follows from Lemma 1.3.1 that nK ′ = sK ′ = 4Z2.

So r2 > 0 and L(2) is proper, so L is split by 〈ε1, 2ε2, 2ε3, 4ε4〉, which is Z2-universal.

The only remaining case is when r1 = 1. Then L ∼= 〈ε1, 2ε2〉 ⊥ K, with sK ⊆ 4Z2.

Since L is Z2-universal and Z×2 6→ 〈ε1, 2ε2〉 by Lemma 3.2.11, it follows from Lemma 1.3.1

that nK = sK = 4Z2. So r2 > 0 and L(2) is proper. If r2 ≥ 2, then L is split by

〈ε1, 2ε2, 4ε3, 4ε4〉, which is Z2-universal. Finally, it remains to consider the subcase when

r2 = 1. Then L ∼= 〈ε1, 2ε2, 4ε3〉 ⊥ K ′′, with sK ′′ ⊆ 8Z2. Since L is Z2-universal and

2Z×2 6→ 〈ε1, 2ε2, 4ε3〉 by Lemma 3.2.11, it follows from Lemma 1.3.1 that nK ′ = sK ′ = 8Z2.

So r3 > 0 and L(3) is proper, and L is split by 〈ε1, 2ε2, 4ε3, 8ε4〉, which is Z2-universal.

3.2.3 Universality criterion on Z2-lattices

Recall that an arbitrary Z2-lattice L has a Jordan splitting

L ∼= L1 ⊥ L2 ⊥ . . . ⊥ Lt, (3.6)

where each Li is sLi-modular, and sLt ⊂ . . . ⊂ sL2 ⊂ sL1.2 We will refer to L1 as a leading

Jordan component of L. Note that nL = nL1 and sL = sL1. While the Jordan components

themselves are not unique, the number t and the ideals nLi and sLi are invariants of the

lattice. A component Li is said to be either proper or improper depending upon whether

nLi = sLi or nLi = 2sLi. The component Li has an orthogonal basis if and only if Li is

proper (see, e.g., [14, 93:15]).

We first make some observations regarding the case sL = 1
2
Z2. In this case the leading

Jordan component L1 of L is improper 1
2
Z2-modular. So

L1
∼= Ĥ ⊥ . . . ⊥ Ĥ ⊥ P,

2Note that we have diverged here from the subscripting notation used so far, instead adopting the more

standard convention used in [10] and [14].
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where P ∼= Ĥ or Â, by (1.1). Here Ĥ and Â are binary lattices corresponding to the quadratic

forms xy and x2 + xy + y2, respectively. Since q∗(Ĥ) = Z2, L is primitively Z2-universal

whenever L is split by Ĥ. So it will only be necessary to analyze further the lattices in which

L1
∼= Â. In that case q∗(L1) = q∗(Â) = Z×2 . Also, q(L1) = q(Â) = {a ∈ Z2 : ord2 a is even}.

Next we will discuss the case sL = Z2. Since L1 is proper unimodular in this case,

there exists a unit ε1 such that 〈ε1〉 splits L; say L ∼= 〈ε1〉 ⊥ K. If nK ⊆ 4Z2, then L

represents at most half of the units of Z2 (those congruent to ε1 modulo 4Z2), and so L is

not Z2-universal. Hence in order for L to be Z2-universal we must have

2Z2 ⊆ nK ⊆ sK ⊆ Z2.

Suppose first that sK = Z2. Then since L1 is proper, we have rk L1 ≥ 2, and

L ∼= 〈ε1, ε2〉 ⊥ M, for some ε2. Again if nM ⊆ 4Z2, L fails to be Z2-universal, by Lemma

3.2.2. So for L to be Z2-universal we must have

2Z2 ⊆ nM ⊆ sM ⊆ Z2.

If sM = Z2, then rk L1 ≥ 3 and L is split by 〈ε1, ε2, ε3〉 for some ε3. Otherwise,

nM = sM = 2Z2, and it follows that L2 is proper and L is split by 〈ε1, ε2, 2ε3〉 for some ε3.

If it is not the case that sK = Z2, then nK = sK = 2Z2. If this happens L2 is proper

and L is split by 〈ε1, 2ε2〉 for some ε2; say L ∼= 〈ε1, 2ε2〉 ⊥ N. Now Lemma 3.2.11 implies

Z×2 6→ L, so it must be that

4Z2 ⊆ nN ⊆ sN ⊆ 2Z2,

whenever L is Z2-universal (since Z×2 6→ L if nN ⊆ 8Z2, by the Local Square Theorem).

If sN = 2Z2, then rk L2 ≥ 2 and L is split by 〈ε1, 2ε2, 2ε3〉 for some ε3. Otherwise

nN = sN = 4Z2, from which it then follows that L3 is proper and L is split by 〈ε1, 2ε2, 4ε3〉

for some ε3.

We summarize the preceding discussion as follows: If sL = Z2 and L is Z2-universal,

then L has a splitting of the following type:

L ∼= T ⊥ T ′,with T ∼= 〈ε1, 2
α2ε2, 2

α3ε3〉, (3.7)
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where α2 = 0 or 1, α3 ≤ α2 + 1, and sT ′ ⊆ 2α3Z2 or T ′ = 0.

Proposition 3.2.13. Let L be a Z2-lattice of rank at most 3. Then L is Z2-universal if

and only if one of the following holds:

L is split by Ĥ; (3.8)

L ∼= Â ⊥ 〈ε〉; (3.9)

L ∼= 〈ε1, ε2, 2
α3ε3〉, α3 ≤ 1 and L is isotropic. (3.10)

Proof. To prove the forward implication suppose L is Z2-universal. We first consider the

case that sL = 1
2
Z2. In this case either L1

∼= Ĥ and (3.8) holds, or L ∼= Â ⊥ 〈2tε〉, for some

non-negative integer t. If t ≥ 1, then L is not Z2-universal. We can see this when t = 1 by

Lemma 3.2.11, and when t ≥ 2, as n(〈2tε〉) ⊆ 4Z2 it will not represent elements of order 1;

hence q(L) ∩ 2Z×2 = ∅. This will leave only t = 0 so that L ∼= Â ⊥ 〈ε〉, in which case (3.9)

holds.

Next consider the case that sL = Z2. Since L is Z2-universal, it has the splitting

(3.7), with T ′ = 0 by the preceding discussion. So L must be isotropic by Lemma 2.3.2. If

α2 = 1, then L ∼= 〈ε1, 2ε2, 2ε3〉 or 〈ε1, 2ε2, 4ε3〉. But Lemma 3.2.11 implies that neither of

these lattices are Z2-universal. So α2 = 0 and it follows α3 ≤ α2 + 1 = 1. Hence the case

(3.10) holds.

To prove the reverse implication, first note that we have already proved L is Z2-

universal when case (3.8) holds in Example 2.1.1, and when case (3.9) holds in Lemma

3.2.10 v). To complete the proof assume (3.10) holds. Without loss of generality, let

ε1 = 1. First consider the case α3 = 0. Since L is isotropic, at least one of ε2, ε3 is

congruent to 3 modulo 4Z2; (say ε2). Then Z×2 is represented by 〈1, ε2〉, by Proposition

3.2.2 i). Since 2Z×2 is always represented by 〈1, ε2, ε3〉, we have the result.

Next, consider the case α3 = 1. In order to eliminate subscripts and thereby simplify

the notation, we will denote ε2 simply by ε and ε3 by δ for the remainder of the proof. So
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from here on, we consider lattices L ∼= 〈1, ε, 2δ〉. Note that 〈1, ε, 2δ〉 always represents Z×2 .

But whether it can represent all of 2Z×2 , depends on ε and δ. Using the criterion of (2.1),

it can be checked that L is never isotropic when ε ≡ 3(mod 8Z2).

We begin by considering the case ε ≡ 1(mod 8Z2). Here we have q(〈1, ε〉) ∩ Z×2 =

{1, 5}(Z×2 )2, by Proposition 3.2.2 i). In this case, S2(〈1, ε, 2δ〉) = (ε, 2δ)2 = 1 and

(−1,−d(〈1, ε, 2δ〉))2 = (−1,−2εδ)2 = (−1,−1)2(−1, 2)2(−1, δ)2 = −(−1, δ)2. Using the

criterion of (2.1), L is isotropic if and only if −(−1, δ)2 = 1, which is true if and only if

δ ≡ 3(mod 4Z2). So there exists λ ∈ Z2 such that δ = 3+4λ; thus, 2δ+1 ≡ 7(mod 8Z2) and

2δ+5 ≡ 3(mod 8Z2). Hence, Z×2 → L. Also, 〈1, ε〉 represents 2·1 = 12+12 and 2·5 = 12+32.

If δ ≡ 3(mod 8Z2), then 2 · 3 ≡ 2δ(mod 16Z2) and 2 · 7 ≡ 22 + 22ε + 2δ(mod 16Z2).

So 6(Z×2 )2 ∪ 14(Z×2 )2 → L. If δ ≡ 7(mod 8Z2), then 2 · 7 ≡ 2δ(mod 16Z2) and

2 · 3 ≡ 22 + 22ε + 2δ(mod 16Z2). So 6(Z×2 )2 ∪ 14(Z×2 )2 → L. In either case, we con-

clude that 2Z×2 → L, and L is Z2-universal.

Next we consider the case ε ≡ 5(mod 8Z2). As in the previous case, q(〈1, ε〉) ∩ Z×2 =

{1, 5}(Z×2 )2. In this case, L is isotropic if and only if δ ≡ 1(mod 4Z2). So 2δ + 1 ∼= 3 and

2δ + 5 ∼= 7. Hence, Z×2 → L. Also, 〈1, ε〉 represents 2 · 3 ∼= 72 + 12 · 5 and 2 · 7 ∼= 32 + 12 · 5.

If δ ≡ 1(mod 8Z2), then 2 · 1 ∼= 2δ and 2 · 5 ∼= 22 + 22ε+ 2δ → L. If δ ≡ 5(mod 8Z2), then

2 · 5 ∼= 2δ and 2 · 1 ∼= 22 + 22ε+ 2δ → L. In either case, we conclude that 2Z×2 → L, and L

is Z2-universal.

Finally consider the case ε ≡ 7(mod 8Z2). In this case, L is isotropic regardless of

the value of δ. Here the binary unimodular lattice 〈1, ε〉 represents all elements of Z×2 , by

Proposition 3.2.2 i), and it follows that 〈1, ε〉 represents all elements of Z2 of even order.

Let µ ∈ Z×2 . If µ − δ ∈ 8Z2, then 2µ ∼= 2δ → L. If µ − δ ∈ 2Z×2 , then 2µ − 2δ ∈ 4Z×2

(hence has even order) and it follows that 2µ − 2δ → 〈1, ε〉. Finally, if µ − δ ∈ 4Z×2 , then

µ ∼= (δ+4)(write µ−δ = 4γ ; γ = 1+2ρ ∈ Z×2 ; then µ ≡ (δ+4)(mod 8Z2)). So there exists

λ ∈ Z×2 such that 2µ = 2(δ + 4)λ2. Thus, 2µ− 2δλ2 = 8λ2 → 〈1, ε〉, since ε ≡ 7(mod 8Z2).

Hence, 2Z×2 → L, and L is Z2-universal. This completes the proof.
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Next we will state criteria to identify Z2-universal lattices of rank at least 4. Through-

out the following proof we will use the list of Z2-universal lattices stated in Lemma 3.2.10.

Theorem 3.2.14. Let L be a Z2-lattice of rank at least 4. Then L is Z2-universal if and

only if one the following holds:

L is split by Ĥ; (3.11)

L is split by Â ⊥ 〈ε〉; (3.12)

L ∼= Â ⊥ K and nK = 2sK = 2Z2; (3.13)

L ∼= Â ⊥ 〈2ε〉 ⊥M and 8Z2 ⊆ nM ; (3.14)

or L has a splitting (3.7) and one of the following holds:

α2 = α3 = 0 and either T is isotropic or 4Z2 ⊆ nT ′; (3.15)

α2 = 0, α3 = 1 and either T is isotropic or 8Z2 ⊆ nT ′; (3.16)

α2 = α3 = 1 and 4Z2 ⊆ nT ′; (3.17)

α2 = 1, α3 = 2 and 8Z2 ⊆ nT ′. (3.18)

Proof. Suppose first that L is Z2-universal. Consider the case that sL = 1
2
Z2. Then either

L1 is split by Ĥ, hence (3.11) holds, or L1
∼= Â, and L ∼= Â ⊥ K, with sK ⊆ Z2. Since

q(L) ∩ 2Z×2 = ∅, whenever nK ⊆ 4Z2, we need 2Z2 ⊆ nK ⊆ sK ⊆ Z2. If nK = sK = Z2,

then K is split by 〈ε〉 for some ε; hence (3.12) holds. If nK = 2sK = 2Z2, then (3.13)

holds. If nK = sK = 2Z2, then K is split by 〈2ε〉, for some ε. Thus, L ∼= Â ⊥ 〈2ε〉 ⊥ M .

Since 2Z×2 6→ Â ⊥ 〈2ε〉, by Lemma 3.2.11 and 2Z×2 6→ L if nM ⊆ 16Z2, we must have

8Z2 ⊆ nM ; hence (3.14) holds.

Now consider the case when sL = Z2. So L has a splitting (3.7). If α2 = α3 = 0 and

T is anisotropic, then Z×2 6→ T , by Lemma 2.3.2. So Z×2 6→ L, whenever nT ′ ⊆ 8Z2, by

Local Square Theorem. Thus, 4Z2 ⊆ nT ′, and (3.15) holds. If α2 = 0, α3 = 1 and T is
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anisotropic, then 2Z×2 6→ T , again by Lemma 2.3.2. So 2Z×2 6→ L, whenever nT ′ ⊆ 16Z2.

Thus, 8Z2 ⊆ nT ′ is needed, thus (3.16) holds. If α2 = α3 = 1, then Z×2 6→ T , by Lemma

3.2.11. Again by Local Square Theorem Z×2 6→ L, whenever nT ′ ⊆ 8Z2. Hence we need

4Z2 ⊆ nT ′, thus (3.17) holds. Finally, if α2 = 1, α3 = 2, then 2Z×2 6→ T , again by Lemma

3.2.11. Then 2Z×2 6→ L, whenever nT ′ ⊆ 16Z2, so we need 8Z2 ⊆ nT ′, thus (3.18) holds.

We will now establish the sufficiency of the conditions (3.11) through (3.18). Note

that L is Z2-universal when (3.11) or (3.12) holds, follows directly from Proposition 3.2.13.

For case (3.13) we only need to show that 2Z×2 ⊆ q(L), since Â represents all of Z×2 by

itself. Here K contains an improper unimodular sublattice, so that 2Z×2 → K; hence we

have the result. When (3.14) holds, with 8Z2 ⊆ nM ⊆ sM ⊆ 2Z2, we have nM = 2tZ2 for

t = 1, 2 or 3. So there is a u ∈M such that q(u) ∈ 2tZ×2 and the sublattice Â ⊥ 〈2ε〉 ⊥ Z2u

of L is Z2-universal, by Lemma 3.2.10 vi).

We can see in (3.15) and (3.16) when the conditions on α2 and α3 hold and T is

isotropic, then L is Z2-universal follows from Proposition 3.2.13. Suppose α2 = α3 = 0

and 4Z2 ⊆ nT ′. Then nT ′ = 2tZ2 for t = 0, 1 or 2. So there exists a u ∈ T ′ such that

q(u) ∈ 2tZ×2 . Then the sublattice T ⊥ Z2u of L is Z2-universal by Lemma 3.2.10 i). We

can use the similar argument to show that L is Z2-universal under the conditions stated in

cases (3.16), (3.17) and (3.18), applying ii), iii) and iv) of Lemma 3.2.10, respectively.

Remark 3.2.15. When L is a diagonal Z2-lattice of rk L ≥ 5 , which is universal, then by

Theorem 3.2.14 we can observe that it is always split by a Z2-universal sublattice of rank

at most 4. This in turn guarantees the primitive Z2-universality of L.

Using the above theorem we can also establish the following result:

Corollary 3.2.16. Any Z2-universal lattice contains a Z2-universal sublattice of rank at

most 4.

We will record the following special case for later reference:
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Corollary 3.2.17. Let L be a quaternary Z2-lattice with sL = Z2. If L is Z2-universal,

then L has a splitting

L ∼= 〈ε1, 2
α2ε2, 2

α3ε3, 2
α4ε4〉, (3.19)

where α2 = 0 or 1, and α3 ≤ α2 + 1.

Remark 3.2.18. For quaternary diagonal lattices, the conditions (3.15) - (3.18) in Theo-

rem 3.2.14 correspond to the criteria given in (15) and (16) in [15, Lemma 1].

Remark 3.2.19. There are Z2-universal lattices L with rk L ≥ 5, such that sL ⊆ Z2 but

which are not diagonalizable. For example, L ∼= 〈1, 1, 1〉 ⊥ ( 4 2
2 4 ) .

3.2.4 Criteria for primitive universality of Z2-lattices

In this section we will establish criteria for a Z2-lattice to be primitively Z2-universal.

As we have already provided the criteria for Z2-universality in the previous subsection it

suffices to identify lattices which are Z2-universal but not primitively Z2-universal. For this

purpose, it is only necessary to consider lattices of rank at most 4, in light of Proposition

3.2.12.

Proposition 3.2.20. Let L be a Z2-universal lattice of rank at most 3. Then L is primi-

tively Z2-universal unless

L ∼= 〈ε1, ε2, 2ε3〉 and L is isotropic.

In the exceptional case, L is not primitively Z2-universal.

Proof. Note that with the assumption that L is a Z2-universal lattice of rank at most 3,

the possibilities for L are as in Proposition 3.2.13. Since Ĥ is primitively Z2-universal,

whenever L is split by Ĥ, result follows immediately. When L ∼= 〈ε1, ε2, ε3〉, Proposition

3.2.4 implies that L is primitively Z2-universal. Suppose L ∼= Â ⊥ 〈ε〉. We know q∗(Â) =
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Z×2 . Then for any a ∈ 2Z2, a − ε ∈ Z×2 → Â. So, a
∗−→ Â ⊥ 〈ε〉. It leaves the case that

L ∼= 〈1, ε, 2δ〉 which is isotropic. We will show that no isotropic L ∼= 〈1, ε, 2δ〉 primitively

represents any element of 4Z×2 . Let x, y, z ∈ Z2 with at least one of x, y, z ∈ Z×2 , and write

L(x, y, z) := x2 + εy2 + 2δz2. Then L(x, y, z) ∈ Z×2 ∪ 2Z×2 unless x, y ∈ Z×2 . In that case,

x2 ≡ y2 ≡ 1(mod 8Z2) and L(x, y, z) ≡ 1 + ε+ 2δz2(mod 8Z2).

Now consider the cases identified in the proof of Proposition 3.2.14 in which L is

isotropic. If ε ≡ 1(mod 8Z2), then δ ≡ 3(mod 8Z2) and L(x, y, z) ≡ 0, 2(mod 8Z2). If

ε ≡ 5(mod 8Z2), then δ ≡ 1(mod 8Z2) and L(x, y, z) ≡ 0, 6(mod 8Z2). If ε ≡ 7(mod 8Z2),

then L(x, y, z) ≡ 0, 2, 6(mod 8Z2). So in all cases L(x, y, z) 6∈ 4Z×2 . Hence, L is not

primitively Z2-universal.

Theorem 3.2.21. Let L be a Z2-universal lattice of rank 4. Then L is primitively Z2-

universal unless one of the following holds:

L ∼= Â ⊥ A; (3.20)

L ∼= Â ⊥ 〈2ε, 2tδ〉, where t = 1 or 3; (3.21)

or L has a splitting (3.19) with α2 = 0 and one of the following holds:

α3 = α4 = 0 and ε1 ≡ ε2 ≡ ε3 ≡ ε4(mod 4Z2); (3.22)

α3 = 0, α4 = 2 and ε1 ≡ ε2 ≡ ε3(mod 4Z2); (3.23)

α3 = α4 = 1, ε1ε2 ≡ 1(mod 8Z2), ε1 ≡ ε3 ≡ ε4(mod 4Z2); (3.24)

α3 = α4 = 1, ε1ε2 ≡ 3(mod 8Z2), ε3 ≡ −ε4(mod 4Z2); (3.25)

α3 = α4 = 1, ε1ε2 ≡ 5(mod 8Z2), −ε1 ≡ ε3 ≡ ε4(mod 4Z2); (3.26)

α3 = 1, α4 = 3 and 〈ε1, ε2, 2ε3〉 is anisotropic; (3.27)
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or L has a splitting (3.19) with α2 = 1 and one of the following holds:

α3 = 1, α4 = 2, ε2ε3 ≡ 1(mod 8Z2), ε1 ≡ ε2 ≡ ε4(mod 4Z2); (3.28)

α3 = 1, α4 = 2, ε2ε3 ≡ 3(mod 8Z2), ε1 ≡ −ε4(mod 4Z2); (3.29)

α3 = 1, α4 = 2, ε2ε3 ≡ 5(mod 8Z2), ε1 ≡ −ε2 ≡ ε4(mod 4Z2); (3.30)

α3 = 2, α4 = 3, ε1ε3 ≡ 1(mod 8Z2), ε1 ≡ ε2 ≡ ε4(mod 4Z2); (3.31)

α3 = 2, α4 = 3, ε1ε3 ≡ 3(mod 8Z2), ε2 ≡ −ε4(mod 4Z2); (3.32)

α3 = 2, α4 = 3, ε1ε3 ≡ 5(mod 8Z2), −ε1 ≡ ε2 ≡ ε4(mod 4Z2). (3.33)

In cases (3.20) through (3.33), L is not primitively Z2-universal.

Remark 3.2.22. Some of these cases are covered in [4, Proposition 3].

The proof of the Theorem 3.2.21 will be presented through the series of lemmas dealing

with the individual cases in the statement. As a result of Proposition 3.2.12, we need only

consider lattices of rank 4. With the assumption L is Z2-universal to establish primitive

Z2-universality it suffices to show that 4Z2
∗−→ L. Also for a fixed positive integer k , there

are four unit squareclasses of elements in 2kZ×2 . Hence to prove 2kZ×2
∗−→ L, it suffices to

find four elements of q∗(L) ∩ 2kZ×2 that are distinct modulo squares.

Lemma 3.2.23. Let L ∼= Â ⊥ 〈2ε, 2tδ〉, where t ≥ 1. Then L is primitively Z2-universal

if and only if t = 2.

Proof. By (3.14), it suffices to consider 1 ≤ t ≤ 3. Take first the case t = 1. So L ∼= Â ⊥

〈2ε, 2δ〉. Write ε + δ = 2λ, for some λ ∈ Z2. Suppose a ∈ q∗(L) ∩ 4Z2. Then there exists

v ∈ Â and x, y ∈ Z2 such that;

a = q(v) + 2εx2 + 2δy2, (3.34)

where at least one of x, y is in Z×2 or v
∗
∈ Â. If v

∗
∈ Â, then q(v) ∈ Z×2 and right hand side

of (3.34) would be in Z×2 . So v ∈ 2Â and at least one of x, y is in Z×2 ; hence they both must

38



lie in Z×2 , since otherwise the right hand side of (3.34) is in 2Z×2 . So, there exist k, l ∈ Z2

such that x2 = 1 + 8k, y2 = 1 + 8l. Substituting this in (3.34) and solving for q(v) gives

q(v) = a− 2(ε+ δ)− 16(k + l). (3.35)

If λ ∈ 4Z2, then a 6 ∗−→ L for any α ∈ 8Z×2 (since the right hand side of (3.35) is in

8Z×2 and Â does not represent any element of odd order). If λ ∈ 2Z×2 , then a 6 ∗−→ L for any

a ∈ 16Z2. If λ ∈ Z×2 , then a = 4(λ+ 2) 6 ∗−→ L. Hence L is not primitively Z2-universal when

t = 1.

Next consider the case t = 3. So L ∼= Â ⊥ 〈2ε, 8δ〉. Assume that for a ∈ Z2,

4a
∗−→ Â ⊥ 〈2ε, 8δ〉. Then for some λ ∈ Z2, 4a = 4λ+2εx2+8δy2; y ∈ Z×2 , x ∈ 2Z2; x = 2x0.

So 4a = 4λ+ 8εx2
0 + 8δy2. This will reduce to a = λ+ 2εx2

0 + 2δy2. Thus, for any a ∈ 4Z2

such that a 6 ∗−→ Â ⊥ 〈2ε, 2δ〉, we have 4a 6 ∗−→ Â ⊥ 〈2ε, 8δ〉. Thus, Â ⊥ 〈2ε, 8δ〉 is not

primitively Z2-universal follows by the case t = 1, proved above.

It remains to prove the case t = 2. So L ∼= Â ⊥ 〈2ε, 4δ〉. First note that 4δ, 4δ + 8ε,

4δ + 16, 4δ + 8ε + 16 are in distinct squareclasses of 4Z×2 , and the vector corresponds to

4δ guarantees the primitive representation. So, 4Z×2 is primitively represented by L. Now,

take any α ∈ 8Z2. Then α − 4δ ∈ 4Z×2 . Hence it is represented by Â which implies 8Z2 is

primitively represented by Â ⊥ 4δ. Thus L is primitively Z2-universal.

Proof of Theorem 3.2.21 when sL = 1
2
Z2:

Since L is assumed to be Z2-universal, it holds one of (3.11) through (3.14). The result is

clear if L is split by either Ĥ or Â ⊥ 〈ε〉, since they are primitively Z2-universal lattices. If

case (3.13) holds, either L ∼= Â ⊥ H or L ∼= Â ⊥ A. If L ∼= Â ⊥ H, then L is primitively

Z2-universal since 2Z×2
∗−→ H. If L ∼= Â ⊥ A, Then L is not primitively Z2-universal, by

Example 2.1.5. In the case (3.14), we have L ∼= Â ⊥ 〈2ε, 2tδ〉, t ≥ 1. This is covered by

Lemma 3.2.23.
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For the remainder of this subsection, L will denote a Z2-lattice with the splitting

(3.19).

Lemma 3.2.24. Let αi = 0 for all 2 ≤ i ≤ 4. Then L is primitively Z2-universal if and

only if there exist 1 ≤ i, j ≤ 4, such that εi 6≡ εj(mod 4Z2).

Proof. If there exist i, j such that εi 6≡ εj(mod 4Z2), then L contains a ternary Z2-universal

sublattice, by Lemma 2.3.1 and Proposition 3.2.13. Hence L is primitively Z2-universal.

Conversely, assume that εi ≡ εj(mod 4Z2) for all 1 ≤ i, j ≤ 4. By scaling if necessary

we may assume without loss of generality that ε1 = 1 and εi ≡ 1(mod 4Z2) for 2 ≤

i ≤ 4. So εi ≡ 1 or 5(mod 8Z2). If all of ε2, ε3, ε4 are congruent to 1 modulo 8Z2, then

S2(〈1, ε2, ε3, ε4〉) = S2(〈1, 1, 1, 1〉) = 1 = −(−1,−1)2 and d(〈1, ε2, ε3, ε4〉) = d(〈1, 1, 1, 1〉) =

1. If exactly one of ε2, ε3, ε4 is congruent to 1 modulo 8Z2; (say ε2 ≡ 1(mod 8Z2)),

then S2(〈1, ε2, ε3, ε4〉) = S2(〈1, 1, 5, 5〉) = (5, 5)2 = 1 = −(−1,−1)2 and d(〈1, ε2, ε3, ε4〉) =

d(〈1, 1, 5, 5〉) = 1. So in both cases it follows from (2.2) that L is anisotropic, hence not

primitively Z2-universal. If exactly two of ε2, ε3, ε4 are congruent to 1 modulo 8Z2, then

L ∼= 〈1, 1, 1, 5〉. Then q(v) 6≡ 4(mod 8Z2) for any v
∗
∈ L; thus L is not primitively Z2-

universal. If all of ε2, ε3, ε4 are congruent to 5 modulo 8Z2, then L ∼= 〈1, 5, 5, 5〉 and we can

reduce this to the previous case by scaling by 5.

Lemma 3.2.25. Let α2 = α3 = 0 and α4 = 2. Then L is primitively Z2-universal if and

only if there exist 1 ≤ i, j ≤ 3 such that εi 6≡ εj(mod 4Z2).

Proof. If there exist 1 ≤ i, j ≤ 3 such that εi 6≡ εj(mod 4Z2), then T ∼= 〈ε1, ε2, ε3〉 is

isotropic by Lemma 2.3.1 and so Z2-universal by Proposition 3.2.13. Hence L is primitively

Z2-universal. Conversely, assume that εi ≡ εj(mod 4Z2) for all 1 ≤ i, j ≤ 3. Without loss

of generality, we may assume that ε1 = 1 and so ε2 ≡ ε3 ≡ 1(mod 4Z2). Since all squares

are congruent to 0 or 1 modulo 4Z2, it follows that q(v) 6≡ 0(mod 4Z2) for any v
∗
∈ T . Now

consider a = 4(ε4 − ε2ε3). If a ∈ q∗(L), then there would exist v ∈ T and b ∈ Z2 such

that a = q(v) + 4ε4b
2, where either v

∗
∈ T or b ∈ Z×2 . But we just showed that v 6

∗
∈ T as
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a − 4ε4b
2 ∈ 4Z2. So b ∈ Z×2 and thus b2 ≡ 1(mod 8Z2); say b2 = 1 + 8b̂, where b̂ ∈ Z2.

Then a − 4ε4b
2 = 4(ε4 − ε2ε3) − 4ε4(1 + 8b̂) = 4(−ε2ε3 − 8ε4b̂) ∈ −ε2ε3Q̂2

2. But Lemma

2.3.2 implies that −ε2ε3Q̂2
2 ∩ q(T ) = ∅. Thus, a 6∈ q∗(L) and hence L is not primitively

Z2-universal.

Next we state a lemma which is a slight refinement of [9, Proposition 3.1]. We will be

using this lemma in the proofs of the next two results.

Lemma 3.2.26. Let T ∼= 〈ε1, ε2, 2ε3〉. Then T is anisotropic implies q∗(T ) ∩ 8Z2 = ∅.

Proof. Suppose T is anisotropic and q∗(T )∩8Z2 6= ∅. Then ε1x
2+ε2y

2+2ε3z
2 ≡ 0(mod 8Z2)

for some x, y, z ∈ Z2, which can only occur if x, y ∈ Z×2 . Then it must be ε2y
2 +2ε3z

2 ∈ Z×2 .

So, ε1x
2 ≡ −ε2y

2 − 2ε3z
2(mod 8Z2) which reduces to x2 ≡ ε−1

1 (−ε2y
2 − 2ε3z

2)(mod 8Z2).

Thus, by Local Square Theorem, −ε−1
1 (ε2y

2 + 2ε3z
2) = λ2; λ ∈ Z×2 . So, −(ε2y

2 + 2ε3z
2) =

ε1λ
2. This implies ε1λ

2+ε2y
2+2ε3z

2 = 0 which is a contradiction since T is anisotropic.

Lemma 3.2.27. Let α2 = 0, α3 = α4 = 1. Then L is primitively Z2-universal except in

the following cases:

i) ε1ε2 ≡ 1(mod 8Z2) and ε1 ≡ ε3 ≡ ε4(mod 4Z2);

ii) ε1ε2 ≡ 3(mod 8Z2) and ε3 ≡ −ε4(mod 4Z2);

iii) ε1ε2 ≡ 5(mod 8Z2) and −ε1 ≡ ε3 ≡ ε4(mod 4Z2).

In the exceptional cases, L is not primitively Z2-universal.

Proof. If T ∼= 〈ε1, ε2, 2εi〉 is isotropic for either i = 3 or i = 4, then T is Z2-

universal, by Lemma 3.2.13, and it follows that L is primitively Z2-universal since it

is split by a Z2-universal sublattice. Using (2.1), it is routine to check that this oc-

curs in all cases in which we assert that L is primitively Z2-universal, except when

ε1ε2 ≡ 3(mod 8Z2) and ε3 ≡ ε4(mod 4Z2). For instance, suppose ε1ε2 ≡ 1(mod 8Z2)
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and −ε1 ≡ ε3(mod 4Z2). Consider T ∼= 〈ε1, ε2, 2ε3〉. After scaling by ε1 we have T ′ ∼=

〈ε2
1, ε1ε2, 2ε1ε3〉 ∼= 〈1, 1, 2ε1ε3〉. Here −ε1 ≡ ε3(mod 4Z2) implies ε1ε3 ≡ −1(mod 4Z2). So

S2(〈1, 1, 2ε1ε3〉) = 1 and (−1,−dT ′)2 = (−1,−2ε1ε3)2 = (−1,−1)2(−1, 2)2(−1, ε1ε3)2 = 1

since ε1ε3 ≡ −1(mod 4Z2). Therefore T ′ (and hence T ) is isotropic by (2.1).

Now consider the remaining case when ε1ε2 ≡ 3(mod 8Z2) and ε3 ≡ ε4(mod 4Z2).

For that case, it follows that ε1 + ε2, ε1 + 9ε2, ε1 + 25ε2, ε1 + 49ε2 are four elements of

4Z×2 ∩ q∗(〈ε1, ε2〉) that are distinct modulo squares; hence 4Z×2
∗−→ 〈ε1, ε2〉. Then for any

λ ∈ 8Z2, since ε3 ≡ ε4(mod 4Z2), we have λ− 2ε3 − 2ε4 ∈ 4Z×2 , and it follows that λ
∗−→ L;

hence, L is primitively Z2-universal.

It remains to show that L is not primitively Z2-universal in the exceptional cases. In

all cases i) through iii), we have T ∼= 〈ε1, ε2, 2εi〉 anisotropic for both i = 3 and i = 4 and

ε1ε2ε3−ε4 ≡ 0(mod 4Z2). For example, let ε1ε2 ≡ 1(mod 8Z2) and ε1 ≡ ε3 ≡ ε4(mod 4Z2).

Consider T ∼= 〈ε1, ε2, 2ε3〉. After scaling T by ε1, we get T ′ ∼= 〈1, 1, 2ε1ε3〉. Then

S2(〈1, 1, 2ε1ε3〉) = 1 and (−1,−dT ′)2 = (−1,−2ε1ε3)2 = (−1,−1)2(−1, 2)2(−1, ε1ε3)2 =

−1 since ε1ε3 ≡ 1(mod 4Z2). So the condition (2.1) fails and so T ′ (and hence T ) is

anisotropic. Similarly one can check other cases. Since T is anisotropic, T does not repre-

sent any element of−(2ε1ε2ε3)Q̇2
2, by Lemma 2.3.2. We will show that λ = −2(ε1ε2ε3−ε4) is

not primitively represented by L. On the contrary, suppose that λ
∗−→ L; so λ

∗
= q(v)+2ε4w

2,

for some v ∈ T , w ∈ Z2. Since λ ∈ 8Z2, it must be that w ∈ Z×2 , by Lemma 3.2.26. So

w2 ≡ 1(mod 8Z2) and it follows that λ − 2ε4w
2 ≡ −2ε1ε2ε3(mod 16Z2). By the Local

Square Theorem, it then follows that λ − 2ε4w
2 ∈ −2ε1ε2ε3(Z×2 )2, and we have reached a

contradiction. So λ 6 ∗−→ L and L is not primitively Z2-universal.

Remark 3.2.28. In other words, the Lemma 3.2.27 states that; When α2 = 0, α3 = α4 = 1,

L is primitively Z2-universal if and only if none of the conditions (3.24) through (3.26)

holds.

Lemma 3.2.29. Let α2 = 0, α3 = 2, α4 = 3 and T ∼= 〈ε1, ε2, 2ε3〉. Then L is primitively
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Z2-universal if and only if T is isotropic.

Proof. When 〈ε1, ε2, 2ε3〉 is isotropic, the result follows immediately by Proposition 3.2.13

and Lemma 1.3.2. To prove the converse, assume that W ∼= 〈ε1, ε2, 2ε3〉 is anisotropic,

with dW = 2δ ; δ ∈ Z×2 . Take a = 8(−δ + ε4). Suppose a ∈ q∗(L). Then there exist

x, y, z, w ∈ Z2 such that a = ε1x
2 +ε2y

2 +2ε3z
2 +8ε4w

2, with at least one of x, y, z, w ∈ Z×2 .

By Lemma 3.2.26, it must be that w ∈ Z×2 . So, a − 8ε4w
2 = ε1x

2 + ε2y
2 + 2ε3z

2, where

a− 8ε4w
2 = 8(−δ + ε4)− 8ε4(1 + 8k) = −8(δ + 8ε4k) = 4(−2)(δ + 8ε4k) ∈ −2δQ̇2

2, which

is a contradiction since −dW 6→ 〈ε1, ε2, 2ε3〉, by Lemma 2.3.2.

Lemma 3.2.30. For any ε1, ε2, ε3, ε4 ∈ Z×2 , the following are equivalent:

a) K ∼= 〈ε1, ε2, 2ε3, 2ε4〉 is primitively Z2-universal;

b) M ∼= 〈ε1, 2ε3, 4ε2, 8ε4〉 is primitively Z2-universal;

c) N ∼= 〈ε3, 2ε1, 2ε2, 4ε4〉 is primitively Z2-universal.

Proof. First note that K,M and N are Z2-universal, by (3.16), (3.18) and (3.17), respec-

tively. To prove a) =⇒ b), for any a ∈ 4Z×2 ; a − 8ε4 ∈ 4Z×2 . So, a − 8ε4 → 〈ε1, 4ε2, 2ε3〉;

hence a
∗−→M . So it will suffice to show that 8Z2

∗−→M .

Now suppose that 〈ε1, ε2, 2ε3〉 is isotropic, and hence Z2-universal, by Proposition

3.2.13. Consider a ∈ 8Z2, and write a = 8a0. Then 2a0 − 2ε4 ∈ Z2 → 〈ε1, ε2, 2ε3〉.

So there exist x, y, z ∈ Z2 such that 2a0 − 2ε4 = ε1x
2 + ε2y

2 + 2ε3z
2. Then 8a0 − 8ε4 =

4ε1x
2+4ε2y

2+2·4ε3z
2 = ε1(2x)2+4ε2y

2+2ε3(2z)2. Then a = ε1(2x)2+4ε2y
2+2ε3(2z)2+8ε4

and so a
∗−→M .

Next suppose that 〈ε1, ε2, 2ε4〉 is isotropic, and hence Z2-universal. Consider first

a = 8a0 ∈ 8Z×2 . Since 〈ε1, ε2, 2ε4〉 is Z2-universal, there exists x, y, z ∈ Z2 such that

2a0 = ε1x
2 + ε2y

2 + 2ε4w
2, and at least one of y, w ∈ Z×2 . So a = ε1(2x)2 + 4ε2y

2 + 8ε4w
2

and so a
∗−→ 〈ε1, 4ε2, 8ε4〉. Lastly, if a ∈ 16Z2, then a− 22 · 2ε3 ∈ 8Z×2 and so a− 22 · 2ε3

∗−→

〈ε1, 4ε2, 8ε4〉, giving a
∗−→M .
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As noted in the proof of the Lemma 3.2.27, this covers all cases in which K is primi-

tively Z2-universal, except when ε1ε2 ≡ 3(mod 8Z2) and ε3 ≡ ε4(mod 4Z2). For this case,

we first note that {8ε4, 8ε4+16ε1, 8ε4+16ε2, 8ε4+32ε3} is a set of four independent elements

of 8Z×2 which are primitively represented by M . Next, take any a ∈ 16Z×2 ; say a = 16δ. As

shown in the proof of Lemma 3.2.27, we see that 4Z×2
∗−→ 〈ε1, ε2〉, so there exist x, y ∈ Z×2

such that 4δ = ε1x
2 +ε2y

2. Then a = 16δ = ε1(2x)2 +4ε2y
2 gives a primitive representation

of a by 〈ε1, 4ε2〉. It follows that 16Z×2
∗−→ 〈ε1, 4ε2〉. To complete this case, consider a ∈ 32Z2.

Then a − 22 · 2ε3 − 8ε4 = a − 8(ε3 + ε4) is an element of 16Z×2 , since ε3 ≡ ε4(mod 4Z2).

Thus, with the argument which we have just shown a− 22 · 2ε3 − 8ε4
∗−→ 〈ε1, 4ε2〉. Hence,

32Z2
∗−→M .

To prove b) =⇒ c), let a ∈ Z2. Then there exist x, y, z, w ∈ Z2 such that 2a =

ε1x
2 + 4ε2y

2 + 2ε3z
2 + 8ε4w

2, where x ∈ 2Z2 (say x = 2x̂, x̂ ∈ Z2) and at least one of

y, z, w ∈ Z×2 . Then a = 2ε1x̂
2 + 2ε2y

2 + ε3z
2 + 4ε4w

2. It follows that a
∗−→ N .

Finally, to prove c) =⇒ a), let a ∈ Z2. Then there exist x, y, z, w ∈ Z2 such that

2a = 2ε1x
2 + 2ε2y

2 + ε3z
2 + 4ε4w

2, where z ∈ 2Z2 (say z = 2ẑ, ẑ ∈ Z2) and at least one of

x, y, w ∈ Z×2 . Then a = ε1x
2 +ε2y

2 +2ε3ẑ
2 +2ε4w

2. It follows that a
∗−→ K. This completes

the proof.

We will now proceed to the completion of the proof of Theorem 3.2.21.

Proof of Theorem 3.2.21 when sL = Z2:

Since L is assumed to be Z2-universal, one of the cases (3.15) through (3.18) holds, by

Theorem 3.2.14.

Case I: α1 = α2 = α3 = 0. If T is isotropic or if α4 = 1, then L is primitively Z2-

universal by Proposition 3.2.13, Lemma 1.3.3 and Lemma 3.2.8 i). If α4 = 0, then L fails

to be primitively Z2-universal exactly when (3.22) holds, by Lemma 3.2.24. If α4 = 2, then

L fails to be primitively Z2-universal exactly when (3.23) holds, by Lemma 3.2.25.
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Case II: α1 = α2 = 0, α3 = 1. If T is isotropic or if α4 = 2, then L is primitively

Z2-universal by Proposition 3.2.13, Lemma 1.3.3 and Lemma 3.2.8 i). If α4 = 1, then L

fails to be primitively Z2-universal exactly when one of (3.24) through (3.26) holds, by

Lemma 3.2.27. If α4 = 3, then L fails to be primitively Z2-universal exactly when (3.27)

holds, by Lemma 3.2.29.

Case III: α1 = 0, α2 = α3 = 1. First assume that α4 = 1. Then for any a ∈ 4Z2,

a − 2ε4 ∈ 2Z×2 → 〈ε1, 2ε2, 2ε3〉, by Lemma 3.2.9 ii). Thus, a
∗−→ L. If α4 = 2, then L fails

to be primitively Z2-universal exactly when one of (3.28) through (3.30) holds, by Lemmas

3.2.27 and 3.2.30.

Case IV: α1 = 0, α2 = 1 α3 = 2. Assume first that α4 = 2. Note that 2Z×2 →

〈ε1, 2ε2, 2ε3〉, and this implies 4Z×2
∗−→ 〈2ε1, 4ε2, 4ε3〉. Next for any a ∈ 8Z2, a− 4ε4 ∈ 4Z×2 .

Since Z×2 → 〈ε1, 2ε2, 4ε3〉, by Lemma 3.2.8 i), we have a − 4ε4 ∈ 4Z×2 → 〈ε1, 2ε2, 4ε3〉.

Hence a
∗−→ L. If α4 = 3, then L fails to be primitively Z2-universal exactly when one of

(3.31) through (3.33) holds, by Lemmas 3.2.27 and 3.2.30. This completes the proof of

Theorem 3.2.21.

3.3 PROOFS OF THEOREMS

We conclude the chapter by supplying proofs of the theorems stated in the introduc-

tion. As the theorems are stated there in the traditional language of quadratic forms,

we will first review the connections between quadratic forms and quadratic lattices. A

nondegenerate integral quadratic form f = f(X1, . . . , Xn) of rank n can be written as

f =
∑

1≤i,j≤n

aijXiXj, where aij = aji, aii ∈ Z, 2aij ∈ Z for i 6= j. (3.36)

Let Mf denote the symmetric matrix (aij), and associate to f a quadratic Z-lattice L and

basis B for L such that the Gram matrix of L with respect to B is Mf . An integer is

(primitively) represented by the form f if and only if it is (primitively) represented by the

associated lattice L. Our main tool for proving Theorems 1.1 through 1.3 is the following re-
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sult that relates the positive integers primitively represented by a positive definite quadratic

Z-lattice to those integers that are primitively represented by all local completions Lp of

the lattice: Let L be a positive definite integral Z-lattice of rank n ≥ 4. Then there is an

integer N with the following property: If a ≥ N is an integer that is primitively represented

by Lp for all primes p, then a is primitively represented by L. (see, e.g., [5, Theorem 1.6,

page 204]). In particular, such a lattice L is almost primitively universal if and only if Lp

is primitively Zp-universal for all primes p. From this, the proofs of Theorems 0.2.1 and

0.2.2 are now immediate.

Proof of Theorem 0.2.1 Follows from Corollary 2.2.3

Proof of Theorem 0.2.2 Follows from Propositions 3.1.2 and 3.2.12.

The form (3.36) is said to be classically integral if aij ∈ Z for all i, j. In this case, the

discriminant df = det L is an integer, and

ordpvLp = ordpvL = ordpdL = ordpdf

for all primes p. In particular, for a classically integral form f and positive integer t,

pt | df if and only if vLp ⊆ ptZp.

Proof of Theorem 0.2.3 Let L be a positive definite Z-lattice for which sL ⊆ Z, rk L =

n ≥ 4 and, for all primes p, pn−2 - dL. Moreover, it is assumed that L represents an odd

integer, and that dL is even when n = 4. If sLp ⊆ pZp for some prime p, then vLp ⊆ pnZp

and it would follow that pn | dL, contrary to assumption. Hence, sL = Z. When p = 2, the

assumption that L represents an odd integer guarantees that nL = Z as well. So for each

prime p, Lp has a splitting of the type Lp ∼= L(0) ⊥ K, where L(0) is diagonalizable and

sK ⊆ pZp or K = 0. Since pn−2 - dL, it follows that rk K ≤ n− 3 and so r0 = rk L(0) ≥ 3.

So, if p is odd, Lp is primitively Zp-universal by Lemma 4.1(ii). So we need only consider
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further the case p = 2. If r0 ≥ 4, then L2 is split by N ∼= 〈ε1, ε2, ε3, ε4〉, which is Z2-

universal by Lemma 3.2.10. The assumption that dL is even when n = 4 rules out the

possibility that L = N ; so n ≥ 5 and it follows from Theorem 0.2.2 that L2 is primitively

Z2-universal. So to complete the proof, we consider the case r0 = 3. So

L2
∼= 〈ε1, ε2, ε3〉 ⊥ K, with sK ⊆ 2Z2 and rk K = n− 3.

If sK ⊆ 4Z2, then vL2 = vK ⊆ 22(n−3)Z2; but 2(n − 3) ≥ n − 2 since n ≥ 4, thus

contradicting the assumption that pn−2 - dL. So sL2 = 2Z2. This leaves two possibilities:

nK = 2Z2 or nK = 4Z2. First consider the case nK = 4Z2. Then rk K ≥ 2 (since

nK 6= sK) and n ≥ 5. Since nK = 4Z2, there exists ε4 ∈ Z×2 such that 4ε4 → K. So

L2 contains a sublattice 〈ε1, ε2, ε3, 4ε4〉, which is Z2-universal by Lemma 3.2.10. So L2 is

Z2-universal and hence primitively Z2-universal by Theorem 0.2.2. Finally, consider the

case nK = sK = 2Z2. Then there exists ε4 ∈ Z×2 such that 2ε4 → K. So L2 contains a

sublattice N ∼= 〈ε1, ε2, ε3, 2ε4〉, which is Z2-universal by Lemma 3.2.10. If n ≥ 5, it follows

from Theorem 0.2.2 that L2 is primitively Z2-universal. If n = 4, then L2 = N . Since

Z×2 → 〈ε2, ε3, 2ε4〉 by Lemma 3.2.8, it follows from Lemma 1.3.3 that L2 is primitively

Z2-universal. This completes the proof.

The proof of Theorem 0.2.4 relies on several fundamental results from spinor genus

theory. For general background on the spinor genus, the reader is referred, e.g., to [14,

§102A] or [5, Chapter 11]. For a Z-lattice L, the genus, spinor genus and isometry class of

L will be denoted by genL, spnL and clsL, respectively. If S denotes one of the objects

genL, spnL or clsL, the notations a → S or a
∗→ S will mean that there exists a lattice

K ∈ S such that a→ K or a
∗→ K, respectively.

Proof of Theorem 0.2.4 Let L be an indefinite integral Z-lattice of rank n ≥ 5 such that

every integer is represented by genL. Then Lp is Zp-universal for all primes p. So, by

Propositions 3.1.2 and 3.2.12, Lp is primitively Zp-universal. Let 0 6= a ∈ Z. Then a
∗→ Lp
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for all p, and it follows as in [14, Example 102:5] that a
∗→ genL. Since n ≥ 4, it then

follows from [5, Theorem 7.1, page 227] that a
∗→ spnL. Since L is indefinite and n ≥ 3,

spnL = clsL by [14, Theorem 104:5]. Hence a
∗→ clsL and we conclude that a

∗→ L, as

desired.
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CHAPTER 4

ALMOST PRIMITIVELY UNIVERSAL CLASSICALLY INTEGRAL

POSITIVE DEFINITE QUATERNARY QUADRATIC FORMS

As an application of the local results stated in Chapter 3, we now complete the de-

termination begun by Budarina [4] of the almost primitively universal forms among the

universal classically integral quaternary quadratic forms. Recall that a positive definite in-

tegral quadratic form (or a corresponding Z-lattice) is said to be primitively universal if it

primitively represents all positive integers, and almost primitively universal if it primitively

represents all sufficiently large positive integers (that is, primitively represents all but at

most finitely many positive integers). It is known that a positive definite quadratic form in

at least four variables is almost primitively universal if and only if it is locally primitively

universal for all primes (e.g., see [5, Theorem 1.6, page 204] ).

4.1 PREVIOUS RESULTS

Using the Fifteen Theorem of Conway and Schneeberger [6], which is stated as Theo-

rem 4.1.1 below, Bhargava produced the complete list of classically integral positive definite

quaternary quadratic forms [2, Table 5], which appears here as Figure 4.1.

Theorem 4.1.1. 1 [15-Theorem, J.H. Conway and W. Schneeberger, 1993] If a positive

definite classically integral quadratic form represents every positive integer up to 15, then

it represents every positive integer.

Theorem 4.1.2. [M. Bhargava, 2000] If a positive definite classically integral quadratic

form represents the nine critical numbers 1, 2, 3, 5, 6, 7, 10, 14, 15, then it represents

every positive integer.

1A generalization of this theorem to the representation of forms by forms can be found in [12].
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Figure 4.1. 204 universal quaternary quadratic forms up to equivalence [2]
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From Theorem 4 and Proposition 3 of [4], Budarina was able to conclude that among

the forms in this list having odd determinant, 39 are almost primitively universal and 23

are not almost primitively universal. However, for the 142 forms in the list having even

determinant, she was able only to conclude from those results that 74 of these forms are

almost primitively universal and one is not almost primitively universal. This leaves 67

forms for which no conclusion was reached. Among the remaining forms, an additional 15

diagonal forms were subsequently shown to be primitively universal by Earnest, Kim and

Meyer [8]. Their result is stated as Theorem 4.1.3 below, which relates with the Figure 4.2.

Theorem 4.1.3. [A.G. Earnest, J.Y. Kim, N.D. Meyer, 2014] There are 96 inequivalent

positive definite diagonal quaternary integral quadratic forms that are strictly regular (see

Figure 4.2 ). Among these, 34 are in one-class genera and 27 are strictly universal (prim-

itively universal).

Figure 4.2. Strictly regular diagonal quaternary forms; † = Primitively universal [8]

In summary, that leaves 52 forms for which no conclusion has so far been reached
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regarding almost primitive universality, and it is these forms which will be analyzed here.

These 52 forms are listed in Table 4.1 below. Each form is described using a notation

(a b c d e f ), where a, b, c, d, e, f are corresponding integer coefficients of the form. So,

(a b c d e f ) indicates the quaternary form x2 + ay2 + bz2 + cw2 + dzw + eyw + fyz. The

first column of Table 4.1 contains an identifying number signifying the position of the form

in the list [2, Table 5], and the second column gives the determinant. For reference, the

third column gives the identifying symbol for this form as it appears in [4] (the notation

Qk
d denotes the kth form in Bhargava’s list with determinant d).

Table 4.1. 52 Universal forms that remain to be considered

Index # Det Sym (a b c d e f) Index # Det Sym (a b c d e f)

5 4 Q1
4 (1 1 4 0 0 0) 132 52 Q1

52 (2 3 9 2 0 0)

6 4 Q2
4 (1 2 2 0 0 0) 133 52 Q2

52 (2 5 6 2 0 2)

7 4 Q3
4 (2 2 2 2 2 0) 134 52 Q3

52 (2 5 6 4 0 0)

31 12 Q4
12 (2 2 4 0 0 2) 144 56 Q2

56 (2 4 8 4 0 0)

42 16 Q1
16 (1 2 8 0 0 0) 150 60 Q1

60 (2 3 10 0 0 0)

43 16 Q2
16 (2 2 4 0 0 0) 151 60 Q2

60 (2 4 9 4 2 0)

44 16 Q3
16 (2 3 3 2 0 0) 152 60 Q3

60 (2 5 6 0 0 0)

55 20 Q1
20 (1 2 10 0 0 0) 158 64 Q1

64 (2 4 8 0 0 0)

56 20 Q2
20 (2 2 5 0 0 0) 160 68 Q1

68 (2 4 9 0 2 0)

57 20 Q3
20 (2 2 6 2 2 0) 161 68 Q2

68 (2 4 10 4 2 0)

66 24 Q1
24 (1 2 12 0 0 0) 162 68 Q3

68 (2 5 7 2 0 0)

68 24 Q3
24 (2 2 7 2 2 0) 166 72 Q2

72 (2 4 10 4 0 0)

71 24 Q6
24 (2 4 4 4 0 0) 167 72 Q3

72 (2 5 8 4 0 0)

81 28 Q1
28 (1 2 14 0 0 0) 169 76 Q1

76 (2 4 10 0 2 0)

83 28 Q3
28 (2 3 5 2 0 0) 173 80 Q1

80 (2 4 10 0 0 0)

85 28 Q5
28 (2 4 5 4 2 0) 174 80 Q2

80 (2 4 11 4 0 0)

91 32 Q2
32 (2 4 5 4 0 0) 175 80 Q3

80 (2 5 8 0 0 0)

97 36 Q1
36 (2 3 6 0 0 0) 182 88 Q2

88 (2 4 12 4 0 0)

98 36 Q2
36 (2 4 5 0 2 0) 183 88 Q3

88 (2 5 9 2 0 0)

99 36 Q3
36 (2 4 6 4 2 0) 186 92 Q1

92 (2 4 13 4 2 0)

100 36 Q4
36 (2 5 5 4 2 2) 187 92 Q2

92 (2 5 10 4 0 0)

105 40 Q1
40 (2 3 7 2 0 0) 192 96 Q2

96 (2 4 13 4 0 0)

108 40 Q4
40 (2 4 6 4 0 0) 195 100 Q1

100 (2 4 13 0 2 0)

115 44 Q1
44 (2 4 6 0 2 0) 196 100 Q2

100 (2 4 14 4 2 0)

124 48 Q1
48 (2 3 8 0 0 0) 200 104 Q2

104 (2 4 14 4 0 0)

126 48 Q3
48 (2 5 5 2 0 0) 202 108 Q1

108 (2 4 14 0 2 0)
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4.2 FORMS THAT ARE ALMOST PRIMITIVELY UNIVERSAL

Let L be a Z-lattice corresponding to one of the forms listed in Table 4.1. Then L is

almost primitively universal if and only if Lp is primitively Zp-universal for all primes p,

where Lp denotes the p-adic completion of L. We will show that this is the case for the 24

lattices listed in Table 4.2 below. Here we use the result stated in [10]; Let f be a quadratic

form with determinant d. If p - 2d, then f is primitively Zp-universal. So, we only need

to check whether a given form is primitively Zp-universal at each p | 2d, where d is the

determinant of the quadratic form. Further, in all of the following cases when p2 - d for

odd prime p, we can conclude that the quadratic form is Zp-universal, by (3.3).

Table 4.2. Almost primitively universal forms

Index # Det Sym L2

56 20 Q2
20 〈1, 5, 2, 2〉

66 24 Q1
24 〈1, 1, 2, 22 · 3〉

68 24 Q3
24 〈1, 3, 7, 23 · 7〉

71 24 Q6
24 〈1, 2 · 3, 2 · 7, 2 · 7〉

81 28 Q1
28 〈1, 1, 2, 2 · 7〉

83 28 Q3
28 〈1, 3, 2, 2 · 5〉

91 32 Q2
32 〈1, 5, 2, 24 · 5〉

105 40 Q1
40 〈1, 3, 2, 22 · 7〉

108 40 Q4
40 〈1, 2, 2 · 3, 2 · 7〉

126 48 Q3
48 〈1, 5, 2, 23 · 7〉

134 52 Q3
52 〈1, 5, 2, 2〉

144 56 Q2
56 〈1, 2, 2, 2 · 7〉

150 60 Q1
60 〈1, 3, 2, 2 · 5〉

152 60 Q3
60 〈1, 5, 2, 2 · 3〉

162 68 Q3
68 〈1, 5, 2, 2 · 5〉

166 72 Q2
72 〈1, 2, 2 · 5, 2 · 5〉

167 72 Q3
72 〈1, 5, 2, 22 · 5〉

173 80 Q1
80 〈1, 2, 2 · 5, 22〉

175 80 Q3
80 〈1, 5, 2, 23〉

182 88 Q2
88 〈1, 2 · 3, 2 · 7, 2 · 7〉

183 88 Q3
88 〈1, 5, 2, 22 · 7〉

187 92 Q2
92 〈1, 5, 2, 2 · 3〉

192 96 Q2
96 〈1, 5, 2, 24 · 7〉

200 104 Q2
104 〈1, 2, 2 · 3, 2 · 7〉

Observe first that the only determinant occurring in Table 4.2 that is divisible by the
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square of an odd prime is 72, which occurs for lattices # 166 and # 167. In both of these

cases, L3 has a splitting of the type T ⊥ 〈32u〉, where T is a ternary unimodular Z3-lattice

and u ∈ Z×3 . Hence, no lattice L appearing in Table 4.2 has a p-adic completion Lp for

which the exceptional case of Proposition 3.1.8 holds for any odd prime p. Since all lattices

L in Table 4.2 are universal, it follows that Lp is Zp-universal for all primes p. Hence, Lp is

primitively Zp-universal for all lattices L in Table 4.2 and all odd primes p, by Proposition

3.1.8. Thus, in all the cases obstructions could come only from Z2.

So we need only further consider the case p = 2. Note that by Corollary 3.2.17, L2 has

a splitting of the type (3.19) for every L in [2, Table 5]. In particular, for every L in Table

4.2 such a splitting is given in the fourth column of the table, where the units εi are taken

from {1, 3, 5, 7}. Since L2 is Z2-universal for each L in Table 4.2, it follows from Theorem

3.2.21 that L2 is primitively Z2-universal unless it has a splitting in one of the exceptional

cases enumerated in (3.22) through (3.33).

We will now proceed to analyze the splittings of L2 occurring in Table 4.2. This will

be done by considering a list of representative examples and identifying all lattices in the

table having splittings of the same type.

Example 4.2.1. Consider lattice Q2
20 (# 56) given by L ∼= 〈1, 2, 2, 5〉. The splitting (3.19)

for L2 has α2 = 0, α3 = α4 = 1 and ε1 = ε3 = ε4 = 1, ε2 = 5. Here ε1ε2 ≡ 5(mod 8Z2),

but ε3 6≡ −ε1(mod 4Z2). Hence this splitting does not fall into the exceptional case (3.26)

of Theorem 3.2.21. Therefore, L2 is primitively Z2-universal.

The lattices # 81, 83, 134, 150, 152, 162, 187 will follow similar arguments. In these

cases, the splitting of L2 has α2 = 0, α3 = α4 = 1, but does not fall into any of the

exceptional cases (3.24) through (3.26) of Theorem 3.2.21.

Example 4.2.2. Consider lattice Q1
24 (# 66) given by L ∼= 〈1, 1, 2, 12〉. The splitting (3.19)

for L2 has α2 = 0, α3 = 1, α4 = 2. No splittings of this type occur among the exceptional

cases in Theorem 3.2.21. Therefore, L2 is primitively Z2-universal.

54



The lattices # 68, 71, 91, 105, 108, 144, 166, 167, 182, 183, 192, 200 will follow a

similar argument, since in all these cases the splitting of L2 has α2 = 0, α3 = 1, α4 = 2.

Example 4.2.3. Consider lattice Q1
80 (# 173) given by L ∼= 〈1, 2, 4, 10〉. The splitting

(3.19) for L2 has α2 = α3 = 1, α4 = 2 and ε1 = ε2 = ε4 = 1, ε3 = 5. Here ε2ε3 ≡

5(mod 8Z2), but ε1 6≡ −ε2(mod 4Z2). Hence this splitting does not fall into the exceptional

case (3.30) of Theorem 3.2.21. Therefore, L2 is primitively Z2-universal.

Example 4.2.4. Consider lattice Q3
80 (# 175) given by L ∼= 〈1, 2, 5, 8〉. The splitting (3.19)

for L2 has α2 = 0, α3 = 1, α4 = 3. Since 〈1, 5, 2〉 is isotropic over Z2, L2 does not fall in to

the exceptional case (3.27) of Theorem 3.2.21. Therefore, L2 is primitively Z2-universal.

The lattice # 126 will follow a similar argument.

This covers all forms in Table 4.2, and we summarize the results in the following

statement.

Proposition 4.2.5. The forms in Table 4.2 are almost primitively universal.

A form that is almost primitively universal and is alone in its genus (that is, has

class number 1) is in fact primitively universal. This yields the following three primitively

universal quaternary forms that have not been previously identified.

Proposition 4.2.6. The following forms are primitively universal:

x2 + 2y2 + 3z2 + 5w2 + 2yw; (4.1)

x2 + 2y2 + 3z2 + 5w2 + 2zw; (4.2)

x2 + 2y2 + 4z2 + 5w2 + 4zw. (4.3)

Proof. The form (4.1) is Q2
27 appearing in [4, Proposition 6]. The forms (4.2) and (4.3) are

# 83 and # 91, respectively, in Table 4.2. These forms are almost primitively universal

and have class number 1.
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4.3 FORMS THAT ARE NOT ALMOST PRIMITIVELY UNIVERSAL

In order to show that a lattice L is not almost primitively universal, it suffices to find

one prime p for which Lp is not primitively Zp-universal. For the remaining forms given

in Table 4.1, but not in Table 4.2, we will show that this is always the case for p = 2.

The forms to be considered are given in Table 4.3, along with the splitting of L2 for the

corresponding lattice L.

Table 4.3. Forms which are not almost primitively universal

Index # Det Sym L2

5 4 Q1
4 〈1, 1, 1, 22〉

6 4 Q2
4 〈1, 1, 2, 2〉

7 4 Q3
4 〈3, 7, 7, 22 · 3〉

31 12 Q4
12 〈3, 7, 7, 4〉

42 16 Q1
16 〈1, 1, 2, 23〉

43 16 Q2
16 〈1, 2, 2, 22〉

44 16 Q3
16 〈1, 3, 2, 23 · 3〉

55 20 Q20 〈1, 1, 2, 2 · 5〉

57 20 Q3
20 〈3, 7, 7, 22 · 7〉

85 28 Q5
28 〈1, 5, 5, 22 · 7〉

97 36 Q1
36 〈1, 3, 2, 2 · 3〉

98 36 Q2
36 〈1, 5, 5, 22〉

99 36 Q3
36 〈3, 3, 3, 22 · 3〉

100 36 Q4
36 〈1, 5, 5, 22〉

115 44 Q44 〈3, 7, 7, 22〉

124 48 Q48 〈1, 3, 2, 23〉

132 52 Q52 〈1, 3, 2, 2 · 7〉

133 52 Q2
52 〈1, 5, 5, 22 · 5〉

151 60 Q2
60 〈1, 1, 1, 22 · 7〉

158 64 Q1
64 〈1, 2, 22, 23〉

160 68 Q68 〈1, 1, 1, 22〉

161 68 Q2
68 〈3, 7, 7, 22 · 3〉

169 76 Q76 〈3, 7, 7, 22〉

174 80 Q2
80 〈1, 3, 2, 23 · 7〉

186 92 Q92 〈1, 5, 5, 22 · 7〉

195 100 Q1
100 〈1, 5, 5, 22〉

196 100 Q2
100 〈3, 3, 3, 22 · 3〉

202 108 Q108 〈3, 7, 7, 22〉

Example 4.3.1. Consider lattice Q1
4 (# 5) given by L ∼= 〈1, 1, 1, 4〉. The splitting (3.19)
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for L2 has α2 = α3 = 0, α4 = 2, and ε1 = ε2 = ε3 = ε4 = 1. Here L2 falls into the

exceptional case (3.23) of Theorem 3.2.21. Therefore, L2 is not primitively Z2-universal.

The lattices # 7, 31, 57, 85, 98, 99, 100, 115, 133, 151, 160, 161, 169, 186, 195, 196,

202 will follow the same argument since in all of these cases the splitting of L2 falls into

the exceptional case (3.23) of Theorem 3.2.21.

Example 4.3.2. Consider lattice Q1
20 (# 55) given by L ∼= 〈1, 1, 2, 10〉. The splitting (3.19)

for L2 has α2 = 0, α3 = α4 = 1, and ε1 = ε2 = ε3 = 1, ε4 = 5. Here L2 falls into the

exceptional case (3.24) of Theorem 3.2.21. Therefore, L2 is not primitively Z2-universal.

The lattice # 6 will follow a similar argument, and # 97, 132 fall into the exceptional

case (3.25) of Theorem 3.2.21.

Example 4.3.3. Consider lattice Q1
16 (# 42) given by L ∼= 〈1, 1, 2, 8〉. The splitting (3.19)

for L2 has α2 = 0, α3 = 1, α4 = 3. Since 〈1, 1, 2〉 is anisotropic, L2 falls into the exceptional

case (3.27) of Theorem 3.2.21. Therefore, L2 is not primitively Z2-universal.

The lattices # 44, 124, 174 will follow similar arguments.

Example 4.3.4. Consider lattice Q2
16 (# 43) given by L ∼= 〈1, 2, 2, 4〉. The splitting (3.19)

for L2 has α2 = α3 = 1, α4 = 2, and ε1 = ε2 = ε3 = ε4 = 1. Here L2 falls into the

exceptional case (3.28) of Theorem 3.2.21. Therefore, L2 is not primitively Z2-universal.

Example 4.3.5. Consider lattice Q1
64 (# 158) given by L ∼= 〈1, 2, 4, 8〉. The splitting (3.19)

for L2 has α2 = 1, α3 = 2, α4 = 3, and ε1 = ε2 = ε3 = ε4 = 1. Here L2 falls into the

exceptional case (3.31) of Theorem 3.2.21. Therefore, L2 is not primitively Z2-universal.

This covers all forms in Table 4.3, and we summarize the results in the following

statement.

Proposition 4.3.6. The forms in Table 4.3 are not almost primitively universal.
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Remark 4.3.7. Proposition 2.2.1 and the Corollary 2.2.3 provide an alternate approach

for showing that L2 is not primitively Z2-universal for some of the forms in Table 4.3.

Let L be a Z-lattice on V , where V is a quaternary quadratic space over Qp. Suppose

dVp =
.

Q
2

p and SpVp = −(−1,−1)p. Then Vp is anisotropic, by (2.2). Now, Proposition

2.2.1 implies L is not almost primitively universal. This works well over dyadic fields.

Example 4.3.8. Consider lattice Q1
4 (# 5) given by L ∼= 〈1, 1, 1, 4〉. Then V2

∼= 〈1, 1, 1, 4〉.

We can see dV2 = 4
.

Q
2

2 =
.

Q
2

2 and S2V2 = S2(〈1, 1, 1, 4〉) = 1 = −(−1) = −(−1,−1)2. So,

V2 is anisotropic. Thus, L is not almost primitively universal.

Example 4.3.9. Consider the non-diagonal lattice Q4
36 (# 100) given by L ∼= 〈1〉 ⊥(

2 1 1
1 5 2
1 2 5

)
. Then V2

∼= 〈1, 1〉 ⊥ ( 2 1
1 5 ) ∼= 〈1, 1, 2, 2 · 9〉 ∼= 〈1, 1, 2, 2〉. We can see dV2 =

.

Q
2

2 and

S2V2 = S2(〈1, 1, 2, 2〉) = (2, 2)2 = 1 = −(−1) = −(−1,−1)2. So, V2 is anisotropic. Thus, L

is not almost primitively universal.

Following this method, we can conclude the lattices # 5, 6, 7, 42, 43, 44, 97, 98, 99,

100, 158, 160, 161, 195, 196 are not almost primitively universal.
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CHAPTER 5

PRIMITIVE COUNTERPART TO THE 15-THEOREM

In this chapter, we will study the primitive universality of the forms in the list [2, Table

5] of universal positive definite classically integral quaternary quadratic forms (see Figure

4.1). Among these forms, 34 have been previously proven to be primitively universal. For

the remaining 170 forms, we will search the range 1 to 400 for positive integers that are

not primitively represented by the form. The smallest such positive integer, if one exists, is

called the primitive truant of the form. Any form which has a primitive truant is ruled out

for primitive universality; those for which none is found by our search remain as candidates

for primitive universality. Three of these candidates were proven to be primitively universal

in Proposition 4.2.6. In this chapter, we will supply proofs of primitive universality for an

additional 25 of the candidates.

A primitive counterpart to the Fifteen Theorem would have the following form: there

exists a finite set S of positive integers such that every positive definite classically integral

quadratic form (regardless of rank) that primitively represents all the integers in S is prim-

itively universal. In particular, any such set S must contain all of the primitive truants

of the quaternary forms found by our search. If the remaining candidates for primitive

universality that we have identified can be proven to be primitively universal, then the list

consisting of Bhargava’s nine critical numbers and the set of primitive truants that we have

found would constitute a complete set S for quaternary forms. This leads us to formulate

Conjecture 0.2.5. Of course there is no guarantee that additional primitive truants will not

appear for forms of higher rank; however, in Bhargava’s original work it was seen that no

new truants (without considering primitivity) occur beyond rank 4.
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5.1 PREVIOUS RESULTS AND METHODOLOGY

We have already introduced and discussed about the Fifteen Theorem and the results

of studies related to this topic in Chapter 4. Budarina proved that, among 113 almost

primitively universal forms listed in [4], ten forms are primitively universal (see Figure

5.1).

Later, in their study on strictly universal forms which are diagonal, Earnest, Kim and

Meyer [8] identified 27 primitively universal forms (see Figure 4.2) in [2, Table 5]. With

the above two results we have a total of 34 primitively universal forms identified so far,

leaving 170 forms to be checked for primitive universality.

We used the mathematical software SAGE [18] to check whether each of these forms

have any primitive truant. Each form was checked up to 400. Out of these 170 forms 97

of them gave primitive truants, leaving 73 forms without any primitive truant up to 400.

Interestingly, the set of primitive truants up to 400 was { 4, 8, 9, 12, 16, 24, 25, 32, 48, 49,

64 }, a small set with just 11 elements and out of them 9, 25, 49, 64 appeared only once

while other values repeated several times.

Figure 5.1. 10 primitively universal quaternary forms identified by Budarina [4]

The remainder of this chapter consists of a discussion of the existence of a primitive

60



Fifteen Theorem and theoretical arguments to prove that some of the remaining 73 forms

are primitively universal. So far we have been able to prove 28 of them to be primitively

universal.

For convenience, we will list all remaining 170 forms at the end of this section for later

reference. The notations and the symbols for each form are the same as we described in

Chapter 4, Section 4.1. Here we have included the primitive truant (if any) obtained up to

400, in the fifth column, and if we could not find any primitive truant up to 400, we have

listed the class number of the form which we will be using for further analysis of that form.

Table 5.1. Primitive truants for universal quaternary forms - Part I

Index # Det Sym (a b c d e f) Class # Primitive truant up to 400

1 1 Q1
1 (1 1 1 0 0 0) 8

5 4 Q1
4 (1 1 4 0 0 0) 32

6 4 Q2
4 (1 2 2 0 0 0) 16

7 4 Q3
4 (2 2 2 2 2 0) 32

8 5 Q1
5 (1 1 5 0 0 0) 4

10 6 Q1
6 (1 1 6 0 0 0) 4

12 6 Q3
6 (2 2 2 2 0 0) 2 None

13 7 Q1
7 (1 1 7 0 0 0) 4

14 7 Q2
7 (1 2 4 2 0 0) 2 None

20 9 Q1
9 (1 2 5 2 0 0) 8

21 9 Q2
9 (1 3 3 0 0 0) 9

22 9 Q3
9 (2 2 3 0 0 2) 8

24 10 Q2
10 (2 2 3 2 0 0) 2 None

25 10 Q3
10 (2 2 4 2 0 2) 2 None

26 11 Q1
11 (1 2 6 2 0 0) None

27 11 Q2
11 (1 3 4 2 0 0) 2 None

31 12 Q4
12 (2 2 4 0 0 2) 24

33 13 Q1
13 (2 2 5 2 0 2) 4

34 13 Q2
13 (2 3 3 2 2 0) 2 None

36 14 Q2
14 (1 3 5 2 0 0) 2 None

37 14 Q3
14 (2 2 4 2 0 0) 3 None

38 15 Q1
15 (1 2 8 2 0 0) 2 None

40 15 Q3
15 (2 2 5 0 0 2) 2 None

42 16 Q1
16 (1 2 8 0 0 0) 64

43 16 Q2
16 (2 2 4 0 0 0) 32

44 16 Q3
16 (2 3 3 2 0 0) 64
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Table 5.2. Primitive truants for universal quaternary forms - Part II

Index # Det Sym (a b c d e f) Class # Primitive truant up to 400

45 17 Q1
17 (1 2 9 2 0 0) 8

46 17 Q2
17 (1 3 6 2 0 0) 2 None

47 17 Q3
17 (2 3 4 0 2 2) 2 None

48 18 Q1
18 (1 2 9 0 0 0) 8

50 18 Q3
18 (2 2 5 2 0 0) 3 None

52 18 Q5
18 (2 3 4 2 0 2) 2 None

53 19 Q1
19 (1 2 10 2 0 0) 8

54 19 Q2
19 (2 3 4 2 2 0) 3 None

55 20 Q1
20 (1 2 10 0 0 0) 8

56 20 Q2
20 (2 2 5 0 0 0) 12

57 20 Q3
20 (2 2 6 2 2 0) 12

58 20 Q4
20 (2 3 4 0 0 2) 2 None

59 20 Q5
20 (2 4 4 4 2 0) 2 None

60 22 Q1
22 (1 2 11 0 0 0) 8

61 22 Q2
22 (2 2 6 2 0 0) 4 None

62 22 Q3
22 (2 3 4 2 0 0) 3 None

63 22 Q4
22 (2 3 5 0 2 2) 4 None

64 23 Q1
23 (1 2 12 2 0 0) 8

65 20 Q2
23 (2 3 5 2 0 2) 2 None

66 24 Q1
24 (1 2 12 0 0 0) 8

68 24 Q3
24 (2 2 7 2 2 0) 2 None

70 24 Q5
24 (2 4 4 0 2 2) 2 None

71 24 Q6
24 (2 4 4 4 0 0) 2 None

72 25 Q1
25 (1 2 13 2 0 0) 8

73 25 Q2
25 (2 3 5 0 0 2) 25

74 25 Q3
25 (2 3 5 2 2 0) 8

75 26 Q1
26 (1 2 13 0 0 0) 8

76 26 Q2
26 (2 2 7 2 0 0) 4 None

77 26 Q3
26 (2 4 4 2 2 0) 4 None

78 27 Q1
27 (1 2 14 2 0 0) 8

79 27 Q2
27 (2 3 5 0 2 0) 1 None

80 27 Q3
27 (2 4 5 4 0 2) 4 None

81 28 Q1
28 (1 2 14 0 0 0) 8

83 28 Q3
28 (2 3 5 2 0 0) 1 None

84 28 Q4
28 (2 4 4 0 2 0) 4 None

85 28 Q5
28 (2 4 5 4 2 0) 24

87 30 Q2
30 (2 4 4 2 0 0) 4 None

88 31 Q1
31 (2 3 6 2 2 0) 3 None

89 31 Q2
31 (2 4 5 0 2 2) 6 None

91 32 Q2
32 (2 4 5 4 0 0) 1 None
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Table 5.3. Primitive truants for universal quaternary forms - Part III

Index # Det Sym (a b c d e f) Class # Primitive truant up to 400

92 33 Q1
33 (2 3 6 0 2 0) 8

93 34 Q1
34 (2 3 6 2 0 0) 5 None

94 34 Q2
34 (2 4 5 2 2 0) 5 None

95 34 Q3
34 (2 4 6 4 0 2) 5 None

96 32 Q2
32 (2 4 5 0 0 2) 4 None

97 36 Q1
36 (2 3 6 0 0 0) 16

98 36 Q2
36 (2 4 5 0 2 0) 32

99 36 Q3
36 (2 4 6 4 2 0) 32

100 36 Q4
36 (2 5 5 4 2 2) 4

101 37 Q1
37 (2 5 5 4 2 0) 4

102 38 Q1
38 (2 4 5 2 0 0) 5 None

103 38 Q2
38 (2 4 6 0 2 2) 6 None

104 39 Q1
39 (2 3 7 0 2 0) 3 None

105 40 Q1
40 (2 3 7 2 0 0) 3 None

107 40 Q3
40 (2 4 6 2 0 2) 3 None

108 40 Q4
40 (2 4 6 4 0 0) 2 None

109 40 Q5
40 (2 4 7 4 0 2) 5 None

111 42 Q2
42 (2 4 6 0 0 2) 6 None

112 42 Q3
42 (2 4 6 2 2 0) 3 None

113 42 Q4
42 (2 5 5 4 0 0) 4

114 43 Q1
43 (2 3 8 2 2 0) 6 None

115 44 Q1
44 (2 4 6 0 2 0) 24

116 45 Q1
45 (2 4 7 0 2 2) 4 None

117 45 Q2
45 (2 5 5 0 2 0) 4

118 45 Q3
45 (2 2 6 4 2 2) 4

119 46 Q1
46 (2 3 8 2 0 0) 8 None

120 46 Q2
46 (2 4 6 2 0 0) 8 None

121 46 Q3
46 (2 5 6 4 0 2) 4

122 47 Q1
47 (2 4 7 2 0 2) 9 None

123 47 Q2
47 (2 5 6 4 2 0) 4

124 48 Q1
48 (2 3 8 0 0 0) 48

126 48 Q3
48 (2 5 5 2 0 0) 4

127 49 Q1
49 (2 5 5 2 2 0) 8

128 49 Q2
49 (2 4 7 0 0 2) 49

129 49 Q3
49 (2 5 6 0 2 2) 4

130 50 Q1
50 (2 4 7 2 2 0) 6 None

131 51 Q1
41 (2 3 9 0 2 0) 8

132 52 Q1
52 (2 3 9 2 0 0) 8

133 52 Q2
52 (2 5 6 2 0 2) 4

134 52 Q3
52 (2 5 6 4 0 0) 4
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Table 5.4. Primitive truants for universal quaternary forms - Part IV

Index # Det Sym (a b c d e f) Class # Primitive truant up to 400

135 53 Q1
53 (2 5 6 2 2 0) 4

136 54 Q1
54 (2 3 9 0 0 0) 8

137 54 Q2
54 (2 4 7 2 0 0) 6 None

138 54 Q3
54 (2 5 6 0 0 2) 4

139 54 Q4
54 (2 5 7 4 2 2) 4

140 55 Q1
55 (2 3 10 2 2 0) 8

141 55 Q2
55 (2 5 6 0 2 0) 4

142 55 Q3
55 (2 5 7 4 0 2) 4

144 56 Q2
56 (2 4 8 4 0 0) 3 None

145 57 Q1
57 (2 3 10 0 2 0) 8

146 58 Q1
58 (2 3 10 2 0 0) 8

147 58 Q2
58 (2 4 8 2 2 0) 8 None

148 58 Q3
58 (2 5 6 2 0 0) 4

149 58 Q4
58 (2 5 7 0 2 2) 4

150 60 Q1
60 (2 3 10 0 0 0) 8

151 60 Q2
60 (2 4 9 4 2 0) 24

152 60 Q3
60 (2 5 6 0 0 0) 4

153 61 Q1
61 (2 5 7 2 0 2) 4

154 62 Q1
62 (2 4 8 2 0 0) 10 None

155 62 Q2
62 (2 5 7 4 0 0) 4

156 63 Q1
63 (2 5 7 0 0 2) 4

157 63 Q2
63 (2 5 7 2 2 0) 4

158 64 Q1
64 (2 4 8 0 0 0) 64

159 66 Q1
66 (2 4 9 2 2 0) 6 None

160 68 Q1
68 (2 4 9 0 2 0) 24

161 68 Q1
68 (2 4 10 4 2 0) 24

162 68 Q2
68 (2 5 7 2 0 0) 4

163 70 Q1
70 (2 4 9 2 0 0) 6 None

164 70 Q2
70 (2 5 7 0 0 0) 4

166 72 Q2
72 (2 4 10 4 0 0) 3 None

167 72 Q3
72 (2 5 8 4 0 0) 4

168 74 Q1
74 (2 4 10 2 2 0) 10 None

169 76 Q1
76 (2 4 10 0 2 0) 24

170 77 Q1
77 (2 5 9 4 2 0) 4

171 78 Q1
78 (2 4 10 2 0 0) 7 None

172 78 Q2
78 (2 5 8 2 0 0) 4

173 80 Q1
80 (2 4 10 0 0 0) 24

174 80 Q2
80 (2 4 11 4 0 0) 24

175 80 Q3
80 (2 5 8 0 0 0) 4

176 82 Q1
82 (2 4 11 2 2 0) 11 None
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Table 5.5. Primitive truants for universal quaternary forms - Part V

Index # Det Sym (a b c d e f) Class # Primitive truant up to 400

177 82 Q2
82 (2 5 9 4 0 0) 4

178 85 Q2
80 (2 5 9 0 2 0) 4

179 86 Q1
86 (2 4 11 2 0 0) 11 None

180 87 Q1
87 (2 5 10 4 2 0) 4

182 88 Q2
88 (2 4 12 4 0 0) 4 None

183 88 Q3
88 (2 5 9 2 0 0) 4

184 90 Q1
90 (2 4 12 2 2 0) 7 None

185 90 Q2
90 (2 5 9 0 0 0) 4

186 92 Q1
92 (2 4 13 4 2 0) 24

187 92 Q2
92 (2 5 10 4 0 0) 4

188 93 Q1
93 (2 5 10 2 2 0) 4

189 94 Q1
94 (2 4 12 2 0 0) 16 None

190 95 Q2
80 (2 5 10 0 2 0) 4

192 96 Q2
96 (2 4 13 4 0 0) 3 None

193 98 Q1
98 (2 4 13 2 2 0) 11 None

194 98 Q2
98 (2 5 10 2 0 0) 4

195 100 Q1
100 (2 4 13 0 2 0) 24

196 100 Q2
100 (2 4 14 4 2 0) 24

197 100 Q3
100 (2 5 10 0 0 0) 4

198 102 Q1
102 (2 4 13 2 0 0) 9 None

200 104 Q3
104 (2 4 14 4 0 0) 4 None

201 106 Q1
106 (2 4 14 2 2 0) 15 None

202 108 Q1
108 (2 4 14 0 2 0) 24

203 110 Q1
110 (2 4 14 2 0 0) 10 None

Remark 5.1.1. Note that when a quadratic form is not almost primitively universal,

clearly it is not primitively universal. In [4], Budarina has listed 24 forms which are not

almost primitively universal. In Chapter 4, we stated another 28 forms in Proposition 4.3.6,

which are not almost primitively universal. So one can see these 52 forms are not primitively

universal right away. However, these arguments will not give any method to find the value of

the primitive truant, which emphasize the importance of utilizing a computational method

such as SAGE [18].

In [8], Earnest, Kim and Meyer have analyzed all the diagonal forms in [2, Table 5].

They have identified 27 forms out of those 96 forms as primitively universal, which on the

other hand implies that the remaining 69 diagonal forms are not primitively universal. But
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one should note that these forms can be almost primitively universal. So we have included

these forms in our analysis in Chapter 4, to come up with Proposition 4.3.6.

5.2 SOME TERNARY LATTICES

Here we will analyze some ternary lattices that are frequently used in our calculations,

to find what they can primitively represent locally at each prime p. Recall that we only

have to check p = 2 and the primes which divide the determinant of the lattice. Most of

the ternary lattices can represent a large set of positive integers, but no ternary positive

definite integral quadratic Z-lattice is universal. We will use the following lemma to prove

that1.

Lemma 5.2.1. Let (V, q) be a regular quadratic space over Q with dimension 3. Let S be

the set of all finite primes. Then for any p ∈ S, Vp is universal over Qp if and only if

SpV · (dV,−1)p = (−1,−1)p.

Proof. Follows from Lemma 2.3.2 and (2.1).

Proposition 5.2.2. If a regular quadratic space (V, q) over Q is positive definite, then

there exists p ∈ S such that Vp is not universal over Qp when dimension of V is 3.

Proof. The Lemma 5.2.1 implies that, if SpV · (dV,−1)p 6= (−1,−1)p for some p ∈ S, then

Vp is not universal over Qp. Suppose SpV · (dV,−1)p = (−1,−1)p for all p ∈ S. Then

1 =
∏
p ∈ Ω

SpV · (dV,−1)p = (
∏
p ∈ S

SpV · (dV,−1)p)S∞V · (dV,−1)∞

where Ω = S ∪ {∞} and S∞V = 1 and (dV,−1)∞ = 1 since V ∼= 〈1, . . . , 1〉 over R. Hence

it follows:

1 =
∏
p ∈ S

SpV · (dV,−1)p =
∏
p ∈ S

(−1,−1)p = (−1,−1)2

∏
p odd

(−1,−1)p = (−1,−1)2 = −1

and we arrive at a contradiction.

1For a proof using only simple congruence properties, see [7].
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Another useful theorem we will be using frequently is [10, Theorem 6.28], stated below:

Theorem 5.2.3. Let L be a lattice on the regular space V , and let M ⊆ L be an U-

modular sublattice. Then M splits L (i.e., L = M ⊥ L′ for some sublattice L′) if and only

if B(M,L) ⊆ U. In particular, every unimodular sublattice of an integral lattice L splits L.

This theorem helps to find a corresponding diagonal form of a lattice or a simplified

form of a lattice which will make it easier for our computations.

Example 5.2.4. Consider the ternary lattice K ∼=
(

2 1 0
1 2 1
0 1 4

)
. Note that the det K = 10. So

we are interested in finding the diagonal or simplified form in Z2 and Z5. Let us consider

Z2 first. Note that the binary lattice ( 2 1
1 2 ) ∼= A has a determinant 3. So A is a unimodular

sublattice of K2, and by Theorem 5.2.3, A splits K2; say K2
∼= A ⊥ M . Now using

discriminant, d(A)d(M) = 3d(M) ∈ 10(Z×2 )2 implies d(M) ∈ 30(Z×2 )2 = 2 · 7(Z×2 )2; so,

K2
∼= A ⊥ 〈2 · 7〉. Note that in Z2, A cannot be simplified further.

Next consider Z5. Again we can see A is a unimodular sublattice in Z5, hence K5
∼=

A ⊥M , for some M . Note that d(A)d(M) = 3d(M) ∈ 10(Z×5 )2 implies d(M) ∈ 30(Z×5 )2 =

6 · 5(Z×5 )2 = 5(Z×5 )2. Then K ∼= A ⊥ 〈5〉. But 2 is again a unit in Z5, so 〈2〉 splits ( 2 1
1 2 ).

Then A ∼= 〈2〉 ⊥ 〈β〉 such that 2d(〈β〉) ∈ 3(Z×5 )2, which implies d(〈β〉) ∈ 6(Z×5 )2 = 1(Z×5 )2.

So K5
∼= 〈1, 2, 5〉.

Now we will provide local computations of the representations of some ternary lattices

which will give enough background to proceed with our proofs in the next section.

Example 5.2.5. Let K ∼=
(

1 0 0
0 2 1
0 1 2

)
= 〈1〉 ⊥ A, with respect to basis {v1, v2, v3}. Note

that the det K = 3, so Kp is primitively Zp-universal for p 6= 2, 3. It is easy to see

K3
∼= 〈1, 2, 2 · 3〉, and is Z3-universal by Proposition 3.1.6, case (3.4). We can check that

it does not fall in to the exceptional case in Proposition 3.1.8. Thus, K3 is primitively

Z3-universal.
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We will use the argument in [10, page 168] to analyze K2. Let M = Z2(v1+v2)+Z2v3
∼=

( 3 1
1 2 ) ∼= 〈3, 7〉. So M is unimodular. Now by Theorem 5.2.3, M splits K2. This will give

K2
∼= 〈3, 7, 7〉.

Now we will determine what K2 primitively represents. Among the elements of Z×2 , it

is easy to see that {1, 3, 7} ∗−→ K2, but 5 6 ∗−→ K2 by Lemma 2.3.2. Also, 2Z×2
∗−→ K2 by Lemma

3.2.9. Suppose a = 3x2
1 + 7x2

2 + 7x2
3 ∈ 2Z2, where x1, x2, x3 ∈ Z2 with at least one xi ∈ Z×2 .

Then it must be that exactly two of the xi’s are units. If x1, x2 ∈ Z×2 (or x1, x3 ∈ Z×2 ), then

a ≡ 3 + 7 + 0 ≡ 2(mod 4Z2). If x2, x3 ∈ Z×2 , then a ≡ 0 + 7 + 7 ≡ 2(mod 4Z2). In both

cases, a 6∈ 4Z2. Thus,

q∗(K2) = q∗(〈3, 7, 7〉) = (Z×2 )2 ∪ 3(Z×2 )2 ∪ 7(Z×2 )2 ∪ 2Z×2 .

Example 5.2.6. Let K ∼=
(

1 0 0
0 2 1
0 1 3

)
. Note that the det K = 5, so we only have to check Z2

and Z5. Here K2
∼= 〈1, 3, 7〉 is primitively Z2-universal, by Lemma 3.2.4.

Now, in Z5, we have K5
∼= 〈1, 2, 2 · 5〉, which will give q∗(K5) = Z×5 ∪ 5∆(Z×5 )2, where

∆ is a non-square unit. (In most of the computations the fact Z×5 ⊆ q∗(K5) is sufficient.)

Example 5.2.7. Let K ∼=
(

2 0 0
0 4 2
0 2 4

)
. Note that the det K = 24, so we only have to check

Z2 and Z3. Here K3
∼= 〈2, 4, 3〉 ∼= 〈1, 2, 3〉 is primitively Z2-universal, by Propositions 3.1.6

and 3.1.8.

Now, in Z2, we have K2
∼= 〈2〉 ⊥ ( 4 2

2 4 ). Clearly q∗(K2) ∩ Z×2 = ∅, and we know

q∗(( 4 2
2 4 )2) ∩ 4Z2 = 4Z×2 .

Note that if M ∼= 〈1〉 ⊥ ( 2 1
1 2 ), then by scaling M by 2 we obtain K2. By Example

5.2.5 we know q∗(M) ∩ Z×2 = (Z×2 )2 ∪ 3(Z×2 )2 ∪ 7(Z×2 )2. This implies q∗(K2) = 2(Z×2 )2 ∪

6(Z×2 )2 ∪ 14(Z×2 )2 ∪ 4Z×2 .

Example 5.2.8. Let K ∼= 〈1, 2, 4〉. Since the det K = 8, Kp is primitively Zp-universal

for all odd primes p. By Lemma 3.2.8 i), Z×2
∗−→ K2. Then by [5, Theorem 5.1, page 143],

n
∗−→ gen K for all odd n. It follows that n

∗−→ K for all odd n since K has class number 1.
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5.3 SOME PROOFS OF PRIMITIVE UNIVERSALITY

Now we are ready to present the outline of our proofs of 28 forms which we identified

as primitively universal, among the remaining 73 forms listed in Section 5.1 without any

primitive truant up to 400. For convenience, we will be presenting some selected proofs,

which will give the idea of our methodology. The following proposition contains these 28

forms. Note that we have already stated and proved three out of these 28 forms which are

of class number 1, in Proposition 4.2.6. For completeness, those three forms are restated

here.

Proposition 5.3.1. The following forms are primitively universal:

x2 + 2y2 + 2z2 + 2w2 + 2zw; (5.1)

x2 + y2 + 2z2 + 4w2 + 2zw; (5.2)

x2 + 2y2 + 2z2 + 3w2 + 2zw; (5.3)

x2 + 2y2 + 2z2 + 4w2 + 2yz + 2zw; (5.4)

x2 + y2 + 2z2 + 6w2 + 2zw; (5.5)

x2 + y2 + 3z2 + 4w2 + 2zw; (5.6)

x2 + y2 + 3z2 + 5w2 + 2zw; (5.7)

x2 + 2y2 + 2z2 + 4w2 + 2zw; (5.8)

x2 + 2y2 + 2z2 + 5w2 + 2zw; (5.9)

x2 + 2y2 + 3z2 + 4w2 + 2yz; (5.10)

x2 + 2y2 + 4z2 + 4w2 + 4zw + 2yw; (5.11)

x2 + 2y2 + 2z2 + 6w2 + 2zw; (5.12)
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x2 + 2y2 + 3z2 + 5w2 + 2yz + 2zw; (5.13)

x2 + 2y2 + 4z2 + 4w2 + 2yz + 2yw; (5.14)

x2 + 2y2 + 4z2 + 4w2 + 4zw; (5.15)

x2 + 2y2 + 4z2 + 4w2 + 2yw + 2zw; (5.16)

x2 + 2y2 + 3z2 + 5w2 + 2yw; (5.17)

x2 + 2y2 + 3z2 + 5w2 + 2zw; (5.18)

x2 + 2y2 + 4z2 + 4w2 + 2yw; (5.19)

x2 + 2y2 + 4z2 + 5w2 + 4zw : (5.20)

x2 + 2y2 + 4z2 + 5w2 + 2yz; (5.21)

x2 + 2y2 + 3z2 + 7w2 + 2zw; (5.22)

x2 + 2y2 + 4z2 + 6w2 + 4zw; (5.23)

x2 + 2y2 + 4z2 + 6w2 + 2yz; (5.24)

x2 + 2y2 + 4z2 + 8w2 + 4zw; (5.25)

x2 + 2y2 + 4z2 + 10w2 + 4zw; (5.26)

x2 + 2y2 + 4z2 + 12w2 + 4zw; (5.27)

x2 + 2y2 + 4z2 + 13w2 + 4zw. (5.28)

Remark 5.3.2. Note that the forms (5.1) through (5.28) correspond to the lattices # 12,

14, 24, 25, 26, 27, 36, 37, 50, 58, 59, 61, 65, 70, 71, 77, 79, 83, 84, 91, 96, 105, 108, 111,

144, 166, 182 and 192, respectively, which are given in the Tables 5.1 - 5.5.

The main argument we use here is somewhat similar to the method used by Bhargava
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in [2]. But to preserve the primitive representation, here we have to find a ternary sublattice

which splits the quaternary lattice L. We can identify four ternary sublattices of L, not

necessarily distinct, denoted by T(i), where i = 1, 2, 3, 4. Here T(i) denotes the ternary

sublattice of L whose Gram matrix is obtained from the Gram matrix of L by deleting the

i-th row and i-th column.

In order to transfer information about the local primitive representations of a lattice

to information about global primitive representations, the lattice must be unique in its

genus (i.e., its class number equals 1). So we are interested in analyzing further the ternary

lattices T(i) with class number 1, at each prime p, to check what are the primitive exclusions

of (T(i))p (since no ternary lattice is universal, such exclusions always exist). Sometimes

these exclusions can be covered by other ternary sublattices of L, which do not necessarily

split L (see Example 5.3.5). Otherwise, we need to check whether there is a way to cover

these exclusions primitively using T(i) and the complement of T(i) in L. Note that when

L ∼= 〈β〉 ⊥ T(i), for some β ∈ N, then α − β → T(i) implies α
∗−→ 〈β〉 ⊥ T(i)

∼= L, where

primitivity is guaranteed by the vector associated with β. In either way, if we are able

to primitively represent every positive integer using L, then we can conclude that L is

primitively Z2-universal.

Also, when T(i) has class number 1, then for any α ∈ N, α 6 ∗−→ T(i) implies that there

exists some p ∈ S such that α 6 ∗−→ (T(i))p. We will be using these arguments directly

throughout our proof from now on.

Example 5.3.3. Consider lattice Q3
6 (# 12) given by L ∼= 〈1〉 ⊥

(
2 0 0
0 2 1
0 1 2

)
. Here the ternary

lattice, T(2)
∼=
(

1 0 0
0 2 1
0 1 2

)
has class number 1. Observe first that (T(2))p is primitively Zp-

universal for p 6= 2, 3 since det (T(2)) = 3. Next, by Example 5.2.5, we have (T(2))3 is

primitively Z3-universal, and q∗((T(2))2) = q∗(〈3, 7, 7〉) = (Z×2 )2 ∪ 3(Z×2 )2 ∪ 7(Z×2 )2 ∪ 2Z×2 .

With these computations, we know that for any α ∈ N, if α 6 ∗−→ T(2), then either α ∈ 4Z2 or

α ∈ 5(Z×2 )2.

Now take any α ∈ N. Note that L ∼= 〈2〉 ⊥ T(2). To prove that L is primitively
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universal, it suffices to show either α
∗−→ T(2) or α − 2 → T(2). Suppose α 6 ∗−→ T(2) (i.e.

α 6 ∗−→ (T(2))2). If α ∈ 4Z2; say α = 4α0, then α − 2 = 4α0 − 2 ∈ 2Z×2
∗−→ (T(2))2. If

α ∈ 5(Z×2 )2, then α− 2 ∈ 3(Z×2 )2 ∗−→ (T(2))2. In both cases α− 2
∗−→ T(2), hence α

∗−→ L.

Example 5.3.4. Consider lattice Q2
10 (# 24) given by L ∼= 〈1〉 ⊥

(
2 0 0
0 2 1
0 1 3

)
. Here the

ternary lattice, T(2)
∼=
(

1 0 0
0 2 1
0 1 3

)
has class number 1. By Example 5.2.6, (T(2))p is primitively

Zp-universal except when p = 5 and we have Z×5 ⊆ q∗((T(2))5).

Now take any α ∈ N. Note that L ∼= 〈2〉 ⊥ T(2). To prove that L is primitively

universal, it suffices to show either α
∗−→ T(2) or α − 2 → T(2). Suppose α 6 ∗−→ T(2). Then

α ∈ 5Z5; say α = 5α0. So α − 2 = 5α0 − 2 ∈ Z×5
∗−→ (T(2))5. Thus α − 2

∗−→ T(2), hence

α
∗−→ L.

Example 5.3.5. Consider lattice Q3
10 (# 25) given by L ∼= 〈1〉 ⊥

(
2 1 0
1 2 1
0 1 4

)
. Here the ternary

lattices T(1)
∼=
(

2 1 0
1 2 1
0 1 4

)
and T(3)

∼= 〈1, 2, 4〉 have class number 1. First note that, by Example

5.2.8, all positive odd integers are primitively represented by T(3). Therefore, in order to

prove L is primitively universal, we only have to show further that all positive even integers

are primitively represented by L.

Since det T(1) = 10, (T(1))p is primitively Zp-universal except possibly when p = 2, 5.

Using Example 5.2.4, we have (T(1))2
∼= A ⊥ 〈2 · 7〉. By Propositions 3.2.13 and 3.2.20,

Â ⊥ 〈7〉 is primitively Zp-universal. It follows after scaling that 2Z2
∗−→ (T(1))2. Also,

(T(1))5
∼= 〈1, 2, 5〉 and hence Z×5

∗−→ (T(1))5.

Now let α be an even positive integer. If 5 - α, then α
∗−→ (T(1))p for all p. Hence

α
∗−→ T(1) since T(1) has class number 1. So α

∗−→ L. If 5 | α, then α − 4 ∈ Z×5
∗−→ T(1). So

α = 22 + (α− 4)
∗−→ 〈1〉 ⊥ T(1)

∼= L.

Example 5.3.6. Consider lattice Q2
96 (# 192) given by L ∼= 〈1〉 ⊥

(
2 0 0
0 4 2
0 2 13

)
. Here the

ternary lattices T(2)
∼=
(

1 0 0
0 4 2
0 2 13

)
and T(4)

∼= 〈1, 2, 4〉 have class number 1. First note that, by

Example 5.2.8, all positive odd integers are primitively represented by T(4). Here (T(2))3
∼=
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〈1, 1, 3〉, hence Z×3 ⊆ q∗((T(2))3), and (T(2))2
∼= 〈1, 5, 7 · 24〉. It can be checked by direct

computation that (Z×2 )2∪5(Z×2 )2∪6(Z×2 )2∪14(Z×2 )2∪4(Z×2 )2∪20(Z×2 )2∪8(Z×2 )2∪40(Z×2 )2∪

48(Z×2 )2 ∪ 80(Z×2 )2 ∪ 112(Z×2 )2 ⊆ q∗((T(2))2), and 8Z2 ⊆ q((T(2))2).

Now let α be an even positive integer. If α 6 ∗−→ T(2), there are three possibilities to

consider:

i) 4 | α, 3 - α;

ii) α ∈ 2(Z×2 )2 ∪ 10(Z×2 )2, 3 - α;

iii) 3 | α.

Consider the first case i). Write α = 4α0 and break further into subcases depending

upon whether α0 is even or odd.

If α0 is even, then by separately considering the cases α0 ≡ 0, 2, 4, 6(mod 8Z2), it can be

shown that α− 2 · 32 ∗−→ (T(2))2 (for example, if α0 ≡ 2(mod 8Z2), then writing α0 = 2 + 8k

produces

α− 2 · 32 = −10 + 32k = 2(−5 + 16k) ∈ 6(Z×2 )2 ∗−→ (T(2))2.)

Also, α − 2 · 32 ∈ Z×3 since 3 - α. So α − 2 · 32 ∗−→ (T(2))p for all p, and it follows that

α − 2 · 32 ∗−→ T(2) when α ≥ 19, since T(2) has class number 1. So α
∗−→ 〈2〉 ⊥ T(2)

∼= L for

α ≥ 19.

On the other hand, if α0 is odd, then α
∗−→ T(2) when α0 ≡ 1, 5(mod 8Z2). When

α0 ≡ 3, 7(mod 8Z2), it can be shown that α − 2 · 62 ∗−→ (T(2))p for all p (for example, if

α0 ≡ 3(mod 8Z2), then writing α0 = 3 + 8k produces

α− 2 · 62 = −60 + 32k = 4(−15 + 8k) ∈ 4(Z×2 )2 ∗−→ (T(2))2.)

Hence α− 2 · 62 ∗−→ T(2) and α
∗−→ 〈2〉 ⊥ T(2)

∼= L whenever α ≥ 73.

Now consider the subcase of case ii) when α ∈ 2(Z×2 )2. So 3 - α and α = 2 + 16k for

some k ∈ N. Then

α− 2 · 32 = 8(−2 + 2k) ∈ 8Z2 → T(2).
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Hence α − 2 · 32 → (T(2))p for all p and thus α − 2 · 32 → T(2) whenever α ≥ 19, since T(2)

has class number 1. So α = 2 · 32 + q(v) for some v ∈ T(2). This gives a representation of

α by L. The g.c.d. of the coefficients of v cannot be divisible by 3 since 3 - α. Therefore,

the representation must be primitive and α
∗−→ L. The proof for the subcase of ii) when

α ∈ 10(Z×2 )2 is similar.

The proof for the remaining case iii) follows in a similar manner. Combining these

cases and using the fact that L primitively represents the positive integers up to 400, we

can conclude that L is primitively universal.

Although ternary lattices can cover large sets of positive integers, in some cases it is

not possible to find a ternary sublattice of L with class number 1 that works well. That

is when we dig further in to binary sublattices of L which have class number 1. There we

get more primitive exclusions, but the advantage is that in the complement we have two

orthogonal components to work with as shown in the following example:

Example 5.3.7. Consider lattice Q2
11 (# 27) given by L ∼= 〈1〉 ⊥

(
1 0 0
0 3 1
0 1 4

)
. Here we will

use the binary lattice K ∼= ( 3 1
1 4 ), which has class number 1, and we write L ∼= 〈1, 1〉 ⊥ K.

The determinant of K is 11, and we only need to check Z2 and Z11. It is not hard to

see K2
∼= 〈1, 3〉; hence Z×2 ⊆ q∗(K2) by Proposition 3.2.2 i), and K11

∼= 〈1, 11〉; hence

q∗(K11) = (Z×11)2 ∪ 11(Z×11)2.

Now take any α ∈ N. Suppose α 6 ∗−→ K. We divide the argument in to four cases.

Case i): 2 | α, 11 | α. Let α = 2α0 and α ≡ 0(mod 11Z11). Then α − 32 − 22 =

α− 13 ≡ 9(mod 11Z11); so α− 32 − 22 ∈ (Z×11)2. Also α− 32 − 22 = 2α0 − 13 ∈ Z×2 . Thus,

α− 32 − 22 ∗−→ K2 and K11. So, α− 32 − 22 ∗−→ K. Hence α
∗−→ 〈1, 1〉 ⊥ K ∼= L.

Case ii): 2 - α, 11 | α. Let α = 2α0 + 1 and α ≡ 0(mod 11Z11). Then α − 1 − 1 =

α − 2 ≡ 9(mod 11Z11); so α − 1 − 1 ∈ (Z×11)2. Also α − 1 − 1 = 2α0 + 1 − 2 ∈ Z×2 . Thus,

α− 1− 1
∗−→ K2 and K11. So, α− 1− 1

∗−→ K. Hence α
∗−→ 〈1, 1〉 ⊥ K ∼= L.
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Case iii): 2 | α, 11 - α. This consists of two subcases. First let α = 2α0 and

α ∈ ∆(Z×11)2. So, α ≡ 2, 6, 7, 8, 10(mod 11Z11). In order to have a primitive representation

we need to find λ such that α− λ is odd so that α− λ ∗−→ K2. If α ≡ 2, 6, 10(mod 11Z11),

then α − 1 ≡ 1, 5, 9(mod 11Z11); so α − 1 ∈ (Z×11)2. If α ≡ 7(mod 11Z11), then α − 32 ≡

9(mod 11Z11); so α−32 ∈ (Z×11)2. If α ≡ 8(mod 11Z11), then α−22−1 ≡ 3(mod 11Z11); so

α−22−1 ∈ (Z×11)2. In each of the subcases there exist λ1, λ2 ∈ Z2 such that α−λ1−λ2
∗−→ K2

and K11. Thus, α− λ1 − λ2
∗−→ K. Hence α

∗−→ 〈1, 1〉 ⊥ K ∼= L.

Next let α = 2α0 and α ∈ (Z×11)2. So, α ≡ 1, 3, 4, 5, 9(mod 11Z11). If α ≡

4, 5(mod 11Z11), then α− 1 ≡ 3, 4(mod 11Z11); so α− 1 ∈ (Z×11)2. If α ≡ 3, 9(mod 11Z11),

then α − 22 − 1 ≡ 9, 4(mod 11Z11); so α − 22 − 1 ∈ (Z×11)2. If α ≡ 1(mod 11Z11), then

α− 32 ≡ 3(mod 11Z11); so α− 32 ∈ (Z×11)2. In each of the subcases there exist λ1, λ2 ∈ Z2

such that α−λ1−λ2
∗−→ K2 and K11. Thus, α−λ1−λ2

∗−→ K. Hence α
∗−→ 〈1, 1〉 ⊥ K ∼= L.

Case iv): 2 - α, 11 - α. Let α = 2α0 + 1 and α ∈ ∆(Z×11)2. So, α ≡

2, 6, 7, 8, 10(mod 11Z11). In order to have a primitive representation we need to find λ

such that α − λ is odd so that α − λ
∗−→ K2. If α ≡ 2, 7, 8(mod 11Z11), then α − 22 ≡

9, 3, 4(mod 11Z11); so α−22 ∈ (Z×11)2. If α ≡ 6(mod 11Z11), then α−1−1 ≡ 4(mod 11Z11);

so α−1−1 ∈ (Z×11)2. If α ≡ 10(mod 11Z11), then α−22 ≡ 5(mod 11Z11); so α−22 ∈ (Z×11)2.

In each of these there exist λ1, λ2 ∈ Z2 such that α − λ1 − λ2
∗−→ K2 and K11. Thus,

α− λ1 − λ2
∗−→ K. Hence α

∗−→ 〈1, 1〉 ⊥ K ∼= L.

Outline of the proof of the Proposition 5.3.1: The proof for the forms (5.17),

(5.18) and (5.20) is already given in Proposition 4.2.6.

The result is proved for the form (5.1) in Example 5.3.3. A similar argument can be

applied to the forms (5.5), (5.13), (5.26), (5.27) with the use of ternary sublattice T(1), and

to the forms (5.7) (5.9), (5.12), with the use of ternary sublattice T(2) of the corresponding

lattice L.

The result is proved for the form (5.3) in Example 5.3.4, and a similar argument can
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be applied to the form (5.10), with the use of ternary sublattice T(4) of the corresponding

lattice L.

The result is proved for the form (5.4) in Example 5.3.5. A similar argument, which

is even easier, can be applied to the forms (5.8), (5.11), (5.15), (5.16), (5.23), with the use

of ternary sublattice T(1) of each of the corresponding lattices L, since each of these T(1)’s

has the property q∗((T(1))2) = 2Z2. Proof of (5.15) will follow a similar reasoning, using

the result of Example 5.2.7.

Although the proof of (5.14), which can be performed using T(1) looks similar to that

of (5.1), since q∗((T(1))2) = 2Z2 and there is no other ternary sublattice which can be proven

to represent odd numbers primitively, we need to consider three different cases here. For

any α ∈ N, if α 6 ∗−→ T(1), then 2 | α, 3 | α or 2 - α, 3 | α or 2 - α, 3 - α. In all of these cases

we can prove α
∗−→ L.

In the proof of (5.22), which can be performed using T(2), one can check that

q∗((T(2))2) = Z×2 ∪ 4Z2. With the property that Z×5 ⊆ q∗((T(2))5), and as T(4) represents all

positive odd integers, we can complete the proof by considering three different cases. For

any positive even integer, α, if α 6 ∗−→ T(1), then 4 | α, 5 | α or 4 - α, 5 | α or 4 - α, 5 - α. In

all of these cases we can prove α
∗−→ L.

The result is proved for the form (5.6) in Example 5.3.7. This form is equipped with

the binary sublattices of class number 1. Same procedure can be used to prove the primitive

universality of the forms (5.2), (5.19), (5.21), (5.24), (5.25).

The sketch of the proof of the form (5.28) is given in Example 5.3.6.
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