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 It was not thought that there would be some major flaws in the design of widely 

used steel moment frames until the Northridge Earthquake hit the California on January 17, 

1994. Until then, steel moment frames were practiced as the most ductile system and were used 

in buildings from few stories to skyscrapers. The heavy devastation from Northridge Earthquake 

was an alarm for all the people related to the design and construction of such structures and 

pushed everybody to act fast to find some possible solutions to such never-expected-problems.   

Following the earthquake, FEMA entered into a cooperative agreement with the SAC 

joint venture in order to get a transparent picture of the problems in the seismic performance of 

steel moment frames and to come up with suitable recommendations. The research was 

specifically done to address the following things: to inspect the earthquake-affected buildings in 

order to determine the damage incurred in the buildings, to find out ways to repair the damaged 

buildings and upgrade the performance of existing buildings, and to modify the design of new 

buildings in order to make them more reliable for seismic performance. Among the various new 
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design suggestions, the Reduced Beam Section (RBS) connection has been one of the most 

efficient and reliable option for high ductility demands. 

The purpose of this research was to study the behavior of concrete slabs in the 

performance of steel moment frames with reduced beam sections based on ductility, strength and 

stiffness.  The slab is an integral part of a building. It is always wiser to consider the slab in order 

to assess accurately the seismic behavior of a building under the earthquake loading. In this 

research, two sets of finite element models were analyzed. Each set had one bare steel moment 

frame and one concrete slab frame which acted as a composite section. 

The connections were designed using the AISC Seismic Design manual (AISC 2012). 

The finite element modeling was done using NISA DISPLAY-IV (NISA 2010). All the models, 

with and without the slab were analyzed under the same boundary conditions and loads. Both 

non-linear and linear analyses were performed. The results from non-linear analysis were used to 

compare the ductility and strength whereas linear analysis results were used to compare the 

stiffness between bare steel and composite frame models. 
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CHAPTER 1  

INTRODUCTION 

The Northridge Earthquake in 1994 changed the generally accepted notion of engineers 

and fabricators that the welded steel moment frame building is the most ductile moment resisting 

frame. Following that earthquake, a number of steel moment-frame buildings were found to have 

experienced brittle fractures of beam-to-column connections (FEMA-350, 2000) . The reduction 

in previously assumed adequacy in connection ductility, strength and stiffness of the lateral 

frame raised serious tension regarding the inspection of affected buildings, assessment of their 

residual strength and stiffness, finding of suitable retrofitting measures, and examination of the 

potential vulnerabilities of the existing buildings in the seismically active areas (Iwankiw, 2004).  

Following the earthquake, wide ranges of research are going on to find the most efficient 

solutions to the problems in order to avoid any possible future damage. Over the last two 

decades, the design professionals and construction industries have come up together hand in 

hand to review, study, and revise different parameters involved in the construction of steel 

moment frames. Various research carried out by AISC in collaboration with different 

organizations and the FEMA-SAC program have shed light on the improvements in design, 

fabrication, and workmanship which are expected to account for an increased seismic 

performance of steel moment frames (Iwankiw, 2004).  

The post-earthquake research suggested two solutions to the problems. One is to 

reinforce the beam column connections with the use of flange cover plates, ribs, haunches, side 

plates etc. Another is the weakening of the section of the beam away from the face of the 

columns known as the “Dogbone” moment connection or Reduced Beam Section connection 

(Civjan et al., 2000; Engelhardt et al., 1996; Park and Hwang, 2003). The reduction in cross 
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sectional area reduces the moment capacity at that location of the beams, where yielding will be 

concentrated at the reduced sections, and ultimately protecting the connections from brittle 

fracture (Sophianopoulos and Deri, 2011).  The weakening method avoids the higher stress 

generation on the supporting columns, reduces the weld-metal volume, and decreases 

supplementary material requirements which makes it more reliable and economic (Iwankiw, 

2004; Park and Hwang, 2003). The scope of this research is limited to the use of radius cut 

reduced beam section.  

A distinguished feature of reduced beam section is that portions of beam flange are 

trimmed away in the region adjacent to the beam-column connection. The RBS forces the 

yielding and hinge formation away from the beam column connection to form at the reduced 

section of beam limiting the moment that can be developed at the face of column. The Dogbone 

enhances the ductility of the system significantly with a small reduction in the strength and 

stiffness of a frame. Thus, this trading of small amount of strength for a large increase in 

ductility is seen as an excellent bargain for seismic resistant buildings (Engelhardt et al., 1996). 

The use of slabs in the steel moment frames as a composite beam has been a common 

practice all over the world. So, with the overwhelmingly increasing popularity of RBS, it was 

deemed necessary to study the effect of composite slabs on the structures so that accurate 

assessment can be made of the seismic demand in structures considering the dead and live load 

coming from the slabs. 

To ensure the acceptable seismic performance of steel moment frames, it is necessary to 

have adequate combination of stiffness, strength and ductility. It has always been a topic of 

interest to study whether the composite slabs would act to help improve the seismic performance 

in steel moment frames or further make the frames more vulnerable to the seismic force. 
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The scope of this research was to study the effect of composite slab on steel moment 

frames employing radius cut Reduced Beam Sections, and comparison was done with bare steel 

specimen frames based on their stiffness, strength and ductility. The connection was designed 

using AISC Seismic Design Manual (AISC 2012). The modeling and analysis of the frame was 

performed with the help of finite element software NISA DISPLAY-IV (NISA 2010). A partial 

frame of multi-story moment frame was used for the analysis. Two sets of models were designed 

and each set consists of one bare steel frame and one composite slab frame. The span, height, and 

boundary conditions are kept same for all the models. The ductility, strength and stiffness of 

each model were calculated, and comparison was done to see the effect of composite slabs. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Background of Steel Moment Frame  

Steel moment frame buildings are designed with the basic intent to resist earthquake 

damage based on the ground that they are capable of extensive yielding and plastic deformation, 

without loss of strength. Damage in these structures was expected to be due to moderate yielding 

and localized buckling of the steel. However, the post-Northridge earthquake observation 

indicated a lot of brittle fractures within the connections  at very low levels of plastic demand, 

and in some cases, while the structures remained essentially elastic (FEMA-350, 2000).  

The basic purpose of steel moment frames is to resist moments caused by lateral forces 

by achieving high ductility through yielding, and be capable of remaining intact through several 

cycles of inelastic rotations due to seismic loading. The advantage of using moment frames is the 

availability of more space which provides more architectural freedom in design. On one hand, 

the connections for steel moment frames increases the price of project by being labor intensive 

compared to shear wall structures. However, on the other hand, lesser forces imposed by these 

frames on the foundation results in somewhat economical foundation system (Hamburger et al., 

2009). Figure 2.1.1 shows a typical moment resisting frame. 
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Figure 2.1.1:Typical Moment Resisting Frame 

The use of steel moment frames in building construction initiated with the Home 

Insurance Building in Chicago, a 10-story structure constructed in 1884 with a height of 138 feet, 

was often called as the first skyscraper (Hamburger et al., 2009). After this, there was a rapid 

increase in the use of steel moment frames in the construction of high rise buildings and various 

modifications in the construction practices to make them safer seismically. Basically, there are 

three types of moment resisting frames: 1) Ordinary Moment Frame (OMF), 2) Intermediate 

Moment Frame (IMF) and, 3) Special Moment Frame (SMF).  

OMFs will normally be more rigid than IMFs or SMFs, but can have much poorer 

inelastic response characteristics. OMFs are able to resist the onset of damage due to stronger 

levels of ground shaking than the other moment frames. But, as the ground intensity increases, 

OMFs possesses a much greater risk of collapse than IMFs, which possesses more risk than 
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SMFs. So, the proper use of various moment frames depends on the various parameters that 

include height of structure, usage of structure, seismic vulnerability of the site, etc. In spite of 

defining more restrictive design force and drift criteria to limit the amount of inelastic demand 

these IMFs may experience, decision was made to omit this IMF system from the building code 

(FEMA-350, 2000). 

SMF structures are expected to be able to dissipate an extensive amount of energy by the 

formation of plastic hinges. The term “special” was adopted because their design involved 

special criteria and they were expected to demonstrate superior performance in times of strong 

earthquakes (Hamburger et al., 2009). It was only after the Northridge Earthquake, the design 

defects in those moment frames came to light. A large number of steel moment frames 

experienced brittle failure of welded beam-to-column connections that included fractures in the 

bottom beam flange-to-column flange complete-joint penetration groove welds, cracks in beam 

flanges, and cracks through the column sections (Hamburger et al., 2009).  

After that earthquake, FEMA and SAC entered into the contractual agreement where they 

did extensive research on steel moment frames to find out the actual cause of failure and propose 

some measures to avoid future such disaster. All the different solutions suggested after the 

careful investigations of the damages can be classified as either the strengthening types or the 

weakening types (Chen et al., 2001). The purpose of all these design modifications were to avoid 

the brittle failure of beam-column connections by moving the plastic hinge away from the face of 

the columns and reducing the stress levels in the vicinity of the complete joint penetration (CJP) 

flange welds. The connection strength can be increased by using one of these: cover plates, 

triangular haunches, straight haunches, upstanding ribs, lengthened ribs, and side plates. 

Similarly, weakening can be done either by cutting a portion of beam flange (reduced beam 
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section connections) or the beam web (wedge beam connections) and reduced beam web 

connections (Hedayat and Celikag, 2009). The strengthening method was superseded by the 

weakening method for being more uneconomical and time consuming. Among various 

weakening methods, this research focuses on the most popular and widely used Reduced Beam 

Section (RBS) connections.  

2.2 Reduced Beam Section 

The concept of using RBS goes to European research Plumier, who developed an idea of 

creating locally weak zone away from the beam column connection so that plastic hinging can 

take place at the desired location. This novice idea was actually a by-product of limited 

experiments with small European shapes, patented by the late European steel producer S. A. 

Arbed (“Antiseismic steel structural work”, U.S. Patent No. 148, 642, 1992). Arbed generously 

waived the commercial rights for its broad public use in United States (Iwankiw, 2004). Since 

then, a lot of research has been done to find the best possible shape of reduced beam section. 

A lot of research had been carried out to study the most effective shape of reduced beam 

section. Investigations were mainly focused to compare the results among the three different 

types: tapered cut, radius cut, and straight cut connections. Figure 2.2.1 shows different Dogbone 

cutouts. Test results have shown radius cut to be the most superior and straight cut to be the most 

inferior connection (Englehardt et al., 1997; Jin and El-Tawil, 2005; Jones et al., 2002). Also, 

Radius cut RBS came out to be most popular because it was relatively easy to fabricate, and it 

avoided stress concentration at the reentrant corners as seen in straight cut and tapered cut 

section (Lee and Chung, 2007). In this research also, radius cut connection is employed for more 

effective and efficient result.  
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Figure 2.2.1: Different Dogbone cutouts 

In the Reduced beam Section connection also called as “Dogbone connection”, the 

flanges are selectively trimmed in both the top and bottom flanges near the beam-to-column 

connection to reduce the cross sectional area of the beam. Figure 2.2.2 shows a typical circular 

cut RBS. The RBS forces yielding and hinge formation to occur within the reduced portion and 

limits the moment that can be formed at the face of the column. Although, the RBS essentially 

weakens the beam, its impact on the overall lateral strength and stiffness of a steel moment frame 

is generally small. However, it significantly enhances the ductility of the frame (Han et al., 2009; 

Jones et al., 2002; Moore et al.,1999). A number of research carried out on RBS indicates the 

connection to be one of the most promising concepts for the design of ductile steel moment 

frames for severe seismic applications capable of providing a high level of performance and 

good economy (Englehardt et al., 1997). 
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An experimental investigation was carried out on seismic resistant steel moment 

connections using a reduced beam section where portions of the beam flanges near the beam-

column connection were trimmed in order to enhance ductility under severe seismic loads. It was 

seen that the average reduction in stiffness for a 50 percent flange reduction was on the order of 

6 to 7 percent. Similarly, for a 40 percent flange reduction, the stiffness was reduced by 4 to 5 

percent.  From the observation, the radius cut Dogbone connection appears to provide a high 

level of performance and good economy (Englehardt et al., 1997). 

 

Figure 2.2.2: Dimension of the circular cut RBS 

Where, 

a ≈ (0.5 to 0.75) ×bf     

b≈ (0.65 to 0.85) ×db 

c ≈ (0.1 to 0.25)×bf 

R= 
4𝑐2+𝑏2

8𝑐
 

bf= width of beam flange 

db= depth of beam 
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2.3 Effects of Plastic Hinge on Ductility, Strength and Stiffness  

Strength, stiffness, and ductility are the major attributes affecting the seismic 

performance of steel moment frame connections, and it is seen that they are controlled by yield 

mechanisms and failure modes. The yield mechanism introduces plastic deformation which 

ultimately reduces the connection stiffness and these changes are necessary as they help to access 

the performance of the connection in the earthquake. Similarly, failure modes lead to the 

fracture, tearing, or deterioration of connection performance which ultimately limits the 

connection ductility and resistance. Ductility is measured by the plastic rotational capacity of the 

connection. Ductility is assured by making sure than the yield mechanism resistance is 

significantly less than critical failure mode resistance (Roeder, 2002a, 2002b). 

Steel moment frames are anticipated to develop their ductility by going through 

significant inelastic behavior in numerous members when exposed to severe seismic shaking.  

And, this inelastic behavior is expected to occur in the form of plastic hinging in the beams, 

adjacent to the beam-column connections. The hinging should occur over multiple stories in 

order to spread the total displacement demand and limit the local deformation and member 

strains to a level that the members can withstand in a properly designed system. The ideal plastic 

hinge formation in the frame is shown in Figure 2.3.1. In addition to this, inelastic behavior can 

be expected to occur in beam-column joint panel zones and at column bases (Hamburger et al., 

2009). However, it is always undesirable to form plastic hinge in the column as the column 

failure is more serious than the failure of unimproved connections since it is more likely to lead 

to a collapse mechanism. 
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Figure 2.3.1: Idealized mechanism for strong column weak beam design 

In this research, more effort is given to form the plastic hinges in the reduced section of 

beam and control the failure mechanism. In the study, two types of steel moment frames - 

composite slab frame and bare steel frame - are used to compare the ductility, strength and 

stiffness of the frames to investigate the effect of composite slab in the performance of steel 

moment resisting frames. 

2.4 Use of Steel- Concrete Composite System 

It can be seen that almost all steel moment frames are supplemented with concrete slabs. 

The Steel-concrete composite system is widely used because of benefits of combining the two 

materials. Reinforced concrete is inexpensive, massive, and stiff, while steel member are strong, 

lightweight, and easy to assemble (Spacone and El-Tawil, 2004). In common construction of 
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buildings, concrete slab is almost always present. So, it is of immense necessity to study the 

effect of slabs on the steel moment frames.   

Neglecting the slabs composite effect in the structures may result in inappropriate design. 

There could be difference in the estimation of stress values generated in the frames as well as the 

deformation that takes place in the structures. The presence of composite slabs could play some 

role to alter the behavior of plastic hinges formation and the desired concept of strong column 

weak beam moment frame connections. In almost all the construction, slabs are the inseparable 

part of the frames. 

Jones, Fry, and Engelhardt (Jones et al., 2002) performed a full scale test on eight 

samples of interior joint with reduced beam section connection to study the effect of composite 

slab on the frame. Each specimen was subjected to a standard quasi-static cyclic load and seven 

out of eight specimens achieved total elastic plus plastic story drift ratios. From the experiment, 

the presence of slab proved to be beneficial to the beam performance by enhancing the beam 

stability and delaying the strength degradation. The presence of slab appeared to stabilize the 

beam against lateral torsional buckling. And, no special treatment was needed for the slab, such 

as leaving a gap between the slab and the face of the column. 

Civjan, Engelhardt, and Gross (Civjan et al., 2001) performed tests on full-sized interior 

sub-assemblages where the specimen were loaded at column tip under quasi-static cyclic loading 

to study the effect of composite slab on the frame. From the experiment, it was observed that the 

composite specimen developed larger plastic rotations and larger moments as compared to bare 

steel specimen. This result suggests a potentially beneficial effect of the slab that includes 

improved resistance to local and lateral instabilities of the beam with slight increase in elastic 

stiffness and strength over bare steel specimen.  
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Also, Zhang and Ricles (Zhang and Ricles, 2006) performed an experimental 

investigation of seismic behavior of RBS moment connections. Five of his six full scale 

specimen consisted of a composite floor slab. From the study, it was concluded that the 

composite floor slab developed a greater increase in strength relative to the bare steel beam. The 

lateral restraint provided by the floor slab enhanced the connection performance by reducing the 

strength degradation due to lateral buckling of the beam. 

The objective of this research is to use finite element analysis to study and compare bare 

steel frames with composite slab frames based on grounds of ductility, strength and stiffness. 
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CHAPTER 3  

PROCESSES AND MODELING 

3.1 Introduction 

A partial frame of a multistory single-bay moment frame was considered for this 

research. The partial frame concept can be used in this condition since it is assumed that there is 

no bending moment at the mid height of the column due to lateral loads. Two Reduced Beam 

Sections was employed close to the ends of the beam as shown in Figure 3.1.1 to see the real 

picture of mode of generation of plastic hinge in the reduced part and the effect of those hinges 

on the overall stability of SMFs. Two sets of models were analyzed. Each set having one 

composite slab frame and one bare steel frame. Beam and column were designed to satisfy 

strong-column-weak-beam criteria in order to force formation on plastic hinge within the beam 

and control the failure mechanism. The boundary condition, load, span and height of the frame 

were kept typical for each set of models with and without composite slab as shown in Figure 

3.1.1, Figure 3.1.2, Figure 3.1.3, and Figure 3.1.4. To meet the intended objective of performing 

the research, the vertical load was kept constant whereas the lateral load was applied with 100 

time steps increments. 
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Figure 3.1.1: Bare Steel Frame (Model 1a) 

 

 

 

 

Figure 3.1.2: Composite slab frame (Model 1b) 
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Figure 3.1.3: Bare Steel Frame (Model 2a)  

 

 

Figure 3.1.4: Composite slab frame (Model 2b) 

3.2 Model Geometry 

The Reduced Beam Sections were designed using AISC Seismic Design Manual (AISC 

2012). The frame configuration is 30 feet long and 12.5 feet high. And, the width of slab is taken 

to be 25 feet. For model 1a and 1b, the beam used in the analysis is W 21×62 and the column 

used is W 12×190. Similarly, for model 2a and 2b, the beam is W 21×73 and column is W 

12×210. Pinned supports are used at the column base since the minimum bending moment is 
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close to zero at the mid-height of the column in each story due to lateral loads. The design 

process showed none of the models required continuity or doubler plates for more stability.  

3.3 Material Properties 

The steel used for the connection design is A992. The true stress strain curve for A992 is 

shown in Figure 3.3.1 (Bartlett et al., 2001). The Modulus of Elasticity used is 29000 ksi with a 

Poisson’s ratio of 0.3. Also, the yield strength of the material used in the analysis is 57 ksi and 

the fracture strength is 84 ksi. The yield strength of material refers to the point of formation of 

plastic hinge in the frame whereas fracture strength refers to the point at which the frame 

fractures and becomes no more useful as a load bearing structure. 

 

 

Figure 3.3.1: True Stress- Strain Curve for A992 Steel 
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Table 3.3-1: Stress- Strain data used in the analysis for A992 steel 

Stress (ksi) Strain (in/in) 

0 0 

57 0.00196 

84 0.18 

 

 The composite slab was also used in each model type for the composite action. The 

Modulus of Elasticity used for the concrete is 3640 ksi and Poisson’s ratio is 0.2. The fracture 

stress for the concrete is 4 ksi with strain value of 0.002 (Wang et al., 2007). Since, concrete is 

weak is tension and does not provide significant support to the frame, the concrete slab was used 

only in the compression zone in the design of frame for analysis. 

The concrete slab acts as a composite slab over the steel frames. For the analysis, strength 

of frame was taken to be the one at which the steel frame fractured, and the cracks developed at 

the face of the column was ignored. 

3.4 Loads and Boundary Conditions 

After designing frames and defining material properties, loads were applied. Lateral loads 

were applied at the tops of the columns as shown in the Figure 3.1.1, 3.1.2, 3.1.3 and 3.1.4. The 

lateral loads were applied at the column web to effectively transfer the load uniformly all over 

the structure. The lateral loads were applied for 100 time steps. The time steps indicate the ratio 

of increment of the load.  



19 

 

Similarly, floor loads were applied along the top of the web of the beam since web is 

more rigid. The floor loads were applied as a constant load in the analysis. All the loads were 

applied as a pressure load for even stress distribution. 

The boundary conditions were kept same for each set of model. The column bases were 

pinned and were kept movement restrained in x, y and z direction. Figure 3.4.1 shows typical full 

frame with loads and boundary conditions. Similarly, Figure 3.4.2 and Figure 3.4.3 shows 

enlarged view of bare steel frame and composite slab frame respectively with loads and 

boundary conditions. 

 

 

 

    

Figure 3.4.1:Typical full frame with loads and boundary conditions 
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Figure 3.4.2: Enlarged view of bare steel frame with loads and boundary conditions 

 

Figure 3.4.3: Enlarged view of composite slab frame with loads and boundary conditions 
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3.5 Analysis with NISA 

The models were analyzed using finite element software NISA DISPLAY-IV (NISA-

2010). The models were composed of many small elements for the accurate assessment of stress 

variation in the areas of high stress concentration. Nonlinear analyses were performed to observe 

the nature of plastic hinge formation.  

The models were run for 100 time steps using the finite element analysis software. For 

each model, the Von-Mises stress and 1st Principal stress were observed. The Von-Mises stress is 

related to the formation of plastic hinges in the frame. The 1st Principal stress is related to the 

fracture of the structural elements. Referring to Figure 3.3.1, the true stress-strain curve for A992 

steel, the yielding stress is 57 ksi and the ultimate stress is 84 ksi.  

Both linear and nonlinear analyses were performed in this research to compare the 

stiffness, ductility and strength of bare steel frames with that of composite slab frames. From the 

non-linear analysis, the maximum lateral displacement of the frames was observed and ductility 

of the frame was calculated. Similarly, linear analysis was performed to calculate stiffness of the 

frame. Then, comparison was made between the bare steel frames and composite slab frames in 

terms of ductility, strength and stiffness. 
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CHAPTER 4  

RESULTS AND DISCUSSIONS 

4.1 Introduction 

All of the results obtained from the finite element analysis are summarized in this 

chapter. The frames were designed using AISC Seismic Design Manual and then models were 

created and analyzed using NISA DISPLAY IV. All the models were analyzed linearly and 

nonlinearly, and displacements were observed for the calculation of ductility and stiffness. 

Lateral loads were applied at the free ends of the columns. Floor loads were applied as a pressure 

load on the beam web throughout the length of the beam. Also, pinned connection was assumed 

at the base of both columns. 

The formation of plastic hinges in the Reduced Beam Sections is the most desirable trait 

in this research. Since the beam is modeled with two reduced sections, the goal is to create 

hinges at both the reduced sections. The determination of plastic hinge formation was done by 

observing the Von-Mises stress distribution in the beam. The yielding of beam is said to occur if 

the stress exceeds 57 ksi. An example of plastic hinges formed in the frame is shown in Figure 

4.1.1. 

 

    

Figure 4.1.1: Formation of Plastic hinge on both RBS 
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4.2 Bare steel frame 

For both the bare steel models, 1st Principal stress and Von-Mises stress was observed. In 

the model 1a, as shown in Figure 4.2.1 and Figure 4.2.2, 1st Principal stress reached 69.55 ksi 

and Von-Mises stress reached 66.84 ksi respectively at time step 64 (The last step at which the 

1st Principal stress is less than 84 ksi). Figure 4.2.2 shows that the yielding Von-Mises stress has 

entered the web causing the formation of plastic hinge in the reduced section which is the desired 

result. Similarly, Figure 4.2.3 represents the Von-Mises stress reaching yield value of 57.30 ksi 

at time step 44. 

 

 

Figure 4.2.1:1st Principal stress (model 1a) 
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Figure 4.2.2: Enlarged view of Plastic Hinge entering the beam web (Model 1a) 

 

 

Figure 4.2.3: Von-Mises Stress distribution at yield point (Model 1a) 
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In the model 2a, as shown in Figure 4.2.4 and Figure 4.2.5, 1st Principal stress reached 

71.23 ksi and Von-Mises stress reached 68.26 ksi respectively at time step 70 (The last step at 

which the 1st Principal stress is less than 84 ksi). Figure 4.2.5 shows that the yielding Von-Mises 

stress has entered the web causing plastic hinge in the reduced section which is the desired result. 

Similarly, Figure 4.2.6 represents the Von-Mises stress reaching yield value of 57.72 ksi at time 

step 42. 

 

 

Figure 4.2.4:1st Principal stress (model 2a) 
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Figure 4.2.5: Enlarged view of Plastic Hinge entering the beam web (Model 2a) 

 

Figure 4.2.6: Von-Mises Stress distribution at yield point (Model 2a) 
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4.3 Composite slab frame 

In the model 1b, as shown in Figure 4.3.1 and Figure 4.3.2, 1st Principal stress reached 

74.45 ksi and Von-Mises stress reached 72.56 ksi respectively at time step 87 (The last step at 

which the 1st Principal stress is less than 84 ksi). Figure 4.3.2 shows that, the yielding Von-Mises 

stress has entered the web causing plastic hinge in the reduced section which is the desired result. 

Similarly, Figure 4.3.3 represents the Von-Mises stress reaching yield value of 57.25 ksi at time 

step 53.  

Figure 4.3.1:1st Principal stress (model 1b) 



28 

 

 

Figure 4.3.2: Enlarged view of Plastic Hinge entering the beam web (Model 1b) 

 

 

Figure 4.3.3: Von-Mises Stress distribution at yield point (Model 1b) 
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In the model 2b, as shown in Figure 4.3.4 and Figure 4.3.5, 1st Principal stress reached 

81.16 ksi and Von-Mises stress reached 79.77 ksi respectively at time step 94 (The last step at 

which the 1st Principal stress is less than 84 ksi). Figure 4.3.5 shows that the yielding Von-Mises 

stress has entered the web causing plastic hinge in the reduced section which is the desired result. 

Similarly, Figure 4.3.6 represents the Von-Mises stress reaching yield value of 57.75 ksi at time 

step 51. 

 

       

Figure 4.3.4:1st Principal stress (model 2b) 
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Figure 4.3.5: Enlarged view of Plastic Hinge entering the beam web (Model 2b) 

 

 

Figure 4.3.6: Von-Mises Stress distribution at yield point (Model 2b) 
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4.4 Ductility 

Ductility refers to the elongation in a material caused after the material has yielded or 

crossed elastic limit. It is the measure of strain the material can take before fracture. The ductility 

of the frame is calculated as:   

Ductility = Frame lateral movement at fracture point/ Frame lateral movement at yield point 

The Figure 4.4.1 below shows the lateral movement (∆) of a typical frame. 

 

 

 

Figure 4.4.1: lateral movement (∆) of a frame 
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Table 4.4-1: Lateral movement of frames at yield and fracture points 

      Model Frame lateral          

movement 

at yield point (∆y) 

(in) 

Frame lateral 

movement at 

fracture point (∆u) 

(in) 

Bare Steel Frame 

    (Model 1a) 

1.46 2.34 

            Composite Slab Frame  

                 (Model 1b) 

1.32 3.29 

Bare Steel Frame 

                 (Model 2a) 

1.32 2.52 

Composite Slab Frame      

                 (Model 2b) 

1.21 4.06 
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Table 4.4-2: Ductility comparison of frames 

              Model  Ductility (=∆u/∆y) 

   Bare Steel Frame (Model 1a) 2.34/1.46 = 1.60 

   Composite Slab Frame (Model 1b) 3.29/1.32 = 2.49 

   Bare Steel Frame (Model 2a) 2.52/1.32 = 1.91 

Composite Slab Frame (Model 2b) 4.06/1.21 = 3.35 

 

It is seen from the non-linear analysis that the ductility of frames with composite slab is 

larger than the bare steel frames. The ductility ratio of the two frames can be determined as:  

Ductility ratio = ductility of frame with composite slab/ ductility of frame with bare steel 

For model 1, 

Ductility ratio = 2.49/1.60 

                                    = 1.55 

For model 2, 

Ductility ratio = 3.35/1.91 

                                    = 1.75                                     

From the ductility comparison, the ductility of frame with a composite slab is 55 % more 

than that of the bare steel frame for model 1 and 75 % more than that of bare steel frame for 

model 2. More models could be analyzed so that a range of percentage increase in ductility can 

be suggested. 

4.5 Strength 

The strength ratio of the frame can be determined as: 
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Strength ratio= time step for model with a composite slab/ time step for model with bare 

                                     steel. 

For comparing the strength, the time step is noted for each model at fracture. The model 

with higher time step for same lateral load and same boundary conditions is stated to be the 

stronger one. 

Table 4.5-1: Strength comparison of frames 

    Model  Time step until 

fracture  

Strength ratio 

         Bare Steel Frame  

(Model 1a) 

64 87/64 = 1.36 

         Composite Slab Frame 

(Model 1b) 

87 

          Bare Steel Frame  

(Model 2a) 

70 94/70 = 1.34 

          Composite Slab Frame 

(Model 2b) 

94 

 

It is seen that the strength of frame with a composite slab is 36 % more than that of the 

bare steel frame for Model 1 and 34 % more than that of the bare steel frame for Model 2. It can 

be seen that the composite slab frames are able to take more load than the bare steel frames 

which can be due to the composite effect of the slab on the frames. A range of percentage 

increase in the strength can be suggested by performing analyses for more models. 
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4.6 Stiffness 

Stiffness is defined as the rigidity of the object due to which it resists the deformation 

under the applied load. The stiffness is calculated as:  

Stiffness = Applied lateral load/Lateral displacement of the column 

Since the stiffness is calculated within the elastic range, the Von-Mises stress produced 

by the lateral load should be less than 57 ksi. The maximum value of Von-Mises is 57 ksi before 

yielding occurs. An arbitrary lateral load of 20 kips (Since, the maximum Von-Mises stress due 

to 20 kips is less than 57 ksi) is applied on all the frames to observe the deflection which is used 

in the calculation the stiffness of frames. 

Table 4.6-1: Lateral displacement of frames within elastic range 

Model Type Lateral load (P) 

(kips) 

Max Deflection (∆) 

(in) 

        Bare Steel Frame 

(Model 1a) 

20 0.889 

        Composite Slab Frame 

(Model 1b) 

20 0.653 

        Bare Steel Frame 

(Model 2a) 

20 0.788 

        Composite Slab Frame 

(Model 2b) 

20 0.584 
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Table 4.6-2: Stiffness ratio calculation and comparison between frames 

Model Type Stiffness ratio (=P/∆) 

(kips/in) 

  Bare Steel Frame (Model 1a) =20/0.889 = 22.497 

  Composite Slab Frame (Model 1b) =20/0.653 = 30.627 

  Bare Steel Frame (Model 2a) =20/0.788 = 25.381 

  Composite Slab Frame (Model 2b) = 20/0.584 = 34.246 

 

It is seen that the stiffness ratio of composite slab frames is greater than that bare steel 

frames. The stiffness ratio of composite slab frame with respect to bare steel frame is determined 

as:  

Stiffness ratio =Lateral movement of bare steel frame/Lateral movement of composite slab frame 

For Model 1, 

Stiffness ratio = 30.627/22.497 

                = 1.36 

For Model 2, 

Stiffness ratio = 34.246/25.381 

               = 1.35          

The calculation shows that the composite slab frame is about 36 % stiffer than the bare 

steel frame for Model 1 and 35 % stiffer for Model 2. A range of percentage increase in stiffness 

can be suggested by performing analyses of more models. 
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CHAPTER 5  

CONCLUSION 

It is not possible to make buildings invulnerable to earthquake forces. The basic intent of 

building design technique is to provide buildings with an ability to withstand intense ground 

shaking without collapse but with some potential structural damage. The objective of building 

design is to make a building as ductile as possible so that it can withstand large inelastic 

deformation without the development of instability and collapse.  

Since the Northridge Earthquake caused brittle failures of steel moment frames which 

were once called the most ductile connection system, a lot of analytical and experimental 

research has been carried out to study the effect of various connection elements in the 

performance of the frame as a whole.  

The purpose of this research was to study the effect of a composite slab on the ductility, 

strength and stiffness of the steel moment frames with Reduced Beam Sections. A finite element 

analysis software, NISA DISPLAY IV, was used to model and analyze the frame. From the 

analyzed model, the Von-Mises Stress, the 1st Principal Stress, and lateral movements of frames 

were observed and comparison was done between frame with bare steel and with composite slab 

based on their ductility, strength and stiffness. 

From the observation, the composite slab frame had more ductility, strength and stiffness 

than the bare steel frame. The results of the analyses can be summarized as: a) the ductility of the 

composite slab frame is 55 % more than that of the bare steel frame in model 1 and 75 % more in 

model 2, b) the strength of the composite slab frame is 36 % more than that of the bare steel 

frame in model 1 and 34 % more in model 2, and c) the stiffness of the composite slab frame is 
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36 % more than that of the bare steel frame in model 1 and 35 % more in model 2. However, 

more model analyses could be conducted to suggest a range of percentage increase. 

The results were compatible with most of the research done which stated that the 

composite slabs have a stabilizing effect on the RBS moment connections increasing the load 

carrying capacity of the frames. The presence of slabs proved to be beneficial by enhancing 

beam stability and delaying strength degradation.  
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APPENDIX.A 

RBS CONNECTION DESIGN CALCULATIONS 

(AISC SEISMIC DESIGN MANUAL, Using Examples 4.3.4) 

MODEL 1 

 

Beam Property (W 21 ×62) Column Property (W 12 ×190) 

bf=  8.24 in. bf =12.7 in. 

db= 21 in. dc =14.4 in. 

tf = 0.615 in. tf =1.74 in. 

tw = 0.4 in. tw = 1.06 in. 

Zx = 144 in3 Zx= 311 in3 

Ix = 1330 in4 Ix = 1890 in4 

Ab = 18.3 in2 Ac = 56 in2 

 

Check beam requirement  (Seismic design manual page 4-58) 

The W 21×62 beam satisfy the requirement of ANSI/ASCI 352 Section 5.3.1 as a rolled 

wide flange member, with depth less than a W 36, weight less than 300 lb/ft and flange thickness 

less than 1.75. The clear span to depth ratio of the beam is at least 7 as required for an SMF 

system: 

Clear span/depth = (span length – dc) 

Where,  

db = beam depth 

dc = depth of column 
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Clear span/depth = (30×12 – 14.4)/21  

                            = 16.457 ≥ 7 (O.K.) 

Check column requirement  (Seismic design manual page 4-59) 

The  W 12×190 satisfies the requirement of section  the requirement of section 5.3.2 as a 

rolled wide flange member, with the frame beam  connected to the column flange and with a 

column depth less than a W 36. 

ANSI/ASIC 358 Section 5.8:  (AISC Seismic design manual page 4-59, 4-60) 

Step 1: Trial dimension of RBS 

  a ≈ (0.5 to 0.75) ×bf    

Where, bf= width of beam flange 

0.5× bf ≤ a ≤ 0.75×bf 

4.12 in ≤ a ≤ 6.18 in 

Take a = 5 in. 

b≈ (0.65 to 0.85) ×db 

Where, db= depth of beam 

0.65×db ≤ b ≤ 0.85×db 

13.65 in ≤ b ≤ 17.85 in 

Take b = 15 in. 

c ≈ (0.1 to 0.25)×bf 

0.1× bf ≤ c ≤ 0.25×bf 

0.824 ≤ c ≤ 2.06 

Take c = 1.65in 

Step 2: Plastic Section Modulus at the center of the reduced beam (AISC seismic design manual  
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 page 4-53 and 4-60) 

ZRBS= ZX – 2×c x tbf × (db – tbf) 

         = 144 – 2×1.65×0.615× (21 – 0.615) 

          = 102.628 in3 

Step 3: Probable Maximum Moment at the center of RBS: (AISC seismic design manual Page 4-   

60, 4-61) 

 Cpr=(
𝐹𝑦+𝐹𝑦

2× 𝐹𝑦
) = (

50+65

2 × 50
)=1.15                   (For A992 Steel) 

 Where, 

 Fy = The specified minimum yield stress of the material of the yielding element 

      = 50 Ksi                    (For A992 Steel) 

             Fu = The ultimate tensile stress of the material of the yielding element           

      = 65 Ksi                             (For A992 Steel) 

 Cpr = A factor to account for the peak connection strength, including strain    

           hardening, local restraint, additional reinforcement, and other connection  

           connections.   

 Mpr = Cpr × Ry × Fy × ZRBS   (ANSI/ AISC 358 Eq. 5.8-5) 

 Where, 

 ZRBS = Plastic modulus of the section at the location of the plastic hinge 

          Ry = Ratio of the expected yield strength to the minimum specified yield Steel to be used 

     = 1.1                   (From AISC seismic provision Table A3.1) 

 

Mpr = 1.15 × 1.1 × 50 × 102.628 

       = 6491.22 K-in 

Step 4: Shear Force at the center of the reduced beam sections at each end of the beam:  
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(AISC Seismic design manual page. 4- 61, 4-62) 

Wu = 1.2 D + 0.5 L + 0.2 S 

Where,  

D = Dead load 

L = Live load 

S = Snow load 

Wu = 1.2 × 0. 840 + 0.5 × 0.600 + 0.2 × 0 

      =1.31 k/ft. 

      = 0.1 k/in. 

Distance from the column face to the center of RBS cut, 

Sh = a + b/2                                               (ANSI/ AISC 358 figure 5.2) 

     = 5 + 15/2  

     = 12.5 in. 

Distance from the center of the RBS cut to the end of the half beam, 

Lh = L – 2 × (dc/2) – 2 × Sh 

     = 30 × 12 in. – 2 × (14.4 in. /2) – 2 × 12.5 in.  

     = 320.6 in. 

VRBS = 2 × MRBS / Lh + wu ×Lh /2  (AISC Seismic design manual page. 4- 62, Fig 5-12) 

         = (2 × 6491.22 k-in)/ 320.6 in + (0.1 k/in × 320.6 in)/ 2 

         = 56.524 kips 

V’RBS = 2 × MRBS / Lh - wu × Lh /2      

          = (2 × 6491.22 k-in)/ 320.6 in - (0.1 k/in × 320.6 in)/ 2           

          = 24.464 kips 
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Step 5: Probable Maximum Moment at the face of the column: (AISC Seismic design 

manual page. 4-63, 4- 64) 

             

Mf = Mpr + V RBS × Sh                       (ANSI/ AISC 358 Eq. 5.8-6) 

                                                 (Fig 5-12 AISC Seismic design manual) 

Mpr = Probable Maximum Moment at the center of RBS 

VRBS = Shear at the center of reduced beam section 

Mf = 6491.22 k-in + 56.524 kips × 12.5 in 

      = 7197.77 k-in 

M’f = Mpr + V’ RBS × Sh     

      = 6491.22 k-in – 24.464 kips × 12.5in 

      = 6185.42 k-in 

Step 6: Plastic moment of the beam based on the expected yield stress: (AISC Seismic 

 manual page. 4-64) 

Mpe = Ry × Fy × Zx                                                   (ANSI/ AISC 358 Eq. 5.8-7) 

Mpe =1.1 × 50 k/in2 × 144 in3 

       = 7920 k – in 

Alternatively, using ASIC Seismic Manual Table 4-2 for W 21 x 62 beam,  

RyMp = 660 k-ft. = 7920 k-in        

Step 7: Check Mf moment at the face of column should not exceed фd Mpe: (AISC 

 Seismic design manual page. 4-65) 

From ANSI/ AISC 358 section 2.4.1 

фd = 1.0 0 

фd Mpe = 1.00 × 7920 
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            = 7920 k-in. 

Mf ≤ фd Mpe                                 (ANSI/ AISC 358 Eq. 5.8-8) 

Mf = 7197.77 k-in. ≤ фd Mpe = 7920 k-in.     (OK.) 

Thus, the preliminary dimensions of RBS are OK.  

Step 8: Required Shear Strength, Vu, of the beam and beam web-to-column connection, 

(AISC Seismic design manual page 4-61, 4-62) 

Vu = VRBS + wu × Sh  

VRBS = Shear at the center of reduced beam section 

Wu = uniformly distributed load on beam 

Vu = 56.524 + (1.31/ 12 × 12.5) 

      = 57.888 kips     

Note that there is little error in taking Vu= VRBS. 

Step 9: Design the beam web to column connection according to ANSI/ASCI 358 Section 5.6: 

(AISC Seismic design manual page. 4-65, 4-66) 

AISC specification section G2.1 

dmin = Vu / ф × 0.6 × Fy × tw × Cv, 

Cv = 1.0 (AISC specification section G2.1) 

dmin = 57.888 / (1.0 × 0.6 × 50 × 0.4 × 1.0) 

       = 4.824 in.         

By inspection sufficient depth remains. 

Step 10: Continuity plate requirements according to ANSI/AISC 358 Chapter 2:  

  (AISC Seismic design manual page. 4-66) 

  tcf = 1.74 in 
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  Ryb = Ryc = 1.1                          (AISC seismic provision Table A3.1) 

  tcf  ≥ 0.4 × √1.8 ×  b𝑏f   ×  tbf  ×  
Ryb × Fyb

Ryc × Fyc 
          (Provision equation E3-8)  

  Where,  

  tcf = The minimum required thickness of column flange when no continuity plates 

          are provided, inches 

  bbf = The width of the beam flange, inches 

  tbf = Thickness of the beam flange, inches 

  Fyb = Fyc = Specified minimum yield stress of the beam or column flange, ksi 

  Ryb= Ryc = ratio of the expected yield strength of the beam (column) material to the      

                   minimum specified yield strength                

                  =1.1, for the ASTM A992 steel beam or column, respectively 

  tcf  ≥ 0.4 × √1.8 ×  8.24  ×  0.615 × 
1.1 × 50

1.1 × 50 
      

  1.74 ≥ 1.208 in 

 

  OR 

  tcf   ≥ 
bbf  

6
               (Provision equation E3-9) 

  1.74 ≥   
8.24

6
 

  1.74 ≥ 1.37 

  Therefore, from both the provisions it is seen that continuity plates are not required. 

Step 11: Check beam column beam relationship per ANSI/AISC Section 5.4:  

  (AISC Seismic design manual page. 4-69, 4-70) 
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∑ M𝑝𝑐

∗

∑ 𝑀𝑝𝑏
∗   > 1.0                                       (Provision Eq. E3-1) 

 ∑ M𝑝𝑐
∗ = Zxt ×   [F𝑦 −

Puc

A𝑔
] [

ht

ht−
db
2

] +   Zxb ×   [F𝑦 −
Puc

A𝑔
] [

hb

hb−
db
2

]                                        

 Puc = 249 kips          (ASIC Seismic Design Example 4.3.2, page. 70) 

 

 ∑ M𝑝𝑐
∗ = 311 ×   [50 −

249

55.8
] [

75

78−
21

2

] + 311 ×   [50 −
249

55.8
] [

75

78−
21

2

]       

              = 32935.35 kip- in 

 The expected flexural demand of the beam at the column centerline is defined in        

 ANSI/AISC 358 Section 5.4 as: 

 ∑ M𝑝𝑏
∗ = ∑( Mpr + Muv )                  (ANSI/ AISC 358 section 5.4)  

 ∑  Muv = (VRBS + V’RBS) (a + 
b

2
+

dc

2
 )         

             = (56.524 kips + 24.464 kips) (5 in + 
15

2
in +  

14.4

2
in) 

             = 1595.46 kip-in 

 Therefore expected flexural demand of the beam at the column center line is: 

 ∑ M𝑝𝑏
∗ = 2 × Mpr +  ∑ Muv            

              = 2 × (6491.22) + 1595.46 

              = 14577.9 kip-in 

 
∑ M𝑝𝑐

∗

∑ 𝑀𝑝𝑏
∗   = 

32935.35

14577.9
                 (AISC Seismic design manual page. 4-71) 

            = 2.259 > 1.0 (O.K.)         

 Therefore, strong-column-weak-beam check is satisfied.  

 Perform Panel Zone Check 
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 Vc =  
Mf+Mf

′

(
ht
2

+ 
hb
2

)
      

       =  
7199.77+6185.42

(
75

2
+ 

75

2
)

         

       = 178.469 kips 

 Where, 

 ht = Story height above the joint, inches 

 hb = Story height below the joint, inches 

 Mf = Moment at the face of the column, kip-inches 

 The required strength of the panel zone is: 

 Ru = 
∑ Mf

(db+tf)
 - Vc 

       = 
7197.77+6185.42

(21−0.615)
  – 178.469 

       = 478.06 kips       

 Where, 

 Vc = Shear in column due to plastic hinging of the RBS 

 tf  = Thickness of beam flange 

 db = Depth of the beam 

 Pr = 243 kips         (AISC Seismic design manual Example 4.3.2, page. 4-72)     

 Pr < 0.75 Pc  

 Pr < 0.75 × Fy × Ag 

      < 0.75 × 50 × 56 

 Pr = 243 kips < 2100 kips (O.K.) 

 Shear strength of the panel zone is given by AISC specification equation J 10-11: 
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 фRn= ф × 0.6 × Fy
 × dc × tw × [1 +  

3× bcf × tcf
2

db× dc × tw
]         

         = 1.00 ×0.60 ×50 ×14.4 ×1.06× [1 +  
3× 12.7× 1.742

21× 14.4 × 1.06
]         

         = 622.71 kips     

 Where,  

 db =  Depth of beam, inches 

 dc = Depth of column, inches 

 tw = Web thickness of column, inches 

 tcf = Flange thickness of column, inches      

 bcf = Width of the column, inches 

 ф = 1.00 

 Alternatively, using Table 4-2 of AISC Seismic Design Manual for W 12×190:      

 0.75×Py = 2100 kips 

 фRv1 = 458 kips 

 фRv2 = 3460 kip-in 

 фRn = Rv1 + фRv2           

         = 458 + 
3460

21
       

         = 622.76 kips 

 Since, Ru = 478.06 kips < фRn = 622.76 kips, a column-web doubler plates are  

 not required.                

Lateral load calculation for bare steel frame: 

From the calculation, the moment on each column face is, Mf = 7197.77 k-in   

           = 
7197.77

12
  k-ft = 599.81 k-ft 
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           Since, the moment developed on the beam column connection is caused by the column          

below and above the connection; moment about each column is given as, 

M𝑓

2
 = 299.91 k-ft 

           The height of the column above the beam column connection is 6ft and 3 inches. 

     So, the lateral load is calculated to be:  

299.91 k−ft

6.25 ft
 = 47.98 kips 

MODEL 2 

 

Beam Property (W 21 ×73) Column Property (W 12 ×210) 

bf=  8.30 in. bf =12.8 in. 

db= 21.2 in. dc =14.7 in. 

tf = 0.740 in. tf =1.90 in. 

tw = 0.455 in. tw = 1.18 in. 

Zx = 172 in3 Zx= 348 in3 

Ix =  1600    in4 Ix =  2140   in4 

Ab = 21.5 in2 Ac = 61.8 in2 

 

 

Check beam requirement (Seismic design manual page 4-58) 

The W 21×73 beam satisfy the requirement of ANSI/ASCI 352 Section 5.3.1 as a rolled 

wide flange member, with depth less than a W 36, weight less than 300 lb/ft and flange thickness 

less than 1.75. The clear span to depth ratio of the beam is at least 7 as required for an SMF 

system: 

Clear span/depth = (span length – dc) 



53 

 

Where,  

db = beam depth 

dc = depth of column 

Clear span/depth = (30×12 – 14.7)/21.2  

                            = 16.287 ≥ 7 (O.K.) 

 

Check column requirement (Seismic design manual page 4-59) 

The  W 12×210 satisfies the requirement of section  the requirement of section 5.3.2 as a 

rolled wide flange member, with the frame beam  connected to the column flange and with a 

column depth less than a W 36. 

ANSI/ASIC 358 Section 5.8:  (AISC Seismic design manual page 4-59, 4-60) 

Step 1: Trial dimension of RBS 

a ≈ (0.5 to 0.75) ×bf    

Where, bf= width of beam flange 

0.5× bf ≤ a ≤ 0.75×bf 

4.15 in ≤ a ≤ 6.225 in 

Take a = 6 in. 

b≈ (0.65 to 0.85) ×db 

Where, db= depth of beam 

0.65×db ≤ b ≤ 0.85×db 

13.78 in ≤ b ≤ 18.02 in 

Take b = 16 in. 

c ≈ (0.1 to 0.25)×bf 
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0.1× bf ≤ c ≤ 0.25×bf 

0.83≤ c ≤ 2.075 

Take c = 1.66in 

Step 2: Plastic Section Modulus at the center of the reduced beam (AISC seismic design manual  

page 4-53 and 4-60) 

ZRBS= ZX – 2×c x tbf× (db – tbf) 

        = 172 – 2×1.66×0.740× (21.2 – 0.740) 

        = 121.734 in3 

Step 3: Probable Maximum Moment at the center of RBS: (AISC seismic design manual    

Page 4-60, 4-61) 

Cpr=(
𝐹𝑦+𝐹𝑦

2× 𝐹𝑦
) = (

50+65

2 × 50
)=1.15              (For A992 Steel) 

Where, 

Fy = The specified minimum yield stress of the material of the yielding element 

     = 50 Ksi                               (For A992 Steel) 

Fu = The ultimate tensile stress of the material of the yielding element           

     = 65 Ksi                     (For A992 Steel) 

Cpr = A factor to account for the peak connection strength, including strain    

         hardening, local restraint, additional reinforcement, and other connection  

         connections.   

Mpr = Cpr × Ry × Fy × ZRBS          (ANSI/ AISC 358 Eq. 5.8-5) 

Where, 

ZRBS = Plastic modulus of the section at the location of the plastic hinge 

Ry = Ratio of the expected yield strength to the minimum specified yield strength of the  
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         Steel to be used 

      = 1.1                    (From AISC seismic provision Table A3.1) 

 

Mpr = 1.15 × 1.1 × 50 × 121.734 

        = 7699.67 K-in 

Step 4: Shear Force at the center of the reduced beam sections at each end of the beam:  

(AISC Seismic design manual page. 4- 61, 4-62) 

Wu = 1.2 D + 0.5 L + 0.2 S 

Where,  

D = Dead load 

L = Live load 

S = Snow load 

Wu = 1.2 × 0. 840 + 0.5 × 0.600 + 0.2 × 0 

       =1.31 k/ft. 

       = 0.1 k/in. 

Distance from the column face to the center of RBS cut, 

Sh = a + b/2            (ANSI/ AISC 358 figure 5.2) 

    = 5 + 16/2  

    = 13 in. 

Distance from the center of the RBS cut to the end of the half beam, 

Lh = L – 2 × (dc/2) – 2 × Sh 

      = 30 × 12 in. – 2 × (14.7 in. /2) – 2 × 13 in.  

      = 319.3 in. 

VRBS = 2 × MRBS / Lh + wu ×Lh /2 (AISC Seismic design manual page. 4- 62, Fig 5-12) 
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          = (2 × 7699.67 k-in)/ 319.3 in + (0.1 k/in × 319.3 in)/ 2 

          = 64.193 kips 

V’RBS = 2 × MRBS / Lh - wu × Lh /2      

          = (2 × 7699.67 k-in)/ 319.3 in - (0.1 k/in × 319.3 in)/ 2           

          = 32.263 kips 

Step 5: Probable Maximum Moment at the face of the column: (AISC Seismic design 

manual page. 4-63, 4- 64) 

             

Mf = Mpr + V RBS × Sh                            (ANSI/ AISC 358 Eq. 5.8-6) 

                          (Fig 5-12 AISC Seismic design manual) 

Mpr = Probable Maximum Moment at the center of RBS 

VRBS = Shear at the center of reduced beam section 

Mf = 7699.67 k-in + 64.193 kips × 13 in 

      = 8534.179 k-in 

M’f = Mpr + V’ RBS × Sh     

      = 7699.67 k-in – 32.263 kips × 13 in 

      = 7280.251 k-in 

Step 6: Plastic moment of the beam based on the expected yield stress: (AISC Seismic 

 manual page. 4-64) 

Mpe = Ry × Fy × Zx                                                                                (ANSI/ AISC 358 Eq. 5.8-7) 

Mpe =1.1 × 50 k/in2 × 172 in3 

       = 9460 k – in 

Alternatively, using ASIC Seismic Manual Table 4-2 for W 21 x 73 beam,  

RyMp = 788 k-ft. = 9456 k-in ≈ 9460 k – in 
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Step 7: Check Mf moment at the face of column should not exceed фd Mpe: (AISC 

Seismic design manual page. 4-65) 

From ANSI/ AISC 358 section 2.4.1 

фd = 1.0 0 

фd Mpe = 1.00 × 9460 

             = 9460 k-in. 

Mf ≤ фd Mpe          (ANSI/ AISC 358 Eq. 5.8-8) 

Mf = 8534.179 k-in. ≤ фd Mpe = 9460 k-in.     (OK.) 

Thus, the preliminary dimensions of RBS are OK.  

Step 8: Required Shear Strength, Vu, of the beam and beam web-to-column connection, 

(AISC Seismic design manual page 4-61, 4-62) 

Vu = VRBS + wu × Sh  

VRBS = Shear at the center of reduced beam section 

Wu = uniformly distributed load on beam 

Vu = 64.193 + (1.31/ 12 × 13) 

      = 65.612 kips     

Note that there is little error in taking Vu= VRBS. 

Step 9: Design the beam web to column connection according to ANSI/ASCI 358 Section 5.6: 

(AISC Seismic design manual page. 4-65, 4-66) 

AISC specification section G2.1 

dmin = Vu / ф × 0.6 × Fy × tw × Cv, 

Cv = 1.0 (AISC specification section G2.1) 

dmin = 65.612 / (1.0 × 0.6 × 50 × 0.455 × 1.0) 
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        = 4.807 in.         

By inspection sufficient depth remains. 

Step 10: Continuity plate requirements according to ANSI/AISC 358 Chapter 2:  

  (AISC Seismic design manual page. 4-66) 

  tcf = 1.90 in 

  Ryb = Ryc = 1.1  (AISC seismic provision Table A3.1) 

  tcf  ≥ 0.4 × √1.8 ×  bbf   ×  tbf  ×  
Ryb × Fyb

Ryc × Fyc 
           (Provision equation E3-8)  

  Where,  

  tcf = The minimum required thickness of column flange when no continuity plates 

          are provided, inches 

  bbf = The width of the beam flange, inches 

  tbf = Thickness of the beam flange, inches 

  Fyb = Fyc = Specified minimum yield stress of the beam or column flange, ksi 

  Ryb= Ryc = ratio of the expected yield strength of the beam (column) material to the      

                   minimum specified yield strength                

         =1.1, for the ASTM A992 steel beam or column, respectively 

  tcf  ≥ 0.4 × √1.8 ×  8.30  ×  0.740 × 
1.1 × 50

1.1 × 50 
      

  1.90 ≥ 1.33 in 

  OR 

  tcf   ≥ 
bbf  

6
    (Provision equation E3-9) 

  1.90 ≥   
8.30

6
 

  1.90 ≥ 1.38 in 
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  Therefore, from both the provisions it is seen that continuity plates are not required. 

Step 11: Check beam column beam relationship per ANSI/AISC Section 5.4:  

  (AISC Seismic design manual page. 4-69, 4-70) 

  
∑ M𝑝𝑐

∗

∑ 𝑀𝑝𝑏
∗   > 1.0                        (Provision Eq. E3-1) 

  ∑ M𝑝𝑐
∗ = Zxt ×   [F𝑦 −

Puc

A𝑔
] [

ht

ht−
db
2

] +   Zxb ×   [F𝑦 −
Puc

A𝑔
] [

hb

hb−
db
2

]                                        

  Puc = 249 kips         (ASIC Seismic Design Example 4.3.2, page. 70) 

 

  ∑ M𝑝𝑐
∗ = 348 ×   [50 −

249

61.8
] [

75

75−
21.2

2

] + 348 ×   [50 −
249

61.8
] [

75

75−
21.2

2

]       

               = 37262.10 kip- in 

  The expected flexural demand of the beam at the column centerline is defined in        

  ANSI/AISC 358 Section 5.4 as: 

  ∑ M𝑝𝑏
∗ = ∑( Mpr + Muv )                (ANSI/ AISC 358 section 5.4)  

  ∑  Muv = (VRBS + V’RBS) (a + 
b

2
+

dc

2
 )         

               = (64.193 kips + 32.263 kips) (5 in + 
16

2
in +  

14.7

2
in) 

                = 1962.87 kip-in 

  Therefore expected flexural demand of the beam at the column center line is: 

  ∑ M𝑝𝑏
∗ = 2 × Mpr +  ∑ Muv            

                = 2 × (7699.67) + 1962.87 

                = 17362.21 kip-in 

  
∑ M𝑝𝑐

∗

∑ 𝑀𝑝𝑏
∗   = 

37262.10

17362.21
            (AISC Seismic design manual page. 4-71) 

            = 2.146 > 1.0 (O.K.)         
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  Therefore, strong-column-weak-beam check is satisfied.  

  Perform Panel Zone Check 

  Vc =  
Mf+Mf

′

(
ht
2

+ 
hb
2

)
      

        =  
8534.179+7280.251

(
75

2
+ 

75

2
)

         

        = 210.859 kips 

  Where, 

  ht = Story height above the joint, inches 

  hb = Story height below the joint, inches 

  Mf = Moment at the face of the column, kip-inches 

  The required strength of the panel zone is: 

  Ru = 
∑ Mf

(db+tf)
 - Vc 

         = 
8534.179+7280.251

(21.2−0.740)
  – 210.859 

        = 562.084 kips       

  Where, 

  Vc = Shear in column due to plastic hinging of the RBS 

  tf  = Thickness of beam flange 

  db = Depth of the beam 

  Pr = 243 kips     (AISC Seismic design manual Example 4.3.2, page. 4-72)     

  Pr < 0.75 Pc  

  Pr < 0.75 × Fy × Ag 

       < 0.75 × 50 × 61.8 

  Pr = 243 kips < 2317.5 kips (O.K.) 
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  Shear strength of the panel zone is given by AISC specification equation J 10-11: 

  фRn= ф × 0.6 × Fy
 × dc × tw × [1 +  

3× bcf × tcf
2

db× dc × tw
]         

          = 1.00 ×0.60 ×50 ×14.7 ×1.18× [1 +  
3× 12.8× 1.902

21.2× 14.7 × 1.18
]         

           = 716.54 kips     

  Where,  

  db =  Depth of beam, inches 

  dc = Depth of column, inches 

  tw = Web thickness of column, inches 

  tcf = Flange thickness of column, inches      

  bcf = Width of the column, inches 

  ф= 1.00 

  Alternatively, using Table 4-2 of AISC Seismic Design Manual for W 12×190:      

  0.75×Py = 2320 kips 

  фRv1 = 520 kips 

  фRv2 = 4160 kip-in 

  фRn = Rv1 + фRv2           

           = 520 + 
4160

21.2
       

           = 716.22 kips 

  Since, Ru = 562.084 kips < фRn = 716.22 kips, a column-web doubler plates are  

  not required.       

  Lateral load calculation for bare steel frame:  
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  From the calculation, the moment on each column face is, Mf = 8534.179 k-in      

 = 
8534.179

12
  k-ft   

 = 711.18 k-ft 

              Since, the moment developed on the beam column connection is caused by the column      

below and above the connection; moment about each column is given as, 

M𝑓

2
 = 355.59 k-ft 

  The height of the column above the beam column connection is 6ft and 3 inches. 

   So, the lateral load is calculated to be:  

355.59 k−ft

6.25 ft
 = 56.89 kips 
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APPENDIX.B 

FINITE ELEMENT SOFTWARE (NISA/ DISPLAY IV) OUTPUTS 

 

Figure B.1:1st Principal stress top view (Model 1a) 

 

 

Figure B.2: Von-Mises stress top view (Model 1a) 



64 

 

 

Figure B.3: Plastic hinge formation (model 1a) 

 

Figure B.4:1st Principal stress top view (Model 2a) 
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Figure B.5: Von-Mises stress top view (Model 2a) 

 

Figure B.6: Plastic hinge formation (model 2a) 
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Figure B.7:1st Principal stress top view (Model 1b) 

 

 

Figure B.8: Von-Mises stress top view (Model 1b) 
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Figure B.9: Plastic hinge formation (model 1b) 

 

 

Figure B.10:1st Principal stress top view (Model 2b) 
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Figure B.11: Von-Mises stress top view (Model 2b) 

 

Figure B.12: Plastic hinge formation (model 2b) 
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Figure B.13: Fracture deformation (Model 1a) 

 

 

Figure B.14: Yield deformation (model 1a) 
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Figure B.15: Fracture deformation (Model 2a) 

 

 

Figure B.16: Yield deformation (Model 2a) 
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Figure B.17: Fracture deformation (Model 1b) 

 

 

 

 

Figure B.18: Yield deformation (Model 1b) 
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Figure B.19: Fracture deformation (Model 2b) 

 

 

 

Figure B.20: Yield deformation (Model 2b) 
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Figure B.21: Elastic deformation (Model 1a) 

 

 

 

 

 

Figure B.22: Elastic deformation (Model 1b) 
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Figure B.23: Elastic deformation (Model 2a) 

 

 

 

 

 

Figure B.24: Elastic deformation (Model 2b) 
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