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EFFICIENCY AND CONTAMINANT UPTAKE 

 

MAJOR PROFESSOR: Dr. Stephen D. Ebbs 

 The production of engineered nanoparticles (ENPs) is growing at an incredibly fast rate 

and will soon become a trillion dollar industry.  At this rate of production, there is a great 

potential for engineered nanomaterials to be released into the environment, both intentionally 

and unintentionally.  TiO2 ENPs are one of the most widely produced nanoparticles with a broad 

range of applications in paints, inks, sunscreens, cosmetics, astronautics, and air/water 

purification. 

 TiO2 ENPs have been proposed for their use in agricultural settings as a UV protectant, a 

defense against harmful bacteria and fungi, or a catalyst for the degradation of pesticides and 

herbicides.  Furthermore, it has been shown to increase several aspects of photosynthesis in 

spinach including Rubisco and Rubisco activase activity, chlorophyll synthesis, and oxygen 

evolution.  Foliar application of TiO2 ENPs on spinach resulted in a significant increase in plant 

fresh weight, dry weight, chlorophyll content, net photosynthetic rate, and carboxylase activity of 

Rubisco.  These findings have prompted investigations for the use of TiO2 ENPs as a foliar spray 

to promote plant growth and yield. 
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 The first main objective of this research was to determine if TiO2 ENPs has the 

capabilities to increase photosynthetic production in Zea mays at concentrations similar to that of 

the experiments performed with spinach.  Secondly, it was examined if the size of the TiO2 was a 

factor in the increased photosynthetic response by comparing TiO2 ENPs with bulk TiO2.  

Finally, the determination of whether the boost in photosynthesis resulted in an increased seed 

quality/quantity.   

 Another aspect of this research was to determine how the interaction of TiO2 ENPs with 

inorganic contaminants may affect the uptake and accumulation of the contaminants in plants.  

Cadmium and arsenic are two of the top ten most hazardous substances on the priority list of the 

Agency for Toxic Substances and Disease Registry.  Sources for Cd and As contamination 

include atmospheric deposition resulting from mining, smelting, and fuel combustion, phosphate 

fertilizers, and sewage sludge.  Both of these contaminants can be taken up by plant roots and 

translocated to the leaves and fruits, thus entering the food chain.   

The release of TiO2 ENPs into domestic and industrial wastewaters is expected to 

represent the largest release of these nanoparticles.  There has been data showing that up to 99% 

of TiO2 ENPs that enter wastewater treatment plants are retained in the sludge.  In addition, TiO2 

ENPs are being used at some water treatment plants because of their strong adsorption strength 

for hazardous materials, such as cadmium, arsenic, and copper and also the photocatalytic 

breakdown of harmful organic compounds. Since sewage sludge from wastewater treatment 

plants is applied to agricultural lands as a soil conditioner and fertilizer, this has resulted in the 

introduction of an estimated 120 g kg
-3

 per year of TiO2 ENPs. 

With sewer sludge being the common factor for contamination of agricultural fields, 

there is a high potential for the simultaneous introduction of TiO2 ENPs and heavy metal 
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contaminants.  To date, there has been very little research done for ENP and contaminant 

interactions.  Of the research that has been performed on the subject, the majority of it was 

conducted using aquatic systems involving fish and daphnids.  This research has shown that the 

interaction of TiO2 ENPs and metal contaminants generally increases the concentration of the 

contaminant in the organism, however it is still unclear whether the contaminant is biologically 

available or if it is adsorbed to the surface of the TiO2 ENPs.   

This information gives rise to two alternative hypotheses on how TiO2 ENPs may affect 

the fate of heavy metal contaminants in a single substrate growth media.  The first is that the 

TiO2 ENPs may sequester the heavy metals in the soil thus decreasing the amount of the heavy 

metals that can be taken up by the plant.  The alternative is that the TiO2 ENPs could act as a 

carrier of the metals i.e. if the plant is able to take up the intact TiO2 ENP with heavy metals 

adsorbed to the surface, it could potentially increase the amount of the metals that enter the 

plants.  The main objective of this study was to determine which of these scenarios is true for 

broccoli plants that were grown in cadmium and arsenate contaminated growth media.   
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CHAPTER 1 

INTRODUCTION 

 

Nanotechnology is developing rapidly into a trillion-dollar industry (Nel et al., 2006).   A 

nanoparticle is described as a material with at least two dimensions between 1 and 100nm 

(American Society for Testing and Materials, 2006; Scientific Committee on Emerging and 

Newly Identified Health Risk, 2007).  Nanoparticles at this size often display properties different 

than their bulk (>100 nm in at least two dimensions) or ionic counterparts due to their 

composition, surface properties, and high surface to volume ratio.  Metallic nanoparticles are one 

of the most common nanoparticles and have found numerous applications in society.  Substantial 

amounts of engineered nanoparticles are expected to be released into the environment, both 

intentionally and unintentionally.   

Nanoparticles are generally broken down into three categories: natural, incidental, and 

manufactured.  Natural nanoparticles occur naturally and are generated from processes like 

chemical weathering and microbial processes.  Incidental nanoparticles are formed as the 

byproduct of processes such as combustion.  Manufactured nanoparticles are a recent discovery 

in which nanoparticles are intentionally created in laboratory and/or industrial settings (Dunphy 

Guzman et al. 2006a).  Production of manufactured nanoparticles (also referred to as engineered 

nanoparticles) has increased rapidly because of the unique physiochemical properties of 

materials at the nanoscale.  The use of engineered nanoparticles (ENPs) in electronics, energy, 

textiles, pharmaceutics, and cosmetics (to name a few) has shown promise for increased 

performance with a decreased consumption of resources and generation of waste (Gogos et al. 
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2012).  The increased production and use of ENPs greatly increases the likelihood of ENPs 

benign released into the environment. 

To date, there are very few studies that have quantified the release of ENPs from products 

containing ENPs, furthermore there is nearly no information pertaining to the environmental 

concentrations of ENPs (Gottschalk et al. 2009).  While this information is nearly 

undocumented, it is thought that the greatest efflux of ENPs into the environment will occur in 

aquatic systems.  The release of ENPs from consumer products will likely end up in the sewage 

sludge of wastewater treatment plants, which is sometimes applied to agricultural fields as a soil 

conditioner and fertilizer.  Approximately 40-60% of sewage sludge generated from wastewater 

treatment plants is applied to agricultural fields annually (Sablayrolles et al. 2010), indicating 

this may be the major source of ENPs for terrestrial systems (Tourinho et al. 2012).   This 

practice yields the potential for ENPs to enter our food supply with unknown consequences to 

human health.  However, ENPs are being investigated for their potential beneficial use in 

agricultural systems for fertilization systems and plant protection products (Gogos et al. 2012). 

Recent research has shown that ENPs have the potential to be used as delivery systems 

for slow release pesticides/fertilizers and genetic material, UV protectants, dispersing agent, 

photocatalyst for degradation of pesticides/herbicides, nanosensors for plant pathogen and 

pesticide detection, and for soil conservation and remediation (Ghormade et al. 2011; Gogos et 

al. 2012).  There have also been studies indicating that the use of TiO2 ENPs as a foliar spray 

resulted in an increase in many aspects of photosynthesis in spinach (Hong et al., 2005a; Hong et 

al., 2005b; Gao et al., 2006; Linglan et al., 2008; Gao et al., 2008; Su et al., 2007; Zheng et al., 

2007; Zheng et al., 2008).  While it appears that the use of ENPs in agriculture has the potential 
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to be quite beneficial, research in nanotoxicology and ENP-contaminant interactions are showing 

signs that they have the potential to be harmful as well. 

There have been several studies showing that ENPs have the potential to adsorb environmental 

contaminants (Mahdavi et al. 2013; Hartmann 2010; Engates and Shipley 2011; Yang et al. 

2012; Jegadeesan et al., 2010; Sun et al., 2009; Xu and Meng, 2009).  Since previous research 

has demonstrated that ENPs are capable of entering cells (Dunphy Guzman et al. 2006a), the 

potential for a “Trojan horse” scenario is possible, in which, the contaminants adsorb to the ENP 

and then the ENP enters the cell thus increasing the concentrations of the contaminants that enter 

the cell.  In fact this has been shown to occur in carp (Cyprinus carpio) (Zhang et al., 2007; Sun 

et al., 2007;) and Daphnia magna (Fan et al., 2011; Tan and Wang, 2014).  However it is still 

unclear whether the contaminants are biologically available or if they remain adsorbed to the 

ENP once inside the organism. 

The overall goals for the foliar application of TiO2 ENPs experiments were to monitor 

several aspects of photosynthesis of plants that will be exposed to TiO2 ENPs in an effort to 

determine how TiO2 ENPs may influence the efficiency of CO2 assimilation.  The general 

approach involved the foliar application of 5-15 nm TiO2 ENPs at 500, 1,000, 2,500, and 5,000 

mg L
-1

 to corn (Zea mays L.) plants and then determine the resulting effect on various aspects of 

photosynthesis and plant metabolism. 

The overall goals of the TiO2 ENP and heavy metal(oid) interaction experiments were to 

determine how TiO2 ENPs may effect on the uptake of the metal(oid)s.  The general approach 

was to treat broccoli plants with three concentrations of TiO2 ENPs (0, 333, and 3,333 mg kg
-1

) 

and three concentrations of Cd (0, 2, and 20 mg kg
-1

) or As(V) (0, 20, and 200 mg kg
-1

) and 

determine if the TiO2 ENPs increased or decreased the uptake of the contaminants. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 TiO2 Engineered Nanoparticles 

TiO2 engineered nanoparticles (ENPs) are one of the most widely produced nanoparticles 

with a broad range of applications in paints, inks, sunscreens, cosmetics, astronautics, and 

air/water purification.  It is because of their vast range of applications that concerns have been 

raised about the introduction of TiO2 ENPs into the environment.  The release of TiO2 ENPs into 

domestic and industrial wastewaters is expected to represent the largest release of these 

nanoparticles.  There has been data showing that up to 99% of TiO2 ENPs that enter wastewater 

treatment plants are retained in the sludge (Tourinho et al., 2012).  In addition, TiO2 ENPs are 

being used at some water treatment plants because of their strong adsorption strength for 

hazardous materials, such as cadmium, arsenic, and copper (Zhang et al., 2007; Sun et al., 2007; 

Fan et al., 2011) and also the photocatalytic breakdown of harmful organic compounds.  Since 

sewage sludge from wastewater treatment plants is applied to some agricultural lands as a soil 

conditioner and fertilizer, this has resulted in the introduction of an estimated 120 g kg
-3

 per 

year of TiO2 ENPs (Tourinho et al., 2012). 

The reason TiO2 is one of the most widely used nanoparticles is due to its UV absorption 

and photoactive properties.  The term photoactive refers to the ability of TiO2 ENPs to emit 

electrons in the presence of ultraviolet light.  Of the different forms of TiO2 ENPs, anatase TiO2 

exhibits the greatest amount of photoactivity.  This photoactivity has been shown to make TiO2 a 

photocatalyst, mediating oxidation-reduction reactions on the surface of the ENP (Dodd and Jha, 

2011).  This photocatalytic property has led to the use of TiO2 in waste water treatment plants as 
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a means of killing harmful bacteria and in air purification to break down organic pollutants to 

increase air quality. 

The properties of TiO2 ENPs have also prompted investigation of potential uses in plant-

based agricultural settings, including use of it as a UV protectant, a defense against harmful 

bacteria and fungi, or a catalyst for the degradation of pesticides and herbicides (Ghormade et al., 

2011; Gogos et al., 2012).  The underlying thought is that the photocatalytic properties of TiO2 

ENPs have the ability to produce reactive oxygen species (ROS) which would prove to be a 

strong defense against bacteria and fungi due to peroxidation of their cell membranes.  TiO2 

ENPs generate ROS when exposed to UV light.  When TiO2 ENPs are exposed to UV light 

(<390 nm) it creates a charge separation by promoting an electron to the conductance band 

generating a positively charged hole in the valence band.  The positively charged hole scavenges 

electrons from water and/or hydroxyl ions, which produces hydroxyl radicals.  The electrons in 

the conductance band reduce O2 to generate the superoxide anion.  Singlet oxygen can also be 

created by TiO2 ENPs but is usually formed indirectly by the superoxide anions (Brunet et al. 

2009).  The photocatalytic property would also prove to be effective at increasing the 

degradation of organic pesticides without decreasing the effectiveness of the pesticide.  A 

previous study showed that TiO2 ENPs were capable of reducing the half-life of the pesticide 

imidacloprid while also lowering the LC50 of a storage pest beetle (Martianus dermestoides) 

when compared to the conventional imidacloprid (LC50 TiO2 ENP imidacloprid=9.86; LC50 

conventional imidacloprid=13.45) at an application rate of 25 mg L
-1

 (Guan et al. 2008). 
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2.1.1 Influence of TiO2 ENPs on Photosynthesis 

There has been a recent interest in the use of TiO2 ENPs to enhance photosynthesis.  In 

recent studies, foliar application of TiO2 ENP’s have been shown to increase several aspects of 

the photosynthetic process in spinach (Spinacia oleracea L.), including Rubisco and Rubisco 

activase activity, chlorophyll synthesis, and oxygen evolution (Hong et al., 2005a; Hong et al., 

2005b; Gao et al., 2006; Linglan et al., 2008).  However, these are all descriptive studies and 

have not yet given rise to a more detailed mechanistic approach as to how the TiO2 ENPs are 

eliciting these responses. 

Foliar application of TiO2 ENPs on spinach resulted in a significant increase in plant 

fresh weight, dry weight, chlorophyll content, net photosynthetic rate, and carboxylase activity of 

Rubisco (Linglan et al., 2008; Hong et al., 2005b; Gao et al., 2006; Gao et al., 2008; Su et al., 

2007; Zheng et al., 2007; Zheng et al., 2008).  Research has shown that foliar application of 

0.25% TiO2 (2,500 mg L
-1

).  ENPs significantly increased the biomass of spinach. A range from 

1.69 – 2.36 fold increase in dry weight has been observed (Zheng et al., 2005; Linglan et al., 

2008; Hong et al., 2005b; Gao et al., 2008; Gao et al., 2006).  This increase in biomass is 

attributed to the increase in photosynthetic activity from the TiO2 ENPs. 

One of the hypotheses of how TiO2 ENPs increase photosynthetic activity is from its 

capability to decrease ROS in the chloroplast of spinach (Zheng et al., 2008; Hong et al., 2005a). 

TiO2 ENPs have been shown to significantly decrease O2
-
 and H2O2 generation by isolated 

chloroplasts when exposed to a light intensity of 500 µmol m
-2

 s
-1

 (Hong et al., 2005a) and UV-B 

radiation (Zheng et al., 2008).  Chloroplasts exposed to this light intensity showed an O2
-
 and 

H2O2 production that was approximately 50 and 57% (Figure 2.1B; Figure 2.2B), respectively, 

less in plants treated with TiO2 ENPs compared to controls (Figure 2.1B; Hong et al., 2005a).  
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Under UV-B radiation TiO2 ENP treated chloroplasts generated up to 59.1% less O2
-
 (Figure 

2.1A) and up to 58.9% less H2O2 (Figure 2.2A) compared to that of the control.  The decrease 

generation of O2
-
 and H2O2 from application of TiO2 ENPs was approximately 20% less than that 

of the bulk TiO2 (Figure 2.1A and 2.2A; Zheng et al., 2008).  The production of ROS is closely 

related to the stability of chloroplast membranes.  Malondialdehyde (MDA) is frequently used as 

an indicator of lipid peroxidation because it is the product of decomposition of polyunsaturated 

fatty acids found in bio-membranes.  Chloroplasts exposed to a light intensity of 500 µmol m
-2

 s
-

1
 showed a decrease of up to 28% less MDA than that of the control (Figure 2.3B; Hong et al., 

2005a).   MDA content of chloroplasts under UV-B radiation treated with TiO2 ENPs was 49.9% 

lower than that in the control chloroplasts while the bulk TiO2 treatment reduced MDA by only 

21.9% relative to the control (Figure 2.3A; Zheng et al., 2008).  The reduction of ROS and MDA 

show that the application of TiO2 ENPs could effectively alleviate stress from ROS and lipid 

peroxidation, allowing the chloroplast membranes to remain stable under UV-B radiation.   

There are many enzymes involved in the processing of ROS within cells.  Spinach 

chloroplasts treated with 2,500 mg L
-1

 TiO2 showed elevated activity levels of superoxide 

dismutase (SOD), catalase (CAT), and peroxidase (POD) compared to the controls ENPs under a 

light intensity of 500 µmol m
-2

 s
-1

 (Figure 2.4 E-G; Hong et al., 2005a).  Isolated spinach 

chloroplasts exposed to UV-B radiation showed a higher activity level of SOD, CAT, ascorbate 

peroxidase (APX), and guaiacol peroxidase (GPX) when treated with TiO2 ENPs compared to 

the controls  (Zheng et al., 2008).  SOD, CAT, APX, and GPX were found to increase their 

activity by as much as 2.2, 1.8, 1.5, and 1.5 times that of the control respectively (Figure 2.4 A-

D; Zheng et al., 2008). 
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These data suggest that foliar application of TiO2 ENPs could activate SOD, CAT, and 

POD in spinach chloroplasts; these enzymes in turn remove the free radicals which alleviate any 

stress that they may have caused to the chloroplast, mainly to the cell membrane.  Zheng et al. 

(2008) proposed that TiO2 ENPs could promote antioxidant defense in chloroplasts in two ways: 

1) TiO2 ENPs could activate antioxidant enzymes such as SOD, CAT, APX, and GPX. 2) TiO2 

ENPs could directly reduce O2
-
 by the Ti

4+
 of TiO2 oxidizing O2

-
 to O2 and reduce itself to Ti

3+
 , 

which could reduce O2
-
 to H2O2 and oxidize itself to Ti

4+
.  The H2O2 could then be reduced to 

H2O and O2 by enzymes such as CAT, GPX, APX, and POD. 

Chlorophyll is the pigment in plants that absorbs light energy and converts it into 

electronic and chemical energy.  Numerous studies reported that foliar application of TiO2 ENPs 

can significantly increase chlorophyll contents in spinach plants.  Foliar application of 0.25% 

(2,500 mg L
-1

) anatase TiO2 ENPs resulted in an increase of chlorophyll contents from 18.96-

20.71% (Gao et al., 2006; Linglan et al., 2008).  Spinach plants treated with 300 mg L
-1

 anatase 

TiO2 ENPs showed a 17.23% increase in chlorophyll contents (Gao et al., 2008).  Application of 

2,500 mg L
-1

 anatase TiO2 ENPs showed an increase of chlorophyll-a and chlorophyll-b by 

39.54 to 44.53% and 27.69 to 54.12% respectively (Hong et al., 2005b; Zheng et al., 2007).  

Spinach seed soaked in 2.5% rutile TiO2 ENPs for 48 hours then transferred to two layers of 

moistened gauze in Petri dishes containing perlite with a Hoagland culture solution at 20⁰C, 80-

86% humidity, and 450 µmol m
-2

 s
-1

 light intensity for 30 days also showed a 44.53% and 

27.69% increase in chlorophyll-a  and chlorophyll-b respectively(Zheng et al., 2005).  However, 

foliar application of TiO2 ENPs >4,000 mg L
-1

 resulted in a decrease of chlorophyll contents in 

spinach (Hong et al., 2005b) and there were no significant changes in plants treated with bulk 

TiO2 compared to the control (Linglan et al., 2008).   An increase in chlorophyll contents would 
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be beneficial to plants by allowing them to synthesize more light harvesting complexes to 

capture a greater amount of light energy and enhance photosynthesis.   

Light harvesting complexes are pigment-protein complexes that are associated with 

photosystem I and photosystem II.  Foliar application of 2,500 mg L
-1

 anatase TiO2 ENPs on 

spinach leaves resulted in an increase in light harvesting complex II (LHCII) of 24.24% 

compared to the control while there was only a 9.19% increase for the bulk TiO2 at the same 

concentration (Figure 2.5A; Zheng et al. 2007).  Ze et al. (2011) performed the same experiment 

with Arabidopsis thaliana and found the contents of LHCII for the TiO2 ENP treated plants was 

3.83 times greater than the control, while the bulk TiO2 only showed a 37.14% increase 

compared to the control (Figure 2.5B).  This study also examined the mRNA transcript level of 

the LHCII b subunit of LHCII and found that A. thaliana plants that were sprayed with TiO2 

ENPs had 29.33 and 12.57 times more than the control and bulk TiO2 treated plants, respectively 

(Ze et al. 2011).  

Once light energy has been captured by the light harvesting complexes, it is transferred to 

the electron transport chain as electronic energy.  An earlier study found that TiO2 ENPs 

increased whole chain electron transport, enhancing the photoreduction activity of DCPIP by 

PSII.  In contrast, treatment reduced the activity of PSI with the greatest effect being observed at 

a concentration of 5 µM anatase TiO2 ENPs (Su et al., 2007).  At this concentration, treatment 

with TiO2 ENPs increased whole chain electron transport [H2O to MV (methyl viologen)] by 

86.81%, PSII reductive activity (H2O to DCPIP) by 79.65%, PSII oxidative capacity [DPC (1,5-

diphenycarbazide) to DCPIP (2,6-dichlorophenol indophenol)] by 25.90% and decreased the PSI 

activity (DCPIP to MV) by 7.36% (Figure 2.6) (Su et al., 2007). These data suggest that TiO2 



10 

 

ENPs have a much greater effect on the function of PSII than PSI, but still promoted increased 

flow overall through the electron transport chain. 

Linolenic acid acts as an inhibitor to the electron transport chain in higher plants.  It may 

accumulate in plants under various stresses, such as: drought, low temperature, heavy metals, 

ultraviolet radiation, or senescence (Su et al., 2008).  It has been reported that the application of 

TiO2 ENPs can reduce the inhibitory effects of linolenic acid on several parameters of the 

electron transport chain (Su et al., 2008).  Adding 5 µM of TiO2 ENPs reduced the inhibitory 

effects of 20 to 100 µM linolenic acid on whole chain electron transport by 31.82, 95.45, 86.36, 

and 59.09% respectively (Figure 2.7A).  Chloroplasts treated with 20 to 100 µM linolenic acid 

had a 15.15, 29.41, 35.29, 76.47, and 94.18% decrease compared to the controls, respectively; 

while the ones treated with TiO2 ENPs only decreased by 2.54, 11.06, 36.59, 43.26, and 61.43% 

respectively (Figure 2.7B).  Similar results were seen on the reducing side of PSII with the plants 

treated with linolenic acid showing a decrease of 42.86, 49.29, 57.14, 64.29, and 71.43% 

compared to the controls, while the TiO2 treated chloroplasts only decreased by 4.0, 18.29, 

31.57, 44.86, and 58.14% respectively (Figure 2.7C).  Finally, PSI photoreduction activity was 

decreased by 15.17, 53.62, 71.89, 78.31, and 85.43% compared the control, respectively.  The 

addition of TiO2 ENPs increased the photoreduction activity by 6.39 and 2.69% in the 0 to 20µM 

linolenic acid treatments and the decrease in activity for 40 to 100 µM linolenic acid was 27.18, 

62.07, 65.52, and 79.31% compared to the control (Figure 2.7D) (Su et al., 2008). 

Oxygen evolution is a byproduct of the electron transport chain, for when P680 transfers 

its excited electron to pheophytin, it must replace the lost electron.  This is accomplished through 

the splitting of water molecules, in which the electron from the hydrogen is taken by P680 and 

the hydrogen proton is used to generate a chemiosmotic gradient.  This being said, an increase 
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functioning of the electron transport chain should result in an increase in oxygen evolution by the 

chloroplasts.  In fact, research has demonstrated that the application of TiO2 ENPs to spinach 

chloroplasts resulted in increased evolution of oxygen (Hong et al., 2005a; Hong et al., 2005b; 

Zheng et al., 2007; Su et al., 2007;  Zheng et al., 2008).  Spinach chloroplasts treated with 2.5, 5, 

and 10 µM anatase TiO2 ENPs showed an increase in oxygen evolution rates of 29.70, 57.23, 

and 23.20% compared to the controls, respectively (Figure 2.8A; Su et al., 2007).  Chloroplasts 

treated with 2,500 mg L
-1

 rutile TiO2 ENPs at a light intensity of 500 µmol m
-2

 s
-1

 showed an 

increased oxygen evolution rate at 1, 5, 10, 20, 30, and 40 minutes after treatment of 10.82, 

41.23, 79.16, 84.22, 116.31, and 131.41% compared to the control, respectively (Hong et al., 

2005a).  A similar study done at the same light intensity and varying concentrations of rutile 

TiO2 ENPs found 2,500 mg L
-1

 to have the greatest enhancement of oxygen evolution, 1.58 times 

that of the control (Figure 2.8C; Hong et al., 2005b).  Chloroplasts treated with 2,500 mg L
-1

 

anatase TiO2 ENPs showed an increased O2 evolution rate 40.35% greater than the control 

(Figure 2.8B; Zheng et al., 2007).  Under UV-B radiation, chloroplasts treated with 2,500 mg L
-1

 

anatase TiO2 ENPs had an oxygen evolution rate that was 1.6, 1.8, 2.5, and 9 times that of the 

control from 6 to 15 minutes in 3 minute increments (Figure 2.8D; Zheng et al., 2008). 

Spinach plants treated with 2,500 mg L
-1

 anatase TiO2 ENPs showed an increase in net 

photosynthetic rate (µmol CO2 m
-2

 s
-1

) of 29.9%1 (Linglan et al., 2008) to 31.87% (Gao et al., 

2006) that of the control.  Similarly, foliar application with 300 mg L
-1

 anatase TiO2 ENPs 

resulted in a 28.82% increase in net photosynthetic rate compared to the control (Gao et al., 

2008) but no significant changes were observed with application of bulk TiO2 (Linglan et al., 

2008; Gao et al., 2008).  Spinach seeds soaked in 2,500 (Hong et al., 2005b) and 25,000 (Zheng 

et al., 2005) mg L
-1

  rutile TiO2 ENPs for 48 hours at 15⁰C under natural light, then planted in a 
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pot containing perlite with a Hoagland culture solution at 20⁰C, 80-86% humidity, and a light 

intensity of 500 and 450 µmol m
-2

 s
-1

, respectively, for 30 days, increased the photosynthetic rate 

by 3.13 times that of the control, but at concentrations over 4,000 mg L
-1

 a decrease in 

photosynthetic rate was observed (Honget al., 2005b; Zheng et al., 2005).  The major component 

in CO2 assimilation is the Rubisco enzyme, so in order for there to be an increase in net 

photosynthetic rates, there must be an increase in Rubisco activity. 

Spinach plants that were treated with foliar application of 2,500 mg L
-1

 anatase TiO2 

increased the carboxylase activity of Rubisco by 1.9 (Gao et al., 2008; Linglan et al., 2008) to 

2.7 (Gao et al., 2006) times that of the control.  Soaking spinach seeds in 25,000 mg L
-1

 rutile 

TiO2 ENPs for 48 hours at 15⁰C under natural light, then transferred to were two layers of 

moistened gauze in Petri dishes containing perlite with a Hoagland culture solution at 20⁰C, 80-

86% humidity, and 450 µmol m
-2

 s
-1

 light intensity for 30 days resulted in an increase in Rubisco 

activity of 4.22 times that of the control (Zheng et al., 2005).  The increase in the carboxylase 

activity is more so thought to be the result of an increased association of Rubisco activase rather 

than Rubisco itself.  It was later shown that foliar application of 2,500 mg L
-1

 TiO2 ENPs 

increased the concentration of Rubisco activase up to 42% (Gao et al., 2006; Gao et al., 2008; 

Linglan et al., 2008), as well as the activity of purified Rubisco activase was 2.5 times (Gao et 

al., 2008) to 2.75 times (Linglan et al., 2008) that of the control in spinach.  Gao et al. (2008) 

proposed that the increased activity of Rubisco activase in plants treated with TiO2 ENPs is due 

to the influence that the ENPs have on the conformation of the Rubisco activase enzyme.  Their 

research showed that the Rubisco activase of TiO2 treated spinach had a 12% a-helix increase, an 

18% b-sheet increase, and a 13% b-turn; as well as a 57% decrease in random coil contents when 

compared to controls (Gao et al., 2008).   



13 

 

Interestingly, the above results of Gao (2008) and Linglan (2008) are very similar but the 

method for treatment was slightly different.  The two studies used the same concentration of 

TiO2 ENPs but their treatment regimens differed from one another.  The former study 

germinated the spinach seeds in 2,500 mg L
-1

 TiO2 and then foliar applied 2,500 mg L
-1

 TiO2 

suspension in the growth stage of two leaves, whereas the latter study used no exposure to seeds 

and foliar applied 2,500 mg L
-1

 TiO2 once a week between the growth stages of two leaves to 

eight leaves.  This may indicate that weekly application of the TiO2 ENPs is not necessary for the 

sustained increase in photosynthetic efficacy; though it must be noted that neither study stated 

the time period between the last treatment and the analysis of plant tissues. 

 

2.1.2 Influence of TiO2 ENPs on Nitrogen Reduction 

Prior studies revealed that bulk TiO2 (2 µm) with chemisorbed H2O in the presence of N2 

gas at 1 atm pressure was capable of reducing N2 to NH3 or N2H4 (hydrazine) under near UV 

light in vitro (Schrauzer and Guth, 1977).  The estimated amount of nitrogen fixation by rutile 

TiO2 found in arid to semi-arid desert sands was estimated to be about one third of the amount of 

N2 fixed by lightning and about 10% of N2 that is fixed biologically (Schrauzer and Guth, 1983).  

It is thought that TiO2 ENP’s chemisorb N2 and H2O; when exposed to sunlight, the H2O is 

converted to O2 and the hydrogen atoms are transferred to N2 to form NH3 (Yang et al., 2007). 

𝑁2 + 3𝐻2𝑂 
        𝑇𝑖𝑂2 𝐸𝑁𝑃𝑠       

𝑛ℎ𝑣
→ 2𝑁𝐻3 + 1.5𝑂2 

The phenomena of N2 reduction to NH3 via TiO2 ENPs would provide an increased nitrogen 

source at the leaf level if the nanoparticles are foliar applied.   

The reduction of N2 via the TiO2 photocatalytic activity is not the only means which TiO2 

ENPs affect nitrogen levels within plants.  It has also been shown by Yang et al. (2006) to 
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increase the activities of nitrogen assimilation.  Nitrate reductase (NR) is the enzyme that 

catalyzes the reaction of NO3
-
 to NH4

+
.  Glutamate dehydrogenase (GDH) and glutamine 

synthetase (GS) are the key enzymes that assimilate NH4
+
 which consists of the synthesis of 

amino acids, proteins, and chlorophyll.  Soaking spinach seeds in 2,500 mg L
-1

 TiO2 ENPs for 48 

hr at 10⁰C under natural light, then planting seeds in a pot containing perlite and grown 

maintained at 20°C, 80–86% humidity, and 500 µmol m
-2

 s
-1

 light intensity for 20–45 days, 

followed by a single foliar application of 2,500 mg L
-1

 TiO2 ENPs at the V2 growth stage on 

spinach resulted in an increase in NR activity which peaked with an activity that was 1.2 times 

greater than that of the control.  This increase in activity resulted in an accelerated transformation 

of NO3
-
 to NH4

+
 in vivo and improved the growth of the spinach.  Additionally, this study 

showed soaking spinach seeds and followed by a single foliar application of 2,500 mg L
-1

 TiO2 

ENPs promote the absorption of nitrate by spinach.  The nitrate concentration within the plants 

treated with TiO2 was found to be 2.34 times higher than that of the control after being cultured 

for 20 days (Table 2.1).  This study also showed that the NH4
+
 concentration within the spinach 

was not significantly different from that of the control after being cultured for 30 days (Table 

2.1).  Furthermore, there was a decrease in NH4
+
 in spinach plants treated with TiO2 ENPs for 

the times before and after 30 days.  The authors speculated that this suggests the exposure of 

spinach to TiO2 ENP enhanced the activity of enzymes that are involved in ammonia 

assimilation, which led to the transformation of NH4
+
 to organic nitrogen.  This is corroborated 

by the fact that there was a significant increase in protein and chlorophyll content of spinach 

(Yang et al., 2006). 

Glutamate dehydrogenase (GDH) activity was nearly doubled compared to that of the 

control from 20 days to 45 days culture time.  The same trend was noticed with glutamine 
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synthetase (GS) and glutamic-pyruvate transaminase (GPT) for 20 days culture time but 

decreased after 25 days, but the activity levels still remained higher than that of the control 

(Table 2.1).  The increase of these enzymes explains why NH4
+
 levels were reduced when 

exposed to TiO2, because as the NH4
+
 was produced, it was quickly assimilated which is 

confirmed by the increase in protein and chlorophyll content (Yang et al., 2006).   

 

2.1.3 Effect of TiO2 ENPs on Other Organisms 

Earthworms were referred to as the intestines of the Earth by Aristotle because they 

ingest soil particles and process them resulting in an improvement in organic matter and the 

enhanced bioavailability of soil nutrients (Bystrzejewska-Piotrowska et al., 2012).  A study to 

determine how earthworms affect the bioavailability of TiO2 ENPs in soil reported that the 

presence of earthworms reduced the water soluble Ti by 80% and Ti extractability with EDTA 

was reduced by 49% after a ten day incubation period at a concentration of 32 g TiO2 ENPs kg
-1

 

soil DW (19 g Ti kg
-1

 soil DW) suggesting that earthworms may reduce the bioavailability of 

TiO2 ENPs in the soil (Bystrzejewska-Piotrowska et al., 2012).  They hypothesized that this 

could be the result of stable binding of titanium to proteins, which were mediated by the 

digestive track of the earthworms (Dendrobaena veneta).  In fact, they showed the metal 

concentrations in the gut of D. veneta were about twenty-seven times higher than that of the 

concentrations in the rest of the earthworms’ tissues (Bystrzejewska-Piotrowska et al., 2012).  

The low retention of titanium by D. veneta indicates that the ENPs were not toxic at the 32 g 

TiO2 ENPs kg
-1

 soil DW concentration over a ten day period (Bystrzejewska-Piotrowska et al., 

2012).  However, it has been observed that TiO2 ENPs caused reproductive toxicity to the 
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earthworm Eisenia fetida at 1,000 mg kg
-1

 in a dry natural soil, but it was not affected by bulk 

TiO2 (Tourinho et al., 2012). 

 TiO2 ENPs in the 50 nm range have been found to be toxic to the nematode 

Caenorhabditis elegans with a 24 hour LC50 of 80 mg L
-1

 (Tourinho et al., 2012).  It was found 

that toxicity increases with decreasing size of the nanoparticles, which is most likely due to the 

fact that the negatively charged cuticle of the nematode tends to attract nanoparticles more than it 

attracts bulk materials (Tourinho et al., 2012).  Yet there was still a significant reduction in 

growth and reproduction in C. elegans when exposed to bulk TiO2 (Tourinho et al., 2012). 

 Not surprisingly, TiO2 ENPs have been shown to have a negative effect on soil bacterial 

communities (Ge et al., 2011).  The reason this is not surprising because one of the proposed 

uses of TiO2 ENPs is as an antimicrobial agent.  Ge et al. (2011) observed that there is a 

significant negative dose-response between extractable DNA and TiO2 concentration (Ge et al., 

2011).  The concentration of TiO2 ENPs exhibited a fairly linear dose-response curve which 

appeared to have less of a negative effect on extractable DNA over time as there is a greater 

DNA pool on day 60 compared to day 15 with respect to the lower concentrations.  Ge et al. 

(2011) also examined the effects of TiO2 ENPs on microbial biomass using soil induced 

respiration as an indication of the biomass.  The results of this experiment showed that there was 

a exposure of TiO2 ENPs at concentrations of 0.5, 1, and 2 mg TiO2 ENPs g
-1

 soil resulted in a 

significant decrease in on microbial respiration but there was no significant difference within the 

concentrations of TiO2 ENPs.  Finally, Ge et al. (2011) used terminal restriction fragment length 

polymorphism (T-RFLP) to assess the microbial community composition and found that the high 

doses of TiO2 resulted in a shift in the microbial community composition as well as a reduction 

in diversity. 
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Since TiO2 ENPs have such a large surface to volume ratio, it holds the capability of 

having strong adsorption strength for hazardous materials, such as cadmium, arsenic, and copper 

(Zhang et al., 2007; Sun et al., 2007; Fan et al., 2011).  TiO2 has been shown to enhance the 

exposure of cadmium and arsenate in carp (Zhang et al., 2007; Sun et al., 2007).  The 

accumulation of cadmium was much more accelerated in the gills and viscera of the carp than it 

was the skin and muscle tissue (Zhang et al., 2007).  This same trend can be recognized in 

relation to carp exposure to arsenate (Sun et al., 2007).  This distribution pattern leads 

researchers to believe that the majority of the heavy metal doped TiO2 ENPs retained the 

majority metal ions on the surface of the nanoparticle.  If the metals were released from the 

nanoparticle once ingested by the carp, either orally or through the gills, then there would have 

been a greater distribution of the metals throughout the carps’ skin and muscle tissues.   

As mention above, TiO2 ENPs were also shown to adsorb copper, which lead to an 

increased accumulation of copper in Daphnia magna, but resulted in a decreased mortality rate 

(Fan et al., 2011).  This was most likely due to the fact that the copper entering into the Daphnia 

weren’t entering as free ions, but rather adsorbed to the TiO2 ENPs.  However, in the absence of 

copper, there has been evidence that TiO2 ENPs still yield toxic effects to D. Magna.  In fact, it 

is a rather acute toxicity, showing an LC50 (Lethal Concentration to 50% of the population) at 1 

mg L
-1

 for 15 nm TiO2 ENPs (Clement et al., 2013).  As with most organisms, the toxicity of the 

ENPs decreases with increasing size. 

 

2.1.4 TiO2 Sorption of Metal Ions 

As mentioned above, TiO2 ENPs have a high surface area which gives them a high 

affinity for sorption of metal ions.  Metal-oxide particles with terminal oxygen atoms on the 
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macro-scale are known to form a hydroxylated surface-functional group from the particles 

reaction with water (Ridley 2006; Mahdavi et al. 2013).  This forms an electric double layer 

which acts as an electric potential gradient between the particle surface and the bulk solution and 

heavily influences the adsorption of ions from the solution (Ridley 2006).  The sorption capacity 

of the TiO2 ENPs is largely dictated by the surface charge of the TiO2 ENPs which is dependent 

on the pH of the solution due to the electric double layer.  TiO2 ENPs have a point of zero charge 

(pzc) in which a pH level below this point results in a positive surface charge and a pH aboves 

this point results in a negative surface charge due to the hydroxyated surface functional groups 

ability to receive and release protons from the water (Dutta et al. 2004; Engates and Shipley 

2011; Mahdavi et al. 2013).  For TiO2 ENPs the pHpzc is generally in the range of 4.8-6.2 

(Dunphy Guzman et al. 2006b).   

The adsorption of Cd to TiO2 ENPs is rather rapid and achieves equilibrium within 30-60 

minutes (Hartmann 2010; Engates and Shipley 2011; Yang et al. 2012).  When 100µg Cd L
-1

 

was mixed with 0.01 and 0.1 g TiO2 ENPs L
-1

 (pH=8.0), 84.3 and 99.8% of the Cd was adsorbed 

to the TiO2 ENPs, respectively (Engates and Shipley 2011).  This suggests that the adsorption 

capacity of the TiO2 ENPs is highly influenced by the amount of available sorption sites on the 

surface of the TiO2 ENPs.  Mahdavi et al. (2013) performed a batch experiment with four metals 

(Cd
2+

, Cu
2+

, Ni
2+

, and Pb
2+

) at 100 mg L
-1

 in combination with 2,000 mg L
-1

 TiO2 ENPs (17 nm) 

at a pH range from 2-7.  The pHpzc for the TiO2 ENPs was relatively high at 7.4.  This study 

showed that there was competition for binding sites on the TiO2 ENPs and the binding sites were 

dominated by H
+
 ions at low pH.  However, as the pH increased, the sorption capacity for the 

metals increased due to the release of H
+
 ions into the solution.  TiO2 ENPs displayed the 

greatest removal of metal ions from the solution at pH 4, removing 37.5, 14.9, 47.8, and 14.9% 
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of Cd
2+

, Cu
2+

, Ni
2+

, and Pb
2+

, respectively (Figure 2.9; Mahdavi et al. 2013).  There was a large 

increase in sorption around pH 6, but this may have been the result of the formation of metal 

complexes and precipitation.  When examining the differences in sorption of single metals vs. 

multiple metals in a solution at a native pH (not given) the single metal absorption of Cd to TiO2 

ENPs had a maximum absorption of 120.1 mg Cd g
-1

 TiO2 ENP.  However when multiple metals 

were in solution at the same time, the maximum absorption of Cd to TiO2 ENPs was 14.7.  This 

indicated that competition for binding sites on TiO2 reduced the sorption of Cd by 87% 

(Mahdavi et al. 2013). 

There have been many studies investigating the sorption capacity of arsenic to TiO2 

ENPs.  Arsenate (As(V)) has a greater sorption strength to TiO2 than As(III) at neutral pH and 

pH of 6.3 (Jegadeesan et al., 2010).  However, it was discovered that As(III) had a greater 

surface coverage at a broader range of pH than As(V).  As(V) sorption was highest between pH 3 

and 7 with surface coverage of 12 and 50 µg m
-2

 respectively, but the sorption decreased 

significantly in pH greater than 8.  As(III) surface coverage increased from 24 to 46 µg m
-2

 with 

the pH increasing from 4 to 9 (Jegadeesan et al., 2010).  Sun et al. (2009) stated that sorption of 

As(III) and As(V) onto TiO2 ENPs took approximately 30 minutes to come to equilibrium in an 

aqueous solution in the dark (solution contained 200 µg L
-1

 As and 10 mg L
-1

 TiO2).  The 

adsorption equilibrium of this study showed that TiO2 adsorbed 30% of the initial As(III) or 25% 

of the initial As(V) (Sun et al., 2009).  A prior study revealed that the adsorption of As(V) to 

TiO2 ENPs reduces as the size of the particle increases (Xu and Meng, 2009) most likely a result 

of the change in the surface to volume ratio.  However, it should be noted that all of these 

experiments were conducted in an aqueous solution and there will be many substances 

competing for sorption sites on TiO2 ENPs in a natural setting.  Jegadeesan et al. (2010) 
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conducted a sorption study where they included phosphate and silicate ions in the solution to 

determine how this competition may affect the sorption of arsenic to TiO2 ENPs.  They found in 

the presence of phosphate and silicate, the surface coverage of As(V) and As(III) was reduced.  

This is because As(V), silicate, and phosphate have tetrahedral structures which form bidentate 

complexes with TiO2 resulting in a competitive sorption which lowers the sorption capacity of 

As(V) (Jegadeesan et al., 2010). 

 

2.1.5 TiO2 Disruption of Membranes 

It has been observed that TiO2 is bactericidal at sizes less than 25 nm.  It was originally 

thought that TiO2 was toxic to bacteria because of its photocatalytic properties, however, Simon-

Deckers et al. (2009) found that TiO2 were still toxic to E. coli (Escherichia coli) when kept in 

the dark.  They also found that TiO2 is only toxic to the bacteria when it is adhered to the 

membrane of the cell or if it is found in the periplasm.  Lin et al. (2012) observed nanoparticles 

adhering to algal cells at a treatment of 10 mg L
-1

.  They also observed the nanoparticles 

destroying the cell walls and entering into the cells. 

Ghosh et al. reported that after 24 hours of exposure, 4 mM (319 mg L
-1

) TiO2 ENPs 

increased the levels of MDA in the roots of onion (Allium cepa) by ~4.5 times indicating that 

TiO2 ENPs increase the generation of ROS which leads to increased lipid peroxidation and 

oxidative stress (Ghosh et al., 2010).  A recent study has also shown MDA content of algae 

(Chlorella sp.) growing in contact with TiO2 ENPs was significantly higher than the control 

showing that TiO2 ENPs could impose oxidative stress on the algal cells causing lipid 

peroxidation, however, in the presence of humic acid, the MDA levels were decreased because 

the humic acid worked as a buffer preventing the formation of ROS at the surface of the 



21 

 

nanoparticle (Lin et al., 2012).  While the humic acid may have reduced the generation of ROS 

from TiO2 ENPs, it did not alleviate the damage done to the cell walls of the algae cells.  Even 

the TiO2 ENPs that were coated with humic acid were found to adhere to the cells which resulted 

in the destruction of the cell walls (Lin et al., 2012).  These findings similar to that of Simon-

Deckers et al. (2009), which stated that while the generation of ROS may be a contributing factor 

to TiO2 toxicity, it is most likely not the main factor.  They found that particle sizes up to 140 nm 

generated ROS in E. coli, but the bacteria were still viable.  From the results of this experiment, 

the authors postulated that the contributing factor in TiO2 toxicity to E. coli is the 

impairment/disruption of membrane integrity.  This indicates that there may be a physical 

interaction with the membranes that is causing the toxicity rather than the generation of ROS 

(Simon-Deckers et al., 2009). 

 

2.2 Cadmium and Arsenic 

 

2.2.1 Cadmium uptake and translocation by plants 

Cadmium is considered the seventh most hazardous substance on the priority list of 

Agency for Toxic Substances and Disease Registry.  Cadmium is considered a non-essential 

heavy metal.  Cd exists in rather high abundance in the earth’s crust; with its content ranging in 

the range of 0.1-2 ppm for non-contaminated soil, but it is usually below 1 ppm (Clemens, 2006).  

Sources for Cd contamination include atmospheric deposition resulting from mining, smelting, 

fuel combustion, and sewage sludge (Clemens, 2006).  Cd is a member of the divalent family of 

metals; many divalent metal ions are readily taken up by plants because they are essential 

nutrients for plant growth and development.  Since plants actively take up many divalent metals, 
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Cd can enter the plant efficiently through the roots and can then be translocated to the leaves and 

fruits, thus entering into the food chain (Clemens, 2006).  The only biological function of Cd has 

been described in marine diatoms where it acts as a Cd-carbonic anhydrase; other than that Cd 

has no known biological function (Benavides et al., 2005). 

 High doses of Cd result in growth inhibition, leaf chlorosis, inhibition of stomatal 

opening (Clemens, 2006; Benavides et al., 2005), reduced transpiration and photosynthesis 

(Benavides et al., 2005).  Reduced photosynthesis is likely caused because Cd inhibits Fe(III) 

reductase, which leads to an Fe(II) deficiency (Benavides et al., 2005).  Although Cd is not a 

redox-active metal, symptoms of oxidative stress are observed; this is most likely due to 

decreased availability of glutathione (GSH) from the formation of phytochelates (PCs) and Cd 

binding directly to GSH (Clemens, 2006; Benavides et al., 2005).  Another source of oxidative 

stress is thought to be from the disruption of the photosynthetic electron transport chain resulting 

in the production of singlet oxygen and superoxide (Benavides et al., 2005).  Cd also could 

interfere with Zn-dependent and Zn-binding molecules because of the chemical similarity of Cd 

and Zn.  Ca binding proteins may also be affected by Cd for the same reasons that Zn binding 

proteins would, this may interfere with molecules such as calmodulin, which could interrupt 

cellular signaling cascades (Clemens, 2006). 

Exposure to Cd has been shown to up-regulate sulfate assimilation, biosynthesis of 

cysteine and GSH.  This would account for the building blocks for PC synthesis.  Another 

response to Cd exposure is the up-regulation of ROS scavenging proteins and heat shock proteins 

(Clemens, 2006).   Within hours of Cd exposure, many genes involved in photosynthesis and 

glucosinolate biosynthesis were downregulated, but genes involved in sulfur metabolism, cell 
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wall metabolism, and phenylpropanoid metabolism are rapidly induced (Mendoza-Cózatl et al., 

2011). 

Cd enters the roots as a hydrated ion from soil solutions via the ubiquitous ZIP family 

(ZRT, IRT-like protein) metal transporters (mainly those for Fe
2+

 and Zn
2+

) (Clemens, 2006; 

Benavides et al., 2005; Verbruggen et al., 2009; Mendoza-Cózatl et al., 2011) and Ca
2+

 channels 

(Figure 2.10; Clemens, 2006; Benavides et al., 2005).  Studies have shown that IRT1 (a ZIP 

family iron transporter) has a broad range of substrates.  Besides iron, it also transports Zn, 

which alludes to its ability to transport Cd as well (Benavides et al., 2005; Verbruggen et al., 

2009). 

In order to maintain the negative membrane potential that is required for the uptake of 

cations, metals have to become trapped inside the cells through metal binding or sequestration 

sites (Clemens, 2006; Benavides et al., 2005).  Most divalent metals have a high affinity for 

binding to N and S donors.   Generally Cd becomes bound to low molecular weight (LMW) 

ligands, which are either constitutively present or synthesized in response to the presence of Cd 

(Clemens, 2006).  Cd preferentially binds to glutathione (GSH) and phytochelatins (PCs).  GSH 

is constitutively present in cells but PCs are synthesized in response to Cd exposure (Clemens, 

2006) and are highly distributed in the plant kingdom (Benavides et al., 2005).  PCs are 

polypeptides with the general structure (γ-Glu-Cys)n-Gly (n = 2–11).  PCs are synthesized in the 

cytosol from GSH by phytochelatin synthase (PCS) (EC 2.3.2.15) in a transpeptidase reaction 

(Clemens, 2006; Mendoza-Cózatl et al., 2011; Benavides et al., 2005).   PCS expression is 

constitutive and the enzyme is activated by the excessive presence of metal ions and/or GS-metal 

complexes in cells, not just by Cd (Clemens, 2006).  In fact, PC biosynthesis happens within 

minutes of Cd exposure (Benavides et al., 2005).  PC deficiency in plants leads to Cd 
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hypersensitivity.  Interestingly, overexpression of PCS1 in Arabidopsis caused a higher 

sensitivity to Cd as well.  The overexpression leads to the accumulation of gamma glutamine 

cysteine but a large depletion of GSH, which may have caused sensitivity.  PCS doesn’t exert 

enough control over rate of GSH synthesis (Verbruggen et al., 2009).  The chelation of excess 

and/or toxic metals prevents the metals from binding to important proteins and facilitates 

transport to vacuoles (Verbruggen et al., 2009). 

PC-Cd complexes are transported to the vacuoles; the complexes pass through the tonoplast 

via an unknown ABC-type transporter (Figure 2.10).  Once inside the vacuoles, the LMW 

complexes are formed into high molecular weight (HMW) complexes (Clemens, 2006).  A half-

sized ABC transporter has been identified in yeast (S. pombe) as the transporter required to move 

PC-metal complexes into the vacuole (Figure 2.10; Mendoza-Cózatl et al., 2011; Verbruggen et 

al., 2009).  Over-expression of HMT1 in S. pombe and S. cerevisiae increased tolerance to Cd.  

This was independent of PC synthesis but dependent on GSH synthesis, showing that GS-Cd 

complexes are also substrates for HMT1 (Verbruggen et al., 2009).  While past studies have 

shown that PC-Cd complexes are found in the vacuoles of plants the ABC-type transporter 

required to facilitate the movement across the tonoplast has remained unknown until recently 

(Benavides et al., 2005; Verbruggen et al., 2009).  AtABCC1 and AtABCC2 were recently 

identified as vacuolar PC transporters.  These transporters are constitutively expressed.  This 

may allow for rapid storage and detoxification of toxic compounds in the vacuole (Mendoza-

Cózatl et al., 2011). 

While most Cd is chelated shortly after entering the cytoplasm, free cadmium ions may 

still exist in the cell.  In which case, a Cd
2+

/H
+
 antiport proteins have been suggested as a 

possible means for hydrated Cd ions to enter into the vacuole.  Evidence has been found that 
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divalent cation/H
+
 transporters (CAX) are involved in transport of Cd across the tonoplast 

(Figure 2.10).  Specifically the overexpression of CAX2 transporter in Arabidopsis has been 

shown to increase the Cd, Ca, and Mn content in roots (Clemens, 2006).  Studies also suggest 

that CAX4 and possibly MHX may be involved in the movement of hydrated cations into the 

vacuoles (Verbruggen et al., 2009).  Another transporter known as a heavy metal transporting P-

type ATPase (HMA), more precisely HMA3, has been shown to facilitate the transport of Cd
2+

 

across the tonoplast (Figure 2.10).  HMA3 in Arabidopsis is a pseudogene, containing a 

premature stop codon.  Deletion of HMA3 promotes Cd sensitivity, while overexpression has 

been shown to enhance tolerance and accumulation of Zn and Cd.  The expression of TcHMA3 

in Arabidopsis enhanced the accumulation of Cd and to a lesser extent Zn (Mendoza-Cózatl et 

al., 2011). 

Once Cd is in the vacuole, it is unknown whether it is formed into HMW complexes, 

precipitated, or in hydrated ion state.  It is thought that at least some of the Cd is in its ion state 

through work done on AfNramp3.  The function of AtNramp3 is proposed to be involved in the 

mobilization of Fe, Mn, and Zn from the vacuole to the cytosol; because AtNramp3 transports 

divalent cations, it most likely could transport Cd as well as the micronutrients listed above 

(Figure 2.10; Clemens, 2006).  Further studies have suggested NRAMP3 and NRAMP4 are 

responsible for the efflux of Cd from the vacuole.  This was demonstrated by the overexpression 

of NRAMP3/4 proteins leading to increased Cd sensitivity.  Knock outs suffered from Fe 

deficiency because the proteins are responsible for Fe homeostasis (Verbruggen et al., 2009). 

In order for Cd to move from the roots to the vascular tissue, the metal ions and/or ligand 

complexes must be transported across a cell membrane.  It is suggested that heavy metal 

transporting P-type ATPases (HMA) are responsible for this transport.  AtHMA2 and AtHMA4 
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are involved in the loading of Zn into the vascular tissue.  It is thought that these two proteins 

may also be involved in the loading of Cd into the xylem as well (Figure 2.10; Clemens, 2006; 

Mendoza-Cózatl et al., 2011).  In fact, the overexpression of AtHMA4 showed an increased 

accumulation of Zn and Cd in the leaves of A. thaliana demonstrating that it is responsible for 

the translocation of Cd from the root to the shoot (Clemens, 2006; Verbruggen et al., 2009).  

AtHMA2 may also play a role in this transport but not as significant as AtHMA4, as AtHMA2 

only showed Cd transport activity in AtHMA4 knockouts (Verbruggen et al., 2009). 

The accumulation of Cd in the shoots yields a high risk of damage to photosynthetic 

machinery.  In order to reduce this risk, plants can move the Cd via the phloem in a source to 

sink manner.  It has recently been shown that PCS is highly expressed in companion cells 

(Figure 2.10; Mendoza-Cózatl et al., 2011).  Furthermore the main metal-ligand molecules found 

in phloem sap are nicotianamine (NA), GSH, and PCs.  NA forms complexes with essential 

metals while GSH and PCs have higher affinities for non-essential metals (Mendoza-Cózatl et 

al., 2011).  This suggests that GSH and PCs synthesized in, or transported to companion cells are 

likely to be loaded into the phloem for transport to sink such as seeds or roots (Mendoza-Cózatl 

et al., 2011).  Interestingly, analysis of Arabidopsis seeds showed high levels of GSH but not 

PCs; suggesting that thiol complexes found in seeds are GS-Cd complexes and that PC-Cd 

complexes are most likely sequestered in the root vacuoles.  To support this more, ABCC1/2 

transcript levels are about 3-fold higher in the roots compared to shoots (Mendoza-Cózatl et al., 

2011). 

It should be noted that PC participates in long distance transport between root and shoot via 

the phloem.  However, Cd transported in the xylem is considered to be in the hydrated cation 

state because PC concentrations are negligible in the xylem (Verbruggen et al., 2009). 
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A low-affinity nitrate transporter (NRT1.8) is highly up-regulated in the roots in response to 

Cd exposure.  NRT1.8 is a nitrate transporter that mediates the nitrate removal from xylem sap.  

Removal of this gene resulted in Cd sensitivity and accumulation of nitrate in the xylem sap.  

NRT1.8 transcript levels were shown to increase in a concentration and time dependent manner 

to Cd exposure.  This is the first gene directly linking N metabolism to Cd-stress response. Also, 

it supports the previous hypothesis that N-containing compounds are partially responsible for 

translocation of Cd from roots to shoots through xylem (Mendoza-Cózatl et al., 2011). 

 

2.2.2 Arsenic uptake and translocation by plants 

Arsenic is considered the number one most hazardous substance on the priority list of the 

Agency for Toxic Substances and Disease Registry.  The list is based on three criteria: frequency 

of occurrence, toxicity, and potential for human exposure (Francesconi et al., 2002).    As(III) is 

found under reducing conditions and As(V) is found in oxygenated conditions (Srivastava et al., 

2012).  As(V) is the predominant form of As in terrestrial systems (Verbruggen et al., 2009; 

Francesconi et al., 2002).  The only known functions of As in organisms is the use of As(III) as 

the sole electron donor for anoxygneic photosynthesis in bacteria found in hot spring biofilms 

and it may also have beneficial roles in methionine metabolism and gene silencing in animals.  

No functions have been observed in higher plants (Verbruggen et al., 2009).  Arsenic toxicity can 

occur as hypo- and hyper-pigmentation, keratosis, and cancer of lungs, skin, and urinary bladder 

(Srivastava et al., 2012). 

As(V) is a phosphate analog and enters the roots via high affinity phosphate transporters.  

As(III) enters the roots through aquaglyceroporin channels of the NIP (nodulin 26-like intrinsic 

protein) subfamily of aquaporins which transports neutral molecules such as silicic acid and 
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boric acid (Figure 2.10; Srivastava et al., 2012; Verbruggen et al., 2009; Mendoza-Cózatl et al., 

2011; Caille et al., 2004; Kertulis et al., 2005).  More specifically, OsLsi1 (a silicic acid 

transporter found in rice) has been shown to be the primary transporter responsible for As(III) 

uptake, and it is also responsible for the efflux of As(III) from the roots (Srivastava et al., 2012). 

As(V) is a chemical analog of phosphate and can potentially be substituted for processes 

that involve phosphate, including ATP synthesis(Verbruggen et al., 2009).  However, 

phosphorous is always present as phosphate, but As(V) can be and readily is reduced to As(III) 

within cells (Figure 2.10).  This process can take place either enzymatically by AtARC2 arsenate 

reductase (Srivastava et al., 2012; Verbruggen et al., 2009; Bleeker et al., 2006) or non-

enzymatically by glutathione (Verbruggen et al., 2009; Delnomdedieu et al., 1994).  The 

reduction of As(V) to As(III) is a highly efficient process (Srivastava et al., 2012).  The 

reduction of As(V) to As(III) is a crucial step in the detoxification process because it allows the 

As to become bound to GSH and PC and also activates PCS, much like Cd  (Figure 2.10; 

Verbruggen et al., 2009).  However, As(III) can deplete the pool of reduced glutathione by 

forming complexes with GSH and also through the activation of PC synthesis (Verbruggen et al., 

2009). 

PCs display a high affinity for As(III) (Mendoza-Cózatl et al., 2011).  The chelation of 

As(III) by GSH and PC not only inhibits the reactivity of As(III), but it also prevents 

translocation from the roots to the shoots (Srivastava et al., 2012).  As(III)-GS3 complexes can be 

transported into the vacuoles by an ABC transporter, like Cd (Figure 2.10; Verbruggen et al., 

2009).  Post-translational activation of PCS seems to be related to the formation of As(III)-GS 

thiolates (Verbruggen et al., 2009).  As(V) reduction to As(III) proves to be a critical step in As 

tolerance and detoxification.  The activation of the PC biosynthetic pathway is dependent on 
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As(III) levels.  Furthermore, the knockout of arsenate reductase gene AtACR2 (arsenic 

compounds resistance 2) in Arabidopsis showed that translocation of as from the roots to the 

shoots was increased by 10-16 fold (Srivastava et al., 2012). 

Sequestration of As into the vacuoles is crucial for As tolerance.  It has recently been 

found that P. vittata possesses an As(III) efflux permease gene ACR3 (arsenic compounds 

resistance 3) which encodes the ACR3 protein that can transport As across the tonoplast as 

As(III).  Yet in higher plants, this is not thought to exist and the main method for transporting As 

into the vacuole is through the transport of As(III)-PC complexes by ABCC 1 and ABCC2 

transporters (Figure 2.10; Srivastava et al., 2012).  ABCC1 and ABCC2 are not activated by As, 

but are constitutively expressed allowing for rapid storage of excess metal(oids) in the vacuole 

for a detoxification strategy (Mendoza-Cózatl et al., 2011). It has been demonstrated that ABCC 

1/2 double mutant is As hypersensitive and PC-As in the vacuoles is substantially reduced 

(Mendoza-Cózatl et al., 2011). 

As(V) and As(III) are both found in the xylem suggesting that both forms have the 

capacity to be loaded into the xylem.  While As(III) is predominantly found in the xylem, As(V) 

can also be found in substantial quantities in the xylem (Verbruggen et al., 2009).  Arsenic found 

in the xylem is not complexed with GSH or PC suggesting that it is predominantly loaded in its 

inorganic form (Verbruggen et al., 2009).  As(V) is most likely loaded by Pi transporters while 

As(III) is thought to be loaded by aquaporins (Figure 2.10; Verbruggen et al., 2009; Mendoza-

Cózatl et al., 2011). 

Efflux of As from the roots has also been shown as a detoxification strategy in which 

As(V) is taken up and reduced to As(III) in the roots and then effluxed from the roots, yet the 

efflux transporter has not yet been identified in plants (Verbruggen et al., 2009).  OsLsi1 has 
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been shown to be the primary transporter responsible for As(III) uptake, and it is also responsible 

for the efflux of As(III) from the roots (Srivastava et al., 2012). 

As can also be methylated as another potential detoxification strategy.  As(V) has been 

shown to upregulate methyltranserases.  Methylated As is less toxic than inorganic As, but this 

process for detox is not a primary strategy in plants, yet it could play a role in specific organs 

(Verbruggen et al., 2009).  It has yet to be shown whether methylated As leads to volatilization 

(Srivastava et al., 2012). 

  

2.3 Rationale 

 While it has been shown that TiO2 ENPs yield the ability to increase photosynthesis, it 

should be noted that most of these experiments were carried out with a high concentration of 

TiO2 ENPs and were conducted on a short time frame.  The concentration for the majority of the 

enhanced photosynthesis experiments was at 2,500 mg L
-1

 because that is the application rate 

which warranted the highest increases in photosynthetic rates in early studies.  However, there 

seems to be little to no literature as to whether plants can sustain this rate of photosynthesis for 

an extended period of time (i.e. the length of a growing season).   

 That being said, there is still much research to be done before the use of TiO2 ENPs 

should be considered for mass usage in a plant-based agricultural setting.  There is a dire need 

for food safety research, as there is currently no apparent data on nanoparticle retention in 

vegetative tissues, or the translocation/retention in fruits.   The use of TiO2 ENPs in an 

agricultural system would also increase environmental exposure significantly via the direct 

release of ENPs on crop lands.   



31 

 

 This increased exposure has the potential to be detrimental to numerous microfauna, both 

terrestrial and aquatic, because it has been observed to be toxic to many organisms.  While the 

toxic concentrations vary widely, TiO2 ENPs would likely have an extremely long residence time 

in these systems due to the fact that they are highly stable (Tourinho et al. 2012).  This long 

residence time would allow for environmental concentrations to compound throughout time, and 

while there has been research involving the use of nanoparticles in remediation; there seems to 

be no research being done for the remediation of nanoparticles. 

 In summary, nanotechnology could provide to be a useful tool in many aspects of 

agriculture, but there is still much research to be done in this area.  There are currently many 

gaps to be filled in as far as effects on chemical and physical soil properties, as well as, a more 

detailed understanding of how it may affect plants and other forms of biota.   
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2.4 Objectives 

 

2.4.1 Influence of TiO2 ENPS on photosynthetic efficacy 

Objective 1: Assess the enhancement of CO2 assimilation following foliar application of 

TiO2 ENPs. 

Objective 2: Determine whether the increase in CO2 assimilation influences seed quality 

and quantity. 

 

2.4.2 Influence of TiO2 on the Toxicity of Cadmium and Arsenic 

Objective 3: Assess the growth parameters of broccoli treated with TiO2 ENPs and/or 

As(V) and Cd to determine if the TiO2 ENPs with or without the metal 

contaminants have an adverse effect on overall plant health and growth. 

Objective 4: Determine if TiO2 enhances the accumulation of arsenic and cadmium in 

broccoli. 
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Figure 2.1: Superoxide ion generation rate from isolated chloroplasts from spinach plants treated 

with 2,500 mg L
-1

 TiO2 ENPs when exposed to (A) UV-B radiation (Zheng et al., 2008) and (B) 

500 µmol m
-2

 s
-1

 light intensity (Hong et al., 2005a). 

 

 

A 

B 
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Figure 2.2: Hydrogen peroxide generation rate from isolated chloroplasts from spinach plants 

treated with 2,500 mg L
-1

 TiO2 ENPs when exposed to (A) UV-B radiation (Zheng et al., 2008) 

and (B) 500 µmol m
-2

 s
-1

 light intensity (Hong et al., 2005a). 

 

 

 

 

A 

B 
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Figure 2.3: Malondialdehyde (MDA) content from isolated chloroplasts from spinach plants 

treated with 2,500 mg L
-1

 TiO2 ENPs when exposed to (A) UV-B radiation (Zheng et al., 2008) 

and (B) 500 µmol m
-2

 s
-1

 light intensity (Hong et al., 2005a). 

 

A 

B 
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Figure 2.4: Antioxidant enzyme activity for chloroplasts from spinach plants treated with 2,500 

mg L
-1

 TiO2 ENPs and bulk TiO2 under (A-D) UV-B radiation (Zheng et al. 2008) and (E-G) 500 

µmol m
-2

 s
-1

 light intensity (Hong et al., 2005a). 

A 

B 

C 
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Figure 2.5: Content of LHCII from (A) spinach (Zheng et al. 2007) and (B) A. thaliana (Ze et al. 

2011) treated with 2,500 mg L
-1

 TiO2 ENPs and Bulk TiO2.   

A 

B 
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Figure 2.6: Effects of TiO2 ENPs on the electron transport rate of spinach chloroplasts. (1) 

whole chain electron transport (H2O to MV) rate; (2) photochemical activity of DCPIP 

photoreduction of PSII reducing side (H2O to DCPIP); (3) photochemical activity of DCPIP 

photoreduction of PSII oxidative side (DPC to DCPIP); (4) photochemical activity of DCPIP 

photoreduction of PSI (DCPIP to MV) from Su et al. 2007. 
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Figure 2.7: Effects of 5µM of TiO2 ENPs on electron transport chain from isolated chloroplasts treated with linolenic acid from Su et 

al. 2008. 

A B 

C D 

3
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Figure 2.8: Oxygen evolution rates for spinach plants that were soaked in various TiO2 ENP concentrations as seeds (A Su et al. 

2007; C Hong et al. 2005b) and seeds that were soaked in 2,500 mg L
-1

 TiO2 ENPs and bulk TiO2 which were sprayed with the same 

concentration when the plants had four mature leaves (B Zheng et al. 2007; D Zheng et al. 2008). 

A B 

C 
D 

4
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Table 2.1: Activity of enzymes involved in the nitrogen assimilation pathway for spinach plants that were soaked in 2,500 mg L
-1

 

TiO2 ENPs as seeds and received a single foliar application at the same concentration when the plants had two leaves.  a,b the 

differences of values followed by different letters in the same column are significant at the p=0.05 level (t-test).  Data from Yang et al. 

(2006).  

Culture Time (Day) 20 25 30 35 40 45 

 

 

Glutamate dehydrogenase activity 

(µmol NADH mg
-3

 prot. min) 

 

 

Control 4.45 ±  

0.03a 

3.33 ± 

0.02a 

1.00 ± 

0.01a 

1.37 ± 

0.01a 

1.79 ± 

0.02a 

2.65 ± 

0.02a 

Nano-anatase 

TiO2 

8.00 ±  

0.04b 

4.67 ± 

0.03b 

1.74 ± 

0.01b 

2.16 ± 

0.01b 

3.36 ± 

0.02b 

3.88 ± 

0.03b 

 

 

Glutamate synthase activity 

(µ mg
-1

 prot. min) 

Control 2.83 ±  

0.03a 

1.91 ± 

0.02a 

1.01 ± 

0.01a 

1.48 ± 

0.01a 

1.92 ± 

0.02a 

2.57 ± 

0.03a 

Nano-anatase 

TiO2 

6.19 ±  

0.04b 

2.21 ± 

0.02b 

1.88 ± 

0.01b 

2.11 ± 

0.01b 

2.13 ± 

0.02b 

3.50 ± 

0.03b 

 

 

Glutamate-pyruvic transaminase 

activity 

(µmol NADH mg
-1

 prot. min) 

Control 7.81 ± 

 0.03a 

6.82 ± 

0.03a 

4.06 ± 

0.01a 

4.46 ± 

0.02a 

6.26 ± 

0.03a 

7.66 ± 

0.04a 

Nano-anatase 

TiO2 

14.19 ± 

0.05b 

8.06 ± 

0.04b 

4.13 ± 

0.01b 

6.76 ± 

0.03b 

7.43 ± 

0.03b 

8.63 ± 

0.04b 

 

4
1
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Figure 2.9: Multi-metal batch experiment with four metals (Cd
2+

, Cu
2+

, Ni
2+

, and Pb
2+

) at 100 

mg L
-1

 in combination with 2,000 mg L
-1

 TiO2 ENPs (17 nm) at a pH range from 2-7 (Mahdavi 

et al. 2013). 
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Figure 2.10: Schematic of uptake, translocation, and sequestration of cadmium, arsenate, and 

arsenite (image from Mendoza-Cozatal et al. 2011). 
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CHAPTER 3 

INFLUENCE OF TIO2 ENPS ON PHOTOSYNTHETIC EFFICACY 

 

3.1 Introduction 

 Nanotechnology is developing rapidly into a trillion-dollar industry (Nel et al., 2006).   

Substantial amounts of engineered nanoparticles are expected to be released into the 

environment, both intentionally and unintentionally.  A nanoparticle is described as a material 

with at least two dimensions between 1 and 100nm (American Society for Testing and Materials, 

2006; Scientific Committee on Emerging and Newly Identified Health Risk, 2007).  Of the metal 

oxide nanoparticles, TiO2 ENPs is one of the most widely used and produced. 

 The reason TiO2 is one of the most widely used nanoparticles is due to its UV absorption 

and photoactive properties.  This photoactivity has been shown to make TiO2 a photocatalyst, 

mediating oxidation-reduction reactions on the surface of the ENP (Dodd and Jha, 2011).  The 

properties of TiO2 ENPs have also prompted investigation of potential uses in agricultural 

settings, including use of it as a UV protectant, a defense against harmful bacteria and fungi, or a 

catalyst for the degradation of pesticides and herbicides (Ghormade et al., 2011; Gogos et al., 

2012).  However, TiO2 ENPs have also been proposed for the use of a foliar spray to promote 

plant growth and yield (Choi et al., 2012). 

 In fact, the foliar application of TiO2 ENPs have been shown to increase several aspects 

of the photosynthetic process in spinach (Spinacia oleracea L.), including Rubisco and Rubisco 

activase activity, chlorophyll synthesis, and oxygen evolution (Hong et al., 2005a; Hong et al., 

2005b; Gao et al., 2006; Linglan et al., 2008).  Moreover, Foliar application of TiO2 ENPs on 

spinach resulted in a significant increase in plant fresh weight, dry weight, chlorophyll content, 
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net photosynthetic rate, and carboxylase activity of Rubisco (Linglan et al., 2008; Hong et al., 

2005b; Gao et al., 2006; Gao et al., 2008; Su et al., 2007; Zheng et al., 2007; Zheng et al., 2008).  

However, the majority of these studies was conducted for short periods of time in a controlled 

environment, and in some cases used isolated chloroplasts instead of intact plants. 

 This study aims to focus on how effective TiO2 ENPs may be at promoting 

photosynthesis when applied to Z. mays for the duration of five weeks under natural environment 

settings, as well as to determine if the increased photosynthesis results in an increase in seed 

quantity and/or quality.  

  

3.2 Materials and Methods 

 

3.2.1 Reagents and Plants 

 A dispersion of 5-15 nm anatase TiO2 engineered nanoparticles (ENPs) with a purity of 

99.9% were obtained from US Research Nanomaterials, Inc. (Houston, TX).  Bulk TiO2 was 

obtained from Fisher Scientific (Fair Lawn, NJ).  Corn (Zea mays L. cv. Dekalb A1028584) 

seeds were obtained from Southern Illinois University College of Agriculture at SIUC.  Scotts 

Osmocote 14-14-14 Slow Release Fertilizer was obtained from Hummert International (Earth 

City, MO).  

 

3.2.2 Influence of TiO2 ENPS on photosynthetic efficacy 

 Corn plants were grown over the summer of 2013 outside the Plant Biology Greenhouse 

at Southern Illinois University Carbondale.  Corn seed was planted on June 18, 2013.  Corn was 

grown in 18.9 L closed bottom pots with a drain hole on the side 5.5 cm from bottom of the pot.  



46 

 

Corn plants were grown in 4.95 kg of 3B Farfard potting mix (consisting of Canadian Sphagnum 

peat moss, processed pine bark, perlite, and vermiculite) and amended with a 14-14-14 

Osmocote fertilizer at a rate of 5.25 g fertilizer kg
-1

 substrate, yielding final concentrations of 

0.4305 g NH4
+
 kg

-1
 DW soil, 0.3045 g NO3 kg

-1
 DW soil, 0.735 g P2O5 kg

-1
 DW soil, 0.735 g 

K2O kg
-1

 DW soil.  Three seeds were sown directly into the pots at a depth of 5 cm and were 

thinned to plant per pot one week after emergence.  Plants received water from rainfall, and were 

supplemented as needed with tap water to ensure that the pots remained hydrated.  The plants 

were grown for 45 days after sowing seeds until plants reached the R1 stage, at which time the 

desired treatments were imposed.   

There were two different foliar treatment regimens for this experiment, a repeated 

treatment where a lower treatment concentration of TiO2 was applied weekly for five weeks, and 

a single treatment, where a higher concentration of TiO2 was applied in a single dose.  These two 

treatment strategies were designed so that the final amount of the TiO2 received by each plant 

was the same between pairs of repeated and single treatments.  The repeated treatments consisted 

of two different concentrations of TiO2 500 and 1,000 mg L
-1

, applied weekly over five weeks 

(i.e., total intended application was equivalent to 2,500 and 5,000 mg L
-1

).  The single treatments 

consisted of two treatments equaling the final concentration of the repeated treatments (2,500 

and 5,000 mg L
-1

).  Treatments were applied using a fine mist sprayer; a single layer of the 

treatment was applied to the adaxial surface of each leaf.  Since the treatment applications began 

after the onset of reproduction, there was no generation of new leaves during the treatment 

period.  Corn plants received 50 ml of treatment for each application; with retention of 

approximately a 70% for each application.  For each of the treatment regimen there were two 

forms of TiO2: one being 5-15 nm TiO2 ENPs and the other being bulk TiO2 (greater than 100 
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nm).  There were a total of 4 treatments per form (500 repeated, 1,000 repeated, 2,500 single, 

and 5,000 single) and two forms (ENP and bulk), as well as a control.  Each treatment had five 

replicates, so there was a total of 45 corn plants total.  The position of the pots was completely 

randomized weekly to ensure there were no positional effects.  

Measurements of plant physiological performance were made with a CI-340 portable 

photosynthesis system (CID Bio-Science; Camas, WA) after the initiation of treatment.  The 

physiological parameters measured with the CI-340 were photosynthetically active radiation 

(µmol photon m
-2 

s
-1

), net photosynthesis (µmol CO2 m
-2 

s
-1

), transpiration (mmol H2O m
-2 

s
-1

), 

stomatal conductance (mmol H2O m
-2 

s
-1

), and leaf temperature (ºC).  The CI-340 measurements 

were taken on the V6 leaf twice per week, generally on Mondays and Fridays, between 8:00 

A.M. and 12:00 P.M. using a chamber head with an area of 6.25 cm
2
 and a gas flow rate of 0.3 

liter min
-1

.  The instrument was allowed to warm up for 1 hour prior to taking the measurements.  

A Minolta Spad 502 (Konica Minolta, Inc.; Ramsey, NJ) chlorophyll meter was used to measure 

relative chlorophyll levels.  The relative chlorophyll levels were collected on the V4, V6, and V8 

leaves the values from the three leaves were averaged to obtain the relative chlorophyll for the 

whole plant.  Relative chlorophyll was measured three times throughout the treatment period; 1, 

16, and 25 days after treatment. 

Once the plants reached reproductive maturity, the fruits were removed and allowed to air 

dry in a phytotron under ambient conditions.  The shoot tissues were harvested above the second 

highest set of prop roots for corn.  The vegetative tissues were cut into manageable pieces and 

placed into large paper bags.  The tissues were placed in a dry, storage area in the greenhouse to 

dry under ambient conditions to constant mass.  Once the fruits had dried, the husks and silks of 

the corn were removed and the fruits were removed from the cob. Yield parameters consisting of 
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total seed count, total seed weight, and weight per seed were collected.  Seed quality for corn 

was measured with a Zeltex ZX-50 Grain Analyzer (Zeltex, Inc.; Hagerstown, Maryland) to 

determine the percent oil, protein, and moisture content.  The Zeltex ZX-50 Grain Analyzer was 

calibrated and the grains were analyzed according to the manufacturer’s protocol.   

 

3.2.3 Data Analysis 

Radiation use efficiency (RUE) was derived from data collected with the CI-340 portable 

photosynthesis system.  Using the formula according to Ma et al. (2004): 

𝑅𝑈𝐸 =  
𝑃𝑛

𝑃𝐴𝑅
 × 1,000 

In which Pn represents the Net Photosynthesis and PAR represents the Photosynthetically Active 

Radiation.  The units for RUE are expressed as mmol CO2 mol
-1

 photon. Water Use Efficiency 

(WUE) was also derived from data collected with the CI-340 portable photosynthesis system 

using the formula according to Ma et al. (2004): 

𝑊𝑈𝐸 =
𝑃𝑛

𝐸
 

In which Pn represents the net photosynthesis and E represents evapotranspiration. The units for 

WUE are expressed as mmol CO2 mol
-1

 H2O.  

Data for each treatment were also expressed relative to the corresponding control to 

provide another means of expressing the treatment effects.  The percent differences were 

calculated using the following formula: 

% 𝐶ℎ𝑎𝑛𝑔𝑒 = (
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡

𝑚𝑒𝑎𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡
𝑥 100) − 100  

As there were no paired treatments in this experiment, data had to be expressed relative to the 

mean value of that parameter from control plants.   
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All data were subjected to a two-way analysis of variance (ANOVA) with repeated 

measures with the main effects of concentration and form compared using Tukey’s honestly 

significant difference (HSD) using SPSS ver. 22.  The repeated measure was time.  For the 

parameters that showed a significant interaction term, the data were subjected to a one-way 

ANOVA and the interaction means were compared using the HSD of Tukey test at p<0.05 using 

SAS 9.3 computer software. 

 

3.3 Results  

 

3.3.1 Meteorological Data 

The average daily high temperature for the month of August in 2013 was 29.32 ⁰C and 

the average low temperature was 17.81 ⁰C.  A sharp drop in temperature occurred on August 5, 

in which the highest temperature was 21.67 ⁰C (7.65 ⁰C less than the average).  There was 

another drop in temperature on August 14 in which the temperature was 23.33 ⁰C.  After August 

14, the temperature continuously increased until it plateaued at 34.44 ⁰C.  There was a total of 

7.47 cm of precipitation throughout the month with the majority occurring on August 5, 8, and 

9
th

 (Figure 3.1).   

 

3.3.2 Influence of TiO2 on Photosynthetic Efficacy on Z. mays 

 The analysis of the net photosynthesis data showed that there was a significant interaction 

between the concentration and form of TiO2 (p=0.028).  While the foliar application of TiO2 

ENPs and bulk TiO2 resulted in a substantial increase in net photosynthesis (Table 3.1), the 

subsequent one-way ANOVA of the interaction means revealed only the 5,000 mg L
-1

 TiO2 ENP 
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and bulk TiO2 showed a significant increase on 1 DAT.  The 5,000 mg L
-1

 TiO2 ENP was found 

to be significantly greater than all of the other treatments except for the 500 mg L
-1

 TiO2 ENP 

treatment and the 500, 2,500, and 5,000 mg L
-1

 bulk TiO2 treatments on 1 DAT.  The 5,000 mg 

L
-1

 bulk TiO2 treatment was found to be significantly greater than the control, but was not 

significantly greater than any of the other treatments.  There was no significant difference 

between any of the treatments on any of the days from 4 DAT to 29 DAT, showing that the 

increased net photosynthesis is a rather short lived transient response to the foliar application of 

TiO2 (Figure 3.2). 

 To clarify the trends, the data were expressed as the percent difference relative to the 

control for each treatment and on each day measurements were made (Figure 3.2).  On days 

when there were evident differences in the percent differences, the data were subjected to a one-

way ANOVA for that individual day (Table 3.2).  As mentioned before, there was a sharp 

increase in net photosynthesis on 1 DAT.  On this day, the 5,000 mg L
-1

 TiO2 ENP showed an 

increase in net photosynthesis of 1,275.8% (Figure 3.2).  This increase was found to be 

significantly greater than the 1,000 mg L
-1

 bulk TiO2 as well as the 1,000 and 2,500 mg L
-1

 TiO2 

ENP treatments (p=0.0038; Table 3.2).  However, it was not significantly greater than the 

remaining treatments, nor was there a significant difference found between any of the other 

treatments (Table 3.2).  There were no significant differences found on any of the other days for 

net photosynthesis (Table 3.2). 

In terms of internal leaf temperature, there was no significant difference found from the 

two-way ANOVA (Table 3.3).  Even though there wasn’t a significant difference, there was an 

increase in the leaf temperature compared to the control on 1 DAT.  Yet, on all days after that the 

leaf temperature appears to be similar to or less than that of the control (Figure 3.3).  The internal 
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leaf temperature followed the same trend as the net photosynthesis in terms of percent relative to 

the control on 1 DAT.  On this day, the 5000 mg L
-1

 TiO2 ENP treatment showed the greatest 

increase in leaf temperature (22.1%) (Figure 3.3).  This increase was significantly greater than 

the 1,000 mg L
-1

 bulk TiO2 treatment as well as the 1,000 and 2,500 mg L
-1

 TiO2 ENP treatments 

(p=0.0020), but was not significantly greater than any of the other treatments (Table 3.4).  There 

were also no significant differences between any of the other treatments on 1 DAT (Table 3.4).  

On 4 DAT, the 500 mg L
-1

 TiO2 ENP, 1,000 mg L
-1

 bulk TiO2, and 2,500 mg L
-1

 bulk TiO2 were 

significantly greater than the 2,500 mg L
-1

 TiO2 ENP treatment (p=0.0008), but there was no 

significant differences found between any of the other treatments (Table 3.4).  There were no 

other significant differences found for internal leaf temperature on any other days. 

Stomatal conductance showed a significant difference for concentration (p=0.002), form 

(p<0.0001), and the interaction of concentration and form (p=0.009) for the two-way ANOVA 

with repeated measures.  The one-way ANOVA performed on the interaction means showed that 

there was no significant difference between any of the treatments on 1, 18, and 25 DAT.  There 

was a significant difference on all of the other days measurements were taken (Table 3.5).  On 4 

DAT, the 2,500 and 5,000 TiO2 ENP treatments were significantly greater than all of the other 

treatments except the 5,000 bulk TiO2 treatment (p<0.0001; Figure 3.4).  The 5,000 mg L
-1

 bulk 

TiO2 treatment was less than the 2,500 and 5000 mg L
-1

 TiO2 treatments and greater than the 

1,000 mg L
-1

 TiO2 ENP treatment but not to a significant extent; however, it was significantly 

greater than all of the other treatments (Table 3.5).  On 8 DAT, the 2,500 mg L
-1

 TiO2 ENP was 

significantly greater than the 500 mg L
-1

 TiO2 ENP, 500 and 1,000 bulk TiO2 treatments, and the 

control (p=0.0032); there was no other significant differences found between the rest of the 

treatments on this day (Table 3.5).  On 12 DAT, the 1,000 and 5,000 mg L
-1

 TiO2 ENP 
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treatments were significantly greater than the control and all of the bulk TiO2 treatments 

(p<0.0001).  The 2,500 mg L
-1

 TiO2 ENP treatment was significantly greater than the control and 

all of the bulk treatments except the 5,000 mg L
-1

 bulk TiO2 (p<0.0001).  The 500 mg L
-1

 TiO2 

ENP treatment was significantly greater than the 500 mg L
-1

 bulk TiO2 and the control 

(p<0.0001).  None of the bulk TiO2 treatments were found to be greater than the control on 12 

DAT (Table 3.5).  On 22 DAT, all treatments were significantly greater than the control except 

for the 500 and 2,500 mg L
-1

 bulk TiO2 treatment (p=0.0003).  On this day, the 2,500 mg L
-1

 

bulk TiO2 treatment was found to be significantly less than the 5,000 mg L
-1

 bulk TiO2 treatment, 

but not any of the other treatments (Table 3.5).  On 29 DAT, the 2,500 mg L
-1

 TiO2 ENP 

treatment was significantly greater than the 5,000 mg L
-1

 TiO2 ENP treatment, as well as the 

1,000 and 2,500 mg L
-1

 bulk TiO2 treatments (p=0.0170); there were no other significant 

differences found on this day (Table 3.5).  When expressed as percent relative to the control, all 

of the data showed the exact same results in terms of significant differences for each day (Table 

3.5; Table 3.7).   

The two-way ANOVA with repeated measures showed that the TiO2 ENP treatments had 

significantly higher transpiration rates than the control and the bulk TiO2 (p<0.0001), but there 

was no significant difference in response to concentration (p=0.608).  There was no significant 

interaction between concentration and form (p=0.356).  In terms of expressing the data as percent 

change relative to the control, there was an apparent spike in the transpiration rates for the 500 

and 5,000 mg L
-1

 TiO2 ENP treatments on 1 DAT, but they were not found to be significantly 

greater than the other treatments due to a high variability about the mean (Figure 3.5; Table 3.8).  

However, on 4 DAT the 5,000 mg L
-1

 TiO2 ENP treatment was significantly greater than all of 

the treatments except the 2,500 mg L
-1

 TiO2 ENP and 5,000 mg L
-1

 bulk TiO2 treatments 
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(p<0.0001).  The 2,500 mg L
-1

 bulk TiO2 was significantly less than the 5,000 mg L
-1

 bulk TiO2 

but not the 2,500 mg L
-1

 TiO2 ENP treatment (p<0.0001). The 500 and 1,000 mg L
-1

 bulk TiO2 

treatments were found to be significantly less than all of the treatments except the 500 mg L
-1

 

TiO2 ENP, 1,000 mg L
-1

 TiO2 ENP, and 2,500 mg L
-1

 bulk TiO2 treatments (p<0.0001; Table 

3.8).  On 8 DAT, the 2,500 mg L
-1

 TiO2 ENP treatment was significantly greater than the 500 mg 

L
-1

 TiO2 ENP treatment(p=0.0309), but there was no significant differences between any of the 

other treatments on this day (Table 3.8).  There were no significant differences found between 

any of the treatments for any of the remaining days (Table 3.8).  

In terms of water use efficiency (WUE) the two-way ANOVA with repeated measures, 

there was no significant difference found for concentration (p=0.632), but there was a marginally 

significant difference for the form (p=0.051).  The interaction of concentration and form showed 

a significant difference (p=0.048).  However, the one-way ANOVA showed that there were no 

significant differences on any of the days except for 12 DAT, in which the control displayed a 

significantly greater WUE than the 1,000 and 2,500 mg L
-1

 TiO2 ENP treatments (p=0.0027); 

there were no other significant differences between any of the other treatments for this day 

(Table 3.9). 

When the WUE was expressed as a percent change relative to the control, there were no 

significant differences between any of the treatments for any of the days when measurements 

were recorded (Table 3.10).  Even though there were no significant differences found, there was 

a clear increase in WUE on 1 DAT, in which the 5,000 mg L
-1

 TiO2 ENP and bulk TiO2 

treatments had a 404.2 and 394.5% increase (Figure 3.6).  All of the other treatments showed an 

increase of about 200% except the 2,500 mg L
-1

 TiO2 ENP treatment which only had a 128.2% 

increase.  One notable point is that there was a high variability about the mean on this day 
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(Figure 3.6).  By 4 DAT, the WUE dropped to levels that were similar to, but often less than, the 

control and remained that way for the remainder of the experiment (Figure 3.6).  

There were no significant differences found for the concentration (p=0.397), form 

(p=0.646), or the interaction (p=0.946) for radiation use efficiency (RUE) from the two-way 

ANOVA with repeated measures.  However, a large increase in RUE was observed on 1 DAT, 

but by 4 DAT it dropped back down to levels that were similar to or less than that of the control 

(Figure 3.7).  In terms of expressing the RUE as percent change relative to the control, there 

were no significant differences found on any of the days except for 12 DAT (Table 3.12).  On 12 

DAT, the 2,500 mg L
-1

 bulk TiO2 treatment was significantly greater than the 2,500 mg L
-1

 TiO2 

treatment (p=0.0675).  Even though there was no significant difference between the treatments 

on 1 DAT, there was still a noticeable increase in RUE for the treated plants (Figure 3.7).  The 

500 and 2,500 mg L
-1

 TiO2 ENP treatments as well as the 500 and 5,000 mg L
-1

 bulk TiO2 

treatments all had an increased RUE that was 100% or greater compared to the control (Figure 

3.7); and the other four treatments all showed increased RUE between the range of 25-90% 

(Figure 3.7), but there was a high amount a variability about the mean for most of the treatments. 

There were no significant differences found for any of the parameters that were used to 

measure seed quantity and quality.  A marginally significant difference was observed for the 

seed count and the total yield (p=0.0565; p=0.0503), however this difference was only between 

the 1,000 and 2,500 mg L
-1

 bulk TiO2 treatments. 

 

3.4 Discussion 

 Previous studies have shown that TiO2 ENPs have the capability to increase net 

photosynthetic rates and oxygen evolving rates in intact spinach plants as well as isolated 
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chloroplasts from spinach plants (Linglan et al., 2008; Gao et al., 2008; Zheng et al., 2005; Hong 

et al., 2005; Hong et al., 2005; Zheng et al., 2007; Su et al., 2007; Zheng et al., 2008).  However, 

these experiments were mostly conducted for short periods of time in a controlled environment.  

The aim of this research was to determine how bulk TiO2 and TiO2 ENPs would affect various 

aspects of photosynthesis over a longer period of time in a natural environment. 

 An unexpected result in the data was that the response to the TiO2 was transient for the 

majority of the parameters that were measured rather than a sustained increase in photosynthesis 

as observed in the studies mentioned above.  The foliar application of TiO2 ENPs resulted in a 

large increase in net photosynthesis at 1 DAT.  This increase caused an increase in radiation use 

efficiency (RUE), water use efficiency (WUE), and internal leaf temperature.  The increase in 

leaf temperature most likely led to the increased transpiration rates observed on that day.  

Interestingly, there was not an increase in stomatal conductance on 1 DAT, which might have 

been expected if the stomates had opened wider to allow for increased transpiration.  However 

by 4 DAT, the net photosynthesis, RUE, WUE, and leaf temperature all dropped to levels that 

were equal to or less than that of the control, yet the stomatal conductance increased substantially 

at that time and remained at a higher rate throughout the remainder of the experiment.  This 

resulted in an increased transpiration rate, which would have most likely have been higher if the 

humidity wasn’t so high during this time frame. 

 Under a light intensity of 1,000-2,000 µmol m
-2

 s
-1

, the average net photosynthetic rate of 

corn is generally in the range of 18-30 µmol CO2 m
-2

 s
-1

 (Leakey et al., 2006; Sun et al., 2012).  

Under lower light intensities of 500-1,000 µmol m
-2

 s
-1

 the average net photosynthetic rate of 

corn is generally 10-20 µmol CO2 m
-2

 s
-1

 (Leakey et al., 2006; Sun et al., 2012).  Under light 

intensities less than 500 µmol m
-2

 s
-1

, the net photosynthetic rate is usually less than 10 µmol 
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CO2 m
-2

 s
-1

 (Leakey et al., 2006; Sun et al., 2012).  It appears that under low light conditions, the 

TiO2 ENPs boost the net photosynthesis and RUE in corn, but under high light conditions it 

causes a reduction in net photosynthesis and RUE. 

The findings of this study coincide with that of a study performed with Ulmus elongata, 

in which the tree saplings were sprayed with 0.1%, 0.2%, and 0.4% (1,000 mg L
-1

, 2,000 mg L
-1

, 

and 4,000 mg L
-1

 TiO2 ENPs) at the beginning of the month for two months.  After the second 

month photosynthetic measurements were taken with a Li-6400XT portable photosynthesis 

system using two light intensities (PAR = 800µmol m
-2

 s
-1

 and PAR = 1,600 µmol m
-2

 s
-1

).  

Under the lower light intensity, the net photosynthetic rate was slightly increased for the 0.2% 

TiO2 ENP treatment, but under the high light intensity the net photosynthetic rate was decreased 

for all three treatments and the 0.2% and 0.4% TiO2 ENP treatments dropped to about 1/3 that of 

the control.  Furthermore, under both light conditions, the stomatal conductance rate was 

increased for all three treatments with the 0.2% and 0.4% TiO2 ENPs showing an increase that 

was about three time that of the control.  Similarly, the transpiration rates for both light 

conditions were increased for both light conditions with the 0.2% and 0.4% TiO2 ENP treatments 

showing an increase that was about two times that of the control (Gao et al., 2013).  Since this 

experiment was conducted in natural field conditions where the PAR is generally greater than 

1,000 µmol m
-2

 s
-1

 and the concentrations of TiO2 ENPs were similar, it would make sense for 

the results to coincide with the results reported by Goa et al. (2013) for the treated plants under 

high light intensities. 

 A possibility for the decreased photosynthetic rates could be attributed to the capabilities 

of TiO2 ENPs to physiosorb N2 on its surface.  While pure TiO2 ENPs have been shown to 

absorb UV light, TiO2 ENPs that have been doped with N2 have been observed to shift their 
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absorption spectra to allow them to absorb light in the 450-550 nm range.  Since the atmosphere 

is comprised of about 78% N2 gas, it is easy to speculate that this could easily be adsorbed to the 

surface of the TiO2 ENPs that cover the abaxial side of the leaf in this experiment; and this 

sorption may have resulted in a shift in the absorption spectrum of the TiO2 ENPs; which may 

have led to the decreased photosynthetic rate by screening out the higher light intensities used for 

photosynthesis.  In fact, past research has shown that chlorophyll fluorescence and electron 

transport rates were decreased for Ulmus elongata saplings that were treated with TiO2 ENPs 

suggesting that the TiO2 ENPs may be absorbing PAR, thus reducing the amount of PAR that 

would be available for photosynthesis (Gao et al., 2013). 

 Since the TiO2 treatments were only applied to the adaxial side of the leaves and the 

stomata are located on the abaxial side of the leaf it is unlikely that the TiO2 is having a direct 

effect on stomatal opening.  However, the TiO2 could potentially have an effect on the leaf’s 

ability to diffuse heat via sensible heat loss.  If this is the case, the increased stomatal 

conductance could be explained as a measure to cope with the lack of sensible heat loss.  By 

increasing the stomatal conductance (increasing the stomatal aperture) the plant would diffuse 

excess heat through evaporative cooling (transpiration).  In fact this phenomenon was observed 

in this experiment.  As the stomatal conductance was increased at 4 DAT, the transpiration rates 

increased as well, which appears to have reduced the leaf temperature to levels that were similar 

to, but often times less, than that of the control plants.     

  Another possible explanation of the data could be that the TiO2 is absorbing short 

wavelength light and fluoresce a shorter wave length light.  This would allow for a greater 

amount of photosynthetically active radiation (PAR) at the leaf surface.  The increased PAR 

could explain why there was a sharp increase in net photosynthesis and RUE as well as why it 
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decreased shortly after the exposure to the TiO2.  The decrease that was observed by 4 DAT 

could be a result of photoinhibition caused by an increased bombardment of PAR on PSII.  

However, this would not explain the increased stomatal conductance and transpiration that was 

observed from 4 DAT to the end of the experiment. 

 The increased conductance and transpiration may have resulted from another 

phenomenon that has been observed with TiO2, in which it can catalyze the breakdown of 

organic compounds.  If the TiO2 caused the deterioration of the leaf cuticle, it may have allowed 

for an increase in non-stomatal gas exchange on the adaxial surface of the leaf.  This could have 

made it appear that there was an increased stomatal conductance and transpiration rates, when 

there could have just been a greater gas exchange on the adaxial surface of the leaves. 

 The increase in net photosynthesis did not appear to be substantial enough (nor sustained 

long enough) for it to result in an increase in seed quantity or quality.  However, recent studies 

have shown that the application of a solution containing 25 ppm TiO2 ENPs (15-25 nm) resulted 

in an increased yield in rice and corn plants grown in an agricultural field (Choi et al., 2012).  

Similar results were observed for cowpea (Owolade et al., 2008) and wheat (Jaberzadeh et al., 

2013).  Jaberzadeh et al., (2013) reported that if the TiO2 ENPs exceeded 0.02% (back calculated 

to 200 mg L
-1

) it resulted in decreased growth and production of wheat plants.  This indicates 

that there is likely a species specific concentration for the benefits of TiO2 ENPs in relation to 

photosynthesis and the current experiment may have exceeded the maximum concentration of 

TiO2 ENPs for corn.  While the use of TiO2 ENPs has been proposed for agriculture, the data 

from this research suggests that it is not a feasible means for increasing crop yield in corn, which 

contradicts that of previous research.   
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However, it may be a useful tool for enhancing the degradation of herbicides and 

pesticides because of its photocatalytic properties.  On the other hand, exposure of TiO2 ENPs to 

plant roots has shown some negative effects on growth and development, but this is mostly 

attributed to a reduction in hydraulic conductance caused by the TiO2 ENPs physically blocking 

the root pores (Asli et al. 2009).  Furthermore, TiO2 ENPs have been shown to be harmful to 

both terrestrial and aquatic microorganisms (Ge et al., 2011; Fan et al., 2011; Clement et al., 

2013), thus potentially negating the potential benefits of it.  Since TiO2 ENPs are toxic to 

microorganisms in a non-discriminant manner, the potential for loss of beneficial 

microorganisms is great.  Furthermore, TiO2 ENPs would likely have an extremely long 

resonance time in these systems due to the fact that they are very stable.  This could lead to a 

compounding concentration increase of TiO2 ENPs from both the foliar spray and the crop 

residues as annual inputs for TiO2 ENPs. 
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Figure 3.1: Daily temperature, precipitation, and percent humidity for the time span of the treatment and physiological parameter 

measurements.  The data was extracted from Weather Underground (www.wunderground.com).  The asterisks represent days when 

measurements were taken with the CI-340 portable photosynthesis system. 
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Table 3.1: Net photosynthesis rates (µmol CO2 m
-2

 s
-1

) ± standard error for Z. mays treated weekly for five weeks with 500 and 1,000 

mg L
-1

 TiO2 ENPs and bulk TiO2, and single bolus 2,500 and 5,000 mg L
-1

 TiO2 ENPs and bulk TiO2.  Lettering indicates honestly 

significant difference (HSD) of Tukey test (p<0.05) (n=5). 

Net Photosynthesis 

Days After 

Treatment 

1 4 8 12 18 22 25 29 

Control 

 

1.9±0.6
 c 

9.2±2.9 15.6±2.9 20.9±2.6 21.3±7.0 13.7±4.6 24.4±2.9 24.9±2.5 

500 mg L
-1

 

ENP 

14.1±4.2
 abc 

9.3±4.7 13.8±2.1 16.3±3.4 19.5±3.0 7.7±1.5 21.6±1.8 17.0±3.2 

1,000 mg L
-1

 

ENP 

6.7±2.0
 bc 

5.3±0.6 11.5±1.6 11.7±3.2 18.8±4.5 9.2±1.3 13.5±0.7 18.2±3.8 

2,500 mg L
-1

 

ENP 

6.2±1.4
 bc 

4.5±0.7 16.8±2.0 14.0±1.0 9.9±1.7 12.3±2.8 13.6±1.6 17.1±2.1 

5,000 mg L
-1

 

ENP 

26.1±3.6
 a 

10.3±1.4 14.5±2.4 13.5±1.5 14.6±3.5 11.7±2.2 18.0±2.7 15.3±2.7 

500 mg L
-1

 

Bulk 

11.5±4.0
 abc 

4.5±0.7 14.7±1.0 15.7±2.9 14.9±4.0 7.7±0.5 14.8±2.4 16.0±3.9 

1,000 mg L
-1

 

Bulk 

3.3±1.3
 bc 

5.7±1.0 13.3±2.3 16.3±2.0 23.0±2.5 8.3±0.8 26.6±8.0 15.6±2.9 

2,500 mg L
-1

 

Bulk 

13.8±5.7
 abc 

7.7±0.4 15.3±2.2 14.7±2.6 17.8±3.8 7.3±2.7 16.6±2.6 18.5±1.4 

5,000 mg L
-1

 

Bulk 

19.3±5.5
 ab 

5.9±1.8 16.4±1.0 13.7±1.4 21.1±4.3 5.3±1.6 15.3±3.0 14.0±4.2 
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Figure 3.2: Percent change in net photosynthesis relative to the control across the time frame of the experiment for Z. mays which 

received foliar application treatment of (A) TiO2 ENPs and (B)bulk TiO2 at concentrations of 500, 1000, 2,500 and 5,000 mg L
-1

.  

Bars represent standard error (n=5). 
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Table 3.2: Post hoc multiple comparison results for the percent difference data for net photosynthesis by Z. mays.  Letters indicates 

honestly significant difference (HSD) of Tukey test (n=5). 

Days After Treatment 1 4 8 12 18 22 25 29 

500 mg L
-1

 ENP AB A A A A A A A 

1,000 mg L
-1

 ENP B A A A A A A A 

2,500 mg L
-1

 ENP B A A A A A A A 

5,000 mg L
-1

 ENP A A A A A A A A 

500 mg L
-1

 Bulk AB A A A A A A A 

1,000 mg L
-1

 Bulk B A A A A A A A 

2,500 mg L
-1

 Bulk AB A A A A A A A 

5,000 mg L
-1

 Bulk AB A A A A A A A 

P Value p=0.0038 p=0.2820 p=0.5852 p=0.8762 p=0.2393 p=0.1793 p=0.1565 p=0.9741 
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Table 3.3: Internal leaf temperature (⁰C) ± standard error for Z. mays treated weekly for five weeks with 500 and 1,000 mg L
-1

 TiO2 

ENPs and bulk TiO2, and single bolus 2,500 and 5,000 mg L
-1

 TiO2 ENPs and bulk TiO2.  Lettering indicates honestly significant 

difference (HSD) of Tukey test (p<0.05) (n=5). 

Internal Leaf Temperature 
Days after 

Treatment 

1 4 8 12 18 22 25 29 

Control 

 

28.60±0.05 24.68±0.05 70.18±0.85 31.10±1.02 33.36±2.00 31.82±0.57 35.16±1.08 39.16±0.83 

500 mg L
-1

 

ENP 

31.72±0.70 24.94±0.27 69.18±0.77 30.36±1.74 32.86±1.86 30.48±0.32 35.60±0.90 38.64±1.02 

1,000 mg L
-1

 

ENP 

30.22±0.54 24.24±0.12 70.38±0.88 29.06±1.79 33.42±1.65 31.08±0.33 34.20±0.90 38.36±1.27 

2,500 mg L
-1

 

ENP 

29.68±0.38 23.84±0.07 70.66±0.35 30.84±1.08 30.54±1.57 30.90±0.60 33.62±0.53 38.78±0.41 

5,000 mg L
-1

 

ENP 

34.92±0.77 24.66±0.09 69.94±0.42 27.00±1.32 33.74±1.58 31.36±0.26 35.22±0.74 36.64±1.39 

500 mg L
-1

 

Bulk 

31.92±0.92 24.92±0.26 70.16±0.80 30.28±1.49 33.22±1.45 31.00±0.28 34.52±1.30 39.00±1.01 

1,000 mg L
-1

 

Bulk 

30.64±0.40 24.74±0.24 70.98±0.41 29.10±2.03 31.86±1.57 30.78±0.31 36.18±0.88 37.28±1.34 

2,500 mg L
-1

 

Bulk 

32.64±1.25 25.10±0.22 70.40±0.69 28.58±1.49 31.34±1.60 30.82±0.32 35.24±0.35 38.70±1.27 

5,000 mg L
-1

 

Bulk 

32.08±0.98 24.20±0.20 69.40±1.03 29.54±2.31 34.70±0.98 30.60±0.47 34.76±1.31 38.44±0.99 
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Figure 3.3: Percent change in internal leaf temperature relative to the control across the time frame of the experiment for Z. mays 

which received foliar application treatment of (A) TiO2 ENPs and (B)bulk TiO2 at concentrations of 500, 1000, 2,500 and 5,000 mg L
-

1
.  Bars represent standard error (n=5). 
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Table 3.4: Post hoc multiple comparison results for the percent difference data for internal leaf temperature by Z. mays.  Letters 

indicates honestly significant difference (HSD) of Tukey test (n=5). 

Days After Treatment 1 4 8 12 18 22 25 29 

500 mg L
-1

 ENP AB A A A A A A A 

1,000 mg L
-1

 ENP B AB A A A A A A 

2,500 mg L
-1

 ENP B B A A A A A A 

5,000 mg L
-1

 ENP A AB A A A A A A 

500 mg L
-1

 Bulk AB A A A A A A A 

1,000 mg L
-1

 Bulk B AB A A A A A A 

2,500 mg L
-1

 Bulk AB A A A A A A A 

5,000 mg L
-1

 Bulk AB AB A A A A A A 

P Value p=0.0020 p=0.0008 p=0.6367 p=0.8151 p=0.6092 p=0.7981 p=0.6069 p=0.7985 
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Table 3.5: Stomatal conductance rates (mmol CO2 m
-2

 s
-1

) ± standard error for Z. mays treated weekly for five weeks with 500 and 

1,000 mg L
-1

 TiO2 ENPs and bulk TiO2, and single bolus 2,500 and 5,000 mg L
-1

 TiO2 ENPs and bulk TiO2.  Lettering indicates 

honestly significant difference (HSD) of Tukey test (p<0.05) (n=5). 

 

Stomatal Conductance 
Days after 

Treatment 

1 4 8 12 18 22 25 29 

Control 

 

78.8±7.3 138.2±16.6
 c 

7.4±0.4
 b 

135.2±9.6
 d 

177.4±36.7 159.4±43.1
 c 

180.2±28.4 157.6±50.2
 ab 

500 mg L
-1

 

ENP 

107.2±23.1 172.4±18.9
 c 

6.9±0.5
 b 

372.4±24.5
 abc 

384.0±46.3 403.8±57.7
 ab 

305.0±41.7 302.4±92.4
 ab 

1,000 mg 

L
-1

 ENP 

108.2±32.8 279.4±64.5
 bc 

9.1±0.7
 ab 

460.0±17.0
 a 

329.4±39.9 420.4±42.4
 ab 

316.0±35.0 242.7±80.2
 ab 

2,500 mg 

L
-1

 ENP 

106.4±18.8 556.8±57.7 
a 

11.2±0.5
 

a 
447.8±28.6

 ab 
389.4±62.3 381.8±61.9

 ab 
331.0±30.4 443.4±8.8

 a 

5,000 mg 

L
-1

 ENP 

112.2±18.9 507.4±46.3
 a 

9.9±0.5
 ab 

520.2±34.1
 a 

382.7±99.3 421.6±20.6
 ab 

324.0±60.8 137.0±33.8
 b 

500 mg L
-1

 

Bulk 

59.8±23.1 152.4±21.2
 c 

7.4±0.7
 b 

150.4±12.8
 d 

174.4±47.3 291.8±21.5
 abc 

161.2±45.4 201.6±52.4
 ab 

1,000 mg 

L
-1

 Bulk 

44.4±7.6 164.2±6.4
 c 

6.8±0.8
 b 

265.0±47.4
 cd 

245.8±26.5 385.4±36.3
 ab 

237.8±32.4 127.4±52.6
 b 

2,500 mg 

L
-1

 Bulk 

72.2±9.6 173.6±10.9
 c 

9.2±1.0
 ab 

216.4±32.0
 cd 

230.4±75.2 225.8±46.5
bc 

212.8±42.1 147.0±72.2
 b 

5,000 mg 

L
-1

 Bulk 

75.4±28.6 423.2±95.8
 ab 

9.0±1.4
 ab 

291.2±66.4
 bcd 

311.6±72.8 434.2±48.1
 a 

283.8±48.8 153.0±74.7
 ab 
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Figure 3.4: Percent change in stomatal conductance relative to the control across the time frame of the experiment for Z. mays which 

received foliar application treatment of (A) TiO2 ENPs and (B)bulk TiO2 at concentrations of 500, 1000, 2,500 and 5,000 mg L
-1

.  

Bars represent standard error (n=5).  
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Table 3.6: Post hoc multiple comparison results for the percent difference data for stomatal conductance by Z. mays.  Letters indicates 

honestly significant difference (HSD) of Tukey test (n=5). 

 

Days After Treatment 1 4 8 12 18 22 25 29 

500 mg L
-1

 ENP A C B ABC A AB A AB 

1,000 mg L
-1

 ENP A BC AB A A AB A AB 

2,500 mg L
-1

 ENP A A A AB A AB A A 

5,000 mg L
-1

 ENP A A AB A A AB A B 

500 mg L
-1

 Bulk A C B D A AB A AB 

1,000 mg L
-1

 Bulk A C B CD A AB A B 

2,500 mg L
-1

 Bulk A C AB CD A B A B 

5,000 mg L
-1

 Bulk A AB AB BCD A A A AB 

P Value p=0.2298 p<0.0001 p=0.0060 p<0.0001 p=0.1488 p=0.0231 p=0.0825 p=0.0178 
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Table 3.7: Transpiration rates (mmol H2O m
-2

 s
-1

) ± standard error for Z. mays treated weekly for five weeks with 500 and 1,000 mg 

L
-1

 TiO2 ENPs and bulk TiO2, and single bolus 2,500 and 5,000 mg L
-1

 TiO2 ENPs and bulk TiO2.  Lettering indicates honestly 

significant difference (HSD) of Tukey test (p<0.05) (n=5). 

Transpiration 
Days After 

Treatment 

1 4 8 12 18 22 25 29 

Control 

 

0.88±0.08 0.96±0.14 2.08±0.18 2.36±0.34 2.92±0.85 1.88±0.56 3.10±0.61 4.06±1.27 

500 mg L
-1

 

ENP 

1.90±0.46 1.22±0.17 1.82±0.15 3.84±0.61 3.98±0.70 2.50±0.27 4.28±0.58 5.62±1.62 

1,000 mg L
-1

 

ENP 

1.16±0.20 1.30±0.11 2.62±0.27 3.70±0.73 3.94±0.75 2.70±0.24 3.88±0.50 4.90±1.47 

2,500 mg L
-1

 

ENP 

1.26±0.16 1.72±0.06 3.26±0.16 4.22±0.40 3.16±0.81 2.60±0.45 3.46±0.27 7.52±0.42 

5,000 mg L
-1

 

ENP 

2.46±0.46 2.04±0.17 2.70±0.13 3.34±0.43 3.24±0.87 2.94±0.15 4.14±0.65 3.10±0.78 

500 mg L
-1

 

Bulk 

1.12±0.50 1.02±0.11 2.08±0.26 2.34±0.38 2.68±0.73 2.38±0.20 2.66±0.83 4.70±1.18 

1,000 mg L
-1

 

Bulk 

0.72±0.12 1.10±0.07 1.94±0.28 2.98±0.39 2.92±0.61 2.70±0.13 4.06±0.54 2.96±1.18 

2,500 mg L
-1

 

Bulk 

1.44±0.31 1.20±0.09 2.66±0.41 2.58±0.55 2.60±0.89 2.10±0.25 3.21±0.56 3.66±1.70 

5,000 mg L
-1

 

Bulk 

1.28±0.56 1.86±0.21 2.52±0.49 3.20±0.82 3.70±0.56 2.56±0.15 3.72±0.26 3.56±1.66 
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Figure 3.5: Percent change in transpiration relative to the control across the time frame of the experiment for Z. mays which received 

foliar application treatment of (A) TiO2 ENPs and (B)bulk TiO2 at concentrations of 500, 1000, 2,500 and 5,000 mg L
-1

.  Bars 

represent standard error (n=5).  

 

 

 

 

 

A 

 

B 

7
1

 

 



72 

 

 

Table 3.8: Post hoc multiple comparison results for the percent difference data for transpiration by Z. mays.  Letters indicates honestly 

significant difference (HSD) of Tukey test (n=5). 

Days After Treatment 1 4 8 12 18 22 25 29 

500 mg L
-1

 ENP A CD B A A A A A 

1,000 mg L
-1

 ENP A BCD AB A A A A A 

2,500 mg L
-1

 ENP A ABC A A A A A A 

5,000 mg L
-1

 ENP A A AB A A A A A 

500 mg L
-1

 Bulk A D AB A A A A A 

1,000 mg L
-1

 Bulk A D AB A A A A A 

2,500 mg L
-1

 Bulk A CD AB A A A A A 

5,000 mg L
-1

 Bulk A AB AB A A A A A 

P Value p=0.0915 p<0.0001 p=0.0309 p=0.2878 p=0.8074 p=0.4586 p=0.4722 p=0.2617 
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Table 3.9: Water Use Efficiency (mmol CO2 mol
-1

 H2O) ± standard error for Z. mays treated weekly for five weeks with 500 and 

1,000 mg L
-1

 TiO2 ENPs and bulk TiO2, and single bolus 2,500 and 5,000 mg L
-1

 TiO2 ENPs and bulk TiO2.  Lettering indicates 

honestly significant difference (HSD) of Tukey test (p<0.05) (n=5). 

Water Use Efficiency 
Days after 

Treatment 

1 4 8 12 18 22 25 29 

Control 

 

2.4±0.8 13.0±6.0 7.3±0.9 9.1±0.8
a 

6.8±1.3 5.8±1.0 8.4±0.7 5.8±0.9 

500 mg L
-1

 

ENP 

7.1±0.9 10.9±7.2 7.4±0.8 4.3±0.7
ab 

5.0±0.5 3.1±0.6 5.3±0.6 9.3±6.8 

1,000 mg L
-1

 

ENP 

6.9±2.5 4.2±0.7 4.3±0.3 3.3±0.8
b 

5.4±1.6 3.7±0.8 3.8±0.6 3.8±0.7 

2,500 mg L
-1

 

ENP 

5.4±1.5 2.7±0.5 5.1±0.4 3.4±0.2
b 

3.4±0.6 5.2±1.4 4.0±0.5 2.4±0.4 

5,000 mg L
-1

 

ENP 

11.9±2.1 5.0±0.4 5.5±1.0 4.1±0.2a
b 

17.2±13.7 3.9±0.6 4.5±0.7 6.7±2.7 

500 mg L
-1

 

Bulk 

9.3±2.0 4.7±0.8 7.3±0.5 6.7±0.9
ab 

4.5±1.4 3.4±0.4 9.6±4.5 4.1±1.1 

1,000 mg L
-1

 

Bulk 

6.9±3.9 5.2±0.9 7.7±2.2 5.5±0.3
ab 

8.9±1.3 3.1±0.2 7.6±3.2 5.1±1.3 

2,500 mg L
-1

 

Bulk 

8.3±2.0 6.4±0.2 5.9±0.6 6.7±1.7
ab 

16.4±10.6 3.7±1.5 5.4±0.6 19.3±10.2 

5,000 mg L
-1

 

Bulk 

14.5±5.2 3.6±1.3 7.8±1.7 5.2±0.9
ab 

7.1±2.5 2.1±0.6 4.0±0.6 8.7±3.1 
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Figure 3.6: Percent change in water use efficiency relative to the control across the time frame of the experiment for Z. mays which 

received foliar application treatment of (A) TiO2 ENPs and (B)bulk TiO2 at concentrations of 500, 1000, 2,500 and 5,000 mg L
-1

.  

Bars represent standard error (n=5).  
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Table 3.10: Post hoc multiple comparison results for the percent difference data for water use efficiency by Z. mays.  Letters indicates 

honestly significant difference (HSD) of Tukey test (n=5). 

Days After Treatment 1 4 8 12 18 22 25 29 

500 mg L
-1

 ENP A A A A A A A A 

1,000 mg L
-1

 ENP A A A A A A A A 

2,500 mg L
-1

 ENP A A A A A A A A 

5,000 mg L
-1

 ENP A A A A A A A A 

500 mg L
-1

 Bulk A A A A A A A A 

1,000 mg L
-1

 Bulk A A A A A A A A 

2,500 mg L
-1

 Bulk A A A A A A A A 

5,000 mg L
-1

 Bulk A A A A A A A A 

P Value p=0.7231 p=0.5163 p=0.2608 p=0.0359 p=0.6158 p=0.4659 p=0.4100 p=0.2270 
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Table 3.11: Radiation Use Efficiency (mmol CO2 mol
-1

 photon) ± standard error for Z. mays treated weekly for five weeks with 500 

and 1,000 mg L
-1

 TiO2 ENPs and bulk TiO2, and single bolus 2,500 and 5,000 mg L
-1

 TiO2 ENPs and bulk TiO2.  Lettering indicates 

honestly significant difference (HSD) of Tukey test (p<0.05) (n=5). 

Radiation Use Efficiency 
Days after 

Treatment 

1 4 8 12 18 22 25 29 

Control 

 

22.3±5.3 85.8±35.5 61.9±3.4 40.6±5.1 30.6±4.8 33.5±8.0 39.4±3.2 37.7±3.0 

500 mg L
-1

 

ENP 

48.3±4.8 65.8±22.8 58.7±4.9 26.8±3.5 28.0±6.0 31.8±8.3 30.6±4.7 35.9±4.5 

1,000 mg L
-1

 

ENP 

42.6±6.3 62.5±9.8 50.2±3.2 35.0±4.4 27.4±8.0 27.3±4.4 31.7±4.7 21.8±3.1 

2,500 mg L
-1

 

ENP 

52.4±14.0 50.2±4.7 54.5±3.3 25.3±3.6 22.3±1.5 25.6±5.6 25.4±4.4 26.4±3.4 

5,000 mg L
-1

 

ENP 

38.4±7.3 55.4±3.5 50.3±2.5 31.2±5.3 29.3±2.0 29.4±7.1 27.1±3.0 21.7±2.7 

500 mg L
-1

 

Bulk 

44.6±5.9 44.2±5.1 74.3±15.9 29.5±3.0 30.4±6.2 36.0±5.6 34.3±1.4 26.3±1.9 

1,000 mg L
-1

 

Bulk 

27.7±10.1 58.9±8.3 48.9±7.6 31.4±5.3 31.3±2.3 40.5±5.7 29.8±1.7 38.3±12.5 

2,500 mg L
-1

 

Bulk 

34.2±4.5 56.5±5.1 52.1±2.6 30.1±4.8 44.6±2.1 29.1±2.4 22.4±2.3 29.5±4.3 

5,000 mg L
-1

 

Bulk 

56.5±20.1 41.5±7.3 65.2±4.6 29.5±2.6 23.5±4.4 24.2±3.1 24.8±4.5 23.8±2.9 
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Figure 3.7: Percent change in radiation use efficiency relative to the control across the time frame of the experiment for Z. mays 

which received foliar application treatment of (A) TiO2 ENPs and (B)bulk TiO2 at concentrations of 500, 1000, 2,500 and 5,000 mg L
-

1
.  Bars represent standard error (n=5).  
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Table 3.12: Post hoc multiple comparison results for the percent difference data for radiation use efficiency by Z. mays.  Letters 

indicates honestly significant difference (HSD) of Tukey test (n=5). 

Days After Treatment 1 4 8 12 18 22 25 29 

500 mg L
-1

 ENP A A A AB A A A A 

1,000 mg L
-1

 ENP A A A AB A A A A 

2,500 mg L
-1

 ENP A A A B A A A A 

5,000 mg L
-1

 ENP A A A AB A A A A 

500 mg L
-1

 Bulk A A A AB A A A A 

1,000 mg L
-1

 Bulk A A A AB A A A A 

2,500 mg L
-1

 Bulk A A A A A A A A 

5,000 mg L
-1

 Bulk A A A AB A A A A 

P Value p=0.5705 p=0.6678 p=0.1605 p=0.0675 p=0.4725 p=0.3183 p=0.2753 p=0.9548 
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Table 3.13: Seed yield data for Z. mays treated weekly for five weeks with 500 and 1,000 mg L
-1

 TiO2 ENPs and bulk TiO2, and 

single bolus 2,500 and 5,000 mg L
-1

 TiO2 ENPs and bulk TiO2.   

 Seed Count Total Yield (g) % Protein % Water % Oil 

Control 706.50±27.88 253.50±7.69 12.20±0.54 9.40±0.33 5.68±0.06 

500 mg L
-1

 ENP 657.25±23.57 232.65±10.60 12.05±0.64 8.90±0.27 5.53±0.22 

1,000 mg L
-1

 ENP 661.50±13.73 235.85±4.35 13.40±0.48 8.85±0.13 5.90±0.08 

2,500 mg L
-1

 ENP 661.00±10.00 236.25±3.25 10.70±1.70 9.65±0.15 6.15±1.15 

5,000 mg L
-1

 ENP 711.75±36.52 234.70±8.02 12.93±0.31 8.88±0.21 6.03±0.30 

500 mg L
-1

 Bulk 662.20±33.71 243.42±7.67 11.72±0.62 8.88±0.18 5.66±0.13 

1,000 mg L
-1

 Bulk 738.00±18.91 254.42±3.56 12.32±0.87 8.86±0.26 5.76±0.20 

2,500 mg L
-1

 Bulk 594.25±17.90 218.28±6.58 12.53±0.42 9.40±0.37 5.80±0.25 

5,000 mg L
-1

 Bulk 663.80±35.31 234.44±8.53 10.80±1.06 9.42±0.18 5.34±0.18 

P value p=0.0565 p=0.0503 p=0.3020 p=0.2261 p=0.5304 
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CHAPTER 4 

INFLUENCE OF TIO2 ON THE TOXICITY OF CADMIUM AND ARSENIC 

 

4.1 Introduction 

Cadmium and arsenic are two of the top ten most hazardous substances on the priority list 

of the Agency for Toxic Substances and Disease Registry.  The list is based on three criteria: 

frequency of occurrence, toxicity, and potential for human exposure (Francesconi et al., 2002).   

Sources for Cd and As contamination include atmospheric deposition resulting from mining, 

smelting, and fuel combustion, phosphate fertilizers, and sewage sludge (Clemens, 2006).  Both 

of these contaminants can readily be taken up by plants because they are chemical analogues of 

essential nutrients for plant growth and development (Clemens, 2006).  Once inside the plants 

they can be translocated to the leaves and fruits, thus entering the food chain (Clemens, 2006).  

Arsenic toxicity can occur as hypo- and hyper-pigmentation, keratosis, and cancer of lungs, skin, 

and urinary bladder (Srivastava et al., 2012).   

The production of nanomaterials is quickly growing into a trillion dollar industry, in 

which there are already over 140 companies currently manufacturing engineered nanoparticles 

(ENPs) (Sun et al., 2009).  At this rate of production, there is a great potential for engineered 

nanomaterials to be released into the environment, both intentionally and unintentionally.  TiO2 

engineered nanoparticles (ENPs) are one of the most widely produced nanoparticles with a broad 

range of applications in paints, inks, sunscreens, cosmetics, astronautics, and air/water 

purification.   

It is because of their vast range of applications that concerns have been raised about the 

introduction of TiO2 ENPs into the environment.  The release of TiO2 ENPs into domestic and 
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industrial wastewaters is expected to represent the largest release of these nanoparticles.  There 

has been data showing that up to 99% of TiO2 ENPs that enter wastewater treatment plants are 

retained in the sludge (Tourinho et al., 2012).  In addition, TiO2 ENPs are being used at some 

water treatment plants because of their strong adsorption strength for hazardous materials, such 

as cadmium, arsenic, and copper (Zhang et al., 2007; Sun et al., 2007; Fan et al., 2011) and also 

the photocatalytic breakdown of harmful organic compounds. Since sewage sludge from 

wastewater treatment plants is applied to agricultural lands as a soil conditioner and fertilizer, 

this has resulted in the introduction of an estimated 120 g kg
-3

 per year of TiO2 ENPs (Tourinho 

et al., 2012). 

The simultaneous introduction of heavy metals and TiO2 ENPs to agricultural fields via 

sewage sludge begs the question of how the interaction of the two contaminants may alter the 

bioavailability and uptake of the heavy metal contaminants.  TiO2 has been shown to enhance the 

exposure of cadmium and arsenate in carp (Cyprinus carpio) (Zhang et al. 2007; Sun et al. 

2007).  The accumulation of cadmium was increased more in the gills and viscera of the carp 

than it was the skin and muscle tissue (Zhang et al. 2007).  This same trend was observed for 

carp upon exposure to TiO2 exposure to arsenate (Sun et al. 2007).   

Furthermore, it has been observed that when Daphnia magna were exposed to TiO2 ENPs 

prior to treatment with Cd there was a significantly greater accumulation of Cd in the organism 

(Tan and Wang, 2014).  This data suggests that the TiO2 ENPs provide an increased binding 

surface for the Cd in the gut of D. magna.  Yet when the daphnids were fed algae after the 

combination of exposures, the accumulated Cd concentration returned to a level similar to that of 

D. magna that were exposed to Cd alone.  This indicated that the consumption of algae allowed 

the daphnids to purge their guts of TiO2 ENPs as well as bolstered the hypothesis that the TiO2 
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ENPs acted as a binding site for Cd ions which resulted in the increased accumulation (Tan and 

Wang, 2014).  Similarly, TiO2 ENPs were shown to increase copper accumulation in Daphnia, 

but resulted in a decreased mortality rate (Fan et al. 2011).  This was most likely due to the fact 

that the copper entering into the Daphnia weren’t entering as free ions, but rather adsorbed to the 

TiO2 ENPs.  However, in the absence of copper, there has been evidence that TiO2 ENPs do 

yield toxic effects to D. Magna.  In fact, it is a rather acute toxicity, showing an LC50 (Lethal 

Concentration to 50% of the population) at 1 mg L
-1

 for 15 nm TiO2 ENPs (Clement et al., 

2013).  As with most organisms, the toxicity of the ENPs decreases with increasing size. 

Previous studies performed with carbonaceous nanomaterials and persistent pesticides have 

shown mixed results (Torre-Roche et al., 2012; Torre-Roche et al., 2013; Kelsey and White, 

2013).  It was demonstrated that multi-walled carbon nanotubes (MWCN) reduced the uptake of 

weathered chlorodane and DDx in a dose dependent manner for zucchini, corn, tomato, and 

soybean.  On the other hand, C60 fullerenes only reduced the bioaccumulation of the pesticides 

for corn and zucchini, but had little to no effect on the accumulation for tomato and soybean 

(Torre-Roche et al., 2013).  However, it was shown that the combination of C60 fullerenes and 

DDE (a persistent metabolite of DDT) resulted in a significantly greater bioaccumulation than 

exposure to DDE alone for tomato, soybean, and zucchini plants (Torre-Roche et al., 2012).  Yet 

a parallel experiment showed that the C60 fullerenes had no significant effect on the 

accumulation of DDE in zucchini (Kelsey and White, 2013).  These experiments used similar 

concentrations of both substances, but the study done by Torre-Rouche et al. (2012) used 

vermiculite as a growth media and Kelsey and White (2013) used a Cheshire fine sandy loam 

soil.  
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These results have led to speculation by researchers that TiO2 ENPs retained the majority 

metal ions adsorbed on the surface of the nanoparticle.  This information gives rise to two 

alternative hypotheses on how TiO2 ENPs may affect the fate of heavy metal contaminants in a 

single substrate growth media.  The first is that the TiO2 ENPs may sequester the heavy metals in 

the soil thus decreasing the amount of the heavy metals that can be taken up by the plant.  The 

alternative is that the TiO2 ENPs could act as a carrier of the metals i.e. if the plant is able to take 

up the intact TiO2 ENP doped with heavy metals, it could potentially increase the amount of the 

metals that enter the plants. 

To date, there has been very little research done for ENP and contaminant interactions in 

a terrestrial environment, and even less done with respect to plants, especially agricultural plants.  

The majority of ENP and contaminant interactions are focused on aquatic and/or 

microorganisms.  The main objective of this study was to determine which of these scenarios is 

true for broccoli plants that were grown in cadmium and arsenate contaminated growth media.   

 

4.2 Materials and Methods 

 

4.2.1 Reagents and Plants 

  A dispersion of 5-15 nm anatase TiO2 engineered nanoparticles (ENPs) with a purity of 

99.9% were obtained from US Research Nanomaterials, Inc. (Houston, TX).  Cadmium nitrate 

(CdNO3) and arsenic acid (NaH3AsO4) were obtained from Fisher Scientific (Fair Lawn, NJ).  

Brassica oleracea var. botrytis L. cv. Waltham 29 was obtained from NK Lawn and Garden.  
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4.2.2 Experimental Design 

Field capacity was determined by adding known volumes of DI H2O to a known volume 

of vermiculite until it reached saturation.  The volume of water for field capacity was then back 

calculated to determine that 40 mL of H2O was approximately 85-90% field capacity.  Thus, the 

experimental pots were prepared by adding 40 mL of TiO2 ENPs suspensions and then stirring in 

12 g of autoclaved vermiculite.  The pots were then placed in a Percival E-36L growth chamber 

(Perry, IA) under 16 hr light regime with a light intensity of 300 µmol photon m
-2 

s
-1

 at 60-70% 

relative humidity and hydration levels were maintained for four days to allow the TiO2 ENPs and 

vermiculite to come to equilibrium.  Broccoli seeds were imbibed on filter paper for 48 hr and 

then transferred to the experimental pots, which remained in a growth chamber for 47 days.  

After 47 days, the pots were transferred to the SIUC Plant Biology phytotron in order to obtain a 

more natural light setting; the pots remained in the phytotron throughout the remainder of the 

experiment.  The initial mass of the pots after planting was determined to be 55.8 g (40 g of H2O, 

12 g of vermiculite, and 3.8 g for the pot).  The pot mass was recorded daily to determine water 

loss (as an estimate of evapotranspiration), and demonized water was added to return the pot 

mass to the initial value.  The mass data was used to determine cumulative transportation over 

the course of the experiment.  The plants received 5 mL of nutrient solution once per week.  The 

nutrient solution consisted of 1.2 mM KNO3, 0.8 mM Ca(NO3)2, 0.1 mM NH4H2PO4, 0.2 mM 

MgSO4, 50 µM KCl, 12.5 µM H3BO3, 1.0 µM MnSO4, 1.0 µM ZnSO4, 0.5 µM CuSO4, 0.1 µM 

H2MoO4, 0.1 µM NiSO4, 12.5 µM Fe(III)-EDDHA.  The nutrient solution was buffered with 1 

mM n-morpholinoethanesulfonic acid (MES) and pH was adjusted to 6.0 with KOH.  Once the 

plants developed their first fully expanded true leaf (35 days after sowing seeds), Cd or As(V) 

treatments were applied.  The treatments were applied in two 5 mL aliquots (7 days apart) each 
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adding half the amount needed to achieve final treatment concentrations of cadmium (0, 2, and 

20 mg kg
-1

) or arsenate (0, 20, and 200 mg kg
-1

).    The array of treatments (Table 4.1) had five 

replicates each (total 45 plants).  The position of the pots was completely randomized in the 

growth chamber daily. 

Weekly measurements of plant height and leaf number were taken to determine relative 

growth rate throughout the entire experiment.  Broccoli plants were harvested 70 days after 

sowing seeds (35 days after the initiation of the As or Cd treatment).  Relative chlorophyll was 

measured with a Minolta Spad 502 (Konica Minolta, Inc.; Ramsey, NJ) at harvest.  

Measurements were made on three randomly selected leaves and then averaged to create a single 

value for each replicate.  The harvested plants were separated into roots and shoots.  The tissue 

samples were then dried at 56⁰C to constant mass and the total dry biomass of each tissue was 

determined. 

 Both tissue types were then ground and subjected to acid digestion by the US EPA 3050b 

(USEPA, 1996) method in which 67-70% trace metal grade nitric acid was added to the sample 

and heated on a heat block cycling between 94 and 45 ⁰C.  Once this phase of the digest was 

completed, 30% hydrogen peroxide was added and the samples were heated in the same manner 

again.  The samples were then sent to the Connecticut Agricultural Experiment Station (New 

Haven, CT) for analysis of arsenic and cadmium concentrations inductively coupled plasma 

mass spectroscopy (ICP-MS, Agilent 7500ce, Santa Clara, CA). 

 

4.2.3 Data Analysis 

The chlorophyll data was expressed as the percent of control and obtained by dividing the 

value for treated plants by the value obtained for control plants.  Relative growth rate was 
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determined by counting the number of fully expanded leaves once a week.  The data was then 

entered into the following equation from Evans (1972): 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 =  
ln(𝑊2) − ln (𝑊1)

𝑡2 − 𝑡1
 

All data except cumulative transpiration and RGR were subjected to a two-way analysis 

of variance (ANOVA) with the main effects of TiO2 concentration and concentration of the 

metal [As(V) or Cd].  Means were compared using the honestly significant difference (HSD) of 

Tukey test at p<0.05 using SAS 9.3 computer software.  For the parameters that showed a 

significant interaction term, the data were subjected to a one-way ANOVA and interaction means 

were compared using the HSD of Tukey test at p<0.05 using SAS 9.3 computer software.  

Cumulative transpiration and RGR data were subjected to a two-way ANOVA with repeated 

measures (time).  Means were compared using the honestly significant difference (HSD) of 

Tukey test at p<0.05 using SPSS ver. 22. 

 

4.3 Results 

 

4.3.1 Influence of the TiO2 ENPs and Cd treatments 

The results from the two-way ANOVA indicated that there was no significant difference 

in shoot dry weight, root dry weight; root to shoot ratio, final plant height, or relative chlorophyll 

(Table 4.2).  Furthermore, the two-way ANOVA with repeated measures showed that there were 

no significant differences found for cumulative transpiration (Figure 4.1), height RGR (Figure 

4.2), and leaf RGR (Figure 4.3), showing that the Cd and TiO2 ENP treatments did not have any 

effect on these growth and development parameters of the plants.   



87 

 

There was a significant difference between the Cd concentrations in the shoots, with the 

200 mg kg
-1

 treatment being significantly greater than the 20 and 0 mg kg
-1

 treatments, and the 

20 mg kg 
-1

 treatment was significantly greater than the 0 mg kg 
-1

 treatment (Figure 4.4).  

Broccoli plants treated with 2 and 20 mg kg
-1

 cadmium accumulated 29.96 and 79.13 mg kg
-1

 dry 

weight cadmium in the shoots respectively.  The two-way ANOVA for Cd concentration in the 

shoots revealed that there was no significant differences in response to TiO2 concentration nor 

was there a significant interaction term.  While there were no significant differences found for 

the interaction, the application of 333 and 3,333 mg kg
-1

 TiO2 ENPs resulted in a 58.59 and 

40.29% decrease of cadmium accumulation in the shoots for plants treated with 2 mg kg
-1

, 

respectively.  However, plants treated with 20 mg kg
-1

 resulted in a 0.07% increase when treated 

with 333 mg kg
-1

 TiO2 ENPs and a 6.50% decrease in the shoots when treated with 3,333 mg kg
-

1
 TiO2 ENPs.   

The two-way ANOVA for Cd concentration in broccoli roots showed that there was  

significant variation with respect to the interaction of TiO2 ENPs and Cd (p=0.0024).  The roots 

of broccoli plants treated with 2 and 20 mg kg
-1

 cadmium accumulated 154.52 and 571.41 mg kg
-

1
 DW (Figure 4.5).  Plants that received TiO2 ENP treatments of 333 and 3,333 mg kg

-1
 resulted 

in a decrease of 24.69% and a significant  decrease of 60.05% (p <0.001) cadmium 

accumulation, respectively, for plants treated with 2 mg kg
-1

 cadmium.  Whereas plants that 

received the same TiO2 ENP treatments with a 20 mg kg
-1

 cadmium treatment only showed a 

3.29 and 29.23% decrease.  It should be noted Cd concentrations reported for the roots includes all 

contaminants associated with the roots, without distinction between Cd adsorption and absorption. 
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4.3.2 Influence of the TiO2 ENPs and As(V)  

 The two-way ANOVA showed that there was a significant difference for the TiO2 ENP 

concentrations with respect to root and shoot dry biomass (p=0.0040; p=0.0042) (Table 4.3).  For 

both tissue types, the 3,333 mg kg
-1

 TiO2 ENP treatment had a significantly greater biomass than 

the 0 mg kg
-1

 TiO2 ENP treatment, but the 333 mg kg
-1

 TiO2 ENP treatment was not significantly 

different from the 3,333 mg kg
-1

 TiO2 ENP treatment or the 0 mg kg
-1

 TiO2 ENP treatment.  The 

As(V) concentration also had a significant effect on root and shoot dry biomass (p<0.0001; 

p<0.0001).  For both tissue types, the 0 and 20 mg kg
-1

 As(V) treatments were significantly 

greater than the 200 mg kg
-1

 As(V) treatment, but there was no significant difference between the 

0 and 20 mg kg
-1

 As(V) treatment.  There was not a significant interaction between TiO2 and 

As(V) concentration.  There were also no significant differences found for any of the main 

effects or an interaction in relation to the root:shoot ratio or relative chlorophyll (Table 4.3).  

However, there was a significant difference found for both the TiO2 ENP and As(V) 

concentrations in relation to final plant height (p=0.0009; p=0.0010) (Table 4.3).  The plant 

height followed the same pattern as the dry biomass, in which the 3,333 mg kg
-1

 TiO2 treatment 

was significantly greater than the 0 mg kg
-1

 TiO2 ENP treatment, but the 333 mg kg
-1

 TiO2 ENP 

treatment was not significantly different than the 0 or 3,333 mg kg
-1

 TiO2 ENP treatments.  Also, 

the 0 and 20 mg kg
-1

 As(V) treatments were significantly greater than the 200 mg kg
-1

 As(V) 

treatment, but there was no significant difference between the 0 and 200 mg kg
-1

 As(V) 

treatments. 

 The two-way ANOVA with repeated measures revealed that there was a significant 

difference for TiO2 concentrations (p=0.005) and As(V) concentrations (p=0.016), but the 

interaction term was not significant in relation to cumulative transpiration (Figure 4.6).  Plants 
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which receive the 333 and 3,333 mg kg
-1

 TiO2 ENP treatment had a significantly greater 

cumulative transpiration than plants that received 0 mg kg
-1

 TiO2 ENPs.  In relation to As(V) 

concentrations, the 0 mg kg
-1

 treatment had a significantly greater cumulative transpiration than 

the 200 mg kg
-1

 treatment; the 20 mg kg
-1

 treatment was not significantly different than either of 

the other treatments.  For the height RGR there was a significant difference for As(V) 

concentrations, but there was no significant differences found for the TiO2 concentrations or the 

interaction term (Figure 4.7).  All three As(V) treatments showed a significant difference from 

one another, with the 0 mg kg
-1

 treatment having the greatest height RGR, followed by the 20 mg 

kg
-1

 treatment, and the 200 mg kg
-1

 had the lowest height RGR.  There were no significant 

differences found in relation to leaf RGR (Figure 4.8). 

 The two-way ANOVA revealed that there was significant differences with respect to the 

interaction of TiO2 ENPs and As(V) concentrations (p=0.0105) in relation to the As 

concentration found in the shoots.  However, the only a significant difference found for the 

As(V) concentration found in the roots was for the As concentration (p=0.0075), in which the 

200 mg kg
-1

 As(V) was significantly greater than the 0 and 20 mg kg
-1

 As(V) treatments; there 

was no significant difference between the 0 and 20 mg kg
-1

 As(V) treatments.  Broccoli plants 

treated with 20 and 200 mg kg
-1

 As(V) accumulated 44.04 and 50.23 mg kg
-1

 dry weight of 

As(V) in their shoots, respectively (Figure 4.9).  The addition of 333 and 3,333 mg kg
-1

 TiO2 

ENPs resulted in a 20.74 and 63.66% decrease in As(V) accumulated in plants treated with 20 

mg kg
-1

 As(V).  The one-way ANOVA showed that the 20 mg kg
-1

 As(V) treated plants which 

received 3,333 mg kg
-1

 TiO2 ENPs had a significant reduction in As accumulation in the shoots 

(p<0.0001) compared to those which received 0 mg kg
-1

 TiO2 ENPs, yet the ones that received 

333 mg kg
-1

 TiO2 ENPs were not significantly different than those which received 0 or 3,333 mg 
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kg
-1

 TiO2 ENPs (Figure 4.9).  Interestingly, for plants treated with 200 mg kg
-1

 As(V) the 

addition of 333 and 3,333 mg kg
-1

 TiO2 ENPs resulted in an increase of 59.19 and 18.54% As(V) 

accumulation in the shoots, and the addition of 333 mg kg
-1

 TiO2 ENPs was found to be 

significantly greater than the plants that received 0 mg kg
-1

 TiO2 ENPs (Figure 4.9). 

 The two-way ANOVA for As concentration in the roots showed that there was a 

significant difference for the interaction of TiO2 ENP and As(V) concentration (p=0.0069).  For 

plants treated with 20 mg kg
-1

 As(V), the one-way ANOVA revealed that the plants which 

received 0 mg kg
-1

 TiO2 ENPs had a significantly greater concentration of As than plants that 

received 3,333 mg kg
-1

 TiO2 ENPs (p<0.0001); plants that received 333 mg kg
-1

 TiO2 ENPs did 

not have an As concentration than the other two treatments (Figure 4.10).  For broccoli plants 

which were treated with 200 mg kg
-1

 As(V), the one-way ANOVA showed that there was no 

significant differences in As concentration between the 0 and 333 mg kg
-1

 TiO2 treatments, but 

both treatments were found to have a significantly greater As concentration than plants which 

received 3,333 mg kg
-1

 TiO2 ENPs (p<0.0001; Figure 4.10).  The roots of broccoli plants treated 

with 20 and 200 mg kg
-1

 As(V) accumulated 2,881.27 and 7,547.32 mg kg
-1

 dry weight of As, 

respectively (Figure 4.10).  The addition of 333 and 3,333 mg kg
-1

 TiO2 ENPs resulted in a 

decrease of 33.80 and 82.80% in As accumulation for plants treated with 20 mg kg
-1

 As(V).  For 

plants treated with 200 mg kg
-1

 As(V), the addition of 333 mg kg
-1

 showed an increase in As 

accumulation of 10.06%, but the addition of 3,333 mg kg
-1

 brought about a decrease in As 

accumulation of 32.78% (Figure 4.10).    It should be noted As concentrations reported for the 

roots includes all contaminants associated with the roots, without distinction between the adsorption and 

absorption of As. 
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4.4 Discussion 

The emphasis on nanomaterial-contaminant interactions is a new focus for nanotoxicology.  

Recent studies performed with carp have shown that the accumulation of As and Cd was 

significantly increased with the addition of TiO2 ENPs compared to expose of As or Cd alone 

(Sun et al., 2007; Zhang et al., 2007).  For both studies, the greatest increase in As or Cd 

concentration was found in the gills and viscera of the fish.  Similarly, TiO2 ENPs have been 

shown to increase the concentration of Cd and Cu in D. magna (Tan and Wang, 2014; Fan et al. 

2011).  These studies indicated TiO2 ENPs have the capacity to directly adsorb the contaminants 

and act as a carrier, thus increasing the total amount of the contaminants that enter the organism.  

However, the increase in Cu in the daphnids didn’t result in an increased mortality rate (Fan et 

al. 2011), and once the daphnids purged their guts by consuming algae, the Cd concentration was 

similar to the daphnids that were exposed to Cd treatment with no TiO2 ENPs (Tan and Wang 

2014).  These experiments involving D. magna suggest that if the heavy metal contaminants is 

adsorbed to the surface of the TiO2 ENPs, preventing it from being biologically available (Tan 

and Wang, 2014; Fan et al. 2011).  Regardless of the bioavailability, all of the experiments 

conducted with aquatic organisms resulted in an increased contaminant concentration within the 

organism being exposed to TiO2 ENPs and the contaminants. 

The results from this study were found to unexpectedly contradict those of the previous 

studies mentioned for TiO2 ENP and contaminant interactions, in which the addition of TiO2 

ENPs seemed to reduce the uptake of Cd and As by broccoli instead of increasing it.  There are 

several differences between this study and previous contaminant and ENP interaction studies that 

may have influenced the results.  First, plant cells are structurally different than animal cells in 

that plant cells possess a cell wall which may prevent the movement of TiO2 ENPs into the 
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interior of the cells.  A recent study examining the combined effects of polyacrylate-coated TiO2 

ENPs and Cd with the green algae Chlamydomonas reinhardtii showed that the TiO2 alleviated 

the toxicity of Cd due to the binding of free Cd to the surface of the TiO2 ENPs (Yang et al. 

2012).  Furthermore, TEM imaging and EDX spectroscopy found no TiO2 ENPs within the cells 

suggesting that the presence of the cell wall may have prevented the movement of the TiO2 ENPs 

within the cells (Yang et al. 2012).   

Secondly, this study was conducted with a solid substrate growth media as opposed to an 

aquatic system.  While there has been recent studies focusing on ENP-contaminant interactions, 

the majority of them have been conducted in aquatic systems focusing on fish, daphnids, and 

algae (Zhang et al. 2007; Sun et al. 2007; Tan and Wang, 2014; Fan et al. 2011; Yang et al. 

2012).  ENPs may behave differently in a solid substrate as opposed to an aquatic system 

because the ENPs may become adsorbed to the growth media restricting the mobility of the 

ENPs (Tourinho et al. 2012). 

Finally, the properties of TiO2 ENPs are inherently different than the properties of carbon 

based nanoparticles.  While both ENPs are photoactive, fullerenes are considered 

photosensitizers and TiO2 ENPs are semiconductors.  Furthermore, the light absorption range is 

different for the two ENPs; TiO2 ENPs absorb light in the UV range (<390 nm) and fullerenes 

are capable of absorbing light in the UV/visible spectrum (Brunet et al. 2009).  Both ENPs 

generate reactive oxygen species, but TiO2 ENPs have been shown to generate hydroxyl ions, 

superoxide ions, and singlet oxygen whereas fullerenes were only shown to generate superoxide 

ions and singlet oxygen (Brunet et al. 2009).  Furthermore, TiO2 ENPs tended to generate a 

greater amount of the ROS under UV light.  Brunet et al. (2009) demonstrated that TiO2 ENPs 

were only toxic to E. coli under light while fullerenes were toxic to the bacteria in both light and 
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darkness.  It is likely their toxicity is linked to the disruption of cell membranes; indicating that 

when in a soil environment, fullerenes would be more destructive to plant root membranes than 

TiO2 ENPs.  The disruption of root membranes could allow for ENPs as well as contaminants to 

enter the root system whether the contaminants are adsorbed to ENPs or not. 

The reason for a greater decrease in As accumulation compared to Cd accumulation could be 

attributed to the difference in the bonds that are formed between the metals and the TiO2 ENPs.  

Much of this difference in bonds is based on the nature of the metals.  Cadmium is present as a 

cationic divalent ion in aqueous solution, whereas arsenate is present as a negatively charged 

molecule in aqueous solutions.  The negatively charged oxygen molecules that surround the 

As(V) molecule have the potential to form bidentate bonds (mononuclear or binuclear) with the 

TiO2 ENPs (Jegadeesan et al., 2010) giving them the ability to adhere more strongly to the TiO2 

ENPs.  Alternatively, the Cd ions do not bind directly to the TiO2 ENPs; rather, they interact 

with the hydration sphere that surrounds the TiO2 ENPs and form bonds with the hydroxyl 

groups (Chen et al., 2012).  Given this alone it is clear as to why the As accumulation had a 

greater reduction compared to the Cd accumulation.  However, it is also important to consider 

the competition for binding sites on the TiO2 ENPs from the nutrient solution that was present in 

the pots.  When this is taken into consideration, it is clear that there are an abundance of cations, 

such as: Cu
2+

, Zn
2+

, Ca
2+

, Mg
2+

, Mn
2+

, Ni
2+

, K
+
 etc., which could potentially be competing for 

binding sites on the TiO2 ENPs with Cd (Chen et al., 2012; Mahdavi et al. 2013).  On the other 

hand, there are only a small number of molecules, such as: SO4, H2PO4, and H2MoO4, that could 

potentially compete with As(V) for binding sites (Jegadeesan et al., 2010).   

There is a very limited body of literature involving the influence of ENPs on the 

bioaccumulation of environmental contaminants because it is a relatively new area of study.  The 
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data from this study suggests that TiO2 ENPs may act as a binding site for Cd and As and 

prevent them from being available for uptake by roots.  However, the capability of TiO2 ENPs to 

bind such metals and metalloids is highly dependent on the surface charge of the TiO2 ENP, 

which is mainly dictated by the pH of its environment (Chen et al., 2012; Jegadeesan et al., 2010; 

Lui et al., 2013).  There needs to be further research to determine how TiO2 ENPs may influence 

the bioaccessibility of these substances at a range of different pH levels, in various soil types, 

and under various soil hydration states.   Furthermore, future work should be done to determine 

adsorption/desorption kinetics, binding strengths, and binding site competition for the 

aforementioned ions and molecules to TiO2 ENPs.   
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Table 4.1: Matrix demonstrating the treatment strategy for TiO2 interaction with Cd or As(V). 

 0 mg TiO2 kg
-1

  333 mg TiO2 kg
-1

  3,333 mg TiO2 kg
-1

  

0 mg Cd kg
-1

  0 TiO2 + 0 Cd 333 TiO2 + 0 Cd 3,333 TiO2 + 0 Cd 

2 mg Cd kg
-1

  0 TiO2 + 2 Cd 333 TiO2 + 2 Cd 3,333 TiO2 + 2 Cd 

20 mg Cd kg
-1

  0 TiO2 + 20 Cd 333 TiO2 + 20 Cd 3,333 TiO2 + 20 Cd 

0 mg As(V) kg
-1

  0 TiO2 + 0 As(V) 333 TiO2 + 0 As(V) 3,333 TiO2 + 0 As(V) 

20 mg As(V) kg
-1

  0 TiO2 + 20 As(V) 333 TiO2 + 20 As(V) 3,333 TiO2 + 20 As(V) 

200 mg As(V) kg
-1

  0 TiO2 + 200 As(V) 333 TiO2 + 200 As(V) 3,333 TiO2 + 200 As(V) 
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Table 4.2: The means ± standard error for shoot dry weight, root dry weight, root:shoot ratio, 

final height, and relative chlorophyll for broccoli plants treated with Cd and TiO2 ENPs.  The 

bottom three rows indicate the results (p value) from the two-way ANOVA.  Relative 

chlorophyll is expressed as percentage relative to control (0 TiO2 + 0 Cd), thus excluding the 

control data point. 

mg Cd/TiO2 

kg
-1

 

Shoot Dry 

Weight (g) 

 

Root Dry 

Weight (g) 

Root to 

Shoot Ratio 

Height (cm) Relative  

Chlorophyll 

0 TiO2 + 

0 Cd 

0.069±0.004 0.024±0.002 0.35±0.04 3.80±0.23 

ab 

- 

0 TiO2 + 

2 Cd 

0.067±0.006 0.020±0.001 0.30±0.01 4.52±0.18 

a 

99.09±5.25 

0 TiO2 + 

20 Cd 

0.076±0.004 0.023±0.002 0.30±0.03 4.14±0.22 

ab 

104.04±8.73 

333 TiO2 + 

0 Cd 

0.065±0.008 0.019±0.002 0.30±0.02 3.40±0.07 

b 

105.79±3.72 

333 TiO2 +  

2 
 
Cd 

0.074±0.003 0.021±0.001 0.28±0.02 3.80±0.17 

ab 

111.40±1.95 

333 TiO2 + 

20 Cd 

0.076±0.007 0.019±0.003 0.25±0.03 4.04±0.19 

ab 

104.80±1.95 

3,333 TiO2 + 

0 Cd 

0.072±0.007 0.021±0.002 0.30±0.04 4.06±0.21 

ab 

109.88±2.64 

3,333 TiO2 + 

2 
 
Cd 

0.069±0.010 0.020±0.002 0.30±0.04 3.64±0.28 

ab 

116.34±8.23 

3,333 TiO2 + 

20 
 
Cd 

0.067±0.006 0.021±0.002 0.31±0.01 4.04±0.17 

ab 

100.34±4.30 

Cd 0.8888 

 

0.2868 0.2831 0.0545 0.2162 

TiO2 0.7489 0.7968 0.4858 0.1414 0.4459 

Interaction 0.6773 0.7198 0.7807 0.0508 0.4745 
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Date

Mon 17  Mon 24  Mon 31  Mon 07  Mon 14  Mon 21  

m
L
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2
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-1
 

0 mg TiO
2
 kg

-1
 + 2 mg Cd kg

-1
 

0 mg TiO
2
 kg

-1
 + 20 mg Cd kg

-1
 

100 mg TiO
2
 kg

-1
 + 0 mg Cd kg

-1
 

100 mg TiO
2
 kg

-1
 + 2 mg Cd kg

-1
 

100 mg TiO
2
 kg

-1
 + 20 mg Cd kg

-1
 

1,000 mg TiO
2
 kg

-1
 + 0 mg Cd kg

-1
 

1,000 mg TiO
2
 kg

-1
 + 2 mg Cd kg

-1
 

1,000 mg TiO
2
 kg

-1
 + 20 mg Cd kg

-1
 

 

Figure 4.1: Cumulative transpiration for broccoli plants treated with Cd and TiO2 ENPs as 

described in Table 4.1.  The bars represent standard error (n=5). 
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Figure 4.2: Height relative growth rate (RGR) for broccoli plants treated with Cd and TiO2 

ENPs as described in Table 4.1.  The bars represent standard error (n=5). 
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Figure 4.3: Leaf number relative growth rate (RGR) for broccoli plants treated with Cd and TiO2 

ENPs as described in Table 4.1.  The bars represent standard error (n=5). 
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Figure 4.4: Total shoot concentration of Cd for broccoli plants treated with Cd and TiO2 ENPs 

as described in Table 4.1.  The bars represent standard error and the lettering indicates honestly 

significant difference (HSD) of Tukey test (p <0.05) for cadmium concentration from the two-

way ANOVA. 
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Figure 4.5: Total root concentration of Cd for broccoli plants treated with Cd and TiO2 ENPs as 

described in Table 4.1.  The bars represent standard error and the lettering indicates honestly 

significant difference (HSD) of Tukey test (p <0.05) (n=5). 
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Table 4.3: The means ± standard error for shoot dry weight, root dry weight, root:shoot ratio, 

final height, and relative chlorophyll for broccoli plants treated with As(V) and TiO2 ENPs. The 

bottom three rows indicate the results (p value) from the two-way ANOVA.  Relative 

chlorophyll is expressed as percentage relative to control [0 TiO2 + 0 As(V)], thus excluding the 

control data point. 

mg 

As(V)/TiO2 

kg
-1 

Shoot Dry 

Weight (g) 

Root Dry 

Weight (g) 

Root to 

Shoot Ratio 

Height (cm) Relative 

Chlorophyll 

0 TiO2 +  

0 As(V) 

0.050±0.007 0.018±0.002 0.40±0.10 2.60±0.22 - 

0 TiO2 +  

20 As(V) 

0.040±0.005 0.014±0.001 0.38±0.05 2.48±0.23 117.93±9.46 

0 TiO2 +  

200 As(V) 

0.024±0.005 0.007±0.002 0.28±0.04 2.08±0.19 113.01±26.57 

333 TiO2 +  

0 As(V) 

0.063±0.004 0.020±0.001 0.33±0.02 2.68±0.12 103.27±10.76 

333 TiO2 + 

 20 As(V) 

0.054±0.009 0.017±0.002 0.32±0.02 3.00±0.18 99.26±8.84 

333 TiO2 + 

200  As(V) 

0.025±0.003 0.009±0.001 0.37±0.04 2.34±0.17 105.66±11.68 

3,333 TiO2 +  

0 As(V) 

0.066±0.003 0.020±0.001 0.30±0.02 3.28±0.35 95.78±3.83 

3,333 TiO2 + 

20 As(V) 

0.061±0.004 0.018±0.001 0.31±0.03 3.42±0.19 96.07±3.44 

3,333 TiO2 + 

200  As(V) 

0.031±0.004 0.014±0.001 0.48±0.09 2.54±0.11 122.61±6.06 

As 0.0042 0.0040 0.8649 0.0009 0.7242 

TiO2 <0.0001 <0.0001 0.5945 0.0010 0.3473 

Interaction 0.6229 0.4341 0.0694 0.6838 0.6400 
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Figure 4.6: Cumulative transpiration data for broccoli plants treated with As(V) and TiO2 ENPs 

as described in table 4.1.  The bars represent standard error (n=5). 
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Figure 4.7: Height relative growth rate (RGR) for broccoli plants treated with As(V) and TiO2 

ENPs as described in Table 4.1.  The bars represent standard error (n=5). 
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Figure 4.8: Leaf number relative growth rate (RGR) for broccoli plants treated with As(V) and 

TiO2 ENPs as described in Table 4.1.  The bars represent standard error (n=5). 
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Figure 4.9: Total shoot concentration of As for broccoli plants treated with As(V) and TiO2 

ENPs as described in Table 4.1.  The bars represent standard error and the lettering indicates 

honestly significant difference (HSD) of Tukey test (p <0.05) (n=5). 
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Figure 4.10: Total root concentration of As for broccoli plants treated with As(V) and TiO2 

ENPs as described in Table 4.1.  The bars represent standard error and the lettering indicates 

honestly significant difference (HSD) of Tukey test (p <0.05) (n=5). 

 

 

 

 

 

 

 

 

 



108 

 

CHAPTER 5 

CONCLUSIONS 

 

The results for the foliar application of bulk TiO2 and TiO2 ENPs on corn plants indicated 

that at there was transient rather than sustained.  Furthermore, the transient increase in net 

photosynthesis did not increase the seed quantity or quality of the corn.  A recent study 

performed with wheat plants indicated that at concentrations below 0.02% (200 mg L
-1

) resulted 

in an increase in seed yield, but at concentrations greater than that resulted in a decreased yield 

(Choi et al., 2012).  This indicates that TiO2 may have a somewhat hormetic effect on plants, 

which may vary between species, and the concentrations used in this study were far too high to 

sustain the beneficial properties of dosing a plant with TiO2 via foliar application.  Future 

research should include a broad range of TiO2 concentrations in a species specific manner. 

However, there was a sustained increase in stomatal conductance.  This may be the result 

of the TiO2 preventing sensible heat loss which may have forced the plant to increase its stomatal 

opening to cool the leaf via evapotranspiration.  However, this is just speculative and further 

research needs to be conducted to determine the underlying mechanism that caused the increased 

stomatal conductance that was observed in this study and the one performed on Ulmus elongata 

by Gao et al. (2013).    

The results for the TiO2 ENP and heavy metal interaction results suggested that the TiO2 

ENPs were capable of reducing the amount of the heavy metals that accumulated in the broccoli 

plants.  These findings were contradictory to previous research that has been done involving fish 

(Zhang et al., 2007; Sun et al., 2007).  The most likely of reasons for the discrepancy is due to 

the fact that plants possess a cell wall which may prevent the TiO2 ENPs from entering the root 
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system.  One of the shortcomings of this research was the failure to analyze the growth media for 

its final concentration of free ionic Cd and As.  Future research should focus on the sorption 

capacities of TiO2 ENPs with Cd and As(V) under different pH regimes as well as binding site 

competition with essential plant nutrients.  Furthermore, it would have been interesting to 

investigate how the interaction may affect the levels of oxidative stress in the plants.   It would 

also be prudent for future research to conduct these experiments in a soil substrate as opposed to 

vermiculite because the complex chemistry of soil may yield much different results compared to 

the vermiculite. 
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