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 In the recent years, a huge success has been accomplished in prediction of human eye 

fixations. Several studies employed deep learning to achieve high accuracy of prediction of 

human eye fixations. These studies rely on pre-trained deep learning for object classification. 

They exploit deep learning either as a transfer-learning problem, or the weights of the pre-trained 

network as the initialization to learn a saliency model. The utilization of such pre-trained neural 

networks is due to the relatively small datasets of human fixations available to train a deep 

learning model. Another relatively less prioritized problem is amount of computation of such 

deep learning models requires expensive hardware. In this dissertation, two approaches are 

proposed to tackle abovementioned problems. The first approach, codenamed DeepFeat, 

incorporates the deep features of convolutional neural networks pre-trained for object and scene 

classifications. This approach is the first approach that uses deep features without further 

learning. Performance of the DeepFeat model is extensively evaluated over a variety of datasets 

using a variety of implementations. The second approach is a deep learning saliency model, 

codenamed ClassNet. Two main differences separate the ClassNet from other deep learning 

saliency models. The ClassNet model is the only deep learning saliency model that learns its 

weights from scratch. In addition, the ClassNet saliency model treats prediction of human 

fixation as a classification problem, while other deep learning saliency models treat the human 

fixation prediction as a regression problem or as a classification of a regression problem.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation: 

During the last few decades, saliency models have been developed rapidly to leverage the 

understanding of human visual attention. In general, a saliency map is defined as a 2D 

probabilistic map that reflects a distribution of predicted fixations. A large saliency value 

indicates that an eye fixation has a large probability to fall on the corresponding spatial location, 

object, or region. Saliency modeling is beneficial to prediction of sequence or distributions of 

human fixations in an image [1,2]. Since human attention relies on the bottom-up and top-down 

influences, the developed saliency models may rely on the bottom-up influences, the top-down 

influences, or a combination of both. While the bottom-up attention is fast and defines saliency 

in terms of distinction to the surroundings [3], the top-down attention is slow and relies on prior 

knowledge, expectations, and rewards [4]. Visual saliency models have been applied to various  

applications, including object detection [5][6], image segmentation [7][8], image retargeting 

[9][10], image/video compression [11][12], visual tracking [13][14], gaze estimation [15], robot 

navigation [16], image/video quality assessment [17][18], and advertising design [19].  

 The first outlined description of attention is by James in 1890 [20]. In 1990, Corbetta et 

al. defined attention as the mental ability to select stimuli, responses, memories, and thoughts 

that are behaviorally relevant among several others that are behaviorally irrelevant [21].The 

feature integration theory suggests that the visual stimuli are processed in different regions of the 

brain as the bottom-up visual features in a parallel manner [22]. The resulting feature maps are 

assembled to advocate for object recognition. Koch & Ulman [23] then proposed a combination 

of such visual features to produce a saliency map. They also introduced a winner-take-all 
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strategy to select the most salient location, and the inhibition-of-return strategy to predict the 

next most salient location. Based on Koch & Ulman, studies attempted to implement an attention 

system. Itti & Koch [24] proposed the first complete implementation of Koch & Ulman model. 

The model incorporates color, intensity, and orientation features at various scales using a center 

surround operation. Architecture of the biologically inspired model is presented in Figure 1.  

 

Figure 1 - Architecture of the Itti&Koch saliency model. 
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Moreover, several other studies exploited other handcrafted features and demonstrated 

exciting results. Itti & Baldi, 2006 [25] introduced surprise as a Bayesian framework to predict 

eye movements. Bruce & Tsotsos developed an information theoretic saliency model using the 

independent component analysis (ICA) as features derived from natural scenes. Navalpakkam & 

Itti [27] proposed a signal to noise ratio saliency model, which learned parameters of low-level 

features combination. Cerf et al. modified existing saliency models by incorporating face 

detection in a bottom-up manner [28]. Zhang et al. proposed a Bayesian framework that 

incorporated self-information and prior knowledge using difference of Gaussians (DoG) as 

visual features [29]. Judd et al. learned a saliency model via a support vector machine (SVM) 

[30]. The model exploited low, mid, and high-level features such as color, intensity, orientation, 

horizon detector, center bias, and face, car, and people detectors. Liu et al. exploited multi-scale 

contrast, center-surround histogram, and color spatial distribution as hand crafted features to 

detect salient objects [31]. Tian et al. proposed a salient region detection model using color and 

orientation as the bottom-up features and depth-from-focus as a top-down feature [32]. Zhang 

and Sclaroff proposed a Boolean saliency model using color features [33]. The model obtained 

Boolean maps by random thresholding of the feature maps. Zhang et al. devised a manifold 

ranking saliency model by segmenting the background regions of images for salient objects 

detection [34]. The study experimentally compared the integration of features such as locally 

assembled binary (LAB), local binary pattern (LBP), histograms of oriented gradients (HOG), 

and dis- criminative regional feature integration (DRFI). In addition, other features have also 

been used in saliency models, including scale invariant feature transform [35], optical flow [36], 

multiple superimposed orientations [37], entropy [38], gist [39], ellipses [40], flicker [41], 
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symmetry [42], histogram of local orientations [43], isocentric curvature [44], wavelet transform 

[45], depth influences [46], and regional histograms [47].   

Although the selections of the abovementioned handcrafted features lead to astonishing 

results, the predictions of such conventional saliency models are limited to the incorporated 

features. To overcome such bottleneck, two saliency models are developed in this study. The 

first saliency model, codenamed DeepFeat, which exploits the feature maps of pre-trained 

convolutional neural networks (CNNs) [48]. Figure2 shows two images, ground-truth maps of 

human fixations, and saliency maps generated by a conventional model [24], and the DeapFeat 

model, respectively. In both images, compared with ground-truth maps, the conventional 

saliency model fails to predict the animal and the baby, as such features are not incorporated in 

the conventional model. In contrast, the DeepFeat model can predict such missing contents: the 

monkey face in the first image and the baby face and drawings on the shirt in the second image. 

It indicates that the feature maps of pre-trained CNNs can provide more features, which a 

conventional saliency model may not incorporate. Such features may be benefit to saliency 

prediction of human gaze patterns. In this dissertation, the feature maps of pre-trained CNNs will 

be denoted as deep features. The second proposed saliency model, codenamed ClassNet, treats 

the fixation prediction as a classification problem of individual pixels. In the proposed 

framework, large eye fixation datasets can be derived from a relatively small dataset. Such 

advantage allows the proposed ClassNet model to train from scratch using random weights. 
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Figure 2 - Column 1 is original images, column 2 is the ground-truth maps of human fixations, 

column 3 is the saliency maps of a conventional saliency model [24], and column 4 is the 

saliency maps of the our recently developed DeepFeat model [48]. For visualization purpose, the 

histogram of the predicted saliency maps of both models are matched to the histogram of the 

dataset ground-truth.  

 

The aim of this dissertation is to leverage the understanding of human visual attention by 

performing an extensive analysis, prediction, and visualization of human eye fixations. This 

dissertation dives deep to allow the reader to understand the previous work done in visual 

saliency and deep neural networks, visualize the feature maps of DCNNs, analyze infants and 

adults eye fixations, predict the human eye fixations, and compare deep features of DCNNs for 

visual saliency prediction. 

1.2 Contributions: 

The contributions of this dissertation can be summarized as follows: 

1. A comparison of saliency models for fixation prediction on infants and adults. 

The gaze patterns differences between infants and adults are highlighted by using a 
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benchmark of standard saliency models. The saliency predictions are evaluated using 

seven popular evaluation metrics. 

2. A proposed saliency model to predict eye fixations via deep features of DCNNs. 

The first proposed model exploits deep features of DCNNs pre-trained for object 

recognition as optimized features to predict a saliency map. The model incorporates 

the deep features in a combination of bottom-up and top-down manners. 

3. An extensive analysis of deep features from various pre-trained DCNNs for 

saliency prediction of eye fixations. The deep feature comparisons are conducted 

using four saliency implementations including bottom-up, top-down, and the 

combination of both with and without the incorporation of center bias. The saliency 

implementations are compared over seven DCNNs using both classical and CAM 

approaches. 

4. A proposed saliency based deep learning framework to learn from scratch. The 

proposed framework consists of a data generation scheme and a modified residual 

network. The data generation aims to create a dataset large enough to learn a saliency 

model from random weights. The proposed saliency model incorporates a global 

contrast computation as a measure of saliency. 
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CHAPTER 2 

BACKGROUND 

2.1 Visual Saliency Computational Models: 

A rich stream of saliency models has been developed [24,49,50]. These models are 

different in features, frameworks, applications, and the purpose which they are designed for. 

Although saliency models are different, they share common characteristics. Therefore, saliency 

models can be categorized based on these characteristics. For example, saliency models can be 

categorized to bottom-up (exogenous) and top-down (endogenous) models. Bottom-up saliency 

models are stimulus driven, where a saliency is defined as irregularity or visual rarity in a scene 

locally, regionally, or globally [51]. Such models can explain the scene partially as majority of 

eye fixations are driven by tasks. Top-down saliency models are task-driven based models, 

where they use prior knowledge, expectation, and reward as visual cues to locate a target of 

interest [52].  

Saliency models also can be classified as space-based models and object-based models. 

There is no universal agreement whether eye fixations attend spatial locations or objects. 

Therefore, space or object saliency maps can be used for fixation prediction. From another 

aspect, saliency models can be categorized based on different task types, free viewing, visual 

search, and interactive tasks. In free viewing, subjects view an image freely. In visual search, 

subjects are asked to find a specific or odd object in an image. Interactive tasks are complex and 

contain subtasks like visual search, and target tracking. Other categorization factors are pointed 

out in previous studies [52,53]. In this section, saliency models are categorized based on the 

saliency computation mechanism.  

 



 

8 

 

 

2.1.1 Bayesian Models: 

In visual attention, a Bayesian framework consists of a combination of sensory evidence 

and prior knowledge. Several Bayesian saliency models have been developed. Itti & Baldi [25] 

defined a surprise as a saliency in probabilistic terms, in which surprise was obtained as the 

Kullback-Leibler divergence (KL). Zhang et al. [29] proposed a framework that considered what 

the human visual system is trying to optimize. The framework was a linear combination of self-

information of local image patches as bottom-up and the prior knowledge as top-down. Later, 

Zhang et al. [54] modified the model to predict fixations on a dynamic scene. Spatiotemporal 

filters were added to the model, and a general Gaussian distribution was fitted to the filter’s 

response. Xie et al. [55] proposed a novel Bayesian framework based on low and mid-level cues. 

A coarse saliency region was first obtained via a convex hull. Saliency information with mid-

level cues was analyzed via super pixels. A Laplacian sparse subspace clustering method 

grouped super pixel with local features, and then analyzed the result with respect to the coarse 

saliency region in order to compute the prior saliency map. Observation likelihood of the 

Bayesian framework was computed by the low-level cues based on the convex hull. Lu et al. [56] 

proposed a Bayesian framework to generate a saliency map based on reconstruction error. The 

model first obtained dense and sparse reconstructions, then measured the reconstruction error 

that propagated based on the contexts obtained from K-means clustering. Pixel level saliency 

was obtained by integration of multi-scale reconstruction errors. A Bayesian integral 

reconstructed a final saliency map from the pixel level saliency maps. Jianyong et al. [57] 

proposed a Bayesian framework based on BING and graph models. The model used the BING 

model to generate a coarse conspicuity map. A graph model was constructed after super pixel 

image abstraction. This operation was followed by a weighting to produce a prior map. After 
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adaptive thresholding, the observation likelihood map was computed by color histogram. The 

two maps were combined via Bayesian framework. 

2.1.2 Cognitive Models:  

Models of saliency in early development of visual attention are biologically inspired 

models. Because of the biological explanations these models offer, several models were 

developed based on FIT. Itti et al. [24] devised the first saliency model. Several implementations 

of the model have been introduced including implementation of the original model [24], blur and 

parameters optimization [58], and an implementation for salient object detection [59,60]. The 

model also has been modified for several applications. For example, Itti & Koch [61] modified 

the first saliency model to perform a visual search for overt and covert shifts of attention. The 

model iteratively convolves the extracted feature maps with a two-dimensional difference of 

Gaussians (DoG) filter. Also, Cerf et al. [28] modified the first saliency model by adding face 

detection as a low-level feature, then performed similar feature competition and combination to 

emerge a saliency map. Other cognitive models have been proposed independently of the first 

saliency model. For example, Le Meur et al. [62] proposed a bottom-up model of visual 

attention. The model used contrast sensitivity functions, perceptual decomposition, visual 

masking, and center surround interactions as some of the features implemented in the model. 

Later, Le Meur [63] extended the model to spatiotemporal domain. The algorithm fuse saliency 

maps from achromatic, chromatic, and spatiotemporal channels. Kootstra et al. [42] proposed 

humans are sensitive to symmetry in visual patterns and developed three symmetry saliency 

models based on isotopic symmetry, radical symmetry, and color symmetry. Marat et al. [64] 

proposed a spatiotemporal saliency model for fixation prediction in video during free viewing 

task. The model extracted two signals that correspond to parvocellular and magnocellular. The 
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signals were divided into elementary feature maps by cortical-like filters. The feature maps 

generated a static and saliency maps. Then, the two maps were fused into a spatiotemporal 

saliency map. Murray et al. [65] proposed a model for color appearance in human vision. The 

proposed model extracted color and luminance features followed by multi-scale decomposition. 

Multi- scale integration was performed by inverse wavelet transform. Cognitive models were 

beneficial, because their further development helped to better understand the neural processing 

of visual information.  

2.1.3 Decision theoretic models: 

The hypothesis of such models assumes that the perceptual system produces optimal 

decisions about the state of the surrounding environment. The disadvantage of decision theoretic 

models is optimality should be driven with respect to the end task. Gao & Vasconcelos [66] 

defined a top-down saliency as classification with minimal prediction error. DoG and Gabor 

filters were used to measure the saliency of a particular location in an image as the Kullback-

Leibler divergence of the filter response of the location and the histogram of filter response of 

the surrounding regions. This work was extended by Mahadevan & Vasconcelos [67] to provide 

a spatiotemporal saliency based on biologically inspired mechanisms of motion. The model 

combined center surround saliency and dynamic texture. Guo & Zhang [68] proposed an 

attention selection model with visual memory and online learning, which consists of a sensory 

mapping, a novel cognitive mapping, and motor mapping. The proposed work also used Amnesic 

Incremental Hierarchical Discriminant Regression Tree to guide the removal of redundant 

information. Gu et al. [69] proposed an attention selectivity model for automatic fixation 

generation in a 2D space. An activation map was created by extracting early visual features and 

detecting meaningful objects. A retinal filter was applied on the activation map to generate 
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regions of interest. Focus of attention was determined over the regions of interest using a belief 

functions based on perceptual costs and rewards. The time of fixation over the regions of interest 

was estimated by memory learning and decaying model. Gao et al. [70] proposed a top-down 

saliency rooted in a decision theoretic interpretation of perception. The model detected 

suspicious coincidences using Barlow’s principle, which provides two solutions for a 

discriminant saliency, feature selection, and saliency detection.  

2.1.4 Spectral analysis models: 

A majority of saliency frameworks are processed to measure irregularities in the spatial 

domain. Irregularities can also be measured in the frequency domain. Several studies used the 

Fourier transform and its spectral analysis to compute a saliency map. Hou & Zhang [71] 

analyzed the amplitude spectrum of the Fourier transform, and proposed a spectral residual 

saliency model. The model was independent of features, parameters, and prior knowledge. Wang 

& Li [72] extended the residual spectral approach by adding feature based on gestalt principles to 

detect similarity and continuity. Li et al. [73] proposed a bottom-up approach for saliency 

detection. The authors demonstrated a convolution of the image amplitude spectrum with a low 

pass Gaussian kernel of appropriate size is equivalent to a saliency detector. Beside the 

amplitude spectrum, Guo & Zhang [74] pointed out the phase spectrum is the key to saliency 

modeling in the frequency domain, and then proposed a novel multiresolution spatiotemporal 

saliency detection model based on the phase spectrum [12]. Other saliency models have been 

proposed in the frequency domain. For instance, Achanta et al. [75] proposed a frequency tuned 

salient region detection. The model used color and luminance as low-level features. Then, 

saliency was obtained as the difference between the mean image feature vector, and the 

smoothed version of the original image. Brian & Zhang [76] proposed a biologically plausible 
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saliency detection method based on spectral whitening. The method used a divisive 

normalization as estimator of spectral whitening. Li et al. [77] proposed a saliency model that 

combines two channels of the processed image in the frequency and spatial domains. The 

frequency domain channel suppressed non-distinctive patterns of the image by spectrum 

smoothing. The spatial domain channel enhanced those patterns by using center surround 

mechanism akin to mechanism in visual cortex. Xiao et al. [78] used hypercomplex discrete 

cosine transform for salient object detection approach based on human perception inconsistent 

scale. The method extracted local spectral feature, then sparse energy spectrum was calculated 

on local regions as visual stimulation. A visual saliency was measured on the local region and 

neighbor regions. A multi-scale response was performed on the saliency map.  

2.1.5 Graphical Models:  

A probabilistic framework where a graph represents a conditional independence structure 

between random variables. Graphical models treat eye fixation as time series. Several saliency 

models have been introduced in this category. Models in this category exploit approaches like 

hidden Markova, dynamic Bayesian networks, and conditional random field (CRF). Salah et al. 

[79] proposed an attention model based on the primate selective attention mechanism. The model 

was applied on face detection and handwritten digits. A bottom-up saliency map was constructed 

from simple features. At each region of the image, single layer perceptron was trained. Finally, 

the information gained were combined using an observable Markova model. Rao [80] proposed a 

model to modulate attention in particular image locations to neuron in V2 and V4 areas of the 

visual cortex. The model interpreted perception as an estimation of posterior probability of 

features and their location in the image using a Bayesian graphical algorithm called belief 

propagation. Liu et al. [81] devised a salient object detection method. They proposed multi-scale 
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contrast, center surround histogram, and color spatial distribution as image features. Then a 

saliency map was emerged by learning CRF to combine the proposed features. Later, a motion 

feature was added to extend the model to be applied on videos [31]. A dynamic programming 

algorithm was devised to solve a global optimization problem. The salient object sequence 

detection was obtained by CRF framework. Yang et al. [82] proposed ranking the similarity of 

image elements with foreground cues or background cues via graph based manifold ranking. 

Super pixels were created and treated as nodes. Then, a k-regular graph is used to exploit the 

spatial relationships between the nodes. Ling et al. [83] proposed a novel saliency detection 

algorithm via a graph model and statistical learning. The algorithm used manifold ranking to 

create an initial saliency map. Then, the saliency map was optimized with absorbing Markova 

chain. Finally, statistical learning was performed by Bayes estimation with color statistical 

models to assign saliency values to pixels and refine the saliency map. Zhang et al. [84] proposed 

a novel graph-based optimization for salient object detection. The proposed framework 

employed multiple graphs to describe the complex information in the image. In the proposed 

work visual rarity was modeled to make the optimization framework suitable for saliency 

detection.  

2.1.6 Information theory models: 

Models in this category measure irregularity in image locations by maximizing the 

information sampled from surrounding environment. Such models select the most informative 

locations and discard the rest. Benninger et al. [85] developed a saliency model that select 

fixations at informative locations of the image, which reduce overall uncertainty about the visual 

stimulus. The model reconstructed visual information from a sequence of human fixations. After 

each fixation, the next fixation was selected as the fixation that would minimize the uncertainty 
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of the stimulus. Seo & Milanfar [86] proposed a novel framework for saliency detection over 

static and space-time stimuli. The model computed the local regression kernels in an image to 

measure the likeness of a pixel to the surroundings. Then, saliency map was computed by kernel 

density estimation as local self-resemblance. Bruce & Tsotsos [87] built an attention model 

based on computational constraints derived from efficient coding and information theory. The 

proposed framework was an extension to previous framework based on self-information 

maximization. Li et al. [73] proposed a novel saliency detection method for image and video. In 

the method proposed, saliency was defined as minimum conditional entropy of local regions. 

Conditional entropy was treated as the lossy coding length of multivariate Gaussian data. The 

final saliency map was reconstructed by pixels and segmented to detect proto-objects. Wang et 

al. [88] proposed a computational model inspired by information maximization for gaze shifts 

prediction. The model computed three filters’ responses as a coherent representation for 

reference sensory responses, fovea periphery resolution discrepancy, and visual working 

memory. Response maps from the three filters were combined into multi-band residual filter 

response maps, where the residual perceptual information was computed at every location. Klein 

et al. [89] introduced a salient object detection method, which has similar structure to cognitive 

models but acknowledge a saliency via information theoretic concept. The model extracted 

features, performed center surround operations, and computed feature maps. Riche et al. [90] 

proposed a bottom up saliency model based on locally contrasted and globally rare features were 

salient. The model extracted luminance and chrominance as low-level features. Then, image 

orientations were extracted as mid-level features. The extracted features were segmented using 

Otsu method. Then, multi-scale rarity mechanisms were performed. Finally, scaled maps were 

fused and normalized.  
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2.1.7 Learning based models: 

Learning models are data driven functions to select, re-weight, and integrate the input 

visual stimuli. Such models learn a saliency map from human fixations. Majority of models in 

this category use a combination of bottom up and top down features to increase fixation 

prediction of the model. Learning based models can be categorized to supervised and 

unsupervised learning models. Supervised learning models learn a function from a labeled 

training data. For example, Peter & Itti [91] trained a simple regression classifier to capture the 

task dependent association between a given scene and the preferred gaze locations while human 

participants play video games. Kienzle et al. [92] introduced a non-parametric bottom up 

learning based saliency model. A support vector machine was trained to compute the saliency in 

local image patches. Similarly, Judd et al. [30] used low, mid, and high-level features to learn a 

saliency model using a support machine vector (SMV). Unsupervised learning models learn to 

predict from unlabeled training data. Several deep learning based saliency models have been 

developed [93-95]. Deep learning based saliency models are composed of multiple layers to 

learn representation of images with multiple levels of abstractions. Vig et al. [96] proposed the 

first deep learning based saliency model, which incorporates biologically inspired features and 

uses the standard learning pipeline. Kummerer et al. [97] presented a novel way to reuse existing 

object recognition neural networks for human fixation prediction. The model used Krizhevsky 

network to compute filter responses and a full convolution to learn the saliency model. 

Furthermore, another probabilistic model was also introduced [98]. The model used VGG-19 

features and incorporated center bias. A maximum likelihood learning was used to train the 

model. Huang et al. [99] proposed a top down saliency model using deep convolutional neural 

networking (DCNN). The model used AlexNet, VGG-16, and GoogLeNet. These DCNNs 
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contained several max-pooling layers, and a large number of convolutional and nonlinear layers 

between pooling layers. Kruthiventi et al. [100] proposed a fully convolutional neural network 

(CNN) for predicting human fixations. The model incorporated a novel location biased 

convolutional layer to model location dependent patterns. Liu & Han [101] proposed a deep 

spatial contextual long-term recurrent convolutional network to predict human fixations in 

natural scenes. The model learned saliency related to local features in parallel, and integrated 

scene context to mimic the cortical lateral inhibition mechanisms in human visual system. Jetley 

et al. [102] introduced a saliency model via probabilistic distribution prediction. The model was 

formulated as generalized Bernoulli distribution. They trained DNN using a novel loss functions 

that paired a SoftMax activation function with measures designed to compute distances between 

probability distributions. Corina et al. [95] proposed a novel DNN structure that combines 

features extracted at different levels of a CNN. The model consisted of three main blocks: a 

feature extraction CNN, a feature encoding network, and prior learning network.  

2.1.8 Other models: 

Categories of saliency models are interconnected. Some saliency models can fit into more 

than one category. On the other hand, some models do not fit to any of the aforementioned 

categories. In this section, models that are not fit to previous categories are briefly reviewed. 

Erdem & Erdem [103] addressed the integrating issue of features and proposed to exploit region 

covariance descriptors meta-features for saliency detection. These descriptors captured local 

structure information by encoding pair-wise correlations over features. Zhang & Sclaroff [33] 

introduced a novel saliency model based on Boolean mapping. Color feature was extracted, and 

Boolean maps were created from the feature map with random thresholds. Mean attention map 

was obtained over the randomly generated Boolean maps. The resultant attention maps were 
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normalized then linearly combined. Liu et al. [104] proposed a novel saliency detection 

framework in a form of tree. The proposed framework simplified the input image to regions 

using adaptive color quantization and region segmentation. An initial regional saliency was 

formed by integrating global contrast, spatial sparsity, and object prior with regional similarities. 

A proposed saliency directed region merging approach with dynamic scale control scheme to 

create the saliency tree. A leaf node indicated primitive region, while a non-leaf node indicated 

non-primitive region. A regional center-surround scheme-based node selection criterion was 

exploited to generate a final regional saliency map.  

2.2 Datasets of human fixations: 

In order to evaluate how well a saliency model can predict the human visual attention, the 

existence of ground-truth maps is crucial. Therefore, a variety of human fixations datasets are 

collected using remote eye trackers. An eye tracker records the human eye movements 

(saccades). Researchers setup a delay threshold to label a set of fixations. An eye fixation is 

defined as a point position in the Cartesian coordinate system. 

The human fixation datasets are collected for a variety of tasks, including visual search, 

memory, and free-viewing. The visual search task aims to detect the covert and overt shifts of 

attention during a visual search for a specific object. The memory task studies the attentional 

regions that lead to memorizing objects. The free-viewing task focuses on recording human 

fixations without prior knowledge about the image. In this dissertation, the fixation datasets 

exploited are free-viewing based datasets. In this section, the datasets used in this dissertation are 

described. Figure 3 presents samples from all six datasets. 

1. Infants & Adults: Contains 16 indoor and outdoor images. These images include human 

objects either in the foreground or in the background. The resolution of the images is 
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1680 × 1050 pixels. Images were presented for 5 seconds to 20 observers, including 10 

infants and 10 adults [105]. 

2. MIT1003: Consists of 1003 images. The resolution of the images is fixed on one-

dimension 1024 pixels, and on the other dimension it ranges from 678 to 768. Fifteen 

observers (age = 18 to 35 years) freely viewed the MIT1003 images. Images were 

presented to 15 observers for 3 seconds [30]. 

 
Figure 3 - Subsets of the six datasets used in this dissertation. 

 

3. VIU: Consists of 800 indoor and outdoor images. The resolution across all images is 405 

× 405 pixels. This dataset consists of multiple tasks (explicit saliency judgement, free-
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viewing, saliency search, and cued object search). In this dissertation, human fixations 

under free-viewing conditions are exploited. 22 observers (age = 18 to 23 years) viewed 

every image for 2 seconds [106].  

4. KTH Koostra: Contains 100 images from 5 categories. The resolution of the images is 

1024 × 768 pixels. Images are free-viewed by 31 observers for 5 seconds [107]. 

5. OSIE: Includes 700 images. The resolution of the images is 800 × 600 pixels. Images are 

presented to 15 observers for 3 seconds [108].  

6. Toronto: Contains 120 images. Several images in this dataset do not have regions of 

interest. The resolution of the images is 681 × 511 pixels. Images were presented to 20 

observers for 4 seconds [109].  

2.3 Evaluation Metrics: 

Performance of saliency models is often compared to human fixation maps using 

evaluation metrics to assess the agreement between a saliency map and human fixation maps. In 

this dissertation, two binary classification measures and six evaluation metrics are used for 

evaluating saliency models. The motivation of analyzing saliency models with seven metrics is 

to ensure the conclusions drawn are independent of the choice of metric and consistent across all 

metrics. Overall, a good saliency model should perform well across all metrics.  

The two binary classification measures are based on the intersection area between 

predicted saliency and human fixations, including receiver operating characteristics (ROC) and 

precision-recall (PR). From the ROC measure, the area under ROC curve (AUC) is reported as 

the first evaluation metric. Also, F-measure (metric) score is obtained from PR. Moreover, four 

metrics measuring the similarity, and two metrics measuring dissimilarity between a saliency 

map and a ground-truth fixation map are also used in this dissertation [110]. Four similarity-
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based metrics are normalized scan-path saliency (NSS) information gain (IG), similarity (SIM), 

and Pearson’s correlation coefficient (CC). Two dissimilarity-based metrics are Kullback-Leibler 

divergence (KL), and earth mover’s distance (EMD). Table 1 presents the evaluation metrics 

used in this dissertation.  

Table 1 - A description of evaluation metrics. 

Metric Denoted as Theoretical range 

Area under the ROC curve AUC [0,1] 

F measure F-measure [0,1] 

Normalized Scan-path Saliency NSS [-∞,∞] 

Information gain IG [-∞,∞] 

Similarity SIM [0,1] 

Pearson’s Correlation Coefficient CC [-1,1] 

Kullback-Leibler divergence KL [0, ∞] 

Earth moving distance EMD [0, ∞] 

 

1. ROC: Treats a saliency map as a binary classifier of human fixations over a set of 

thresholds. It plots the tradeoff between true positive and false positive rates at various 

thresholds of the saliency map. True positive rate (TRP) and false positive rate (FPR) are 

formally defined: 

 ��	 = ��
��
��                           (1) 

��	 = ��
��
��                           (2) 

where TP is fixated saliency map values above threshold, FP is un-fixated saliency map 

values above threshold, FN is the fixated saliency map values below threshold, and TN is 

un-fixated saliency map values below threshold. 

2. PR: Another binary classifier, it plots the tradeoff between precision and recall for 

various saliency map thresholds. The precision and recall are calculated by:  
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3. AUC: Is the integral of the area under the ROC curve. A score higher than 0.5 indicates a 

prediction higher than random guessing. Throughout this dissertation, three AUC are 

exploited based on a unique ROC sampling and human annotation processing. Judd-AUC 

computes the true positive rate and false positive rate over every pixel value in the 

saliency map. The Borji-AUC computes the true positive rate and false positive rate over 

a set of thresholds sampled from the dynamic range of the saliency map. Both Judd-AUC 

and Borji-AUC compare saliency maps to the exact fixation points of the human 

fixations. A third AUC modifies the Borji-AUC by utilizing fixation maps that reflects a 

continuous distribution of eye fixations. 

4. F-measure: Is a weighted harmonic mean of precision and recall. It often used because 

precision or recall individually cannot evaluate a saliency map. Formally:  

�� = ��
����� !"#"$%×' !())
���� !"#"$%
' !())                        (5)                                                    

where * is a threshold suggested by previous work, *2 = 0.3 to raise more importance 

to precision [111]. A *2 is computed across the thresholds. Then, the maximum *2 

represents the maximum overlap between precision and recall along the curve. A score 

closer to 1, it indicates the overlap between the saliency map and ground-truth fixation 

map is large.  

5. NSS: Is the normalized scan-path saliency that measures the average saliency value at the 

exact fixation locations:  

+,,-,, �/ = �
� ∑ ,"1 × �""                        (6) 
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Where 

,1 = 234-2/
5-2/                              (7) 

where N denotes the number of fixation points, and i indexes the fixation points of the 

binary fixation map. A score of zero corresponds to random guessing. A positive score 

indicates correspondence between the two maps, and a negative score denotes anti-

correspondence.  

6. IG: Evaluates the information gain over a center bias map. It can handle center bias and 

it has an interpretative linear scale:  

67�,, 7-8, 9/� = �
� ∑ 7-8, 9/":��;<-= + �"/ − ��;<-= + @"/A"         (8) 

where S is a saliency map, G is a ground-truth fixation map, x and y are the coordinates of 

the exact fixation location, N is the number of fixations, B is the center bias map, and ε is 

a small value for regularization. IG has to be larger than zero. A center bias map is 

emerged by averaging the ground-truth fixation maps of all other images in the dataset. A 

positive score indicates a saliency model prediction outperform the center bias map. A 

negative score indicates the saliency model prediction cannot compete with the center 

bias map. 

7. SIM: A measure of intersection between two distributions. It measures the similarity 

between a saliency map and a fixation map:  

,6B-,, 7/ = ∑ C��-,", 7"/"                       (9) 

where 

∑ ,"" = ∑ 7"" = 1                         (10) 

A positive score indicates an intersection between the saliency map and the fixation map, 

while a score of 0 indicates no intersection between the two maps.  
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8. CC: Is an evaluation of the linear relationship between a saliency map and a fixation 

map. It treats the saliency map and the fixation map as random variables and measures 

the dependence between the two variables:  

EE-,, 7/ = !$F-2,G/
5-2/5-G/                        (11) 

where ��H-,, 7/ is the covariance between the saliency map and the fixation map. A 

score equal to -1 or 1 indicates a perfect correlation, and a score of 0 indicates no 

correlation between the two maps.  

9. KL: Is a probabilistic interpretation of the saliency and fixation maps. It measures the 

loss of information when a saliency map approximates a fixation map:  

IJ-,, 7/ = ∑ 7"��;" K= + GL
M
2LN                  (12) 

As a dissimilarity metric, a score of 0 indicates the saliency map and the ground-truth 

fixation map are identical.  

10. EMD: Is another dissimilarity metric that measures the spatial distance between two 

distributions. Computationally, it is the minimum cost required to move one distribution 

to another. Formally:  

OBPQ = �C�� ∑ R"ST"S",S � + |∑ ,"" − ∑ 7"" |C�8T"S            (13) 

�. V. R"S ≥ 0, X R"SS ≤ ,", X R"S" ≤ 7" 

X R"S = C�� YX ,"" , X 7SS Z".S  

where R�[ is the flow be transported from supply � to demand j, and T�[is the ground 

distance (cost) between bin � and bin j in the distribution. A score of 0 indicates the 
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distribution in the saliency map and the distribution in the fixation map are identical. As 

the score increases, the distance between the two distributions increases.  
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CHAPTER 3 

DEEP FEATURES OF DEEP LEARNING NEURAL NETWORKS 

3.1 Introduction: 

Deep neural networks (DNNs) have achieved significant performances recently. Such 

neural networks can be categorized as multi-layer perceptron (MLP), recurrent neural networks 

(RNN), deep belief networks (DBN), generative adversarial networks (GAN), and convolutional 

neural networks (CNN). In image processing and computer vision, CNNs are more intuitive to be 

used than other DNNs due to the correlation of neighboring pixels. 

CNNs are inspired by the biological process of visual information as a simulation of the 

visual information transmission pattern among neurons of the visual cortex [112]. In such 

architecture, each cortical neuron responds to a stimulus in a receptive field. The receptive fields 

of different neurons overlap with each other to cover the entire stimuli. In 1989, LeCun et al. 

learned convolutional kernels coefficients of hand-written digits using backpropagation [113]. In 

2012, Krizhevski et al. achieved a breakthrough of classification performance using the concept 

of deep learning [114]. Later, a large number of CNNs have been proposed to achieve higher 

classification accuracy by increasing the depth of neural networks [115-121]. 

While a large number of studies achieved outstanding performances, CNNs used in this 

dissertation are reviewed. In addition, the learning model, and deep features mathematical 

computations are also reviewed in this section. 

3.2 DCNN Formalization: 

1. Convolution: Is a filter kernel that learn its weights by convolving such kernel with the 

input data tensor. Such operation can be formalized by: 

� = \�8 + ]                            (14) 
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where \� denotes the weighting filter, 8 is the tensor of data, and ] is the bias vector. 

Several parameters effect the output of a convolutional operation including number of 

filters and strides. A number of filters specifies the number of output feature maps. A 

stride is the distance in pixels between two pixels. For example, when stride equals 2, the 

convolution is computed for every other pixel causing to down sample the input tensor of 

data. 

2. Activation: Is an operation that transforms the input from linear to nonlinear tensor of 

data. In deep learning, a variety of activation functions are popular including sigmoid, 

tanh, rectified linear units (ReLU), etc. All CNNs presented in this dissertation exploit 

ReLU activation function which can be mathematically defined as: 

^ = max -0, �/                          (15) 

Another popular activation is SoftMax, which is used to determine the probability of 

classified objects. The SoftMax can be formalized as: 

� =   bc
∑  bc                             (16) 

3. Pooling: Is a down-sampling operation that can be performed locally or globally. A local 

pooling function down-samples local image regions by a factor. A global pooling 

function returns a scalar value for every 2D feature map. A max pooling and average 

pooling are two pooling operations exploited by the CNNs presented in this dissertation. 

All presented CNNs exploit local max pooling functions. In addition, such CNNs exploit 

global max pooling (GMP) and global average pooling (GAP). 

4. Batch Normalization: Is a normalization operation developed to overcome the problem 

of vanishing values. A batch normalization is learned by: 

� = d8e" + *, � ∈ {1, … , m}                       (17) 
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Where d and * are learning parameters, and m is the number of mini-batches. 

Moreover, 8e is a normalization function formalized by: 

8e" = jL34ℬ
l5ℬ�
M                              (18) 

Theℬdenotes a mini-batch that consists of C samples, and = is a constant. Also, m and 

n are the mean and standard deviation of mini-batch ℬ. 

5. Dropout: Is a regularization technique that aims to reduce over-fitting of neural 

networks. The Dropout layer is presented only in the training phase, where a constant 

represents the percentage of neurons to be randomly assigned to zero. In the testing 

phase, the Dropout layer is ignored by assigning the constant to zero. 

6. Fully Connected Layer: Is a layer where the receptive field is an entire channel of the 

previous layer. A fully connected layer (FC) is usually followed by an activation layer.  

3.3 Model Hyper Parameters: 

 In order to learn a CNN model, several hyper parameters can be adjusted manually 

including batch size, number of epochs, learning rate, momentum, and weight decay. A mini-

batch is the number of samples required for a single iteration update. An epoch is computation of 

all samples over the entire dataset. Learning rate is a step size considered during training that 

controls the speed of the training process. Moreover, momentum is a method for accelerating the 

training process by moving the average of the gradient. A weight decay is a technique that 

prevents the learning weights from over-growing. 

3.4 Learning Model: 

A typical learning model consists of a forward kernel, cost function, backward kernel, 

and an optimization function. The forward kernel consists of a subset of convolutional layers as 

described previously. The cost function (also known as loss) is a function that compares the 
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prediction of the forward kernel and the annotation label. CNNs used in this dissertation exploit 

the cross-entropy cost function. The backward kernel estimates the loss in prediction over the 

convolutional layers of the forward kernel using backpropagation. Moreover, an optimization is a 

technique of updating weights of the CNN. Stochastic gradient decent (SGD) is a first order 

optimization algorithm designed to find local minima of an objective function. The SGD reduces 

the prediction error rate as a function of training epochs. Adam is another iterative optimizer that 

updates the learning weights by using an adaptive learning rate from estimates of the first and 

second momentums of the gradients. 

3.5 Convolutional Neural Networks: 

Seven benchmark CNNs are exploited in this dissertation. Such CNNs are pre-trained for object 

classification and scene classification using the ImageNet and Places205 datasets. The 

architecture differences between these models are described below: 

1. AlexNet: Consists of five convolutional layers followed by two fully connected (FC) 

layers and a probability layer [114]. The first two convolutional layers consist of 11 ×
11 filter size and 96 feature channels, and 5 × 5 filter size with 256 feature channels. 

Each convolution layer is followed by a max pooling layer. The next three convolution 

layers exploit 3 × 3 filter size and the number of feature channels is 384, 384, and 256, 

respectively. Using a global maximum pooling (GMP), the two FC layers consist of 4096 

neurons each. The FCs are followed by a SoftMax layer, which consists of 1000 class of 

objects. The architecture of the model can be illustrated in Figure 4. 

 



 

29 

 

 

 

Figure 4 - Architecture of the AlexNet CNN model. Conv: convolution layer, MaxPool: max 

pooling layer, and FC: fully connected layer. 

 

2. VGG: Demonstrated that the depth of the neural network is a critical component of 

object classification [122]. A general architecture of the VGG start with two blocks of 

two convolution layers followed by a max pooling layer. In addition, VGG employs three 

FC layers followed by a SoftMax layer. Figure 5 presents the general architecture of a 

VGG. 

 

Figure 5 - General architecture of VGG. Conv: convolution layer, MaxPool: max pooling layer, 

and FC: fully connected layer. 

 

Several VGG variants have been used in a variety of applications. In this 

dissertation, two variants of VGG are exploited: VGG16 and VGG19. As the names 

indicate, VGG16 consist of 16 layers. The first four convolution layers comes from the 

general VGG concept followed by three blocks of convolutions. Each block consists of 

three convolution layers followed by a max pooling layer. Similarly, VGG19 employs the 
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first four convolutional layers of the general VGG concept followed by three blocks of 

four convolution layers followed by a max pooling layer. The complete structure of 

VGG16 and VGG19 is presented in table 2. 

 

Table 2 - Configuration settings of VGG16 and VGG19 variants. 

VGG16 VGG19 

16 weight layers 19 weight layers 

Input (64 × 64 RGB Image) 

Conv (3 × 3)-64 

Conv (3 × 3)-64 

Conv (3 × 3)-64 

Conv (3 × 3)-64 

Max Pooling 

Conv (3 × 3)-128 

Conv (3 × 3)-128 

Conv (3 × 3)-128 

Conv (3 × 3)-128 

Max Pooling 

Conv (3 × 3)-256 

Conv (3 × 3)-256 

Conv (3 × 3)-256 

Conv (3 × 3)-256 

Conv (3 × 3)-256 

Conv (3 × 3)-256 

Conv (3 × 3)-256 

Max Pooling 

Conv (3 × 3)-512 

Conv (3 × 3)-512 

Conv (3 × 3)-512 

Conv (3 × 3)-512 

Conv (3 × 3)-512 

Conv (3 × 3)-512 

Conv (3 × 3)-512 

Max Pooling 

Conv (3 × 3)-512 

Conv (3 × 3)-512 

Conv (3 × 3)-512 

Conv (3 × 3)-512 

Conv (3 × 3)-512 

Conv (3 × 3)-512 

Conv (3 × 3)-512 

Max Pooling 

FC-4096 

FC-4096 

FC-1000 

SoftMax 

 

3. GoogLeNet: Reduced the computation complexity in comparison to traditional CNNs 

[123]. The model introduces an inception module which incorporates variable receptive 

fields created by different kernels sizes. Figure 6 presents the architecture of the inception 
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module. 

 

Figure 6 - Architecture of the inception module. 

 

The GoogLeNet consists of nine inception modules following three convolution layers 

and two max pooling layers. One max pooling is after the first convolution layer. Another 

max pooling layer is after the third convolution layer. In addition, the model employs a 

single FC layer followed by a SoftMax layer. 

4. ResNet: Utilizes identity learning by introducing residual paths known as skip 

connections [124]. A skip connection structure varies based on the ResNet variant. Figure 

7 presents the general architecture of a residual block, which consists of the summation 
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of skip connection and previous layer in a residual network that consists of 50 layers. 

 

Figure7 - Architecture of a ResNet50 residual block. 

 

A residual neural network solves the problem of vanishing gradients by using batch 

normalization after every convolution layer. Moreover, the skip connections allow for 

ultra-deep CNN development. Several variants of ResNet have been implemented 

including 18, 20, 34, 50, 101, 152, 1202, etc. The ResNet50 is a popular variant that 

consists of 49 convolution layers followed by one FC layer. Figure 8 presents deep 

feature maps extracted from a variety of layers of ResNet50. 

 

 



 

33 

 

 

 

Figure 8 - Visualization of deep features of layer 1, 5, 10, 15, 20, 30, 40, and 49 of ResNet50. In 

each visualized layer, one convolution feature is randomly selected and presented. 

 

3.6 Neural Network Parameters: 

One way to measure the computation cost of DCNNs, is to count the number of learning 

weight values known as parameters. For a convolution layer, the calculation of number of 

parameters can be formalized as: 
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����Cℓ =  sj × st × Rℓ3� × Rℓ + ]ℓ                    (19) 

Theℓ is the layer number,sj × st is the weight window dimensions in the 8 and 9 direction, 

R is the number of feature channels, and ] is the bias. The total number of parameters in every 

network in this chapter is presented in table 3. 

 

Table 3 - Presents the number of parameters of CNNs described in this chapter. 

CNN Number of Layers Number of Parameters 

AlexNet 5 62.4M 

VGG16 16 138.4M 

VGG19 19 143.7M 

GoogLeNet 22 6.8M 

ResNet50 50 25.4M 

ResNet101 101 44.5M 

ResNet152 152 60.2M 
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CHAPTER 4 

ANALYSIS OF INFANTS AND ADULTS EYE FIXATIONS 

4.1 Introduction: 

A large body of computational models are proposed to predict human fixations. To 

measure the agreement between a computational model, several evaluation measures are 

introduced. Authors compared their proposed saliency model to a benchmark of popular models 

[125,126]. For ease of conducting comparisons, several authors provided a publicly available 

datasets of images and human annotations recorded from eye tracking experiments. Several 

authors also provide the source code for their computational models, evaluation metrics, and 

fixation map generation. Because of the availability of the datasets and source codes, researchers 

conducted fundamental comparisons. Nowadays, a comparison of saliency models is conducted 

over two image datasets [127]. 68 saliency models and 5 baselines are compared over the first 

dataset. 22 saliency models and 5 baselines are compared over the second dataset. Saliency 

models are compared over eight evaluation metrics including AUC Judd, AUC Borji, sAUC, 

NSS, CC, SIM, KL, and EMD. Borji et al. [128] compared 32 models for prediction of fixation 

location and scan-path sequence. A shuffled area under the ROC curve (sAUC) is used to 

analyze the models. Then, explored challenges such as center bias and blurring. Borji et al. [129] 

evaluated 35 models over 54 synthetic patterns, and three natural image datasets. Then, used 

three metrics to evaluate the performance of the computational models. These metrics are: Area 

under the ROC curve (AUC), normalized saliency scan-path (NSS), and Pearson’s correlation 

coefficient (CC). Finally, tackled challenges of the comparison, including center bias, borders 

effect, scores, and parameters. Judd et al. [130] compared 10 computational models and 3 

baselines over a dataset of 1003 images and annotations recorded from 39 observers. Models 
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were compared using 3 metrics AUC Judd, similarity (SIM), and earth movers’ distance (EMD). 

Then, optimized the center bias and blur for all models in the dissertation. Borji et al. [111] 

compared 40 models including 28 salient object detection models, 10 fixation prediction models, 

one object detection model, and one baseline model. The comparison is conducted over six 

datasets. Models were compared using 3 metrics AUC, F-measure, and mean absolute error 

(MAE).  

All previously proposed saliency models were compared to human recorded fixations 

using a several eye tracking datasets. The recorded eye tracking datasets were collected from 

human adults, because adults gaze patterns are consistent. Although infant’s visual acuity is 

poor, their gaze patterns are not random [105].  

During the first 4 months, infants learn trace complex con- tours and follow moving 

objects to shift their gaze toward the target of interest [131]. Such systematic patterns are 

developed as a result of neural growth in the structure of retina and cortical areas. Between age 

of 4 and 6 months, infants develop more complex visual attention mechanism. This mechanism 

exploits suppression of competing information during attention-oriented shifts [132]. Infants at 9 

months suppress previously cued locations in the scene after they are visited [133,134]. Previous 

studies demonstrate that infants gaze patterns are more easily learned than adults gaze patterns 

[105,135].  

In this chapter, a dataset of eye tracking recorded infants and adult’s fixation is exploited. 

The ground truth fixations from infants and adults are compared to eight benchmark saliency 

models and two baselines using eight standard evaluation metrics. Throughout this chapter, first, 

a brief review of saliency comparisons is presented. Then, dataset, models, and metrics used in 
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this chapter are explained. And then, extensive comparisons of infants and adults are 

demonstrated. Finally, findings are summarized and pointed out.  

4.1.1 Contributions: 

Three contributions are presented in this chapter. First, demonstrate how well saliency 

models can predict infants and adults eye fixations. Second, present the ranking order of saliency 

models over infants and adults. Third, highlight the differences between infants and adults gaze 

patterns. 

4.2 Methods and Materials: 

4.2.1 Computational Saliency Models: 

In this chapter, eight selected bottom up saliency models and two baseline models are compared 

using experimental fixations dataset of infants and adults. All selected saliency models have been 

widely used and frequently cited in the literature. The eight selected saliency models are briefly 

described as follows: 

1. Itti model [24] first extracts three visual features: color, intensity, and orientation. It then 

applies spatial competition via center surround operation to create conspicuous maps 

corresponding to the feature dimensions. The conspicuous maps are then linearly 

combined with equal weights into a single saliency map. The implementation of this 

model used in this chapter includes a slight blur as a final step [59].  

2. Graph based visual saliency model (GBVS) [58] is a graph implementation of the Itti 

model. The model uses a Markov chain as an activation map and incorporates a center 

prior.  
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3. HouNips model [136] trains (8 × 8 pixels) RGB image patches and learns 192 feature 

functions. Then uses code length increment as a change of entropy with respect to feature 

activity probability increment.  

4. HouCVPR model [137] processes the image in frequency domain where the difference 

between the logarithm of magnitude and the logarithm of blurred version of the 

magnitude is a residual spectral.  

5. CBS model [138] extracts three features: super-pixel color, closed shapes, and center 

bias. Then detects salient regions using contour energy computation.  

6. SUN model [29] uses a Bayesian framework to detect saliency as self-information in 

local image patches. The model uses difference of Gaussians (DoG) and independent 

component analysis (ICA) as visual features.  

7. AIM model [26] learns a dictionary of image patches using ICA as visual features then 

uses self-information on local image patches to produce a saliency map.  

8. AWS model [139] uses luminance and color to create local energy and color maps. Then 

generates multiple scales of the feature maps and uses principle component analysis 

(PCA) to de-correlate the multi-scale information of each feature map.  

Figure 9 shows six representative input images and the corresponding ground-truth 

fixation maps for infants and adults and saliency maps obtained by eight selected saliency 

models. The Itti, GBVS, and AWS models produce similar results, because these three models 

use same features (intensity, color, and orientation). Similarly, SUN and AIM models produce 

similar results because both models use ICA as image features and self-information as a saliency 

construction operation.  
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In addition to infants and adults’ comparisons using the saliency models, comparisons 

with two baseline models including chance and center are also conducted. A chance baseline 

model selects pixels randomly as salient locations. A center baseline model is a 2D Gaussian 

shape in which the center is counted as the most salient, and the salient values decrease as the 

distance increases from the image center [110].  

 

Figure 9 - Row 1 presents the photographs of six representative input images. The corresponding 

ground-truth fixation maps of infants and adults are shown in row 2 and 3, respectively. Saliency 

maps obtained by 8 saliency models are shown in row 4 through 11.  
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4.2.2 Stimuli: 

Sixteen color images were used as the stimuli for collecting infants and adults eye 

movements. The images are 8 indoor scenes and 8 outdoor scenes. Human is presented in all 

images. In some image’s human is presented in the foreground, while in some other image’s 

human is presented in the background. The size of each image is 1050 ×  1680 pixels.  

4.2.3 Protocol Experiments: 

In this chapter, a dataset of 16 images and recorded eye tracking data from 20 participants 

(10 infants and 10 adults) are used. All human data is provided by a research group at Brown 

University and the experimental protocol was approved by the Brown University Institutional 

Review Board. The detailed description of the experiments can be found in previous work 

[140,141].  

The participants were 10 infants (mean age = 9.5 months) and 10 adults (mean age = 19 

years). All participants sat at a distance of approximately 70 cm from a 22-inch (55.9 cm) 

computer. Infants sat at parents’ lap. A remote eye tracker (SMI SensoMotoric Instruments RED 

system) was used to record participants’ gaze path as they freely viewed each image. A digital 

video camera (Canon ZR960) was placed above the computer screen to record head movements. 

All calibrations and task stimuli in this chapter were presented using the experimental center 

software provided from SMI. Before starting the task, an attractive looming stimulus was 

presented in the upper left and lower right corners of the screen to calibrate the point of gaze 

(POG). The same calibration stimulus was then presented in all four corners of the screen to 

validate the accuracy of calibration. Images span the entire screen in a random order for 5 

seconds. A central fixation target was used to return participants’ POG to the center of the screen 

between images.  
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Figure 10 shows representative indoor and outdoor images with fixations distributions for 

infants (red circles) and adults (blue circles). In general, both infants and adults demonstrate high 

fixation density on human objective presented in images. Also, adult fixations show a larger 

distribution spread than infant fixations.  

 

Figure 10 - Two representative images of gaze patterns of infants (top images) and adults 

(bottom images) over an indoor and outdoor scene. Red and blue circles highlight the fixation 

locations for infants (red) and adults (blue).  

 

In order to evaluate a saliency map, the recorded eye fixations are post-processed and 

formatted to be ready to use. A ground-truth fixation map is obtained by convolving the binary 

map (one for fixation exact location and zero elsewhere) with a Gaussian function. The standard 

deviation of the Gaussian function is equivalent to 1◦ of visual angle. One degree of visual angle 

represents an estimation of the fovea [140].  
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4.2.4 Evaluation Metrics: 

Performance of a saliency model is often compared to human fixations map using 

evaluation metrics to describe the agreement between a saliency map and human fixations map. 

In this chapter, seven metrics are used for evaluating the performance of selected saliency 

models. The motivation for analyzing saliency models with seven metrics is to ensure that the 

summarized conclusions are independent of the choice of metric and consistent across all 

metrics. Generally, a good saliency model should perform well across all metrics.  

The two binary classification measures are based on the intersection of the area between 

predicted saliency and human fixations, including receiver operating characteristics (ROC) and 

precision-recall (PR). From the ROC measure, the area under ROC curve (AUC) is reported as 

the first evaluation metric. Also, F-measure (metric) score is obtained from PR. Moreover, three 

metrics measure the similarity and two metrics measure the dissimilarity between a saliency map 

and a ground-truth fixation map are also used in this chapter [113]. The similarity-based metrics 

are: information gain (IG), similarity (SIM), and Pearson’s correlation coefficient (CC). The 

dissimilarity-based metrics are: Kullback-Leibler divergence (KL), and earth movers’ distance 

(EMD).  

4.3 Results and Discussion: 

In this section, a comparison of eight saliency and two baseline models for prediction of 

fixations between infants and adults is presented. Then, saliency models are compared over 

infants and adults, separately.  

4.3.1 Analysis over infants and adults: 

Figure 11 presents the average receiver operating characteristics (ROC) curve, and 

precision recall (PR) curve of eight saliency and two baseline models over the dataset used in 
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this chapter, for infants and adults, respectively. The ROC curves of the saliency models over 

infant and adult fixations are comparable. On the other hand, the PR curves of saliency models 

over adult fixations outperform the PR curves of the saliency models over infant fixations.  

 

 

Figure 11 - Averaged ROC and PR curves of eight saliency models and two baseline models 

over infants (top charts) and adults (bottom charts).  

 

To summarize the performance of saliency model’s fixation prediction over the infant 

and adult fixations, figure 12 presents the AUC score and F-measure over the infants and adults’ 

data. In figure 12, a comparison is conducted between infant and adult ground-truth fixation 

maps over all eight saliency models and two baselines. The AUC score indicates that there is no 

significant difference between infants and adults for all eight saliency and two baseline models. 

Comparatively, the F-measure (figure 12 right) over adult fixations is significantly larger than 

the F-measure over the infant fixations for all eight models except the HouNips model. This 
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indicates that the overlap between the predicted and retrieved fixations for adults is larger than 

infants. In addition, for both baseline models, the F-measure for adults is significantly larger than 

that for infants.  

 

Figure 12 - Averaged AUC score and F-measure for infants and adults. A * indicates statistical 

significance using t-test (95%, p ≤ 0.05). Error bars indicate standard error of the mean (SEM).  

 

Figure 13 presents the average score of information gain (IG), similarity (SIM), and 

correlation coefficient (CC) for infants and adults over all saliency and baseline models. As 

shown in figure 13 left, adults have significantly larger IG scores than infants over all saliency 

models except the HouNips model. Although a center bias map outperforms all saliency and 

baseline models for infants and adults, adults are significantly fit to their center bias maps better 

than infants. This is because that, the distributions predicted by saliency models are more 

comparable with the distribution of fixations in adults than infants.  
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Figure 13 - Averaged IG, SIM, and CC scores for infants and adults. A * indicates statistical 

significance using t-test (95%, p ≤ 0.05). Error bars indicate SEM.  

 

Furthermore, the SIM score (figure 13 middle) over adult ground-truth fixation maps is 

significantly larger than the SIM score over infant ground-truth fixation maps for CBS, SUN, 

AIM, AWS, models and both baseline models. It indicates that saliency maps are intersected 

with adult ground-truth fixation maps more than infants. This occurs because the difference 

between saliency map and fixation map at each pixel are smaller in adults than in infants.  

As shown in figure 13 right, infants and adults are not significantly different in terms of 

CC score. Both infants and adults have positive correlation with all eight and center baseline 

models. Although the maps obtained from the saliency and center baseline models are not 

identical to the infant or adult fixation maps, the pattern of salient values in the saliency and 

center baseline maps change in the same direction for the corresponding values in infant or adult 

ground-truth fixation maps. Interestingly, both infants and adults have a score close to zero in the 

chance baseline model. This occurs because values of the chance baseline model change 

randomly, while values of the fixation maps for infants and adults change in a specific pattern. 

Therefore, the chance baseline model does not follow the direction of values changing in the 

fixation maps for infants and adults.  
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Figure 14 - Averaged KL and EMD scores for infants and adults. A * indicates statistical 

significance using t-test (95%, p ≤ 0.05). Error bars indicate SEM.  

 

Two dissimilarity measures are presented in figure 14. In the left chart of figure 14, the 

KL scores of adults are significantly lower than that of infants in CBS, AIM, and two baseline 

models. This observation indicates that saliency models lose significantly less information in 

approximating adults than infants. In the right chart of figure 14, the EMD scores of adults is 

significantly lower than the corresponding values of infants for all saliency and baseline models 

except the HouNips model. It proves that the spatial locations in the saliency maps are 

significantly closer to adults’ fixation locations than infant’ fixation locations.  

Overall, the performance of infants and adults is consistent across all seven evaluation 

metrics regardless of the significant difference. Adults’ scores are larger than infants’ scores over 

all similarity-based metrics. Consistently, adults’ scores are smaller than infants’ scores over all 

dissimilarity-based metrics. Such consistency of larger scores for adults than for infants indicate 

that adults eye falls on more salient locations than infants. It also indicates that adult distribution 

of fixations is more spread than infant’s distribution of fixations.  
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4.3.2 Analysis over infants: 

Table 4 presents the ranking of saliency models for infant fixation prediction over the 

image dataset. Although the ranking of models differs based on different metrics, some general 

patterns can be observed. Using the AUC score, the GBVS model has the highest score, and the 

center baseline and Itti models are among the top three ranking. High AUC score for the center 

bias indicates a high density of infant fixations near an image center. This is due to observer 

viewing strategies and photographic bias [142-144]. Observers tend to look near the center of the 

image. One explanation could be that photographers center the object of interest while capturing 

image. Similarly, using F-measure, GBVS scores the highest and center baseline and Itti rank 

second and third, respectively. High performance of the center baseline model indicates high 

center preference over the dataset. For the IG score, GBVS, Itti, and AWS ranked first, second, 

and third, respectively. This indicates that the three models are more fit to the center bias 

emerged from infant fixations than the center baseline model. For the SIM score, GBVS ranked 

first, Itti ranks second, and center baseline model ranks third. The top three models have a larger 

overlap with the infant ground- truth fixation map. The center baseline performs closely with 

AWS and HouNips models. For the CC score, GBVS scores the highest, HouNips scores second, 

and Itti scores third. This proves that the saliency maps obtained by these three models have a 

stronger positive correlation with infant ground-truth fixation maps. Also, using KL score, 

GBVS, Itti, and center baseline are ranked first, second, and third, respectively. It indicates a 

more adequate approximation of the ground-truth fixation map by the top three ranking models. 

Finally, for the EMD score, GBVS, HouNips, and Itti are ranked top three. The three top ranking 

models are less different spatially with the infant ground-truth fixation maps than the center 

baseline model.  
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Table 4 - Ranking of eight saliency and two baseline models over infants using seven evaluation 

metrics. Top three models are highlighted red, green, and blue, respectively.  

 AUC F-measure IG SIM CC KL EMD 

Itti 0.71 ± 0.02  0.76 ± 0.02  -13.76 ± 0.09  0.45 ± 0.02  0.36 ± 0.05  1 ± 0.07  9.31 ± 0.73  

GBVS 0.77 ± 0.01  0.81 ± 0.02  -13.64 ± 0.11  0.49 ± 0.01  0.44 ± 0.03  0.9 ± 0.05  8.10 ± 0.66  

HouNips 0.59 ± 0.01  0.71 ± 0.02  -14.42 ± 0.22  0.41 ± 0.02  0.36 ± 0.05  1.54 ± 0.13  8.48 ± 0.86  

HouCVPR 0.58 ± 0.02  0.67 ± 0.02  -14.23 ± 0.12  0.38 ± 0.02  0.23 ± 0.04  1.39 ± 0.09  9.76 ± 0.69  

CBS 0.63 ± 0.02  0.73 ± 0.02  -14.11 ± 0.12  0.40 ± 0.01  0.17 ± 0.039  1.3 ± 0.06  10.24 ± 0.81  

SUN 0.59 ± 0.02  0.67 ± 0.01  -14.05 ± 0.08  0.39 ± 0.01  0.18 ± 0.03  1.22 ± 0.06  10.71 ± 0.64  

AIM 0.61 ± 0.02  0.67 ± 0.01  -14.33 ± 0.12  0.39 ± 0.01  0.20 ± 0.03  1.35 ± 0.05  10.62 ± 0.67  

AWS 0.64 ± 0.02  0.71 ± 0.01  -13.92 ± 0.10  0.41 ± 0.02  0.29 ± 0.04  1.18 ± 0.07  10.18 ± 0.75  

Chance 0.50 ± 0  0.60 ± 0.02  -14.58 ± 0.06  0.35 ± 0.01  0±0  1.59 ± 0.05  11.03± 0.60  

Center 0.75 ± 0.01  0.79 ± 0.02  -13.98 ± 0.06  0.41 ± 0.01  0.26 ± 0.03  1.13 ± 0.04  10.08± 0.64  

 

In general, GBVS model ranks first across all evaluation metrics. It indicates that the 

GBVS model is more suitable to predict infants’ fixations than any other models used in this 

chapter. The Itti model is among the top three ranking models across all metrics. This occurs 

because the Itti model is enhanced by slightly blurring the saliency map. Therefore, the Itti 

model increases the size of the predicted distribution. The center baseline model outperforms 

most models in AUC and F-measure. The reason is that, true positives fall near the center of the 

image as a result of infant’s fixations bias. Therefore, the center baseline model achieves higher 

score than many other models. Another important observation is that, all models outperform the 

chance baseline model over all metrics. It indicates that infant gaze patterns are not random and 

follow a specific visual mechanism.  

4.3.3 Analysis over adults: 

Table 5 presents the ranking of saliency models over the image dataset for adults. For 

both AUC score and F-measure, GBVS, center baseline, and Itti models rank as top three. This 
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shows that adult fixations are dense near the image center. The adult fixations are not only 

allocated near the center of the image, but also have higher overlap between the saliency map 

and fixation map. Using the IG score, the GBVS, Itti, and AWS rank as the top three models. It 

indicates that a center bias emerged from adult fixations is more fit to GVBS, Itti, and AWS 

models. For the SIM score, the top three models are GBVS, Itti, and AWS models, respectively. 

This means that’s the saliency maps obtained by these three models are more correlated with the 

adult ground-truth fixation maps than the other models. Using the CC score, GBVS scores the 

highest, and the HouNips and Itti models are among the top three. The adult ground-truth 

fixation maps are more correlated with GBVS, Itti, and AWS models than the center baseline 

model. Using the KL score, GBVS ranks first, Itti model ranks second, and the center baseline 

model ranks third. It indicates that GBVS and Itti models have a higher approximation of the 

adult ground-truth fixation maps than the center baseline model. For the EMD score, the GBVS, 

center baseline, and Itti models rank as the top three. Also, as shown in table 3, the GBVS model 

has a lower EMD score than all other models. It indicates that distribution allocation of an adult 

ground-truth fixation map is more predictable by the GBVS model than other models in this 

chapter.  

Generally, the GBVS model ranks as the first over all metrics. The GBVS model is more 

suitable for predicting the adult fixations than the other models in this chapter. Also, Itti model 

demonstrates its consistency ranking among the top three models. The good performance of the 

center baseline model over all metrics indicates a strong bias of adult fixations toward the center 

of the image. Finally, all models outperformed the chance baseline model for the prediction of 

adult fixations.  
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Table 5 - Ranking of eight saliency and two baseline models over adults using seven evaluation 

metrics. Top three models are highlighted red, green, and blue, respectively.  

 AUC F-measure IG SIM CC KL EMD 

Itti 0.76 ± 0.01 0.84 ± 0.01 -13.26 ± 0.08 0.49 ± 0.01 0.35 ± 0.04 0.90 ± 0.06 6.76 ± 0.31 

GBVS 0.81 ± 0.01 0.88 ± 0.01 -13.063 ± 0.08 0.53 ± 0.02 0.44 ± 0.03 0.76 ± 0.05 5.40 ± 0.37 

HouNips 0.59 ± 0.01 0.74 ± 0.02 -13.87 ± 0.27 0.45 ± 0.02 0.37 ± 0.04 1.45 ± 0.17 7.58 ± 0.56 

HouCVPR 0.59 ± 0.01 0.72 ± 0.02 -13.64 ± 0.14 0.42 ± 0.02 0.24 ± 0.04 1.25 ± 0.10 7.38 ± 0.47 

CBS 0.66 ± 0.02 0.80 ± 0.01 -13.54 ± 0.09 0.46 ± 0.02 0.21 ± 0.04 1.07 ± 0.07 7.0 ± 0.60 

SUN 0.61 ± 0.02 0.72 ± 0.02 -13.50 ± 0.05 0.44 ± 0.02 0.19 ± 0.04 1.06 ± 0.06 7.46 ± 0.42 

AIM 0.63 ± 0.02 0.74 ± 0.02 -13.60 ± 0.10 0.44 ± 0.02 0.23 ± 0.03 1.15 ± 0.05 7.42 ± 0.41 

AWS 0.66 ± 0.02 0.78 ± 0.01 -13.33 ± 0.09 0.47 ± 0.02 0.32 ± 0.05 1.02 ± 0.07 7.31 ± 0.28 

Chance 0.50 ± 0 0.68 ± 0.02 -14.10 ± 0.05 0.39 ± 0.01 0±0 1.43 ± 0.05 7.78 ± 0.43 

Center 0.78 ± 0.02 0.84 ± 0.02 -13.39 ± 0.04 0.47 ± 0.01 0.3 ± 0.03 0.95 ± 0.05 6.84 ± 0.43 

 

4.3.4 Discussions of different datasets: 

The results over infants and adults demonstrate several differences between infants and 

adult’s visual attention. Such results were concluded with 16 images only. To justify the 

conclusions of the experimental results, MIT1003 dataset [30] was used to compare to the 

dataset of infants and adults. Because the MIT1003 images contain diverse scene context, a 

subset of 85 images were carefully selected to match the context of the images in the infants and 

adult’s dataset. The images are selected based on the following criteria: color, human presence, 

maximum size of human face is one fourth of the total image size, animals, and motion blur. 

Images that contained animals, motion blur, or human faces larger than one fourth the image 

were excluded to avoid a strong bias in the image. Saliency maps of the eight saliency models 

and two baseline models were computed on the subset of MIT1003 dataset. Then, scores of the 

seven evaluation metrics were obtained. Figure 15 shows the ranking of saliency models and 

baseline models over the infants and adults’ dataset and the subset of MIT1003 dataset. In the 
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ranking scheme, statistical significance between consecutive models was measured using t-test at 

the significance level of p ≤ 0.05. Although statistics of the two image datasets vary, some 

general patterns can be observed. The infants and adult’s dataset and the MIT1003 dataset have 

similar trends. GBVS ranked first and all saliency models and the center baseline model 

outperformed the chance baseline model using all seven evaluation metrics over both datasets. 

Also, the scores of the two datasets are comparable for all evaluation metrics except the IG score. 

This occurs because the center bias map calculated for the MIT1003 dataset is an average map of 

larger number of images than the infants and adult’s dataset.  
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Figure 15 - Ranking visual saliency models over infants (red bar charts) and adults (blue chart 

bars) dataset, and a subset of 85 images (green blue charts) from the MIT1003 dataset using 

seven evaluation metrics: AUC, F-measure, IG, SIM, CC, KL, and EMD. A * indicates statistical 

significance using t-test (95%, p ≤ 0.05) between consecutive models. If no * between two 

models that are not consecutive, it does not indicate that they are not significantly different. In 

fact, models that are not consecutive have higher probability to be significantly different than 

consecutive models. Error bars indicate SEM.  

 



 

53 

 

 

4.4 Conclusion: 

In this chapter, a dataset of images and recorded eye fixations from infants and adults is 

used to quantitatively analyze the difference between their gaze patterns. Eight state-of- the-art 

saliency and two baseline models are compared be- tween infants and adults. The ranking of 

eight saliency and two baseline models over both infants and adults are also provided in this 

dissertation. Seven standard evaluation metrics are used to evaluate the performances of all eight 

saliency and baseline models on prediction of fixations. The main conclusions of this comparison 

are: 1) Saliency models are significantly more overlapped, fit, and intersected with adult 

fixations than infant fixations, in terms of F-measure, IG, and SIM. 2) Saliency models have 

much less information loss in approximation, and spatial distance of distributions to adults than 

infants, in terms of KL and EMD. 3) GBVS and Itti models are among the top 3 contenders over 

infants and adults consistently. In other words, GBVS and Itti models are suitable for prediction 

of fixations for both infants and adults. 4) For the dataset used in this chapter, infant and adult 

fixations have bias toward the center of the image. Also, all models outperformed the chance 

baseline model. This demonstrates that not only adult gaze patterns are consistent, but also infant 

gaze patterns follow a systematic mechanism. This chapter provides a comparison of various 

saliency models on fixations prediction on both infants and adults. It may help the readers to 

understand the difference between infant and adult gaze patterns. These findings may also 

provide useful information on selection of saliency models for prediction of infant fixations.  
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CHAPTER 5 

DEEPFEAT FOR VISUAL SALIENCY PREDICTION 

5.1 Introduction: 

The human visual system has an exceptional ability of sampling the surrounding world to 

pay attention to objects of interest. Such ability is the visual attention that guides the visual 

exploration. Visual attention requires a complex cognitive mechanism to allocate the human gaze 

toward the objects of interest. In computer vision, a saliency map is defined to model the human 

visual attention. A saliency map is a 2D topological map that indicates visual attention priorities 

in a numerical scale. A higher visual attention priority indicates the object of interest is irregular 

or rare to its surroundings. The modeling of saliency is beneficial for several applications 

including image segmentation [8], object detection [43], image re-targeting [9], image/video 

compression [12], advertising design [19], and analysis of gaze patterns [2], etc.  

The research on saliency modeling is influenced by bottom- up and top-down factors. 

The bottom-up visual attention is triggered by stimulus, where a saliency is captured as the 

distinction of image locations, regions, or objects in terms of bottom-up features such as color, 

intensity, orientation, shape, T-conjunctions, X-conjunctions, etc. [3]. One of the bottlenecks that 

bottom-up saliency models suffer, is that they explain the scene partially as the majority of the 

human eye fixations are task driven. Following the feature integration theory (FIT) [22], the first 

saliency model was proposed [24]. The model exploits the biologically inspired center-surround 

scheme of color, intensity, and orientation at various scales to identify distinctive image 

locations. Bruce & Tsotsos proposed an attentional information maximization model to predict 

eye fixations [26]. The model uses self-information to detect saliency in local image regions. 

Zhang et al. derived a Bayesian framework that incorporates self-information of local image 
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regions with prior knowledge about the image [29]. Liu t al. developed a saliency model as a 

decision tree of regional saliency measurements including global contrast, spatial sparsity, and 

object prior [104]. Zhang & Sclaroff developed a saliency map based on a Boolean approach. 

The model combines binary maps and attention maps [33]. The binary maps are obtained via 

random thresholding of the color feature of the image. Attention maps are computed using the 

gestalt principle of the figure-ground segregation. Leboran et al. proposed a dynamic whitening 

saliency model to predict fixations in videos [145]. The model uses whitening to access the 

relevant information by removing the second order information.  

The top-down visual attention is driven by task. Top-down saliency models use prior 

knowledge, expectations, or rewards as high-level visual cues to identify the target of interest 

[52]. The recognition of an object of interest such as faces, people, and cars is an example of top-

down features. Several top-down saliency models have been proposed. Such as, Oliva et al. 

introduced a top-down visual search model based on Bayesian framework. The model exploits 

cognitive features and scales [146]. Contextual features are represented by reducing 

dimensionality of local features. The joint probability of a feature vector is computed using 

multivariate Gaussian distributions. Rao proposed an attention representation as a cortical 

mechanism for reducing perceptual uncertainty. The model exploits belief propagation in a 

probabilistic framework to combine bottom-up and top-down visual factors [80]. Judd et al. 

developed a saliency model to predict where human look by using low, mid, and high-level cues 

as support vector machines [30]. Borji et al. proposed a saliency model based on top-down 

factors to learn task driven object based visual attention control in interacting environment [147]. 

Wang et al. combined 13 bottom-up and top-down saliency models using several combination 

strategies [148]. Then the model has been trained as a support vector machine. 
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Recently, deep features of the deep neural networks (DNN), have been used in several 

applications, including imaging and video processing, medical signal processing, large data 

analysis, and saliency modeling as well [94]. Although the intuition of the DNN deep features 

remain unclear [149], several saliency models has been trained to detect bottom-up and top-down 

factors. Deep features are the response images of convolution, batch normalization, activation, 

and pooling operations in a series of layers in a deep convolutional neural network (DCNN) 

[150]. Such layers encode the conspicuous information about the image. In the first layer, the 

network learns low level cues such as simple edges. At higher layers, the network learns higher 

level cues. Later layers provide higher level of abstracts such as a class of objects.  

Deep learning saliency models demonstrated outstanding ability providing high accuracy 

prediction of human fixations. However, such models require large training times, and high cost 

system requirements. Several applications such as robotics requires a fast and low memory 

consuming saliency models. Today, robots are utilized to assist in several applications such as 

home service, rehabilitation, and assistant living [151], [152]. To overcome such issue, we 

introduce a fixed framework that uses data-driven features of DCNNs pre-trained for object 

classification to computes a bottom-up and top-down attention maps and combine them in a 

saliency map.  

5.1.1 Contributions: 

In this chapter, the contributions are threefold. First, a computational saliency model is 

proposed to predict human fixations using pre-trained deep features, codenamed DeepFeat. To 

our knowledge this is the only saliency model that combines deep features of pre-trained DCNNs 

without learning any parameters. Second, three implementations of the DeepFeat are computed 

and compared to investigate the role of the pre- trained deep features of three DCNNs in saliency 
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prediction. Third, through extensive evaluation over four evaluation metrics and 9 saliency 

models, it is demonstrated that the DeepFeat model achieves a satisfactory performance.  

5.2 Proposed Approach: 

5.2.1 Visualization of deep features: 

In this chapter, three popular deep convolutional neural networks are exploited to obtain 

the deep features. The three networks are: VGG [122], GoogLeNet [123], and ResNet [124]. All 

three DCNNs are pre-trained for object classification using the ImageNet dataset that consist of 

1.28 million images of 1000 classes of objects to classify [153].  

The VGG consist of 16 sequentially stacked convolution layers followed by rectified 

linear units (ReLU) nonlinearities. A max pooling is computed after every two layers in the first 

four layers, and after every three layers in the rest of the network.  

The GoogLeNet consist of 22 convolution layers if the mid- layers in the inception 

module are ignored. The main novelty of GoogLeNet is the inception module which combines 

multiple scales of the convolution layers.  

The ResNet used in this chapter consist of 50 convolution layers. The main feature of the 

network is that it combines the stack of convolution layers with their residual after every 3 

convolutions.  

Visualization of the architecture of the three DCNNs can be found 

online(http://www.vlfeat.org/matconvnet/models/). In this chapter, convolution response images 

are exploited as deep features for the bottom-up computation. In addition to that, as the fully 

connected layers and the last convolution layer of the VGG have a dimension mismatch, another 

VGG variant is used to implement the top-down saliency map [154]. All computations were 

done in MatConvNet [155].  
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5.2.2 DeepFeat Architecture: 

In this chapter, the DeepFeat saliency model is formalized as a fusion of a bottom and top 

down saliency map using a simple combination strategy. Figure 16 shows the architecture of the 

saliency model presented in this chapter.  

 

Figure 16 - Architecture of the saliency model used in this chapter. 

 

To compute the bottom up saliency map, the fully connected layers are neglected. Let 

� =  {�1, �2,w w w , �J} denotes the remaining layers of deep features treated as bottom up visual 

cues. The use of two scales of deep features reveals semantic cues about the image. Given �� =
 {R1, R2,w, Rx} ∈  	y×%×z, two scales of the deep features are exploited. Let {: �� →  	x 

denotes a fine scale of the deep features, where {[corresponds to a response image R[. Let 

~: �� →  	xdenotes a coarse scale deep features, where ~[corresponds to a down sampled 

response image R[followed by up-sampling. The two scales are computed using a dyadic 

gaussian pyramid. The pyramid consists of two operations: reduce and expand. The reduce 

operation is a down-sampling performed by suppressing every other row and column followed 

by a smoothing operation. The smoothing filter is formalized by: 

s-�, �/ = s-�/s-�/                           (20) 
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Where 

s-�/ = s-�/ = ��
� − (

< , �
� , �, �

� , �
� − (

<�                     (21) 

 

Where � is a constant usually between 0.3 and 0.6. In this chapter, � = 0.3. Let 6 be an input 

image, then the first down-sampling scale is denoted by: 

7�-8, 9/ = 6                              (22) 

 

The following down-sampling levels are formalized by: 

 7"
� = 	OP�EO-7"-8, 9//                         (23) 

 

The expand operation up-samples a given feature by: 

 

7"
�-8, 9/ = 4 ∑ ∑ s-C, �/7"-j3y
< , t3%

<<%�3< /<y�3<                (24) 

 

The relationship between the two scales is formalized as a center-surround operation:  

 	ℓ = ∑ �{ℓ − ~ℓ�S                              (25) 

 

The total response 	 of layer ℓ is normalized from 0 to 1 and linearly combined with the total 

response images from other layers of the network to contribute equally to the computation of the 

bottom up saliency map:  

B�� = ∑ ��	ℓ��ℓ�                             (26) 

 

The ℓ denotes the number of layers contributing to the computation of the bottom up saliency 

map, and �-w/ is a normalization operator.  

To compute the top down saliency map, the fully connected layers are utilized to 

emphasize the image classification as a top down component. Let ^ =  {^�, ^<,w w w , ^z}  ∈
	y×%×zdenotes a tensor of deep features from the last activation layer (convolution, rectified 

linear unit, pooling, etc.). Let � =  {��, �<,w w w , �z}  ∈ 	�×�×z×�denotes weights of the 



 

60 

 

 

classification classes, where �" =  :s�, s<,w w w , s!A�denotes a vector of weights for unit � ∈  x. 

The class activation map (CAM) [155] for a class � is formalized as:  

B! = ∑ �!�^"                                (27) 

 

The CAM of a class reflects an object localization of a class or classes with the largest 

probability score in the fully connected layer. All object classes of an image identified by the 

network are localized and presented as a top down saliency map. Let � =  :��, �<,www
 , ��A�denotes the softmax of the fully connected layer. The top down saliency map is formed by:  

B�� = ∑ �!�B!!                               (28) 

Top down factors explain majority of a scene, while bottom up factors explain the scene partially 

[156]. Therefore, a parameterized linear combination is defined between the top down and 

bottom up saliency maps:  

B� = -1 − �/B�� + �B��                          (29) 

 

where α denotes a constant equal to 0.5 in this chapter. A Gaussian map is computed to reflect 

the bias of human eyes toward the center of the image [157], [143]. The cut off frequency of the 

Gaussian kernel is the maximum dimension of the image. The incorporation of the Gaussian map 

is formalized by:  

B�! %� � = *B� + -1 − */;                       (30) 

Where * is a constant equal to 0.5. A gaussian center bias map ; is formalized by: 

;-8, 9/ =  d × �8� Y− K-j3j�/�
-t3t�/�
<5� NZ                 (31) 

 

Theddenotes a constant equal to 1, 8� and 9� corresponds the center of the image. Moreover, 

n is the cut-off frequency equivalent to the maximum dimension of the image. The final 

saliency probabilistic distribution map is formalized by: 
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, =  ��������
∑  ��������                           (32) 

5.2.3 Experimental Setup: 

1. Dataset: In this chapter, two popular datasets are explored to validate the performance of 

the DeepFeat saliency model. The datasets are: MIT1003 and VIU. Both datasets fall 

under free-viewing conditions. 

2. Evaluation Metrics: Saliency models are usually evaluated by comparing their 

predictions to human fixation maps using evaluation metrics. In this work, predictions of 

the pro- posed framework are evaluated using four evaluation metrics including AUC, 

NSS, CC, and KL. In general, the AUC is a standard evaluation metric. However, it 

suffers multiple flaws which requires the AUC judgement to be supplemented by other 

evaluation metrics [163]. The AUC and NSS scores evaluate the saliency predictions 

over the exact fixation points (binary fixation maps). Regardless of the fixation point lo- 

cation, the AUC score evaluates the ranking of the saliency values at the fixation points, 

while NSS evaluates the saliency value at the fixation points. In addition, the CC and KL 

are fixation distribution-based metrics where the empirical saliency map is computed by 

convolving a Gaussian kernel over the map of fixation points. The cut-off frequency of 

the Gaussian kernel is equivalent to one degree of visual angle.  

3. Saliency Models: To evaluate the performance of the DeepFeat model, three variants of 

the model are compared to nine saliency models including deep learning and 

conventional saliency models. The performance of the models is evaluated over the 

MIT1003 dataset only as the authors provides pre- computed saliency maps over the 

MIT1003 dataset. However, due to difficulty of compiling some of these saliency 
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models, the comparison of the saliency models performance over the VIU dataset is not 

provided. Table 6 provides a description of the saliency models used in this chapter.  

Table 6 - Compared saliency models. 

Model Name Features Category Year Pub. Ref. 

BMS BU CS 2013 ICCV [33] 

COV BU CS 2013 JOV [103] 

DVA DF DL 2018 TIP [159] 

eDN DF DL 2014 CVPR [96] 

iSEEL BU DL 2017 Neurocomp. [160] 

MLnet DF DL 2016 ICCV [105] 

RARE BU CS 2013 SPIC [161] 

SAM DF DL 2018 TIP [95] 

UHF BU ML 2016 ACCV [162] 

 

5.3 Results and Discussion: 

5.3.1 Analysis of the Architecture: 

Figure 17 presents the predicted saliency maps of three implementations of the DeepFeat 

model including DeepFeat bottom- up (BU) saliency map, DeepFeat top-down (TD) saliency 

map, and the combined bottom-up and top-down (BT) saliency map.  

The three saliency implementations are computed using deep features of VGG, 

GoogLeNet, and ResNet implementations. For visualization of the saliency maps, the histogram 

of the predicted saliency maps is matched to the average histogram of the empirical saliency 

maps of the corresponding dataset. This technique is applied to the other visualization figures in 

this paper.  
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Figure 17 - Row 1 show photographs of input images from the MIT1003 and VIU datasets. Row 

2 show the corresponding empirical saliency maps. Row 3 to 11 show three predicted saliency 

maps GoogLeNet, and ResNet.  

 

In figure 17, two consistent trends over all three model variations can be observed. The 

bottom-up saliency maps predict salient contours, while the top-down saliency maps predict 

localized objects. Moreover, the DeepFeat implementations demonstrate that GoogLeNet 

computes smoother saliency maps than VGG and ResNet, and ResNet provides smoother 

saliency maps than VGG. This occurs because GoogLeNet merges deep features of different 
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levels of blur. Similarly, the ResNet merges the residual deep features and the feed-forward 

blocks of deep features, while VGG combines feed-forward deep features only.  

To quantitatively analyze the saliency implementations over the deep features of the three 

DCNNs, four metrics, AUC, NSS, CC, and KL, were used for evaluations over MIT1003 and 

VIU datasets. Figure 18 shows scores of four metrics for three implementations of the proposed 

DeepFeat model using deep features of VGG, GoogLeNet, and ResNet with and without center 

bias. To measure the statistical significance, a t-test is used at the significance rate of p ≤ 0.05.  

In figure 18 without center bias, the combination of bottom- up and top-down (BT), top-down 

(TD), and bottom-up (BU) implementations are ranked first, second, and third, respectively. 

Such results are consistent over all three DCNNs and four metrics in both datasets. It indicates 

that the prediction of human fixation is more accurate when both bottom-up and top-down 

factors are assembled into the DeepFeat model. Moreover, it also can be found that the center 

bias significantly boosts the performance of the BU implementations more than the TD and BT 

implementations. This occurs because the BU implementation of the DeepFeat model computes 

the global contrast in terms of the deep features without any preference toward the center of the 

image. By adding a center bias to the bottom-up saliency map, salient regions toward the center 

receives more credit than those at the edges. The top-down implementation of the DeepFeat 

model detects objects of interest, which usually falls around the center of the image due to 

photography strategies [158].  
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Figure 18 - Averaged scores of three implementations (BU, TD and BT) of the proposed 

DeepFeat model using deep features of VGG, GoogLeNet, and ResNet with and without center 

bias. The analysis of score are presented using four evaluation metrics: AUC, NSS, CC, and KL 

over the MIT1003 and VIU datasets. A * indicates the two comparing models are significantly 

different using t-test at confidence level of � ≤  0.05. Standard error of the mean (SEM) is 

indicated by the error bars.  
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In general, all three implementations with and without center bias achieve a certain 

agreement with the human annotations over all four metrics in both datasets. It indicates that the 

deep features of all three DCNNs are rich with semantic information that can be useful to predict 

human fixation.  

5.3.2 Comparison with Other State-of-the-Art Saliency Models: 

In this section, the performance of the BT implementation of DeepFeat model to a variety 

of saliency models is evaluated. In this chapter, the VGG, GoogLeNet, and ResNet variants of 

the DeepFeat model are denoted as VGG, GoogLeNet, and ResNet, respectively. These three 

variants are compared to nine saliency models including BMS, COV, DVA, eDN, iSEEL, 

MLnet, RARE, SAM, and UHF. The description of the models can be found in table 4.  

Figure 19 shows 10 representative images from the MIT1003 dataset along with the 

corresponding empirical saliency maps and predicted saliency maps from the DeepFeat models 

and other nine saliency models. Fig. 20 shows the AUC, NSS, CC, and KL scores of twelve 

saliency models (three DeepFeat models and nine other models) over the MIT1003 dataset.  

Although the models ranking order is not identical over the four scores, some general patterns 

can be observed. Over the AUC score, all three DeepFeat models (GoogLeNet, VGG, and 

ResNet) are ranked in the top group together with the eDN, SAM, and iSEEL models. They are 

significantly higher than the other six models. In the NSS and CC scores, four deep learning- 

based models (SAM, DVA, MLnet, iSEEL) outperformed all other eight saliency models. The 

VGG, GoogLeNet, and ResNet are ranked fifth, sixth, and seventh ranking including three 

DeepFeat models. For the KL score, SAM, DVA, and MLnet are the top three ranking models. 

The VGG, GoogLeNet, and ResNet are ranked fifth, sixth, and eighth.  
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Figure 19 - Row 1 show the photographs of ten input images in MIT1003 dataset. Row 2 show 

the corresponding empirical saliency maps. The predicted saliency maps computed by three 

variants of the proposed DeepFeat model (VGG, GoogLeNet, and ResNet) are shown in row 3 to 

5. Rows 6 to 15 present saliency maps computed by 9 other saliency models.  
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Figure 20 - Averaged AUC, NSS, CC, and KL scores of twelve saliency models including three 

variants of the DeepFeat model (VGG, GoogLeNet, and ResNet) and 9 other saliency models 

over the MIT1003 dataset. A * indicates the two consecutive models are significantly different 

using t-test at confidence level of � ≤  0.05. Models that are not consecutive have a larger 

probability to achieve statistical significance.  

 

Generally speaking, the proposed DeepFeat models outperform the conventional saliency models 

and baseline learning models. It also can be found that the DeepFeat models can achieve 

comparable performance with top deep learning base saliency models in AUC score. The 

DeepFeat models cannot reach the performance of the top deep learning-based saliency models 

in NSS, CC, KL scores. However, the DeepFeat model does not require learning, which requires 

large training dataset and computational time. The DeepFeat model can be potentially applied to 
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predict human gaze pattern in the cases of lacks training dataset, such as infant gaze pattern 

prediction.  

5.3.3 Discussions: 

The proposed DeepFeat model exploits deep features of a pre-trained DCNN. One 

advantage of the DeepFeat model is its fusion of a bottom-up and top-down saliency maps. In 

Eq. 5, the constant � is used as a weight for combining bottom-up and top-down maps. When � 

is 0, the saliency map is top- down. At � equal 1, the saliency map is bottom-up. The � may 

affect the performance of the DeepFeat model. To evaluate the effect of �, the saliency maps are 

computed by changing α ranging from 0 to 1 with 0.1 step. Figure 21 presents the mean scores of 

four metrics for the DeepFeat model with various � using the MIT1003 dataset. The results 

indicate that the combination of bottom-up and top-down saliency maps improves the prediction 

of human fixations. There is no consistent pattern on what the optimized value of is �. For 

GoogleNet and ResNet, the best performance is achieved when the � is 0.5-0.6. For VGG, the 

optimal α is about 0.25- 0.4. It indicates that the � value could be varied when using deep 

features pre-trained by different DCNNs. In our future work, more experiments will be 

conducted to optimize � by using more datasets and evaluation metrics.  
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Figure 21 - Averaged curves of the combination of bottom-up and top-down over AUC, NSS, 

CC, and KL metrics using MIT1003 dataset. The smooth region surrounding the curves indicates 

SEM.  

 

As shown in figure 21, the result indicates the top-down saliency maps outperform the 

bottom-up saliency maps with- out center bias. However, in few cases the bottom-up saliency 

maps outperformed the top-down saliency maps. Figure 22 presents three cases where the 

bottom-up saliency maps outperform the top-down saliency map. In figure 22, the top-down 

saliency maps fail to detect human or text which are not labels of the ImageNet dataset, while the 

detected objects are dominant in the images and belong to the ImageNet labels. While the top 

down fails to detect the human and text in figure 22, the bottom up predicts the missed salient 

regions. Such result indicates the combination of bottom up and top down improves the 
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prediction of saliency. Moreover, the computed top-down saliency maps have no bias toward a 

class of objects in the fully connected layer. This occur because the MIT1003 and VIU datasets 

content include various scenarios of objects represented in images of the datasets.  

 

 

Figure 22 - Examples of bottom-up saliency maps outperforming top-down saliency maps. Row 

1 show the photographs of three input images in MIT1003 dataset. Row 2 show the 

corresponding empirical saliency maps. Bottom-up and top- down saliency maps computed using 

three variants of the proposed DeepFeat model (VGG, GoogLeNet, and ResNet) are shown in 

row 3 to 8.  
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5.4 Conclusion: 

In this chapter, a deep feature-based saliency model is proposed, which combines bottom-

up and top-down visual factors obtained from pre-trained deep features of VGG, GoogLeNet, 

and ResNet DCNNs. To validate the performance of the DeepFeat model, different 

implementations of the DeepFeat model are investigated using four evaluation metrics over the 

MIT1003 and VIU datasets. The results demonstrate that the implementation of the DeepFeat 

model with incorporation of bottom-up and top-down saliency maps outperform the bottom-up 

and top-down saliency maps individually. Moreover, performance of the proposed DeepFeat 

model is evaluated in a comparison to nine state-of-the-art and conventional saliency models 

using four evaluation metrics over the MIT1003 dataset. The experimental results show that the 

pro- posed DeepFeat model outperforms the conventional saliency models. In future work, the 

performance of the DeepFeat model will be investigated on datasets other than natural image 

datasets such as webpages or text datasets. In addition, a parameterized version of the model will 

be learned, where Eq. 2 will be modified to a weighted sum of the response images of a layer.  
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CHAPTER 6 

FEATURE BASED COMPARISON OF DEEP LEARNING NEURAL NETS 

6.1 Introduction: 

The recent advances of deep learning (DL) lead to a swarm of studies exploring ways to 

learn saliency models, including data representation and learning model architecture. In several 

studies, the DL based saliency models fine-tune pre-trained CNNs by adapting the weights of 

such CNNs as the initial weights for the saliency models. Pan and Giro proposed a CNN based 

model for saliency prediction [162]. The output of the CNN is obtained using max-out operation, 

and then convolved with a Gaussian filter to slightly smooth the saliency map. Kruthiventi et al. 

proposed a CNN based saliency model, which is inspired by the VGG network to predict pixel-

wise saliency values [164]. Jetley et al. developed a saliency model based on a deep learning 

architecture, which formalizes a generalized Bernoulli distribution, and then trains a CNN with 

an architecture of convolutional layers identical to a VGG network [102]. Wang and Shen 

proposed an encoder-decoder based DL approach for saliency prediction [159]. The encoder 

consists of the first 13 layers of VGG-16 network. The multi-scale features are processed by the 

decoder which up-samples the multi-scale features, performs a deconvolution operation, and 

reduces the dimensionality of the feature maps. Pan et al. proposed a generative adversarial 

network for saliency prediction, and their proposed network consisting of a generator and a 

discriminator [165]. The generator is a CNN with identical structure as VGG-16 network, which 

consists of an encoder and a decoder. The discriminator consisted of convolutions and sigmoid 

activations followed by a fully connected layer. Cornia et al. modified the VGG/ResNet network 

by reducing the strides of the convolutional filters and adding a dilate after each layer, and then 

used the modified deep features as inputs to a long short-term memory (LSTM) network [166].  
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One bottleneck of the DL based saliency models is that the size of the avail- able training 

dataset is relatively small. As an alternative, transfer learning technology can be a viable 

solution, in which CNNs are pre-trained for one task, and used for another. Several DL based 

saliency models imply transfer learning by using deep features of pre-trained CNNs as inputs to 

new network. Vig et al. blended deep features from the first three layers of a biologically in- 

spired CNN, and then combined the features using SVM classifier [96]. Huang et al. developed a 

deep learning-based saliency model that used two scales of pre-trained CNN [99]. They explored 

the feature maps of three pre-trained networks (i.e., AlexNet, VGG-16, and GoogLeNet), and 

then learned saliency weights using backpropagation. Kummerer et al. used deep feature of a 

pre-trained AlexNet CNN as inputs to SVM [97]. In their model, deep features are extracted and 

linearly combined, and then are processed by slightly blurring the result and adding a center bias. 

Later, they used deep features of a VGG-19 network as inputs to readout network, which consists 

of four convolution layers followed by ReLU nonlinearities [98]. Tavakoli et al. formalized a 

saliency model based on ensemble of extreme learning machines and inter-image similarities 

[160]. The model exploits deep features of a VGG-16 network to detect low-level visual cues, 

contextual information, and memorable events. Liu and Han exploited the deep features of two 

CNNs. One CNN solves a regression problem, and another CNN solves a classification problem. 

The two CNNs are combined and input to a LSTM network [101].  

All above-mentioned studies demonstrate that the deep feature maps of pretrained CNNs 

for object classification can be fine-tune or optimized for prediction of human gaze patterns. In 

addition, the DeepFeat saliency model is developed, which exploits deep features of CNNs pre-

trained for object classification as visual cues to predict human gaze patterns without any further 

training [48,167]. In this chapter, the framework of the DeepFeat model is used to investigate the 
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role of deep features in saliency prediction, and extensively analyze and evaluate the deep 

features of different CNNs in a bottom-up manner, a top-down manner, and a combination of 

both bottom-up and top-down with and without the incorporation of the center bias.  

6.1.1 Contributions: 

The contributions of this chapter are threefold:  

1. A comparison of 35 implementations of the bottom-up saliency maps is conducted using 

groups of deep features extracted from seven CNNs. 

2. The influence of top-down visual attention is analyzed by comparing seven CNNs pre-

trained for object classifications. 

3. The role of the center bias in weighting the combined deep features from seven CNNs is 

evaluated.  

6.2 Methods and Materials: 

6.2.1 Deep Features: 

In this chapter, 10 popular CNNs approaches are explored to evaluate how the deep 

features impact the saliency prediction. These 10 networks include seven classical CNN 

approaches (i.e., AlexNet, VGG-16, VGG-19, GoogLeNet, ResNet-50, ResNet-101, and ResNet-

152) [114,122-124] and three CNN approaches based on CAM (AlexNet, VGG-16, and 

GoogLeNet) [154]. An extensive comparison is conducted to evaluate subsets of the network 

variants for the bottom-up implementation, the top-down implementation, and the combination 

of bottom- up and top-down implementations with and without the center bias.  

To evaluate the bottom-up saliency implementation, 35 selections of activation layers 

from the seven classical CNN approaches are extensively compared. The complete description of 

35 deep features selected for the bottom-up implementation is presented in Table 7.  
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Table 7 - Description of activation layers used as deep features for bottom up saliency 

implementation. 

Activation  Description  

AlexNet 

Conv  Convolution activations.  

ReLU  Rectified linear unit activations.  

Pool  Max pooling activations.  

All  All activations of the network.  

VGG (16 & 19 layers) 

Conv  Convolution activations.  

ReLU  Rectified linear unit activations.  

Pool  Max pooling activations.  

All  All activations of the network.  

GoogLeNet 

Conv  Convolution activations.  

ReLU  Rectified linear unit activations.  

Pool  Max pooling activations.  

Incep  Inception module outputs.  

All  All activations of the network.  

ResNet (50, 101, and 152) 

Conv  Convolution activations.  

Batch  Batch normalization.  

ReLU  Rectified linear unit activations.  

Concat  Concatenation between the network blocks and residuals.  

Blocks  All network blocks except the residual short cuts.  

All  All activations of the network including the residuals.  

 



 

77 

 

 

For top-down saliency implementation, the object localization is evaluated using four 

classical CNN approaches (GoogLeNet, ResNet-50, ResNet-101, and ResNet-152) and three 

CAM based CNN approaches. The CAM not only matches the size of the last activation and the 

score weights, but also modifies the object localization using global average pooling (GAP) 

instead of global maximum pooling (GMP). In this chapter, the top-down saliency 

implementation using GAP network variants are computed.  

The combination of a bottom-up and top-down saliency implementations is computed by 

matching every top-down network to a selection of layers from a bottom-up network. The 

selected layers outperform other layers of the corresponding network.  

6.2.2 Implementation details: 

All four CNNs and their classical approaches are pre-trained on 1.28 million images of 

ILSVRC for 1000 classes of objects for object classification. The pre- trained classical CNN 

approaches are publicly available. The CAM based CNNs are pre-trained over the Places dataset 

which consists of 2.5 million images and 205 classes. The source code and the pre-trained CAM 

based CNN approaches are available online. All computations were done in MatConvNet and 

Caffe [155,168].  

6.2.3 Datasets: 

Four public datasets are exploited in this chapter under free-viewing conditions to ensure 

a comprehensive evaluation of the deep features using a variety of image contents and 

experimental settings. Four exploited datasets including KTH Koostra, MIT1003, OSIE, and 

Toronto. The complete description of the datasets can be found in chapter 2.  
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6.2.3 Evaluation Metrics: 

In this chapter, three popular evaluation metrics are exploited to measure the agreement 

between the saliency predictions and the human annotations over four datasets. The three metrics 

are area under the receiver operator characteristic (ROC) curve (AUC), Pearson’s correlation 

coefficient (CC), and similarity (SIM). 

6.3 Experimental Results: 

In this chapter, the bottom-up saliency maps, the top-down saliency maps, and 

combination of bottom-up and top-down saliency maps are evaluated over four datasets using 

three evaluation metrics. To measure the statistical significance, t-test for mean of scores is used 

at significance level � ≤  0.05. In addition, a comparison of the highest performance deep 

feature-based saliency implementation to six other popular saliency models over the MIT300 

dataset is conducted.  

6.3.1 Analysis of the bottom up saliency maps: 

Figure 23 shows the ranking of the 35 bottom-up implementations over four datasets 

using three evaluation metrics. Although the ranks of the bottom- up implementations are varied 

over four datasets and three metrics, a general pattern can be observed. The GoogLeNet Incep is 

ranked first and the AlexNet ReLU ranked last. This is because the inception module in the 

GoogLeNet Incep network incorporates multiple levels of blur of deep features, which allows the 

object of interest to stand out from its surroundings. This conclusion is confirmed by the ResNet 

implementations, where the ResNet Concat for 50, 101, and 152 layers outperform the other 

ResNet implementations. In addition, the VGG16 Pool and the VGG19 Pool outperform the 

other VGG implementations. The only anomaly is that the AlexNet Conv ranks the highest 

among the AlexNet category and outperforms the AlexNet Pool. This may be caused by the 
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depth of the AlexNet network. While the AlexNet is not as deep as the other exploited CNNs in 

this chapter, the other CNNs include a larger number of layers to average, and therefore, they 

tend to provide more suppression of non-salient regions. 

 

Figure 23 - Ranking of 35 bottom-up saliency implementations over four datasets using AUC, 

CC, and SIM evaluation metrics. A * indicates a significance at � ≤  0.05 between two 

consec- utive models using t-test. Non-consecutive models have a high probability to be 

significantly different. The error bars indicate standard error of the mean (SEMs).  

 

Overall, the implementations of the GoogLeNet significantly outperform all other 

implementations. It indicates that the deep features of the GoogLeNet are highly correlated with 

the human visual system. Moreover, the implementations of the ResNet-50 outperform the 
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implementations of the ResNet-101 and the ResNet-152. Also, the implementations of the VGG-

16 outperform the implementations of the VGG-19. It indicates that the accuracy of bottom-up 

saliency map is not proportional to the number of network layers. This is because the effect of 

each layer is averaged and the increase of the number of layers may suppress the distinctive areas 

that appear in a smaller number of layers.  

6.3.2 Analysis of the top down saliency maps: 

To evaluate the top-down saliency maps, seven implementations using four classical 

CNN approaches and three CAM based CNN approaches are presented. Figure 24 presents the 

ranking of the seven top-down implementations over four datasets using three metrics.  

In figure 24, consistent patterns are observed regard- less of the variation in ranking of 

the implementations. The GoogLeNetCAM implementation outperforms all other 

implementations over four datasets and three metrics. It indicates that the GoogLeNetCAM 

provides a better localization than the other implementations. In general, the CAM based 

implementations are among the top three rankings and outperform the other four top-down 

implementations. This is because the CAM based CNN approaches are pre-trained on Places 

dataset, which is larger than the ImageNet dataset. The result indicates that the deep features of 

the CAM based CNN approaches are more optimized than the deep features of the classical CNN 

approaches.  
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Figure 24 - Ranking of 7 top-down saliency implementations over four datasets using AUC, CC, 

and SIM evaluation metrics. A * indicates a significance at � ≤  0.05 between two consecutive 

models using t-test. Non-consecutive models have a high probability to be significantly different. 

The error bars indicate SEMs.  

 

6.3.3 Analysis of the top down saliency maps: 

Figure 25 presents eight representative images from four datasets, the corresponding 

ground-truth fixation maps, and four GoogLeNet based saliency maps, including the bottom-up 

GoogLeNet Incep, the top-down GoogLeNetCAM, and the combination of GoogLeNetCAM 

with and without the center bias. Overall, all saliency maps achieve a certain accuracy compared 

with the ground-truth fixation maps in all eight images.  
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Figure 25 - Row 1 presents eight representative images from four datasets. Row 2 is the ground- 

truth maps of the corresponding images. Row 3 to row 6 are the four saliency maps of the 

GoogLeNet implementations, including the bottom-up GoogLeNet Incep, the top-down 

GoogLeNetCAM, and the combination of GoogLeNetCAM with and without the center bias, 

respectively. For visualization purpose, the histogram of the predicted saliency maps of both 

models are matched to the histogram of the dataset ground-truth.  

 

Figure 26 presents the combined implementations with and without the center bias over 

four datasets using three evaluation metrics. Over the AUC scores, implementations that 

incorporate the center bias outperform all the implementations without the center bias over the 

Koostra, MIT1003, and Toronto datasets. Such result may be caused by the property of AUC, 

where it gives more credit to predictions near the center of the image. The incorporation of the 

center bias boosts the AUC scores of the saliency models with the center bias. In addition, 

saliency implementations demonstrate inconsistent performance over the OSIE dataset. While 

the AlexNet, and ResNets (50, 101, and 152) implementations with the center bias outperform 

their corresponding implementations without the center bias, the VGG-16, the GoogLeNet, and 

the GoogLeNet- CAM implementation without the center bias outperform their corresponding 
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implementations with the center bias. It indicates the predictions of these three implementations 

without the center bias are more localized toward the center than these implementations without 

the center bias.  

 

Figure 26 - Average AUC, CC, and SIM scores of various saliency maps, which are 

combinations of bottom-up and top-down implementations with and without the center bias over 

four datasets. A * indicates a significance at � ≤  0.05 between two consecutive models using 

t-test. The error bars indicate SEMs.  

 

For the CC scores, the GoogLeNet and the GoogLeNetCAM implementations without the 

center bias outperform their corresponding implementations with the center bias over all four 
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datasets. All other implementations with the center bias outperform their corresponding 

implementations without the center bias. Using the SIM metric, the VGG-16CAM, the 

GoogLeNetCAM, and the GoogLeNet implementations without the center bias outperform the 

corresponding implementations with the center bias over all four datasets. The AlexNet 

implementation without the center bias outperforms the AlexNet implementation with the center 

bias over all datasets except the Koostra dataset. The performances of the ResNet 

implementations fluctuate over four datasets. Overall, the center bias boosts the performance of 

the saliency implementations except the GoogLeNet and the GoogLeNetCAM.  

In addition, for different datasets, the Koostra dataset has the lower AUC scores and the 

higher SIM scores compared with the other three datasets. It may be caused by different 

complexity of scenes of the datasets. The complete comparisons are described in table 8. 

Table 8 - The combination of bottom up and top down results with and without center bias over 

four datasets using three evaluation metrics. Red, green, and blue color scores indicate the top 

three rankings models over individual scores, respectively.  

Koostra Dataset 

  With center bias Without center bias 

Implementation Name  AUC CC SIM AUC CC SIM 

AlexNetCAM  0.668 ± 0.005 0.506 ± 0.012 0.659 ± 0.007 0.654 ± 0.005 0.469 ± 0.015 0.652 ± 0.07 

VGG-16CAM  0.671 ± 0.005 0.526 ± 0.011 0.661 ± 0.007 0.659 ± 0.005 0.497 ± 0.014 0.656 ± 0.005 

GoogLeNetCAM  0.671 ± 0.005 0.529 ± 0.012 0.662 ± 0.007 0.668 ± 0.006 0.538 ± 0.015 0.667 ± 0.006 

GoogLeNet  0.664 ± 0.005 0.500 ± 0.012 0.657 ± 0.007 0.663 ± 0.005 0.501 ± 0.013 0.657 ± 0.007 

ResNet-50  0.657 ± 0.005 0.467 ± 0.013 0.649 ± 0.007 0.625 ± 0.005 0.364 ± 0.017 0.627 ± 0.006 

ResNet-101  0.656 ± 0.005 0.464 ± 0.013 0.647 ± 0.007 0.614 ± 0.007 0.333 ± 0.019 0.620 ± 0.006 

ResNet-152  0.656 ± 0.005 0.461 ± 0.013 0.647 ± 0.007 0.617 ± 0.007 0.336 ± 0.018 0.621 ± 0.006 

MIT1003 Dataset 

AlexNetCAM  0.828 ± 0.002 0.398 ± 0.003 0.294 ± 0.002 0.786 ± 0.003 0.367 ± 0.005 0.310 ± 0.002 

VGG-16CAM  0.836 ± 0.002 0.422 ± 0.003 0.297 ± 0.002 0.801 ± 0.003 0.405 ± 0.005 0.328 ± 0.002 

GoogLeNetCAM  0.845 ± 0.002 0.432 ± 0.003 0.297 ± 0.002 0.829 ± 0.003 0.448 ± 0.005 0.334 ± 0.002 

GoogLeNet  0.842 ± 0.002 0.416 ± 0.003 0.294 ± 0.002 0.834 ± 0.003 0.427 ± 0.004 0.322 ± 0.002 
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ResNet-50  0.830 ± 0.003 0.394 ± 0.003 0.292 ± 0.002 0.779 ± 0.004 0.337 ± 0.005 0.297 ± 0.002 

ResNet-101  0.828 ± 0.002 0.393 ± 0.003 0.290 ± 0.002 0.767 ± 0.004 0.320 ± 0.005 0.290 ± 0.002 

ResNet-152  0.824 ± 0.003 0.387 ± 0.003 0.289 ± 0.002 0.762 ± 0.004 0.313 ± 0.005 0.288 ± 0.002 

OSIE Dataset 

AlexNetCAM  0.806 ± 0.003 0.460 ± 0.004 0.407 ± 0.002 0.796 ± 0.003 0.466 ± 0.005 0.437 ± 0.002 

VGG-16CAM  0.813 ± 0.002 0.476 ± 0.004 0.410 ± 0.002 0.814 ± 0.003 0.502 ± 0.006 0.460 ± 0.002 

GoogLeNetCAM  0.815 ± 0.002 0.481 ± 0.004 0.407 ± 0.002 0.826 ± 0.003 0.534 ± 0.005 0.462 ± 0.002 

GoogLeNet  0.802 ± 0.003 0.452 ± 0.004 0.402 ± 0.002 0.809 ± 0.003 0.485 ± 0.004 0.438 ± 0.002 

ResNet-50  0.798 ± 0.003 0.439 ± 0.004 0.404 ± 0.002 0.783 ± 0.003 0.417 ± 0.005 0.419 ± 0.002 

ResNet-101  0.801 ± 0.003 0.445 ± 0.004 0.403 ± 0.002 0.782 ± 0.003 0.417 ± 0.006 0.415 ± 0.002 

ResNet-152  0.798 ± 0.003 0.438 ± 0.004 0.401 ± 0.002 0.777 ± 0.003 0.401 ± 0.006 0.413 ± 0.002 

Toronto Dataset 

AlexNetCAM  0.821 ± 0.006 0.504 ± 0.008 0.403 ± 0.004 0.783 ± 0.008 0.472 ± 0.014 0.421 ± 0.004 

VGG-16CAM  0.828 ± 0.005 0.533 ± 0.009 0.407 ± 0.004 0.792 ± 0.007 0.508 ± 0.014 0.437 ± 0.005 

GoogLeNetCAM  0.828 ± 0.005 0.532 ± 0.008 0.404 ± 0.004 0.814 ± 0.006 0.550 ± 0.013 0.451 ± 0.005 

GoogLeNet  0.826 ± 0.005 0.508 ± 0.007 0.403 ± 0.004 0.818 ± 0.006 0.519 ± 0.010 0.438 ± 0.004 

ResNet-50  0.819 ± 0.006 0.495 ± 0.009 0.400 ± 0.004 0.774 ± 0.009 0.431 ± 0.015 0.402 ± 0.005 

ResNet-101 0.817 ± 0.006 0.494 ± 0.009 0.399 ± 0.004 0.763 ± 0.010 0.409 ± 0.016 0.394 ± 0.005 

ResNet-152  0.818 ± 0.006 0.495 ± 0.009 0.399 ± 0.004 0.764 ± 0.009 0.414 ± 0.015 0.395 ± 0.005 

 

6.3.4 Comparison with other saliency models: 

To evaluate the ability of deep features to predict human fixations, two GoogLeNetCAM 

based implementations with and without the center bias (GoogLeNetCAM-CB and 

GoogLeNetCAM-NCB) to six other popular saliency models are compared. For a fair 

comparison, predictions of our two GoogLeNetCAM implementations are computed and 

evaluated over the MIT300 dataset, which consists of 300 indoor and outdoor images observed 

by 39 observers for 3 seconds [169]. Six other saliency models include two deep learning-based 

saliency models (DeepGaze1 [97], and eDN [96]), a shallow learning-based saliency model 

(Judd [30]), and three conventional saliency models (GBVS [58], LGS [170], and RC [171]). 
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The complete results over 8 evaluation metrics are available online [110,127]. In this chapter, a 

comparison results over three evaluation metrics is presented. 

Table 9 summarizes the comparison results of the two GoogLeNetCAM implementations 

and 6 other saliency models over the MIT300 dataset using AUC, CC, and SIM evaluation 

metrics. For the AUC scores, DeepGaze1 is ranked first, the GoogLeNetCAM-CB is ranked 

second, and eDN is ranked third.  

Over the CC scores, GoogLeNetCAM-NCB is ranked first, GoogLeNetCAM-CB, 

DeepGaze1, and GBVS are ranked second, and Judd and RC are ranked third. Using the SIM 

metric, GBVS and RC are ranked first, GoogLeNetCAM- NCB is ranked second, and 

GoogLeNetCAM-CB, Judd, and LGS are ranked third. In general, both GoogLeNetCAM 

implementations perform among the top three ranking models in the comparison. It indicates that 

the deep features of CNNs highlights the image semantics that can be used to model a saliency 

map comparable to popular saliency models.  

Table 9 - The comparison of two deep features of CNNs based saliency implementations and 6 

state-of-the-art saliency models over the MIT300 dataset. The top three ranking models are 

marked red, green, and blue, respectively.  

Saliency Model AUC CC SIM 

GoogLeNetCAM-CB  0.82 0.48 0.42 

GoogLeNetCAM-NCB  0.80 0.49 0.45 

DeepGaze1  0.83 0.48 0.39 

eDN  0.81 0.45 0.41 

GBVS  0.80 0.48 0.48 

Judd  0.80 0.47 0.42 

LGS  0.76 0.39 0.42 

RC  0.78 0.47 0.48 
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6.4 Conclusion: 

In this chapter, deep features are explored via different saliency implementations to 

evaluate the effects of deep features on saliency prediction of human gaze patterns. Such deep 

features are obtained from seven popular CNNs. The networks are pre-trained using the original 

proposed approaches and the modified class activation maps approaches. A series of 

comparisons are conducted to evaluate the performances of various implementations, including 

the bottom- up, top-down, and the combination of both with and without the center bias, over 

four datasets using three evaluation metrics. In addition, the performances of the deep features-

based saliency models are evaluated by comparing to six other popular saliency models. The 

experimental results indicate that the deep features from all pre-trained CNNs are useful for 

saliency modeling. The increase in number of layers may not be helpful for detecting low level 

factors. Instead, the incorporation of multiple levels of blurred features boosts the detection of 

low-level cues. CAM based CNN approaches provide more localized objects that are useful for 

top-down saliency modeling. Moreover, the incorporation of the center bias boosts the 

performance of saliency predictions over several implementations.  

 

 

 

 

 

 

 

 

 

 



 

88 

 

 

CHAPTER 7 

CLASSNET: A CLASSIFIER FOR VISUAL ATTENTION PREDICTION 

7.1 Introduction: 

A visual stimulus triggers cells and photoreceptors of the human eye. The resulting 

signals travel through the optic nerve and stimulate neurons of the brain to give visual 

representations of the surrounding world [172-174]. In visual perception, the human visual 

system tends to minimize its neural resources by sampling the most informative areas of the 

visual stimuli [175]. Such mechanism is known as visual attention. Both biological (exogeneous) 

and psychological (endogenous) influences guide the human visual attention [176,1].  

In computer vision, a saliency map is defined as a prediction of the human attention 

probability [24]. It is modeled as a 2D map that assigns levels of attention priority to spatial 

locations of the map. Saliency modeling is viable for a variety of applications [2,7,9,12]. A 

previous chapter demonstrates that the human visual system processes the visual stimuli using 

preliminary features in multiple scales [22]. These features are processed in parallel and fused to 

aid for recognition of the input visual stimuli. Such work lead to the development of a 

tremendous number of saliency models relying on hand crafted features such as color, intensity, 

and orientation [52]. The limitation of such saliency models is that their predictions correspond 

to the incorporated features only. Later, the development of deep learning-based saliency models 

overcome the limitation of the hand-crafted features. Several studies learned a saliency model in 

an end-to-end manner [176] or using transfer learning [97-98]. The end-to-end saliency models 

exploit weights of pre-trained CNN as initializers for their proposed models. Moreover, transfer 

learning-based saliency models learn a combination of deep features of pre-trained CNNs. Such 

directions in visual saliency prediction due to the relatively small datasets available to train a 
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deep learning model. To this extend, there is no deep learning saliency model that learns its 

weights from scratch.  

In this chapter, a deep learning classification framework is proposed. The framework 

focuses on preprocessing the image dataset to be useful for training a saliency model from 

scratch. In addition, a modified version of ResNet is proposed for visual saliency prediction. The 

proposed approach is codenamed ClassNet. While previous deep learning saliency models treat 

the saliency prediction as a regression problem, the proposed framework treats the saliency 

prediction as a classification problem. 

7.1.1 Contributions: 

The contributions of this chapter are threefold:  

1. A data generation protocol is proposed to increase the number if samples for training a 

deep learning saliency model from scratch. 

2. A modification of ResNet20 [124] is proposed in order to train a saliency model from 

scratch. 

3. An evaluation of the proposed framework over five datasets using four evaluation 

metrics. 

7.2 Proposed Approach: 

7.2.1 Data Preparation Protocol 

In order to learn a saliency model from scratch, a human fixation dataset is preprocessed 

to increase the number of image samples. As a classification problem, the number of samples is 

increased by cropping an image and labeling the cropped sample to fixation or non-fixation. An 

OSIE dataset is utilized to create a large enough dataset for training a deep learning saliency 

model. For each image, all fixation points that falls in the top 20% salient locations of the 
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distribution-based fixation map are labeled as fixation. The spatial points selected from the top 

20% and bottom 30% ensures a pattern difference between the two labels. Spatial locations that 

falls in the bottom 30% salient locations of the distribution-based fixation map are labeled as 

non-fixation. The number of non-fixation points randomly selected is equal to the number of 

fixation points in the same image. Figure 27 presents fixation and non-fixation labels of patches 

for an image. Moreover, for every selected label the image is cropped to 64 × 64 pixels where 

the center of the cropped patch corresponds to the location of the label location. The resulting 

dataset consist of 61, 080 samples which is large enough to classify two classes only. 

 
Figure 27 - Training and testing labels of fixations overlay an input image. Green points are 

actual fixation points, red points are a subset of the actual fixation points labeled as fixation, and 

the blue points are non-fixated points labeled as non-fixation. 

 

7.2.2 Residual Learning: 

In this dissertation, the degradation problem in deep neural networks is exploited. Such 

that, a stack of nonlinear layers fit a residual mapping instead of fitting stacked layers directly. 

Formally, let  �-8/ denote the desired underlying mapping. Then, the stacked nonlinear layers 

fit another mapping: 

�-8/ ≔ �-8/ − 8                            (33) 
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Where 8 denote the input to these layers. The residual learning hypothesis indicates it is easier 

to optimize the residual mapping, than to optimize the original mapping. Therefore, the residual 

learning can be performed by: 

�-8/ ≔ �-8/ + 8                            (34) 

The reformulation suggests a deeper model should have training error no larger than its shallow 

counterpart. The degradation problem suggests that the approximation of identity mapping using 

multiple nonlinear layers is a difficult task. Therefore, the use of residual mapping reformulation 

may drive weights of multiple nonlinear layers toward zero to achieve identity mapping. 

7.2.3 ClassNet Saliency Model: 

Residual learning neural networks achieved outstanding performances on several 

computer vision applications. However, they can’t be employed directly for saliency prediction 

without any fine-tuning. A modified version of ResNet20 is proposed. The main difference 

between the ResNet20 and ClassNet is the architecture of the residual block. The residual block 

of ClassNet consist of three convolution layers in the skip connection. The first two convolutions 

in the residual block are followed by a batch normalization layer followed by a ReLU activation. 

The third convolution layer of the residual block is followed by a batch normalization layer. 

Furthermore, the summation of previous layer and skip connection is followed by a ReLU 

activation and a dropout layer. Figure 28 presents the differences between the residual block of 

ResNet20 and ClassNet. 
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Figure 28 - A comparison of the ResNet 20 residual block architecture, and ClassNet residual 

block architecture. 
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After every six residual blocks, the number of features is doubles while the feature maps 

are down-sampled to preserve the computation complexity per layer. The down-sampling is 

performed by convolutions with a stride of 2. After the last convolution layer, the global average 

pooling (GAP) is replaced with global contrast measure weighted by: 

s" = 0.5 ���� ��
� �-8" − 8!/< + -9" − 9!/<� + 1�                 (35) 

where r denotes the patch radius, 8"and 9"denotes the spatial location of the �th pixel in the 

image, and 8!and 9!denotes the spatial location of the center of the patch. Note that, an image 

spatial location is expressed in pixels in the vertical and horizontal directions. On every spatial 

location, the global contrast for every feature map is measured by:  

E = l �
∑ �L�L ¡

∑ s" -¢L3¢/�
¢�%"��                          (36) 

The n denotes the number of pixels in the patch, 6"denotes the luminance value of the �th pixel 

in the patch, and 6 denote the mean luminance of the patch calculated by:  

6 = �
∑ �L�L ¡

∑ s"%"�� 6"                           (37) 

Finally, the model contains a single FC that has two neurons. 

7.2.4 Data Augmentation 

To increase the variance and number of patch samples, a data augmentation is performed. 

In this work, the patch width is randomly shifted horizontally by a fraction of 10% of the patch 

width. Similarly, the patch height is randomly shifted vertically by 10% of the patch height. In 

addition, images are randomly flipped vertically and horizontally. 
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7.2.5 Implementation details 

In order to train a deep learning model, the OSIE dataset is divided into 500 training 

images and 200 testing images. The training and testing images are normalized individually. 

Each image is normalized by: 

        6� = ¢3£¤¥ -¢/
£¦§-¢/3£¤¥ -¢/                            (38)                                                    

The 6 denotes an image to be normalized. Using the normalized images, a larger dataset of 

image patch samples is created. The training set consist of 42,992 image patch samples, and the 

testing set consist 18,088 image patch samples. The image patches are randomly shuffled and 

divided into mini-batches of 32 patch samples each. Figure 29 presents examples of fixation and 

non-fixation samples. 

 

Figure 29 - Example of patch datasets labeled as fixation in the left panel and non-fixation on the 

right panel. 
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The loss function between the predicted label and the actual label is defined as the cross-

validation. The loss is updated using ADAM optimizer with a learning rate equal to 0.001. The 

training process continues for 200 epochs. For validation, the testing set is exploited without data 

augmentation. The training process took about 90 minutes of training using two Titan X GPU’s. 

The testing set serves as a validation technique to evaluate the training performance. For 

accuracy performance measure, the accuracy is defined as the ration of correctly predicted 

classes to the total number of predictions.  

For image prediction, an image is normalized, and the learned weights are applied to the 

normalized image pixels. To reduce the computation complexity, pixels are selected for 

prediction in a square lattice with 32 pixels distance between every two pixels horizontally and 

vertically. The size of 32 pixels to ensure the selected patches do have an overlap with each 

other. Furthermore, the prediction array of selected pixels is resized to the size of the original 

input image.  

7.3 Experimental Setup: 

7.3.1 Datasets 

Five datasets are exploited in this chapter including MIT1003, VIU, OSIE, Toronto, and 

Koostra. Although the OSIE dataset is used for training the model, the model performance over 

all five datasets is compared to evaluate the amount of overfitting occurred during the training. 

7.3.2 Evaluation Metrics 

To measure the agreement between the model predictions and the human annotations, 

four evaluation metrics are used. All four metrics are similarity-based scores including two 

fixation-points based scores and two fixation-map based scores. The four scores are: AUC 

(Judd), NSS, SIM, and CC. 
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7.4 Experimental Results 

Performance of the proposed framework is evaluated over five datasets including the 

dataset used for training. Figure 30 presents two sample images from every dataset used in this 

chapter and their corresponding predictions. In figure 30, the ClassNet predictions are more 

square regions. This is mainly due to the fact the interpolation is between spatial values of ones.  
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Figure 30 - Column 1 presents ten representative images from five datasets. Column 2 is the 

ground- truth maps of the corresponding images. Column is saliency maps of ClassNet. 
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Moreover, to analyze performance of the proposed framework, four scores are drawn as 

shown in figure 31. Using the AUC score, predictions of the model over all datasets is over 0.5 

which demonstrate the proposed framework perform higher than random guessing. Over the 

NSS, SIM, and CC, performance of the proposed model over all five datasets achieves a certain 

agreement with the ground-truth. Such result indicates that the proposed framework is a valid 

approach to train a fixation prediction model from scratch. 

Figure 31 - Averaged AUC, NSS, SIM, and CC scores of the proposed framework over five 

datasets. The error bars indicate SEM. 

 

In general, the performance of the ClassNet over the OSIE dataset outperform the 

performance of the model over other datasets. This occurs because the model overfits over the 
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OSIE which the training dataset is. However, this result is preliminary, and the purpose was to 

demonstrate the scalability of small datasets to train a saliency model from scratch. The complete 

analysis results are presented in table 10. 

 

Table 10 - Average scores of ClassNet over five datasets. 

Dataset AUC NSS SIM CC 

MIT1003 0.681±0.004 0.990±0.025 0.282±0.004 0.269±0.006 

VIU 0.615±0.003 0.485±0.013 0.334±0.006 0.304±0.007 

OSIE 0.749±0.003 1.316 ±0.022 0.414±0.004 0.450±0.006 

Toronto 0.663±0.009 0.813±0.058 0.327±0.012 0.307±0.019 

KTH Koostra 0.557±0.007 0.322±0.028 0.386±0.018 0.223±0.017 

 

7.5 Conclusion 

Although the recent trends demonstrate high prediction accuracy of human visual 

attention, all deep learning saliency models exploit pre-trained CNNs before they start training 

their models. Such structure is useful for prediction. However, to chapter the relationship 

between the learned weights and the response filters in the human eye it is essential to train a 

saliency model from random weights. This dissertation presents a deep learning framework to 

generate a large datasets of patch samples from a small dataset of images. Also, a modification of 

ResNet20 is presented and codenamed ClassNet. The validity of such framework is evaluated 

over five datasets of images. While the experimental results are preliminary, the results 

demonstrate the proposed framework is valid and achieves higher than random guessing. 
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CHAPTER 8 

CONCLUSIONS 

8.1 Summary: 

A tremendous number of saliency models have been developed over the years. The 

performance of saliency models is usually evaluated on datasets that carry out eye fixations 

recorded from adults. Despite the consistency in adults gaze patterns, infants gaze patterns are 

not random. To explore infants and adults gaze patterns, Infants and adults extensive 

comparisons using 8 state of the art saliency models and two baselines are conducted. Seven 

standard evaluation metrics are exploited to measure the agreement between the models and eye 

fixations from infants and adults. The results demonstrate a consistent performance of saliency 

models predicting adults’ fixations over infants’ fixations in terms of overlap, center fitting, 

intersection, information loss of approximation, and spatial distance between the distributions of 

saliency map and fixation map. In saliency models and baselines ranking, the GBVS and Itti are 

among the top 3 contenders, infants and adults have bias toward the center, and all models and 

the center baseline outperformed the chance baseline.  

A deep feature based saliency model (DeepFeat) is developed to leverage the 

understanding of the prediction of human fixations. Conventional saliency models often predict 

the human visual attention relying on few image cues. Although such models predict fixations on 

a variety of image complexities, their approaches are limited to the incorporated features. This 

chapter aims to utilize the deep features of convolutional neural networks by combining bottom-

up and top-down saliency maps. The proposed framework is applied on deep features of three 

popular deep convolutional neural networks. Four evaluation metrics are exploited to evaluate 

the correspondence between the proposed framework and the ground-truth fixations over two 
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datasets. The key findings of the results demonstrate that the deep features of pre-trained deep 

convolutional neural networks over the ImageNet dataset are strong predictors of the human 

fixation. The incorporation of bottom-up and top-down saliency maps outperforms the individual 

bottom-up and top-down implementations. Moreover, in comparison to nine saliency models 

including four state-of-the-art and five conventional saliency models, our proposed DeepFeat 

model outperforms the conventional saliency models over all four evaluation metrics.  

Based on transfer learning, feature maps of deep convolutional neural networks (DCNNs) 

trained for object classification have been used to predict human gaze patterns. Such studies 

either fine-tune the DCNNs or use a transfer learning framework to learn the combination of 

such feature maps. Since the DeepFeat saliency model is a transfer-learning approach, extensive 

comparisons are conducted to investigate effects of feature maps on the predictions of the human 

gaze patterns using the DeepFeat saliency model framework. Four different implementations of 

the model have been used to create saliency maps, including a bottom-up implementation, a top-

down implementation, and a combination of bottom-up and top-down implementations with and 

without the center bias. Feature maps of four pre-trained DCNNs are exploited using classical 

and class activation maps approaches. The performances of various saliency implementations are 

evaluated over four public datasets using three evaluation metrics. The results demonstrate that 

feature maps of the pre-trained DCNNs can be used to predict human gaze patterns. The 

incorporation of multiple levels of blurred and multi-scale feature maps improves the extraction 

of salient regions. Moreover, DCNNs pre-trained using the Places dataset provide more localized 

objects that can be beneficial to the top-down saliency maps. In addition, the incorporation of the 

center bias may boost the performance of some saliency implementations. Keywords: 
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Convolutional neural networks, feature maps, human fixation prediction, saliency map, transfer 

learning.  

In another problem direction, a deep learning saliency framework is proposed to learn its 

weights from scratch. The model investigates a data generation protocol to create a large enough 

dataset to train a saliency model using random weights. The OSIE dataset is exploited to label a 

large number of patch samples as fixation or non-fixation. The generated data is used to train a 

saliency model using a residual learning framework. The proposed deep learning model is a 

modification of ResNet20 to fit for human visual attention prediction. Validity of the proposed 

framework is evaluated over five datasets including the original training dataset using four 

evaluation metrics. While the trained model slightly overfits, the preliminary results demonstrate 

the proposed hypothesis of data generation. 

8.2 Future Work: 

There is exciting works that have been conducted to compare human gaze patterns at 

different ages. However, majority of studies focus on adults’ gaze patterns using foveated image 

processing to simulate the stimulus in the adult retina. Due to the rapid development of the 

biological structure of the eye in infants’, foveal vision in infants haven’t been simulated yet. In 

order to highlight the differences between infants and adults, formalization of foveal vision in 

infants is necessary to analyze infants saccades (velocity and magnitude) in addition to eye 

fixation. 

Another area of future work would be validation of the DeepFeat saliency model over 

other datasets of different objective. Current saliency models are trained on relatively small 

datasets which may prune to overfitting over different eye fixation datasets such as fashion 

design, video games, etc. The ability of the DeepFeat model to highlight a human object is 
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interesting to chapter, although the model exploit CNNs pre-trained over the ImageNet dataset 

which does not include the human as an object class to classify. 

 While transfer learning models of saliency exploit deep features from a variety of CNN 

layers, the feature selection task remains unclear. This dissertation demonstrates how a variety of 

feature selections behave over the DeepFeat model. In future work, one significant contribution 

would be the investigation of Deep features of CNNs pre-trained for other tasks than object 

classification. For example, face detection, image segmentation, and scene classification can 

provide deep feature that may be able to provide a better highlight to some attentive objects. 

 One area that requires an extensive amount of attention is data gathering. Although 

collection of a very large dataset of human eye fixation is extensively exhausting, the 

requirement of such dataset is necessary not only to provide more accurate predictions of human 

fixations, but also allows researchers to develop deep learning models that are trained from 

scratch, and therefore, the learned weights maybe a useful tool to leverage the understanding of 

features that are ensemble to guide the human attention. Moreover, the proposed model 

performance can be improved by adjusting the model hyper parameters, loss function, and 

reduce the distance between every two patches which leads to reduce the interpolation for 

resizing the resulting image to the original image size. 
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