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AN ABSTRACT OF THE DISSERTATION OF 

 

Drew A. Scott, for the Doctor of Philosophy degree in Plant Biology, presented on November 

28, 2018, at Southern Illinois University Carbondale.  

 

TITLE:  ENVIRONMENTAL HETEROGENEITY EFFECTS ON DIVERSITY AND 

 

 NITROUS OXIDE EMISSIONS FROM SOIL IN RESTORED PRAIRIE 

 

MAJOR PROFESSOR:  Dr. Sara Baer 

 

 Ecological theory predicts that high environmental heterogeneity causes high 

biodiversity. Theory further predicts that higher biodiversity results in greater ecosystem 

functioning. These theoretical predictions were evaluated in three studies using grassland 

restorations from agriculture.  

The ‘environmental heterogeneity hypothesis’ has been proposed as a mechanism that 

enables species coexistence through resource partitioning. In accordance with this hypothesis, 

plant diversity is predicted to increase with variability in resources. There have been many 

observational studies reporting positive correlations, but only a few experiments show weak 

support for this hypothesis and others show no support. The objective of this research was to 

characterize how resource availability and heterogeneity change as plant communities develop 

using a chronosequence of restored prairies located at Konza Prairie (northeast Kansas, USA). 

More specifically, I quantified means and coefficients of variation in soil nitrate and light 

availability (proportion of photosynthetically active radiation [PAR] reaching soil surface) in 

prairies established on former agricultural lands for different times (ages) and their relationship 

to plant diversity and community structure using semivariograms to determine distance of 

spatially independent plots. Nitrate availability decreased exponentially with restoration age, but 

there was no directional change in nitrate heterogeneity across the chronosequence. Light 

availability also decreased exponentially across the chronosequence, but PAR heterogeneity 
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increased with restoration age. Heterogeneity in resources did not affect plant community 

structure, but heterogeneity in nitrate and light were positively related to plant Shannon’s 

Diversity (H′). The positive relationship of diversity and richness to nitrate heterogeneity was 

weakened when considering nitrate availability interaction with nitrate heterogeneity. No 

significant heterogeneity effects were found for Pielou’s evenness, suggesting diversity 

responses to heterogeneity were mostly driven by changes in richness. Overall, these results 

suggest that environmental heterogeneity corresponds with plant diversity as predicted by the 

‘environmental heterogeneity hypothesis’, but high resource availability can weaken this 

relationship.  

 Plant species identity, soil depth, soil nutrient availability, and their interactions have the 

potential to structure soil microbial communities. If distinct communities were present within 

combinations of different levels of these ecosystem properties, this community specificity would 

indicate heterogeneity promotes soil microbial diversity at the scale of plants. I used a 20 year 

restored prairie located at Konza Prairie with soil depth (shallow and deep) and nutrient 

manipulation (reduced N availability, ambient N availability, and elevated N availability) and 

used three plant treatments (Andropogon gerardii, Salvia azurea, and bare soil) to evaluate the 

relative effects of these treatments and their interactions on the soil microbial community as 

measured by phospholipid fatty acid (PLFA) profiles. Permutational multivariate analysis of 

variance of PLFA biomass was conducted as was mixed model analysis of Shannon diversity 

index (H′), richness (S), and Pielou's evenness (J). Treatments had no effect on microbial 

community structure. The main effect of plant treatment influenced PLFA H′. This differential 

diversity response by plant treatment was due to differences between bare soil and the two plant-

influenced soils, where plant-influenced soils had greater proportional arbuscular mycorrhizal 
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fungi and Gram-negative bacteria. This result indicates that increasing plant cover promotes 

microbial diversity. It remains unclear if aboveground plant cover or belowground plant cover 

would play a larger role. While I did not detect distinct microbial communities in treatment 

combinations, amplicon analysis may be more sensitive and indicate if environmental 

heterogeneity is likely to promote soil microbial diversity. 

 Plant diversity has been shown to increase several ecosystem functions including primary 

productivity, nutrient retention, and carbon sequestration. I tested if plant diversity could 

mitigate nitrous oxide emissions. I used an initial survey to determine study design from quadrat 

and semivariogram analyses and to determine cutoffs for high- and low-plant diversity. I 

sampled high- and low-diversity plant communities from five 10 to 12 y restorations located at 

Nachusa grasslands (Franklin Grove, IL, USA). I demonstrated that the diversity treatments were 

associated with high- and low-levels of species richness, species evenness, and functional group 

richness. I found the nitrous oxide emissions from high-diversity plant communities were 

approximately half the emissions from low-diversity plant communities. Differences in 

emissions did not coincide with differences in water availability, nitrogen availability, carbon 

availability, or microbial activity. Soils composited at the plot scale exhibited more N2O 

emission hotspots from denitrification in the low plant diversity treatment. Greater denitrification 

in low-diversity plant communities could indicate more hotspots, i.e. small areas of high nitrous 

oxide production. Hotspots occur when an abundance of all necessary components of 

denitrification are present (e.g. available nitrate, available organic C, anaerobic microsites, 

ammonia oxidizing organisms, and nitrite oxidizing organisms). This result suggests that plant 

diversity is affecting the physiology or the community structure of soil denitrifiers. This work 
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suggests that nitrous oxide emissions can be managed by creating high-diversity plant 

communities. 
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CHAPTER 1 

INTRODUCTION 

The tallgrass prairie in North America is an intrinsically heterogeneous ecosystem both in 

terms of vegetation and soil. Variation in topography, fire regime, and grazing, especially by 

Bison bison, maintain heterogeneity on the landscape (Collins and Steinauer 1998, Collins et al. 

1998, 2002, Knapp et al. 1998, Joern 2005). Less than 10% of the tallgrass prairie remains intact 

largely because of conversion to row-crop agriculture (White et al. 2000, Samson et al. 2004). 

Conversion to agriculture could result in a more homogenous landscape than native (never-

cultivated) prairie (Haas et al. 1957). The effect of subsequent restoration from agriculture on 

heterogeneity is unknown as heterogeneity effects have been examined by experimental 

manipulation. Uncultivated tallgrass prairie is characterized by a dominance of warm-season (C4 

photosynthetic pathway) grasses and a diverse suite of forbs (Abrams and Hulbert 1987). It has 

been argued that tallgrass prairie restorations should incorporate environmental heterogeneity 

(e.g. microtopography and soil roughness) in order to maintain diversity (Larkin et al. 2006), as 

heterogeneity can limit of the development of dominance in communities (Pacala and Tilman 

1994, Hanski 1995) and create several different microsites (Ewing 2002). Restoring degraded 

systems, however, to reflect contemporary composition and function typical of less degraded 

plant communities can be difficult (Dobson et al. 1997), and this may be in part due to the loss of 

environmental heterogeneity. Conversion of prairie to a tilled row-crop agriculture homogenizes 

soil nitrogen, phosphorus, cation exchange capacity, pH, and soil water holding capacity (Haas et 

al. 1957, Pan-González et al. 2000), which may pose a challenge to reconstructing diverse prairie 

communities with corresponding greater ecosystem functioning compared to most monocultures, 
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as theory predicts (Tilman et al. 2014). However, some highly functional monocultures can 

outperform polycultures (Cardinale et al. 2011).    

The ‘environmental heterogeneity hypothesis’ was developed from the observed effects 

of plant structure on animal communities, especially birds and insects (MacArthur 1965, 1966, 

Pianka 1966, Murdoch et al. 1972). This concept was first applied to plant communities on a 

landscape scale using tropical and temperate forest data (Ricklefs 1977) in studies that identified 

tree richness as a response variable along an openness gradient that was associated with changes 

in light, humidity, temperature, and soil nutrients. This hypothesis has also been referred to as 

the heterogeneity-diversity relationship (HDR), especially when using a gradient of 

heterogeneity. Positive correlations between plant diversity and environmental heterogeneity 

have been widely reported (reviewed by Huston 1979, Bakker et al. 2003, reviewed by Larkin et 

al. 2006), but most experimental tests of this relationship commonly report negative, unimodal, 

or non-significant results (Lundholm 2009, Tamme et al. 2010, Gazol et al. 2013, Laanisto et al. 

2013, Bar-Massada 2014). Some of this variation may be attributed to spatial scale or different 

measures of heterogeneity (Lundholm 2009, Tamme et al. 2010, Stein et al. 2014, Stein and 

Kreft 2014), but simulated communities suggest environmental severity, i.e. low resource 

availability, may also affect HDR (Yang et al. 2015). High and low environmental severity 

caused a sigmoidal pattern in diversity while moderate severity caused a unimodal pattern (Yang 

et al. 2015). While most studies of environmental heterogeneity have been conducted on plants 

and animals, the concept has also been evoked to explain patterns in microbial communities (Zak 

et al. 2003). Environmental heterogeneity may interact with plant communities to influence 

microbial communities as light and nutrient availability and topography correlate with plant 

diversity (reviewed by Huston 1979, Bakker et al. 2003). Environmental heterogeneity and plant 



 3 

community attributes regulating microbial communities relates to the hotspot theory of 

biogeochemistry (Hill et al. 2000), where several physical, chemical, and biological conditions 

must be right to create small areas of high biogeochemical activity.  

Changes in environmental heterogeneity may occur with restoration. One example of this 

is decreasing heterogeneity in quantity of soil organic matter with increasing restoration age 

(Lane and BassiriRad 2005). Changes in light availability and light heterogeneity may occur 

because plant communities change dynamically during restoration (Camill et al. 2004, Manning 

and Baer 2018). Soil nitrate decreases exponentially following conversion of agricultural fields 

to grassland (Baer et al. 2002, 2003, Rosenzweig et al. 2016), and high variability in extractable 

N has been demonstrated in agricultural and newly restored soils compared to older restorations 

(Rosenzweig et al. 2016). This suggests that heterogeneity in N availability also changes 

dynamically as communities change over time. Further, homogenous and high concentrations of 

nitrate (Baer et al. 2003) correspond with homogenous and low levels of light (McCain et al. 

2010). Low light conditions are also associated with low plant diversity in restorations likely due 

to dominance of a few plant species early in the restoration process. Less is known about how 

heterogeneity of plants and resources change over time during ecological restoration.  

Few studies that have investigated the effects of environmental heterogeneity on biotic 

communities have considered spatial scale. One spatially explicit study found that decreasing 

resin bag nitrate corresponded with presence of dominant plants under grazing. Additionally, this 

study found that rare ions were more spatially heterogeneous than common ions, such as nitrate 

(Gibson 1986). Other spatially explicit studies considered heterogeneity of environmental 

variables and their correlation with plant diversity. One study found grazing increased 

heterogeneity in inorganic N and light availability, but only light availability was related to plant 
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diversity (Bakker et al.2003). Another study considering spatial expanse of rhizomatous and non-

rhizomatous plants found that environmental heterogeneity was positively related to plant 

heterogeneity (Eilts et al. 2011). 

Heterogeneity implications for ecosystem functioning 

If environmental heterogeneity promotes plant diversity (Ricklefs 1977), this supports a 

deterministic niche-based mechanism for species coexistence (Grime 1979, Huston 1979, Tilman 

1993, Caldwell and Pearcy 1994, Stein et al. 2014). Conceptual support for the ‘environmental 

heterogeneity hypothesis’ comes from studies suggesting that more variability in resources 

allows more species to coexist in an area through resource partitioning among species with non-

overlapping (or partially overlapping) niches (niche differentiation concept; Tilman 1982, Kohn 

and Walsh 1994, Chesson 2000, Amarasekare 2003, Hortol 2009, Smith and Lundholm 2012, 

Price et al. 2014, Weisberg et al. 2014, Yang et al. 2015). Higher plant diversity has been shown 

to correspond with environmental heterogeneity (nutrient availability or light availability) in 

observational studies (reviewed by Huston 1979, Bakker et al. 2003) and theoretical modeling 

(Golubbski et al. 2008), but the majority of experimental tests have shown no strong effects 

(Lundholm 2009). Although several experimental studies in grassland have garnered weak or no 

support for the ‘environmental heterogeneity hypothesis’ influencing plant diversity (Baer et al. 

2004, Baer et al. 2005, Reynolds et al. 2007, Baer et al. 2016), this discrepancy may be due to 

inappropriate scales of measurement for systems that contain large genets of clonal grasses (Eilts 

et al. 2011). It is also possible that examined factors were not limiting plant growth (Gibson 

1988a). Another potential explanation for weak experimental support for the ‘environmental 

heterogeneity hypothesis’ is that vegetation patterns can drive environmental variables (Greg-
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Smith 1979, Gibson 1988a and b), for example shading and nutrient uptake patterns can differ 

with plant species thereby creating hotspots.  

If heterogeneity begets diversity, it may also increase ecosystem functioning, according 

to biodiversity-ecosystem functioning (BEF) theory (Naeem and Wright 2003, Tilman et al. 

2014). Increased ecosystem functioning in response to higher biodiversity is presumed to result 

from niche complementarity, the concept of coexisting organisms using different forms of a 

resource (Tilman et al. 2012). Aboveground net primary productivity and secondary productivity 

have commonly been used as a proxy for ecosystem functioning to test BEF relationships 

(Tilman and Downing 1994, Naeem et al. 1994), but productivity may be an inappropriate 

measure of ecosystem functioning for perennial grasslands (Huston 1997, Grace et al 2007). A 

meta-analysis that examined nutrient uptake found evidence for nutrient use complementarity as 

increased species richness had a positive influence on nutrient use (decreased concentration in 

soil or water), though polycultures did not utilize more nitrogen than the most-efficient 

monocultures (Cardinale et al. 2011). Increased nutrient use plasticity of dominant species is an 

alternative explanation to niche-partitioning as a driver of complementarity effects (Ashton et al. 

2010). Limited diversity may limit ecosystem functioning (uptake of inorganic N); causing more 

inorganic N to be available in the soil, as such some aspects of N cycling can be used as indices 

of ecosystem functioning.    

Nitrogen cycling is predominately a microbialy-mediated ecosystem function. 

Ammonium can be biologically oxidized in a process called nitrification (Evans 2007, van 

Groenigin et al. 2015). This process only occurs in aerobic conditions. Nitrification has two 

steps, ammonia oxidation (performed by archaea and bacteria) and nitrite oxidation (performed 

by bacteria). While this process is generally viewed as autotrophic it also has been attributed to 
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some heterotrophic bacteria and fungi in a process that re-oxidizes NADPH (Stein 2011). Only 

two species of bacteria in the genus Nitrospira are known to be complete nitrifiers (van Kessel et 

al. 2017). Some of the nitrite produced by nitrification can be reduced to nitrous oxide (N2O) 

biotically or abiotically in anaerobic microsites or as conditions become more anaerobic, such as 

after a precipitation event (Evans 2007, van Groenigen et al. 2015). Nitrate can be reduced to 

nitrogen gasses by some bacteria and fungi in anaerobic conditions, a process known as 

denitrification. Complete denitrifiers reduce nitrate to nitrite then nitric oxide then N2O then 

dinitrogen gas. Many denitrifiers lack the nitrous oxide reductase enzyme and release N2O 

(Evans 2007, van Groenigen et al. 2015). Many heterotrophic nitrifiers are also capable of 

aerobic denitrification (Stein 2011). 

Greater nitrogen availability in soils may lead to increased nitrous oxide production in 

soils, and low diversity plant communities have been shown to have higher nitrate availability 

than high diversity plant communities (Tilman et al 2001, Ashton et al. 2010, Klopf et al. 2017). 

Nitrous oxide is a potent greenhouse gas that has nearly 300 times the heat trapping ability as 

CO2 (US EPA 2014). Nitrous oxide is produced from ecosystems in the greatest molar quantities 

from denitrification (reduction of nitrate under anaerobic conditions), but can also be produced 

by nitrification during aerobic conditions (Evans 2007). Nitrification and denitrification occur 

together at the plot scale due to anaerobic microsites within soil aggregates (Stolk et al. 2011). 

Although produced in uncultivated ecosystems, cultivation has increased emissions of nitrous 

oxide (Skiba et al. 1993, Zhang et al. 2014). Restoring prairie from cultivated agricultural 

conditions has been demonstrated to decrease N2O emissions. Restoring prairie with high plant 

diversity may further mitigate production of this greenhouse gas, which could be considered an 

ecosystem function potentially influenced by diversity. 
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Objectives   

The overall objective of my dissertation research was to characterize how soil 

heterogeneity changes in response to time since restoration and composition of plant 

communities, and test how plant heterogeneity (diversity) in restored communities influence soil 

ecosystem services. I focused largely on heterogeneity related to soil N pools and fluxes. Soil N 

is ecologically important in tallgrass prairies because it is often a limiting, or co-limiting with P, 

nutrient to plants (Avolio et al. 2014), its availability influences microbial communities (Coolon 

et al. 2013), and it results in the production of the potent greenhouse gas nitrous oxide (N2O; 

Evans 2007).   

My second objective was to determine if heterogeneity in soils or plant species has 

greater influence on microbial community structure in restored prairie. This objective was 

examined using plots with experimental manipulations of soil depth and nutrient availability. I 

hypothesized soil resources (depth and nutrient availability) and plant species would have 

distinct effects on the soil microbial community.  

The final objective of my dissertation research was to test whether plant diversity in 

restored prairie influences soil ecosystem functioning, specifically the production of nitrous 

oxide. I quantified the potential flux and relative contribution of different microbial metabolic 

pathways of nitrous oxide (N2O) production in high- and low-diversity plant stands using a 
15

N 

natural abundance (where relatively low values indicate more nitrification and relatively high 

values represent denitrification).  

Hypotheses and predictions 

In chapter 2, I hypothesized that soil nitrate heterogeneity would increase initially with 

restoration age as plants begin to establish, and then would level off. This hypothesis is 
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consistent with trends in variability of soil nitrate in a restoration chronosequence (Rosenzweig 

et al. 2016). I also hypothesized that available light heterogeneity would decrease as clonal 

grasses increase in dominance (Sluis 2002, Carter and Blair 2012, Baer et al. 2016). I also 

hypothesized heterogeneity of both soil nitrate and availability of light would be positively 

correlated with plant diversity and richness as predicted by the ‘environmental heterogeneity 

hypothesis’ (Ricklefs 1977).  

In chapter 3, I hypothesized that plant species interacting with nutrient availability would 

have the greatest influence (the other treatment was soil depth) on microbial community 

composition. Nutrient availability can also have indirect effects through plants (Bardgett et al. 

2003) on microbial community structure. Effects of plants on microbial communities are also 

well documented (Sasse et al. 2018, Hassani et al. 2018). I predicted that (1) altered nutrient 

availability would lead to shifts in microbial communities (Coolon et al. 2013, Koorem et al. 

2014), (2) the identity of nearby plants would influence microbial composition (Zak et al. 2003), 

and (3) soil depth would affect microbial biomass by limiting root growth particularly of 

dominant grasses in experimentally shallow soil (Gibson and Hulbert 1987, Collins and 

Calabrese 2012), thereby limiting organic inputs to soil. I predicted lower microbial diversity 

under high nitrogen availability (Coolon et al. 2013, Yang et al. 2015). 

In chapter 4, I hypothesized that diverse plant patches would have less N2O efflux from 

soil as compared to low-diversity patches (Tilman et al 2001, Ashton et al. 2010, Klopf et al. 

2017). I also hypothesized that initial extractable NH4
+
-N and NO3

-
-N would be lower in high 

plant diversity patches as compared to low-diversity patches.  

In summary, this research investigated the idea that environmental heterogeneity of 

resources (e.g. soil nitrate, light availability, and soil depth) can influence diversity of plant and 
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microbial communities (Fig. 1.1, Chapters 2 and 3). The high-diversity communities expected 

with heterogeneous environments are expected to influence ecosystem functioning. Diversity of 

biological communities effects on an ecosystem service, mitigation of N2O efflux, were 

investigated at a landscape scale (Fig. 1.1, Chapter 4). 
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Figure 1.1. This conceptual diagram displays my expectation that environmental heterogeneity 

will influence diversity, which will influence ecosystem functioning. An environmentally 

homogenous, low-diversity, low ecosystem functioning system is represented on the left. An 

environmentally heterogeneous, high-diversity, high ecosystem functioning system is 

represented on the right. This conceptual model applies to native prairies as well as restorations, 

but does not account for sampling effects (e.g. highly productive species).    
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CHAPTER 2 

DIVERSITY PATTERNS FROM SEQUENTIALLY RESTORED GRASSLANDS 

SUPPORT THE ‘ENVIRONMENTAL HETEROGENEITY HYPOTHESIS’ AT PLOT 

SCALE 

 (Pending acceptance decision in Oikos) 

Introduction 

The ‘environmental heterogeneity hypothesis’ (EHH) states that variation in resources 

promotes species coexistence, and is supported by studies demonstrating that structural 

heterogeneity of plants increases animal diversity (McArthur 1965, 1966, Pianka 1966, Murdoch 

et al. 1972). Support for this hypothesis was developed from published studies that incorporated 

an openness gradient of forest gaps in tropical and temperate climates. Openness gradients were 

known to correlate with changes in light availability and soil nutrients (Ricklefs 1977). 

Mechanisms underlying the EHH might include differential response of species in competition 

throughout space (spatial storage; Chesson 2000), and coexistence outcomes determined by 

minimum resource requirements and resource use rates (resource ratio hypothesis; Tilman 1982).  

The high biodiversity of tallgrass prairie has been attributed to patchy grazing, burning 

regimes, and variability in climate that promote landscape and community heterogeneity (Collins 

and Steinauer 1998, Collins et al. 1998, 2002, Knapp et al. 1998, Joern 2005). Restored prairies 

often contain less diverse plant communities than never-cultivated prairie (Sluis 2002, Carter and 

Blair 2012), and a lack of heterogeneity in formerly cultivated fields has been hypothesized to 

contribute to this general phenomenon (Baer et al. 2003, 2004, Baer et al. 2005, Baer et al 2015). 

This study aims to examine the development of soil heterogeneity in response to restoration and 

its relationship to plant diversity.  
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Restored prairies often begin in homogeneous conditions because cultivation 

homogenizes nutrients (Haas et al. 1957, Pan-González et al. 2000). However, little research has 

been done on the development of heterogeneity in restored prairies. There may be a decrease in 

the heterogeneity of soil nitrate with restoration age as there is high variability in extractable N in 

agricultural and newly restored soils compared to older restorations (Rosenzweig et al. 2016). 

Heterogeneity in light may also decrease with restoration as C4 grasses increase in abundance 

(Sluis 2002, Carter and Blair 2012, Baer et al. 2015) and limit light (McCain et al. 2010).  

 It is also unclear if heterogeneity in soil nutrient availability or light heterogeneity 

related to plant structure relate to changes in the plant community. If both soil- and plant-induced 

heterogeneity in resources (available nutrients and light) influence plant diversity, which has the 

larger influence? Because light availability is influenced by the plant community composition 

but can in-turn affect plant community composition, this can be viewed as a feedback. One study 

found that light heterogeneity was related to the plant community, but soil nitrogen heterogeneity 

was not (Bakker et al. 2003). By contrast, other studies found that soil nutrient heterogeneity was 

related to plant diversity and did not consider light heterogeneity (Golubbski et al. 2008, Eilts et 

al. 2011). One of these studies suggested that environmental heterogeneity interacted with plant-

plant competition to influence plant community structure (Golubbski et al. 2008).  

Although the ‘environmental heterogeneity hypothesis’ was developed from forest data, 

most tests of this hypothesis have been conducted in grasslands. Support for the hypothesis has 

come from observational studies (reviewed by Huston 1979, Bakker et al. 2003) and theoretical 

modeling (Golubbski et al. 2008), but there has not been strong support from experimental 

manipulations (Eilts et al. 2011, Baer et al. 2016). Heterogeneity in nutrient availability (Baer et 

al. 2003, Golubbski et al. 2008, Eilts et al. 2011, Baer et al. 2015) and light availability (Bakker 
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et al. 2003) has been previously shown to relate to plant diversity. However, this hypothesis is 

not supported by some experimental manipulations (Reynolds et al. 2007). Inappropriate scales 

of environmental manipulations (e.g. not considering the large expanse of genets) have been 

attributed to this disagreement in results (Eilts et al. 2011).   

I hypothesized that soil nitrate heterogeneity will be greatest early in restoration age as 

plants begin to establish then decrease with age. This is consistent with trends in variability in a 

restoration chronosequence (Rosenzweig et al. 2016). I also hypothesized that available light 

heterogeneity will decrease as clonal grasses increase in dominance (Sluis 2002, Carter and Blair 

2012, Baer et al. 2016). I also hypothesized heterogeneity of both soil nitrate and availability of 

light will be correlated with plant diversity and richness as predicted by the ‘environmental 

heterogeneity hypothesis’ (Ricklefs 1977). Many studies have shown that nitrate (Baer et al. 

2003, Golubbski et al. 2008, Eilts et al. 2011, Baer et al. 2015) and light availability (Bakker et 

al. 2003) correlate with plant diversity. I also predicted that heterogeneity in light availability 

would be more strongly correlated with the plant community than heterogeneity in soil nitrate 

because the study that analyzed both factors found that only heterogeneity in light was correlated 

with plant richness, where changes in light heterogeneity were driven by grazing treatments 

(Bakker et al. 2003).   

Methods 

Site Description and Field Sampling 

This research was conducted at the Konza Biological Station and Long-Term Ecological 

Research site (KNZ), located 9 km south of Manhattan, KS. The 30-year average annual 

precipitation is 835 mm/yr (75% received during the April-September growing season). The 

research area is located on a lowland Mollisol soil that had been in continuous cultivation for > 
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50 years prior to restoration. The soil is a Reading Silt loam 0-1% slope (mesic Typic Agruidoll), 

formed from alluvial and colluvial deposits.     

Seven fields located on KNZ were used (cultivated agricultural field, 1-year restored, 3-

year restored, 5-year restored, and 7-years restored). Four independent plots were established in 

each field. Plots were 6 m x 8 m and contained 12 subplots (2 m x 2 m). Each subplot contained 

two resin bags and two ¼ m
2 

species composition quadrats (Fig. 1). The plot shapes were based 

on the design of Baer et al. (2003). Plots within a field were delineated so that sampling points in 

different plots would be at least 10 m apart so there was no spatial dependence, based on a pilot 

analysis. Subplots within a plot were not considered spatially independent. Subplots within a plot 

were used to calculate mean (availability of a resource) and coefficient of variation of a resource 

(heterogeneity of a resource). Native prairie was not included in this analysis because the soil has 

no spatial autocorrelation due to high heterogeneity (Bakker 2003).  

All fields were in continuous cultivation for > 50 years prior to restoration. Recently the 

agricultural practice has been a corn-soybean-wheat rotation with winter wheat cover. Before a 

restoration site is seeded the field is disced to increase seed contact, then tillage is stopped. The 

restoration chronosequence was then seeded with a mix of 60% grasses and 40% forbs (Manning 

and Baer 2018). Six grass species (Andropogon gerardii, Sorghastrum nutans, Schizachyrium 

scoparium, Bouteloua curtipendula, Panicum virgatum, and Elymus canadensis) and 14 forb 

species (Amorpha canescens, Baptisia autralis, Dalea purpurea, Dalea candida, Dalea 

multiflora, Desmanthus illinoiensis, Echinacea angustifolia, Helianthus pauciflorus, Lespedeza 

capitata, Liatris pycnostachya, Oenothera macrocarpa, Rosa arkansana, Silphium integrifolium, 

Oligoneuron rigidum) were included in the mix.  
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Anion exchange resin bags were used to determine relative nitrite+nitrate-N availability 

(Binkley and Matson 1983) in a spatially explicit design over one growing season. Two anion 

exchange resin bags were buried in 0.5 m x 0.5 m quadrats NW and SE from the center of each 

subplot. Resin bags were prepared by placing 5 g of a strongly basic anion exchange resins 

(Dowex 1X8, 50-100 μm mesh) in a double layer of nylon hosiery attached to zip-ties (Baer et al. 

2003). These resin bags were buried to 10 cm in late May and collected in early September.  

Vascular plant species were recorded in two 0.5 m x 0.5 m quadrats NE and SW from the 

center of the 12 subplots in late May 2016 and September 2016 in each restored field (Fig. 2.1). 

Presence/absence data for each subplot were converted to frequency data at the plot level. 

Photosynthetically active radiation (PAR) was measured in the same quadrats where species 

composition was taken in early September (cultivated field not recorded). Photosynthetically 

active radiation was measured above and below the plant canopy using a Decagon AccuPAR LP-

80 ceptometer (Decagon Devices Pullman, WA). Proportion of light available at the soil surface 

will calculated as PAR below canopy divided by PAR above canopy.   

Spatial Reference Site 

Data from restored prairie plots located at Konza Prairie (Baer et al. 2003) were used to 

construct an experimental variogram (i.e. semivariogram) for soil nitrite+nitrate-N to examine 

the spatial variability in plots with no applied treatment using resin-bag data from 2014, when 

this prairie restoration was 16 years old (Appendices A and B). This dataset was used because it 

was the youngest restoration with recently collected nitrate data available. The 2014 dataset was 

used for this site because it had few missing values. This restoration was sown with all the same 

species as restorations in the main study plus a few additional species. Rare species were sown 

after establishment of the restoration (Baer et al. 2015). Coordinates (x and y distance in meters 
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from most southern and western corners of plots) were assigned with package sp (Pebesma et al. 

2005, Bivand et al. 2013) in R (R core team 2016). Nitrate and coordinate data were transformed 

to z scores to remove anisotropy (i.e. directionality) and normalize the attribute data (Isaaks and 

Srivastava 1989). The range was then estimated with a variogram model using an unweighted 

(ordinary least squares) fit method to preserve heterogeneity in the variance estimates. A 

spherical model was fitted in the R package gstat (Pebesma 2004).  

Lab Analyses 

Resin bags were rinsed with deionized water to remove excess soil then extracted with 

2M KCl in 0.1M HCl. The extracts were filtered with 0.4 μm HTTP Isopore Membrane Filters 

(Merk Millapore Ltd.) and analyzed on an OI Analytical Flow Solution IV (OI Analytical Corp., 

College Station, TX, USA) for nitrite+nitrate-N. Nitrate was reduced to nitrite with cadmium 

metal. The nitrite reacted with sulfanilimide and then coupled with N-(1-

naphthyl)ethylenediamine dihydrochloride. The resulting colored solution (azo dye) was 

colorimetrically detected at 540 nm (absorbance). The average of blanks (one for each batch of 

resin bags analyzed) was subtracted from samples to account for ambient nitrate/nitrite.  

Statistical Analyses 

Means and coefficients of variation were calculated for each plot for soil nitrate and 

proportion of PAR available at the soil surface. Coefficient of variation (CV) was used to 

measure heterogeneity in light and nitrogen. I used CV as a measure of heterogeneity because it 

is less likely than standard deviation to be related to the mean. Relationships between mean soil 

nitrate (nitrate availability), mean proportion of PAR available (light availability), CV of soil 

nitrate (nitrate heterogeneity), and CV of proportion of PAR available (light heterogeneity) with 

restoration age was explored using linear and non-linear models (e.g., linear regression, low-
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order polynomial, 3-parameter Gaussian, exponential rise-to-max, and exponential decay) in R 

(R Foundation for Statistical Computing). All significant linear and polynomial models and all 

converging non-linear models were compared with Akaike Information Criterion to determine 

the most parsimonious model. Non-linear models were tested for significance by comparison to a 

null model, where the most significant parameter has been dropped.  

A PCoA ordination was created in the R package vegan (Oksanen et al. 2016) to display 

plant species composition of each plot, relating mean and CV of soil nitrate and proportion of 

PAR fitted as vectors if significant. Differences in plant composition based on restoration age 

were tested using analysis of similarity (ANOSIM) using Bray-Curtis dissimilarities and 1000 

permutations. Age groups were displayed on the ordination with 95% standard error of the 

weighted average of scores with the principal axis of the ellipse defined by weighted correlation 

using the ordiellipse function. Indicator species analysis was performed with the package 

indicspecies (De Caceres and Legendre 2009) using the index defined by Dufrêne and Legendre 

(1997) to identify the species with high fidelity and constancy in each restoration age group. 

All species with significant indicator values (IndVal) for a single site were reported. Variance in 

community composition was compared among restoration age groups (PERMDISP) using the 

betadisperser function. Environmental variables correlation with plant community structure were 

tested with permutational multivariate analysis of variance (PERMANOVA) analysis based on 

Bray-Curtis dissimilarities with 1000 permutations and restoration age as a block using the 

adonis function in the R package vegan (Oksanen et al. 2016).  

Exponent of Shannon’s diversity (e
 H′

), Pielou's evenness (J), and richness (S) were 

analyzed as response variables in linear mixed effects models (Type 3, Satterthwaite's 

approximation of degrees of freedom, maximum likelihood estimations) using the lme4 package 
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(Bates et al. 2015), where P values were calculated with the lmerTest package (Kuznetsova et al. 

2017). Transformations were applied to meet the normality and homoscedasticity assumptions of 

linear mixed models; these transformations also reduced collinearity. Models had a variance 

inflation factor < 7 as calculated with the usdm package (Naimi et al. 2014), indicating little 

collinearity. Likelihood ratio (chi squared statistic) tests were performed using the drop1 

function to remove non-significant interactions and increase parsimony. Pseudo-R
2
 values for 

linear mixed models and adjusted coefficients of determination were calculated for fixed terms 

using the MuMIn package (Bartoń 2018). Significance was assigned using α = 0.05. Data for this 

chapter are included in appendices C and D. 

Results 

The spatial reference site had a z-transformed rage of 3.3 with a back-transformed range 

of 10.0 m (distance of spatial independence). Mean soil nitrate and mean proportion of PAR 

available at the soil surface decreased with restoration age according to an exponential decay 

model (Fig. 2.2 A and C). However, there were only pairwise differences in mean nitrate among 

restoration age groups (cultivated and 1 year restored prairies had higher values than the older 

prairie restoration sites). There was no directional change in CV of available nitrogen with 

restoration age (Fig. 2.2 B). There were no pairwise differences in CV of available nitrogen 

among restoration age groups. However, CV of proportion of PAR available at the soil surface 

increased with soil restoration age according to an exponential decay function with a negative b 

parameter (Fig. 2.2 D). Despite this slow increase, there were no pairwise differences in CV of 

proportion of PAR available among restoration age groups. 

Sixty-one species were encountered among 20 plots (Appendix C); Andropogon gerardii 

was the most dominant across all restored prairies. Five species had high fidelity and specify to 
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1-yr restored prairie: Digitaria sanguinalis (IndVal = 1.00, P = 0.005), Eragrostis cilianensis 

(IndVal = 1.00, P = 0.005), Chamaesyce maculata (IndVal = 0.937, P = 0.020), Amaranthus 

rudis (IndVal = 0.87, P = 0.020), and Bouteloua curtipendula (IndVal = 0.79, P = 0.045). Three 

species had high fidelity and specify to 3-yr restored prairie: Verbena stricta (IndVal = 1.00, P = 

0.005), Bromus tectorum (IndVal = 0.89, P = 0.010), and Hordeum pussilum (IndVal = 0.87, P = 

0.050). Two species had high fidelity and specify to 5-yr restored prairie: Helianthus annuus 

(IndVal = 0.89, P = 0.010) and Solidago canadensis (IndVal = 0.85, P = 0.020). Three species 

had high fidelity and specify to 7-yr restored prairie: Amorpha canescens (IndVal = 0.87, P = 

0.020), Schizachyrium scoparium (IndVal = 0.82, P = 0.005), and Sorghastrum nutans (IndVal = 

0.78, P = 0.015).  

Plant community dissimilarity was displayed with a two-dimensional principal 

coordinates analysis (PCoA). Species scores of indicator species were labeled. Vectors 

representing significant correlation of site scores with environmental variables are also displayed 

on the ordination (Fig. 2.3). Differences in plant composition with restoration age were detected 

by ANOSIM (R = 0.78, P = 0.001); dispersion (PERMDISP: P = 0.038), differed among 

restoration ages, with the most dispersion in the youngest prairie and the least dispersion in the 

oldest prairie. Centroid location (PERMANOVA: P = 0.001) also differed among restoration 

ages. However, there were no significant correlations between species composition centroid 

location and environmental variables when blocked by restoration age (PERMANOVA; N 

heterogeneity: P = 0.865; PAR heterogeneity: P = 0.673; N heterogeneity*PAR heterogeneity: P 

= 0.836; N heterogeneity*N availability: P = 0.336; PAR heterogeneity*PAR availability: P = 

0.995).  
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Resource availability and heterogeneity predictors in linear mixed models of e
H′

 

(marginal pseudo-R
2
 = 0.36, conditional pseudo-R

2
 = 0.77) and S (marginal pseudo-R

2
 = 0.46, 

conditional pseudo-R
2
 = 0.82) explained a great deal of variance, but fixed effects did not explain 

much variance in the model of J (marginal pseudo-R
2
 < 0.01, conditional pseudo-R

2
 = .98). 

Nitrogen heterogeneity and PAR heterogeneity main effects were detected for e
H′

 and S. 

Significant interactions of N heterogeneity*N availability and PAR heterogeneity*PAR 

availability were detected for H′; only N heterogeneity*N availability was detected for S (Table 

2.1). All significant interactions had a smaller linear coefficient (i.e. a shallower slope; Table 

2.1). No significant effects were detected in the mixed model of J.     

Discussion 

The ‘environmental heterogeneity hypothesis’ is an explanation for species coexistence 

through variability in resources that can be partitioned (Ricklefs 1977). For plants in tallgrass 

prairie, two key resources for growth are N and light. This hypothesis has been supported by 

multiple observational studies (reviewed by Huston 1979, Bakker et al. 2003, Golubbski et al. 

2008, Eilts et al. 2011), but many experimental tests have found weak (Baer et al. 2016) or no 

support (reviewed by Lundholm 2009). This study used the same scale as the Baer et al. (2016) 

experiment and found stronger support for EHH. This weak effect might suggest that it is 

difficult to experimentally replicate environmental heterogeneity found in reference ecosystems. 

Alternatively, this discrepancy between observational support and lack of experimental evidence 

could suggest that plants induce rather than respond to heterogeneity, e.g., soil ions (Greig-Smith 

1979, Gibson 1986, 1988a, b).  

As hypothesized, light availability, light heterogeneity, and soil nitrate availability 

changed with restoration age. The exponential decrease in growing-season soil nitrate 
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availability with increasing restoration age was consistent with a previous study that measured 

extractable soil nitrate (Rosenzweig et al. 2016). Inconsistent with our predictions, heterogeneity 

in light increased with restoration age, though very slowly. Also in contrast to our predictions 

soil nitrate heterogeneity did not show a directional change with increasing restoration age. This 

lack of increase in heterogeneity suggests if increasing soil nutrient heterogeneity is a restoration 

goal, it should be implemented at the onset of restoration. Without manipulation to promote 

environmental heterogeneity, it might be difficult to maintain high diversity plant communities 

that coincide with heterogeneous environments in grassland restorations.    

Dynamically changing light and nitrate availability with restoration age resulted in prairie 

communities grouped by age in the ordination space. Plant composition was not related to 

environmental heterogeneity, suggesting all separation was due to changes that occur with 

restoration age. Restored prairie plots within the youngest restoration site were most variable in 

terms of plant composition because of variability in the soil seed bank, as many of the sown 

perennial species had not yet established. There was also greater dispersion in young restoration 

sites compared to older restoration sites, supporting strong community convergence with 

restoration age (Baer et al. 2016), which might lead to reduced ecosystem functioning because 

community convergence is associated with trait convergence (Grman et al. 2018). I suggest that 

coexistence and diversity research be extended to evaluation of functional traits, because 

environmental variability and trait availability influence ecosystem functioning (Hodapp et al. 

2016).      

Plants associated with N fixers might be an important N source when little N from 

agricultural fertilizer remains. Putative N fixing plants can have greater N availability in 

surrounding soils, which can be utilized by neighboring plants (Temperton et al. 2007). Amorpha 
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canescens, a legume, was an indicator species of 7-y restored prairie, suggesting the importance 

of putative N fixing plants. It has also been suggested that legumes could be better competitors 

than non-leguminous forbs when competing with a dominant grass that establishes early in 

restorations, Andropogon gerardii (Scott and Baer 2018). 

Diversity and richness were positively related to N heterogeneity and PAR heterogeneity. 

When interactions of nitrate availability and nitrate heterogeneity were significant, the strength 

of the positive effect of resource heterogeneity on plant diversity or richness was reduced. This 

highlights the importance of creating heterogeneity early in the restoration process, when 

resources when soil nitrate levels are high. Perhaps this result should not be surprising because 

several studies have shown that high levels of a limiting resource decreases diversity through 

competitive exclusion (Al-Mufti et al. 1977, Grime 2001, Fridley 2002, Rajaniemi 2002). 

Because N becomes progressively limited during grassland restoration (Baer et al. 2003, Baer 

and Blair 2008, Rosenzweig et al. 2016), the positive effect of N heterogeneity on plant diversity 

and richness might be stronger in older restorations. Similar to native (never-cultivated) and 

grazed prairie, light heterogeneity had stronger effects on plant richness than N heterogeneity 

(Bakker et al. 2003), when we considered N availability modulating N heterogeneity effects. No 

effects on evenness were observed, suggesting that effects on diversity were mostly driven by 

richness. Overall, these results provide support for heterogeneity in light and inorganic N as 

strong drivers of plant diversity and richness as communities develop. 

Our results suggest that resource ratio theory and spatial storage both contribute to 

maintenance of plant diversity. Differing resource ratios among communities can act as a simple 

form of spatial storage to promote regional diversity (Pacala and Tilman 1994). Spatial storage 

was developed from spatially explicit studies of plant populations (Bolker and Pacala 1998, 
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Bolker 2003) and has been proposed as the mechanism preserving diversity after an adaptive 

radiation (i.e. rapid speciation; Tan et al. 2017). However, few studies have examined resource 

availability and heterogeneity simultaneously as it relates to species diversity. Our results 

demonstrate that resource availability influences diversity responses to environmental 

heterogeneity, suggesting that resource ratio theory and spatial storage are not mutually 

exclusive even within the same site.  
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Table 2.1. Summary statistics (t values, pseudo-R
2
 values, P values, and linear coefficients [β]) 

from linear mixed model analyses. Response variables include e
H
 = Shannon’s diversity, S = 

species richness, and J = Pielou's evenness. Predictor variables included N heterogeneity = 

coefficient of variation of nitrite+nitrate–N, PAR heterogeneity = coefficient of variation of 

proportion of photosynthetically active radiation reaching soil, N het. * N avail. = interaction of 

N heterogeneity  with nitrogen availability (N avail. = mean [availability] nitrate+nitrite-N). 

 e
H′

 S J 

N heterogeneity t15.9 = 2.41  

R
2
 = 0.27 

P = 0.028 

β = 6.59 

t16.0= 3.15  

R
2
 = 0.38 

P = 0.006 

β = 10.65 

t12.3= -0.05  

R
2
 < 0.01 

P = 0.962 

β = -0.01 

PAR heterogeneity t4.8 = 6.56  

R
2
 = 0.42 

P = 0.001 

β = 14.49 

t4.9= 7.80  

R
2
 = 0.53 

P < 0.001 

β = 22.21 

t12.8= 0.28  

R
2
 < 0.01 

P = 0.783 

β = 0.04 

N het. * N avail. t15.9 = 2.37  

R
2
 = 0.26 

P = 0.031 

β = 2.52 

t15.8= 4.13  

R
2
 = 0.36 

P = 0.008 

β = 3.95 

t12.2= 0.14  

R
2
 < 0.01 

P = 0.894 

β = 0.01 
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Figure 2.1. Diagram of a plot, where dots represent the location of anion exchange resin bags. 

Species composition quadrats are located in the other two corners of each subplot, represented by 

squares. 
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Figure 2.2. Regressions of environmental variables with restoration age. Each point represents a 

measurement from each plot. The lines represent a non-linear regression based on fitted 

parameter estimates (displayed as constants in equations on panels). Panel A represents mean 

soil nitrate. Panel B represents CV of soil nitrate. Panel C represents mean proportion of 

photosynthetically active radiation available at soil surface. Panel D represents CV of proportion 

of photosynthetically active radiation available at soil surface. Open circles represent an 18-y 

restored prairie, where spatial reference data were collected, that was not used in regression 

analyses.    
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Figure 2.3. Principal coordinates analysis ordination of plots. Significant vectors are displayed, 

where nitrate = nitrate availability and PAR = light availability. Site points are displayed as age 

followed by plot number within that age. Species scores are represented + symbols. Significant 

indicator species are labeled according to the following abbreviations: DS = Digitaria 

sanguinalis, EC = Eragrostis cilianensis, CM = Chamaesyce maculata, AR = Amaranthus rudis, 

BC = Bouteloua curtipendula, BT = Bromus tectorum, HA = Helianthus annuus, SC = Solidago 

canadensis, AC = Amorpha canescens, SS = Schizachyrium scoparium, SN = Sorghastrum 

nutans. Two other significant indicator species, Verbina stricta and Hordeum pusillum, are 

located in the large group of points near the origin. Ellipses represent 95% standard error from 

age group centroid.   
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CHAPTER 3 

MANIPULATED SOIL RESOURCES AND PLANT SPECIES EFFECTS ON THE SOIL 

MICROBIAL COMMUNITY  

 

Introduction 

Soil nutrients influence plant diversity (Bradshaw 2004, Hejcman 2014, Dias et al. 2014, 

Mauchamp et al. 2016), but plant species can also differentially influence soil microbial 

communities and nutrient availability (Hawkes et al. 2005, Hausmann and Hawkes 2009, 2010, 

Kilvin and Hawkes 2011). Plant soil feedbacks occur when a plant changes the soil community, 

which in turn affects the plant growth rate (Bever 1994, Bever 2003). Identity of neighboring 

plants has been shown to influence AMF in the rhizosphere of the focal plant (Morris et al. 

2013), indicating plant effects on the microbial community. Plants can play a role in structuring 

of soil microbial communities and both directly via root turnover, litter inputs, and root exudates 

and indirectly through nutrient uptake, as evidenced from distinct microbial communities 

associated with different plant species (reviewed by Sasse et al. 2018 and Hassani et al. 2018) 

and genotypes within a plant species (Shakaya et al. 2013).  

Soil microbial communities vary with soil profile depth. The surface microbial 

community may be affected by soil depth if there is more resource availability (e.g. organic C, 

available N and water) relative to deeper soils (Schimel et al. 1991, Turner et al. 1997). 

Microbial biomass and many diversity metrics decrease with depth (Blume et al. 2002, Fierer et 

al. 2003, Jumpponen et al. 2010) and Gram-positive bacteria and actinomycetes become 

proportionally more abundant with depth in grasslands (Fierer et al. 2003). Most microbial 

biomass is concentrated near the soil surface because of greater detritus inputs (Lenz and 
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Eisenbeis 1998, Fritze et al. 2000, Snajdr et al. 2008). However, possible effects of depth of soil 

profile on the surface microbial community have not been well studied. Soil profile depth might 

influence the soil microbial community by releasing forbs from competition with dominant C4 

grasses in shallow soils (van Auken et al. 1994), thus altering plant inputs to soil. 

Nutrient availability could influence the microbial community through altered plant-

microbe interactions (Bardgett et al. 2003), as well as microbe-microbe interactions (Yan et al. 

2017). Studies in grassland and agricultural systems have revealed consistent microbial 

taxonomic composition responses to nitrogen addition, but microbial diversity responses are less 

consistent (Ramirez et al. 2010). Some grassland studies found a decrease in soil microbial 

diversity with nitrogen addition (Coolon et al. 2013, Yang et al. 2015). In a review of global 

grasslands, nutrient (nitrogen and phosphorus) addition caused consistent shifts in fungal 

(Ascomyta species increased, Glomeromycota species decreased), archaeal (Crenarcheota 

species increased, Euryarchaeota and Parvarchaeota species decreased) and bacterial 

communities (Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria species 

increased, Acidobacteria, Planctomycetes, and Deltaproteobacteria species decreased; Leff et al. 

2015). Nitrogen addition also decreased fungal and archaeal diversity, but not bacterial diversity. 

Changes in soil bacterial and fungal composition were related to change in plant composition 

(Leff et al. 2015).  

Many soil microbial studies have used PLFA biomarkers as a proxy for diversity because 

of lower cost amplicon sequencing techniques and the ability to accurately estimate biomass of 

major taxonomic groups. Shifts in the Gram-negative bacteria with increased nitrogen 

availability have been demonstrated in tropical forests using PLFA biomarkers (Cusak et al. 

2011, Liu et al. 2014), and the direction of this shift may be conditional on elevation (Liu et al. 
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2014). Agricultural land use (different plants) was shown to influence the AMF community 

using morphology of spores (Urcelay et al. 2009). An experimental removal of plant functional 

groups indicated that plant composition had a larger impact on AMF communities than physical 

and chemical soil properties in shrubland systems (Pereira et al. 2014). In P-limited tallgrass 

prairie such as Konza Prairie, mutualistic phenotypes of AMF are expected because AMF are 

more N limited than interacting plants and plants are more P limited than interacting AMF 

(Johnson et al 2014). Fungal hyphae (Eom et al. 1999, Wilson et al. 2009) and spore abundance 

(Eom et al. 1999) increased in response to N addition, but fungal species evenness decreased 

(Eom et al. 1999) due to N-limitations. Fungal abundance and diversity, using PLFA biomarkers, 

increased with plant richness in old fields that were historically tallgrass prairie (Zak et al. 2003). 

Positive responses of PLFA richness to restoration age have also been demonstrated (Allison et 

al. 2005, Bach et al. 2010, Baer et al. 2010, 2015).  

This study was undertaken at a site where experimental manipulation of soil 

heterogeneity has been maintained for 20 years to measure plant diversity responses in restored 

tallgrass prairie (Baer et al. 2016). The impact of plant species and manipulating soil 

heterogeneity on the soil microbial community has not been investigated. Because it is unclear 

which potential driver has the strongest influence on soil microbial communities, the overall 

objective of this research was to reveal whether soil (nutrient availability and depth) or plant 

identity has a stronger influence on soil microbial community structure. I predicted that all main 

effects would have an influence microbial diversity. I predicted the strongest effect on PLFA 

microbial diversity would be the interaction of nutrient availability and plant species.  
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Methods 

Site Description 

The research area was located on lowland Mollisol soil that had been in continuous 

cultivation for > 50 years prior to restoration. The site was located 9 km south of Manhattan, KS 

on the Konza Biological Station and Long-term Ecological Research site. The 30-year average 

annual precipitation is 835 mm/yr (75% received during April-September growing season). The 

soil was a Reading Silt loam 0-1% slope (mesic Typic Agruidoll), formed from alluvial and 

colluvial deposits.     

Plots containing manipulated soil heterogeneity were established in June 1998 at Konza 

Prairie Biological Station (Baer et al. 2003). These plots were initially sown with a mix of 42 

native species at rates selected to achieve a log-normal distribution of species representative of 

native prairies (Baer et al. 2003) and received a second seed addition of 15 species (25 live seeds 

m
–2

) that had never occurred in the plots in March 2005 (Baer et al. 2015). Starting in 2013, an 

additional 17 never-present subordinate species were sown at a rate of 20 seeds m
–2

 year
–1

 for 

each species.  

The design of the experiment was a strip-strip split block, with nutrient heterogeneity 

assigned to three strips (low, ambient, or high N availability) and depth heterogeneity assigned to 

four alternating strips (deep and shallow soils) perpendicular to the nutrient treatments. High N 

availability was created with annual ammonium nitrate fertilization (5 g N m
–2

). Reduced N 

availability was originally created by incorporating sawdust in 1997 (5.5 kg dry sawdust m
–2

 

with 49% C and C:N ratio = 122), and starting in 2005 sucrose was added three times during 

each growing season (84.2 g sucrose–C m
–2

). These treatments were demonstrated to 
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significantly influence soil N availability (Baer and Blair 2008). Shallow depth treatments were 

created by burying limestone slabs approximately 10 cm deep.    

I sampled soil below 3 plant treatments (Andropogon gerardii [most common C4 grass], 

Salvia azurea [most common forb], and bare ground) within the one subplot of the soil nutrient 

(3 levels: labile C addition, inorganic N addition, and ambient) x soil depth (2 levels: deep and 

shallow [limestone buried at 10 cm]) treatment combinations (n = 72; Fig. 3.1). Soil was 

sampled in spring 2018 at the main stem of the two plant species (plant-influenced soils) and in 

bare areas between plants. These plant species were chosen because they occurred in every plot.   

PLFA Profiles  

Phospholipid fatty acid biomarkers were used to examine the bacteria and fungi soil 

community in terms of functional groups (Gram positive bacteria, Gram negative bacteria, non-

specific bacteria, actinomycetes, saprophytic fungi, and arbuscular mycorrhizal fungi). Analysis 

followed the methods of Blye and Dyer (1959) as modified by Bosio et al. (1998) and DeGrood 

et al. (2005) and used by Scott et al. (2017). Extractions were made from ~2 g of freeze-dried 

soils. Briefly, PLFAs were extracted from the soil using a 1:2:0.8 

chloroform:methanol:phosphate buffer with centrifugation (2500 rpm, 10 min). Additional 

chloroform and phosphate buffer was added (12 ml each) and phases were allowed to separate. 

The chloroform phase was removed and evaporated under nitrogen gas (N2). From this phase, 

neutral-, glycol-, and phospholipid fatty acids were separated on a solid phase column (0.50 g Si, 

Supelco, Inc. Bellefonte,PA). Newly polarized lipids were methylated using a methanol:toluene 

(1:1) solution (37°C, 15 min), H2O (2 ml), and acetic acid (0.3 ml 1.0 M). Fatty acid methyl 

esters were removed with hexane, dried (under N2 at room temperature), dissolved in hexane 

containing an internal fatty acid standard (19:0). PLFA extracts were analyzed with a Shimadzu 
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GC-2010 gas chromatograph with flame ionization detector (FID; Shimadzu Corp., Kyoto, 

Japan) and Omegawax 320 column: 30m x 0.25mm ID, 0.25um film (polyethylene glycol phase) 

(Supelco, Belfonte, PA, USA). An injection of 1.0 μl was injected at a 100:1 split. The oven was 

set at 150° C ramping to 182.5° C at 0.5° C /min with the injector at 280° C and the detector at 

260° C. Helium was used as the carrier (1.09 ml/min). 

Fatty acids were identified with bacterial acid methyl ester (BAME) mix (Sigma Aldrich, 

St. Louis, MO, USA), 11-hexadecenoic acid (Matreya LLC, Pleasant Gap, PA, USA), and 

actinomycetes (16:0 Me) standard: methyl 10-methylhexadecanoate (Matreya LLC, Pleasant 

Gap, PA, USA). Fatty acids were quantified with an internal standard Methyl undecanoate 

(C11:0) (Sigma Aldrich) and recovery determined by surrogate standard (100 μl of 1 mg/ml 

solution of C 19:0 phosphatidlycholine; Bird et al. 2011, Norris et al. 2013) 19:0 

phosphatidycholine (Avanti Polar Lipids, Alabaster, AL, USA). Recovery corrected 

concentrations are reported (standard recovery and uncorrected PLFA biomass values reported in 

Supplemental Table 1). The PLFA biomarkers were assigned as in Scott et al. (2017), according 

to Olsson et al. (1995), Mckinley et al. (2005), Bach et al. (2010) and Williams et al. (2012). 

Actinomycetes, despite being phylogenetically bacteria, were displayed with fungi, as in Scott et 

al. (2017), because of similar filamentous morphology and similar effects on soil structure.   

Statistical Analyses 

Patterns in PLFA biomarker concentration dissimilarity were analyzed with 

permutational multivariate analysis of variance (PERMANOVA). Biomarkers concentrations 

were also used to create a non-metric multidimensional scaling (NMDS) ordination. Mixed 

model analyses were performed to test for main effects and interactions of soil nutrient, depth 

and plant effects on Shannon diversity index (H), richness (S), and Pielou's evenness (J) of PLFA 
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biomarker concentrations. Mixed model analyses were also performed with each PLFA group 

(non-specific bacteria, Gram-positive bacteria, Gram-negative bacteria, saprophytic fungi, 

arbuscular mycorrhizal fungi, and actinomycetes). In these models, diversity metrics or PLFA 

biomass was the response with plant species, nutrient availability, soil depth, and all possible 

interactions as fixed predictors. The split block design was accounted for with random effects of 

the fixed effect of soil depth within vertical strips, the fixed effect of nutrient availability within 

horizontal strips, and blocking by whole plot and subplot within whole plot. Models were fit 

using the lme4 package (Bates et al. 2015) and significance was determined using P values 

calculated with Kenward-Roger approximated degrees of freedom and restricted maximum 

likelihood using the lmerTest package (Kuznetsova et al. 2016). To meet the assumption of 

normal distribution, log transformations were applied to saprophytic fungi and actinomycetes 

biomasses. Protected Fisher’s least significant differences (LSD) were conducted using the 

lsmeans package (Lenth 2016) to make comparisons between levels of main effects. Plots were 

created to display least-squares means and associated standard errors. Fungi:bacteria PLFA 

biomass ratio was calculated, where actinomycetes were included as fungi. Data for this chapter 

are included in Appendices H and I.  

Results 

There was no difference in pairwise community dissimilarity of PLFA biomarkers among 

any treatments. This was indicated by little separation in ordination space between sampling 

units (Fig. 3.2) and non-significant PERMANOVA results (P > 0.05; Appendix E). Most 

biomarkers occupied a similar ordination space, with the exceptions of two Gram-negative 

bacteria biomarkers (cy 19:0 and 2-OH 16:0) and one non-specific bacteria biomarker (17:0), 

which were more variable in their presences (Fig. 3.2).  
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Shannon diversity index differed with the main effect of plant identity. There was greater 

H′ in plant-influenced soils as compared to bare soil. This was not due to richness (S; F3, 36 = 

2.28, P = 0.116) or Pielou's evenness (J; F3, 36 = 1.97, P = 0.154) alone and was associated with 

greater proportional arbuscular mycorrhizal fungi and Gram-negative bacteria in rhizosphere 

soils. There were no significant effects of soil depth, nutrient availability, or any interaction of 

main effects on diversity metrics (P > 0.05; Appendix F).  

Total PLFA biomass (Fig 3.4) and biomass of each major taxonomic group were all 

affected by nutrient availability (non-specific bacteria: F2, 5.9 = 10.38, P = 0.012; Gram-positive 

bacteria: F2, 5.9 = 11.99, P = 0.008; Gram-negative bacteria: F2, 5.9 = 14.93, P = 0.005; 

saprophytic fungi: F2, 5.9 = 13.30, P = 0.007; arbuscular mycorrhizal fungi: F2, 5.9 = 6.22, P = 

0.035; actinomycetes: F2, 5.9 = 5.94, P = 0.038, Fig. 3.5). The fungi:bacteria ratio for ambient N 

was 0.38. Low nutrient availability treatment subplots had higher PLFA biomass than ambient or 

high nutrient availability for all PLFA groups. There were no cases of significant main effects of 

depth or plant species on PLFA biomass (P > 0.05). Interactions among plant species, soil depth, 

or nutrient availability also had no effect on PLFA biomass (P > 0.05; Appendix G).  

Discussion 

Diversity of PLFA biomarkers responded to plant presence/absence, while total biomass 

and biomass of major taxonomic groups responded to nutrient availability. This difference was in 

contrast to my prediction that all tested variables (soil depth, nutrient availability, and plant 

treatments) would influence biomass, with plant species having the strongest effect. 

Actinomycetes and AMF PLFA groups had less response to nutrient availability than saprophytic 

fungi and bacterial PLFA groups. The positive sucrose addition effect on AMF is surprising 

because AMF receive plant photosynthate. This positive AMF response to sucrose addition 
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might suggest microbial groups, such as saprotrophic fungi, are promoting decomposition of 

organic matter. The positive AMF response might also be due to high carbon supply to the host 

plant triggering uptake and transport of N by AMF (Fellbaum et al. 2012). Diversity and PLFA 

biomasses were unaffected by soil depth.  

 Recovery of PLFA biomass generally occurs on a decadal time scale with grassland 

restoration from cultivation (Bach et al. 2010, Baer et al. 2010, Scott et al. 2017), likely due to 

cessation of tillage (Gupta and Germida 1988). A restoration chronosequence study with the 

same PLFA methods and conducted in the same area with a cultivated field and never-cultivated 

prairie was used to provide context to microbial community development (Scott et al. 2017). 

Total PLFA biomass levels in this study (ambient N estimate = 405.16 nmol g
-1

) were midway 

between values obtained from a nearby-cultivated field (~ 200 nmol g
-1

) and a never-cultivated 

prairie (~ 600 nmol g
-1

). Ratios of fungi:bacteria PLFA biomass (ambient N estimate = 0.38 

nmol g
-1

) were greater than the reference cultivated field (~ 0.25) and never-cultivated prairie (~ 

0.30). The PLFA biomass of this 20 y old restoration study is consistent with the prediction of a 

20 y restoration based on modeling from a chronosequence in the same area; the PLFA 

fungi:bacteria biomass is also similar (~0.4; Scott et al. 2017).  

These results are similar to the results of Ramirez et al. (2015) demonstrating microbial 

biomass and community composition, but not diversity, responded to soil nutrient manipulation. 

In contrast to studies of native prairie under chronic nitrogen enrichment using shallow amplicon 

sequencing (Coolon et al. 2013) and PLFA profiles (Yang et al. 2015), these results showed no 

decrease in diversity with chronic nitrogen addition in restored prairie. The N addition from the 

Coolon et al. (2015) describes N enrichment for the same amount of time (20 y) as this study. 

Some, but not all, diversity metrics described in Coolon et al. (2015) decreased with N addition. 
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For example H and its components were not different between N addition and control, but there 

was greater Simpson’s dominance and lower alpha log series diversity in the N addition 

treatments. This is likely because Shannon diversity is less influenced by the dominant species. 

The Yang et al. (2015) study described a shorter duration of N enrichment (9 y). It is possible 

that increased plant diversity in the N enrichment following two decades of treatment (Baer et al. 

in review) has overridden the expected reduction of microbial diversity, because of positive 

correlation between plant and microbial diversity (Zak et al. 2003) and compositional change 

(Leff et al. 2015). This increase in plant diversity after chronic N enrichment is attributed to 

increased stochasticity in community assembly (Wilcox et al. 2017, Baer et al. in review). 

This study only considered individual plant effects on microbial diversity and only 

examined two plant species, but richness of plants in a small area could potentially have an effect 

on microbial functional diversity and abundance of functional groups (Zak et al. 2003). It seems 

likely that PLFA microbial groups were positively responding to the labile carbon source used to 

create low nitrogen availability, since there was no difference between ambient and high 

availability (fertilized) nitrogen treatments. This result is consistent with increased microbial 

biomass in response to labile C additions in herbaceous ecosystems (Jonasson et al. 1996, 

Michelsen et al. 1999, Baer et al. 2003, Baer and Blair 2008).  

Bare soil had lower Shannon diversity of microbial PLFA groups than plant-influenced 

soils due to lower relative abundance of Gram-negative bacteria and arbuscular mycorrhizal 

fungi. This result suggests that maximizing vegetation cover would maximize PLFA microbial 

group diversity. The plant effect likely corresponds with differential PLFA group response to 

greater organic matter inputs from plants by root turnover and litter (Kuzyakov and 

Blagodatskaya 2015). This response to plant inputs was in contrast to the sucrose addition, which 
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was utilized by all PLFA groups. Although there were no distinct soil microbial communities 

associated with plant species or soil manipulations using PLFAs, amplicon sequencing methods 

might be more sensitive. If plant and soil effects contribute to distinct soil microbial 

communities, then heterogeneous soils and diverse plant communities would be expected to 

promote soil microbial diversity at the scale of individual plants. 
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Figure 3.1. Layout of a plot with a strip-strip split plot design.  
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Figure 3.2. Non-metric multidimensional scaling (NMDS) ordination of whole community 

(all PLFA biomarkers). Plus symbols represent biomarker scores, while other symbols 

represent smapling unit scores. Openess of symbols represents soil depth, color represents 

soil N availability, and shape represents species treatment (where AG = Andropogon 

gerardii, SA = Salvia azurea, BS = bare soil).   
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Figure 3.3. Shannon diversity of PLFA biomarkers in each plant treatment. Letters in bars 

represent significantly different groups. Abbreviations: AG = Andropogon gerardii, SA = Salvia 

azurea, and BS = bare soil. Total PLFA biomass is back-transformed from a log scale. Least 

squares means averaged over depth and nutrient availability treatments are shown.   
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Figure 3.4. Total PLFA biomass among N availability treatments. Least-squares means estimates 

and standard errors are back transformed from a log scale.  
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Figure 3.5. Biomass of (A) each bacterial PLFA group (B) each fungal PLFA group. Letters 

above bars represent differences among nutrient treatments. Bars represent least-squares means 

with error bars representing standard error. Saprophytic fungi and actinomycetes are back-

transformed from a log scale.  
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CHAPTER 4 

PLANT DIVERSITY INDIRECTLY DECREASES NITROUS OXIDE EMISSIONS 

FROM SOIL 

Introduction 

Agricultural soil is a major anthropogenic source of nitrous oxide (N2O; Skiba et al. 

1993, Zhang et al. 2014), a greenhouse gas that is 298x as potent as CO2 (US EPA 2014). More 

N2O is produced on a per mole basis during denitrification than nitrification, but anaerobic 

conditions are required. In agricultural soils, which are often drained and less likely to be 

anaerobic, nitrification can be the major source of N2O (Skiba et al. 1993). A meta-analysis 

concluded that agricultural soils in reduced or no-till for >10 years produced less area-scaled 

direct nitrous oxide emissions as compared to conventional tillage (Kessel et al. 2013), 

suggesting less degraded soils produce less direct N2O emissions. Prairie restoration from 

agricultural (row-crop) conditions has been shown to improve soil structure, increase microbial 

biomass and richness, and reduce nutrient availability (Baer et al. 2003, Bach et al. 2010, Baer et 

al. 2010). Prairie restoration can also increase plant diversity, as evenness and beta diversity 

levels of restored sites were similar or greater than reference prairies (Martin et al. 2005). 

However, it is not known whether plant diversity influences N2O emissions from soil or the 

metabolic source of N2O production.  

Nitrogen cycling in soil predominately occurs through microbial transformations and 

plant uptake. Plants compete with soil microbes for nitrogen (Kaye and Hart 1997, Kuzyakov 

and Xu 2013, Liu et al. 2016). Nitrogen contained in the soil organic matter is depolymerized 

and N monomers are mineralized by a wide array of microbes to produce ammonium (NH4
+
; 

Schimel and Bennett 2004). Some NH4
+ 

may volatize as ammonia gas (NH3) under basic 
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conditions and some will be oxidized (nitrified) to nitrite (NO2
-
) and then to nitrate (NO3

-
). 

Nitrification can be an autotrophic or a heterotrophic process, depending on the soil microbial 

community (Evans 2007, van Groenigin et al. 2015). During nitrification, a small amount of 

NH4
+ 

will be converted to N2O. Nitrate is the more mobile form of nitrogen in many temperate 

ecosystems and can be taken up by plants. In the absence of O2, NO3
-
 can be used as an alternate 

electron acceptor and reduced to atmospheric nitrogen (N2), a process known as denitrification. 

Complete denitrification is a stepwise reduction from nitrate to nitrite to nitrous oxide to 

dinitrogen. However, N2O can be released during denitrification as some denitrifiers lack nitrous 

oxide reductase (Evans 2007, van Groenigen et al. 2015). Additionally, abiotic reduction of 

nitrite can occur to produce nitrous oxide. When nitrifiers produce nitrite that is then reduced it is 

termed nitrifier denitrification (van Groenigen et al. 2015). Nitrification and denitrification can 

occur simultaneously in soil due to heterogeneity in aerobic and anaerobic microsites within soil 

aggregates (Stolk et al. 2011).  

The relative amount of denitrification compared to nitrification can influence the amount 

of N2O produced and can be measured with stable isotopes. Isotopic composition of N in soil is 

difficult to measure in the field, but can be determined with well-designed lab experiments 

(Evans 2007). Most stable isotopes of N have an atomic weight of 14, but a small percent have 

an atomic weight of 15. Several biological processes discriminate against 
15

N isotopes. Nitrogen 

fractionation observed in soil is typically expressed as δ
15

N substrate − δ
15

N product (Evans 2007). 

Nitrous oxide produced during nitrification is a product of two reactions: the oxidation of 

NH2OH with NOH as a precursor and reduction of NO2
-
 by nitrite reductase. Nitrous oxide 

emissions produced during denitrification are an intermediate in the conversion of NO3
−
 to N2. 

Values of δ
15

N can change with site and season, but a greater fractionation factor for nitrification 
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as compared to denitrification has been observed (Barford et al. 1999, Yoshida 1988). This 

means that N2O with relatively low δ
15

N values indicate more nitrification, while relatively high 

δ
15

N represents more denitrification (Perez et al. 2000, 2001).  

Nitrous oxide production from soil can be limited by organic carbon (an electron donor 

source; Tiedje 1984) and available nitrogen (Sotomayor and Rice 1995, Scott et al. in review 

Applied Soil Ecology), but the influence of plant diversity on emissions from soils has not been 

addressed. Plant diversity may indirectly influence N2O emissions from soils by culturing 

microbial communities through litter inputs that alter N availability (Hunt et al. 1988, Gholz et 

al. 2000, Ayres et al. 2009). For example, exotic grasses have been demonstrated to promote 

ammonia-oxidizing bacteria and increase nitrification rates relative to native plant communities 

with, possibly due to proportionally more nitrate (as opposed to ammonium) assimilated by the 

exotic grass compared to the native grass (Hawkes et al. 2005). Lower diversity would be 

expected in invaded areas compared to uninvaded areas because the majority of invasive plant 

species that impacted plant richness and taxonomic diversity had negative effects, especially 

annual grasses (Pyšek et al. 2012). Plants that promote nitrifier populations may promote higher 

available nitrate in the soil leading to N2O emissions from the soil from multiple pathways 

nitrification and denitrification. Alternatively, diverse communities may contain greater variation 

in root architecture than less diverse communities (e.g. dicots [Pagès 2014]) to result in more soil 

exploration by plants and uptake of N, leaving less available ammonium for nitrification and 

NO3
–
 for denitrification. Greater plant N uptake is also consistent with studies demonstrating 

nitrogen use complementarity in plants (Ashton et al 2010, Johnson et al. 2016), including 

grasslands restored and managed for plant diversity (Klopf et al. 2017). A better understanding 
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of plant diversity effects on N2O emissions and the source metabolic pathways may enable 

restoration practitioners to manage N2O emissions from restored soils.   

According to biodiversity-ecosystem function theory (BEF), plant diversity is predicted 

to promote ecosystem functioning through greater complementary in resource use (Tilman et al 

2014). For example, diverse plant communities utilize more soil nitrate than less diverse plant 

communities (Tilman et al 2001, Ashton et al 2010, Johnson et al. 2016, Klopf et al. 2017). Our 

objective was to determine if plant diversity influenced nitrous oxide emissions and if so 

determine the mechanism. As such, I hypothesized that N2O emissions from soil would be lower 

in diverse plant communities relative to less diverse communities. To test this hypothesis, I 

identified high and low plant diversity patches in restored prairie and measured potential N2O 

emission from soil. I predicted N availability (indicated by extractable NH4
+
 and NO3

–
) and C 

availability (indicated by water extractable organic C [WEOC] and potential C mineralization) 

would be lower in diverse plant communities as compared to less diverse communities due to 

resource use complementarity by and less diverse organic matter inputs from plants. Lower 

nutrient availability would lead to less N transformations performed by the microbial community 

in the high-diversity plant community soils. I also tested if nitrous oxide emissions corresponded 

to abundance of a single species to ensure that there were true diversity effects.  

Methods 

Site Description 

I quantified N2O emissions at Nachusa Grasslands (Franklin Grove, IL, USA), a ~1600-

hectare preserve of remnant grassland and woodland connected by restoration and managed by 

The Nature Conservancy, in early August 2017. Field sites were chosen from those identified 

and described in detail by Klopf et al. (2017). All sites were located in Lee and Ogle counties in 
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northern Illinois. Mean annual precipitation in this area (1985–2009), was 968 mm and mean 

monthly temperature was 9.3°C. Soils were similar and formed over glacial till with a loam 

texture (taxonomy in Table 4.1). All sites were managed regularly by prescribed burning (Table 

4.1). Bison bison had access to one site (Site 3). 

  All sites were formerly cultivated and at the onset of restoration were sown with over 100 

native species (Klopf et al. 2017). The fields were similar in age (10 to 12 years old; restored 

between 2005 and 2007) to reduce differences in N pools that change dynamically during 

restoration (Baer et al. 2002, Rosenzweig et al. 2016).  

Sampling Design 

An initial survey was conducted in July 2017 using 50 contiguous 0.25 m x 0.25 m (1/16 

m
2
) sampling frames near the center of each field along a temporary transect spanning 12.5 m 

along the length of the field. Percent cover was visually estimated for each vascular plant species 

rooted within the sampling frame. Initial survey results were analyzed with local quadrat 

variance, semivariogram, and quartile calculations and used to determine the appropriate 

sampling frame size and spatial arrangement (distance for statistical independence).  

Appropriate sampling frame size was determined from the initial vegetation survey with 

three-term local quadrat variance (3TLQV; Hill 1973) analysis, which is less sensitive to global 

trends than two-term analogs, using Pattern Analysis, Spatial Statistics, and Geographic Exegesis 

version 2 (PASSaGE; Rosenberg and Anderson 2011) of the first axis scores from a principal 

component analysis (PCA), as suggested by Gibson & Greig-Smith (1986). In this analysis the 

first distinct peak indicated the scale of maximum variance. The average distance indicated by 

3TLQV analysis was used as the length and width of the sampling frame for all sites in the final 

sampling. This analysis suggested the scale of maximum variance in PCA first axis scores was 
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1.3 m (Appendix J). A 1-m2 frame was used because this size frame is commonly used and is 

similar to the 3TQV result. A similar semivariogram analysis was conducted with the R package 

gstat (Pebesma 2004) to determine the distance between sampling frames of the same diversity 

level (Range), so that replications were spatially independent. The range was 18.1 m (Appendix 

K). Upper and lower quartiles were determined from Shannon diversity (H) calculations of each 

sampling frame within a field. These H values were used to determine high- and low-diversity 

plant treatments in sampling. The H cutoff values were < 0.89 for low diversity and > 1.33 for 

high diversity. Shannon diversity was displayed with a boxplot. Species richness (S), Pielou's 

evenness (J), and functional richness based on 8 a priori functional groups (warm-season 

graminoids, cool-season graminoids, annual and biennial forbs, ephemeral spring forbs, spring 

forbs, summer/fall forbs, legumes, and woody shrubs; Kindscher and Wells 1995) were also 

calculated for each frame and displayed boxplots.  

Low-diversity (n = 6) and high-diversity (n = 6) patches were delineated within 5 

restorations co-located at Nachusa Grasslands. Vegetation was surveyed in one frame per patch. 

In each field, I laid a 100 m transect and at a fixed distance apart (16.6 m), a sampling frame 

moved laterally (alternating at least 19 m from the main transect) until appropriate high- and 

low-diversity patches were encountered. This sampling method allowed for greater than 18.1 m 

between frames of the same treatment. Differences in secondary transects were accounted for by 

blocking (Fig. 4.1).  

Response Variables 

I removed ten 2 cm dia. cores to a depth of 10 cm from each sampling frame in early 

August. This sampling time was chosen because plants would be active. The soil cores were then 

composited for each frame and sieved (4 mm). While measurements were larger than the hotspot 
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scale, plot-based measurements likely reflect differences in the relative number of 

biogeochemical hotspots. An intact 5.5 cm dia. core was also taken from half of the frames 

within a diversity treatment to determine bulk density so that concentrations could be expressed 

on a per area basis.  

Fresh, field moist soil was analyzed within one week of sampling for available inorganic 

N concentration (NH4-N and NO3-N). A subsample (~10 g) of sieved soil was extracted with 50 

ml of 2 N KCl (Robertson et al. 1999a). The flasks were shaken for one hour then filtered using 

0.4 μm HTTP Isopore membrane filters (Merk Millapore Ltd.). The filtrate was analyzed by 

colorimetry on an OI Analytical Flow Solution IV (OI Analytical Corp., College Station, TX, 

USA). 

Water holding capacity of composited soil samples was determined by saturating a 

subsample (~20g) of fresh soil, then allowing soil to drain by gravity for 16 hours in a sealed 

cooler with 100% humidity (Robertson et al. 1999b). Water holding capacity was then calculated 

as the gravimetric water content of drained soils, determined by oven drying at 105° C. Bulk 

density of the soil was determined from drying the intact cores at 105° C.  

To determine potential 1-day N2O emissions under mixed aerobic and anaerobic 

conditions (Cheng et al. 2015), a subsample (~40 g dry equivalent weight) of the homogenized 

soil was placed in 250 ml flasks, adjusted to 40% water holding capacity then incubated at 23°C 

in the dark (flask housed within a mason jar fit with septa) for 1 d. A 12 ml headspace gas 

sample was injected into 12 ml gas vials that had been flushed with He gas and vented to 

approximately 1 atm of pressure. Natural abundance isotopic composition of N2O emissions was 

then determined with gas chromatography-isotope ratio mass spectrometry (GC-IRMS) at the 

University of California Davis Stable Isotope Facility. Low δ
15

N-N2O values indicate more 
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nitrification relative to denitrification (Perez et al. 200, 2001). Gas samples were purged from 

Exetainer 12 ml glass soda vials (Labco Limited, Lapeter, UK) through a double-needle sampler 

into a helium carrier stream (20 mL/min) and analyzed with a ThermoFinnigan GasBench + 

PreCon trace gas concentration system interfaced to a ThermoScientific Delta V Plus isotope-

ratio mass spectrometer (Bremen, Germany).   

 Because differences in N2O could also result from differences in microbial activity, I also 

measured soil respiration (Cmin) using air-dried soils adjusted to 40% water holding capacity. 

Soil was placed in 150 ml Erlenmeyer flasks housed within mason jars fit with septa. Soil was 

incubated 7 d at 23° C after moisture adjustment. All containers were opened for 30 minutes 

after pre-incubation, then sealed and incubated for 7 days in dark at 23° C. Headspace gas was 

sampled at day 1 and 7 and analyzed for CO2-C on a Shimadzu GC-8A gas chromatograph 

equipped with a thermoconductivity detector (Shimadzu Corp., Kyoto, Japan).  

Because differences in N2O could also result from differences in the availability of labile 

C, I measured water extractable organic carbon (WEOC; Bai et al. 2014). A subsample (~10 g) 

of air-dried soil was placed into glass centrifuge tubes with 40 ml of deionized water. Tubes 

were shaken for 1 hour, then centrifuged at 3600 rpm for 20 minutes. Effluent was then filtered 

using 0.4 μm HTTP Isopore Membrane Filters (Merk Millapore Ltd.). Filtrate was refrigerated 

until it could be analyzed with a total organic carbon analyzer (Shimadzu TOC-L, Shimadzu 

Corp., Kyoto, Japan). 

Calculations and Statistical Analyses 

Response variables were analyzed using mixed models with responses of Shannon 

diversity, species richness, Pielou's evenness, functional richness, N2O emissions, extractable 

NH4
+
, extractable NO3, δ

15
N-N2O, soil respiration, and WEOC with a fixed effect of diversity 
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treatment and with secondary transect within restoration as a block effect. Z-transformed values 

of extractable NH4
+
, extractable NO3

–
, δ

15
N-N2O, with a diversity treatment covariate were fixed 

predictors in a linear mixed model with N2O emissions as a response and with restoration and 

secondary transect within restoration as a block effect (lme4 package of R, Bates et al. 2015). 

Backward model selection using a chi-squared test in the drop1 function produced candidate 

models, which were compared by Bayesian Information Criterion. Predictors of N2O emissions 

from the most parsimonious model were then fit in a mixed model on the original scale. All 

mixed models were type III models with restricted maximum likelihood estimates and 

Satterthwaite approximations of degrees of freedom were used with lmerTest (Kuznetsova et al. 

2016) to calculate P values. Data for this chapter are included in Appendix L. 

Results 

Sixty species were encountered in the final survey of all vegetation. One site (Site 3) had 

very high cover of a weedy species, Trifolium pratense, and two other sites (4 and 5) had high 

cover of the sedge, Carex brevior. The most frequently occurring species among all sites were 

Sorghastrum nutans (n = 32), Coreopsis lanceolata (n = 29), Symphyotrichum ericoides (n = 29), 

Solidago missouriensis (n = 26), Monarda fistulosa (n = 22), Andropogon gerardii (n = 19), 

Oligoneuron rigidum (n = 18), and Solidago canadensis (n = 18). The high and low diversity 

designations (H treatments) were effective. The high diversity treatment contained higher 

Shannon’s diversity (Fig. 4.2 A), species richness (Fig. 4.2 B), species evenness (Fig. 4.2 C), and 

functional group richness (Fig. 4.2 D) than the low diversity treatment.  

Nitrous oxide emissions were lower in the high-diversity patches as compared to the low-

diversity patches (Fig. 4.3A). There were no differences for all other soil variables between high 

diversity and low diversity measurements (Fig. 4.3A–F). Isotopic signature with diversity 
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treatment as a covariate best explained N2O emissions and was marginally significant (Fig. 4.4). 

There was a stronger effect of isotopic signature with the low diversity covariate (t = 2.24, P = 

0.031) than isotopic signature with the high diversity covariate (t = 0.18, P = 0.857).      

Discussion 

My results suggest that plant taxonomic diversity affects ecosystem functioning. The 

results are consistent with my hypothesis that high-diversity plant communities would have 

lower N2O emissions from soils relative to low-diversity plant communities, but variables that 

could explain this difference were similar between diversity treatments. Approximately two 

times as much N2O was produced in soils with low plant diversity, on average at the plot scale 

(Fig. 4.3). I predicted lower N2O emissions from more diverse communities would correspond 

with less N availability, water holding capacity, gravimetric water content, and denitrification 

relative to nitrification, but greater C availability and microbial activity that would immobilize 

N. Of these measurements, isotopic composition was the best indicator of N2O emissions (Fig. 

4.4). My results suggest that there is more nitrous oxide production from denitrification (high 

δ
15

N-N2O) in low-diversity plant communities. While organic matter quality and management 

treatments can influence isotopic composition, this was accounted for with a random intercept 

model. Differences in nitrous oxide emissions between high and low plant diversity treatments 

were greatest in site 5 (Fig. 4.4). 

Denitrification is related to plant functional diversity and its interaction with several 

variables: percent moisture, microbial biomass N, percent organic matter, and inorganic N 

(Sutton-Grier et al. 2011). High δ
15

N-N2O values in our study indicated greater N2O emissions 

were from denitrification as opposed to nitrification. Furthermore, greater N2O emissions 

occurred in the low diversity treat compared to high diversity treatment at δ
15

N-N2O values 
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indicative of denitrification (Perez et al. 2000, 2001). Similar water holding capacities and 

gravimetric water content of bulk density cores were observed and all soils were adjusted to 40 

percent of water holding capacity in the lab.  

My results suggest there are more N2O emissions from denitrification hotspots (i.e. 

substantial emissions from small areas) in low-diversity plant communities (Fig. 4.4). This result 

is consistent with studies that demonstrated N2O emissions are characterized by hotspots (Hill et 

al. 2000, Palta et al. 2014, Kravchenko et al. 2017, Loik et al. 2018). However, it remains unclear 

if this diversity effect on N2O emissions is due to changes in microbial physiology, changes in 

microbial community composition, or changes in substrate availability over time. Changes in 

microbial physiology might be expected because diverse plant communities have more complex 

root architecture (Pagès 2014), which might promote soil aggregation such that there is faster 

oxygen diffusion into the soil (Doyle and MacLean 1958), limiting denitrification. Changes in 

microbial community composition might also be expected because a positive correlation of plant 

and soil microbial diversity has been demonstrated (Zak et al. 2003). Furthermore, several 

studies indicate that different plant species can have distinct soil microbial communities 

(reviewed by Sasse et al. 2018 and Hassani et al. 2018). Future work relating plant composition 

with functional genes relating to nitrite reductase could determine if composition of denitrifiers 

differs with plant diversity. Sequential measurements of available ammonium and nitrate pools 

might reveal if availability of substrates differ with plant diversity. 

Availability of N and C can influence nitrous oxide production (Sotomayor and Rice 

1995, Scott et al. in review Applied Soil Ecology). Nitrate use complementarity has been 

demonstrated in several studies (Tilman et al 2001, Ashton et al 2010, Johnson et al. 2016), 

which could lead to less available N in high diversity plant communities. However, I failed to 
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observe evidence of nitrate use complementarity, e.g. differences in amount of extractable NH4
+
 

and NO3
–
. While these extractable pools represent initially available N pools at the onset of 

incubation, relative availability might have changed during the incubation. Isotopic composition 

of N suggests that nitrate became more available, because the signature was more consistent with 

denitrification rather than nitrification. Season can also influence nitrous oxide emissions. 

Sampling was performed in the summer, when an average of 67% of annual N2O emissions 

occur from unfertilized soybean fields in this region (Bremner et al. 1980). This finding agrees 

with the recent findings that belowground resource partitioning alone cannot explain ecosystem 

functions including plant nutrient uptake (Jesh et al. 2018). Progressive N limitation, combined 

with an increase in labile C pools (microbial and mineralizable) that occurs during the first 10 

years of grassland restoration (Baer et al. 2002, Rosenzweig et al. 2016) likely overrode a 

diversity effect on N availability. Klopf et al. (2017) found lower N availability in prairie 

restored and managed with more species using the same sites used in this study, but compared to 

prairie sown with less than 10 species and rarely managed by fire. Sites used in this study all 

were sown with more than 100 species and burned frequently. Frequent burning likely 

contributed to low N availability, as frequent burning causes lower net N mineralization (Blair 

1997). Availability of C can also influence denitrification and therefore N2O production, as 

organic C can be an important electron donor source (Tiedje 1984). However, the availability of 

C and microbial activity also did not differ between diversity treatments.  

Aggregate structure has been shown to increase in recovery rate in high-diversity plant 

communities (Klopf et al. 2017), which could influence N2O emissions through multiple 

mechanisms. Stable surface soil aggregates promote water infiltration (Franzluebbers 2002) so 

more anaerobic conditions would be expected in low diversity plant communities following 
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precipitation events. Soil aggregates can also physically protect soil organic matter from 

oxidation (reviewed by Six et al. 2004). Because there are more aggregates in high-diversity 

plant communities, which are a recalcitrant pool of organic matter (Scott et al. 2017), less 

nitrification and available NO3
–
 would be expected. Less N2O emissions would be expected if 

there were less nitrification and less available nitrate for denitrification in high-diversity plant 

communities. Extractable pools were used to represent the initial availability of N forms at the 

start of the incubation, but isotopic composition of N in N2O might better reflect relative 

availability of ammonium and nitrate over the incubation period. It is unclear if plant uptake will 

be in stronger competition with nitrifiers or denitrifiers, because while some plant show a 

preference for ammonium over nitrate (Falkengren-Grerup and Lakkenborg-Kristensen 1994; 

Zhao et al. 2009) however sufficient evidence for general rules are lacking (Hewins and Hyatt 

2009, Ashton et al. 2010, Boudsocq et al. 2012). While I did not measure soil aggregation, I 

would have expected to see aggregate effects reflected in extractable N pools.   

The N2O emissions I observed were low; N2O emission rates over 16 d from grassland 

restorations in NE Kansas, USA on silt loam soils were as high as 0.36 g m
–2

 d
–1

 (Scott et al. in 

review Applied Soil Ecology). Low emission values are likely because of low water holding 

capacities due to sandier texture and short incubation times. Additionally I adjusted to only 40 

percent water holding capacity and used sieved soils; the Kansas study was adjusted to 50 

percent water holding capacity and used intact soil cores. I did this so that nitrification and 

denitrification could both occur, but nitrous oxide production would be maximized at ~60% 

water-filled pore space (Yoshinari 1993). My measurements likely do not reflect field emissions 

after precipitation events, but are useful for making comparisons between diversity treatments.    



 57 

It is clear that managing for high-diversity plant communities can reduce N2O emissions, 

likely by influencing microbial community composition, microbial physiology, or substrate 

availability. In addition to increasing biomass production (reviewed by Tilman et al. 2014, Chen 

et al. 2018), reducing nitrate leaching (Tilman et al 2001, Ashton et al 2010, Johnson et al. 

2016), faster aggregate formation (Klopf et al. 2017), and more C sequestration (Chen et al. 

2018), less N2O production from soil is tangible ecosystem service that further justifying 

restoration and management of ecosystems for plant diversity. 
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Table 4.1. Site information. This information is presented because grazing, soil type, burn 

frequency, and restoration age can influence N isotopic composition in nitrous oxide emissions. 

Site was included as a random intercept in statistical models to account for variation.  

Site GPS 

Coordinate 

Soil Type Soil 

Taxonomy 

Bison 

Grazing 

Burn 

Frequency 

Burned 

Last 

Year  

Years 

Restored 

1 41.867014,  

-89.357091 

Jasper Loam  Mesic 

typic 

Arguidoll 

No Annual Yes 10 

2 41.866767,  

-89.358301 

Jasper Loam  

& 

Martinsville 

silt loam 

Mesic 

typic 

Arguidoll 

&       

Mesic 

typic 

Hapludalf 

No Annual Yes 11 

3 41.896570,  

-89.352700 

Jasper Loam  Mesic 

typic 

Arguidoll 

Yes Biennial Yes 12 

4 41.906721,  

-89.335929 

Waukee 

Loam  

Mesic 

typic 

Hapludoll 

No Biennial No 10 
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5 41.904505,  

-89.329443 

Waukee 

Loam  

Mesic 

typic 

Hapludoll 

No Biennial No 11 
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Figure 4.1. Design at one restoration site (block). A main transect with alternating secondary 

transects every 16.6 m was delineated. One high diversity and one low diversity frame were 

established at least 19 m from the main transect at each secondary transect. Frames on the same 

secondary transect were blocked within the restoration site block.  
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Figure 4.2. Boxplots of (A) Shannon diversity (H), (B) species richness (S), (C) Peilou’s 

evenness (J), and (D) functional group richness. Statistics are from mixed models with a 

blocking effect of secondary transect within restoration site.  
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Figure 4.3. Least squares means estimates and associated standard errors of soil measurements in high-diversity and low-diversity 

plant patches; A) nitrous oxide emissions from a one day incubation, (B) extractable ammonium, (C) extractable nitrate, (D) isotopic 

composition of N2O–N, (E) Soil respiration from a 10 day incubation of rehydrated soils, and (F) water extractable organic carbon. 

Statistics are from mixed models with a blocking effect of secondary transect within restoration site. 
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Figure 4.4. Nitrous oxide (N2O) emissions from a 1d incubation predicted by isotopic signature 

of N from N2O emissions with a plant diversity treatment covariate. Low δ
15

N-N2O values 

indicate more nitrification relative to denitrification; high δ
15

N-N2O values indicate more 

denitrification relative to nitrification (Perez et al. 2000, 2001). Levels of the covariate were high 

diversity (HD) and low diversity (LD).  
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CHAPTER 5 

 CONCLUSIONS 

In chapter 2, I hypothesized that soil nitrate heterogeneity would increase initially with 

restoration age as plants begin to establish, and then would level off. This hypothesis is 

consistent with trends in variability of soil nitrate in a restoration chronosequence (Rosenzweig 

et al. 2016). I also hypothesized that available light heterogeneity would decrease as clonal 

grasses increase in dominance (Sluis 2002, Carter and Blair 2012, Baer et al. 2016). I also 

hypothesized heterogeneity of both soil nitrate and availability of light would be positively 

correlated with plant diversity and richness as predicted by the ‘environmental heterogeneity 

hypothesis’ (Ricklefs 1977). In contrast to my first hypothesis, nitrate heterogeneity did not 

increase with restoration age. Light heterogeneity did increase with restoration age, but slowly. 

Light heterogeneity was positively related to plant taxonomic diversity regardless of light 

availability, but high nitrate availability decreased the strength of the positive relationship of 

nitrate heterogeneity and plant taxonomic diversity.  

Manipulating soil nitrate heterogeneity could enhance plant diversity and richness in 

agreement with the ‘environmental heterogeneity hypothesis’ (Ricklefs 1977). The results 

presented in Chapter 2 are consistent with this expectation, though cause and effect cannot be 

determined because this study was observational. High plant diversity could cause high levels of 

ecosystem functioning compared to low plant diversity according to biodiversity-ecosystem 

functioning (BEF) theory (Naeem and Wright 2003, Tilman et al. 2014). If plant diversity is a 

restoration goal, practices such as patchy application of a recalcitrant C source (e.g. sawdust or 

biochar) at the onset of restoration with subsequent patchy application of labile C sources (e.g. 
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sugars) and fertilizers should be used. If there is limited propagule supply, seed additions could 

realize the benefits of heterogeneity treatments (Baer et al. 2015).  

In chapter 3, I hypothesized that plant species interacting with nutrient availability would 

have the greatest influence (the other treatment was soil depth) on microbial community 

composition. Nutrient availability can also have indirect effects through plants (Bardgett et al. 

2003) on microbial community structure. Effects of plants on microbial communities are also 

well documented (Sasse et al. 2018, Hassani et al. 2018). Microbial PLFA biomarker diversity 

was highest in plant-influenced soils, as compared to bare soils. Microbial PLFA biomass was 

higher in low N (sucrose added) areas and this was consistent among all PLFA groups. If PLFA 

biomarker diversity can serve as a proxy for taxonomic diversity, then plant species present and 

soil nutrient availability could also influence soil microbial diversity and biomass. Reducing bare 

soil areas could enhance soil microbe PLFA diversity, as suggested in Chapter 3. High soil 

functional, and indirectly taxonomic diversity, could increase ecosystem functioning as 

compared to low functional diversity according to BEF theory (Naeem and Wright 2003, Tilman 

et al. 2014). If high soil microbe diversity is a restoration goal, high seed densities could 

maximize vegetation cover. Providing labile C could increase microbial biomass, as suggested in 

Chapter 3. High microbial biomass could contribute to ecosystem functions such as soil 

aggregation and C sequestration (Scott et al. 2017). If high microbial biomass is a restoration 

goal, C sources should be added to soils to reduce nutrient availability.  

In chapter 4, I hypothesized that diverse plant patches would have less N2O emissions 

from soil as compared to low-diversity patches (Tilman et al 2001, Ashton et al. 2010, Klopf et 

al. 2017). I found that there were higher nitrous oxide emissions form low-diversity plant stands 

and this was associated with a change in isotopic composition of N in N2O emissions that is 
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associated with denitrification. This change in isotopic composition could reflect differences in 

relative amount of nitrification and denitrification in plant diversity treatments, possibly due to 

availability of substrate, oxygen, or nitrifiers. Creating high diversity plant stands could reduce 

nitrous oxide emissions from soils, as suggested in Chapter 4. This reduction in nitrous oxide 

emissions is due to low diversity plant communities being associated with the production of 

greater amounts of N2O when denitrification is a dominant process. Nitrous oxide is a potent 

greenhouse gas (EPA 2014) that is increasing in atmospheric concentration with conventional 

agriculture (Skiba et al. 1993, Zhang et al. 2014). If reducing nitrous oxide emissions is a 

restoration goal, high diversity seed mixes with subsequent seed additions is a good practice.      

The insights from this dissertation have clear implications for restoration practitioners, 

but the best practices depend on restoration goals. Many of the suggested practices are not 

mutually exclusive, but time and money can limit practices that are implemented. Restoration 

practitioners should consider stakeholder concerns to decide restoration goals with multi-criteria 

decision analysis (Convertino et al. 2013).   
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APPENDIX A 

Chapter 2 spatial reference data of resin bag exchangeable nitrate from a 16 y-restored prairie 

located at Konza 

x distance y distance nitrate 

2014 

zX zY z nitrate 2014 

25.25 0.75 2.035 0.313 -1.526 0.576 

24.75 1.25 0.607 0.276 -1.494 -0.645 

27.25 0.75 1.345 0.460 -1.526 -0.014 

26.75 1.25 3.509 0.423 -1.494 1.836 

29.25 0.75 2.847 0.607 -1.526 1.270 

28.75 1.25 0.837 0.570 -1.494 -0.448 

25.25 2.75 0.452 0.313 -1.400 -0.778 

24.75 3.25 0.954 0.276 -1.368 -0.348 

27.25 2.75 1.495 0.460 -1.400 0.114 

26.75 3.25 1.062 0.423 -1.368 -0.256 

29.25 2.75 0.595 0.607 -1.400 -0.655 

28.75 3.25 1.395 0.570 -1.368 0.029 

25.25 4.75 2.754 0.313 -1.274 1.191 

24.75 5.25 1.346 0.276 -1.242 -0.013 

27.25 4.75 1.125 0.460 -1.274 -0.202 

26.75 5.25 0.614 0.423 -1.242 -0.639 

29.25 4.75 1.397 0.607 -1.274 0.030 

28.75 5.25 0.614 0.570 -1.242 -0.639 

25.25 6.75 1.164 0.313 -1.148 -0.169 

24.75 7.25 1.155 0.276 -1.117 -0.177 

27.25 6.75 2.384 0.460 -1.148 0.874 

26.75 7.25 2.785 0.423 -1.117 1.217 

29.25 6.75 1.300 0.607 -1.148 -0.053 

28.75 7.25 0.453 0.570 -1.117 -0.777 

37.25 14.75 2.238 1.196 -0.645 0.750 

36.75 15.25 0.301 1.159 -0.613 -0.907 

39.25 14.75 1.072 1.343 -0.645 -0.247 

38.75 15.25 1.881 1.306 -0.613 0.444 

41.25 14.75 0.184 1.490 -0.645 -1.006 

40.75 15.25 NA 1.453 -0.613 NA 

37.25 16.75 1.383 1.196 -0.519 0.018 

36.75 17.25 0.718 1.159 -0.488 -0.550 

39.25 16.75 1.179 1.343 -0.519 -0.156 

38.75 17.25 0.299 1.306 -0.488 -0.908 

41.25 16.75 0.700 1.490 -0.519 -0.565 

40.75 17.25 1.022 1.453 -0.488 -0.290 

37.25 18.75 0.981 1.196 -0.393 -0.325 
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x distance y distance nitrate 

2014 

zX zY z nitrate 2014 

36.75 19.25 1.280 1.159 -0.362 -0.069 

39.25 18.75 1.865 1.343 -0.393 0.431 

38.75 19.25 1.431 1.306 -0.362 0.060 

41.25 18.75 1.091 1.490 -0.393 -0.231 

40.75 19.25 0.776 1.453 -0.362 -0.500 

37.25 20.75 0.943 1.196 -0.267 -0.358 

36.75 21.25 2.527 1.159 -0.236 0.997 

39.25 20.75 0.841 1.343 -0.267 -0.445 

38.75 21.25 0.704 1.306 -0.236 -0.562 

41.25 20.75 0.514 1.490 -0.267 -0.724 

40.75 21.25 3.264 1.453 -0.236 1.627 

1.25 28.75 0.652 -1.453 0.236 -0.607 

0.75 29.25 0.164 -1.490 0.267 -1.024 

3.25 28.75 0.307 -1.306 0.236 -0.902 

2.75 29.25 0.121 -1.343 0.267 -1.061 

5.25 28.75 0.355 -1.159 0.236 -0.860 

4.75 29.25 0.118 -1.196 0.267 -1.063 

1.25 30.75 0.144 -1.453 0.362 -1.041 

0.75 31.25 0.330 -1.490 0.393 -0.882 

3.25 30.75 1.538 -1.306 0.362 0.151 

2.75 31.25 0.119 -1.343 0.393 -1.062 

5.25 30.75 0.051 -1.159 0.362 -1.120 

4.75 31.25 0.128 -1.196 0.393 -1.054 

1.25 32.75 0.327 -1.453 0.488 -0.885 

0.75 33.25 0.085 -1.490 0.519 -1.092 

3.25 32.75 0.195 -1.306 0.488 -0.997 

2.75 33.25 0.152 -1.343 0.519 -1.034 

5.25 32.75 0.186 -1.159 0.488 -1.005 

4.75 33.25 0.542 -1.196 0.519 -0.700 

1.25 34.75 0.402 -1.453 0.613 -0.820 

0.75 35.25 0.471 -1.490 0.645 -0.761 

3.25 34.75 0.162 -1.306 0.613 -1.026 

2.75 35.25 0.197 -1.343 0.645 -0.995 

5.25 34.75 0.123 -1.159 0.613 -1.059 

4.75 35.25 1.505 -1.196 0.645 0.123 

13.25 42.75 1.448 -0.570 1.117 0.074 

12.75 43.25 3.050 -0.607 1.148 1.444 

15.25 42.75 1.978 -0.423 1.117 0.527 

14.75 43.25 0.947 -0.460 1.148 -0.354 
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x distance y distance nitrate 

2014 

zX zY z nitrate 2014 

17.25 42.75 1.778 -0.276 1.117 0.356 

16.75 43.25 4.466 -0.313 1.148 2.655 

13.25 44.75 1.814 -0.570 1.242 0.387 

12.75 45.25 3.571 -0.607 1.274 1.890 

15.25 44.75 6.006 -0.423 1.242 3.971 

14.75 45.25 3.181 -0.460 1.274 1.556 

17.25 44.75 3.472 -0.276 1.242 1.805 

16.75 45.25 2.466 -0.313 1.274 0.944 

13.25 46.75 2.970 -0.570 1.368 1.375 

12.75 47.25 2.669 -0.607 1.400 1.118 

15.25 46.75 1.914 -0.423 1.368 0.472 

14.75 47.25 1.708 -0.460 1.400 0.296 

17.25 46.75 2.255 -0.276 1.368 0.764 

16.75 47.25 4.484 -0.313 1.400 2.669 

13.25 48.75 0.535 -0.570 1.494 -0.707 

12.75 49.25 0.634 -0.607 1.526 -0.622 

15.25 48.75 1.061 -0.423 1.494 -0.257 

14.75 49.25 2.995 -0.460 1.526 1.397 

17.25 48.75 1.272 -0.276 1.494 -0.077 

16.75 49.25 2.864 -0.313 1.526 1.285 
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APPENDIX B 

Semivariogram analysis used in Ch. 2 to determine spacing between plots. Analysis was based 

on resin bag exchangeable nitrate data from a 16 y-restored prairie located at Konza. The 

presented graph was z-transformed. The untransformed range was 1.4. After back-transformation 

the range was 10 m 
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APPENDIX C 

Plant diversity and soil heterogeneity data from Ch. 2. Abbreviations: cv = coefficient of variation, PAR = photosynthetically active 

radiation, S = species richness, H = Shannon diversity index, J = Pielou's evenness. Sampling was conducted in 0.25 m
2
 quadrats; 24 

quadrats were present within each 6 m x 8 m plot. Diversity metrics (S, H, and J) were reported on a per plot level 

Sequence Plot Age mean soil nitrate 

(µg) 

cv soil nitrate mean proportion of PAR 

available at soil surface  

 

cv PAR 

availability 

S  H J 

1 1 7 0.01 81.99 0.12 75.03 19.00 2.47 0.84 

1 2 7 0.02 83.20 0.20 63.61 14.00 2.17 0.82 

1 3 7 0.08 184.64 0.32 48.55 12.00 2.01 0.81 

1 4 7 0.08 127.15 0.35 50.35 13.00 2.19 0.85 

2 1 5 0.16 96.32 0.47 32.63 16.00 2.46 0.89 

2 2 5 0.01 107.64 0.35 51.21 21.00 2.58 0.85 

2 3 5 0.09 131.44 0.43 40.24 21.00 2.69 0.88 

2 4 5 0.04 130.45 0.52 34.07 26.00 2.93 0.90 

3 1 3 0.01 82.72 0.35 48.55 19.00 2.61 0.89 

3 2 3 0.06 192.63 0.15 74.52 17.00 2.35 0.83 

3 3 3 0.11 297.37 0.18 66.00 20.00 2.57 0.86 

3 4 3 0.02 113.35 0.15 69.18 16.00 2.25 0.81 

4 1 1 0.66 88.04 0.64 13.64 9.00 1.85 0.84 

4 2 1 9.24 55.83 0.30 69.06 10.00 1.84 0.80 

4 3 1 7.25 61.74 0.24 76.69 9.00 2.00 0.91 

4 4 1 6.23 84.80 0.58 37.79 11.00 1.86 0.78 

cultivated 1 0 1.94 57.98 NA NA NA NA NA 

cultivated 2 0 5.63 86.69 NA NA NA NA NA 

cultivated 3 0 6.55 68.69 NA NA NA NA NA 

cultivated 4 0 3.17 74.34 NA NA NA NA NA 
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APPENDIX D 

Frequency of species occurrence (per 20 1m
2
 quadrats) within each plot from Ch. 2. Plot codes are the sequence number (youngest to 

oldest) followed by a plot number after the dash. Species identities are as follows: 1 = Andropogon gerardii, 2 = Schizachyrium 

scoparium, 3 = Panicum virgatum, 4 = Sorghastrum nutans, 5 = Elymus canadensis, 6 = Bouteloua curtipendula, 7 = Baptisia 

bracteata, 8 = Baptisia australis, 9 = Asclepias verticillata, 10 = Asclepias viridis, 11 = Salvia azurea, 12 = Mirabilis nyctaginea, 13 = 

Silphium integrifolium, 14 = unknown seedling J, 15 = Lespedeza capitata, 16 =Desmodium illinoense, 17 = Kuhnia eupatorioides, 

18= Tradescantia bracteata, 19 = Psoralea tenuiflora, 20 = Vicia americana, 21 = unkown seedling I, 22 = Mimosa nuttallii, 23 = 

Carex brevior, 24 = Desmanthus illinoensis, 25 = Helianthus pauciflorus, 26 = Liatris punctata, 27 = Oligoneuron rigidum, 28 = 

Vernonia fasciculate, 29 = Dalea multiflora, 30 = Dalea purpurea, 31 = Amorpha canescens, 32 = Rosa arkansana, 33 = unknown 

seedling C, 34 = Verbena stricta, 35 = Physalis pumila, 36 = Abutilon theophrasti, 37 = Ambrosia psilostachya, 38 = Setaria glauca, 

39 = Chamaesyce maculata, 40 = Setaria faberi, 41 = Digitaria sanguinalis, 42 = Digitaria ciliaris, 43 = Eragrostis cilianensis, 44 = 

Solanum rostratum, 45 = Cenchrus longispinus, 46 = Lepidium densiflorum, 47 = Amaranthus rudis, 48 = Conyza canadensis, 49 = 

Galium aparine, 50 = Ambrosia artemisiifolia, 51 = Ulmus americana, 52 = Helianthus annuus, 53 = Solidago canadensis, 54 = 

Solanum ptycanthum, 55 = Cirsium discolor, 56 = Carex molesta, 57 = Carex blanda, 58 = Bromus tectorum, 59 = Hordeum 

pussilum, 60= Erigeron strigosus, 61 = Lonicera maackii 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1-1 0.19 0.09 0.00 0.06 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.07 0.00 0.00 0.00 0.00 0.00 

1-2 0.28 0.20 0.00 0.09 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.08 0.00 0.00 0.00 0.00 0.00 

1-3 0.28 0.18 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 

1-4 0.29 0.14 0.00 0.12 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.01 0.00 0.07 0.00 0.00 0.00 0.00 0.00 

2-1 0.17 0.05 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.00 

2-2 0.09 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2-3 0.08 0.00 0.00 0.04 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.04 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

2-4 0.05 0.03 0.01 0.05 0.01 0.01 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 

3-1 0.20 0.04 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 

3-2 0.32 0.07 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.09 0.00 0.00 0.00 0.00 0.00 

3-3 0.25 0.04 0.03 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.00 0.00 0.00 0.00 0.00 

3-4 0.34 0.03 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

4-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

4-2 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4-3 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4-4 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

1-1 0.00 0.00 0.00 0.10 0.19 0.03 0.03 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.05 0.00 0.00 

1-2 0.00 0.00 0.00 0.04 0.12 0.03 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 

1-3 0.00 0.00 0.00 0.03 0.05 0.00 0.05 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

1-4 0.00 0.00 0.00 0.09 0.07 0.00 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2-1 0.00 0.00 0.00 0.02 0.18 0.00 0.06 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.00 

2-2 0.00 0.00 0.00 0.00 0.09 0.01 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.20 0.01 0.00 

2-3 0.00 0.00 0.00 0.01 0.11 0.03 0.09 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.04 0.00 0.01 

2-4 0.00 0.00 0.00 0.03 0.05 0.02 0.06 0.00 0.02 0.02 0.00 0.01 0.00 0.00 0.00 0.07 0.03 0.12 0.00 0.00 

3-1 0.00 0.00 0.00 0.04 0.01 0.00 0.09 0.00 0.00 0.02 0.00 0.00 0.00 0.06 0.00 0.02 0.00 0.07 0.00 0.02 

3-2 0.00 0.00 0.00 0.04 0.00 0.00 0.11 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 

3-3 0.00 0.00 0.00 0.07 0.00 0.00 0.12 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.04 0.00 0.00 

3-4 0.00 0.00 0.00 0.02 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.07 0.00 0.00 0.00 0.00 

4-1 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.14 0.04 

4-2 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.22 0.00 

4-3 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.11 0.00 

4-4 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.03 
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 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 

1-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.12 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.08 0.13 0.03 0.01 0.00 0.01 0.01 0.00 0.00 0.00 

2-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.13 0.16 0.00 0.00 0.00 0.01 0.03 0.00 0.01 0.00 

2-4 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.02 0.06 0.15 0.05 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 

3-1 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.07 0.03 0.02 0.00 0.03 0.00 0.00 0.08 0.01 0.00 0.00 

3-2 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.03 0.03 0.03 0.01 0.00 0.00 0.00 0.00 0.09 0.04 0.00 0.00 

3-3 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 

3-4 0.00 0.00 0.00 0.02 0.00 0.03 0.00 0.00 0.00 0.02 0.02 0.00 0.14 0.00 0.00 0.00 0.00 0.07 0.02 0.00 0.00 

4-1 0.14 0.00 0.25 0.01 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4-2 0.16 0.01 0.24 0.00 0.00 0.21 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4-3 0.16 0.00 0.16 0.07 0.00 0.07 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4-4 0.02 0.02 0.20 0.00 0.00 0.25 0.10 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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APPENDIX E 

Summary statistics from PERMANOVA of microbial community dissimilarity using concentrations of all PLFA biomarkers in 

response to treatments described in chapter 3. Abbreviations: Navail = nitrogen availability treatment and sp = plant species treatment 

 Df SumsOfSqs MeanSqs F.Model R2 P value 

depth 1 0.0667 0.06674 1.7956 0.02011 0.53 

Navail 2 0.8412 0.42058 11.3154 0.25345 0.53 

sp 2 0.0355 0.01776 0.4777 0.0107 0.665 

depth:Navail 2 0.0387 0.01934 0.5204 0.01166 0.53 

depth:sp 2 0.0239 0.01193 0.3211 0.00719 0.837 

Navail:sp 4 0.1473 0.03682 0.9905 0.04437 0.334 

depth:Navail:sp 4 0.1585 0.03962 1.066 0.04775 0.283 

Residuals 54 2.0071 0.03717 0.60477   

Total 71 3.3188 1    
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APPENDIX F 

Linear mixed model summary statistics for responses of Shannon diversity (H), richness (S), and Pielou evenness (J) to treatments 

described in chapter 3 
Shannon Diversity NumDF DenDF F.value P value  Richness NumDF DenDF F.value P value 

sp 3 36 4.342 0.02045  sp 3 36 2.28421 0.1164 

Navail 2 5.938 1.9 0.23025  Navail 2 5.93 1.00772 0.42 

depth 1 3.544 0.2429 0.65107  depth 1 3.598 0.08771 0.7834 

sp:Navail 4 36 1.269 0.30013  sp:Navail 4 36 0.97368 0.434 

sp:depth 2 36 1.2653 0.29439  sp:depth 2 36 1.54737 0.2266 

Navail:depth 2 6.366 0.1922 0.82972  Navail:depth 2 6.413 0.3684 0.7056 

sp:Navail:depth 4 36 0.7982 0.5343  sp:Navail:depth 4 36 0.45789 0.766 

 

 

 

Pielou’s Evenness   NumDF DenDF F.value P value 

sp 3 36 1.96867 0.1544 

Navail 2 5.943 0.06833 0.9347 

depth 1 3.53 0.01161 0.92 

sp:Navail 4 36 1.34923 0.2708 

sp:depth 2 36 1.40739 0.2579 

Navail:depth 2 6.353 0.38607 0.6946 

sp:Navail:depth 4 36 1.75779 0.1588 
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APPENDIX G 

Linear mixed model summary statistics for responses of PLFA biomass for each major group for treatments described in chapter 3 
Non-specific Bacteria NumDF DenDF F.value P value  Gram-positive Bacteria NumDF DenDF F.value P value 

sp 3 36 0.2386 0.789  sp 3 36 0.0526 0.948866 

Navail 2 5.899 10.382 0.01169  Navail 2 5.899 11.9939 0.008345 

depth 1 3.848 1.597 0.27747  depth 1 3.848 2.1738 0.217109 

sp:Navail 4 36 0.8654 0.49404  sp:Navail 4 36 1.1176 0.363428 

sp:depth 2 36 0.1064 0.89937  sp:depth 2 36 0.0352 0.965429 

Navail:depth 2 6.619 0.1007 0.90555  Navail:depth 2 6.619 0.0361 0.964756 

sp:Navail:depth 4 36 1.6043 0.19436  sp:Navail:depth 4 36 1.4261 0.245179 

 
Gram-negative Bacteria NumDF DenDF F.value P value  Saprotrophic Fungi NumDF DenDF F.value P value 

sp 3 36 1.2654 0.294376  sp 3 36 1.96867 0.1544 

Navail 2 5.899 14.931 0.004916  Navail 2 5.943 0.06833 0.9347 

depth 1 3.848 0.6592 0.464063  depth 1 3.53 0.01161 0.92 

sp:Navail 4 36 0.8754 0.488245  sp:Navail 4 36 1.34923 0.2708 

sp:depth 2 36 0.2108 0.810913  sp:depth 2 36 1.40739 0.2579 

Navail:depth 2 6.619 0.1406 0.871357  Navail:depth 2 6.353 0.38607 0.6946 

sp:Navail:depth 4 36 1.7022 0.170912  sp:Navail:depth 4 36 1.75779 0.1588 
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Arbuscular Mycorrhizal Fungi NumDF DenDF F.value P value  Actinomycetes NumDF DenDF F.value P value 

sp 3 36 0.9898 0.38154  sp 3 36 0.3745 0.69028 

Navail 2 5.899 6.2225 0.03521  Navail 2 5.931 5.9415 0.03833 

depth 1 3.848 2.2649 0.20953  depth 1 4.081 1.0306 0.36637 

sp:Navail 4 36 1.0675 0.3868  sp:Navail 4 36 1.3552 0.26873 

sp:depth 2 36 0.1898 0.82794  sp:depth 2 36 0.1661 0.84759 

Navail:depth 2 6.619 0.6073 0.57258  Navail:depth 2 6.176 0.286 0.76071 

sp:Navail:depth 4 36 0.7775 0.54714  sp:Navail:depth 4 36 1.3552 0.26872 

   
Total PLFA  NumDF DenDF F.value P value 

sp 3 36 0.6203 0.5434 

Navail 2 5.899 9.9428 0.0129 

depth 1 3.848 2.7044 0.1782 

sp:Navail 4 36 1.5083 0.2204 

sp:depth 2 36 0.0037 0.9963 

Navail:depth 2 6.619 0.2628 0.7766 

sp:Navail:depth 4 36 1.1658 0.3421 
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APPENDIX H 

Data from Ch. 3. Abbreviations: Navail = nitrogen availability treatment, sp = species treatment, HS = horizontal strip block, VS = 

vertical strip block, NS = non-specific bacteria biomass, GPB = Gram-positive bacteria biomass, GNB = Gram-negative bacteria, 

SapF = saprotrophic fungi, AMF = arbuscular mycorrhizal fungi biomass, Actino = actinomycetes biomass, Total = total PLFA 

biomass, S = PLFA biomarker richness, H = PLFA biomarker Shannon diversity, J = PLFA biomarker Pielou's evenness. All 

biomarker concentrations are expressed in ng/g dry soil 

 

plot subplot depth  Navail sp HS VS NS GPB GNB SapF AMF Actino Total S H J 

1 7 deep ambient AG 1001 1003 116.24 140.16 45.42 63.31 44.76 22.69 432.58 15 2.39 0.88 

1 7 deep ambient SA 1001 1003 69.08 72.25 28.38 39.48 27.39 12.21 248.77 17 2.47 0.87 

1 7 deep ambient BS 1001 1003 107.81 128.71 33.62 56.30 36.09 19.64 382.17 15 2.37 0.87 

1 8 deep high AG 1002 1003 206.43 261.56 66.10 87.82 85.78 47.67 755.35 14 2.35 0.89 

1 8 deep high SA 1002 1003 122.92 137.99 50.11 54.17 40.98 24.62 430.80 17 2.48 0.88 

1 8 deep high BS 1002 1003 71.12 92.27 22.77 24.18 22.77 16.72 249.83 14 2.33 0.88 

1 9 deep low AG 1003 1003 251.56 252.68 81.07 141.09 64.80 42.62 833.82 17 2.45 0.87 

1 9 deep low SA 1003 1003 135.49 151.60 49.55 77.82 36.69 28.66 479.82 17 2.49 0.88 

1 9 deep low BS 1003 1003 234.35 261.43 68.86 125.39 52.64 43.78 786.45 14 2.35 0.89 

1 10 shallow ambient AG 1001 1004 99.31 113.89 37.24 45.43 40.80 18.88 355.56 17 2.45 0.87 

1 10 shallow ambient SA 1001 1004 121.73 130.94 41.67 64.96 39.12 30.67 429.08 17 2.49 0.88 

1 10 shallow ambient BS 1001 1004 136.04 155.12 37.08 61.92 49.60 28.98 468.74 15 2.38 0.88 

1 5 shallow high AG 1002 1002 242.97 297.02 80.21 102.00 91.08 46.08 859.35 15 2.40 0.89 

1 5 shallow high SA 1002 1002 212.58 275.89 61.90 67.95 74.07 47.88 740.28 15 2.35 0.87 

1 5 shallow high BS 1002 1002 113.80 130.68 35.35 59.87 36.28 23.42 399.40 17 2.46 0.87 

1 6 shallow low AG 1003 1002 172.54 175.65 58.19 102.28 43.27 33.89 585.81 17 2.46 0.87 

1 6 shallow low SA 1003 1002 264.47 307.27 86.66 132.27 71.56 55.45 917.68 16 2.45 0.88 
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plot subplot depth  Navail sp HS VS NS GPB GNB SapF AMF Actino Total S H J 

1 6 shallow low BS 1003 1002 303.59 331.86 84.90 156.29 55.70 64.97 997.30 17 2.43 0.86 

6 7 deep low AG 6001 6003 392.64 427.09 146.89 226.77 95.60 67.28 1356.28 17 2.44 0.86 

6 7 deep low SA 6001 6003 247.80 283.41 89.33 122.83 85.81 44.17 873.34 17 2.43 0.86 

6 7 deep low BS 6001 6003 117.39 135.36 43.38 62.88 28.74 22.64 410.38 17 2.47 0.87 

6 8 deep high AG 6002 6003 85.77 108.31 36.71 37.70 22.61 19.36 310.45 17 2.47 0.87 

6 8 deep high SA 6002 6003 100.82 113.01 38.94 35.83 27.58 22.77 338.95 17 2.48 0.88 

6 8 deep high BS 6002 6003 56.07 62.75 15.97 18.78 16.26 12.67 182.49 15 2.36 0.87 

6 3 deep ambient AG 6003 6001 93.47 85.39 29.25 52.96 26.19 15.97 303.23 17 2.45 0.86 

6 3 deep ambient SA 6003 6001 250.82 267.27 72.47 107.26 79.60 53.99 831.42 15 2.39 0.88 

6 3 deep ambient BS 6003 6001 200.93 247.16 57.83 74.04 68.13 43.52 691.61 14 2.34 0.89 

6 10 shallow low AG 6001 6004 164.11 198.30 61.06 82.47 49.70 37.39 593.03 17 2.49 0.88 

6 10 shallow low SA 6001 6004 129.72 144.45 38.22 67.71 36.69 23.92 440.71 16 2.45 0.88 

6 10 shallow low BS 6001 6004 183.12 218.98 66.76 81.92 49.99 32.90 633.66 17 2.44 0.86 

6 11 shallow high AG 6002 6004 185.21 216.76 73.81 84.53 78.05 29.17 667.53 16 2.43 0.88 

6 11 shallow high SA 6002 6004 93.24 108.50 27.78 42.41 32.05 14.93 318.90 14 2.38 0.90 

6 11 shallow high BS 6002 6004 152.21 155.58 60.65 60.20 53.62 23.32 505.58 17 2.43 0.86 

6 12 shallow ambient AG 6003 6004 118.22 145.51 40.26 48.10 47.06 30.38 429.53 15 2.37 0.88 

6 12 shallow ambient SA 6003 6004 84.09 94.84 23.23 37.47 31.16 15.22 286.02 15 2.37 0.88 

6 12 shallow ambient BS 6003 6004 84.05 86.98 22.17 30.91 34.72 12.84 271.67 16 2.36 0.85 

10 1 deep low AG 10001 10001 117.92 158.10 46.06 63.69 43.40 31.73 460.89 15 2.42 0.89 

10 1 deep low SA 10001 10001 226.05 265.71 93.51 105.34 82.00 58.98 831.59 15 2.37 0.87 

10 1 deep low BS 10001 10001 202.45 234.93 67.61 109.78 55.91 46.00 716.68 16 2.45 0.88 

10 2 deep high AG 10002 10001 159.38 182.54 40.02 68.06 0.00 70.37 520.37 13 2.20 0.86 
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plot subplot depth  Navail sp HS VS NS GPB GNB SapF AMF Actino Total S H J 

10 2 deep high SA 10002 10001 178.59 184.94 73.13 87.25 52.03 38.50 614.44 15 2.46 0.91 

10 2 deep high BS 10002 10001 243.94 260.34 69.18 77.79 56.37 46.45 754.07 15 2.34 0.86 

10 3 deep ambient AG 10003 10001 139.71 137.82 54.69 70.98 51.72 26.63 481.54 17 2.47 0.87 

10 3 deep ambient SA 10003 10001 17.03 18.06 5.28 8.89 7.07 3.71 60.04 15 2.35 0.87 

10 3 deep ambient BS 10003 10001 128.21 123.04 43.03 46.20 42.44 24.12 407.05 16 2.43 0.88 

10 10 shallow low AG 10001 10004 102.56 124.88 30.95 76.02 25.04 23.79 383.25 15 2.42 0.89 

10 10 shallow low SA 10001 10004 312.37 442.75 112.18 143.73 108.28 89.53 1208.83 14 2.37 0.90 

10 10 shallow low BS 10001 10004 277.70 358.97 80.33 126.13 73.11 66.33 982.58 14 2.35 0.89 

10 11 shallow high AG 10002 10004 293.43 217.18 85.77 367.27 57.43 39.38 1060.46 16 2.36 0.85 

10 11 shallow high SA 10002 10004 108.10 126.41 46.92 38.29 32.61 25.03 377.36 17 2.46 0.87 

10 11 shallow high BS 10002 10004 191.60 236.44 39.43 64.14 42.81 38.18 612.59 14 2.32 0.88 

10 6 shallow ambient AG 10003 10002 219.84 240.62 74.63 106.61 76.21 44.36 762.27 16 2.44 0.88 

10 6 shallow ambient SA 10003 10002 150.46 157.33 54.72 61.83 57.83 34.73 516.90 16 2.44 0.88 

10 6 shallow ambient BS 10003 10002 118.33 135.61 31.38 48.67 36.58 28.51 399.08 14 2.34 0.89 

15 1 deep high AG 15001 15001 74.95 79.48 23.25 39.11 31.13 16.34 264.26 16 2.41 0.87 

15 1 deep high SA 15001 15001 106.90 132.92 38.48 52.09 32.65 27.69 390.73 15 2.44 0.90 

15 1 deep high BS 15001 15001 97.08 122.58 36.69 41.81 29.81 24.37 352.34 17 2.48 0.87 

15 2 deep low AG 15002 15001 156.55 183.36 57.88 71.35 46.30 35.48 550.92 17 2.46 0.87 

15 2 deep low SA 15002 15001 286.46 322.47 106.68 148.41 81.16 56.53 1001.72 17 2.51 0.89 

15 2 deep low BS 15002 15001 195.80 244.27 63.10 107.01 60.60 60.83 731.62 15 2.42 0.89 

15 3 deep ambient AG 15003 15001 105.29 129.43 34.26 45.02 46.79 24.01 384.79 15 2.40 0.88 

15 3 deep ambient SA 15003 15001 88.16 106.89 37.33 29.44 35.90 20.46 318.18 17 2.46 0.87 

15 3 deep ambient BS 15003 15001 144.54 167.34 30.67 47.80 0.00 67.98 458.33 13 2.30 0.90 
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plot subplot depth  Navail sp HS VS NS GPB GNB SapF AMF Actino Total S H J 

15 10 shallow high AG 15001 15004 98.93 111.31 34.19 54.99 28.69 21.10 349.20 17 2.48 0.88 

15 10 shallow high SA 15001 15004 133.34 149.05 45.20 65.26 34.76 31.91 459.51 16 2.46 0.89 

15 10 shallow high BS 15001 15004 100.91 129.41 22.21 50.08 30.91 35.96 369.48 14 2.36 0.89 

15 11 shallow low AG 15002 15004 297.70 346.07 99.31 144.12 78.66 60.08 1025.95 16 2.44 0.88 

15 11 shallow low SA 15002 15004 281.02 351.05 110.80 134.49 78.45 67.72 1023.53 15 2.43 0.90 

15 11 shallow low BS 15002 15004 316.45 361.71 100.08 173.12 74.74 70.34 1096.45 17 2.46 0.87 

15 12 shallow ambient AG 15003 15004 235.40 283.50 74.53 125.88 71.20 60.80 851.32 17 2.47 0.87 

15 12 shallow ambient SA 15003 15004 109.83 129.44 35.13 51.90 36.08 32.37 394.74 16 2.44 0.88 

15 12 shallow ambient BS 15003 15004 177.89 233.01 54.06 78.91 47.36 49.55 640.79 15 2.43 0.90 
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APPENDIX I 

PLFA biomass of each biomarker in each subplot from Ch. 3. All biomarker concentrations are expressed in ng/g dry soil 

 
 NSB_C

14:0 

GPB_i-

C15:0 

GPB_a

-C15:0 

NSB_C

15:0 

GPB_i-

C16:0 

NSB_C
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16:1_9 

ACT_1
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C16:0 
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GPB_i-
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NSB_C
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SAP_C

18:1_9 
cis 

SAP_C

18:2 
_9,12 

GNB_c

y19:0 

GNB_2

-OH 
C16:0 

1-7AG 5.89 60.66 37.91 2.74 27.56 93.94 30.1 22.69 44.76 14.03 0 9.25 13.67 44.36 18.95 0 6.07 

1-7SA 3.12 31.07 18.19 2 14.67 53.67 15.38 12.21 27.39 8.32 1.37 3.58 8.92 26.25 13.23 5.53 3.88 

1-7BS 5.16 57.17 32.05 1.68 25.07 84.27 28.6 19.64 36.09 14.43 2.66 5.01 14.03 36.85 19.45 0 0 

1-8AG 9.02 109.53 70.45 5.32 55.03 168.62 47.92 47.67 85.78 26.56 0 18.18 23.47 63.44 24.38 0 0 

1-8SA 5.24 56.69 35.93 3.83 27.95 94.83 25.76 24.62 40.98 17.43 2.11 10.78 16.91 34.58 19.59 8.79 4.79 

1-8BS 3.7 40.49 26.69 2.13 15.2 57.04 16.41 16.72 22.77 9.89 0 6.36 8.25 19.18 5 0 0 

1-9AG 16.06 92.68 68.01 7.97 68.34 189.07 49.96 42.62 64.8 23.65 5.38 15.22 33.08 103.12 37.97 6.98 8.91 

1-9SA 7.3 58.87 36.79 5.21 37.2 100.36 28.53 28.66 36.69 18.75 3.47 9.04 19.16 56.96 20.87 6.51 5.47 

1-9BS 14.94 92.97 77.89 7.15 62.34 186.43 51.93 43.78 52.64 28.22 0 16.93 25.83 98.69 26.71 0 0 

1-
10AG 

4.74 49.46 30.3 3.83 22.27 74.75 21.21 18.88 40.8 11.86 2.2 8.59 13.79 33.77 11.66 2.29 5.15 

1-10SA 4.67 52.5 31.81 3.89 28.21 91.83 23.19 30.67 39.12 18.42 3.85 7.81 17.49 42.13 22.82 5.4 5.27 

1-10BS 7.48 65.83 40.45 2.95 31.63 106.24 28.46 28.98 49.6 17.2 2.24 8.62 17.13 39.82 22.1 0 0 

1-5AG 12.4 121.56 76.6 6.87 65.64 183.2 53.21 46.08 91.08 33.22 0 15.15 40.51 77.82 24.18 0 11.84 

1-5SA 12.48 113.19 79.53 5.85 50.55 168.73 43.69 47.88 74.07 32.63 0 13.67 25.53 57.01 10.94 4.55 0 

1-5BS 5.93 54.35 33.98 4.08 27.74 84.9 20.69 23.42 36.28 14.6 2.86 6.91 16.03 42.38 17.49 2.22 5.54 

1-6AG 11.23 68.82 41.46 5.76 46.44 129.75 35.31 33.89 43.27 18.92 3.17 10.39 22.63 73.29 28.98 2.68 9.81 

1-6SA 17.48 131.13 69.11 10.25 78 194.34 58.09 55.45 71.56 29.03 10.03 19.93 32.36 96.29 35.98 8.63 0 

1-6BS 20.43 116.85 76.61 9.17 100.5 222.01 54.95 64.97 55.7 37.9 7.59 19.65 44.4 126.28 30.01 5.03 5.27 

6-7AG 24.12 152.97 134.97 13.04 99.17 294.38 97.4 67.28 95.6 39.98 7.33 30.7 53.77 182.96 43.82 8.14 10.64 

6-7SA 16.69 96.8 88.49 7.83 71.77 189.98 64.05 44.17 85.81 26.35 4.54 13.21 28.76 92.5 30.33 4.27 7.81 

6-7BS 7.76 53.76 35.75 4.67 32.08 86.4 26.7 22.64 28.74 13.77 2.68 8.55 15.88 49.47 13.41 3.37 4.76 

6-8AG 4.74 48.75 28 2.75 20.37 65.42 20.09 19.36 22.61 11.19 1.63 8.5 11.23 25.05 12.65 3.54 4.58 

6-8SA 9.54 49.43 30.77 2.94 20.06 73.42 22.4 22.77 27.58 12.76 1.99 8.54 12.93 24.37 11.46 3.96 4.04 

6-8BS 2.6 28.06 17.12 1.66 10.98 43.76 11.12 12.67 16.26 6.59 1.12 4.85 6.93 14.56 4.21 0 0 

6-3AG 3.98 35.82 21.21 2.99 18.53 72.88 15.94 15.97 26.19 9.82 1.85 4.08 11.77 31.52 21.43 2.58 6.64 
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SAP_C
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GNB_2
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6-3SA 13.25 115.09 68.94 6.51 54.31 195.29 49.67 53.99 79.6 28.93 0 14.01 35.77 69.51 37.75 0 8.8 

6-3BS 9.65 113.3 59.12 6.54 43.83 157.88 47.72 43.52 68.13 30.92 0 10.11 26.87 49.96 24.08 0 0 

6-
10AG 

10.04 72.16 58.13 5.44 46.49 120.97 35.56 37.39 49.7 21.51 4.13 13.57 23.54 59.88 22.59 4.43 7.5 

6-10SA 9.3 51.03 40.09 5.32 38.87 96.26 25.4 23.92 36.69 14.46 2.9 6.4 15.93 46.53 21.18 6.42 0 

6-10BS 12.14 79.99 63.81 5.85 53.5 137.54 41.9 32.9 49.99 21.67 3.57 16.33 24.02 66.19 15.73 3.59 4.94 

6-

11AG 

14.19 93.09 52.46 6.73 49.31 144.34 45.44 29.17 78.05 21.9 0 10.92 19.96 59.47 25.06 3.74 13.72 

6-11SA 4.28 43.57 27.8 3.25 20.97 73.37 20.57 14.93 32.05 16.15 0 7.21 12.35 26.77 15.64 0 0 

6-11BS 8.37 71.47 35.95 5.57 32.16 120.65 33.48 23.32 53.62 16 2.56 13.16 15.05 44.02 16.18 4.4 9.61 

6-

12AG 

4.94 64.39 39.46 3.82 25.97 95.32 27.04 30.38 47.06 15.69 0 9.97 14.15 34.48 13.63 3.25 0 

6-12SA 3.62 41.87 25.57 3.42 16.12 66.88 16.97 15.22 31.16 11.29 0 3.52 10.16 22.22 15.25 2.73 0 

6-12BS 3.74 37.33 23.37 2.12 17.51 65.71 15.86 12.84 34.72 8.77 1.74 3.99 10.74 21.73 9.18 2.32 0 

10-

1AG 

7.89 66.95 41.33 3.84 32.27 91.71 31.75 31.73 43.4 17.54 0 10.87 14.48 42.64 21.05 0 3.44 

10-1SA 11.63 123.86 79.75 8.37 47.93 179.68 65.91 58.98 82 14.17 0 17.45 26.38 83.26 22.07 10.15 0 

10-1BS 13.19 84.83 73.87 7.16 54.98 150.82 45.23 46 55.91 21.25 4.14 14.16 27.15 79.36 30.42 8.22 0 

10-

2AG 

6.16 80.25 49.79 3.87 33 134.77 29.03 70.37 0 19.5 0 10.99 14.57 52.65 15.41 0 0 

10-2SA 8.82 75.81 51.08 6.64 35.43 137.46 40.59 38.5 52.03 22.63 0 12.53 25.66 47.96 39.29 20 0 

10-2BS 12.99 112.4 72.11 7.21 48.3 195.01 43.77 46.45 56.37 27.54 0 20.32 28.73 62.99 14.8 5.09 0 

10-
3AG 

6.53 60.06 33.24 3.99 28.05 107.59 32.15 26.63 51.72 16.48 3.54 11.09 18.05 40.72 30.26 5.92 5.53 

10-3SA 4.38 47.73 25.9 2.09 20.56 75.85 24.76 20.22 41.69 11.62 0 7.73 13.11 27.67 6.93 1.72 0 

10-3BS 6.55 53.65 30.34 4.86 25.52 99.96 23.8 24.12 42.44 13.53 0 7.7 16.83 29.66 16.54 4.35 7.18 

10-
10AG 

4.51 47.04 34.01 2.67 31.77 81.77 15.69 23.79 25.04 12.06 0 5.68 13.61 34.82 41.2 9.58 0 

10-

10SA 

20.19 173.34 124.57 10.56 100.92 238.7 85.42 89.53 108.28 43.92 0 26.76 42.93 121.09 22.64 0 0 

10-
10BS 

17.3 146.44 99.23 9.46 84.92 208.19 61.19 66.33 73.11 28.38 0 19.14 42.76 108.9 17.23 0 0 

10-

11AG 

11.42 92.58 59.08 6.09 42.77 177.35 47.55 39.38 57.43 22.75 0 12.66 98.57 215.04 152.24 13.3 12.27 

10-
11SA 

4.56 54.2 32.87 2.44 24.77 84.07 26.52 25.03 32.61 14.57 2.7 9.15 14.33 26.8 11.49 6.43 4.81 
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10-

11BS 

9.1 99.88 60.53 6.29 48.5 151.82 29.37 38.18 42.81 27.54 0 10.05 24.39 47.22 16.92 0 0 

10-
6AG 

10.6 105.44 57.06 10.5 49.35 171.53 42.5 44.36 76.21 28.78 0 10.65 27.21 64.96 41.65 5.91 15.57 

10-6SA 9.42 68.74 39.99 4.52 30.34 117.04 31.9 34.73 57.83 18.25 4.63 12.52 14.85 41.02 20.8 10.3 0 

10-6BS 4.52 60.54 36.03 2.98 23.13 96.62 22.54 28.51 36.58 15.9 0 8.84 14.21 30.55 18.12 0 0 

15-
1AG 

3.13 32.95 21.14 2.16 16.89 60.28 14.74 16.34 31.13 8.49 0 4.11 9.37 20.26 18.85 1.97 2.43 

15-1SA 4.81 52.98 35.11 3.52 29.23 81.99 23.79 27.69 32.65 15.59 0 7.2 16.58 32.81 19.29 7.49 0 

15-1BS 5.22 51.55 31.67 3.29 25.74 73.52 19.76 24.37 29.81 13.62 2.23 9.73 12.82 28.3 13.5 3.7 3.5 

15-

2AG 

9.81 73.14 46.35 5.6 44.48 116.36 37.36 35.48 46.3 19.39 3.62 12.69 21.16 55.49 15.86 4.56 3.28 

15-2SA 17.41 121.31 84.78 11.16 82.12 209.1 57.98 56.53 81.16 34.25 9.43 22.7 39.36 101.71 46.71 15.13 10.87 

15-2BS 9.92 96.25 61.01 6.78 52.01 160.53 37.38 60.83 60.6 35 0 13.68 18.56 68.46 38.55 12.05 0 

15-

3AG 

6.37 51.27 32.87 2.51 30.19 82.16 23.94 24.01 46.79 15.09 0 5.06 14.25 32.23 12.79 0 5.25 

15-3SA 4.3 46.48 27.56 2.87 20.79 66.8 21.75 20.46 35.9 12.06 2.32 7.86 11.87 22.54 6.9 3.12 4.6 

15-3BS 6.94 71.16 44.81 27.03 33.88 95.46 22.64 67.98 0 17.49 0 8.03 15.11 33.68 14.12 0 0 

15-

10AG 

5.05 43.08 29.01 3.74 26.21 76.21 18.57 21.1 28.69 13 2.36 6.11 11.58 34.05 20.94 4.46 5.04 

15-
10SA 

7.4 59.28 37.46 4.11 32.83 104.38 22.35 31.91 34.76 19.49 0 9.51 17.45 39.97 25.29 6.34 6.99 

15-

10BS 

4.81 47.49 34.48 4.07 27.37 81.5 18.88 35.96 30.91 20.06 0 3.34 10.54 36.7 13.38 0 0 

15-
11AG 

19.41 133.7 95.04 6.68 81.47 222.7 64.23 60.08 78.66 35.86 8.74 26.89 40.18 99.97 44.15 8.2 0 

15-

11SA 

19.52 137.53 93.85 10.87 82.34 215.06 74.75 67.72 78.45 37.33 0 20.99 35.57 100.51 33.98 15.06 0 

15-
11BS 

20.01 137.62 98.25 11.48 89.62 231.18 56.47 70.34 74.74 36.21 7.53 22.34 46.24 137.16 35.96 11.66 9.61 

15-

12AG 

13.3 109.87 68.09 7.7 63.14 182.18 45.03 60.8 71.2 42.41 4.25 13.49 27.96 79.59 46.29 8.9 7.11 

15-

12SA 

5.61 50.57 34.29 3.58 26.3 86.11 22.22 32.37 36.08 18.28 0 6.78 14.53 34.64 17.25 3.12 3.01 

15-

12BS 

10.61 86.05 58.21 7.67 61.73 131.76 35.83 49.55 47.36 27.02 0 9.76 27.85 56.43 22.48 8.47 0 
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APPENDIX J 

Three-term local quadrat variance (3TLQV) analyses for first axis of principal component analysis scores used to justify sampling 

frame size in Ch. 4. The scale on the x-axis is in cm. First peak represents the distance of maximum variance in plant community 

composition. The average of all sites was 1.3 m 
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APPENDIX K 

Spherical semivariogram analyses for first axis of principal component analysis scores used to justify spacing between sampling 

frames in Ch. 4. The ranges were Site 1 = 1809.6 cm, Site 2 = 77305.1 cm, Site 3 = 1068.6 cm, Site 4 = 2482.5 cm, and Site 5 = 

3822.0 cm. The average range was 18.1 m 
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APPENDIX L 

Data from Ch. 4. Abbreviations: HD = high plant diversity, LD = low plant diversity, rep = secondary transect block, Diversity= 

Shannon diversity, S = species richness, J = Pielou's evenness, NO3 = 2N KCl extracted NO3
–
–N (g m

–2
), NH4 = 2N KCl extracted 

NH4
+
– N (g m

–2
), Next = 2N extracted inorganic N (g m

–2
), N2O = nitrous oxide emissions from 1 d incubation (μg m

–2
), d15N = 

δ
15

N–N2O (atmosphere reference), soilR = soil respiration rate (g m
–2

 d
–1

), WEOC = water extractable organic carbon (mg     g
–1

). 

Diversity metrics were assessed on a 1 m
2 

scale 

 
Site Treatment rep Diversity S J NO3 NH4 Next N2O d15N soilR WEOC 

1 HD 1 1.48 13 0.58 0.03 0.08 0.11 0.00 3.81 8870.49 5.42 

1 LD 1 0.89 11 0.37 0.02 0.05 0.06 575.17 3.02 4489.46 5.13 

1 HD 2 1.79 10 0.78 0.01 0.04 0.05 549.02 5.51 1960.21 6.78 

1 LD 2 0.87 9 0.40 0.23 0.12 0.35 138.83 2.35 8476.58 3.66 

1 HD 3 1.56 8 0.75 0.03 0.09 0.12 180.28 3.73 11167.38 5.25 

1 LD 3 0.82 9 0.37 0.02 0.06 0.08 377.45 4.64 12070.48 5.14 

1 HD 4 1.52 5 0.94 0.06 0.12 0.17 0.00 4.80 9294.33 3.82 

1 LD 4 0.83 5 0.52 0.03 0.09 0.12 1006.54 3.71 14242.85 4.51 

1 HD 5 1.33 4 0.96 0.10 0.16 0.26 402.62 2.64 4675.62 3.77 

1 LD 5 0.75 6 0.42 0.09 0.21 0.30 0.00 3.27 6183.28 3.48 

1 HD 6 1.61 5 1.00 0.05 0.18 0.23 0.00 3.71 -9168.23 4.04 

1 LD 6 0.77 5 0.48 0.07 0.16 0.23 862.75 4.27 12337.80 5.58 

2 HD 1 1.37 11 0.57 0.15 0.04 0.19 33.83 -1.78 10396.00 3.30 

2 LD 1 0.84 12 0.34 0.08 0.04 0.12 862.75 4.40 11123.39 3.28 

2 HD 2 NA NA NA NA NA NA NA NA NA NA 

2 LD 2 NA NA NA NA NA NA NA NA NA NA 

2 HD 3 1.48 10 0.64 0.03 0.07 0.09 3019.63 3.47 11938.58 5.76 

2 LD 3 0.88 7 0.45 0.03 0.04 0.07 3019.63 4.57 5255.51 2.86 

2 HD 4 1.67 8 0.80 0.13 0.13 0.26 355.25 3.85 4616.93 4.14 

2 LD 4 0.84 7 0.43 0.11 0.16 0.27 503.27 3.65 6299.94 3.71 

2 HD 5 1.99 7 1.02 0.06 0.11 0.17 241.57 4.24 2883.25 3.49 

2 LD 5 0.59 3 0.54 0.07 0.24 0.31 236.83 4.69 10745.03 3.80 
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Site Treatment rep Diversity S J NO3 NH4 Next N2O d15N soilR WEOC 

2 HD 6 1.66 6 0.93 0.12 0.19 0.31 0.00 3.82 3894.86 3.71 

2 LD 6 0.89 5 0.55 0.06 0.29 0.35 0.00 5.53 5459.79 4.40 

3 HD 1 1.77 4 1.28 0.02 0.14 0.16 118.42 3.04 11498.88 3.45 

3 LD 1 0.85 5 0.53 0.00 0.13 0.14 76.45 3.90 8013.37 4.31 

3 HD 2 1.75 8 0.84 0.01 0.13 0.14 0.00 3.87 898.42 4.79 

3 LD 2 0.84 6 0.47 0.02 0.16 0.19 135.71 2.24 4319.20 3.52 

3 HD 3 1.96 7 1.01 0.02 0.22 0.24 416.50 4.64 5086.19 4.16 

3 LD 3 0.32 8 0.15 0.01 0.17 0.19 0.00 3.80 8086.42 3.73 

3 HD 4 1.76 10 0.76 0.08 0.17 0.25 8.70 -6.47 7414.42 4.12 

3 LD 4 0.56 8 0.27 0.05 0.21 0.26 85.06 1.88 9302.76 3.79 

3 HD 5 1.35 6 0.75 0.01 0.23 0.24 0.00 3.19 10166.04 5.43 

3 LD 5 0.52 4 0.38 0.03 0.13 0.16 124.52 3.26 14273.02 5.16 

3 HD 6 NA NA NA NA NA NA NA NA NA NA 

3 LD 6 NA NA NA NA NA NA NA NA NA NA 

4 HD 1 2.26 6 1.26 0.10 0.10 0.20 0.00 3.32 9631.81 4.60 

4 LD 1 0.87 6 0.49 0.07 0.10 0.17 246.50 3.92 4853.84 4.33 

4 HD 2 2.2 5 1.37 0.03 0.11 0.14 0.00 5.08 7679.11 4.43 

4 LD 2 0.42 5 0.26 0.02 0.15 0.17 280.90 3.69 13255.39 4.48 

4 HD 3 2.1 10 0.91 0.01 0.07 0.08 754.91 3.46 10164.39 4.10 

4 LD 3 0.78 9 0.35 0.03 0.13 0.15 294.60 3.98 7932.62 4.58 

4 HD 4 1.78 9 0.81 0.04 0.12 0.17 0.00 4.86 14405.83 4.25 

4 LD 4 0.89 7 0.46 0.03 0.06 0.09 0.00 3.93 13153.21 3.87 

4 HD 5 1.73 5 1.07 0.10 0.06 0.16 0.00 3.76 6114.34 4.58 

4 LD 5 0.89 3 0.81 0.13 0.08 0.21 671.03 4.67 7162.24 4.87 

4 HD 6 2 4 1.44 0.04 0.12 0.16 2013.09 4.63 14639.47 4.80 

4 LD 6 0.67 4 0.48 0.04 0.08 0.12 2013.09 4.71 8730.16 4.52 

5 HD 1 1.49 4 1.07 0.02 0.16 0.18 0.00 3.49 12206.45 5.51 

5 LD 1 0.71 3 0.65 0.01 0.14 0.15 1725.50 5.55 15069.59 5.22 

5 HD 2 1.34 9 0.61 0.03 0.21 0.24 0.00 4.62 15598.86 5.37 
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Site Treatment rep Diversity S J NO3 NH4 Next N2O d15N soilR WEOC 

5 LD 2 0.87 7 0.45 0.14 1.52 1.66 14.31 -7.19 28146.24 9.16 

5 HD 3 1.68 9 0.76 0.01 0.19 0.20 483.14 4.28 13986.10 4.81 

5 LD 3 0.64 10 0.28 0.01 0.14 0.15 3019.63 4.59 2063.24 4.03 

5 HD 4 1.43 8 0.69 0.02 0.17 0.19 3019.63 2.85 9431.46 4.86 

5 LD 4 0.53 6 0.30 0.03 0.15 0.18 12078.53 4.93 9140.95 4.44 

5 HD 5 1.72 6 0.96 0.02 0.23 0.24 1098.05 2.93 8239.93 4.78 

5 LD 5 0.47 4 0.34 0.01 0.19 0.20 6039.26 4.44 6126.62 4.63 

5 HD 6 1.54 5 0.96 0.00 0.16 0.17 366.02 4.33 12894.73 4.20 

5 LD 6 0.77 6 0.43 0.00 0.17 0.17 326.45 4.96 15154.53 4.01 
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