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MAJOR PROFESSOR: Dr. J. Kocik

For Ford Circles on the real line, [0, 1], G.T. Williams and D.H. Browne discov-

ered that this infinite arrangement of circles has an area-sum π + π ζ(3)
ζ(4)

, where ζ(s) is the

Riemann-Zeta function from complex analysis and number theory. The purpose of this

paper is to explore their findings in detail and provide alternative methods to prove the

statements found in the paper. Then we will attempt to show similar results on the Apol-

lonian Window circle packing using inversion through circles and the results of Williams

and Browne.
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INTRODUCTION

This paper provides an algebraic and number theoretic approach to a classical problem

of geometry and complex analysis. We begin with a simple Ford circle arrangement and

through tools of algebra and number theory arrive at the beautiful result for the area-sum

of the arrangement as

π +
πζ(3)

ζ(4)

The goal of this paper is to explore the findings in [1] and establish proofs for the

theorems presented in it. We then add information on our own findings of a similar structure

found in the Apollonian Window. The intended audience is a reader with basic proof

technical ability and a willingness to learn and explore this topic. Any definitions or

concepts needed by the reader are explicitly stated in the paper.

Though we are exploring another’s paper, we try to provide a more contemporary

proof to the originals. Some of the proofs of the statements found in [1] are not mentioned

in the paper in order to stay on task. Nevertheless, the proofs are intended to be accessible

to all readers.

Chapter 1 deals with Ford circles and the corresponding Stern-Brocot Array generated

by this construction. This chapter contains basic theorems and relationships of the circles

in the arrangement as well as properties of the values found in the Stern-Brocot Array.

Chapter 2 deals with the Stern-Brocot Tree, which we obtain through the Stern-Brocot

Array. The Stern-Brocot Tree is used to prove many of the big statements made in the

original paper [1].

Chapter 3 deals with the determination of the area-sum of the original Ford circles.

This section has many definitions and theorems from number theory, all of which are clearly

defined for the reader.

Chapter 4 deals with recent attempts at determining whether the area-sum for parts

1



of the Apollonian Window. We attempt to translate our results from [1] and use geometric

inversion from [6] to find the area-sum of these parts of the Window.
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CHAPTER 1

A FAMILY OF INTEGERS FROM FORD CIRCLES

1.1 FORD CIRCLES

A Family of Integers and a Theorem on Circles [1], begins with an introduction

on what are more commonly known as Ford circles [2]. This goes as follows:

Definition. Between two tangent unit circles lying on a line L, a third circle is inscribed

tangent to both circles and to L. Then two more circles are inscribed in the newly-created

spaces, each tangent to two circles and to L. Now four circles are inscribed similarily along

L, and so on ad inf .

1

1

1

1

1

4 1
9

1
9

1
2

0
1

1
1

2
3

1
3

3
5

2
5

3
4

1
4

Figure 1.1. Ford Circles

These types of circles are really quite amazing and are key to our understanding of

a similar disk packing such as the Apollonian Window. In order to get a grasp on the
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area of the resulting figure, a pattern must be established for determining the radii of the

succesively generated circles.

Theorem 1.1.1 (Williams and Browne). If two circles of radii 1
r2

and 1
s2

are tangent to

each other and to L, the radius of the smaller circle to both circles and to L is 1
(r+s)2

, that

of the larger circle being 1
(r−s)2 .

They proceed as follows:

This is readily established by comparing the projections of the three lines of center on L.

Thus, in the figure, the first inscribed circle has a radius of 1
4
, the next two have radii of 1

9
,

and so on.

Since the authors do not prove Theorem 1.1.1, we will prove this theorem using

Descartes’ formula for four mutually tangent circles [6].

Theorem 1.1.2 (Descartes’ Formula). If four circles are tangent to each other at six

distinct points, and the circles have curvatures ki (for i = 1, ..., 4), then

(k1 + k2 + k3 + k4)
2 = 2(k21 + k22 + k23 + k24) (1.1)

where the curvature of a circle is the reciprocal of its radius. (ki = ± 1
ri
∀ i ∈ [4])

The positive curvature of a circle is the interior curvature, while the negative is the

exterior. A straight line is a degenerate circle with curvature zero [3]. Here is a proof of

Theorem 1.1.1.

Proof. In the Ford Circles in Figure 1.1, describe the curvatures as k1 =
1
1
r2

= r2, k2 = s2,

k3 = 0 (line L), and k4 = x2. Using Theorem 1.1.2 we have

k4 = k1 + k2 ± 2
√
k1k2

4



This equation has a ± as any three mutually tangent circles produce two different

circles which are tangent to them. The + corresponds to the circle which is internally

tangent to the three circles. The − corresponds to the externally tangent circle. For +, we

have,

k4 = k1 + k2 + 2
√
k1k2 =

(√
k1

)2
+
(√

k2

)2
+ 2
√
k1k2 =

(√
k1 +

√
k2

)2
Thus, we have k4 = x2 =

(√
r2 +

√
s2
)2

. Therefore, x = r + s.

Similarily, k4 = k1 + k2 − 2
√
k1k2 gives us x = r − s.

1.2 THE FAMILY OF INTEGERS

Now that we have established a pattern for the radii of the generated circles, we can

define an array categorizing the circles present at various iterations.

Definition (Williams and Browne). Starting with our two unit circles, at stage 0, at the

nth stage we have 2n + 1 circles whose radii, reading across, we designate as
(

1
An

v

)2
, where

v = 0, 1, ..., 2n and where the A are succesively the positive integers:

1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1
. . . . . . . . .

A0
0 A0

1

A1
0 A1

1 A1
2

A2
0 A2

1 A2
2 A2

3 A2
4

A3
0 A3

1 A3
2 A3

3 A3
4 A3

5 A3
6 A3

7 A3
8

. . . . . . . . .

Figure 1.2. Stern-Brocot Array

From this point on we will refer to this configuration as the Stern-Brocot Array (SBA).

The values in SBA satisfy relationships which are briefly explored by Williams and Browne.

We wish to clarify the arguments given in the original paper for the reader.
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By definition, the values of the SBA satisfy the property An+1
2v = Anv since once an

element appears in the nth row, it appears in the (n + 1)th row in the same column. Also

by definition, An+1
2v+1 = Anv + Anv+1 as this corresponds to the iterative process of the circles

produced in the Ford arrangement. A symmetry relation, namely Anv = An2n−v, also occurs

which is apparent from the circles.

Williams and Browne notice the following property at this point:

Theorem 1.2.1. If Sn denotes
2n∑
v=0

Anv , then Sn = 3n + 1.

Proof By Induction. Let P (k) be the statement ‘If Sk =
2k∑
v=0

Akv , then Sk = 3k + 1.’

Base Case P (0) holds readily.

S0 =
1∑
v=0

A0
v = A0

0 + A0
1 = 1 + 1 = 2 and S0 = 30 + 1 = 2

Inductive Case Assume that P (k) is true for some k > 0. We need to show that P (k+1)

is true. For the (k+ 1)th row we have all the values of the kth row and new values from the

sums of these terms. Each term in the kth row is used exactly 2 times in a sum to make

our new elements in the (k + 1)th row, except for the first and last terms of the kth row,

which are used only once. Thus, we have

Sk+1 = Sk + 2Sk − 2 = 3Sk − 2

= 3(3k + 1)− 2 by Inductive Assumption

= 3k+1 + 3− 2 = 3k+1 + 1

Therefore P (k + 1) is true.

Thus P (k) is true ∀k ≥ 0.

Next, Williams and Browne state two Theorems without proof. We do not prove

either of these as they are tangential to the topic at hand.

Theorem 1.2.2. Anv is a linear function of n for constant v.

Theorem 1.2.3. For fixed n, the maximum Anv is fn, the nth Fibonacci number

({fn}∞0 = 1, 2, 3, 5, ...), and is given by v = 2n−(−1)n
3

, and symmetrically.
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The next theorem from [1] on Figure 1.2 concerns divisibility.

Theorem 1.2.4.

Anv
∣∣ (Anv−1 + Anv+1

)
∀n, v

Williams and Browne. The proof is inductive. By assuming the proposition for n− 1 and

all v, we deduce its validity for n and all v. When the subscript is odd, the theorem holds

trivially. When it is even, we observe that

An2v−1 + An2v+1 = An−1v−1 + 2An−1v + An−1v+1

and by the inductive hypothesis,

An−1v

∣∣ (An−1v−1 + An−1v+1

)
But

An−1v = An2v

Hence it is established generally.

We will attempt to make this proof a little more straightforward for the reader.

Proof. The Base Case can be verified by looking at the values in the SBA. For the inductive

case, asssume that An−1v

∣∣ (An−1v−1 + An−1v+1

)
for n > 2 and for all v. We want to show that

Anv
∣∣ (Anv−1 + Anv+1

)
. We have two cases:

(1) When v is odd, notice that An2k−1 =
(
An−1k−1 + An−1k

)
for v = 2k − 1 for some k ∈ Z+.

Since An−1k−1 = An2k−2 and An−1k = An2k from our properties of the Ank ,

An2k−1
∣∣ (An2k−2 + An2k

)
⇒ Anv

∣∣ (Anv−1 + Anv+1

)

7



(2) When v is even, notice that An−1k = An2k for v = 2k for some k ∈ Z+. Also,

An2k−1 + An2k+1 =
(
Ak−1k−1 + An−1k

)
+
(
An−1k + An−1k+1

)
= An−1k−1 + 2An−1k + An−1k+1

By inductive hypothesis, we know that An−1k

∣∣ (An−1k−1 + An−1k+1

)
and An−1k

∣∣2An−1k so

Ank
∣∣ (Ak−1 + Ank+1

)
.

Therefore, Anv
∣∣ (Anv−1 + Anv+1

)
for all n, v.

8



CHAPTER 2

THE STERN-BROCOT TREE

2.1 THE STERN-BROCOT TREE

Now we begin to take a look at the actual numbers found in the SBA. We will look at

how these numbers, which are generated from the circles, help us to arrive to a conclusion

for the area-sum of the Ford circles. In the Williams and Browne paper, the proofs of the

theorems about these values leave out details which we will clarify below.

We modify the SB array into a tree, which we will call the Stern-Brocot Tree (SBT).

We will pair up elements that are next to each other, starting on the left. The elements of

SBT will pair each element of a row twice, except for the endpoints which will be paired

only once. So our Figure 1.2 will now become:

[1,1]

[1,2]

[1,3]

[1,4] [4,3]

[3,2]

[3,5] [5,2]

[2,1]

[2,3]

[2,5] [5,3]

[3,1]

[3,4] [4,1]

Figure 2.1. Stern-Brocot Tree

The SBT allows for us to easily describe how to move throughout the tree of numbers.

If the entries of SBT are viewed as row-vectors, we can describe their children by multiplying

on the right by the following matrices

L =

[
1 1
0 1

]
R =

[
1 0
1 1

]
The matrix L and R are used to find the left and right child, respectively, in SBT. For

9



example, if we want to find the entry [5,2] we can begin with entry [1,1] and act on the

right by LRR. We could also start with [3,2] and act on the right by RR and get the same

result. If we want, the inverses,

L−1 =

[
1 −1
0 1

]
R−1 =

[
1 0
−1 1

]
can be used to walk up the tree as well.

2.2 PROPERTIES ON STERN-BROCOT TREE

Each element in SBT has a unique address, [1, 1]w where w ∈ {L,R}∗ (w is a word of

L,R). We want to show this uniqueness.

Theorem 2.2.1. Each pair [a, b] of SBT has a unique address.

Proof. Assume that the pair [a, b] has both the address [1, 1]w and [1, 1]y where w, y ∈

{L,R}∗ and w 6= y. But, if [1, 1]w = [a, b] = [1, 1]y, then we have,

[1, 1]w = [1, 1]y

w−1 is well defined as if say w = LRL...RR, then w−1 = R−1R−1...L−1R−1L−1. Also,

notice that L and R are generators of the multiplicative group SL(2,Z), so again w−1 is

well defined. Thus, we can multiply on the right by w−1 and obtain,

[1, 1] = [1, 1]yw−1 ⇔ yw−1 = I2x2 ⇔ w = y

a contradiction. So each [a, b] has a unique address in SBT.

Now that we have the uniqueness of addresses for each pair [a, b], we can begin to

prove other properties of the elements of SBT. Our next result shows that all of the pairs

10



found in the SBT are mutually prime.

Theorem 2.2.2. All pairs in the SBT are mutually prime.

Proof. Assume that we have a pair [a, b] in the SBT such that (a, b) 6= 1. Since (a, b) 6= 1,

(a, b− a) 6= 1 and (a− b, b) 6= 1 where (a, b− 1) = [a, b]L−1 and (a− b, b) = [a, b]R−1 in the

SBT. Continuing this process inductively, we have the pair [0, k] or [k, 0], where (a, b) = k

for k ∈ Z+ and k 6= 1. But, [k, 0] and [0, k] are not part of SBT as [1, 1]w 6= [0, k] and

[1, 1]w 6= [k, 0] ∀ w ∈ {L,R}∗.

Therefore, all pairs of SBT are mutually prime.

We also have the following theorem:

Theorem 2.2.3. All pairs [a, b] such that (a, b) = 1 are elements of SBT and each pair

appears exactly once.

Proof. First, we show that all relatively prime pairs [a, b] exist in the SBT. Since every

pair has a unique address, a pair [x, y] not in the SBT, then has [1, 1]w 6= [x, y] for any

w ∈ {L,R}∗. Using the Euclidean Algorithm, we see that if (x, y) = 1 and x > y, then

[x, y]→ [x− ny, y]→ [x− ny, y −m(x− ny)]→ ...→ [1, 1]

which can be described in SBT by y ∈ {L−1, R−1}∗. If x < y, we can use symmetry

to come to a similar argument. So, [1, 1]w = [x, y] and this process is unique due to the

uniqueness of the Euclidean Algorithm.

Therefore, all relatively prime pairs are in the SBT and appear exactly once.

2.3 THEOREMS OF A FAMILY OF INTEGERS AND A THEOREM OF CIRCLES

The information presented in Chapter 2 so far is our attempt to reformulate the SBA

to clarify the following theorem and proof from the original Williams and Browne paper:

11



Theorem 2.3.1. Every coupled pair of relatively prime integers occurs in the table of A’s.

Proof. Williams and Browne Again the proof is inductive and depends on the two condi-

tions,

1. If an integer m occurs next to each of the φ(m) integers 1, a2, a3, ...,m − 1 prime to

and less than m,

2. then ultimately it must occur next to each of the integers

q = jm+ 1 (i = 1, a2, ...,m− 1; j = 1, 2, ...)

as can be seen by simple inductive reasoning. Plainly these numbers comprise all q such

that q > m, (q,m) = 1. Hence, all relatively prime pairs involving m occur if (i) holds for

m. But if (i) is true for all integers less than m it is true for m, since the φ(m) integers

prime to m are included among 1, 2, ...,m−1 for which (i) and (ii) both hold. The induction

is completed by noting the truth of (i) when m = 2.

From our theorems from the SBT, we have shown an alternative way to prove this

using Theorems 2.2.1-2.2.3. The next theorem is absolutely essential to our calculations

for the area-sum in Figure 1.1.

Theorem 2.3.2. Ultimately, every integer m > 1, appears precisely φ(m) times in a row

of the table (SBA).

The author believes that the two line proof provided in the original paper is not

sufficient enough to show such a wonderful result. Here is our proof using both the SBA

and SBT.

12



Proof. For some m > 1, notice the first appearances of m by looking at the columns of the

SBA containing m. We will count the number of columns containing m.

The columns in SBA containing m begin when two values less than m appear next to

one another in the row above and sum to m. From Theorem 2.2.2, these two values are

relatively prime. So, each m column begins next to relatively prime factors less than m.

There are φ(m) of these factors.

For the rest of the column, m only appears next to values greater than m, so no new

columns of m can appear. Therefore, we have φ(m) columns containing m.

Thus, each integer m > 1 appears exactly φ(m) times in a row of the SBA.

13



CHAPTER 3

AREA-SUM OF THE FAMILY OF CIRCLES

3.1 AREA-SUM OF THE FAMILY OF CIRCLES

The remainder of this paper will concentrate on solving the area-sum of the circle

arrangement. Now that we have the tools to describe the radii of the circle packing, we

just need to determine the other tools necessary to prove the final theorem from [1].

Theorem 3.1.1. The area-sum of the configuration is

π +
πζ(3)

ζ(4)
= 6.6307288,

where ζ(s) =
∞∑
n=1

1
ns is the Riemann-zeta function.

Using what we discovered in Theorem 2.3.2, we can describe the area-sum by:

∞∑
m=1

π

(
1

m2

)2

=
∞∑
m=1

π

(
φ(m)

m4

)
as there are φ(m) circles with radius

1

m2

= π + π
∞∑
m=1

φ(m)

m4
as π is the area of one of the unit circles

3.1.1 Dirichlet Series and Dirichlet convolution

In order to obtain the result in Theorem 3.1.1, we use Dirichlet series and convolution,

Möbius inversion, and properties of arithmetic and multiplicative functions. We begin by

defining a Dirichlet series.

Definition. A Dirichlet series is any series of the form

∞∑
n=1

an
ns

14



where s ∈ C and an is a complex defined sequence. [4]

The most famous of these Dirichlet series is the Riemann-zeta function, which is

ζ(s) =
∞∑
n=1

1

ns

This function, as discovered by Euler, has a nice connection with the prime numbers as it

can be shown that [5]

ζ(s) =
∏

p prime

1

1− p−s

We also will need the concept of Dirichlet convolution for calculations.

Definition. Dirichlet convolution, denoted ∗, is a binary operation for arithmetic functions,

such that if f, g are arithmetic [5]

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
=
∑
ab=n

f(a)g(b)

An arithmetic function is any mapping f : N→ C. An arithmetic function f is said

to be mutiplicative if f ∀ m,n ∈ N f(mn) = f(m)f(n) where f(1) = 1 and (m,n) = 1. A

multiplicative function f is said to be complete, if ∀ m,n ∈ N f(mn) = f(m)f(n).

Examples of arithmetic functions

1. 1(n), function which maps n ∈ Z+ 7→ 1

2. Id(n), function which maps n ∈ N 7→ n

3. µ(n), the Möbius function defined by

µ(n) =


1, if n = 1

(−1)r, if n = p1p2 · · · pr all pi diffferent

0, if n has a squared factor

15



4. φ(n), Euler’s totient function, a function which gives back the number of natural

numbers up to n which are relatively prime to n. φ(n) is multiplicative and evaluated

by

φ(n) =


1, if n = 1

p− 1, if n = p a prime

pk − pk−1, if n = pk

In Theorem 3.1.1 we were left with the function φ(m) in our summation. We propose

the following:

Proposition 3.1.2. φ = µ ∗ Id ∀ m ∈ Z+

To show that this proposition is true we will act on m ∈ Z+ on both sides. On the

right hand side, we can use Dirichlet convolution to get

(µ ∗ Id)(m) =
∑
d|m

µ(d)Id
(m
d

)
=
∑
d|m

µ(d)
(m
d

)

On the left hand side, we will use Möbius inversion formula from number theory.

Möbius Inversion Formula [4]

If f, g are arithmetic functions such that

g(m) =
∑
d|m

f(d) ∀m ∈ Z+,

then

f(m) =
∑
d|m

µ(d)g
(m
d

)
∀m ∈ Z+.

To write φ(m) as a summation, we will turn to a proposition of Gauss [7], which we

will not prove, but rather show through an example.

Proposition 3.1.3. ∑
d|m

φ(d) = m

16



Example 3.1.1. Let m = 12. List all of the fractions in the interval (0, 1] with denomi-

nator m = 12 and reduce those fractions to lowest terms. Then collect all of the fractions

with like denominators together as follows:

{
1

12
,

2

12
,

3

12
,

4

12
,

5

12
,

6

12
,

7

12
,

8

12
,

9

12
,

10

12
,

11

12
,

12

12

}
{

1

12
,

1

6
,

1

4
,

1

3
,

5

12
,

1

2
,

7

12
,

2

3
,

3

4
,

5

6
,

11

12
,

1

1

}
∣∣∣∣{ 1

12
,

5

12
,

7

12
,
11

12

}∣∣∣∣ = 4 = φ(12)∣∣∣∣{1

6
,
5

6

}∣∣∣∣ = 2 = φ(6)∣∣∣∣{1

4
,
3

4

}∣∣∣∣ = 2 = φ(4)∣∣∣∣{1

3
,
2

3

}∣∣∣∣ = 2 = φ(3)∣∣∣∣{1

2

}∣∣∣∣ = 1 = φ(2)∣∣∣∣{1

1

}∣∣∣∣ = 1 = φ(1)

Taking the sum
∑
d|m

φ(d) we obtain m.

From Proposition 3.1.2,
∑
d|m

φ(d) = m = Id(m), so using the Möbius Inversion Formula,

we let g(m) = Id(m) and f(m) = φ(m) to get

φ(m) =
∑
d|m

µ(d)Id
(m
d

)
=
∑
d|m

µ(d)
(m
d

)

Therefore, φ = µ ∗ Id for any m ∈ Z+.

3.1.2 Dirichlet series of convolution products

Next we need to discuss the Dirichlet series of convolution products before applying

the material in this section to the area-sum of our Ford circles.

17



Theorem 3.1.4. Let f and g be arithmetic functions associated with Dirichlet series F (s)

and G(s), respectively. Let h = f ∗ g be the Dirichlet convolution of f and g and let H(s)

be the associated Dirichlet series of h.

If F (s) and G(s) converge absolutely at some point s, then so does H(s) and we have

H(s) = F (s)G(s).

Proof.

F (s)G(s) =
∞∑
k=1

∞∑
m=1

f(k)g(m)

(km)s
=
∞∑
n=1

1

ns

∞∑
km=n

f(k)g(m)

=
∞∑
n=1

(f ∗ g)(n)

ns

=
∞∑
n=1

h(n)

ns

= H(s)

H(s) converges absolutely as

∞∑
n=1

∣∣∣∣h(n)

ns

∣∣∣∣ ≤ ∞∑
n=1

∣∣∣∣ 1

ns

∣∣∣∣ ∑
km=n

|f(k)||g(m)|

=

(
∞∑
k=1

∣∣∣∣f(k)

ks

∣∣∣∣
)
·

(
∞∑
m=1

∣∣∣∣g(m)

ms

∣∣∣∣
)

which are both absolutely convergent by the hypothesis of the theorem.

3.1.3 The Finale!

We ended our calculation for the area-sum of the configuration with the following

π + π

∞∑
m=1

φ(m)

m4

We will look at
∞∑
m=1

φ(m)

ms
. From Proposition 3.1.2 and Theorem 3.1.4, we have

18



∞∑
m=1

φ(m)

m4
=

∞∑
m=1

(µ ∗ Id)(m)

m4

=

(
∞∑
m=1

µ(m)

m4

)
·

(
∞∑
m=1

Id(m)

m4

)

For the second sum we have,

∞∑
m=1

Id(m)

m4
=

∞∑
m=1

1

m3
= ζ(3)

For the first sum we will use tools from number theory to manipulate this into something

which we can recognize. First, we propose a proposition [5]

Proposition 3.1.5. Let f be a multiplicative function. Then

D(f, s) =
∞∑
n=1

f(n)

ns
=
∏
p

∞∑
l=0

f(pl)

pls

Using Euler’s product formula for the Riemann-Zeta function,

∏
p prime

1

1− p−s
= ζ(s)

we can see clearly that

1

ζ(s)
=
∏
p

(
1− 1

ps

)

Using Proposition 3.1.5 to determine the value of D(µ, s), we have

D(µ, s) =
∏
p

∞∑
l=0

µ(pl)

pls
=
∏
p

(
1− 1

ps

)

as µ is multiplicative and µ(pl) is evaluated by
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µ(pl) =


1, if l = 0

−1, if l = 1

0, if l > 1
Thus,

1

ζ(s)
= D(µ, s) =

∞∑
n=1

µ(n)

ns

So,
∞∑
n=1

µ(n)
n4 = 1

ζ(4)
and we have

∞∑
m=1

φ(m)

m4
=
ζ(3)

ζ(4)
.

as desired. Thus, we have shown that the area-sum of the Ford circle arrangement is

π +
πζ(3)

ζ(4)

What a beautiful result! We began with circles and obtain a result for the area-sum of

the circles which uses the Riemann zeta function. While this result is great, in the next

chapter we will explore a disk packing, commonly referred to as the Apollonian Window,

and attempt to translate these results to its partial area-sum.
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CHAPTER 4

COMPARING TO THE APOLLONIAN WINDOW

4.1 INVERSION OF THE APOLLONIAN WINDOW

In this chapter, we will consider the Apollonian window as shown in the figure below.

2

2

3 3

6 6

6 6

11 11

11 11

14 14

14 14

Figure 4.1. Apollonian Window

The goal of this chapter is to explore the area-sum of different parts of the Apollonian

Window. For this window, we will use geometric inversion to invert the disks in the interior

of the Apollonian Window, as described in [3] and [6], through the boundary disk of the

packing. This inversion will give us the following image in Figure 4.2.

A few notational things. We will describe all disks by their curvature in the original

Apollonian Window from this point on. After a circle, denoted X, is inverted through the

boundary disk, denoted by O, we will denote this new disk by X ′. We will only be looking

at the disks which are directly tangent to the boundary disk of the Apollonian window.

A chain of disks is defined to be a collection of succesively smaller, that is smaller in

terms of radii, tangent disks which are all tangent to O in the Apollonian Window. For

example, the disks 6, 11, 18, 27, 38, 51, ... can be considered a chain just as 2, 3, 6, 11, 54, ...
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2′

2′

Apollonian Window3′ 3′

6′ 6′
11′ 11′

14′ 14′

18′18′

Figure 4.2. Inversion of Apollonian Window

can. We will denote the chain 6, 11, 18, 27, 38, ..., n2 + 2, for n = 2, 3, 4, ..., by C1 and the

chain 6, 14, 26, 42, 62, 86, ..., 2(n2 − n+ 1), for n = 2, 3, 4, ..., by C2. We will look at C1 and

C2 to generalize a pattern for the other disks and chains located between C1,C2, and O.

After inversion, we see that we get a configuration similar to that of the Ford circles

from before. We will use the results of [6] on this inversion to compare the area of this

disk packing under inversion to the area of our Ford circles. First, we notice a stunning

relationship between the radii of the disks in the Apollonian Window and their new radii

after inversion. To find the radii of the disks after inversion, we will use the following

formula found in [6]

r′ =
rR2

d2 − r2

where r′ is the radius of the new disk after inversion, r is the disk’s original radius, d is

the distance between the center of the disk we are inverting through to the center of the

original disk in the packing, and R is the radius of the disk we are inverting through, which

in this case is 1. We display our results for C1 in Figure 4.1.

We notice a few interesting patterns being developed. For one, under inversion, the

radius of a circle
1

r
becomes

1

r − 2
, much like Farey series addition [6] of −1

2
, which can

be found in numerous other fractal images. Another pattern is that the radii of the circles
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Circle Old Radius Radius under Inversion

6 1
6

1
4

11 1
11

1
9

18 1
18

1
16

27 1
27

1
25

38 1
38

1
36

51 1
51

1
49

...
...

...

Table 4.1. Radii of C1 under Inversion

after inversion become the sequence of inverted perfect squares starting with n = 2. This

pattern also continues for the chain C2 as we see in Figure 4.2.

Circle Old Radius Radius under Inversion

6 1
6

1
4

14 1
14

1
12

26 1
26

1
24

42 1
42

1
40

62 1
62

1
60

86 1
86

1
84

...
...

...

Table 4.2. Radii of C2 under Inversion

which also has the same fractal addition by −1
2

property as C1, but has the pattern

1

2(n)(n+ 1)
, for n = 1, 2, ..., for the radii of the circles after inversion. It can be shown that
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the fractal addition by −1
2

is true for the other chains of the Apollonian window bounded

between C1, C2 and O.

Next we look at results for finding the area of the circles in Figure 4.2. The next

tables, Table 4.3 and Table 4.4, compare the area of the circles in chains C1 and C2 of the

Apollonian Window to the area of the same circles after inversion. The scalar column is a

value k such that the original area, A, and the area under inversion, A′, satisfy A · k = A′.

Circle Original Area Area under Inversion Scalar

6 π
(

1
36

)
π
(

1
16

)
9
4

11 π
(

1
121

)
π
(

1
81

)
121
81

18 π
(

1
324

)
π
(

1
256

)
81
64

27 π
(

1
729

)
π
(

1
625

)
729
625

38 π
(

1
1444

)
π
(

1
1296

)
361
324

51 π
(

1
2601

)
π
(

1
2401

)
2601
2401

...
...

...
...

Table 4.3. Area of C1 under Inversion

Notice that the scalar multiplier k, obeys a particular sequence for both of these chains.

For C1, the scalar multiplier is given by

k =
(n2 + 2)2

((n− 2)2 + 2)2
=

(n2 + 2)2

(n2 − 4n+ 6)2

where n = 2, 3, ... as we know the sequence {n2 + 2}∞n=2 generates the values of C1. For C2,

we have that the scalar multiplier is given by

k =
(2(n2 − n+ 1))2

(2((n− 2)2 − (n− 2) + 1))2
=

(n2 − n+ 1)2

(n2 − 5n+ 7)2
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Circle Original Area Area under Inversion Scalar

6 π
(

1
36

)
π
(

1
16

)
9
4

= 32

22

14 π
(

1
196

)
π
(

1
144

)
49
36

= 72

62

26 π
(

1
676

)
π
(

1
576

)
169
144

= 132

122

42 π
(

1
1764

)
π
(

1
1600

)
441
400

= 212

202

62 π
(

1
3844

)
π
(

1
3600

)
961
900

= 312

302

86 π
(

1
7396

)
π
(

1
7056

)
1849
1764

= 232

212
...

...
...

...

Table 4.4. Area of C2 under Inversion

where n = 2, 3, ... for the sequence {2(n2 − n+ 1)}∞n=2 which generates these values. If we

defined the sequence of scalar products in C2 by using the label for each circle, namely X,

we can define the pattern

k =

(
X
2

)2(
X−2
2

)2 =
X2

(X − 2)2

At this point, we notice that even though we have a pattern for determining the area

of each individual circle of the chains C1 and C2, it is difficult to establish a pattern like

the one from the Ford circles, for the area-sum of this disk packing after inversion. Even

though we have a similar picture after inversion, the number theoretic structure of the disks

is not as simple as the circles. Finding such a pattern for the area-sum is my goal moving

forward.
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