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AN ABSTRACT OF THE DISSERTATION OF 
 

Rahab Al Hakmani, for the Doctor of Philosophy degree in Quantitative Methods, presented on 
October 18, 2018, at Southern Illinois University Carbondale. 
 
TITLE:  BAYESIAN ESTIMATION OF MIXTURE IRT MODELS USING NUTS 

MAJOR PROFESSOR:  Dr. Yanyan Sheng 

The No-U-Turn Sampler (NUTS) is a relatively new Markov chain Monte Carlo 

(MCMC) algorithm that avoids the random walk behavior that common MCMC algorithms such 

as Gibbs sampling or Metropolis Hastings usually exhibit. Given the fact that NUTS can 

efficiently explore the entire space of the target distribution, the sampler converges to high-

dimensional target distributions more quickly than other MCMC algorithms and is hence less 

computational expensive. The focus of this study is on applying NUTS to one of the complex 

IRT models, specifically the two-parameter mixture IRT (Mix2PL) model, and further to 

examine its performance in estimating model parameters when sample size, test length, and 

number of latent classes are manipulated. The results indicate that overall, NUTS performs well 

in recovering model parameters. However, the recovery of the class membership of individual 

persons is not satisfactory for the three-class conditions. Also, the results indicate that WAIC 

performs better than LOO in recovering the number of latent classes, in terms of the proportion 

of the time the correct model was selected as the best fitting model. However, when the effective 

number of parameters was also considered in selecting the best fitting model, both fully Bayesian 

fit indices perform equally well. In addition, the results suggest that when multiple latent classes 

exist, using either fully Bayesian fit indices (WAIC or LOO) would not select the conventional 

IRT model. On the other hand, when all examinees came from a single unified population, fitting 

MixIRT models using NUTS causes problems in convergence.  
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CHAPTER 1 

INTRODUCTION 

 Tests, and especially achievement tests are extensively used in different context such as 

schools, government, and industry. In educational and psychological measurement, test results 

can be used for various purposes such as screening and selection of individuals, assessing 

students’ learning progress, or evaluating the efficiency of educational systems. The increased 

awareness of the importance and impact of testing has led to the development of better tests and 

the improvement of statistical methods for analyzing test scores. Classical test theory (CTT; 

Novick, 1966) has served the measurement community well for most of the last century. 

However, problems emerged using CTT have encouraged the development of a modern test 

theory, namely the item response theory (IRT; Lord, 1980), which has become a fundamental 

tool for measurement professionals in behavioral sciences (Linden & Hambleton, 1997). IRT 

provides advantages over CTT that make it applicable in many educational fields, such as test 

development and equating (Skaggs & Lissitz, 1986), computerized adaptive testing (CAT; 

Linden & Glas, 2000), and differential item functioning (DIF; Holland & Wainer, 1993). Among 

the many advantages of IRT over CTT, measurement invariance is one of the more important 

ones. In contrast to CTT, where item and person characteristics is sample dependent, the 

corresponding characteristics are invariant in IRT. Specifically, item parameters (e.g., difficulty 

or discrimination) do not depend on the sample of persons used to calibrate them. For example, 

an item difficulty parameter will be the same no matter whether this item is administered to a 

group of high ability or low ability examinees. Likewise, a person ability does not depend on the 

sample of items used to estimate it and hence ability estimates obtained from different sets of 

items will be the same. In addition, in IRT, item and person parameters are placed on the same 
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latent continuum. This makes it possible to scale persons relative to items or vice-versa, and 

hence we can directly compare them. Because of its advantages over CTT, IRT has gained an 

increased popularity in educational and psychological testing (e.g., Baker & Kim, 2004; De 

Ayala, 2009; Hambleton & Jones, 1993). 

 IRT consists of a family of models that specify the probability of a response given person 

latent trait and item characteristics. Different models exist for different types of response data. 

Conventional dichotomous IRT models (e.g., Birnbaum, 1969; Lord & Novick, 1968; Lord, 

1980; Rasch, 1960) are used when test items require binary responses such as true-false 

questions or multiple-choice questions that are scored as correct or incorrect. Such IRT models 

are based on two major assumptions: unidimensionality and local independence. 

Unidimensionality states that a single unified latent trait is measured by all test items. Although 

in practice multiple factors affect the response of each person to individual items, the presence of 

a dominant factor that explains test performance is sufficient for this assumption to be satisfied. 

Local independence means that when the latent trait influencing test performance is held 

constant, persons’ responses to any pair of test items are independent of each other. This 

assumption is related to unidimensionality although local independence is a broader or more 

general concept. When the assumption of unidimensionality is true, the assumption of local 

independence is obtained and the two concepts are equivalent. 

 There are three common unidimensional dichotomous IRT models (Birnbaum, 1969;  

Lord & Novick, 1968; Lord, 1980; Rasch, 1960) that are based on the number of item 

parameters. The simplest of such conventional IRT models is the one-parameter logistic (1PL) or 

Rasch model (Rasch, 1960). The model consists of an item difficulty parameter, which is defined 

as the ability required for a person to have a probability of 0.5 to answer the item correctly. The 
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two-parameter logistic (2PL; Lord & Novick, 1968) model generalizes the Rasch model by 

adding the discrimination parameter, which is proportional to the slope at the point of the 

difficulty level. The three-parameter logistic (3PL) model extends the two-parameter model by 

adding the pseudo-guessing parameter, which is the probability that a person with an extremely 

low latent ability answers the item correctly. 

 The conventional IRT models discussed above assume that the observed response data 

stem from a homogenous population of individuals. This assumption, however, limits their 

applications in test situations where, for example, a set of test items can be solved with different 

cognitive strategies. If the population consists of multiple groups of persons, with each group 

employing a different strategy for the same item, the parameters for this item will be different 

across these groups (or subpopulations), and consequently, the conventional IRT models cannot 

be used for the response data. On the other hand, the conventional IRT models may hold when 

each of the subpopulations employs a common strategy. As a result, mixture IRT (MixIRT) 

models (Rost, 1997) were developed to capture the presence of these latent classes (i.e. 

subpopulations) that are qualitatively different but within which a conventional IRT model holds. 

In the MixIRT modeling framework, persons are characterized by their location on a continuous 

latent dimension as well as by their latent class membership. Also, each subpopulation has a 

unique set of item parameters (e.g., difficulty, or discrimination). MixIRT models have become 

increasingly popular as a technique for investigating various issues in educational and 

psychological measurement such as identifying items that function differently across latent 

groups (e.g., Choi, Alexeev & Cohen, 2015; Cohen & Bolt, 2005; De Ayala, Kim, Stapleton, & 

Dayton 2002; Maij-de Meij, Kelderman, & van der Flier, 2010; Samuelsen, 2005; Shea, 2013; 
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Wu, et al., 2017) or detecting test speededness (e.g., Bolt, Cohen, & Wollack, 2002; Meyer, 

2010; Mroch, Bolt, & Wollack, 2005; Wollack, Cohen, & Wells, 2003) 

 The first MixIRT model was developed by Rost (1990), which is a one-parameter 

MixIRT (Mix1PL) model, also known as the mixture Rasch model, for dichotomous data where 

conventional Rasch model is assumed to hold within each latent class, but different difficulty 

parameters apply across classes. Individual members within a class can also have different levels 

of ability. The two-parameter MixIRT (Mix2PL) model and the three-parameter MixIRT 

(Mix3PL) model extend the Mix1PL model by adding additional item parameters. Specifically, 

in the Mix2PL model, the conventional 2PL model is assumed to hold for each latent class, but 

item difficulty and discrimination parameters may differ for different classes. Similarly, in the 

Mix3PL model, the conventional 3PL model is assumed to hold for each latent class, but item 

difficulty, discrimination, and guessing parameters may differ for the different classes. In the 

MixIRT literature, the Mix1PL model (or its hierarchical forms) is the predominant model, while 

the Mix2PL and Mix3PL models are rarely covered. This could be due in part to the difficulty of 

model identification caused by the problem of label switching of mixture proportions that is 

inherent in mixture models in general. Alternatively, model complexity results in difficulty in 

parameter estimation using conventional methods. Strategies used within the context of the fully 

Bayesian estimation to solve the problem of exchangeable mixture proportions and hence 

identify the MixIRT model will be addressed in a later chapter. The conventional IRT models 

can be seen as special cases of MixIRT models. Stated differently, if only one latent class is 

retained after fitting a MixIRT model, then it is reduced to a conventional IRT model.  

 In the IRT literature, many estimation methods have been developed to jointly estimate 

parameters of IRT models, with the early focus on maximum likelihood (ML; Fisher, 1922) 
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estimation methods, namely the joint maximum likelihood (JML; Birnbaum, 1969), the 

conditional maximum likelihood (CML; Andersen, 1970), and the marginal maximum likelihood 

(MML; Bock & Aitkin, 1981). Because these estimators are related to ML, they may result in 

infinite or implausible parameter estimates in situations where unusual response patterns are 

encountered such as perfect or zero scores. On the other hand, Bayesian estimation avoids such 

problems by specifying appropriate prior distributions for parameters. This way, the Bayesian 

approach can control the parameters to be within a reasonable range. Due to the advanced 

computational techniques, estimation of IRT models has gradually shifted to the fully Bayesian 

estimation. While the traditional techniques find a point estimate for each parameter that 

maximizes the likelihood function, the fully Bayesian estimation via the use of the Markov chain 

Monte Carlo (MCMC; Hastings, 1970; Metropolis & Ulam, 1949; Metropolis, Rosenbluth, 

Rosenbluth, Teller, & Teller, 1953) simulation techniques approximates the joint posterior 

distribution of all model parameters, and hence account for the uncertainty associated with any 

parameter estimation. The fully Bayesian approach based on MCMC techniques have been 

successfully used in estimating parameters of various IRT models with different degree of 

complexity (e.g., Chang, 2017; de la Torre & Douglas, 2004; Johnson & Junker, 2003; Kim, 

2001; Kuo, 2015; Patz & Junker, 1999a, 1999b; Sheng & Wikle, 2007; Sheng, 2010). 

 MCMC methods are a class of algorithms that can be used to simulate random samples 

from a posterior distribution via constructing a Markov chain that has the desired distribution as 

its stationary distribution. The idea is to generate sequential random samples such that each 

random sample is used as a stepping-stone to generate the next random sample. One requirement 

of the Markov chain is that a sample generated at any state depends on the sample drawn at the 

previous state, but does not depend on those simulated at any earlier states (Ravenzwaaij, 
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Cassey, & Brown, 2016). MCMC techniques are especially useful in Bayesian inference because 

it is extremely flexible and can be applied with very complex models. Two main types of 

MCMC algorithms exist in the literature. They are (1) random walk algorithms such as Gibbs 

sampling (Geman & Geman, 1984) and Metropolis-Hastings (MH; Hastings, 1970; Metropolis & 

Ulam, 1949), and (2) non-random walk algorithms such as Hamiltonian Monte Carlo (HMC; 

Duane, Kennedy, Pendleton, & Roweth, 1987) and its extension, the no-U-turn sampler (NUTS; 

Hoffman and Gelman, 2011).  

 Specifically, the Gibbs sampling algorithm proceeds by drawing random samples of each 

parameter from its full conditional distribution, based on the previously generated values of all 

the other parameters. Then the joint posterior distribution can be eventually obtained through an 

adequate number of iterations. In order to use the Gibbs sampler, the full conditional distribution 

for each parameter should be in closed form. However, in practice, the full conditional 

distribution may not always be in a closed form or may be difficult to simulate. An alternative 

algorithm to estimate model parameters is MH. The algorithm works by selecting a proposal or 

candidate distribution by the current value of the parameters. Then a proposal move to a new 

point in the parameter space is randomly generated from the proposal distribution and accepted 

with a certain amount of probability. The whole process repeats for an adequate number of 

iterations to eventually approximate the joint posterior distribution. Although the MH method 

can be applied in many situations, finding an appropriate proposal distribution could sometimes 

be challenging. Both Gibbs sampling and MH algorithms explore the parameter space via 

inefficient random walks (Neal, 1992). For complicated models with many parameters these 

methods may require an unacceptably long time to converge to the target posterior distribution.  
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 On the other hand, non-random walk algorithms such as HMC and NUTS avoid the 

inefficient exploration of the parameter space. Specifically, HMC borrowed its idea from physics 

to suppress the random walk behavior by means of an auxiliary variable, momentum, that 

transforms the problem of sampling from a target posterior distribution into the problem of 

simulating Hamiltonian dynamics, allowing it to move much more rapidly through the posterior 

distribution (Neal, 2011). The unknown parameter vector is interpreted as the position of a 

fictional particle. At each iteration, a random momentum vector is generated and the path of the 

particle is simulated with a potential energy equal to the negative value of the log posterior 

function. These continuous changes over time are approximated using the leapfrog algorithm 

(Stan Development Team, 2017). Then, after a Metropolis decision step is applied, the whole 

process repeats for an adequate number of iterations until convergence is reached. 

 Although HMC is an effective MCMC technique, it requires specifying the step size and 

the number of leapfrog steps parameters. Tuning these parameters, and specifically the number 

of leapfrog steps, requires expertise and a few preliminary runs (Neal, 2011; Hoffman & 

Gelman, 2011). This difficulty limits the more widespread use of HMC. Therefore, Hoffman and 

Gelman (2011) introduced NUTS, an extension of HMC that does not require setting the number 

of leapfrog steps. Using a recursive algorithm, NUTS creates a set of candidate points that spans 

a wide path of the target posterior distribution, stopping automatically when it starts to double 

back and retrace its steps (i.e. starts to make a U-turn). Empirically, NUTS performs as efficient 

as, and sometimes better than, a well-tuned HMC without requiring user interventions. This 

algorithm is implemented in Stan, an open-source C++ program that performs Bayesian 

inference (Stan Development Team, 2017).  
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1.1 Statement of the Problem 

 Over the past decades, the estimation of IRT and particularly MixIRT models has moved 

from the traditional maximum likelihood (ML) approach to the fully Bayesian approach via the 

use of MCMC techniques, whose advantages over ML have been well documented in the IRT 

literature (e.g., de la Torre, Stark, & Chernyshenko, 2006; Finch & French, 2012; Kim, 2007; 

Wollack, Bolt, Cohen, & Lee, 2002). Recent developments of MCMC focus on non-random 

walk MCMCs such as the no-U-turn sampler (NUTS; Hoffman and Gelman, 2011), which can 

converge to high dimensional posterior distributions more quickly than common random walk 

MCMC algorithms, and is hence less computational expensive. Moreover, NUTS is a tune-free 

technique, which makes it easily accessible by practitioners and researchers in behavioral 

sciences to fit various complex measurement models. Currently, there have been very few 

studies applying NUTS to IRT models or problems (e.g., Chang, 2017; Grant, Furr, Carpenter, & 

Gelman, 2016). For example, Chang  (2017) fit the 2PL model using NUTS and compared it 

with Gibbs sampling. The results suggested that NUTS is as effective as Gibbs sampling in 

estimating model parameters. Also, Grant, et al. (2016) fit a Rasch model and a hierarchical 

Rasch model using NUTS, and compared it with MH. The results showed that NUTS was 

generally faster than MH in estimating parameters of the two models. Although MixIRT models 

have been estimated using random walk MCMC algorithms such as Gibbs sampling or MH (e.g., 

Cho, Cohen, & Kim, 2013; Huang, 2016; Samuelsen, 2005; Shea, 2013), to date, no research has 

adopted the non-random walk algorithm, and more specifically NUTS, to fit such complex IRT 

models. In addition, it is necessary to investigate how NUTS performs in estimating parameters 

of complex IRT models such as MixIRT models under various test conditions where sample size, 

test length, mixing proportions, and number of latent classes are taken into consideration. 
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1.2 Purpose of the Study 

 In view of the above, the purpose of the study is to implement the non-random walk 

MCMC algorithm, namely NUTS, to fit the Mix2PL model, and further to examine its 

performance in estimating model parameters when sample size, test length, and number of latent 

classes are manipulated. The motive behind this investigation is to add to the literature an 

evaluation of the NUTS algorithm that has not been fully investigated to estimate complex IRT 

models, and hence to provide researchers and practitioners with general guidelines on using fully 

Bayesian estimation via MCMC techniques for estimating complex IRT models.  

 Monte Carlo simulations are carried out to investigate parameter recovery of the Mix2PL 

model, the accuracy of determining the number of latent classes, and the performance of the 

Mix2PL model in comparison to the conventional 2PL model under various conditions where 

sample size, test length, mixing proportions, and number of latent classes are taken into 

consideration. It is anticipated that the fully Bayesian estimation can be implemented to fit 

MixIRT models using NUTS, which can estimate model parameters accurately and efficiently. In 

addition, the number of latent classes can be accurately determined via the use of Bayesian 

model fit indices. 

1.3 Research Questions 

 The broad research question is whether NUTS, which can converge to high dimensional 

posterior distributions efficiently, can be implemented to fit MixIRT models. The specific 

research questions related to the performance of the algorithm and the accuracy of model 

parameter estimates are as follows:  

1. How does NUTS perform in estimating the Mix2PL model under various test conditions 

of sample size, test length, and number of latent classes? with respect to the following: 
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a. The accuracy of recovering model parameters including mixing proportions, 

class mean ability, class item parameters, person abilities, and class 

memberships of individual persons. 

b. The accuracy of determining the number of latent classes. 

2. How does the Mix2PL model compare with the conventional 2PL model under situations 

where tests involve one or multiple latent classes? 

1.4 Definition of Terms 

 The following are descriptions for some of the important terms used in this study. 

1. Item response theory (IRT) – A modern test theory, in comparison to classical test theory, 

that models the probabilistic relationship between person’s latent trait and the test at the 

item level. It is also known as the latent trait theory.  

2. Conventional IRT models – The unidimensional dichotomous IRT models that are used 

when test items require binary responses such as true-false, agree-disagree, or from a 

response that is scored as correct or incorrect. The popular three models are the 1PL, the 

2PL, and the 3PL. 

3. Mixture IRT models (MixIRT) – A combination of latent class analysis model and IRT 

model where persons are presumed to come from latent subpopulations that are 

qualitatively different but within which an IRT model holds. 

4. Markov chain Monte Carlo (MCMC) - A class of algorithms for generating samples from 

a probability distribution via constructing a Markov chain that has the desired distribution 

as its stationary distribution. These techniques are very useful in Bayesian inference in 

order to approximate the joint posterior distribution that cannot be directly calculated. 

5. Random walk MCMC - A class of MCMC algorithms that explore the parameter space 
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via random walk behavior, where at each step a proposal move to a new point in the 

parameter space is accepted or rejected with a certain amount of probability. Gibbs 

sampling and Metropolis-Hastings algorithms are considered as random walk MCMC 

methods. 

6. Gibbs Sampling - one of the simplest MCMC algorithms, which is applicable when the 

joint posterior distribution is not known explicitly, but the full conditional posterior 

distribution of each parameter is known. The idea of a Gibbs sampler is to approximate 

the joint posterior distribution by iteratively generating random samples from the full 

conditional distribution for each parameter. 

7. Metropolis-Hastings- An MCMC algorithm that is more general than the Gibbs sampler, 

which is used when any of the full conditional posterior distributions are not in closed 

form. The idea of MH is to generate a proposed value from a proposal distribution. Then 

the proposed value is accepted as the next value in the Markov chain with a certain 

probability. 

8. Hamiltonian Monte Carlo (HMC) – An MCMC algorithm that avoid random walk 

behavior by introducing an auxiliary momentum variable for each parameter in the 

parameter space. It implements Hamiltonian dynamics so the energy function is the target 

posterior distribution. 

9. No-U-Turn Sampler (NUTS) - An adaptation to HMC that eliminates the need to set the 

number of leapfrog steps L that the algorithm takes to generate a proposal state. NUTS 

creates a set of candidate points that spans a wide path of the target posterior distribution, 

stopping automatically when it starts to double back and retrace its steps (i.e. starts to 

make a U-turn). 
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10. Fully Bayesian fit indices - Measures that utilize the joint posterior distribution of 

parameters in order to evaluate the predictive accuracy of a model. They are valued for 

comparing different models. The widely applicable (or Watanabe-Akaike) information 

criterion (WAIC) and the leave-one-out cross-validation (LOO) are considered as fully 

Bayesian fit indices. 

11. Stan - An open-source C++ program that performs Bayesian inference using the NUTS 

algorithm. 

1.5 Significance of the Research 

 The significance of the study lies in that it not only demonstrates the application of a 

more efficient MCMC algorithm to the more complex MixIRT model, but also provides 

guidelines to researchers and practitioners on the use of such models under the fully Bayesian 

framework and on how they compare with the conventional IRT models under situations where 

latent classes do exist. The successful implementation of NUTS to the Mix2PL model will also 

help researchers with fitting more complex IRT models using fully Bayesian estimation. 

Findings from this investigation provide empirical evidence and shed light on the performance of 

NUTS in fitting more complicated IRT models.  

1.6 Delimitation of the Study 

 The delimitations of this study are as follows. 

1. The study focuses on the dichotomous Mix2PL model. Other dichotomous MixIRT 

models (e.g., Mix1PL, or Mix3PL) are not considered, neither are polytomous MixIRT 

models where item responses include more than two response categories.  

2. This study uses the NUTS algorithm to fit the Mix2PL model. Other non-random walk 

algorithms such as HMC, or random walk algorithms such as Gibbs sampling or 
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Metropolis-Hastings are not considered in this study.  

3. The study only focuses on simulated data, not real data. It is believed that various 

combinations of possible test conditions in real life situations can be mimicked using 

simulation studies, which makes it possible to evaluate the performance of the algorithm. 

4. In comparing the Mix2PL model with the conventional 2PL model, the best model that 

can explain the data adequately will be chosen based on fully Bayesian fit measures 

including the widely applicable (or Watanabe-Akaike) information criterion (WAIC) and 

the leave-one-out cross-validation (LOO). Other fit indices such as AIC or BIC are not 

considered in this study.  

5. This study will consider specific combinations of sample size, test length, number of 

latent classes, and mixing proportions. Values of these factors are chosen such that they 

reflect real test situations.  

1.7 Overview of Subsequent Chapters 

 The subsequent chapters are organized as follows. Chapter 2 reviews the related literature 

on the conventional and the mixture IRT models, estimation methods used to estimate IRT 

models including the MCMC algorithms under the fully Bayesian framework, and related prior 

research. Chapter 3 describes the procedures of fitting the Mix2PL model using NUTS with 

simulated datasets. Chapter 4 presents the results of the simulation studies related to the 

algorithm performance and models comparison. Finally, Chapter 5 summarizes the findings, the 

implications of this investigation, and directions for future research. 
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CHAPTER 2 

LITERATURE REVIEW 

 The review of the literature starts with the basic concepts of the item response theory 

(IRT) modeling framework. Four main sections are included in this chapter. The first section 

reviews the conventional IRT and mixture IRT models. The second section focuses on the 

estimation methods used to estimate IRT models. Section three reviews the common Markov 

chain Monte Carlo (MCMC) methods. The last section reviews prior research estimating 

conventional IRT Models using the no-U-turn sampler (NUTS) and prior research on estimation 

of mixture IRT models. 

2.1 Item Response Theory Models 

 Classical test theory (CTT) has been the predominant psychometric method for most of 

the last century (Gulliksen, 1987) and widely used in educational and psychological testing. It 

defines a simple additive model such that any test score is comprised of a true score and random 

error, X = T + ε. In other words, CTT suggests that any mental latent trait T can be known 

through the examinee’s observed score X, such that a normally distributed random error ε exist in 

everyone’s test score. However, its limitations that affect the quality of measurement have led to 

the development of a new measurement framework that can solve many practical testing issues 

such as test equating. Item response theory (IRT; Lord, 1980) aims to look beyond the observed 

test score, at the underlying traits, which produce the test performance. IRT models are measured 

at item level such that the probability of a correct (yij = 1) response to an item j is a non-linear 

function of both examinee’s latent trait θi, and the item parameters ξj (e.g., difficulty, 

discrimination). The general form of IRT models can be expressed as P(yij = 1) = f (θi, ξj). IRT 

has gained an increasing popularity in large-scale educational and psychological testing 
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situations. Bock (1997) noted that IRT is a robust and productive alternative to CTT of test 

scoring and item analysis. For instance, some applications such as computerized adaptive testing 

(CAT) are applicable using IRT models, yet cannot reasonably be performed using CTT only. 

 IRT has been shown to have its advantages over CTT. One of the major limitations of 

CTT is sample dependency, or as Fan (1998) termed “circular dependency”. This means 

examinees’ characteristics and test characteristics cannot be separated. In other words, whether 

an item is easy or difficult depends on the ability of examinees being measured, and at the same 

time the ability of examinees depends on whether test items are difficult or easy. Conversely, one 

of the major advantages of IRT is that it is sample free. This indicates that item parameters (e.g., 

difficulty or discrimination) do not depend on the ability of examinees used to calibrate them. 

Hence, item parameter estimates obtained using different groups of examinees will be the same. 

Similarly, examinee’s ability does not depend on the set of items used to estimate it. Therefore, 

ability estimates obtained from different sets of items will be the same. Technically, this 

advantage is called the property of invariance of item and ability parameters. This statistical 

property is the cornerstone of IRT that distinguishes it from CTT.  

 Another advantage of IRT is related to the standard error of measurement (SEM). In 

CTT, the SEM is assumed to be the same for all examinees, although this assumption is highly 

unlikely in practice. For example, test scores for two examinees of different ability levels contain 

different amount of errors. Furthermore, in the classical framework, the SEM depends on test 

reliability and variance; that is 		SEM =σ 1− rt ′t , where σ is the test standard deviation (SD), and rtť 

the reliability estimate. Test reliability is estimated based on the assumption of parallel tests that 

cannot be satisfied in a strict sense. In contrast, the SEM in IRT is allowed to change given 

different levels of the latent trait, and hence IRT provides a measure of precision for each ability 
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level. In effect, the SEM for each ability level depends on the information function I(θ), such that 

		SEM	(θ )=1/ I(θ ) .  

 In IRT, item difficulties and examinee abilities can be placed on the same scale. This 

advantage makes it possible to scale examinees relative to items or vice-versa. The comparisons 

between IRT and CTT have been widely reviewed in the literature (for more details see e.g., 

Thissen & Wainer, 2001; Embreston & Reise, 2000; Hambleton & Jones, 1993).  

2.1.1 Unidimensional IRT Models and their Assumptions 

 IRT models the probabilistic relationship between a person’s latent ability (or trait) and 

the test at the item level. Unidimensional IRT models rely on two major assumptions: 

unidimensionality and local independence. Unidimensionality means that a single unified latent 

trait is measured by all test items. This assumption is difficult to satisfy because of the existence 

of several cognitive, personality, and test taking factors that could affect test performance such as 

stress, anxiety, and fatigue. However, the presence of a dominant factor (i.e. the ability being 

measured) that explains test performance is sufficient for this assumption to be satisfied. The 

assumption of local independence means that when the abilities influencing test performance are 

all held constant, then examinees’ responses to any pair of test items are independent of each 

other. Local independence is met when all the abilities influencing examinee test performance is 

specified (i.e. the complete latent space has been specified) (Hambleton, Swaminathan, & 

Rogers, 1991). This assumption is related to unidimensionality although local independence is a 

broader or more general concept. Suffice it to say that when the assumption of unidimensionality 

is true, the assumption of local independence is met and the two concepts are equivalent. Local 

independence can be mathematically defined as follows: 

		 
P( yi1 , yi2 ,…, yiJ |θi )= P( yi1 |θi )( yi2 |θi )…( yiJ |θi )=∏

j=1

J

P( yij |θi ) ,      (2.1) 
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where the conditional probability P(yi1, ...,yiJ) of a response pattern on a set of J items by an 

examinee with ability of θi, is equal to the product of the probabilities associated with the 

examinee’s responses to J individual items. 

 There exist three common unidimensional dichotomously scored IRT models (Rasch, 

1960; Lord & Novick, 1968; Birnbaum, 1969; Lord, 1980) that are described based on the 

number of item parameters, namely the one-parameter logistic (1PL), the two-parameter logistic 

(2PL), and the three-parameter logistic (3PL) models. Such models have been extensively 

studied in the IRT literature (e.g., Kang & Cohen, 2007; Maraun, 1993; Sahin & Anil, 2017; 

Toribio, 2006). 

 The 1PL model, also known as the Rasch model (Rasch, 1960), is the simplest and one of 

the most widely used IRT models. The probability of a correct response (Yij = 1) is defined as: 

		
P(Yij =1|θi ,bj )=

exp(θi −bj )
1+exp(θi −bj )

,         (2.2)
 

where θi is the latent ability of person i (i=1 ,…,N), and bj is the difficulty parameter for item j 

(j=1, …,J) which is defined as the ability required for a person to have a 0.5  probability to 

answer the item correctly.  Theoretically, a persons’ ability levels range from −∞ to +∞ and 

follows a standard normal distribution with a mean of zero and a unit variance. Given this, about 

99.74% of the persons in the population have ability levels range from −3 to 3. Similarly, the 

range of item difficulties is theoretically from −∞ to +∞ but empirically the parameters range 

from −2 to 2 when latent abilities are assumed to range from −3 to +3 (Hambleton & Cook, 

1977). The larger the value of the item difficulty parameter is, the more difficult the item 

becomes since it requires a higher ability to answer the item correctly with a probability of 0.50. 
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The 1PL (Rasch) model assumes that items differ only in difficulty. This means that item 

characteristics curves (ICCs) are parallel. 

 In many situations the assumption that items differ only in difficulty is too restrictive and 

hence the 1PL (Rasch) model is not applicable in such situations. The 2PL model (Lord & 

Novick, 1968) generalizes the 1PL (Rasch) model where items are allowed to differ in terms of 

difficulty (bj) and discrimination (aj) parameters. In the 2PL model, item characteristics curves 

(ICCs) can intersect with each other, in contrast to the parallel ICCs in the 1PL (Rasch) model 

where items are equally discriminating. The 2PL model is defined as follows:  

		
P(Yij =1|θi ,bj ,aj )=

exp[aj(θi −bj )]
1+exp[aj(θi −bj )]

,        (2.3)
 

where 𝑎𝑗 denotes the discrimination parameter for item j, which is defined as the slope of the 

item characteristic curve (ICC) at the value of the difficulty parameter. Item discrimination can 

be considered as an indicator of how much information an item provides about the latent ability 

θi. In practice, values of 𝑎𝑗 vary from zero to +2 (Hambleton & Cook, 1977). An item with a 

negative discrimination parameter suggests that persons with greater ability levels are less likely 

to answer the item correctly. Therefore, such an item should be removed. 

 For multiple-choice items, it is possible for examinees to randomly guess the answer 

correctly, which should be taken onto consideration. The 3PL model is an extension of the 2PL 

model where items differ in difficulty, discrimination, and guessing parameters. The 3PL model 

is defined as follows: 

		
P(Yij =1|θi ,bj ,aj )=cj+(1-cj)

exp[aj(θi −bj )]
1+exp[aj(θi −bj )]

,       (2.4)
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where cj denotes the pseudo-guessing parameter for item j, which indicates the probability that a 

person with an extremely low ability level answers the item correctly. For items with guessing 

parameters greater than zero, the item difficulty is redefined as the ability required for a person 

to have a probability of (1+ cj)/2 to answer the item correctly. This means the item difficulty is 

shifted by the lower asymptote cj. 

2.1.2 Mixture IRT Models 

 Under many empirical situations, conventional unidimensional IRT models do not 

explain the data adequately. Specifically, in situations where a mixture of several underlying 

subpopulations is involved, fitting any conventional IRT models to the data produce biased 

estimates of model parameters. Mixture item response theory (MixIRT) models can be used to 

capture the presence of latent classes  (i.e. subpopulations) that are qualitatively different but 

within which a conventional IRT model holds. This model combines the theoretical strength of 

latent class analysis (LCA) and IRT (Rost, 1990, 1997). Muthén and Asparouhov (2006) applied 

the MixIRT model to the analysis of tobacco dependence, and found that the MixIRT model fit 

the data better compared to an LCA or IRT model. Furthermore, Lau (2009) found that use of the 

MixIRT models led to a better parameter estimation than the conventional IRT models regardless 

of the proportion of amotivated examinees (i.e. who do not provide meaningful responses to any 

test items) in low-stakes tests. 

 In the MixIRT modeling framework, examinees are characterized by both their location 

on a continuous latent ability as well as by their latent class membership. Conventional IRT 

models assume all examinees come from the same population. Therefore, a single set of item 

parameters is appropriate. In contrast, MixIRT models assume that examinees come from 

multiple subpopulations, with each subpopulation requiring its own unique set of item 
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parameters (i.e. they allow subpopulations to perform differently on the same set of items) (Rost, 

1990).  

 MixIRT models have become increasingly popular in being used as a technique for 

investigating various issues in educational and psychological measurement. One of these issues 

is the assessment of the presence of differential item functioning (DIF), which is deemed as one 

of the fundamental procedures of instrument development and validation in psychometrics. 

MixIRT models have been extensively used to detect latent DIF (e.g., Aryadoust, 2015; Choi, et 

al., 2015; Cohen & Bolt, 2005; Cohen, Gregg, & Deng, 2005; DeAyala, Kim, Stapleton & 

Dayton 2002; Maij-de Meij, et al., 2010; Samuelsen, 2005; Shea, 2013; Wu, et al., 2017) and 

proved its superiority in explaining sources of DIF beyond those associated with observed 

variables such as gender or ethnicity that the traditional methods use to compare the functioning 

of an item across manifest groups. In addition, researchers have expanded DIF analyses by 

incorporating more complex forms of MixIRT models such as hierarchical MixIRT models. For 

example, Cho and Cohen (2010) applied a multilevel MixIRT (MMixIRT) model to detect DIF 

at two different levels: examinee level, and school level. Moreover, Finch and Finch (2013) used 

multidimensional multilevel mixture IRT (MMMixIRT) models to identify the presence of DIF 

in a math and language test. The results demonstrated the model provided more complete 

information regarding the nature of DIF. Also, Bilir (2009) combined the 1PL (Rasch) model for 

manifest group-DIF and mixture Rasch model for latent class-DIF, and proposed a new mixture 

(MixIRT-MIMIC) model in order to simultaneously estimate DIF across manifest groups and 

latent classes. The results showed that MixIRT-MIMIC provides less biased estimates for latent 

class-DIF and item difficulty parameters when the overlap between the manifest group and the 

latent class is between 50% and 70%. 
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 Furthermore, another situation where MixIRT models have been employed as a strategy 

is test speededness. Oshima (1994) noted that administering tests under time constraints may 

result in poorly estimated item parameters, particularly for items at the end of the test. For 

example, many researchers used the mixture Rasch model, proposed by Rost (1990) with ordinal 

constraints to distinguish groups of examinees that are differentially affected by test speededness 

(e.g., Bolt, et al., 2002; Mroch, et al., 2005). Other researchers such as Meyer (2010) developed 

the mixture Rasch model with item response time components to detect test speededness and to 

classify examinee test-taking behavior into either solution behaviors (non-speeded group) or 

rapid guessing behaviors (speeded group). Moreover, Wollack, et al. (2003) found that the 

mixture Rasch model for test speededness improved equating and helped prevent scale drift.  

 In addition, the mixture nominal response (MixNR) IRT model has been proposed by 

Bolt, Cohen and Wollack (2001) for investigating individual differences between latent classes 

in the selection of response categories in multiple-choice items. Also, mixture IRT models have 

been used for detection of latent groups that differ in their use of problem-solving strategies for 

responding to test items (e.g., Mislevy & Verhelst, 1990).  

 Rost (1990) proposed a one-parameter MixIRT (Mix1PL) model, also known as the 

mixture Rasch model, for dichotomous data in which a population is assumed to consist of 

discrete latent classes. The conventional Rasch model is assumed to hold within each latent class, 

but different difficulty parameters apply across classes. Individual members within a class can 

also have different ability levels. Thus, in the mixture Rasch model each examinee is 

characterized both by a class membership parameter g, which determines the relative difficulty 

ordering of the items for that examinee, and a continuous latent ability parameter θig, which 

affects the number of items the examinee is expected to answer correctly. Class parameters μg 
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and σg denote the mean and standard deviation, respectively, for class-specific abilities θig, in 

class g. If we let Yij detonate a correct (Yij = 1) or incorrect (Yij = 0) response for person i to item 

j, the probability of a correct response in the Mix1PL model is defined as follows: 

		
P(Yij =1|θi )= π g

g=1

G

∑ ×P(Yij =1|θig ,bjg ,g)= π g
g=1

G

∑ ×
exp[(θig −bjg)]

1+exp[(θig −bjg)]
,     (2.5) 

where g = 1, ...,G is the latent class indicator, bjg reflects the difficulty parameter for item j in the 

gth class, θig denotes the ability for person i in class g, and πg denotes the proportion of persons 

in each class (i.e., the mixing proportion) in each class with a constraint that all these proportions 

sum to one. For the purpose of model identification, a sum-to-zero constraint is applied to the 

item difficulty parameters, such that within each class item difficulty values sum to zero (Rost, 

1990). On the other hand, the mean ability for each latent class (µg) is allowed to differ in order 

to account for quantitative differences between classes. More details on identification of MixIRT 

models will be described in a later chapter.  

 The two-parameter MixIRT (Mix2PL) model (e.g., Finch & French, 2012) and the three-

parameter MixIRT (Mix3PL) model (e.g., Cohen & Bolt, 2005) for dichotomous data can be 

viewed as an extension of the mixture Rasch model. Similarly, each examinee is parameterized 

both by a class membership parameter g and a class-specific ability parameter θig. In the Mix2PL 

model, the conventional 2PL IRT model is assumed to hold for each class, but the item difficulty 

and discrimination parameters may differ across different classes. The probability of a correct 

response in the Mix2PL model is defined as follows: 

		
P(Yij =1|θi )= π g

g=1

G

∑ ×P(Yij =1|θig ,bjg ,ajg ,g)= π g
g=1

G

∑ ×
exp[ajg(θig −bjg)]

1+exp[ajg(θig −bjg)]
,    (2.6) 
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where ajg denotes the discrimination parameter for item j in the gth class, θig and bjg are as defined 

in equation (2.5). As in the Mix1PL, the sum-to-one constraint on the mixing proportions and the 

sum-to-zero constraint on item difficulty parameters within each class are applied. 

 In the three-parameter MixIRT (Mix3PL) model for dichotomous data, the conventional 

3PL IRT model is assumed to hold for each class, but the item difficulty, discrimination, and 

guessing parameters may differ across different classes. The probability of a correct response in 

the Mix3PL model is defined as: 

		
P(Yij =1|θi )= π g

g=1

G

∑ ×P(Yij =1|θig ,bjg ,ajg ,c jg ,g)= π g
g=1

G

∑ × c jg +(1− c jg)
exp[ajg(θig −bjg)]

1+exp[ajg(θig −bjg)]
,  (2.7) 

where cjg denotes the guessing parameter for item j in the gth class, ajg, θig, and bjg are as defined 

in equations (2.5) and (2.6).  

 If only one class is retained, the mixture IRT models, namely the Mix1PL, Mix2PL, and 

Mix3PL models reduce to the conventional 1PL, 2PL, and 3PL IRT models, respectively, whose 

mathematical models are defined in equations (2.2), (2.3), and (2.4). In other words, the 

conventional IRT models are nested within MixIRT models.  

2.2 Parameter Estimation of IRT models 

 Estimating two sets of parameters (person and item) parameters based on merely a set of 

response data is one of the crucial steps in applying IRT model. Several estimation techniques 

have been developed in last decade for estimating IRT models. The early focus was on 

estimating item and person parameters jointly using maximum likelihood (ML; Fisher, 1922) 

estimation methods. The three popular ML methods are the joint maximum likelihood (JML; 

Birnbaum, 1969), the conditional maximum likelihood (CML; Andersen, 1970), and the 

marginal maximum likelihood (MML; Bock & Aitkin, 1981). Bayesian estimation (e.g., Chib & 



 

  24 

Greenberg, 1995) has to be adopted under situations where ML methods fail to produce a 

solution. The Bayesian approach basically entails combining the likelihood function with prior 

distributions of parameters to estimate the posterior distribution. The three major ML estimation 

methods, including the JML, the CML, and the MML, as well as the Bayesian estimation 

technique are reviewed below. 

2.2.1 Joint Maximum Likelihood (JML) 

 The JML estimation method is based on an iterative two-stage procedure for jointly 

estimating ability and item parameters. In the first stage, initial values for ability parameters are 

estimated based on the persons test scores. In the second stage, ability parameters are treated as 

known and thus item parameters are estimated. These two steps are repeated until both person 

and item parameters estimates are stable (Si & Schumacker, 2004; Hambleton, et al., 1991). 

Since person and item parameters are jointly estimated in this method, the assumption of local 

independence for both items and persons should be satisfied. Stated differently, persons’ ability 

levels are independent of each other, and responses to any pair of items are independent of each 

other when ability is held constant. Based on this assumption, the joint likelihood function across 

persons and items is defined as follows: 

			
L( y |θ ,ξ )=

i=1

N

Π
j=1

J

ΠPij
yij (1−Pij )

1− yij ,         (2.8) 

 where y is a response matrix of dimension N by J, Pij is the probability function defined under 

the appropriate IRT, θ is a vector of N ability parameters, and item parameters ξ is a vector of 

length J for the 1PL model, or a matrix of 2 by J for the 2PL model or a matrix of 3 by J for the 

3PL model. 

 The JML estimates of persons and item parameters can be obtained by taking the natural 

logarithm of the likelihood function, shown in equation (2.8), then setting the first derivation of 
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the log likelihood function to zero, and finally solve for ability and item parameters. In order to 

eliminate the problem of indeterminacy and hence find a unique maximum, a scale for ability 

parameters is chosen. Usually, a standard normal distribution is chosen for ability values so that 

item and ability parameters are anchored.  

 Although the JML estimation method can be easily applied to many IRT models, it has 

several shortcomings. For instance, ability estimates for persons who get all correct or all 

incorrect answers do not exist. Similarly, item parameter estimates do not exist for items that are 

answered correctly, or incorrectly by all examinees. Moreover, for the two- and three- parameter 

models, the JML estimation method produces inconsistent estimates of item and ability 

parameters because both parameters are estimated simultaneously (Hambleton, et al., 1991). To 

solve the problem of inconsistent estimates, an alternative procedure is needed where item 

parameters can be estimated without any reference to ability parameters. This is achieved by the 

MML approach discussed below in Section 2.2.3. 

2.2.2 Conditional Maximum Likelihood (CML) 

 Andersen (1970) introduced an ML method based on the conditional distribution given 

minimal sufficient statistics for the parameters in order to obtain consistent estimates for those 

parameters. Instead of maximizing the likelihood directly, ability parameters are eliminated from 

the likelihood equation by considering the conditional distribution given minimal sufficient 

statistics. Since this technique requires sufficient statistic it is only applicable to the 1PL (Rasch) 

model, for which the number of correct responses is a sufficient statistic for the ability parameter, 

and the number of correct responses to an item is a sufficient statistic for the item difficulty 

parameter (Si & Schumacker, 2004). The likelihood function L(yi|θi) is replaced by the 

likelihood function of response pattern si for person i , L(yi|si) where si is the sufficient statistic 
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or the number of correct responses the person obtained. The likelihood function L(yi|si) 

can be written as follows: 

		
L( yi |si )=

L( yi |θi )
L(si |θi )

.          (2.9) 

  As can be seen from equation (2.9), the ability parameter cancels out from the 

likelihood function. Then, estimates for the difficulty parameter can be found by maximizing 

the conditional likelihood  (or alternatively the log likelihood) function, where:  

			
L(bj )=

i=1

n

ΠL( yi |si ) .          (2.10) 

2.2.3 Marginal Maximum Likelihood (MML) 

The marginal maximum likelihood (MML) estimation method was developed by Bock 

and Lieberman (1970), and improved by Bock and Aitkin (1981). MML provides a solution for 

the problem of the inconsistent estimates resulting from the JML estimation method. This is 

achieved by treating the ability parameter as a nuisance parameter and factoring it out from the 

likelihood function. Specifically, MML assumes persons as a random sample from a population 

with a probability density function f(θ). Therefore, they can be integrated out of the likelihood 

function to obtain the marginal likelihood function in terms of the item parameters. That is: 

		L( y |ξ)= L( y |θ ,ξ) f (θ )dθ∫ .         (2.11) 

Because the integral cannot be expressed in a closed form, it has to be approximated 

using a Gaussian quadrature procedure. Once θ has been eliminated from the function, the 

maximum likelihood estimates of item parameters can be obtained. The resulting item parameter 

estimates are consistent as the number of persons increases. Then, treating item parameters as 

known, the maximum likelihood estimates of person parameters can be obtained. Again, the 
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larger the number of items, the better the ability parameters are estimated using MML. 

 The original MML procedure introduced by Bock and Lieberman (1970) is 

computationally intensive and is hence impractical for long tests. Bock and Aitken (1981) 

refined the procedure and introduced an expectation-maximization (EM) algorithm as a 

procedure for MML estimation. The EM algorithm has two stages, namely, expectation and 

maximization. In the expectation stage, expected values of the frequencies at quadrature points 

and expected frequencies of persons passing the items are computed. In the maximization stage, 

these expected values are used in the marginal likelihood function to engage the maximum 

likelihood estimation. These two steps go back and forth until the algorithm converges. 

 One of the disadvantages of the MML estimation method is that the ability parameter is 

assumed to be normally distributed. However, the normal distribution does not necessarily work 

for all situations (Johnson, 2007). In addition, the MML method requires integrating out the 

person parameter to obtain the marginal likelihood function, which is difficult for complex 

models. Also, it does not take into consideration of the uncertainty of estimating item parameters 

when computing the uncertainty for estimating θ. 

2.2.4 Bayesian Estimation 

 While traditional techniques of parameter estimation find point estimates of parameters θ, 

by maximizing the likelihood of the data given those parameters, Bayesian approach finds the 

joint posterior distribution of the parameters given the data, f (θ|y) (Gelman, Carlin, Stern, 

Dunson, Vehtari, & Rubin, 2014; Kruschke, 2011). This is done by the application of Bayes’ 

Theorem that combines the prior on parameter values, f (θ) with the likelihood of the data given 

certain parameter values, f (y|θ), resulting in the posterior distribution of the parameters given the 

data; f (θ|y) = f (y|θ) × f (θ) / f (y).  
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 In the IRT literature, there are two common types of Bayesian approaches, namely the 

marginal Bayesian and the fully Bayesian. The marginal Bayesian estimation method proposed 

by Mislevy (1986) is a simple extension of the MML-EM approach, such that it places a prior 

distribution for each parameter of the model. However, the fully Bayesian estimation 

simultaneously obtains posterior estimates for both item and person parameters using Markov 

chain Monte Carlo (MCMC; Hastings, 1970; Metropolis & Ulam, 1949; Metropolis, Rosenbluth, 

Rosenbluth, Teller, & Teller, 1953) procedures. The fully Bayesian method has advantages over 

the marginal Bayesian method for the following reasons. First, in the marginal Bayesian 

technique, latent ability levels of persons θi are treated as random variables and integrated out 

from the joint likelihood of item and person parameters. However, when a model is complicated, 

integrating out the latent abilities is not straightforward. The magic of fully Bayesian estimation 

via the use of Markov chain Monte Carlo (MCMC) techniques is that they do not require the 

integration step. Instead, by relying on ratios of the posterior probabilities, the integration term 

cancels out, so the decision to accept or reject a new sample is only based on the likelihood and 

prior distributions. 

 Many researchers have found advantages of the fully Bayesian estimation based on 

MCMC techniques over the maximum likelihood methods in estimating different IRT models. 

For instance, Finch and French (2012) compared difficulty and discrimination parameters 

estimation of MixIRT model using the fully Bayesian based on MCMC approach and the MLE 

method in terms of classification accuracy and estimation bias. The two estimation methods were 

fitted using the Mplus (Muthén & Muthén, 2011) software. The results showed that fully 

Bayesian estimation provides a more accurate recovery of group membership across different 

conditions as well as provides more accurate parameter estimates for data sets with smaller 
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sample sizes and fewer items. Also, de la Torre, Stark and Chernyshenko (2006) estimated the 

generalized graded unfolding model using fully Bayesian based on MCMC procedure and the 

marginal maximum likelihood (MML) approach. Results showed that the two methods are 

comparable in terms of item parameter estimation accuracy. However, fully Bayesian estimation 

provides reasonable standard error estimates for all items. Furthermore, Wollack, et al. (2002) 

showed that fully Bayesian estimation can be used as an alternative to marginal maximum 

likelihood (MML) estimation for more complex and more heavily parameterized IRT models 

such as nominal response (NR) IRT models. 

 Due to the advanced computational techniques and the development of MCMC procedure, 

the fully Bayesian approach have been rapidly developed and applied to estimate different IRT 

models (e.g., Bolt & Lall, 2003; de la Torre, et al., 2006; Johnson & Sinharay, 2005; Patz & 

Junker, 1999a; Shea, 2013). Albert (1992) was the first to implement the fully Bayesian 

estimation via Gibbs sampling algorithm to fit a two-parameter normal ogive (2PNO) model to 

simulated and real data, using MATLAB (MathWorks, Inc., 1992) program.  Since then, many 

software applications have been developed for fully Bayesian inferences such as WinBUGS 

(Lunn, Thomas, Best, & Spiegelhalter, 2000), JAGS (Plummer, 2003), OpenBUGS (Thomas, 

O’Hara, Ligges, & Sturtz, 2006), and recently Stan (Stan Development Team, 2017).  

2.3 MCMC Algorithms 

 The Bayesian method is a general and flexible approach. It could be used with a model 

having one parameter or one having several of parameters. However, as the number of 

parameters in the model increases, the traditional numerical methods for estimating the posterior 

distribution quickly become intractable. Therefore for more sophisticated models, a technique 

called Markov chain Monte Carlo (MCMC) was developed (Brooks, Gelman, Jones, & Meng, 
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2011; Gelman, et al., 2014).  

 In the last decade there has seen an intensive application of MCMC techniques in fitting a 

variety of measurement models. To date, MCMC has been used for supporting the development 

of new models that are otherwise computationally intractable, in addition to accurately 

estimating existing models (Levy, 2009). MCMC techniques have been successfully used in 

estimating parameters of various complex IRT models (e.g., Chang, 2017; de la Torre & Douglas, 

2004; Johnson & Junker, 2003; Kim, 2001; Kuo, 2015; Lamsal, 2015; Patz & Junker, 1999a, 

1999b; Sheng & Wikle, 2007; Sheng, 2010).  

 MCMC is a class of algorithms that use Markov chains for sampling from a probability 

distribution (e.g., the posterior distribution). An important feature of a Markov chain is its 

stationary distribution. The stationary state allows one to define the probability for every state of 

a system at a random time. At each state of the Markov chain, random samples of model 

parameters are generated from the distribution based on those generated from a previous state. 

Since early samples may be affected by initial values, they are discarded in the burn-in stage. 

After the burn-in stage, the quality of the samples becomes approximately stable.  

 Different MCMC techniques have been developed in the last two decades. The two major 

ones are random walk algorithms such as Gibbs sampling (Geman & Geman, 1984) and 

Metropolis-Hastings (MH; Hastings, 1970; Metropolis & Ulam, 1949), and non-random walk 

algorithms such as Hamiltonian Monte Carlo (HMC; Duane, et al., 1987) and its extension, the 

no-U-turn sampler (NUTS; Hoffman and Gelman, 2011). A review of these algorithms is 

presented in the next section. 
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2.3.1 Random Walk MCMC  

 The random walk MCMC is one of the most widely used MCMC algorithms for 

sampling from a posterior distribution. The general method is to randomly sample values of 

model parameters from approximate distributions where at each step in the simulation the 

approximate distributions are improved, based on the Metropolis rule, until eventually 

converging to the target distribution (Gelman, et al., 2014). Since this type of MCMC algorithm 

explores the distribution via simple random walk proposals, a large number of iterations is 

needed to sufficiently explore the parameter space. Two of the common random walk MCMC 

algorithms are discussed below. 

	 Gibbs sampling was introduced by Geman and Geman (1984). In their paper, they 

discussed optimization to find the posterior mode instead of simulations. Therefore, it took some 

time for it to be understood that the Gibbs sampler simulated the posterior distribution, thus 

enabling full Bayesian inference of all kinds (Geyer, 2001). Gelfand and Smith (1990) made the 

Gibbs sampler very popular among the Bayesian community. The process for Gibbs sampling is 

a type of random walk through the parameter space. The walk starts at some arbitrary point. Each 

step in the walk is completely independent of the steps before the current position. This is a 

special property of the Markov chain where each new sample depends on the one before it, but 

does not depend on any samples drawn earlier from the posterior distribution.  

 At each point in the random walk, one of the parameters is simulated from its full 

conditional distribution and the parameters are cycled through in order. For example, if θi has 

been chosen, Gibbs sampling selects a new value for that parameter by generating a random 

value from the conditional probability p(θi|θj≠i, y). The new value for θi along with the unchanged 

values of θj≠i, create the new position in the random walk. The process then repeats. By cycling 
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through these conditional statements, the joint posterior distribution would be eventually 

reached. All the simulated samples can be considered as those from the joint posterior 

distribution. Hence, the mean of the posterior distribution can be computed by averaging the 

generated samples after discarding the burn-in stage. The specific steps of Gibbs sampling is 

outlined as follows: suppose we are interested in sampling from the posterior 		 	p(θ1 ,θ2 ,…,θp | y) , 

1. Choose plausible initial values of the parameters, 		 θ
0( )
= (θ1(0) ,	θ2(0) ,!,θp(0)) . 

2. For each parameter 𝜃i, draw values from its full conditional distribution given the current 

values of all other model parameters and the observed data.  One cycle is given by 

sequentially drawing values from:  

		 	θ1
(l ) ∼ p(θ1 |θ2(l−1) ,!,θp(l−1) , 	y)  

		 	θ2
(l ) ∼ p(θ2 |θ1(l ) ,θ3(l−1) ,!,θp(l−1) , 	y)  

 !  

		 	θp
(l ) ∼ p(θp |θ1(l ) ,θ2(l ) ,!,θp−1(l ) , 	y) .        (2.12) 

3. Repeat step 2 for an adequate large number of L iterations until convergence is reached.  

This algorithm generates a sequence of parameter: 		 (θ1
(0) ,	…,θp(0)),(θ1(1) ,	…,θp(1)),!, (θ1(L) ,	…,θp(L)) , where 

		 (θ1
(l ) ,…,θp(l ))  is approximately a sample from the joint posterior 		 	p(θ1 ,θ2 ,…,θp | y) . In order to use the 

Gibbs sampler, the full conditional distribution for each parameter should be in closed form. 

However, in practice, the full conditional distributions may not always be in closed form or may 

be difficult to simulate. An alternative algorithm to estimate the parameters is Metropolis-

Hastings (MH; Hastings, 1970; Metropolis & Ulam, 1949). The Metropolis-Hastings (MH) 

algorithm was developed by Metropolis, et al. (1953) and generalized by Hastings (1970). The 
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MH algorithm generalizes the Gibbs sampler since it offers a solution to the problem of sampling 

from a conditional distribution, from which it is difficult to sample directly.  

 MH algorithm is also a type of Monte Carlo process that generates a random walk such 

that each state in the walk only relies on the previous state, but is completely independent of the 

states before the previous state. Instead of sampling from the full conditional distribution for 

each parameter, a proposal or candidate distribution is selected by the current value of the 

parameters. Then a proposal move to a new point in parameter space is randomly generated from 

a proposal distribution and accepted with a certain amount of probability. The acceptance 

decision is based on the value of the posterior distribution at the proposed position, relative to the 

value of the posterior distribution at the current position. In particular, if the posterior 

distribution is greater at the proposed position than at the current position, the move is definitely 

accepted. However, if the posterior distribution is less at the proposed position than at the current 

position, the move is accepted with a probability equal to the ratio of the posterior distributions; 

		p(θmove )	 = 	p(θproposed )/p(θcurrrent ) . These two possibilities, of the posterior distribution being higher or 

lower at the proposed position than at the current position, can be expressed as follows:  

 
		
α(θ (l−1) ,θ (l ))=min( p(θ

(l ))*q(θ (l−1) |θ (l ))
p(θ (l−1))*q(θ (l ) |θ (l−1)) ,1)

.      (2.13) 

 After the probability of accepting the move from 		θ (l−1)  to 		θ
(l )  is computed according to 

Equation (2.13), the acceptance decision of the proposal move is conducted by sampling a value 

from a uniform distribution over the interval [0, 1]. If the sampled value is less than or equal 

		α(θ
(l−1) ,θ (l )) , then the move is accepted. Otherwise, the move is rejected and stayed at the current 

position. The whole process repeats at the next time iteration. Gibbs sampling could be 

considered as a special case of the MH algorithm when the probability of accepting the proposal 
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value is always equal to one (Gelman, et al., 2014; Kruschke, 2011). The steps of the MH 

sampling algorithm are outlined below.  

1. Choose plausible initial values of the parameters, 		 θ
0( )
= (θ1(0) ,	θ2(0) ,!,θp(0)) . 

2. For each iteration l = 1, …,L, draw a candidate value, 		θ
(l )  from the proposal distribution 

		q(θ
(l ) |θ (l−1)	) . Then, the proposal value is accepted as the next value with the probability 

given in equation (2.12). If the proposal move is rejected, the current value will be used 

as the next value of the Markov chain.  

3. Repeat step 2 for a large number of L iterations until convergence is reached. 

4. Return the values 		 θ
(0) ,	θ (1) ,…,θ (L)( )  for estimating the joint distribution 𝑝(𝜽). 

 One problem with MH algorithm is that the proposal distribution must be properly tuned 

to the posterior distribution if the algorithm is to work well. If the proposal distribution is too 

narrow or too broad, a large proportion of proposed moves will be rejected. 

2.3.2 Non-Random Walk MCMC  

 Both the Gibbs sampling and Metropolis-Hastings algorithms explore the parameter 

space via inefficient random walks (Neal, 1992). For complicated models with many parameters 

these methods may require an unacceptably long time to converge to the target posterior 

distribution. On the other hand, one of the main benefits of Hamiltonian Monte Carlo (HMC; 

Duane, et al., 1987) and the no-U-turn sampler (NUTS; Hoffman and Gelman, 2011) is their 

ability to avoid the inefficient exploration of the parameter space via random walks. This 

advantage has been elaborated in the MCMC literature (see e.g., Hoffman and Gelman, 2011; 

Neal, 2011). Hamiltonian Monte Carlo (HMC) borrows an idea from physics to suppress the 

random walk behavior in the Metropolis algorithm by means of an auxiliary variable 
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“momentum”, that transforms the problem of sampling from a target posterior distribution into 

the problem of simulating Hamiltonian dynamics, allowing it to move much more rapidly 

through the posterior distribution (Neal, 2011). Duane, et al. (1987) introduced Hamiltonian 

Monte Carlo (HMC) by applying it to lattice field theory simulations of quantum 

electroodynamics and called their method a hybrid Monte Carlo. Statistical applications of HMC 

started with its application to neural network models by Neal (1996), and have received attention 

in the Bayesian community. It is, however, underappreciated by the psychometric community. A 

review of the non-random walk MCMC algorithms is presented next. 

2.3.2.1 Hamiltonian Monte Carlo (HMC) 

 Using Hamiltonian dynamics to sample from the target posterior distribution requires 

translating the density function for this distribution to a potential energy function and introducing 

a momentum variable ∅j for each parameter θi, in the parameter space, which is referred to now 

as position variables. The Hamiltonian is an energy function for the joint state of position θ and 

momentum ∅, which defines a joint distribution p(θ, ∅|y), also known as the canonical 

distribution. Since the two parameters are independent, their joint distributing is the product of 

the posterior density p(θ|y) and the momentum density p(∅), which is usually specified as 

multivariate normal distribution; p(θ, ∅|y) = p(∅)p(θ|y). Hamiltonian dynamics maintains the 

properties of time-reversibility and invariant of the joint distribution (see Hoffman and Gelman, 

2011 for more details about these properties). Although sampling is carried out using the joint 

distribution, the interest is only in the simulations of the position parameter θ whereas the 

momentum vector ∅ is introduced only to enable the algorithm to move faster through the 

parameter space (Gelman et al., 2014).  
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 The HMC algorithm progresses in two steps. The first step changes only the momentum. 

In the second step, both vector parameters θ and ∅ are updated together in a new Metropolis 

algorithm; a proposed state is either accepted or rejected according to the Metropolis decision 

rule except that the terms involve not only the relative posterior distributions, but also the 

momentum at the current and proposed positions. The steps of the HMC algorithm are outlined 

below.  

1. For each iteration, a random candidate value of the momentum vector ∅ is drawn from its 

posterior distribution, ∅ ∼ N(0, Σ), where Σ is the covariance matrix of the momentum 

distribution p(∅). 

2. A simultaneous update of (θ, ∅) is conducted using a discrete mimicking of physical 

dynamics that involves L ‘leapfrog’ steps with a step size of ε. L and ε are parameters of 

the algorithm, which need to be tuned to obtain an adequate performance. The L steps 

proceed as follows: 

(1) Use the gradient of the log-posterior density p(θ|y) to make a half-step of 

momentum ∅, That is:	
		
φ←φ + 12ε

d logp(θ | y)
dθ

. 

(2) Now, use the momentum ∅ to update the position parameter θ as follows: 

	θ ←θ + εΣ−1φ . 

(3) Again, use the gradient of the log-posterior density to make a half-step of 

momentum ∅;	
		
φ←φ + 12ε

d logp(θ | y)
dθ

. 

The stepping begins and ends with a half-step of momentum	∅, while for the L-1 

full steps, the updates (1) and (3) can be applied jointly. This leapfrog algorithm is 

a discrete approximation to physical Hamiltonian dynamics in which both 
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position and momentum evolve in continuous time. 

3. The Metropolis acceptance probability for the HMC is defined as follows: 

		
α =min(p(θ

(t−1) | y)p(φ (t−1) )
p(θ (t ) | y)p(φ (t ) )

, 1) , where θ(t-1) and ∅(t-1) are the values of position and momentum 

parameters at the start of the leapfrog process, while θ(t) and ∅(t)  are the corresponding 

values after the L steps. If the proposed state is not accepted, the next state is the same as 

the current state of the Markov chain. 

4. Repeat steps 1 and 3 for large number of N iterations until convergence is approximately 

reached. 

 HMC is a powerful tool, but its performance depends on choosing suitable values for the 

step size parameter ε and the number of leapfrog steps L. Tuning these parameters, and 

specifically L requires some expertise and preliminary runs (Hoffman & Gelamn, 2011; Neal, 

2011). A poor choice of either of these parameters will greatly decrease the efficiency of HMC. 

Furthermore, computing the gradient of the log-posterior for a complex model is tedious and 

sometimes impossible. However, this requirement can be achieved by using automatic 

differentiation (Griewank and Walther, 2008). To overcome this, Hoffman and Gelman (2011) 

introduced the no-U-turn Sampler (NUTS) to eliminate the need to set the number of leapfrog 

steps L that the algorithm takes to generate a proposal state. A review of this algorithm follows 

below. 

2.3.2.2.The No-U-Turn Sampler (NUTS) 

 The no-U-turn sampler (NUTS) is a non-random walk MCMC that is very similar to 

HMC but it eliminates the need to specify the number of leapfrog steps parameter L. In practice, 

NUTS performs as efficient as, and sometimes better than, a well-tuned HMC without requiring 
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user interventions. Using a recursive algorithm, NUTS creates a set of candidate points that 

spans a wide path of the target distribution, stopping automatically when it starts to double back 

and retrace its steps (i.e. starts to make a U-turn). At this point NUTS stops the simulation and 

samples from the set of points computed during the simulation. 

 Hoffman and Gelman (2011) introduced a termination criterion that can, to varying 

degrees of success, indicate when the Hamiltonian dynamics is simulated long enough to yield a 

sufficient exploration of the canonical distribution p(θ, ∅|y). In other words, the termination 

criterion tells us that running the simulation for more steps will no longer increase the distance 

between the proposed  !θ  and the initial θ  values of the position parameter. The criterion is based 

on the dot product of the current momentum value,  
!φ  and the vector from the initial to the 

current position, 	 ( !θ −θ ) , which is the derivative, with respect to time, of half the squared distance 

between the initial and the current position of θ. That is:  

		 
d
dt
( !θ −θ )i( !θ −θ )

2 = !φ i( !θ −θ ) .         (2.14) 

	 Such a criterion suggests that leapfrog steps will be run until the value of equation (2.14) 

becomes less than zero. Thus, Hamiltonian dynamics will be simulated until the proposal 

position  !θ  begins to move back towards θ. In order to ensure that the time-reversibility property 

is satisfied, and hence the algorithm converges to the desired posterior distribution, a recursive 

algorithm for slice sampling proposed by Neal (2003) is used. The recent release of Stan (Stan 

Development Team, 2017) has adopted some modifications to the original termination criterion. 

In addition to the generalized termination criterion, the HMC implementation in Stan uses 

multinomial sampling instead of slice sampling, which provides a notable improvement in 

performance of NUTS (Betancourt, 2017). 
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2.4 Prior Research  

 IRT models have been fitted using a variety of estimation techniques, whether traditional 

ones that find a point estimate for model parameters or the fully Bayesian estimation based on 

MCMC algorithms that approximate the target posterior distribution. The following two 

subsections review some relevant studies that implemented NUTS to estimate the conventional 

IRT models as well as studies that fitted MixIRT models using different estimation methods, but 

not including NUTS as it has not been used yet to estimate such complex models.  

2.4.1 Conventional IRT Models Using NUTS 

 Up to date, there have not been many Bayesian IRT studies conducted using NUTS in the 

IRT literature. Some of these studies are reviewed next. The first three studies compared NUTS 

with other fully Bayesian or traditional methods in estimating various forms of IRT models while 

the last two studies took advantage of NUTS to fit complex IRT models and ultimately 

developed statistical measures. A summary of each study is illustrated below. 

  Martin-Fernandez and Revuelta (2017) compared the performance of NUTS, Metropolis-

Hastings Robins-Monro (MHRM; Cai, 2010a, 2010b), the MML via the EM algorithm, and 

Gibbs sampling in an estimation of multidimensional item response models. Results indicated 

that the four estimation methods perform similarly in recovering the parameters of models up to 

five factors, while the MML-EM had problems recovering models with more dimensions. Also, 

results showed that NUTS significantly reduced estimation time and converged faster than the 

Gibbs sampler, and even faster than the MML-EM algorithm in the small sample conditions.  

 Chang (2017) examined the performance of NUTS via the use of Stan and Gibbs 

sampling via the use of JAGS, in estimating the 2PL unidimensional model and the 2PL multi-

unidimensional model (Sheng & Wikle, 2007), under various test conditions such as test length, 
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sample size, and prior specification. The results indicated that both algorithms recovered item 

and person ability parameters with similar accuracy and bias. Moreover, in terms of the 

computational speed, NUTS was faster that Gibbs sampler in fitting the 2PL unidimensional 

model, yet NUTS was slower than Stan in fitting the 2PL multi-unidimensional model.  

 Grant et al., (2016) compared NUTS via the use of Stata-Stan and MH via the use of 

Stata (StataCorp, 2016) in fitting a Rasch model and a hierarchical extension of the Rasch model. 

The two algorithms were compared based on speed and the number of effective independent 

samples. The results showed that NUTS was generally more efficient than MH in estimating 

parameters of the two models. 

 Copelovitch, Gandrud, and Hallerberg (2015) fit a hierarchical Bayesian IRT model 

using NUTS to construct an indicator of supervisory data transparency to international 

institutions. This indicator was used to measure a country’s latent willingness to report yearly the 

minimal credible data about its financial system to international organizations and investors. The 

results indicated that the level and changes of financial supervisory transparency both influenced 

sovereign borrowing costs, but this influence was conditional on characteristics of public 

indebtedness. 

 Caughey and Warshaw (2014) developed two time-varying measures of citizen and 

government policy liberalism in the American states over the past half-century. In order to 

estimate each state’s latent policy liberalism, a dynamic hierarchical group-level IRT model 

using NUTS was applied. The results showed that that state governments are responsive to shifts 

in public opinion. 
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 In summary, results of previous studies showed that NUTS is generally more efficient 

that other traditional or fully Bayesian MCMC techniques in fitting IRT models. Furthermore, 

NUTS has been successfully applied to develop various statistical measures.  

2.4.2 Estimation of Mixture IRT Models  

 The increase in the number of applications of MixIRT models calls for a simultaneous 

increase in the use of Markov chain Monte Carlo (MCMC) techniques for estimating these 

models. The advanced computational techniques associated with MCMC algorithms have 

enabled MixIRT models to be estimated under the fully Bayesian framework. In the MixIRT 

modeling literature, ML estimation methods have been the traditional method for estimating 

parameters of MixIRT models using statistical applications such as Mplus and WINMIRA (von 

Davier, 2001). Some studies related to the estimation of MixIRT using different estimation 

methods are reviewed below. The first two studies used MixIRT models to identify latent DIF, 

using traditional ML estimation methods. The next two studies developed MixIRT models for 

polytomously scored items, using either traditional or the fully Bayesian MCMC methods. The 

last study evaluated the performance of the Gibbs sampler under various conditions of mixing 

proportions and priors. A summary of each study is presented below. 

 Wu et al., (2017) examined latent DIF on physical functioning (PF) and mental health 

(MH) subscales of the SF-36 scale that is used to measure health status in a diverse population. 

The two-parameter graded response IRT model with one latent class was compared to the 

corresponding multi-class models (i.e. two-, three- and four-class) named as a latent variable 

mixture  (LVM) model. The ML method was used to estimate the model parameters using 

Mplus. The results indicated that the three-class LVM model fit the PF subscale whereas the 

two-class LVM model fit the MH subscale. For the PF subscale, persons in class two and class 
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one consistently reported greater limitation than those in class one. For the MH subscale, persons 

in class two reported more health problems than in class one.  

 Aryadoust (2015) fit a mixture Rasch model to examine DIF in English as a foreign 

language listening test and investigate its relationship with persons’ cognitive and background 

factors. The WINMIRA was used to estimate model parameters using the CMLE via the EM 

algorithm. A two-class model was chosen over other models. Class-one comprised of high-

ability listeners capable of multitasking whereas class-two comprised low-ability listeners with 

limited multitasking skills.  

 Huang (2016) proposed two MixIRT models for rating-scale items by incorporating a 

random-effect variable into the mixture generalized partial credit model. The proposed models 

aimed at detecting latent classes from different levels of extreme response style (ERS), which is 

defined as a consistent and systematic tendency of a person to locate on a limited number of 

available rating-scale options. Gibbs sampling implemented in WinBUGS was used to obtain 

model parameter estimates. Results showed that parameters recovered well, as indicated by 

values of bias and RMSE, with longer tests, larger samples, and more response options in both 

MixIRT models. In addition, results showed that ignoring mixtures of latent classes led to a 

decrement in classification accuracy of the response styles.  

 Maij-de Meij, Kelderman and van der Flier (2008) applied a mixture nominal response 

(MixNR) model and a mixture partial credit (MixPC) model to Extroversion and Neuroticism 

scales of the Amsterdam Biographical Questionnaire. The MLE via the EM algorithm was used 

to estimate parameters of both models using LEM (Vermunt, 1997). The results showed that a 

three-class MixNR model was identified as the best fitting model, and those latent classes 

differed with respect to social desirability and ethnic background. Moreover, the results indicted 
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that application of MixIRT models improved the prediction for the Neuroticism scale, but not for 

the Extroversion scale. 

 Cho, et al. (2013) used Gibbs sampling, implemented in WinBUGS, for the mixture 

Rasch model to evaluate the algorithm. Also, effects of several factors on parameter recovery 

were examined. These include the specification of priors on the mixing proportions, label 

switching, model selection, and metric anchoring. Moreover, Gibbs sampling was compared to 

ML estimation method implemented in Mplus, WINMIRA, and LatentGold (Vermunt & 

Magidson, 2005). Results indicated that the recovery of the number of latent classes and item 

parameters were very good for different priors specified for the mixing proportions (i.e. Dirichlet 

prior, the Dirichlet process withstick–breaking prior, and the multinomial logistic regression 

model with a covariate). In addition, the recovery of item difficulty parameters improved with an 

increase in test length and with an increase in sample size. With respect to label switching, label 

switching was not observed within any Gibbs sampling chains (i.e. Type I), but label switching 

across chains (i.e. Type II), was detected using Gibbs sampling as well as the MLE methods.  

 In summary, various forms of MixIRT models have been estimated using the traditional 

ML methods such as MLE and CLME as well as the fully Bayesian MCMC techniques, in 

particular the Gibbs sampling. The results indicated that the multiple-class MixIRT models were 

always identified as the best fitting models compared to the one-class or conventional IRT 

model. In addition, the results showed that using the Gibbs sampler model parameters were 

recovered well with the increase in test length and sample size.  
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CHAPTER 3 

METHODOLOGY 

This chapter describes the methodology that was used to answer the research questions 

formulated in Chapter 1. It begins by reiterating the research questions. The next two sections 

describe the procedures of the two Monte Carlo simulation studies that were carried out to 

investigate the performance of NUTS in estimating the two-parameter mixture (Mix2PL) IRT 

model under various test conditions and to compare the performance of the Mix2PL model with 

the conventional 2PL model under situations where one or more latent classes exist.  

3.1 Research Questions   

The general research question is whether NUTS can be implemented to fit MixIRT 

models. The specific research questions, related to the performance of the algorithm to recover 

model parameters and to detect latent classes, are as follows: 

1. How does NUTS perform in estimating the Mix2PL model under various test conditions 

of sample size, test length, and number of latent classes? with respect to the following: 

a. The accuracy of recovering model parameters including mixing proportions, 

class mean ability, class item parameters, person abilities, and class 

memberships of individual persons. 

b. The accuracy of determining the number of latent classes. 

2. How does the Mix2PL model compare with the conventional 2PL model under situations 

where tests involve one or multiple latent classes? 

Two simulations studies were conducted to address the two research questions, with the first 

addressing question 1a while the second addressing research questions 1b and 2. 

 



 

  45 

3.2. Model and Prior Specifications 

This study focuses the on dichotomous Mix2PL model. In this model, the conventional 

two-parameter logistic (2PL) IRT is assumed to hold for each latent class, but the item difficulty 

and discrimination parameters differ for different classes. Moreover, each person is 

parameterized by a class membership parameter g and a class-specific ability parameter θig, 

whereas each item is parameterized by a different set of difficulty and discrimination parameters 

for each latent class. The probability of a correct (Yij = 1) response for person i to item j, in the 

two-parameter logistic mixture IRT model is defined as follows: 

		
P(Yij =1|θi )= π g

g=1

G

∑ ×
exp[ajg(θig −bjg)]

1+exp[ajg(θig −bjg)]
,       (3.1) 

where g = 1, …,G is the latent class indicator, bjg and ajg denote the difficulty and discrimination 

parameters, respectively, for item j in the gth class, θig denotes the ability for person i who 

belongs to class g, and πg denotes the proportion of persons in each class (i.e., the mixing 

proportion) such that these proportions sum to one. The MixIRT model shown in equation (3.1) 

is reduced to the conventional 2PL model defined in equation (2.3) in situations where is only 

one latent class, g = 1. 

The item difficulty parameter is defined as the ability required for a person to have a 

probability of 0.5 to answer the item. In practice, item difficulty ranges from -2 to 2 when the 

latent ability is assumed to range from -3 to +3. The item discrimination parameter is 

proportional to the slope of the item characteristic curve (ICC) at the value of difficulty 

parameter. Its values range practically from zero to +2.  

In the IRT literature, the effects of sample size and test length on estimation of item 

parameters have been largely studied. However, as the complexity of the model increases, the 
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discrepancy in findings also increases. For the 2PL IRT model, different combination of sample 

size and test length were suggested to be sufficient for accurate parameter estimation such as a 

sample size of 500 with 20 items (Sahin & Anil, 2017; Stone, 1992), or a sample size of 750 with 

20 items (Lim & Drasgow, 1990), or a sample size of 500 with 30 items (Hulin, Lissak, & 

Drasgow, 1982). 

In the MixIRT literature, sample size, test length, and number of latent classes appear to 

affect parameter recovery of the MixIRT model. For instance, Preinerstorfer and Formann (2012) 

found that increasing both sample size and number of items led to higher accuracy in estimating 

parameters of the mixture Rasch model. Moreover, Li, Cohen, Kim, and Cho (2009) found that 

recovery of item difficultly and discrimination parameters in different MixIRT models (i.e. 

Mix1PL, Mix2PL, Mix3PL) differed based on the number of latent classes, test length, and 

sample size. Specifically, these parameters were most affected by the number of latent classes 

such that when the number of latent classes increased the recovery of model parameters was less 

accurate. Also, their results indicated that root mean square errors (RMSE) decreased as sample 

size and test length increased. The percentage of correct classifications of class membership for 

individual persons increased with an increase in test length up to 30 items  

 The most frequently encountered sample size, and test length in the MixIRT literature are 

sample size of 500, 1000, and 2000 with test length of 15, 20, 25 and 30. For instance, Bilir, 

(2009) and Samuelsen (2005) simulated sample size of 500 and 2000 with 20 items, while Meyer 

(2010) simulated the same sample sizes but with 25 items. Regarding the proportions of persons 

in each latent class, equal mixing proportions were used by many studies that fitted MixIRT 

models for different purposes. For example, Bolt, et al. (2001) as well as Cho, et al. (2013) set 

the mixing proportions for each latent class to be equal. For example, they set π = (0.50, 0.50) in 
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the two-class condition, (0.33, 0.33, 0.33) in the three-class condition, and (0.25, 0.25, 0.25, 

0.25) in the four-class condition. Meyer (2010) and Bolt, et al. (2002) specified mixing 

proportions of π = (0.50, 0.50) for the speeded class and the non-speeded class.  

Based on the above review, data were generated using the Mix2PL model as defined in 

equation (3.1) with equal proportions while manipulating three factors: test length (J = 20 or 30), 

number of latent classes (G = 2 or 3), sample size in each subpopulation (n = 250 or 500). 

Specifically, for the two-class condition (G = 2), the total number of subjects (N) was 500 or 

1000; the mixing proportions were π1 = 0.50 and π2 = 0.50. For the three-class condition (G = 3), 

the total number of subjects was 750 or 1500; the mixing proportions were π1 = 0.33, π2 = 0.33, 

and π3 = 0.33 

 A requirement for model identification is that the item difficulty values within each class 

sum to zero (Rost, 1990). There exist multiple methods to enforce a sum-to-zero constraint on a 

parameter vector under fully Bayesian estimation using NUTS. The most efficient way is to 

define the Gth element as the negation of the sum of the elements 1 through G-1. See Stan 

Development Team (2017) for more details. However, in this parameterization, placing a prior 

on the transformed difficulty parameter leads to a different posterior than that resulting from the 

same prior on difficulty parameter in the original parameterization. For example, providing a 

normal (0, 3) prior on the transformed parameter will produce a different posterior mode than 

placing the same prior on the parameter itself. Soft centering is an alternative less efficient 

approach to achieve a symmetric prior. For example, adding a prior such as bg ~ N(0, σg) will 

provide a kind of soft centering of a parameter vector bg. This approach is only guaranteed to 

roughly center (Stan Development Team, 2017). Given this, soft centering was used to apply the 

sum-to-zero constraint on the difficulty parameter in each latent class (i.e., bg ~ N(0, 1)). 



 

  48 

As recommended by some studies (e.g., Bolt, et al., 2002; Meyer, 2010), the mean ability 

for each latent class (µg) was allowed to differ in order to account for quantitative differences 

between classes. Priors and hyperpriors were selected to be comparable to those adopted by 

others (e.g., Meyer, 2010; Li, et al., 2009; Wollack, et al., 2003; Bolt, et al., 2002). Specifically, 

normal prior densities were used for person ability parameters θig ~ N(µg, 1), with a standard 

normal distribution for the hyperparameter µg, and a Dirichlet distribution for the mixing-

proportion parameters such that  (π1, …, πG) ~ Dirichlet(1, …,1). In addition, a truncated normal 

prior was specified for the class-specific discrimination ajg ~ N(0, ∞)(0, 1) such that only positive 

draws from a normal distribution are permitted. Further, the sum-to-one constraint on the mixing 

proportions was achieved by assigning the mixing proportions a unit simplex, which is defined 

as a vector with non-negative values whose entries sum to one. 

The model parameters were generated such that for the two-class condition (G = 2), the 

person ability parameters were generated from a mixture of two subpopulations where θ1 ~ N(-2, 

1) and θ2 ~ N(2, 1); the class-specific item difficulty parameters were generated from a uniform 

distribution where b1 ~ U(-2, 0) and b2 ~ U(0, 2); and the class-specific item discrimination 

parameters were generated from a uniform distribution where ag  ~ U(0, 2), g = 1 or 2. For the 

three-class condition (G = 3), the person ability parameters were generated from a mixture of 

three subpopulations where θ1 ~ N(-4, 1), θ2 ~ N(0, 1),  and θ3 ~ N(4, 1); the class-specific item 

difficulty parameters were generated from a uniform distribution where b1 ~ U(-2, -0.5), b2 ~ U(-

0.5, 0.5), and b3 ~ U(0.5, 2); and the class-specific item discrimination parameters were 

generated from a uniform distribution where ag ~ U(0, 2), g = 1, 2, or 3.  

Label switching is one of the challenging identification issues in fully Bayesian 

estimation of mixture IRT models. It occurs when the posterior distribution remains invariant 
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under a permutation of the class indicators. The problem is exacerbated as the number of mixture 

components increases, leading to G! identical posterior maxima. There are two types of label 

switching. The first type, which is commonly referred to as label switching, is observed across 

iterations within a single MCMC chain. This is what commonly referred to as label switching. 

The second type of switching occurs when the latent classes switch over replications or for 

different initial values. One of the common strategies to remedy the problem of label switching is 

to impose an ordinal constraint on the parameters that identifies the components (Stan 

Development Team, 2017). To avoid the problem of label switching, an ordinal constraint was 

imposed on the class mean ability (µg) parameter as well as the item difficulty parameters (bg).  

The generated model parameters presented above were chosen such that the unified 

population consisted of a mixture of latent subpopulations that differ on their abilities. 

Specifically, for the two-class condition, the low ability class had an average latent ability of -2 

(2 standard deviations below the mean), while the high ability class had an average ability of 2 (2 

standard deviations above the mean); for the three-class condition, the low ability class had a 

lower mean (4 standard deviations below the mean) and the high ability class had a higher mean 

(4 standard deviations above the mean) to further differentiate them from the medium class. In 

addition, values of item difficulties for each class were generated in order to match (or to be 

around) the class ability. They were also chosen due to the consideration of fitting the mixIRT 

model using the ordinal constraints imposed on item difficulty parameters, namely, when µg and 

bg were generated such that the easiest items were simulated for the first low ability while the 

most difficult items were simulated for the last high ability group and hence there was no overlap 

on the values of person abilities or item difficulties across the latent classes.  
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3.3 Convergence Diagnostics 

Convergence of the Markov chains was examined using the Gelman-Rubin R statistic 

(Gelman & Rubin, 1992). This statistic computes the potential scale reduction factor (PSRF). A 

PSRF value close to 1 indicates model convergence and in practice, the value of 1.1 has been 

recommended as the threshold to decide whether the model has converged (Gelman, et al., 

2014). Based on the values of Gelman-Rubin R statistic, the number of warm-up iterations that 

should be discarded because of their dependence on the starting values would be determined. 

Also, the Gelman-Rubin R statistic was used to determine the number of sampling iterations that 

should be used to estimate the posterior distribution. Then, a conservative number of warm-up 

and sampling iterations were taken into account.  

3.4 Bayesian Fit Indices 

 In the second simulation study, model comparisons were used to evaluate the accuracy of 

recovering the number of latent classes and to compare the Mix2PL model with conventional 

2PL model. 

 Different model selection methods, either under frequentist or the Bayesian framework, 

have been used in estimating conventional IRT models and MixIRT models. The most popular 

ones are the Bayesian information criterion (BIC) and Akaike’s information coefficient (AIC). Li 

et al. (2009) examined the performances of BIC, AIC, deviance information coefficient (DIC), 

pseudo-Bayes factor (PsBF), and posterior predictive model checks (PPMC) in selecting the 

correct MixIRT model among three competing models (Mix1PL, Mix2PL, Mix3PL), fitted using 

Gibbs sampling algorithm. Results from a simulation study showed that the indices provided 

somewhat different recommendations. In particular, the results showed that BIC and PsBF are 

most effective, AIC and PPMC tend to choose more complex models in some simulating 
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conditions, and DIC is the least effective method. Since no research to date has adopted NUTS to 

fit MixIRT models, the fully Bayesian selection methods including the widely applicable (or 

Watanabe-Akaike) information criterion (WAIC; Watanabe, 2010) and the leave-one-out cross-

validation, which is computed through Pareto smoothed important sampling (PSIS-LOO; 

Vehtari, Gelman, & Gabry, 2017) and is incorporated in Stan, have not been used for model 

selection in the MixIRT literature. Such fully Bayesian methods that use the whole posterior 

distribution have various advantages over simpler estimates of predictive error such as AIC and 

DIC, although they are less used in practice due to the requirement of additional computational 

steps (Vehtari, et al., 2017). Luo and Al-Harbi (2017) compared the performances of WAIC and 

LOO with four popular methods: the likelihood ratio test (LRT), AIC, BIC, and DIC, in the 

context of dichotomous IRT model selection (1PL, 2PL, 3PL). The results showed that WAIC 

and LOO performed better than the other four methods, especially with the 3PL model. Also, 

AIC was inconsistent with different sample sizes and test lengths. This study focuses on 

selecting the best IRT model among three competing models, namely, the conventional 2PL, the 

two-class Mix2PL, and the three-class Mix2PL models, using the two fully Bayesian methods, 

namely, WAIC and LOO.  

WAIC and LOO are two approximation measures that estimate the predictive accuracy of 

the fitted model using available data, without waiting for out-of-sample data (Gelman et al., 

2014). WAIC estimates the out-of-sample expectation by first computing log pointwise posterior 

predictive density (LPPD) of the data, and then adding a correction (pWAIC) for effective number 

of parameters to adjust for overfitting. The LPPD is defined as follows:  

		
LPPD= log p( yi |θ )ppost∫

i=1

N

∑ (θ )dθ ,        (3.2) 

where ppost(θ) = p(θ|y) is the posterior distribution of the parameters. Practically, to compute 
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LPPD, the expectation can be evaluated by sampling from ppost(θ) as follows:  

		
LPPD= log(1

S
p( yi |θ s

s=1

S

∑
i=1

N

∑ ) ,         (3.3) 

where s =1, 2,…,S denotes number of simulation samples from the posterior density. After 

computing the LPPD, WAIC can be computed as follows: 

		WAIC 	 = 	−2LPPD	+ 	2	pWAIC .         (3.4) 

The correction term, pWAIC can be computed in the following two approaches: 

		
pWAIC1 =2 (log

i=1

N

∑ (Epostp( yi |θ ))−Epost(logp( yi |θ ))) ,        (3.5) 

		
pWAIC2 = varpost

i=1

N

∑ (logp( yi |θ )) .         (3.6) 

As Gelman et al. (2014) noted, the second adjustment as expressed in equation (3.6) is 

more computationally stable since summing the variance for each data points produces stability. 

This adjustment, pWAIC2, is implemented in the R package loo (Vehtari, et al., 2017), which is 

used for computation of both WAIC and LOO. 

 In Bayesian cross validation, a dataset is repeatedly partitioned into a training set and a 

validation set. The model of interest is fitted to the training set and a posterior distribution is 

obtained, with which the fit of the model to the validation set is evaluated. Leave-one-out cross 

validation (LOO) is a special case of cross validation in which one data point is left out each time 

and the LPPD is computed with N-1 data points as follows: 

		
LPPDLOO = logppost(− i )

i=1

N

∑ ( yi |θ ) ,         (3.7) 

where log ppost(-i)(yi|θ) is the log likelihood of the ith dataset without the ith data point, and is 

computed, according to Gelman, et al. (2014) as follows: 
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logppost(− i )

i=1

N

∑ ( yi |θ )= log(1
S

p( yi |θ is

s=1

S

∑
i=1

N

∑ )) ,       (3.8) 

where θis is the sth simulated value in the posterior distribution conditioning on the ith dataset 

without the ith data point. In order to place LOO on the same scale as WAIC, the computed 

LPPDLOO is multiplied by -2. According to Gelamn, et al. (2014), WAIC is asymptotically equal 

to LOO.  

3.5 Simulation Study I 

As described previously, the design of the first simulation study includes two sample 

sizes per class (250, 500), two test lengths (20, 30), and two levels of latent classes (2-class, and 

3-class) resulting in eight conditions (i.e., 2 sample sizes × 2 test lengths × 2 conditions of latent 

classes = 8 conditions). Due to the computational expenses and following Cho, Cohen, and Kim 

(2013), where the mixture Rasch model fitted using Gibbs sampling, ten replications were 

conducted for each of the eight conditions. Although twenty-five replications is the minimum 

number of replications recommended in IRT simulation studies using MCMC (Harwell, Stone, 

Hsu, & Kirisci, 1996), ten replications were adopted to keep the current study at a manageable 

level. Monte Carlo simulations were carried out to answer part (a) of research question one. 

Recovery of model parameters including mixing proportions, class mean ability, class item 

parameters, person abilities, and class memberships of individual persons were examined by 

fitting the Mix2PL model using NUTS algorithm implemented in the Stan program. Details of 

the simulation procedure are presented below. 

3.5.1 Simulation Procedure 

A recovery analysis was conducted to determine the extent to which the generating 

parameters could be recovered from the simulated data sets. The recovery analysis focused on 

five issues, the recovery of mixing proportions, the recovery of class-specific mean ability, the 
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recovery of class-specific item parameters, the recovery of person ability parameters, and the 

recovery of class memberships of individual persons. First, the recovery of mixing proportions, 

the recovery of class-specific mean ability, and the recovery of class-specific item parameters 

were assessed using bias, mean square error (MSE), and root mean square errors (RMSE). Bias 

measures the mean difference between the simulated (i.e. true) parameter and the estimated one 

across R replications. If bias is close to zero, it indicates that the estimated parameter is close to 

the true parameter. On the other hand, a positive value of bias suggests the parameter is 

overestimated while a negative value suggests the parameter is underestimated. The bias in 

estimating each parameter is defined as follows: 

		 
bias

ξ
=

(
⌢
ξr−ξ)r=1

R∑
R

,          (3.9) 

where ξ is the true value of the parameter (e.g., πg, µg, ajg, or bjg), and ξ ̂ is the estimated value of 

the parameter in the rth replication where r = 1, …, R. 

The RMSE measures the average squared difference between the true parameter and the 

estimated one across M replications. The smaller the value of RMSE, the more accurate the 

parameter estimate is. The RMSE in estimating each parameter can be expressed as follows: 

		 
RMSE

ξ
=

(
⌢
ξr−ξ)2r=1

R∑
R .          (3.10) 

 The MSE is simply the squared value of the RMSE. Similar to the RMSE, the smaller the 

value of MSE suggests more accurate the parameter estimate is. To summarize the recovery of 

item parameters, the bias, MSE, and the RMSE were averaged across items.  

 Second, to examine the recovery of the person ability parameters, Pearson product-

moment correlations between the true and estimated ability parameters were computed, and 

averaged across the ten replications to obtain summary information.  
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 Finally, the recovery of class memberships of individual persons was assessed by 

computing the proportion of persons that were correctly classified into the class from which they 

were simulated. To obtain summary information, these proportions were averaged across the ten 

replications. 

 3.6 Simulation Study II 

Another set of Monte Carlo simulations was carried out to investigate the performance of 

NUTS in correctly identifying the number of latent classes for the Mix2PL model and the 

conventional 2PL IRT model using fully Bayesian fit indices, namely the widely applicable 

information criterion (WAIC) and the leave-one-out cross-validation (LOO). Also, The 

performance of the Mix2PL model in comparison to the 2PL model was compared in conditions 

where one or multiple latent classes existed. Details of the simulation procedure are described in 

the following section. 

3.6.1 Simulation Procedure 

Two test conditions were considered, with the first treating the two-class Mix2PL model 

as the true model whereas the second treating the conventional 2PL IRT model as true. With 

binary item response data generated from each condition for sample sizes of 500 and test lengths 

of 20, NUTS was implemented to fit the conventional 2PL model (equivalent to the one-class 

Mix2PL model), the two-class Mix2PL model, and the three-class Mix2PL model.  

In order to assess the recovery of the number of latent classes for each data set, the three 

fitted models were compared using the fully Bayesian fit indices WAIC and LOO. The model 

with the smallest values of WAIC or LOO was selected as the best fitting model. With twenty-

five replications, the proportion of the time the generating model was selected as the best fitting 
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model indicates the accuracy of identifying the number of latent classes. The two fit indices were 

further averaged across replications to provide summary information. 
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CHAPTER 4 

RESULTS 

This chapter summarizes the simulation results for evaluating the performance of the 

non-random walk MCMC algorithm, namely NUTS, in fitting the two-parameter mixture 

(Mix2PL) IRT model and for comparing it to the conventional two-parameter (2PL) IRT model. 

The results are organized in two sections. The first section presents the results of parameter 

recovery of the Mix2PL model. Model comparison results are presented in Section two to 

compare the performance of the Mix2PL model with the conventional 2PL model under 

situations where one or more latent classes exist.  

4.1 Parameter Recovery Results 

In the first simulation study, convergence of the Markov chains was examined using the 

Gelman-Rubin R statistic (Gelman & Rubin, 1992). Different numbers of iterations were used to 

reach convergence. Table 1 summarizes the number of warm-up (or burn-in) and sampling 

iterations for the eight simulated conditions. For the conditions involving two latent classes, the 

warm-up stage of either 2000 or 3000 iterations followed by 3 chains with either 3000 or 5000 

sampling iterations was sufficient for the chains to reach convergence when the sample size was 

500 or 1000, respectively. For the conditions involving three latent classes, in order to reach 

convergence, the warm-up stage had to reach 3000, 5000 or 8000 iterations followed by 3 chains 

with 5000, 7000 or 10000 sampling iterations for N = 750 or N = 1500, respectively. Ten 

replications were conducted for each of the simulated condition. The Gelman-Rubin R statistic 

was less than the recommended threshold of 1.10 for each model parameters under all simulated 

conditions, indicating that convergence was achieved.  
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Moreover, trace plots of model parameters were examined to visually assess convergence 

and mixing across chains, where the sampled values of the parameter are plotted on the X-axis 

against the number of the sampling iterations on the Y-axis for each chain. For illustrative 

purposes, Figure 1 shows such plots for the two mixing proportion parameters under the situation 

with two latent classes, 500 person, and 20 items. Both trace plots appear as fat hairy caterpillars 

indicating that the three chains mixed well and converged to the posterior distribution.  

Table 1  
Number of warm-up and sampling iterations for the eight simulated conditions.  

G = 2 G =3 

N J Warm-up Sampling N J Warm-up Sampling 

500 20 2000 3000 750 20 3000 5000 
30 2000 3000 30 3000 5000 

1000 20 3000 5000 1500 20 5000 7000 
30 3000 5000 30 8000 10000 

Note. G = number of latent classes; N = number of persons; J = number of items. 
 

 
Figure 1. Trace plots of the mixing-proportion (π) parameter for the condition where G = 2, N = 
500, and J = 20. 
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 A recovery analysis was conducted to assess the extent to which the model parameters 

could be recovered from the simulated data sets. The following five subsections present the 

recovery results for the Mix2PL model parameters including the mixing proportions, the mean 

abilities, the item parameters, the person abilities, and the class memberships of individual 

persons, respectively.  

4.1.1 Class Mixing Proportions Recovery 

 To evaluate the accuracy of recovering the mixing-proportion parameter for each latent 

class in the Mix2PL model, the bias, mean square error (MSE), and root mean square error 

(RMSE) based on ten replications were computed. The results are summarized in Tables 2 and 3 

for the two- and the three- class conditions, respectively. The results suggest that NUTS 

accurately recovered the mixing-proportion parameters no matter whether the generated data sets 

consisted of two or three latent subpopulations. The values of bias and RMSE were close to zero, 

which indicate that the estimated mixing proportions were close to the simulated ones. The 

maximum absolute value of bias was 0.006 in the three-latent class condition where the sample 

size was 750 and the test length was 30. The maximum value of the RMSE was 0.019 in the two-

class condition where the sample size was 500 and the test length was 20 items. 

For the two-class scenarios, the RMSEs for estimating the mixing proportion parameters 

tended to decrease with the increase of either sample size or test length. For example, in the 

condition where there were 20 items, the RMSEs decreased from 0.019 to 0.012 when sample 

size increased from 500 to 1000. In addition, in the condition where the sample size was 500, the 

RMSEs decreased from 0.019 to 0.013 when the test length increased from 20 to 30 items. 

However, this pattern was not observed with the three-class scenarios. Specifically, for the three-

class scenarios, the results show that the RMSEs tended to decrease with the increase in sample 
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sizes except for one condition with 30 items where the RMSE for the mixing proportion for the 

second class (π2) increased from 0.008 to 0.012. In addition, RMSEs tended to decrease with the 

increase in test length except for three conditions, and these conditions are for recovering π3 

when N = 750, and for recovering π2 as well as π3 when N = 1500. (In particular, the RMSEs for 

the third class (π3) did not change when the sample size was 750 (i.e. RMSE (π3) = 0.01), whereas 

when the sample size was 1500, the RMSEs increased from 0.008 to 0.012 and from 0.007 to 

0.008 for the second and the third classes, respectively). 

Given that both two- and three-class conditions considered the same sample size per class 

(n = 250 or 500) and test length (J = 20 or 30) conditions, parameter recovery results can also be 

compared across the G = 2 versus G =3 scenarios. Hence, a comparison of Tables 2 and 3 reveals 

the following observation: 

• The RMSEs for estimating the mixing-proportion parameters tended to decrease with the 

increase in the number of latent classes from two to three classes, except for one scenario 

(i.e., N = 1000, J = 30). Specifically, the RMSEs for the two-class condition (e.g., n = 

250 so that N = 500, J = 20) were 0.019 and 0.019 for the first and second latent classes, 

respectively, while the RMSEs for the same test condition with three classes (i.e., n = 250 

so that N = 750, J = 20) were 0.008, 0.010, and 0.010 for the first, second, and third latent 

classes, respectively. This pattern, however, was not observed for the scenario where n = 

500 for each class and J = 30. Specifically, for the two-class condition, the RMSEs were 

0.011 and 0.011 for the first and second latent classes, respectively, while those for the 

three-class condition were 0.007, 0.012, and 0.008, for the first, second, third latent 

classes respectively. 

• For the two-class scenarios, π1 tended to be underestimated while π2 tended to be 
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overestimated, except in one scenario where N = 1000 and J = 20. For the three-class 

scenarios, π1 tended to be underestimated while π2 or π3 tended to be overestimated.  

Table 2  
Bias, MSE, and RMSE for recovering mixing proportions with two latent classes. 

N J Parameters Bias MSE RMSE 
500 20 π1 -0.004 0.000 0.019 

π2 0.004 0.000 0.019 
30 π1 -0.003 0.000 0.013 

π2 0.003 0.000 0.013 
1000 20 π1 0.005 0.000 0.012 

π2 -0.005 0.000 0.012 
30 π1 -0.001 0.000 0.011 

π2 0.001 0.000 0.011 
 

Table 3  
Bias, MSE, and RMSE for recovering mixing proportions with three latent classes. 

N J Parameters Bias MSE RMSE 
750 20 π1 -0.002 0.000 0.012 

π2 0.001 0.000 0.012 
π3 0.001 0.000 0.010 

30 π1 -0.002 0.000 0.008 
π2 -0.002 0.000 0.010 
π3 0.006 0.000 0.010 

1500 20 π1 -0.001 0.000 0.010 
π2 -0.001 0.000 0.008 
π3 0.002 0.000 0.007 

30 π1 -0.005 0.000 0.007 
π2 0.010 0.000 0.012 
π3 -0.005 0.000 0.008 

 

4.1.2 Recovery of Class Mean Ability 

Similarly, the bias, MSE, and RMSE were obtained to evaluate the recovery of the mean 
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ability for each latent class. The results are summarized in Tables 4 and 5 for the two- and the 

three- class conditions, respectively. From the tables, we can observe that NUTS performed well 

in recovering the mean ability for the latent classes, especially for the two-class scenarios. The 

maximum value of the RMSE equaled 0.205 in the two-class condition where N = 500 and J = 

20 while the corresponding value in the three-class condition was 0.363 when N = 1500 and J = 

30. 

It is further noted that for the three-class scenarios, the accuracy of estimating the mean 

ability of the second latent class was better than that of the first or third latent class (see Figure 

2). Moreover, the precision of the mean ability estimates for the second latent class improved 

with the increase in the sample size. For example, in the condition where N = 750 and J = 20, the 

RMSE for estimating µ2 was 0.102 while the RMSEs for estimating µ1 and µ3 were 0.242 and 

0.260, respectively. When the sample size increased to 1500, the RMSE for estimating µ2 

decreased to 0.085 while the RMSEs for estimating µ1 and µ3 changed to 0.260 and 0.189, 

respectively. 

 
Table 4  
Bias, MSE, and RMSE for recovering mean ability with two latent classes. 

N J Parameters Bias MSE RMSE 
500 20 µ1 -0.016 0.042 0.205 

µ2 -0.085 0.039 0.196 
30 µ1 -0.003 0.000 0.013 

µ2 0.003 0.000 0.013 
1000 20 µ1 0.116 0.039 0.197 

µ2 -0.039 0.021 0.146 
30 µ1 0.111 0.023 0.152 

µ2 -0.089 0.022 0.150 
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Table 5  
Bias, MSE, and RMSE for recovering mean ability with three latent classes. 

N J Parameters Bias MSE RMSE 
750 20 µ1 0.074 0.058 0.242 

µ2 -0.008 0.010 0.102 
µ3 -0.026 0.067 0.260 

30 µ1 -0.292 0.111 0.333 
µ2 -0.034 0.018 0.133 
µ3 0.190 0.086 0.293 

1500 20 µ1 0.032 0.067 0.260 
µ2 -0.031 0.007 0.085 
µ3 0.075 0.036 0.189 

30 µ1 -0.282 0.126 0.355 
µ2 -0.025 0.004 0.062 
µ3 0.284 0.132 0.363 

 

 

 

Figure 2. RMSE for recovering class mean ability (µg) for the each latent class under the 
four scenarios of the three-latent class condition. 

 

Further, for the two-class scenarios, the results show that the RMSEs/MSEs tended to 

decrease with the increase in test lengths except for recovering µ2 in the condition where N = 

1000 and J = 30 (see Table 4). However, for the three-class scenarios, the RMSEs/MSEs tended 
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to increase with the increase in test length except for recovering µ2 in the condition where N = 

1500 and J = 30 (see Table 5). 

An investigation of Tables 4 and 5 concerning the recovery of the mean ability parameter 

for the two- versus the three-class situations reveals that without considering µ2 for the three-

class scenarios, the RMSEs/MSEs tended to increase with the increase in the number of latent 

classes from two to three classes. For example, the RMSEs for the two-class condition where n = 

250 for each class and J = 20 were 0.205 and 0.196 for the first and second latent classes, 

respectively, while those for the three-class condition were 0.242 and 0.260 for the first and third 

latent classes, respectively.  

4.1.3 Item Parameter Recovery 

 To evaluate the recovery of the discrimination (aj) and the difficulty (bj) parameters, 

values of the bias, MSEs, and RMSEs were averaged across items. The results are summarized in 

Tables 6 and 7 for the two- and the three-class conditions, respectively. For visual help, the 

average RMSEs for recovering the discrimination parameters are plotted in Figures 3 and 4 for 

the two- and the three-class conditions, respectively, while those for recovering the difficulty 

parameters are plotted in Figures 5 and 6 for the two- and the three-class conditions, 

respectively. These results indicate that NUTS had consistently smaller average bias, MSE, or 

RMSE values in recovering the discrimination parameter than the difficulty parameter of the 

Mix2PL model for both classes in the two-class condition and for the first and third classes in the 

three-class condition. However, the difficulty parameter had a smaller average bias, MSE, or 

RMSE values than the discrimination parameter for the second class in the three-class condition.   

 The small negative values of the average bias for estimating the discrimination 

parameters suggest that they were slightly underestimated across all the simulated conditions 
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except for one condition (i.e., N = 1500 and J = 20) where the discrimination for the first class 

was overestimated (see Table 7). In addition, values of the averaged RMSEs/MSEs were 

relatively small with a maximum value of RMSE being 0.482 for estimating the discrimination 

parameter for the second class in two data size conditions (i.e., (N =750, J = 30) and (N = 1500, J 

= 20)). For the two-class condition, the recovery of the discrimination parameters improved with 

the increase in sample size or test length (see Figure 3). This pattern, however, was not observed 

with the three-class condition, which has mixed results (see Figure 4). In particular, for the three-

class condition, when N = 750, the RMSEs/MSEs for the discrimination parameters a1, a2, and a3 

tended to decrease with the increase in test length. However, when N = 15000, the RMSEs/MSEs 

for the discrimination parameters a2 and a3 tended to increase with the increase in test length, but 

the RMSEs/MSEs for a1 tended to increase with the decrease in test length (see Figure 4).  

For the difficulty parameters, they were consistently underestimated for the last latent 

class while overestimated for the other classes, no matter whether there were two or three classes 

(see Tables 6 and 7). Also for the three-class condition, the recovery of the difficulty parameters 

in the second class, as indicated by the average values of bias and RMSE/MSE, was better than 

the recovery of those in the first or third class across the four data sizes. For example, in the 

condition where the sample size was 750 and test length was 20, the average bias for the second 

class was 0.057 while those for the first and third classes were 0.386 and -0.398, respectively. 

For this same condition, the average RMSE for the second class was 0.421 while those for the 

first and the third classes were 0.522 and 0.590, respectively. It is noteworthy that this same 

pattern occurred in the recovery of the class mean ability as illustrated in Figure 2.  

 Moreover, for the two-class condition, the recovery of the difficulty parameters for the 

first class (b1) became less accurate with the increase in sample size, but it improved with the 
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increase of test length. On the other hand, the recovery of the difficulty parameters for the second 

class (b2) improved with the increase in sample size, yet it became less accurate with an increase 

of test length (see Table 6).  

In addition, a comparison of Tables 6 and 7 for the recovery of the item parameters for 

the two- versus the three-class situations leads to the following observations:  

• The RMSEs for estimating the discrimination parameters tended to increase with 

the increase in the number of latent classes from two to three classes. For 

example, the RMSEs for the two-class condition with n = 250 for each class and J 

= 30, were 0.356 and 0.359 for the first and second latent classes, respectively. 

Yet, the RMSEs for the three-class condition with n = 250 for each class and J = 

30, were 0.413, 0.482, and 0.452 for the first, second, and third latent classes 

respectively.  

• The RMSEs for estimating the difficulty parameters tended to decrease with the 

increase in the number of latent classes from two to three classes. For example, 

the RMSEs for the two-class condition with n = 250 for each class and J = 30, 

were 0.601 and 0.691 for the first and second latent classes, respectively. 

However, the RMSEs for the three-class condition with n = 250 for each class and 

J = 30, were 0.509, 0.396, and 0.545 for the first, second, and third latent classes 

respectively.  
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Table 6  
Average Bias, MSE, and RMSE for recovering item parameters with two latent classes. 

N J Parameters Bias MSE RMSE 
500 20 a1 -0.074 0.158 0.397 

a2 -0.063 0.160 0.400 
b1 0.396 0.391 0.626 
b2 -0.457 0.448 0.669 

30 a1 -0.061 0.127 0.356 
a2 -0.055 0.129 0.359 
b1 0.419 0.361 0.601 
b2 -0.493 0.478 0.691 

1000 20 a1 -0.014 0.089 0.298 
a2 -0.076 0.115 0.339 
b1 0.447 0.407 0.638 
b2 -0.397 0.353 0.594 

30 a1 -0.020 0.083 0.288 
a2 -0.037 0.090 0.300 
b1 0.436 0.380 0.616 
b2 -0.382 0.370 0.609 
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Figure 3. Average RMSEs for recovering the discrimination (aj) with two 
latent classes. 

 

 

 

Figure 4. Average RMSEs for recovering the discrimination (aj) with three 
latent classes. 
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Table 7  
Average Bias, MSE, and MSE for recovering item parameters with three latent classes. 

N J Parameters Bias MSE RMSE 
750 20 a1 -0.054 0.167 0.409 

a2 -0.049 0.220 0.469 
a3 -0.053 0.197 0.443 
b1 0.386 0.273 0.522 
b2 0.057 0.177 0.421 
b3 -0.398 0.348 0.590 

30 a1 -0.108 0.171 0.413 
a2 -0.078 0.232 0.482 
a3 -0.085 0.204 0.452 
b1 0.341 0.259 0.509 
b2 0.017 0.156 0.396 
b3 -0.375 0.297 0.545 

1500 20 a1 0.023 0.115 0.339 
a2 -0.058 0.233 0.482 
a3 -0.096 0.176 0.419 
b1 0.352 0.267 0.517 
b2 0.054 0.177 0.421 
b3 -0.311 0.249 0.499 

30 a1 -0.058 0.147 0.383 
a2 -0.071 0.176 0.420 
a3 -0.088 0.126 0.356 
b1 0.377 0.311 0.558 
b2 0.035 0.143 0.379 
b3 -0.421 0.336 0.579 
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Figure 5. Average RMSEs for recovering the difficulty (bj) with two latent 
classes. 

 

 

 

Figure 6. Average RMSEs for recovering the difficulty (bj) with three latent 
classes. 

 

4.1.4 Person Ability Parameter Recovery 

 Correlations between the true and the estimated person abilities were used to evaluate 

how well NUTS have recovered the person ability parameters under the different simulated 

conditions. Results are presented in Tables 8 and 9 for the two- and the three-class conditions, 

respectively. For visual help, the correlation values are summarized in Figures 7 and 8 for the 

two- and three-class conditions, respectively. The consistently large values of the correlations 
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(i.e., 		r(θ ,θ̂ )  > 0.950) indicate that NUTS accurately recovered the person ability parameters no 

matter whether the population consisted of two or three latent subpopulations. In addition, the 

person ability parameters were estimated more accurately with an increased test length, for both 

the two- and the three-class conditions (see Figures 7 and 8). As an example, for the two-class 

condition, when the test length increased from 20 to 30 items, the average 		r(θ ,θ̂ )  increased from 

0.953 and 0.954 to 0.966 for both sample sizes 500 and 1000. 

Table 8  
Correlations between the true and estimated person abilities with two latent classes. 

N J r( , ) SE 
500 20 0.953 0.001 

30 0.966 0.001 
1000 20 0.954 0.002 

30 0.966 0.001 
 

Table 9  
Correlations between the true and estimated person abilities with three latent classes. 

N J r( , ) SE 
750 20 0.958 0.007 

30 0.973 0.001 
1500 20 0.963 0.001 

30 0.972 0.001 
 
 

θ  
⌢
θ

θ  
⌢
θ



 

  72 

 

 
 
Figure 7. Average correlations (		r(θ ,θ̂ )) between the true and estimated 
person abilities with two latent classes. 

 

 

 
 
Figure 8. Average correlations (		r(θ ,θ̂ )) between the true and estimated 
person abilities with three latent classes. 
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93.55, and 94.44 (see Table 10). However, in the conditions where the population consisted of 

three latent subpopulations, the recovery was less accurate, where the average percentages of 

correct classifications for the four data sizes were 69.65, 69.91, 71.59, and 75.13 (see Table 11). 

Moreover, the recovery of class memberships is apparently affected by sample size and test 

length. Specifically, the average percentage of correct classifications increased with an increase 

in sample size or test length, for both the two- and the three-class conditions. 

Table 10  
Percent of correct classifications of individual persons with two latent classes. 

N J Average Minimum Maximum 
500 20 90.96 74.40 97.20 

30 92.38 80.80 97.20 
1000 20 93.55 82.80 96.10 

30 94.44 86.50 97.20 
 

Table 11  
Percent of correct classifications of individual persons with three latent classes. 

N J Average Minimum Maximum 
750 20 69.65 65.20 81.60 

30 69.91 66.53 87.60 
1500 20 71.59 66.60 83.40 

30 75.13 64.20 90.73 
 

4.2 Model Comparison Results 

 In the second simulation study, the convergence of Markov chains was also evaluated 

using the Gelman-Rubin R statistic, with a threshold of 1.10 as suggested by Gelman, et al. 

(2014). For the first condition where data conformed to the two-class Mix2PL model, Table 12 

shows the number of warm-up and sampling iterations for the three candidate models. For two of 

the candidate models, namely the conventional 2PL IRT model and the three-class Mix2PL 
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model, the warm-up stage was set to 6000 iterations followed by 6 chains with 9000 sampling 

iterations. For the two-class Mix2PL candidate model (i.e., the true model), the warm-up stage 

was set to 3000 iterations followed by 3 chains with 5000 sampling iterations. The Gelman-

Rubin R statistic was less than the recommended threshold of 1.10 for each model parameters 

across the three candidate models indicating that convergence was achieved. 

For the second condition where data conformed to the conventional 2PL IRT model, 

neither of the two MixIRT models reached convergence even with a warm-up stage of 60,000 

iterations followed by 80,000 sampling iterations. It is possible to reach convergence by adding 

substantially more iterations. However, its computational expense causes problem and hence 

results for this condition are not reported. Although the three candidate models could not be 

compared given the non-convergence, it is noted that the conventional 2PL IRT model did 

converge with a warm-up of 3,000 iterations followed by 5,000 sampling iterations.  

 
Table 12  
Number of warm-up and sampling iterations where data conformed to the two-class 
Mix2PL model. 

Model Warm-up Sampling Chains 
2PL (one-class) 6000 9000 6 

Mix2PL (two-class) 3000 5000 3 
Mix2PL (three-class) 6000 9000 6 

 

For the first condition where data were generated from the two-class Mix2PL model, the 

three fitted models were compared using two fully Bayesian fit indices, namely the widely 

applicable information criterion (WAIC; Watanabe, 2010) and the leave-one-out cross-validation 

(LOO-PSIS; Vehtari, et al., 2017). The model with the smallest values of WAIC or LOO was 

selected as the best fitting model. With twenty-five replications, the proportion of the time the 

generating model was selected as the best fitting model was used to assess the precision of 
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recovering the number of latent classes and is presented in Table 13. Values of the two fit indices 

were further averaged across replications to provide summary information as shown in Table 14.  

The results suggest that WAIC performed better than LOO in recovering the number of 

latent classes. Specifically, LOO correctly detected the number of classes 44% of the time while 

WAIC was correct 80% of the time (see Table 13). In addition, the average WAIC value favored 

the correct model, whereas the average LOO favored the Mix2PL model with three classes; 

however, the difference between the two LOO values for the two- and three-class Mix2PL 

models is rather small (i.e., 0.352; see Table 14). As recommended by Gelman et al. (2014), 

when deciding on the best fitting model, the effective number of parameters associated with 

Bayesian fit indices should also be taken into account, especially when the differences between 

the values of these indices for the candidate models are small, such that the simpler model is 

preferred over the more complex one. The effective number of parameters presented in Table14 

indicates that the two-class Mix2PL model was the least complex (pLOO = 378.728, pWAIC = 

373.924) compared to the three-class Mix2PL model (pLOO = 379.876, pWAIC  = 375.868) or the 

2PL IRT model (pLOO = 429.976, pWAIC  = 422.276). Hence, based on the average values of LOO 

and WAIC along with their associated average effective number of parameters, the results 

suggest that the two-class Mix2PL model (i.e., the correct model) is the best fitting model 

selected by both fully Bayesian fit indices. It is also noted that the conventional 2PL IRT model 

(i.e., the one-class Mix2PL model), with a substantially larger LOO or WAIC, was never 

selected as the best fitting model. 
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Table 13 
Frequencies and relative frequencies for selecting three candidate models where the 
generating model is the two-class Mix2PL model. 

Candidate model Model selection method 

LOO WAIC 

Frequency Relative 

frequency 

Frequency Relative 

frequency 

2PL (one-class) 0 0.00 0 0.00 
Mix2PL (two-class) 11 0.44 20 0.80 
Mix2PL (three-class) 14 0.56 5 0.20 

Total 25 1.00 25 1.00 
Note. The maximum frequency of selecting a model is 25. 

 

Table 14 
Average LOO and WAIC for recovering number of latent classes where the generating 
model is the two-class Mix2PL model.  

Candidate model Model selection method 

LOO pLOO WAIC pWAIC 

2PL (one-class) 9935.384 429.976 9919.976 422.276 
Mix2PL (two-class) 9877.708 378.728 9868.120 373.924 
Mix2PL (three-class) 9877.356 379.876 9869.340 375.868 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

 This chapter consists of two main sections. The first section summarizes the performance 

of the no-U-turn sampler (NUTS) in terms of parameter recovery of the two-parameter mixture 

(Mix2PL) IRT model as well as model comparison when one or more latent subpopulations 

exist. Section two discusses limitations of this dissertation and provides directions for future 

studies.  

5.1 Performance of NUTS 

 Findings based on the two simulation studies related to parameter recovery and model 

comparison are summarized and discussed in the following two subsections.  

5.1.1 Parameter Recovery 

 The first simulation study evaluates the performance of NUTS in terms of parameter 

recovery of the Mix2PL model by manipulating three factors: sample size (N), test length (J), 

and the number of latent classes (G). With Monte Carlo simulations, results of this study as 

presented in Section 4.1 suggest that overall, NUTS performs well in recovering parameters for 

the Mix2PL model, including the class parameters (πg and µg), item parameters (ajg and bjg), and 

person parameters (θig, g), although the recovery of the class membership of individual persons is 

not satisfactory for the three-class situation, which has a maximum of 75.13% of correct 

classification versus an average of 94.44% for the corresponding two-class condition.  

 With respect to the effects of sample size and/or test length, they play a role in recovering 

the class membership and person ability parameters no matter whether the generated data sets 

consisted of two or three latent subpopulations. Specifically, the proportion of correct 

classification of class membership increases with either sample size or test length, which is 
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consistent with previous research (e.g., Cho, Cohen, & Kim, 2013). In addition, increased test 

lengths improve the precision in estimating person abilities. This finding is consistent with those 

from the IRT literature based on other models or estimation methods (i.e., Chang, 2017; Kuo, 

2015; Sheng, 2005). Therefore, in order to obtain a better recovery of the person ability 

parameter, more items should be considered.   

On the other hand, the sample size and/or test length effect on estimating other 

parameters in the Mix2PL model is not clear. Some patterns of recovery improvement with the 

increment of sample size and/or test length in the two-class condition are not observed in the 

three-class condition. For example, for the two-class condition, the accuracy of estimating the 

mixing-proportion parameters increases with the increase of either sample size or test length but 

this pattern is not observed with the three-class condition. In addition, for the two-class 

condition, the recovery of the discrimination parameter improves with the increase of either 

sample size or test length, which agrees with findings of Li et al. (2009); however, this pattern is 

not observed with the three-class condition. This is possibly due to the increased complexity of 

the mixture item response theory (MixIRT) model with the increased number of latent classes. 

Adding one subpopulation may seem trivial, but it would result in a substantial increase in the 

number of parameters to be estimated. For example, when fitting a two-class Mix2PL model to a 

data set with a sample size of 500 persons and a test length of 20 items, we need to estimate 

1,584 parameters including: 2 mixing proportions, 2 class mean abilities, 40 difficulty 

parameters, 40 discrimination parameters, 500 person abilities, and a total of 1000 probabilities 

for all persons being on each of the two classes. On the other hand, when fitting a three-class 

Mix2PL to the same data set (i.e., N = 500, J = 20), 2,126 parameters are to be estimated, and 

they are: 3 mixing proportions, 3 class mean abilities, 60 difficulty parameters, 60 discrimination 
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parameters, 500 person abilities, and a total of 1500 probabilities for all persons being on each of 

the three classes. This is already over a one-third increase for such a relatively small data size.  

This complexity is further reflected in the estimation of person mean ability or item 

discrimination parameters, whose accuracy decreases with the increased number of classes, 

which agrees with previous research (Li et al., 2009) concerning the discrimination parameters 

when estimating the Mix2PL and Mix3PL models using Gibbs sampling. On the other hand, the 

recovery of the mixing proportions or individual item difficulties in the model is not seemingly 

affected by such added complexity, which is consistent with findings of Cho, Cohen, and Kim 

(2013) on the recovery of the difficulty parameters in the mixture Rasch model using Gibbs 

sampling. As a matter of fact, the RMSE values for the mixing proportions or individual item 

difficulties decrease when adding one more subpopulation. This reduction can be due to the fact 

that the magnitude of RMSE depends on the unit/scale of the parameter. For instance, the mixing 

proportion is larger for the two-class condition (πg = 0.50) than the three-class condition (πg = 

0.33), and hence the RMSEs tend to be larger with the two-class condition. This is certainly a 

limitation of using RMSE for evaluating the accuracy in recovering model parameters in this 

study. Future studies shall consider other measures, such as the relative RMSE or normalized 

RMSE that are free from the scale of the parameters.    

In terms of the precision of estimating item parameters (ajg and bjg), the results indicate 

that NUTS results in smaller RMSEs in recovering the item discrimination parameters than the 

item difficulty parameters for both classes in the two-class condition and for the first and third 

classes in the three-class condition but the opposite is true for the second class in the three-class 

condition. The seemingly better estimate of the difficult parameter in comparison to the 

discrimination parameter for the second class in the three-class condition is again due to the 
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aforementioned limitation of RMSE, given that the scale of the difficulty parameter for this class 

(-0.5, 0.5) is much smaller than that for the discrimination parameter (0, 2). On the other hand, 

for the two-class condition, the scales for both item difficulty and discrimination parameters are 

the same, while for the first and third classes in three-class condition; the scale of the 

discrimination parameters (0, 2) is relatively larger than those for the difficulty parameters (-2, 

0.5) and (0.5, 2). Therefore, the smaller RMSEs associated with estimating the discrimination 

parameters suggest that NUTS is clearly more accurate in estimating the discrimination 

parameters than the difficulty parameters for those scenarios.  

Results based on the three-class situation suggest that the item difficulty (bjg) or the class 

mean ability (µg) parameters are estimated more accurately for the second class than for the first 

or third class (see Sections 4.1.2 and 4.1.3). This is likely due to the choice of the simulated 

person ability and item difficulty parameters for each of the three latent classes. Specifically, the 

generated person abilities for the second class (i.e., θ2 ~ N(0, 1)) coincides with the generated 

item difficulty (i.e., b2 ~ U(-0.5, 0.5)) for that class, such that the mean of person ability matches 

the mean of the item difficulty, which equals zero (see Figure 9 and the middle plot of Figure 

10). However, the generated person abilities for the first class (i.e., θ1 ~ N(-4, 1)) is quite distant 

from the generated item difficulty (i.e., b2 ~ U(-2, -0.5)) for that class, such that the average 

person ability (i.e., -4) is 2.75 standard deviations lower than the average item difficulty (i.e., -

1.25) (see Figure 9 and the left plot of Figure 10). Similarly, the generated person ability for the 

third class (i.e., θ3 ~ N(4, 1)) is also quite distant from the generated item difficulty (i.e., b2 ~ 

U(0.5, 2)) for that class, such that the average person ability (i.e., 4) is 2.75 standard deviations 

higher than the average item difficulty (i.e., 1.5) (see Figure 9 and the right plot of Figure 10). In 

IRT models including the Mix2PL model, persons and items are placed on the same scale such 
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that persons are scaled relative to items and vice-versa. In addition, the item information 

increases as the person ability and the item difficulty approach each other with the maximum 

information achieved at θ = b for the conventional one- and two-parameter IRT models (see 

Chapter 2 for more details on IRT models). This in turn leads to accurate estimation of both 

person ability and item difficulty parameters. Based on this, the estimation of the person mean 

ability and item difficulty are less accurate for the first and the third classes compared to the 

second class because of the lack of sufficient information considering the difficulty level of the 

items that persons from these classes are able to correctly answer based on their ability levels. 

Thus, in order to obtain more accurate estimates of the person mean ability and item difficulty 

parameters, more easy items should be added for the first class, whereas more difficult items 

should be added for the third class. This finding is consistent with Meyer (2010) in which 

RMSEs and bias were found to increase as the difference between item difficulty and mean 

ability for the “rapid-guessing” latent class increased in the condition where N =500. 

 

 
Figure 9. A probability density function of the ability parameter for the three-class population. 
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Figure 10. Probability density functions of the ability parameter for the first class (left), the 
second class (middle), and the third class (right) subpopulations. 

  

5.1.2 Model Comparison 

The second simulation study focuses on the performance of NUTS in terms of the 

accuracy of determining the number of latent classes of the Mix2PL model while comparing it to 

the conventional 2PL IRT model using fully Bayesian fit indices, namely the widely applicable 

information criterion (WAIC; Watanabe, 2010) and the leave-one-out cross-validation (LOO-

PSIS; Vehtari, et al., 2017). 

Nonconvergence issues associated with fitting MixIRT models to data that do not involve 

multiple subpopulations, as presented in Section 4.2, suggest that when data do not conform to 

MixIRT models, a substantially large number of iterations is required for the Markov chain to 

converge to the target posterior distribution, which is computationally expensive and sometimes 

impractical. For example, in the condition where the data were generated from the conventional 

2PL IRT model, neither of the two Mix2PL models reached convergence with 60,000 of warm-

up iterations followed by 80,000 of sampling iterations, even though it might be possible to reach 

convergence by adding substantially more iterations. Hence, researchers should use caution in 

real test situations where it is not clear about the structure of the latent groups of a certain 

population. Specifically, a large impractical number of iterations needed to reach convergence, 

especially when using efficient algorithms such as NUTS, may raise concerns regarding model-

data conformity.  
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 Regarding the accuracy in determining the number of latent classes, for the condition 

where data conformed to the two-class Mix2PL model, the results indicate that WAIC performs 

better than LOO in recovering the number of latent classes, in terms of the proportion of the time 

the correct model was selected as the best fitting model. It is noted in the results, although LOO 

favored the Mix2PL model with three classes, the three-class solution did not differ much from 

the two-class solution as presented in Table 14 of Chapter 4. In addition, when the effective 

number of parameters was also considered in selecting the best fitting model, as recommended 

by Gelman et al. (2014), the two fit indices perform equally well in determining the correct 

number of latent lasses. It is noteworthy that when both LOO and WAIC selected the three-class 

Mix2PL model as the best fitting model, in four replications among the 25 replications, the 

average proportion of persons (i.e., mixing proportion) for one of the three classes was 0.08 with 

a minimum of 0.04 and a maximum of 0.13. On the other hand, when only LOO selected the 

three-class Mix2PL model as the best fitting model, in six replications among the 25 replications, 

the average proportion of persons in one of the three classes was 0.17 with a minimum of 0.11 

and a maximum of 0.20. This indicates that even when the three-class Mix2PL model (i.e., an 

incorrect model) was selected instead of the true two-class Mix2PL, especially by both fit 

indices, the proportion of persons in one of the classes was relatively low, which in turns suggest 

that the selected three-class Mix2PL model did not differ much from the true two-class Mix2PL. 

Different from the results of this study, Luo and Al-Harbi (2017) found that WAIC had slightly 

lower detection rate than LOO (although the difference is negligible) in the condition where the 

generating model was the conventional 1PL IRT model. Regarding the comparison of the 

Mix2PL model with the conventional 2PL IRT model, the simulation results suggest that when 

multiple latent classes exist, using either fully Bayesian fit indices (i.e., WAIC or LOO) would 
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not select the conventional IRT model. On the other hand, when all persons came from a single 

unified population, fitting MixIRT models using NUTS causes problems in convergence.   

5.2 Limitations and Directions for Future Studies 

 Through simulation studies, this dissertation provides empirical evidence on the 

performance of NUTS in fitting MixIRT models. It also shows that researchers and practitioners 

in educational and psychological measurement would benefit from using NUTS in estimating 

parameters of complex IRT models such as MixIRT models. The results of the present study 

suggest that NUTS generally performs well in recovering model parameters across all of the 

simulated conditions and hence offers advantages over conventional IRT models in fitting 

complex data sets that come from multiple subpopulations. However, conclusions that are made 

in the present study are based on the simulated conditions and cannot be generalized to other 

conditions. For example, the present study only considered two conditions of latent classes (i.e., 

2-class and 3-class) with equal mixing proportions: π = (0.50 and 0.50) for the two-class 

condition and π = (0.33, 0.33, and 0.33) for the three-class condition, two test lengths (20, 30), 

and two sample sizes (250 and 500 for each class resulting in a total of 500 and 1000 for the two-

class condition; and 750 and 1500 for the three-class condition). Therefore, for future studies, 

additional test conditions need to be explored such as unequal mixing proportions (i.e., 0.25 and 

0.75), small sample size (i.e., 100, 200, and 300), as well as short test length (i.e., 10 and 15).

 Furthermore, the two simulation studies were carried out using a Linux (CentOS-7) based 

computing cluster, which consists of 40 server nodes with at least 64 GB of memory each, 10-

core chips, and 800 CPU cores in total. The running time to fit the Mix2PL models increased 

dramatically from an average of 22 minutes per replication for the simplest two-class condition 

where the sample size was 500 persons and the test length was 20 items to an average of 35 
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hours per replication for the most complicated three-class condition where the sample size was 

1500 persons and the test length was 30 items. Given the computational expense of fitting NUTS 

to the complex Mix2PL model, this study only used 10 replications for parameter recovery and 

25 replications for model comparison. However, as suggested by Harwell et al. (1996), a 

minimum of 25 replications is recommended for typical Monte Carlo studies in IRT modeling. 

Additional studies with similar experimental conditions are needed before one can conclude 

about the use of the algorithm with fitting the Mix2PL model and further the effects of sample 

size, test length, and number of classes on estimating the model. 

 In addition, this study focused on the dichotomous Mix2PL model. Future studies may 

consider evaluating the performance of NUTS using other dichotomous MixIRT models such as 

the Mix1PL or the Mix3PL models, or MixIRT models for polytomous responses such as a 

mixture version of Bock’s (1972) nominal response (mNR) model or a mixture version of 

Masters’s (1982) partial credit (mPC) model. Furthermore, findings from this study are based on 

simulated conditions where the true parameters are known. Future studies may adopt NUTS 

algorithms to fit the Mix2PL models to real data and examine how NUTS performs in real test 

situations. Also, findings from this study are limited to the choice of priors and hyperpriors for 

model parameters (i.e., a ~ N(0, ∞)(0, 1), b ~ N(0, 1), θ ~ N(µg, 1), and µg ~ N(0,1). Additional 

simulation studies are needed to consider other specifications of priors or hyperpriors for model 

parameters or hyperparameters.  

 Moreover, this study considered certain population distributions and difficulty ranges. 

Based on the results related to the accuracy of estimating the item difficulty and the class mean 

ability parameters, for the three-class scenario where the second class was estimated more 

accurately than the first or third class, this class focused on persons of medium ability such that 
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their ability levels were drawn from a standard normal distribution and were administered a set 

of items that were sampled from a uniform distribution with the range (-0.5, 0.5), which can be a 

limitation. Additional studies are necessary to consider other person distributions and/or other 

ranges for item difficulty parameters to decide on the test condition that leads to more accurate 

estimates for all classes. 

 One of the concerns with estimating the Mix2PL model is that no constraint has been 

imposed on the item discrimination parameter, similar to what has been done with the item 

difficulty or the mean ability parameter to avoid the problem of label switching and hence 

identify the model. To further investigate it and to ensure such a constraint is necessary for the 

model considered in this dissertation, two simple Monte Carlo simulations were carried out: (1) 

The first simulation examines whether the ordered constraint for b has an effect on the accuracy 

of estimating the item difficulty parameter. For the two-class condition with a sample size of 500 

persons and a test length of 20 items, the results indicate that removing the ordered constraint has 

a destructive effect on the estimation accuracy of the item difficulty parameter. Specifically, the 

average RMSEs based on ten replications for recovering this parameter in the first and the 

second latent classes are 1.132 and 1.078, respectively instead of 0.626 and 0.669 for the same 

condition but with the ordered constraint imposed (see Table 6). Clearly, the ordered constraint 

for the item difficulty parameter as adopted in this study is necessary to ensure the accuracy in 

estimating the item difficulty parameter in the Mix2PL model. (2) The second simulation was 

carried out to examine whether a positive-ordered constrained for a has an effect on recovering 

the item discrimination parameter. For the two-class condition with a sample size of 500 persons 

and a test length of 20 items, the average RMSEs based on ten replications for recovering the 

discrimination parameter in the first and the second latent classes are 0.363 and 0.361, 
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respectively, instead of 0.397 and 0.400 for the same condition but without the positive-ordered 

constraint (see Table 6). This suggests that the positive-ordered constraint helps improve the 

precision of estimating the item discrimination. Although the effect may be trivial, future studies 

can consider imposing such a constraint on the item discrimination parameter in the Mix2PL 

model to help improve the precision in estimating it. Certainly, these two simulations are fairly 

simple as they only considered a specific test condition and only evaluated the recovery of the 

respective item parameter. More thorough investigations are needed in further studies to evaluate 

their effects, especially that of the positive constraint on a, on the accuracy of estimating MixIRT 

models in various test situations.  

 Since the results of this study suggest that the accuracy of recovering class membership 

decreases with an increase in the number of latent classes and that the recovery improves with 

the increase of either sample size or test length, future studies are needed to decide on the 

optimal number of persons and/or items for more accurate estimations of class membership in 

conditions where the population includes three or more subpopulations, for any given class size.  

In addition, the recovery of class membership via proportions of correct classifications 

appears to be worse with this study than that from previous research with a Gibbs sampling 

approach (e.g., Li et al., 2009). Specifically, Li et al. (2009) found that the average proportions of 

correct classification, over sample sizes and test lengths, of class membership were 98.5 and 97.6 

for the two- and three-class Mix2PL models, respectively whereas the corresponding proportions 

found in this study were 92.8 and 77.9. One possible reason is due to the inherent differences 

between the two MCMC algorithms in estimating a discrete parameter where such parameter 

(e.g., class membership) is not directly estimated via Stan program. Another possible reason can 

be the difference in the design of the two studies. Specifically, in Li et al. (2009), the simulated 
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person abilities for all latent classes were from a standard normal distribution, the discrimination 

parameters were fixed to either 1 or 2, and the difficulty parameters were fixed within the range 

(-2.0, +2.0) with a 0.25 increment. In addition, the sample size (600 and 1200) and test length (6, 

15, 30) conditions considered by Li et al (2009) are different from this study. It is hence not 

possible to directly compare the current study with the previous one. Consequently, future 

studies shall be directed to compare NUTS with Gibbs sampling in estimating class membership 

under different test conditions. 

 This study identified the Mix2PL model through imposing a zero-constraint on the 

difficulty parameter where the item difficulty values within each class sum to zero through soft 

centering (i.e., bg ~ N(0, 1); Stan Development Team, 2017; see Section 3.2 for more details). In 

the MixIRT literature, the usual approach to identify MixIRT models is to impose a constraint on 

the difficulty parameter such that the sum of item difficulties within each class equals to zero 

(i.e., 𝑏! = 0! ) in addition to the equal ability mean constraint for all classes (i.e., 

𝜃!~𝑁(0,𝜎!)). Some researchers (e.g., Wu & Paek, 2018), however, argue that both constraints 

might not be adequate to place parameters of the latent classes on a common scale, and hence, 

they suggest adding an anchor item constraint (i.e., invariant items across latent classes). 

Nevertheless, Wu and Paek (2018) found that the conventional constraint of the equal mean 

ability approach and the anchor item constraint approach showed high agreement in recovering 

the class membership. Thus, future research shall be directed to further investigate the role of 

different model identification methods on estimating MixIRT models.  

 In terms of model comparisons, only fully Bayesian fit indices, namely LOO and WAIC 

were used in this study. Future studies might consider comparing the performance of these full 

Bayesian fit indices with other partially Bayesian fit indices such as the deviance information 
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criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002).   

 As discussed in Chapter 2, WAIC is an asymptotic approximation of LOO, which is 

computed through Pareto smoothed important sampling (PSIS-LOO; Vehtari, et al., 2017) 

approximation that is implemented in the R package “loo”. Although the two fit indices differ in 

performance in terms of the proportion of the time the correct model was selected as the best 

fitting model, it can be argued that the difference, especially in LOO values, between the two 

Mix2PL models are rather small. Moreover, when the effective number of parameters was taken 

into consideration in the selection process, LOO and WAIC perform equally well in determining 

the number of latent classes. Therefore, before making any conclusion regarding the performance 

of LOO and WAIC, future research shall be directed to investigate the performance of these fully 

Bayesian fit indices in selecting the true model using different MixIRT models such as the 

mixture one-parameter (Mix1PL) model and the mixture three-parameter (Mix3PL) model in 

addition to the Mix2PL model or generating data that have more than two classes. 

Finally, the results of this study suggest that NUTS encounters problems in convergence 

when fitting MixIRT models to data from a single unified population. This result can raise a flag 

for researchers and practitioners concerning the latent structure of the population under 

investigation. This is also a potential advantage of NUTS if the same finding can be replicated. 

Certainly, additional studies are needed to further investigate this result and examine whether 

convergence issues also emerge using other MCMC algorithms such as Gibbs sampling or other 

MixIRT models such as the Mix1PL or Mix3PL models. 
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