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Forest disturbance occurs on a wide gradient of selectiveness and creates new growth 

opportunities for adapted species. Across the spectrum of disturbance, anthropogenic disturbance 

influences community assembly in the Midwest more than other mechanisms but is its role in 

shaping and maintaining ecosystems is inadequately considered in most discussions on the 

historic range of variability (HRV). Forest resiliency is threatened by unprecedented agents of 

ecosystem change such as invasive species and reduced regeneration potential of native species. 

Historic anthropogenic disturbance largely resulted in forest conditions which commonly 

contained high value attributes like heterogeneity across habitat types and landscape diversity, 

yet also produced forests of undesirable traits due to high grading for timber and overgrazing by 

domesticated stock. In order to maintain historical representative forests and improve the 

degraded forests, active forest management is necessary to continue historic disturbance patterns 

and combat new threats. Forest transition theory is used here to describe the impacts of human 

settlement and development activities on forest ecosystems across the Middle Mississippi River 

Valley. To date, researchers have identified the need for information related to changes of forest 

attributes such as species composition and stand structure, improved descriptions of short- and 

medium-term dynamics within the context of the long-term transition, and the integration of 

biophysical drivers of forest change through time.  In Midwestern U.S.A., forest dynamics were 
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influenced by frequent, low intensity disturbance events that mediate forest composition and 

stand structure by selecting for disturbance regimes that create oak woodland and interspersed 

prairies and meadows. The onset of Euro-American settlement was accompanied by detailed 

land-use records with information related to forest attributes, agricultural activities, and parcel 

ownership patterns. We aggregated multiple sources of historic forest conditions into a 

geodatabase in order to document changes over the past 200 years in Elsah Township, Illinois, 

where the pre-settlement (1820) forest, once dominated by oak and hickory species, has largely 

shifted to a maple dominated system with a declining oak-hickory component, heavily 

influenced by an invasive shrub species, bush honeysuckle. Using on ordinary kriging 

interpolation, forest density was estimated at 8.7 stems per acre on average with a mean basal 

area of 14.6 square feet per acre prior to settlement. Conservation practices of the early 1900s, 

including fire suppression and erosion control resulted in changes to forest structure with density 

increases to 127 trees per acre with a basal area of 175.8 square feet per acre. The high degree of 

topographic variability near the Mississippi River influenced forest cover changes as slopes with 

low angles were the first to be converted from forest cover to other land uses (circa 1850). Forest 

re-initiation occurred in areas with steeper slope due to a lack of human activities. Forest cover 

declined to the lowest point in 1927 and has been rebounding steadily throughout this century. 

Of the original 15,252 forested acres, 11.6% remained covered throughout the past 200 years and 

coincided with slopes with an average of 39.1 degrees. These data can provide a spatially explicit 

and historically accurate tool to guide land management decisions including restoration 

treatment, disturbance regime management, and land use preservation activities in similarly 

heterogeneous environments. Forest communities along the bluffs of the Mississippi River differ 

in species composition and stand structure associated with specific topographic positions of 
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floodplain, transition talus slope, bluff top, and upland. In order to assess current stand 

characteristics and ecosystem trajectory, we measured all woody stems in 316 fixed radius plots 

(79 plots per topographic position) with a plot area of 25 m2. Alpha (defined as within system 

diversity) and Beta (defined as between system diversity) diversity and diameter distributions 

were determined for seedling, shrub layer, and overstory stems. Stem density increased from 

21.4 stems ha-1 in 1820 to 613 stems ha-1 in 1936 followed by reduction to 314 stems ha-1 in 

2017. Average stand diameter decreased from 40.9 cm in 1820 to 25.3 cm in 2017 (for upland 

stems greater than 7.5 cm) while basal area increased from 3.3 m2 ha-1 in 1820 to 40.4 m2 ha-1 in 

2017. Alpha diversity was highest in the upland overstory and in the river island shrub layer. 

Beta diversity in the overstory was highest (0.67) between the bluff and the upland while lowest 

(0.08) between the bluff and the river island. Importantly, mesophytic species are no longer 

restricted to watercourses and valleys as reported in historical accounts and confirmed by the 

spatial analysis of original witness tree records. Currently, bush honeysuckle, an invasive 

species, dominates the shrub layer on most non-hydric sites of the talus slope, upland, and 

particularly across the bluff top where it is an indicator. Across all forest sites in the study, we 

found evidence of a community shift to less diversity and more mesophytic species over the past 

80 years. Hill prairie vegetation on the limestone bluffs of the central Mississippi River Valley 

represents a significant portion of the remaining prairie, savanna, and woodland systems of the 

Midwest and should be appropriately managed with prescribed fire and woody stem reduction 

efforts. We examined the structure, composition, and temporal community patterns of the forest-

prairie gradient by employing hierarchical cluster analysis and non-metric multi-dimensional 

scaling in combination with indicator species analysis and dendrochronological methods. Results 

suggest that four general community types exist across the forest-prairie gradient: Group 1 
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consists of the woodland community structure with significant indicator values for the density of 

Juniperus virginiana (indicator value 58.4, p = 0.0002), Carya glabra (45, 0.0022), Quercus 

stellata (23.7, 0.0424), and Lonicera maackii (74.2, 0.0002) and a high basal area (BA) of J. 

virgniana (21.4, 0.0276) and L. maackii (47.9, 0.0054). The first year of L. maackii presence was 

1964 with the primary wave of invasion beginning around 1990. Group 2 contains bare soil 

coverage in the subplot (40.4, 0.0002) as the one indicator at a significant level. The species with 

the highest BA in Group 2 include Acer saccharum (9.08 m2  ha-1), Q. velutina (5.89 m2  ha-1), 

and Q. muehlenbergii (5.32 m2  ha-1). Group 3 typifies the hill prairie community with the sole 

indicator of grass coverage in the subplots (39.7, 0.0196). Group 4 represents the stage of forest 

development following the cessation of disturbance events and the trajectory advancing towards 

a mesophytic forest and contains 14 significant indicators. This descriptive research was used to 

plan forest management activities at the landscape level in Chapter 5.  

 

 

 

 

 

 

  



 

 

v 

 

DEDICATION 

 

To my loving family, for their support and understanding, I dedicate this dissertation to 

Stephanie, Jackson, and Maya.  



 

 

vi 

 

ACKNOWLEDGEMENTS 

 

This research could not have been possible without the selfless support, guidance, and 

encouragement of numerous individuals as well as the financial support of various institutions. 

To all of these supporters, I offer you my sincerest gratitude.  

Financial support for this dissertation and the Ph.D. program was provided by Principia 

College, The Albert Baker Fund, and The National Great Rivers Research and Education Center. 

My advisors, John Groninger and Charles Ruffner, provided immeasurable support from 

start to finish, always assisting me with discerning the forest for the trees.  The rest of the Ph.D. 

committee, Eric Schauber, Karla Gauge, and Eric Holzmueller, provided guidance on a myriad 

of technical details and editorial suggestions.  

To Kevin Silcox, Kyle Meserve, Timon Keller, Bess Bookout, Desi Schnaitman, and 

Rhiannon Davis, representing the Principia College students who assisted with collecting data, 

spending hours with me in the field and laboriously preparing samples, all the while feeling 

undaunted and full of enthusiasm, I am indebted to your efforts and labors.    

The librarian staff at the Marshall Brooks Library at Principia College, including Edith 

List, Lisa Roberts, Kris Impastato, and Melody Hauf, granted access to numerous key documents 

in the Principia College archives and assisted with searches for rare and difficult to find sources.  

My department, Biology and Natural Resources, provided encouragement, support, and 

understanding as my attentions were divided during this endeavor. Scott Eckert, Chrissy 

McAllister, and Greg Bruland set a high bar indeed, and I am grateful to name them as 

colleagues and friends.  



 

 

vii 

 

Local historians Jane Phiefer and Tim Tomlinson at the Elsah Historic Foundation 

provided additional insights into the historical conditions in Elsah that lead to the ecological 

outcomes that are evident today and discussed in my work.  

The staff at the Illinois Natural Area Inventory, Tara Kieninger and John Wilker, 

provided access to the original hill prairie inventory data from the 1977 and 2010 surveys.  

Fellow hill prairie dendrochronogists Marlin Bowles and Michael Jones who analyzed 

fire frequency on hill prairies at Fults Nature Preserve lent their perspective on research methods 

through a fruitful correspondence.  

My predecessor at Principia College, Dr. Paul Kilburn, laid the foundation for a 

continued legacy of research on campus natural features and was generous enough to discuss 

early restoration efforts and direct me to useful research topics and resources. 

The support of all these individuals and institutions has amplified the quality and impact 

of this study, but the errors and oversights contained in the following pages are attributable 

solely to my neglect.  

 

 

  



 

 

viii 

 

FOREWORD 

 

 Forestry has always tried to balance the multiple needs and desires of society at large and 

landowners in particular. Integrating historical ecological conditions and processes into current 

management strategies, all while understanding that major changes are occurring to the entire 

system, is becoming easier as abundant scientific and technical information accumulates. 

Meanwhile, the new manager must be able to synthesize vast amounts of this information and 

parse out the relevant implications for each management unit and the ecosystem overall. As I 

began managing 2,600 acres of oak-hickory forest, prairies, and farmland at Principia College in 

2010, I knew that the past contained vital information about how to treat our current vegetation 

stands and management units, set goals, prioritize, and manage, since after all, as in the immortal 

words of the great bard William Shakespeare, “What’s the past is prologue.” But I was initially 

at a loss as to where to start. In part, this dissertation is a start. By synthesizing historical ecology 

observations, forest management patterns, and current ecological dynamics, the trajectories of 

ecological development emerged from the data and management solutions became fairly evident. 

These historically anchored solutions are not the answer for every acre of every stand, but the 

contiguity of historical conditions on most portions of the landscape as we move into an 

uncertain future will provide the greatest amount of options for the development of a healthy and 

resilient forest.  Now, when I look out my office window and consider how the forest came to be, 

a long chronology of events can be visualized, and current trends are brought into focus.    
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CHAPTER 1 

THE INFLUENCE OF ANTHROPOGENIC DISTURBANCE PATTERNS ACROSS 

ECOSYSTEMS OF THE AMERICAN BOTTOMS AND THE MIDDLE MISSISSIPPI RIVER 

VALLEY: HISTORIC LAND-USE IMPLICATIONS FOR CURRENT FOREST 

MANAGEMENT 

Abstract 

Forest disturbance occurs on a wide gradient of lethal selectiveness and creates new 

growth opportunities for adapted species. Across the spectrum of disturbance, anthropogenic 

disturbance influences community assembly in the Midwest more than other mechanisms but is 

sadly often discounted or overlooked in many discussions on the historic range of variability 

(HRV). In most ecosystems of the Midwest, current forest conditions are influenced by human 

activity which served as a major impact over the last few centuries of vegetation development. 

Anthropogenic disturbance can be correlated with natural analogs and viewed as a mechanism 

that both enhances and mimics natural disturbance regimes. In addition, anthropogenic 

disturbance has led to the creation of novel regimes as observed with the effects of human 

applied fire, which accounts for much of the forest resiliency following disturbance, particularly 

in the Midwest as seen in historical analysis of these prairie-forest ecotones. Forest resiliency is 

threatened by unprecedented agents of ecosystem change such as invasive species and reduced 

regeneration potential of native species. Historic anthropogenic disturbance largely resulted in 

forest conditions which commonly contained high value attributes like heterogeneity across 

habitat types and landscape diversity, yet also produced forests of low value due to high grading 

for timber and overgrazing by domesticated stock. In order to maintain the high value forests and 

improve the low value forest, active forest management is necessary to continue historic 

disturbance patterns and combat new threats.  
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Introduction 

Momentum for the current conservation movement can be attributed to a coalition of 

diverse stakeholder groups and is reflected in the publications, guidelines, and laws of natural 

resource management and environmental protection agencies (Western, 2018). Implicit within 

some of these campaigns is the desire to implement and maintain the historic or natural 

functioning of ecosystems as seen in some ideal undisturbed natural areas. In reality, an 

undisturbed system in the Midwest is a simulacrum of wilderness when considering that the 

ecological role of anthropogenic disturbance served as a fundamental driver of ecosystem 

formation (Guyette, Muzika, & Dey, 2002; Pyne, 2017). In these cases, human caused 

disturbance is often discounted and categorized as an exception to the foundational forces that 

shaped current conditions that are valued today. In the spectrum of natural resource management 

ranging from unkempt wilderness to manicured cityscapes, managers must often craft 

compelling cases for intervention, and tie each reason directly to shifting, contradictory, and 

sometimes undefined societal values in order to proceed with management activities.   

When managers articulate how management activities are consistent with the processes 

that create specific and valued ecosystem states and functions, then the sources of obstruction 

splinter and lose strength. An implicit assumption in natural resource management claims that 

the processes in natural systems are fundamentally superior to those in human systems (Foster, 

Fluet, & Boose, 1999). Managers are compelled to research and describe patterns of ecological 

development and incorporate these processes into management activities by mimicking natural 

processes (Toivanen & Kotiaho, 2007). The central pillar in defining disturbance regimes for the 

sake of understanding the origin, frequency, intensity, and size of disturbances lies with the 

much pondered question related to the parameters that are considered natural (Covington & 
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Moore, 1994). That is, what were the mechanisms of community assembly that lead the forest 

ecosystem to this current set of conditions that are highly valued? If the events are repeated, will 

the forest reliably return to a predictable state? Is anthropogenic disturbance natural? Finally, can 

anthropogenic disturbance enhance resiliency and achieve predictable outcomes in changing 

systems? 

The historical mechanisms of natural disturbances in forest ecosystems interest managers 

who attempt to mimic natural disturbances through silvicultural activities in order to preserve 

ecosystem processes. Increasingly focused attention on managing forests from an ecological 

perspective and valuing forests as complex systems has amplified the need for historical ecology 

information (Fahey et al., 2018; Puettmann, Coates, & Messier, 2012; Sample, 2018). A 

knowledge of past disturbance patterns allows managers to understand which management 

activities are within or outside of the realm of historic ecosystem disturbances, often called the 

historic range of variability (Frelich, Jõgiste, Stanturf, Parro, & Baders, 2018). The events that 

shaped current forest conditions prove central to the question of management planning, despite 

the vast uncertainties of the future. Forest disturbance in the Midwest existed as a unique regime, 

ubiquitous at varying levels of intensity and diverse in spatial scales. Stochastic and deterministic 

events, both endogenous and exogenous, shape the physiognomy of the landscape by damaging 

susceptible species and releasing resistant and resilient species.  As a forest ages, the probability 

of a stand replacing disturbance event increases (Oliver, 1980).  Furthermore, as the time 

between disturbance events increases, the probability of a high severity disturbance increases. 

Forests in the Midwest exhibit the effects of frequent disturbance when compared to most other 

North American forest types which have longer time periods between disturbance events. For 

example, the mean fire return interval in central Midwest upland hardwoods is 0 to 5 years on 
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ridges and southern exposures, and 11 to 15 years for valley bottoms and northern slopes 

(LANDFIRE, 2010). Evidence is emerging that Midwestern forests were significantly shaped by 

a combination of anthropogenic activities and natural events that created a pattern of significant 

disturbance affecting both species composition and structural changes (Guyette et al., 2002). 

Forest ecosystems are sensitive to human disturbance and respond in enduring ways to human 

impacts (Foster, Orwig, & McLachlan, 1996; Guyette et al., 2002). Direct human involvement in 

the formation of forest communities, stretching back millennia, suggests that there is an 

important role for managers to consider when planning management activities.  

The relevancy of historical information in ecological restoration has been questioned by 

researchers who view the trajectories of novel systems as original and without analog (Alagona, 

Sandlos, & Wiersma, 2012; Jackson & Hobbs, 2009; Hobbs et al, 2006; Swetnam, Allen, & 

Betancourt, 1999). The objections can be categorized into three primary topics: 1) Historical 

restoration targets are impractical when the shifting climate patterns, presence of invasive 

species, and disruptions to ecological processes have fundamentally changed the conditions and 

governing processes off an ecosystem (Jackson & Hobbs, 2009). 2) The accuracy of historical 

information is often problematic in identifying specific targets for the size and other attributes of 

target populations (Alagona, Sandlos, & Wiersma, 2012). 3) Selecting a reference timeframe for 

restoration is plagued by uncertainty in determining an appropriate range for ecological 

restoration goals since ecosystems are dynamic and responsive to internal and external forces 

(Jackson & Hobbs, 2009). Although these critiques of using historical information in ecological 

restoration are valid, managers have addressed the claims by presenting a nuanced interpretation 

of historical reference conditions. This view focuses less on comparing pre- and post-disturbance 

conditions and instead seeks to maintain continuity of historic ecological trajectories by re-
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establishing or enhancing fundamental ecological processes (Balaguer, Escudero, Martin-Duque, 

Mola, & Aronson, 2014). Carefully setting restoration targets with the full acknowledgement of 

anthropogenic drivers of ecosystem development permits the manger to achieve a range of 

conditions that develop towards desired states.  

In the field of forestry, the management of a stand is directly informed by historical 

events and trends. In the elements of a silvicultural prescription, the section on the description of 

a site contains a unit on the potential vegetation wherein information is required for the previous 

and present plan cover, pioneer, seral, and climax species, and the seral state (Wenger, 1984). 

Sections on wildlife, range resources, visual resources, and even protection from disturbance are 

completed using the findings of local historical ecology. Because silviculturalists contemplate 

the implications of management decisions on stand development on a daily basis, their 

understanding of the significance of prior ecological conditions and trends is highly developed. 

To the casual observer, forest ecosystems that are identified with the term “recovered” 

from a previous disturbance may mislead one into believing that the system has returned to the 

previous state, which serves to minimize the importance of anthropogenic activity during cohort 

recruitment. Recovery of generic forested conditions and biomass volumes serve as basic 

indicators of the ecological context, but species composition and forest structure are greatly 

influenced by the individual attributes of the disturbance event.  On one hand, human activity is 

appropriately recognized as a significant cause of significant and sometimes deleterious 

ecological effects. However, on the other hand, cohort establishment and perpetual composition 

adjustment created by humans are often overlooked drivers of community assembly when 

identifying the nature of ecological filters that created desirable stand conditions (Balaguer et al., 

2014).  In the Midwest, ecosystems with high ecological, social, and economic value were the 
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product of interweaving anthropogenic disturbances and ecological processes (McEwan & 

McCarthy, 2008). The mechanisms of anthropogenic disturbance related to fire, clearing, 

hydrological modification, and grazing were superimposed on the background disturbance 

regimes of aeolian, hydraulic, zoogenic, and geologic events to create a novel set of conditions in 

which a particular disturbance-adapted cohort established. The anthropogenic events leading up 

to and including the period of Euro-American settlement resulted in an ecological legacy of 

mixed forest quality. In order to perpetuate high value forests and restore degraded forests, an 

understanding of the mechanisms of stand initiation and development is required.    

The ecological history of a site is governed by ecological filters that are conditions or 

events that restrain or enhance select species. For example, a species that is fire tolerant has the 

ability to grow, re-sprout, or reproduce post-fire. Such a species is able to take advantage of 

recently released growing space formally occupied by a fire intolerant species. Not all species 

considered to be fire intolerant may be affected by fire due to a variety of variables such as 

timing, intensity, duration, frequency, and size of a fire. In other words, most ecological filters 

are comparatively coarse and fail to filter all target species for a variety of reasons such as slight 

differences in micro-topography or chance association. Some individuals may persist in a 

microsite of favorable conditions and proliferate when the surrounding conditions become 

suitable (Oliver & Larson, 1990). 

Originally considered an aberration to normal ecological development by early ecologists 

(Clements, 1929), disturbance, at some level, is now largely considered a critical component in 

ecosystem formation and function (Frelich et al., 2018). Tantamount to the shifts in ecological 

thinking regarding disturbance, the significant anthropogenic role in historic disturbance regimes 

is gaining acknowledgement in the fields of ecology and management science (Abrams, 1992; 
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Abrams & Nowacki, 2015; Guyette et al., 2002).  In some cases, disturbance dependent systems 

experiencing a lack of disturbance are considered negatively impacted and the non-disturbance is 

changing the functioning of some ecosystems (Flatley, Lafon, Grissino-Mayer, & LaForest, 

2015; Nowacki & Abrams, 2008; Stambaugh, Marschall, & Guyette, 2014). Successional 

pathways are the patterns of vegetation changes following disturbance and can be heavily 

influenced by the type, duration, size, and intensity of the disturbance. Therefore, a 

comprehensive understanding of the historical disturbance record will inform the study of 

community assembly and provide managers with a context for predicting how the system will 

respond to various disturbance events. 

The focus of the scientific literature concerning the characterization of ecological 

disturbances trends towards describing the effects of a discrete disturbance event on existing 

plant communities and the community assembly processes that occur post-disturbance (Knapp, 

Stephan, & Hubbart, 2015). Notable exceptions include studies that examine the effects of land-

use history in conjunction with compound disturbance events (Nelson, Groninger, Ruffner, & 

Battaglia, 2009). In reality, forests often experience a gradient of overlapping disturbance events 

such as a drought induced insect outbreak, then windthrow followed by prescribed fire that span 

natural and anthropogenic, stochastic and deliberate disturbances.  Temporal variation in 

disturbance frequency plays a critical role in forest community assemblages and these variations 

have been documented extensively in recent times with remote sensing methods (Hirschmugl, 

Deutscher, Gutjahr, Sobe, & Schardt, 2017) and, further back through dendrochronological and 

paleoecological studies (Roy, Bhiry, Woollett, & Delwaide, 2017). By viewing the chronology 

of historic disturbance regimes, managers will have a more complete understanding of the 

ecological filters that have shaped current stand conditions and be more knowledgeable 
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regarding how silvicultural treatments will mimic historic regional disturbance patterns. The 

purpose of this review is to characterize the broad scale mechanisms of anthropogenic and 

natural disturbance as these relate to forest management impacts in Midwestern forests.  

Late Pleistocene Events 

Current topoedaphic site conditions for stands were most directly influenced in the late 

Pleistocene epoch of maximum glacier extent of the Late Wisconsin 20,000 YBP.   At this point, 

the northern Midwest was covered by an ice sheet and the southern Midwest was composed of a 

periglacial tundra, an open boreal forest type of spruces, firs, and pines, and expansive grasslands 

inhabited by megaherbivores (Johnson, 2009). Humans were becoming more active in North 

America as glaciers began to retreat 15,000 BYP (Goebel, Waters, & O'Rourke, 2008) and their 

effects on the environment through hunting and burning soon initiated changes in ecological 

development. Of the theories that explain the mass extinction of megafauna during the end of the 

Pleistocene, including the megaherbivores such as mammoths, declines due to Clovis culture 

hunting remains probable as a significant source of population depletion (Ripple & Valkenburgh, 

2010; Robinson, Burney, & Burney, 2005), though disputed by some who attribute declines to 

changes in climate (Grayson, 1991; Grayson & Alroy, 2001). Charcoal records suggest that fire 

was used extensively by early human inhabitants thereby explaining the dominance of 

pyrophytic species and communities (Abrams & Nowacki, 2015; Bowman et al., 2009). The 

dramatic modification to the vegetation communities as a result of reduced herbivory and 

changes to seed dispersal patterns 14,800 to 13,700 YBP altered the trophic system to allow the 

advancement of hardwood species, thereby initiating the first anthropogenic induced novel plant 

communities in North America  (Gill, Williams, Jackson, Lininger, & Robinson, 2009). The 
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changes in faunal and anthropogenic activities were reflected in shifts to the ecological 

communities and the associated ecological filters.  

Forest Development in the Holocene 

The specific mechanisms of northward migration of tree species post-glaciation remains 

unidentified (MacDougall, 2003). However, the principles of post-disturbance invasion 

recognized in large infrequent disturbance events would apply to migration and colonization of 

new growing space (Turner, Baker, Peterson, & Peet, 1998).  Palynology studies provide broad 

insight into the plant communities that developed post-glaciation and into the origins of current 

forest composition and structure, which developed concomitantly with Paleoindian cultures and 

anthropogenic fire.   As the Wisconsin Glacial Episode concluded, the areas under ice cover 

underwent primary succession and unglaciated areas transitioned to new plant communities. The 

loss and accumulation of ice during the changing seasons created a dynamic environment south 

of the glacier in which soil was deposited by aeolian processes, glacier lakes formed and drained, 

outwashes were scoured with flood pulses, and landforms were deposited and shaped. By 10,000 

to 11,000 YBP, the vegetation changed from Pinus-dominated to Quercus as far north as 

Comstock Lake, Wisconsin according to a study examining pollen records in a lacustrine 

sediment core (Morris, Mueller, Nurse, Long, & McLauchlan, 2014). A palynology study in 

south-central Minnesota found that boreal forests existed 12,500 to 10,000 YBP, transitioning to 

Ulmus-Ostrya forest 10,000 to 9,000 YBP, followed by prairie and deciduous forests 8,000 to 

4,250 YBP, and finally Quercus dominated forests began 4,250 to 3,000 YBP, all while 

demonstrating an increase in fire severity with each progressive forest type (Camill et al., 2003). 

In the Cliff Palace Pond of Kentucky, fossilized pollen evidence revealed spruce and northern 

white cedar dominated 9,500 to 7,300 YBP, succeeded by a mixed mesophytic forest from 7,300 
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to 4,800 YBP, hemlock and eastern red cedar were found 4,800 to 3,000 YBP, and oak-chestnut 

and pine dominated for the past 3,000 years. The authors suggest that the charcoal record found 

in the pond provides evidence that Late Archaic and Woodland peoples enhanced culturally 

important oak, chestnuts, and pines with widespread use of fire (Delcourt, Delcourt, Ison, Sharp, 

& Gremillion, 1998). At the Kolarik Mastodon Site in northwest Indiana, pollen and plant fossils 

provided evidence that open spruce forest dominated with elements of aspen, fir, and tamarack 

12,000 to 11,0000 YBP followed by pine, spruce, oak, ash, hickory, and hornbeam between 

11,000 and 9,500 YBP, after which point the pollen and fossil record becomes obscured 

(Jackson, Whitehead, & Ellis, 1986).  

Table 1 

Palynology results of historic forest communities in the Midwest 

Location YBP Type 

Comstock Lake, Wisconsin Before 11000 Pinus 

 After 11000 to 10000 Quercus 

South Central Minnesota 12500 to 10000 Boreal 

 10000 to 9000  Ulmus-Ostrya 

 8000 to 4250 Prairie and deciduous 

 4205 to 3000  Quercus 

Cliff Palace, Kentucky 9500 to 7300 White Cedar 

 7300 to 4800 Mixed mesophytic 

 4800 to 3000 Hemlock and eastern red cedar 

 3000 to present Oak-chestnut and pine 

Kolarik Mastodon Site, 

Indiana 12000 to 11000 

Open spruce with aspen, fir, 

tamarack 

 11000 to 9500 

pine, spruce, oak, ash, hickory, 

Hornbeam 
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Table 2  

Reference table for periods and correlating timeframe 

Period            YBP 

Altonian 70000 to 28000 

Farmdalian 28000 to 22000 

Woodfordian 22000 to 12500 

Twocreekan 12500 to 11000 

Valderan 11000 to 5000 

 

Late Archaic and Woodland Ecological Management 

Evidence for Native American modification to ecological systems of the Midwest 

suggests that their influence was ubiquitous and significant. Throughout pre-Columbian history, 

Native Americans used fire, hunted predators and herbivores, cultivated and dispersed plants, 

and cut trees (Abrams & Nowacki, 2008). Human population figures during this time are 

contentiously debated but have been estimated at over half a million in the eastern US (Kroeber, 

1934) until Columbian contact when the population declined fifty percent due to rampant disease 

transmission (Shumway & Jackson, 1995).   

The effects of human activities cast enduring legacies on forest composition. On the 

Allegheny Plateau of northwest Pennsylvania, areas with a high intensity of Native American use 

were found as the most accurate variables at predicting where oak, hickory, and chestnut ranges 

were dominant over beech, maple, and hemlock when compared to other topoedaphic and 

bioclimatic predictor variables (Black, Ruffner, & Abrams, 2006). Evidence of landscape scale 

fire in the southern Appalachian forests has been identified going back 10,570 years before 

present with regular fire beginning 4,000 years ago, and increasing in frequency 1,000 years ago 

when Woodland Traditional Native American culture established, but tapering off 250 years ago 

in coincidence with post-Columbian contact (Delcourt et al., 1998: Fesenmyer & Christensen, 
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2010). Little evidence exists for the northward migration of plants due to the assistance by 

Native American during the glacial retreat, despite the cultivation and widespread usage of tree 

species (Munson, 1989; Abrams & Nowacki, 2008; MacDougall, 2003). 

Euro-American Settlement of the Midwest  

Pre-settlement surveys in the Midwest of the early 1800s provide insight into the forest 

composition and structure during a time of transition between low intensity Native American 

management and before the land was burned at higher frequencies, cut for timber production, 

grazed by livestock, and cleared for agriculture and home construction by Euro-Americans. The 

process of forest clearing involved the felling of trees, which varied in density and size, followed 

by burning the slash and grubbing out the stumps with a team of oxen after cutting the roots with 

an axe. In order to transition a forest into a tillable farm, an average of 32 man hours per acre 

was required, compared with 1 to 1.5 days to till prairie sod (Williams, 1989). Each farm 

required a steady supply of fuelwood to heat the farm houses, a source of which could not be less 

than 20 acres, though often heavy clearing near the settlement created high demands on the 

productivity of the local woodlot (Williams, 1989). Species with high levels of energy such as 

hickory, oak, and black locust were selected for fuelwood while species that did not make good 

firewood such as elm remained in the forest. As fertility in forest-cleared fields diminished, 

settlers advanced into the prairie peninsula of the Midwest in which a gradient between 

grasslands and forests varied with each site. The most desirable land existed on the ecotone 

boundary between forest and prairie, combining the benefits of open ground for grazing and hay 

with the fuelwood and timber resources of the adjacent forest (Williams, 1989).  

Pre-settlement forest conditions were influenced by Native American activities such as 

burning and agricultural clearing. However, directly preceding settlement in the Midwest, low 
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Native American population levels diminished the frequency of forest vegetation modification 

resulting in widespread stand initiation and developing into closed canopy conditions with high 

stem densities.  The occurrence of savanna systems in central Kentucky circa 1800 have been 

associated with the era of settlement when forests were thinned in part to increase forage 

opportunities for livestock (McEwan & McCarthy, 2008). The re-initiation of human activities 

during settlement restored stand conditions that existed historically due to active Native 

American forest utilization and burning cycles.  

The relationship between human activities and forest physiognomy has been analyzed in 

the Missouri Ozarks by several previous studies. The cycle of fire in oak-forests identified that 

fire frequency, nearly all sourced from human ignitions, was largely dependent on human 

population levels, as well as the availability of surface fuels, fuel fragmentation due to land use 

changes which limited the spatial extent of fires, and cultural behavior that emphasized fire 

control and limitation (Guyette et al., 2002). Vegetation in the early 1800s on the Current River 

watershed of the Ozarks in south-central Missouri was analyzed in a study that found 

anthropogenic fire regimes produced significant effects on species assemblages, with a fire 

return interval of 6.1 years in lower regions of the watershed and 12 years in the upper reaches 

between 1701 and 1821 (Batek et al., 1999). In the Illinois Ozark Hills, disturbance regimes over 

a 300 year time period were analyzed based on topographic variables and the authors found a fire 

return interval of 30-45 years on mid to upper slopes and ridgetops during pre-settlement 

followed by a period of stand damaging severe earthquakes and frequent fire, grazing, and timber 

cutting during settlement years between 1880-1925 (Fralish & McArdle, 2009).   

Rhemtulla et al. (2007) found that the period between 1850 and 1935 saw the upper 

Midwest experience forest cover decline by a third, agricultural lands increase to 24%, mixed 
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forest and savannas transition to deciduous closed forests, while the central Midwest saw 75% of 

the land area in savannas and prairies converted to cropland and pasture. 

 

Figure 1: Percentage of woodland grazed. Adapted from Whitney (1994). Original data sources 

Goldenweiser and Ball (1918) and US Census Bureau (1932 and 1984). Note that 1909 data for 

Iowa are absent.  

As European settlement advanced westward from the East, game species were displaced 

by livestock. Woodland bison and elk ceased to inhabit the Midwest and turkey and white-tailed 

deer populations were isolated to small areas. Swine, cattle, goats, and sheep were allowed to 

forage throughout forested areas and impacted the soil and biota in ecologically significant ways 

compared to the displaced game species. The characteristics of livestock disturbance produced 

irreversible ecological legacies evident in forest composition and structure, and should be 
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considered as an anthropogenically induced modification since humans introduced livestock to 

the region (Whitney, 1994).   

The use and frequency of fire for multiple benefits as employed by the Native Americans 

were limited by population density (Guyette et al., 2002). As European settlers advanced, the 

frequency of fires spiked by comparison to previous eras and was only limited by the availability 

of fuels and, later, fuel fragmentation (Guyette et al., 2002). The burning frequency increases in 

concert with clearing fields for agriculture and selectively thinning woodlots for fuelwood and 

building supplies created ecological conditions which favored fire adapted and shade intolerant 

or intermediate species.  

As forests regenerated in the Northeast due to farm abandonment, early and mid-seral 

species were represented in higher abundance and the composition was more homogeneous 

(Thompson, Carpenter, Cogbill, & Foster, 2013).  Due to a higher frequency of disturbance, 

primarily attributable to anthropogenic fire, in the Midwest, early- and mid-seral species 

remained stable as settlement transitioned to a developed state. The lack of historic disturbance 

has been considered a new type of disturbance that favors fire-intolerant mesophytic species and 

results in a shift in dominant tree species (Fralish & McArdle, 2009). 

Ecological Descriptions of the Confluence Region of the Middle Mississippi River 

John White (2000) compiled ecological accounts of the Big Rivers Area, a large area 

around the confluence region of the Mississippi, Illinois, and Missouri rivers. The following 

accounts provide a historical reference of ecological composition and structure prior to and 

during Euro-American settlement. Descriptions of the ecology were excerpted from White’s 

volume and divided into the following sections: Historical Descriptions from the Elsah Township 

Area; Descriptions of the Landscapes within the Big River Area; and Accounts of Fire. These 
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accounts support the results from analysis of witness tree data as well as provide a rich narrative 

of the ecological impacts of settlement activities. Characterizing the ecosystems around the 

beginning of Euro-American influences serves to establish the historic range of variability and 

provide a spatiotemporal reference condition for ecological restoration activities that seek to 

preserve diversity and complexity.  

Historical Descriptions from Elsah Township Area 

Each description of the area in the Elsah Township region varies slightly in emphasis, but 

each observer noted the general topography and the vegetation type that existed on the site.   In 

1823, Lewis C. Beck described the topography of the area and the amount of prairie and forest of 

the area thus,  

The face of the country is in general [sic] level, or gently undulating with the 

exception of those under the bluffs of the Illinois.  Although this county contains a large 

proportion of timbered land, it is diversified with prairies, some of which are beautiful 

beyond description. The banks of the Mississippi in the southerly part of this county are 

generally composed of perpendicular cliffs, varying in height from 80 to 150 feet. This 

bluff continues along the Mississippi and Illinois to the northern part of the county, 

sometimes, however, receding several miles east, leaving a low but fertile alluvion [sic], 

which in general is heavily timbered. 

In 1868, A.H. Worthen, the State Geologist, described the Elsah area and a typical 

community of mature trees along steep slopes near the river,  

Adjacent to the bluffs of the great rivers which form the southern and western 

boundaries of the county, and extending back for a distance of from three to six miles, the 

surface is broken into steep ridges, which are separated by deep ravines. This portion of 
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the county was originally covered with a heavy growth of timber, consisting of the usual 

varieties of oak, hickory, wild cherry, etc.  

In 1882, W.R. Brink wrote of the area around Elsah,  

The surface of the country presents a pleasing variety, gently rolling prairies 

predominating. The majestic bluffs of the Mississippi present a rocky wall along its shore 

from the mouth of the Illinois to Alton and then tending inland around the great 

American bottom, round their fronts into grassy sloped hills that go down more gently to 

the fertile fields of the garden spot of Illinois. These bluffs, like adamantine walls 

checking the course of destruction of raging floods, are from eighty to one hundred and 

fifty feet in height. From their crest a lovely panorama spreads out to view, 

comprehending as it does a view of the valley of the great Missouri which commingles its 

muddy waters with those of the Mississippi in their onrushing to the sea, and the 

intervening landscape of cultivated fields, here and there marred by stretches of sand or 

sloughs waiting to be made to bloom and blossom as the rose before the hand of industry 

when once redeemed by drainage. Eastward from the bluffs are far-reaching prairies 

relieved by grove-crowned eminences, beautiful valleys and inviting hillsides. On many 

of the prairies are stretches of young and vigorous timber, where once was an open space 

consequent upon annual fires sweeping everything before them. The timber tracts, in the 

main, follow the meanderings of the various streams or crown the bluffs that hem in the 

valleys. The largest bodies of timber skirt the streams. Oak in great variety abounds, 

embracing black, white, overcup, post. There are also white, black and shellbark hickory, 

soft and sugar maple, ash, sassafras, black and white, or English walnut, wild cherry, elm, 

pecan, sycamore, honey locust, box alder, paw-paw, buckeye, redbud, persimmon, 
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hackberry and other woods indigenous to south and central Illinois. Of shade trees there 

are black locust, elm, maple, and representatives of the numerous family of evergreens.  

In 1919, Judge Oscar B. Hamilton described the landscape along the Mississippi and 

Illinois Rivers in Jersey County,  

The bluffs on the west and south sides of Jersey County form the most 

magnificent and picturesque scenery of the entire 2,000 miles of the course of the 

Mississippi River. For twenty miles east from the mouth· of the Illinois River, the bluffs 

rise from the river bank to a height of three or four hundred feet, with hollows or valleys 

between, in which are found numerous springs of cool and refreshing water. The valleys 

and the tops of these bluffs are covered with original forest trees of great height and size, 

which at the time that Marquette was viewing this wonderful landscape had been unseen 

and untouched by civilized man.  

From these descriptions, the good timber resources that observers noted were found 

within areas where fire severity would be limited by moist conditions, topographic roughness, 

and fuel breaks. These elements are found near large and small water courses which are abundant 

in the southern and western portions of Jersey County where the limestone bluffs exist. In 

particular, forests were extremely variable in density with thick groves near water and sparse 

stems within the grassland dominated areas of ridges. Mesophytic species were observed near 

water sources, particularly the sugar maple, while pyrophylic species were found further up the 

slopes.  

Descriptions of Landscapes within the Big Rivers Area 

In the general area, landscape descriptions are useful for providing context for large scale 

trends in ecological development. In 1698, Jean Fransçois Busson de St. Cosme recorded that the 
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land “is bordered by a belt of very fine timber which is not very Wide so that one soon reaches 

beautiful prairies containing numbers of Deer.” Later in 1773, Patrick Kennedy remarked that 

“the land is well timbered, and covered with high weeds. There are fine meadows at a little 

distance from the River… The timber in general very tall Oaks.” These “high weeds” would be 

consistent with the growth form of big bluestem (Andropogon gerardii), common to the tallgrass 

prairies of Illinois.  At the beginning of the Lewis and Clark expedition in 1803-04, William 

Clark wrote of the mix of prairie vegetation and forest along banks and bluffs of the Mississippi 

River upstream of St. Louis,   

The Country about the Mouth of Missouri is pleasant [sic] rich and partially Settled On 

the East Side of the Mississippi a leavel [sic] rich bottom extends back about 3 miles, and 

rises by several elevations to the high Country, which is thinly timbered with Oakes & 

On the lower Side of the Missouri, at about 2 miles back the Country rises gradually  

[sic], to a high plesent [sic] thinly timberd [sic] Country, the lands are generally fine on 

the River bottoms and well calculating for farming on the upper Country in the point' the 

Bottom is extensive and emensly [sic] rich for 15 or 20 miles up each river, and about 

two thirds of which is open leavel [sic] plains in which the inhabtents [sic] of st Charles 

& portage de Scioux thad ther [sic] crops of corn & wheat. 

 As a member of a surveying crew in 1816, Henry Allyn noted the patches of forest 

within the prairie and their proximity to water courses,  

The country all prarie [sic] except here & there an island of timber of from 100 to 

500 acres, & a narrow list of timber along the margins of the largest streams. We arrived 

at the Illinois bluff, at a place where the bottom was wide & timbered; & after advancing 

some distance, came to a body of water, but were in doubt whether it was the river.  
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Also in 1816, Reverend Timothy Flint described his experience from a keelboat floating 

on the Mississippi River through the American Bottom. He observed that forest existed within a 

wide buffer near the river and prairie extending farther away.  The river, he wrote,  

[The river] has a skirt of wood two or three miles in width. Still farther from the 

river, and beyond the timbered land, is a most beautiful prairie of the richest land, from 

two to four miles in width. Beyond this are lofty and perpendicular stone bluffs, the bases 

of which appear evidently to have been once worn with running water. This charming 

skirt, partly timbered, partly prairie, and every where limited by this kind of bluff, 

extends from this point to a considerable distance above St. Louis. 

Flint’s observation that the “skirt” of vegetation along the bluffs consisted of a mix of 

prairie and forest demonstrates the flux of the ecological gradient that is mediated by fire 

disturbance. 

 A U.S. General Land Office surveyor, William Rector, wrote of Calhoun County in 1816 

regarding the density of forest as low, but with clusters of dense forest in select locations, “The 

greatest objection to that part of the Country seems to be the scarcity of timber there is however 

in many places considerable bodies of exellent [sic] timber.” In 1817-53, Gershom Flagg 

described the area of his new property,  

The prairies are very large while the timbered land is confined almost wholly to 

the intervales [sic] and low rounds. The land is generally good but there is a great 

quantity of Prairie and some whole townships destitute of timber. We consider the land 

generally that lies from 4 to ten miles from the large rivers to be the best for farming & 

for health. The land near the water courses is richer but not considered heathy [sic] and 

after you get some distance from water courses the Prairies are much too large. A belt of 
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timber accompanies all water courses but between the head waters of streams it is 

generally open level Prairie. The Bounty tract is setling [sic] very fast and the Imigration 

[sic] to the state is more now than it has been since I came here.  

In the1820s, Daniel Harmon Brush wrote,  

A prairie of richest soil stretched out about 4 miles in length and one mile wide, 

extending to the timber growing next the river. The strip of timber-pecan, hickory, black 

walnut, oak, persimmon, ash, hackberry, etc.-being some three miles in width to the 

Bluffs that were bare of timber with walls of rock in places standing perpendicular from 

the prairie's edge, one hundred or more feet in height. Grass covered the summits, which 

loomed up above the rock in rounded cones of varied heights, kept denuded of other 

growth than grass by annual fires that overswept[sic] the hills and the prairie ground 

below. At intervals of half to three fourths of a mile small spring-fed creeks of living 

water came through passes in the Bluffs and took their winding way down through the 

prairie until lost by spreading out in the bottomland towards the river. At many points 

along the Bluffs ever-living and unchanging springs of cold water, clear and pure, burst 

forth beneath the solid walls of rock, non-freezing in winter and refreshingly cold in 

summer, from which little rivulets sang their way over pebbly beds towards the setting 

sun. East of the Bluffs a short distance, a fine growth of choicest timber set in and 

covered the broken ground, as also the valleys, from which ample supplies were obtained 

for building and fencing purposes. Great groves of sugar maples were common along the 

little streams that came down through the hills, from which came most of the sugar used 

by the settlers for many years.  

Author James Hall wrote in the November 1830 issue of the Illinois Monthly Magazine,  
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The prairies are not flat, but composed of a succession of swells. The timber is 

scattered in groves and strips, the whole country being one vast illimitable prairie, 

ornamented by small collections of trees. Sometimes the woodland extends along the 

river for several miles continuously-sometimes it is seen stretching in a wide belt far off 

into the country, and marking the course of some tributary stream and sometimes in vast 

groves, of several miles in extent, standing alone like islands, in this wilderness of grass 

and flowers. But more often we see the single tree without a companion near, or the little 

clump composed of a few dozen oaks or elms; and not unfrequently, hundreds of acres 

embellished with a kind of open woodland, and exhibiting the appearance of a splendid 

park, decorated with skill and care by the hand of taste. Here we behold the beautiful 

lawn enriched with flowers, and studded with trees, which are so dispersed about as not 

to intercept the prospect-standing singly, so as not to shade the ground, and occasionally 

collected in clusters, while now and then the shade deepens into the gloom of the forest, 

or opens into long vistas and spacious plains, destitute of tree or shrub. 

 English immigrants, Rebecca Burlend and her son Edward, settled on 80 acres in Big 

Blue Creek of Pike County in 1831 and provided an excellent description of the variability of 

forest density and the state of maturity,  

The strong timber trees grow at various distances from each other, sometimes 

being as near to each other as they can possibly grow, at others twenty or thirty yards 

apart. They not only vary considerably in this respect, but also in magnitude and age. Not 

a few are to be found in the last stage of decay, their patriarchal dignity gradually 

submitting to the all-subduing influence of time. Numbers more are quite hollow, in 

which bees, owls, and rabbits severally find shelter and propagate their species. 
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 In 1868, A.H. Worthen, the State Geologist, wrote of Jersey County in Volume III of the 

Geological Survey of Illinois, and corroborated other accounts that describe forest as primarily  

found in the steep terrain adjacent to the river along the bluffs,   

The central and eastern portions are mostly prairie, and are comparatively level or 

gently rolling; while the western portion becomes more broken as we approach the river 

bluffs, which are intersected by deep ravines, separated by narrow ridges, many of which 

are from one hundred and fifty to two hundred feet in hight [sic]. This portion of the 

county is heavily timbered.  

Remembering back from 1919, Oscar B. Hamilton wrote of the importance of sugar 

maples in the area,  

Then there was the maple sugar camp... The main camps in this county were those 

of Col. Josiah Askew in 6-11,  and Henry Noble in Sugar Hollow southwest of Otterville, 

7-12. Sixty years ago maple sugar was a staple article of trade at the stores, as were also 

three and four-foot oak clapboards and pickets, staves and heading, hoop-poles and ten-

foot rails.  

Accounts of Fires 

In 1817-53, Gershom Flagg described fire behavior and the seasonality of fires in forest 

and prairie systems. He observed significant mortality in the new seedling growth following a 

fires that were ignited by farmhands to clear fields that resulted the lack of quality timber but 

with an abundance of prairie vegetation.   

There has been a great fue [fire] in M Paddocks fields this afternoon a [and] all 

the Men and part of the women in the neighborhood turned out to fight it. it was the worst 

fire to manage that I ever saw in the Prairie we could not put it out even when the wind 
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was in our favor and we had to let it run tluough [through] the fences and then tear them 

down to prevent the rails from being burnt They have lost a good many Rails I do not 

know how many They have hired a wild Irishman lately and he undertook to burn over 

the stubble ground and the fire spread as it had a right to do all over the fields.  

In 1879, Clement L. Clapp remembered the effects of fires during a prolonged drought,  

The winter of 1819 and '20 proved to be an unusually severe one. The long grass 

of the prairies had been destroyed by fires lighted by the Indians or hunters, and much of 

the undergrowth in the woods was killed by the same element. Before the close of the 

winter, the provisions gathered by them for their stock, from places where it had escaped 

the ravages of the fire, gave out and they were compelled to cut down trees, from the 

boughs of which the cattle and horses could procure a scanty supply of food. Many of 

these wandered away and were lost, while some of them died from the effects of cold and 

hunger.  

Charles C. Chapman wrote of the efforts to minimize the damage from human ignited 

fires in 1880,  

In pioneer times, when there were scarcely any fences, and not land enough under 

cultivation to stop the great prairie fires which occurred in the fall for the year, they 

proved very disastrous to those living on the prairie. The township consists, for the most 

part, of Mississippi river bottom land, a large portion of which is prairie. The grass on 

this bottom land grew to an enormous height, was very thick, and as high as a man's head 

while on horseback. This grass was so heavy and thick that when the settlers went a-

fishing in the Sny [sic] they would hitch the team to a large brush or tree and drag it 

through the grass and mash it down, to make a road for them to pass over. In the fall of 
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the year this luxuriant growth of grass would be set on fire by the Indians or hunters, and 

especially when the wind was high, would sweep resistlessly [sic] over the whole 

country, high and low, destroying a great deal of property. The pioneers early learned to 

guard against this destructive element by plowing wide strips of land around their 

premises and around their grain and hay. As soon as the alarm of fire was given, each 

settler would immediately begin to ‘back fire.’ This was done by setting the grass on fire 

next outside the plowed strip, which would burn slowly and meet the rapidly advancing 

flames that came rolling in majestic grandeur, from 20 to 30 feet in the air.  

In 1911, soon after fire suppression was adopted at a national level, Charles A. Walker 

wrote,  

Before the busy hand of man changed the face of nature by reducing it to his uses 

and purposes, the timber lines stood out in bold relief like promontories extending far out 

into the ocean, and they served the weary traveler as landmarks to guide him to his goal. 

In those old days, the hunters, rangers and Indians burned the prairies in the fall of the 

year, but the permanent settlers soon put a stop to that. It appears that the channels of the 

larger streams checked the progress of the fires and protected the forests along their 

courses, so that the timber along the creeks was good, there being white oak, black oak, 

red oak, post oak, hickory, ehn [elm], ash and some walnut. One of the attractions to the 

first settlers in this region was the abundance of limestone which cropped out in the 

streams in five places, first in the Piasa creek on the Jersey county line, one and a fourth 

miles west of Piasa, thence appearing on four branches nearly on a line south by west for 

a distance of about two and one-half miles in the same direction.  

In 1919, Judge Oscar B. Hamilton wrote of fires,  
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Then there was also danger from the forest fires, started by hunters, campers or 

other careless persons, among the forest leaves, and in case of a heavy wind, or even a 

strong breeze, the fire would spread, and be as dangerous as the prairie fires. Whole 

neighborhoods of settlers, men, women and children of sufficient size, would be called 

out to fight the fire, and continue the contest day and night until it was headed off, 

usually by clearing the ground of its coat of leaves, and backfiring, and then watching for 

flying branches or burning leaves which would be carried by the wind beyond this 

backfire barrier. These would be attacked with wet sacks, or other means would be taken 

to extinguish the fire before it could get another start. These were strenuous and 

dangerous emergencies, taxing the courage and physical endurance of the early settlers, 

whose farms were along the skirt of timber, and extending out into the prairie, where this 

was possible. Many of the pioneers went into the timber because they had to get wood for 

their buildings, all of their other improvements, and for their fires. Many were born and 

bred woodsmen, and found security and safety in the timber, and were afraid of the open 

prairie with its aunual [sic] fires, insecurity from attacks from the Indians, and supposed 

hardships and impossibility of hauling sufficient timber to improve and maintain the rude 

appliances then possessed by them. There in the timberland, which skirted the streams, 

springs were to be found which supplied them with cool water for both the family and 

livestock. 

These early ecological observations provide a useful reference for assessing the long-

term development of floristic patterns in the Big Rivers Area. Based on palynological studies, 

many of the above descriptions could apply to the ecology of the area for the previous 10,000 

years with much historic variability attributed to human population density effets on the land as 
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well as dramatic shifts in climatic cycles. This largely fire mediated system, and the interaction 

of topography and hydrology in influencing fire severity, has endured 10,000 years of relative 

stability until the activities of Euro-American settlement divided fuel contiguity and imposed a 

conservation ethic which promoted fire suppression to protect the establishment and growth of 

forest resources for society’s conservation and use. 

Following settlement, artist and poet, Fredrick Oakes Sylvester moved to a cabin on the 

bluffs and captured the dramatic landscape in several artistic works (Sylvester, 1911). The 

paintings depict many of the features written about in the early written accounts of the area with 

dense forest near the river valleys and upland bluff and prairies with scattered trees along the 

ridgelines (Figures 2 and 3).  
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Figure 2. The bluff region near West Farm at Principia College as painted by F.O. Sylvester 

circa 1906. 
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Figure 3. “Soft Twilight Lingers”, circa 1906, depicting the Mississippi River and limestone 

bluffs at Grassy Hollow on West Farm, Principia College by F.O. Sylvester. 

 

Figure 4. Current photograph along the Mississippi River bluffs shows closed-canopy forest with 

small prairie openings perched on the edge of the bluff. 
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Disturbance Regimes of the Midwest Forest 

Natural and anthropogenic disturbance in the Middle Mississippi River Bluffs Region 

greatly altered forest structure and composition thereby creating unique plant assemblages. The 

scope of modern disturbance has been recorded in detail when the events caused significant 

damage to property (Table 3). However, the occurrence of low intensity disturbances (e.g. 

prescribed fires) has largely escaped systematic record keeping.  

Table 3  

Frequency of atmospheric disturbance events in the central Midwest. 

Disturbance Type Number of Events since 1955 

Wind 104,161 

Tornados 12,695 

Hail 66,059 

 

 Data from NOAA Storm Events Database (https://www.ncdc.noaa.gov/stormevents/ftp.jsp)  

Wind disturbance events exert the greatest impact on tall trees with large crowns and 

weak trees with compromised root systems and lethality is proportional to wind speed. Wind can 

damage vegetation by causing the tattering leaves which leads to accelerated desiccation, 

upbraiding limbs and stems with other plant parts, snapping stems, or uprooting. If the stand 

contains multiple cohorts of varying heights and sizes, wind disturbance often removes the 

overstory while releasing the understory individuals who escape lethal damage by falling 

dominants. Hail typically occurs during the growing season and can batter leaves resulting in 

reduced photosynthetic capabilities which may result in decreasing tree vigor and the ability of a 

tree to defend itself against pathogens. Wind events associated with groups of thunderstorms and 

include downbursts, micro- and macrobursts, and mesoscale convective systems such as 

supercells, bow echoes, squall lines, and derechos. Destructive wind events occur on a gradient 

https://www.ncdc.noaa.gov/stormevents/ftp.jsp
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including tattering leaves, removing leaves, breaking twigs and limbs, and snapping or uprooting 

large stems. Wind disturbances in the forest remove canopy shade and competitors of the lower 

strata resulting in a release event which may result in a shift of species dominance depending on 

the severity of the disturbance and the composition of the species below the canopy (Oliver & 

Larson, 1990). 

The ecological relationships between forest dwelling animals and forest composition 

involves a myriad of interactions affecting seed dispersal, germination, recruitment, and 

productivity. The Passenger Pigeon (Ectopistes migratorius) once existed in the billions of 

individuals as they few over Midwestern forests. Damaging trees by the roosting and nesting in 

great numbers, the pigeon caused disturbances on 1,000 to 5,000 acres across their range by 

breaking branches, uprooting trees, and defecating, a dramatic flux of nutrients whenever they 

nested (Ellsworth & McComb, 2003). E. migratorius tended preferred white oak acorns and was 

thought to be a key endozoochortic dispersal agent. The human induced extinction of this 

massive disturbance agent has resulted in the loss of this type of forest disturbance and the 

associated impacts on forest dynamics. 

Forest Management in the Midwest 

Timber Harvesting 

Historically, timber harvesting occurred across the Midwest at varying intensities 

depending on the needs of the landowner. The Jersey County historic atlas from 1872 depicts one 

sawmill within Elsah Township on John Lock’s property. A detailed analysis of changes to forest 

cover since Euro-American settlement in the township is presented in Chapter 2.  

The modern timber industry in the Midwest, specifically in Illinois, is disadvantaged by 

an overall lack of access to sawmills, which is highly variable from state to state. For example, 
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Illinois has lost 72% of its mills since 1961 and sends approximately 30% of the harvested 

roundwood to adjacent states (Illinois Statewide Forest Assessment, 2008). Indiana has a wood 

processing facility within 30 miles of every part of the state (Indiana Statewide Forest 

Assessment, 2010). Without adequate timber buyers to create steady demand for forest products, 

timber prices stagnated and declined. In Illinois, the average price for all species and grades 

declined $18.96 per thousand board feet between 1977 and 2011 after adjusting for inflation 

according to the timber price bulletin produced by Illinois Department of Natural Resources.  

Small diameter markets are non-existent thereby making large diameter timber the only 

commercially viable source of wood products. Without a market and subsequent incentive to 

harvest less desirable trees, widespread high grading occurs throughout the Midwest. If the forest 

owner is inclined to enter a forest management plan, small diameter trees may be cut at a short 

term economic loss to the forest owner in order to improve future timber growing conditions. 

Therefore, silvicultural treatments which facilitate shade intolerant and intermediate species are 

seldom employed except on an experimental basis. High grading and commercial thinning 

accelerate species composition shifts away from historical conditions if not mediated by timber 

stand improvement treatments such as prescribed fire and thinning of later seral species. With the 

popularity of single tree selection systems, few landowners express an interest in setting an oak 

regeneration goal within their forest management plan (Moser, Leatherberry, Hansen, & Butler, 

2009).  

Invasive Species Management 

Disruptions to normal ecological functioning in Midwestern forests are caused by the 

nearly ubiquitous presence of invasive plant species such as garlic mustard (Alliaria petiolata), 

bush honeysuckle (Lonicera maackii, L. tatarica, and L. morrowii), autumn olive (Elaeagnus 
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umbellata), common buckthorn (Rhamnus cathartica), and burning bush (Euonymus alatus); as 

well as the insect species Emerald Ash Borer (Agrilus planipennis) Gypsy Moth (Lymantria 

dispar). The vegetative invasive species alter soil chemistry, fuel arrangement and quantity, and 

shade levels (Kolbe, Townsend-Small, Miller, Culley, & Cameron, 2015). In addition, most 

invasive plant species compete aggressively with native vegetation for resources and have 

deleterious effect on tree growth rates and regeneration (Black, 2017; Hartman & McCarthy, 

2007). Management of invasive species is expensive and eradication may not be feasible in every 

situation (Liu, Sheppard, Kriticos, & Cook, 2011).  Many forest managers seek to reduce the 

density of invasive species to a level that allows for general ecological functioning to continue 

with a combination of foliar spraying, mechanical removal, or prescribed fire in the case of 

plants while insects are largely left unmanaged (Hansen, Hamm, & Campbell, 1990). Invasive 

species management appeals to a limited demographic of forest owners who know the effects of 

invasive species and have the resources to absorb the cost of management (Gobster, 2011). Any 

concerted effort to check the spread of invasive species has not been achieved at the landscape 

level (Fan et al., 2013).  

Fire 

The use of prescribed fire has been found to provide numerous benefits to forest 

ecosystems in the Midwest. Among the more salient aspects related to management objectives, 

prescribed fire reduces stem density in smaller diameter classes and filters out species not 

adapted to fire through repeated burning (Holzmueller, Groninger, & Ruffner, 2014). Not unlike 

the limitations to invasive species management, applied fire is costly and logistically difficult to 

implement which are problems that only magnify as the scale of operational complexity 

increases. Creative solutions have evolved to pool resources and initiate more burns such as the 
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Southern Illinois Prescribed Burn Association, Illinois Prescribed Fire Council, and annual 

meetings of the burning community (Riechman, Park, Ruffner, & Groninger, 2014).  

Wildlife Habitat Enhancement 

Forest landowners in the Midwest are typically not driven by a motivation to invest in 

fiber production due to limitations in accessing timber markets and lack of available professional 

forestry assistance. Utilizing the forest for recreation in the form of hunting is a leading 

motivation for forest management. Specifically, enhancing wildlife habitat by increasing 

palatable species and diversifying forest structure are methods to retain desirable game species 

populations. Consideration given to non-game species is not high on private land unless 

regulation requires action, but it becomes an important factor in the management of public 

forests.  

Research in Upland Hardwoods 

Within the upland oak range, forest managers are challenged with cultivating the 

conditions requisite for oak germination and survivorship resulting in recruitment and eventual 

site dominance. Oak is largely considered a mid-seral species on mesic sites and climax on lower 

quality or dry sites (Burns & Honkala, 1990). Therefore, when the site is of high quality with 

deep, rich soils and adequate access to moisture, for example 60-75 Site Index with 110 sq ft 

basal area, silvicultural prescriptions with oak regeneration as a goal have employed single-aged 

regeneration systems that focus on reducing competitors and maximizing conditions for oak in 

the light environment. Conversely, lower quality sites have the capacity to regenerate oaks with 

uneven-aged management in some cases due to reduced competition. However, with reduced 

burning frequency, most of these sites have multiple cohorts of mesophytic species (Nowacki & 

Abrams, 2012). Oak regeneration failures have been attributed to excessive acorn predation, 
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seedling herbivory, low acorn mast production, and competition by other plant species, namely 

winged elm (Ulmus alata) and ironwood (Ostrya virginiana) (Ward, 2015).   

The importance of fire as a mechanism for establishing oak dominance has been tested 

and confirmed in several regional studies.  A review of 32 oak regeneration successes identified 

a common set of conditions that favored oak species, which included a minor overstory 

disturbance in conjunction with a growing season burn, or multiple burns in an undisturbed 

canopy forest (Brose, Dey, Phillips, & Waldrop, 2013).   Oak regeneration in oak shelterwoods 

was maximized in plots with high intensity spring burns (Brose, 2014). In shelterwood systems 

of central Virginia, the long term effects of varying levels of burn intensity, including non-

burned areas, were evident in study areas that were re-measured 11 years following the 

treatments and shown to favor oak-hickory over yellow-poplar and red maple when the burn 

intensity was high (Brose, 2010).    

The light environment experienced by oak seedlings has been shown to play a significant 

role in oak dominance (Holzmueller et al., 2014). Low shade has a greater impact on light 

environments at the seedling level than does high shade and this effect was tested in a study that 

examined the impact on survival, growth, and competiveness of seedlings when the midstory 

was removed. The results indicated that oak advance regeneration experienced grew faster when 

the midstory was removed and mortality of natural oaks was not different when compared to the 

control, but underplanted oaks displayed a higher mortality rate (Craig, Lhotka, & Stringer, 

2014).  

Each stand requires an individual assessment to determine the site and forest 

characteristics. Thinning and timber harvests may risk accelerating succession by removing 

mature pyrophobic species and releasing mesophytic species, resulting in a complete forest 
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dominance shift. Avoiding unintended successional acceleration is achievable by several 

methods including variable retention harvesting (VRH) (Franklin & Johnson, 2012; Xing, 

Nielsen, Macdonald, Spence, & He, 2018) and a two stage oak shelterwood (Dey, Kabrick, & 

Schweitzer, 2017; Holzmueller et al., 2014; Miller, Brose, & Gottschalk, 2017). Any canopy 

disturbance should be preceded by the effective control of invasive species.  On non-hydric sites, 

VRH provides a range of benefits to the diversity of tree species as well as providing refugia for 

wildlife.  Because tree species range in shade tolerance and moisture requirements, VRH 

supplies the entire light gradient to the establishing cohort in each topoedaphic setting, resulting 

in the highest probability of ideal growing conditions for the target species. Furthermore, VRH is 

extremely adaptable to spatial variability of stand characteristics and allows the manager to 

adjust to changing conditions.  The two stage oak shelterwood unifies historic forest conditions 

with management objectives. By removing the mesophytic trees in the small and mid-diameter 

size classes, understory light levels increase enough to allow the germination and growth of 

shade intermediate species (most of the oaks and hickories) (Ruffner & Groninger, 2004).  As 

the new cohort establishes and grows into the stem exclusion phase, an overstory harvest of the 

mature canopy trees can occur, thus releasing the younger cohort with the addition of full sun 

and resources. Both VRH and oak shelterwood are suitable for ecological restoration goals if 

target conditions approximate pre-fire suppression era forest parameters (Kirkman, Mitchell, 

Kaeser, Pecot, & Coffey, 2007). Any forest restoration project would require the corresponding 

herbaceous layer restoration since the historic low density forest coexisted with prairie species 

(Dey et al., 2017; Peterson, Reich, & Wrage, 2007). Silvicultural strategies to restore stand 

conditions will necessarily create stands of lower density and greater diameter distribution 

diversity.   
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Prescribed fire serves the two primary ecological functions of reducing pyrophobic stem 

density and stimulating growth of graminoids and forbs (Ruffner & Groninger, 2006; Vander-

Yacht et al., 2017). Therefore, fire aids in silvicultural and ecological restoration objectives when 

applied in coordination with mechanical thinning operations (Holzmueller et al., 2014). Applying 

fire prior to a mechanical entry may reduce the overall thinning load by causing mortality in 

small diameter stems (Knapp et al., 2015; Stambaugh et al., 2014). Fire applications following 

thinning are necessary to reduce the vigor of competitive pyrophobic species and enhance and 

perpetuate the prairie species component (Ruffner & Groninger, 2004). High intensity fire may 

occur where felled tree crowns are located and could cause undesirable mortality in larger oak or 

hickory stems. The frequency and seasonality of the prescribed fire events should be adjusted to 

the silvicultural or ecological goals (Vander-Yacht et al., 2017).  

In today’s environment, any forest disturbance may provide an opportunity for non-native 

invasive species to grow and proliferate without effective measures for treatment. Invasive 

species present a significant challenge to the forest manager who is seeking to maximize 

ecological integrity and potential economic returns. A major threat to forest stability is the 

invasion of L. maackii which dominates the shrub layer in non-hydric sites in 1 to 6 cm size 

classes. Seed dispersal is primarily endozoochoric through avian species (Bartuszevige & 

Gorchov, 2006) and white-tailed deer (Odocoileus virginianus) (Castellano & Gorchov, 2013). 

Although many methods exist to control L. maackii, herbicide treatment is proven to be the most 

cost effective due to the species’ re-sprouting ability (Nyboer & Edgin, 2017). Herbicides can be 

applied with aerial methods (Leahy et al., 2017), misting with power blowers, or by a cut stump 

treatment (Schulz, Wright, & Ashbaker, 2012). Each method has different advantages and trade-

offs (Bailey, Saunders, & Lowe, 2011). 



38 

 

 

 

Conclusion 

Low density oak forests and associated prairie species are considered ecologically valuable 

systems that warrant restoration and maintenance effort. Historically stable for 8,000 years, 

savanna and woodland conditions have declined sharply in the Midwest.  The formation of these 

ecosystems occurred in the midst of significant anthropogenic activity which irrevocably 

influenced the ecological trajectory towards pyrophilic species. The dominant anthropogenic 

disturbance was the use of fire to alter forest structure to be open and park-like. Ecosystem 

management in the Midwest would be improved by acknowledging and incorporating 

historically appropriate disturbance regimes with adaptation to expanding threats like invasive 

species proliferation.   
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CHAPTER 2 

EVIDENCE OF ITERATIVE SHORT TERM DYNAMICS WITHIN FOREST TRANSITION 

THEORY USING HETEROGENOUS SPATIAL DATASETS IN A TOWNSHIP IN 

MIDWESTERN U.S.A. 

 

Abstract 

Forest transition theory is used to describe the impacts of settlement and development 

activities on forest ecosystems across the world. Researchers have identified the need for 

information related to changes of forest attributes such as composition and structure, improved 

descriptions short- and medium-term dynamics within the context of the long-term transition, 

and the integration of biophysical drivers of forest change.  In Midwestern U.S.A., forest 

dynamics were historically influenced by frequent, low intensity disturbance events that 

mediated forest composition and stand structure. The onset of Euro-American settlement was 

accompanied by detailed land-use records with information related to forest attributes, 

agricultural activities, and parcel ownership. We sought to aggregate multiple sources of historic 

forest conditions into a geodatabase in order to document changes over the past 200 years in 

Elsah Township, Illinois, where the pre-settlement (1820) forest, once dominated by oak and 

hickory species, has largely shifted to a maple-dominated system with a declining oak-hickory 

component. Based on ordinary kriging interpolation, forest density was estimated at 8.7 stems 

per acre on average with a mean basal area of 14.6 square feet per acre prior to settlement. 

Conservation practices of the early 1900s, including fire suppression and erosion control resulted 

in changes to forest structure with density increases to 127 trees per acre with a basal area of 

175.8 square feet per acre. The high degree of topographic variability near the Mississippi River 

influenced forest cover changes as slopes with low angles were the first to be converted from 
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forest cover to other land uses (circa 1850). Forest re-initiation occurred in areas with higher than 

average slopes due to a lack of human activities. Forest cover declined to the lowest point in 

1927 and has been rebounding steadily throughout this century. Of the original 15,252 forested 

acres, 11.6% remained covered throughout the past 200 years and coincided with slopes with an 

average of 39.1 degrees. This information can provide a spatially explicit and historically 

relevant tool to guide land management decisions including restoration, disturbance regime 

management, and land use preservation in similarly heterogeneous environments. 

Introduction 

Changes in forest communities are well documented due to recent advances in global 

mapping by satellites and airborne sensors which have allowed the detection of fine-scale forest 

changes for the past five decades (e.g. Goymer & Davis, 2017). Despite limitations of historic 

data sources, such as USGS topographical maps, plat maps, and county-level survey notes, the 

digital conversion of these sources allows spatial analysis to reveal empirical evidence of forest 

trends over time, which are often useful to practitioners of forest restoration ( Foster, Olsen, 

Dale, & Cohen, 2010) and allow short- and medium-term patterns in forest transition to be 

analyzed in terms of species composition, stand structure, and the spatial extent of forest 

coverage. Historical data provide reference waypoints for the trajectories of ecological systems 

and changes to the extent, composition, and structure of forested areas (Whitlock, Colombaroli, 

Conedera, & Tinner, 2018).   

According to forest transition theory, the broad patterns of forest change are driven by 

human development events such as cutting, agriculture, grazing, and fire, resulting in declines in 

the areal extent of forest followed by preservation of remnant forest patches or regrowth of 

formally cleared land (Mather, 2001; Ness, Drake, & Brechin, 1993). Mapping changes in forest 
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coverage using heterogeneous data sources can increase the temporal scale of analysis when 

these documents exist (Skalos, Engstova, Trpakova, Santruckova, & Podrazsky, 2012) and 

permits more recent ecological developments to be calibrated according to historic conditions. 

Researchers who seek to reveal drivers of forest change have modeled the effects of various 

explanatory variables within the Midwest and elsewhere using agent-based modeling (Evans & 

Kelley, 2008), cellular automata and spatial interaction models (Clarke & Gaydos, 1998; 

Messina & Walsh, 2001), and dynamic systems models (Evans, Manire, de Castro, Brondizio, & 

McCracken, 2001). Critical analysis of forest transition theory studies identified multiple 

research needs including an investigation into changes of forest attributes such as composition 

and structure in addition to descriptions of short- and medium-term dynamics within the context 

of the long-term transition. Furthermore, biophysical drivers of forest change, in addition to the 

socio-economic context, could provide important explanatory variables of trends described by 

the forest transition theory (Perz, 2007). 

The contextual factors accompanying the decline in forest extent as posited by the forest 

transition theory may enhance forest change models. Prior to settlement, anthropogenic activities 

have been linked to the occurrence of oak forests (Black, Ruffner, & Abrams, 2006; Guyette et 

al., 2002). Euro-American settlers modified forest disturbance regimes by increasing the 

frequency of fire across many systems (Guyette, Dey, & Stambaugh, 2003; Guyette et al., 2002), 

which reduces fire severity due to a lack of fuel buildup, and increasing forest light levels by 

cutting. These effects resulted in favorable conditions for shade intolerant and fire adapted 

species to establish and compete, thus perpetuating the historically congruent forest systems of 

savannas and woodlands (McEwan & McCarthy, 2008). Following the initial settlement effects 

on forest conditions, ecological regimes began a departure from the original ecological assembly 
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processes thereby resulting in an overall system shift.  Post-settlement land use practices were 

influenced by a conservation ethic that considered fire to be antithetical to the development of 

quality timber resources (Graves, 1910; Miller, 1920). The loss of frequent landscape fires 

resulted in the establishment and increasing dominance of mesophytic species across the eastern 

US (Nowacki & Abrams, 2008, 2015), consequently altering the historic disturbance regime that 

generated open forest conditions including savannas and woodlands.  

The comparison of forest composition prior to settlement and current conditions is 

typically conducted with Government Land Office records of surveyor notes describing the 

diameter and species of witness trees prior to settlement and comparing the results against 

current data originating from the Forest Service or Forest Inventory and Analysis data (Deines, 

Williams, Hamlin, & McLachlan, 2016; VanDeelen, Pregitzer, & Haufler, 1996). While these 

studies compare relative abundance, they typically do not calculate density or basal area, which 

are important forest metrics for determining reference conditions when planning forest 

restoration projects.  

The purpose of this study is to use forest transition theory to examine and describe 200 

years of spatial variations in forest cover, composition, and structure within a township using 

multiple data sources. We describe the conditions of the pre-settlement forest as observed in 

1820 during the township survey and compare to current conditions using relative values and in 

terms of density and basal area. The 1820 Government Land Office records containing witness 

tree information, the original plat maps from 1853, a USGS topographic map from 1927, aerial 

photographs from 1941, and satellite imagery from 2015 provided evidence for changes to forest 

cover during settlement, farmland abandonment, and forest regrowth. Forest cover changes 

including, loss, gain, and area remaining, were assessed in relation to the topographic factor of 
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slope as a critical driver of change. As a case study, the results are applicable to forest transition 

theory by providing a full account of forest attributes from pre-settlement to current conditions, 

short- and medium-term dynamics of forest cover, associations with biophysical factors, and 

fine-scale resolution of compositional and structural forest attributes within the forest cover. This 

study combines several commonly used historical ecology methods to describe changes to the 

forest community over nearly 200 years of anthropogenic activities related to Euro-American 

settlement and development. 

Study Area 

The Elsah Township is located in the south-east portion of Jersey County, along the 

limestone bluffs of the Mississippi River between the confluences of the Missouri River and the 

Illinois River and at the northern edge of the American Bottoms (Figures 4 and 5). From circa 

900 CE to 1300 CE, approximately 20,000 Native Americans lived across Cahokia, a major 

agricultural complex 23 miles downriver, (Denevan, 1992) and likely hunted, foraged, and 

burned in the Elsah Township area. The bluffline contains numerous Native American burial 

mounds and assorted features, indicating that it was a significant spiritual site (Charles, 1992).  

Additional Native American, (i.e. the Hopewell era, Kaskaskia, and the Illinois tribes) activities 

took place throughout the late Woodland and Contact periods within the area before and after the 

Cahokia civilization (Charles, 1992).  

In the study area, the soil is comprised of windblown loess that accumulated on the bluffs 

as the glaciers retreated 12,000 to 19,000 years ago. Precipitation averages 38.41 inches, of 

which 21.5 inches fall during the growing season. Temperatures average 29.9 degrees F during 

the winter and 74.4 degrees F in the summer, with daily highs averaging 85.6 degrees F (USDA 

NRCS 2002).  
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In 1820, John Carrol was the first settler to establish a residence in the Elsah Township 

(Atlas Map Of Jersey County, Illinois. , 1872). Elsah supported a fuel wood industry for the 

barges on the Mississippi River, limestone quarries, a ferry, a mill, and eventually the estates and 

farms of wealthy St. Louis families that desired a summer residence with a view of the river from 

atop the bluffs throughout the early 1900s. As coal rose in importance, the fuel-wood industry 

declined and farming became the main economic focus of the area with many residents 

commuting to the city for employment opportunities (Hosmer & Williams, 1986). In 1930, 

Principia College purchased 2,600 acres along the bluff line from Lockhaven to Chautauqua to 

build a river-bluff village and campus (Hosmer & Williams, 1986). 

 

Figure 5. Locational map of Elsah Township, north of St. Louis, MO.  
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Figure 6. Location of Elsah Township within Jersey County, IL. 

Within Jersey County, Elsah Township is located in the south-central portion and along 

the bluffs of the Mississippi River and downstream from the confluence of the Mississippi and 

Illinois Rivers.  
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Methods 

The spatial details of land-use history, often in disparate sources and formats, were 

recompiled and stored in a geodatabase. The datasets include witness tree records, a plat map of 

the county and township published in 1872, USGS topographic map from 1927, aerial imagery 

from 1941, and satellite imagery from the past 50 years.  

 

Figure 7. Spatial datasets used to measure forest changes from 1820, 1853, 1927, 1941, and 

2015. 

Witness tree data were obtained from Brugam, Kilburn, and Luecking (2016), who 

conducted an analysis of pre-settlement vegetation in Greene, Jersey, and Macoupin counties and 

populated the locational data with witness tree attributes in a spreadsheet. Elsah Township 

witness trees were queried and selected from the dataset, and exported as a separate shapefile. 

Surveyor bias during witness tree selection can present a problem when reconstructing forest 

structure and composition. Although these witness trees can serve as long-lasting reference 

points, bias in the survey trends towards larger, healthy trees over smaller or decaying trees, 

thereby introducing errors into species composition, density, and basal area (Bouldin, 2008). 



47 

 

 

 

Bias has been detected in other studies where surveyors selected trees close to the center of area 

between ordinal directions (Anderson, Jones, & Swigart, 2006).  Detecting the nature of the bias 

is difficult due to the lack of suitable datasets to serve as a cross-reference. The 32 species 

identified in the Government Land Office (GLO) survey is diverse enough to be representative of 

the landscape and its forest patterns and bias is not presumed.  

Tree density for the 1820 GLO witness tree data was calculated using adjustable 

exclusion angle method for pair random samples found in GLO witness tree data (Anderson, 

Jones, & Swigart, 2006). This method was selected because it provides the highest estimate of 

tree density compared to other methods and underestimating tree density is a perennial problem 

with witness tree data (Anderson, Jones, & Swigart, 2006). Pairwise distance among trees was 

calculated with the “near distance as a table” tool in ArcGIS 10.1, which includes the angle at 

which the near distance measurement was made. The table was joined to the large tree data 

where a field for density was calculated. Elsah Township witness tree data contain 41% of the 

second tree of the pair in adjacent quadrants and 58% in opposite quadrants which enable the 

standard 180 degree adjustment factor of 0.8 to be used when using the tree-to-tree distance in 

calculating the square root of the mean area (Anderson, Jones, & Swigart, 2006). 

The equation for stem density in trees per acre: 

 43560

(tree − to −  tree distance(ft) ∗ 0.8)2
 

Basal area in square feet per acre was determined by the equation: 

(
𝜋(

𝐷

2
)2

144
) × 𝐷𝐸𝑁  

where D equals diameter of a stem in inches and DEN equals the stem density in stems 

per acre.  
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The tree density and basal area were interpolated using the ordinary kriging method and 

clipped to the forest extent with a variance prediction surface included in the output. Species 

composition was analyzed using relative density and relative dominance, which were averaged 

as statistics of species for the entire township. 

 

 

Figure 8. A GIS workflow that describes the process of analyzing forest structure from the 1820 

GLO data.  

The Map Atlas of Jersey County, Illinois (Figure 8) developed in 1872 contained parcel 

ownership and land cover maps at the township level, as well as biographical sketches of the first 

settlers and the details of their occupations and farm status. Numerous prominent estates were 

drawn in ink pen and most depicted the dwelling and surrounding farm and landscape, which 

were geotagged in reference to the parcel and farm house features. The Elsah Township map 

displays the settlement progress as of 1853 including forest cover, farm houses, orchards, and 

vineyards. The blank space between the features is assumed to be pastureland (grasslands) or 
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cropland. The township map was initially scanned as a jpeg file, then georeferenced following 

the 2010 Jersey County parcel lines, and finally saved as a geoTIFF file. All of the map features 

were heads-up digitized into a geodatabase with a State Plane Illinois West projection. The total 

area in acres was calculated for each land-category. The 1853 parcel files were joined with a 

table found within the map atlas that contained setter’s name, occupation, country or place of 

origin, and Elsah Township settlement date. The settlement date was used to create a time-series 

analysis that mapped the progression of parcel settlement within Elsah Township, thereby 

providing approximate dates for the initiation of tree cover removal and the start of agricultural 

practices. 

 

Figure 9. Elsah Township plat map depicting ownership and land cover in 1853. 
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The USGS topographical map (https://ngmdb.usgs.gov/topoview/) published in 1927 

documents land-use changes since 1853. The digital topographical map was converted from a 

geoTIFF file into a categorical raster by performing an interactive supervised classification 

which categorized the features into water, forest cover, and pasture-agricultural land. No 

delineation was made by the map makers for orchards or vineyards at this time. The area of each 

land-use category was totaled and compared to the totals from 1853.  

The first aerial imagery of the township was obtained in the summer of 1941 with black 

and white photography. The imagery was downloaded from the Illinois Geospatial Data 

Clearinghouse (http://clearinghouse.isgs.illinois.edu/data/imagery/1937-1947-illinois-historical-

aerial-photography) and georeferenced using control points identified on current aerial imagery. 

The imagery contained black borderlines, which were removed by clipping the image  and the 

multiple images were mosaicked together to create a single image file from which image 

classification could occur using the Mosaic to New Raster tool. Interactive supervised 

classification was performed and created spatial extents of each respective land-use category.   

Finally, the summer 2015 ortho-imagery from the National Agriculture Imagery Program 

was downloaded from the USDA Geospatial Data Gateway (https://datagateway.nrcs.usda.gov/). 

The imagery was classified into the main land-use categories using the interactive supervised 

classification, which was stored in the geodatabase. Land-use area totals were calculated and the 

results were added to the land-use change data (Figures 18 and 19). 
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Figure 10. The process for obtaining the forest extent for 1820, 1853, 1927, 1941, and 2015. 

Note that the entire township was considered a low density forest in 1820. 

The extents of forests were analyzed for spatially explicit changes during each time 

period to determine the patterns of forest cover loss and gain.  The “erase” tool was used to erase 

the older forest extent from the newer forest extent in order to produce forest gain. Likewise, the 

new was erased from the older to produce forest loss. The remnant forest cover was the area that 

did not experience any amount of loss during the 200 year time frame. Due to the heterogeneous 

topographical conditions found within the township, slope provides a suitable proxy for the 

intensity of agricultural activities including grazing and cropping that preferred utilizing land 

with relatively flat slopes compared to steeper slopes.  The loss and gain layers were used with a 

LiDAR derived slope layer during an “extract by mask” in ArcGIS 10.1 procedure to obtain the 

slope attributes of the loss or gain forest extents for each time frame. 
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Figure 11. The workflow for determining the extent of forest loss and gain for each time period.  

The relationship between slope and forest loss, gain, and coverage was calculated by 

clipping the slope layer to the spatial extent of each dataset for forest loss, gain, and coverage.  
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Figure 12. The process of calculating slope for each dataset of forest loss and gain. 

Current forest composition and structure was obtained from 79 plots, each 25 m2 located 

in the upland region of Elsah Township. All stems greater that 3 inches dbh were measured and 

identified. The importance value for each species was calculated using the average of relative 

dominance and relative density. Relative dominance is the sum of basal area for a species 

divided by the total basal area of all species. Relative dominance is the sum of density for a 

specie divided by the total density of all species. The importance values for each species in 1820 

and 2017 were compared and the differences were graphed.  
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Results 

Changes in Species Composition and Structure 

As seen elsewhere across the Midwest, the forest shifted in species composition and 

structure during the 200 years of settlement and development (Figure 8). Pyrophobic species, 

such as A. saccharum (+14.66%), F. Americana (+5.28%), and J. nigra (+5.15%), increased in 

relative importance value while pyrophylic species, including most Quercus species, declined 

between    -6.77% and -14.70%. Two pyrophobic species that increased were Q. rubra (+7.91%) 

and S. albidum (+3.39%).   One pyrophobic species, P. deltoides, declined by -3.29%. 
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Figure 13. The change in importance value from 1820 to 2017 of all species.  

The witness tree record in Elsah Township was compared to current forest inventory data 

using changes in importance value by species (Figure 13). Red bars indicate pyrophylic species 

while blue bars represent pyrophobic species.  

Stem density and basal area also changed significantly during the past 200 years. In the 

Elsah Township, ordinary kriging analysis applied to the GLO data produced a forest density 
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estimate of 8.7 stems per acre with a mean basal area of 14.6 square feet per acre for the entire 

township. (The non-spatial analysis of the GLO data without kriging resulted in forest density 

with an average of 7.5 stems per acre and a mean basal area of 13.1 square feet per acre.) Current 

upland forest conditions consist of 127 trees per acre with a basal area of 175.8 square feet per 

acre. 

The results of the ordinary kriging analysis indicated that stem density was lower on the 

southern portion of the township which borders the Mississippi River. The basal area 

interpolation generated a patchy pattern of high and low values.  

 

Figure 14. Ordinary kriging of stems per acre for 1820 GLO witness tree data.  

The forest density (stems per acre) was determined for each section corner and midpoint 

and the values were used for interpolating the surface through the method of ordinary kriging. 

The resulting surface is symbolized with 10 quantiles. 



57 

 

 

 

 

Figure 15. Ordinary kriging of basal area in square feet per acre for 1820 GLO witness 

tree data.  

Basal area per acre (square feet per acre) was determined and used in ordinary kriging to 

produce a basal area surface symbolized in 10 quantiles.  

 

Changes in Forest Coverage 

Elsah Township experienced significant change in land-use patterns and forest coverage 

over the past 200 years. The entire township was covered in a low density forest at the time of 

initial surveying in 1820. Settlement activities occurred and by 1853, a total of 9,344 acres, 

61.8% of forest were converted into pasture, vineyards, orchards, and crops, leaving 5,864.38 

acres of forest remaining (figure 16). Over the next 74 years, 46.4% of the remaining forest was 

cleared while an almost equivalent acreage re-grew. By 1941, gains in forest coverage, 3,067.64 

acres, outpaced losses, 1,993.03 acres, resulting in a total of 6,779.65 acres of forest. The trends 
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from 1941 remained consistent for the next 74 years with 3,411.85 acres of forest re-growth and 

2,126.12 acres of loss for a total forest coverage of 8,070.43 acres. Of the original forested area 

in 1820, 11.6% or 1,769.07 acres of forest did not experience clearing at any time period (figure 

18).  

 

 

Figure 16. Forest cover loss and gain for the Elsah Township in 1853, 1927, 1941, and 2015. 
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Figure 17. Total forest loss and forest gain in Elsah Township since settlement.  

 

 

Figure 18. Remnant forest cover in the Elsah Township consists of 11.6% of the 1820 cover.  
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Figure 19. Forest cover, loss, and gain from 1820 to 2015 in Elsah Township. 

Changes to forest cover followed the trend identified by the Forest Transition Theory 

with initial loss of area in forest cover following settlement and subsequent regrowth as 

development continued into the 20th century.  

The average slope of forested areas and areas that experience forest loss or gain provides 

evidence of prioritization of land-use decisions (figure 19). Elsah Township has an average slope 

of 24.49 degrees. Forest loss occurred on increasingly steeper slopes in each time period until the 

last time period of 1941 to 2015. The slope of forest loss during 1820 to 1853 (21.56 degrees) 

was less than the township slope average (24.49 degrees) as was the time period between 1853 

and 1927 (23.07 degrees). The re-growth of forest coverage occurred on the steepest of the 

initially cleared slopes with an average of 33.87 degrees. The forested area for each time period 

steadily increased as the relatively flat land was utilized for other purposes and steep slopes were 

returned to forest cover. 
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Figure 20.  Average slope of forested, forest gain, and forest loss area for each time period with 

standard deviation error bars. 

After the extent of forest cover, forest loss, or forest gain was calculated, the average 

slope of each area was determined (Figure 20). For the entire township, the average slope was 

24.49 degrees and slope of forested areas at other dates can be compare to this value. The 

average slope of forest areas increased until 1941 when it decreased and held level. Areas with 

forest lost first occurred on the flattest slopes and steeper areas were the only option available as 

flat areas were used. The first areas to re-grow with forest cover were steep areas that were 

unsuitable for intense agriculture or development.  

 

Discussion 

Spatially explicit models of land-use change are limited to the data that are available for 

any given location and time period. This study aggregated five spatial datasets to compare 

changes in forest structure and composition over a 200-year time frame in the Elsah Township in 

order to portray the dynamic unfoldment of forest transition that led to current conditions. By 
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integrating forest coverage data with five points in time (1820, 1853, 1927, 1941, 2015) and 

forest composition and structure data at the beginning of settlement in 1820 and currently in 

2017, short- and medium-trend in forest transition are identified and described in relation to 

slope, and the biophysical parameter of topography. 

Forest Cover Loss and Gain 

Forest cover during the 1820 time period was derived from the GLO witness tree data in 

which only two records in the Elsah Township were classified as “prairie” thereby indicating the 

entire 15,252 acre township was considered forested. Furthermore, the 1853 settlement map 

stated the township consisted of “timber.” The stem density and basal area analysis of the pre-

settlement forest indicated that the township had large trees that were widely spaced as found in 

a savanna, which is consistent with descriptions from early European explorers who indicated 

quality pasture land on the bluffs (White, 2000). The average slope for the 1820 forested area 

was 24.49 degrees (Figure 10), representing topographically rough landscape due to the presence 

of the 300 foot bluff escarpment on the township’s southern border.  

Settlement quickly followed the GLO survey in 1820 and by 1853, farmers, merchants, 

boatmen, fruit growers, horticulturists, stone masons, carpenters, and capitalists were represented 

by 57 landowners in Elsah Township (Atlas Map Of Jersey County, Illinois. , 1872). The flattest 

portions of the undulating terrain were cleared for farms and the average slope of forest cover 

increased from 24.49 to 29.19 degrees. The land converted from forest cover at a rate of 249.01 

acre per year and had an average slope of 21.56 degrees 

After more than a century of settlement activities, the initial cleared areas with steep 

slopes (average slope of 33.45 degrees) were not used for farming or development resulting in 

the re-initiation of forest development totaling 2,568.41 acres or an average of 34.71 acres per 
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year between 1853 and 1927. The majority of the loess soil is classified as highly erodible which 

requires extra effort to farm and manage. The suitable farmland that evaded clearing during the 

first wave of settlement was found and cleared at a rate of 36.74 acres per year over the 74 year 

period, possessing an average slope of 23.07 degrees and consisting of 2,718.67 acres. The 

lowest amount of forest cover was found in 1927 at 5,713.53 acres or 37.44% of the original 

forested area.  

Conservation measures, namely soil and water conservation in addition to fire prevention 

for the protection of timber resources, began to establish across the nation in the first half of the 

20th century ( Foster, Zebryk, Schoonmaker, & Lezberg, 1992). In the 1941 Elsah Township, the 

rate of forest gain outpaced forest lost at 219.12 to 142.36 acres per year. Forest gain occurred on 

an average of 23.85 degree slopes while forest loss averaged 26.58. The lower slopes of forest 

gain may be due to the regrowth on narrow ridgetops that were shaded and difficult to farm 

profitably. Many of the areas experiencing regrowth were found in the floodplains of tributaries 

to the Mississippi River. The aerial imagery from 1941 provides the first view of forest structure 

which is generally open with widely spaced trees on the ridges and southern slopes while closed 

in the valley bottoms.  

The forest growth trend strengthened from 1941 to 2015 resulting in 3,411.85 acres of 

forest re-initiation on slopes with an average of 26.19 degrees (Figures 3 and 4). The 8,070.43 

acres of forest cover exists on an average of 31.88 degree slopes. Forest loss occurred on acres 

with an average slope of 21.80 degrees, thus reinforcing the conservation practices associated 

with soil protection by allowing forest cover on the steeper slopes.  

The remnant forest cover consists of areas that maintained forest cover during each of the 

time periods captured in the five datasets (Figure 18). Woodlots were common features during 
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settlement and provided important fuelwood for heating and building supplies after the initial 

clearing for farmland occurred. Woodlots would be lightly cut for timber products and grazed by 

livestock, but would maintain an overall forest cover.  The 1,769.07 acres of remnant forest 

(11.6% of the original forest cover) was left to slopes with an average of 39.14 degrees.  

Forest Structure and Composition 

Forest density and basal area were calculated for 1820 and 2015 using GLO witness tree 

data and forest inventory data from Principia College in Elsah. The development of forest 

structure is largely a function of time since the previous disturbance and the severity and extent 

of the disturbance. Prior to settlement, upland oak-hickory forests experienced regular, low 

intensity burns that cause greater mortality in small diameter pyrophobic species. The forest 

structure of upland forests typically contained a low density of large trees due to the dominant 

surface fire disturbance regime. In the Elsah Township, the GLO data, after performing the 

ordinary Kriging analysis, suggests that forest density averaged 8.66 stems per acre with a mean 

basal area of 14.57 square feet per acre. The analysis of the GLO data without Kriging resulted 

in forest density with an average of 7.48 stems per acre and a mean basal area of 13.12 square 

feet per acre (Figures 14 and 15). Studies that examined a broader scale of pre-settlement 

vegetation in the same area found slightly higher stem density in the uplands at 15 stems per acre 

(Nelson, Sparks, DeHaan, & Robinson,1998). Current forest conditions represent the 

culmination of management decisions including fire suppression with increases to 148.95 trees 

per acre with a basal area of 114.04 square feet per acre.  

Due to the tree selection bias within all GLO witness tree records for vigorous, long lived 

trees over small or decaying trees, these results are likely an under-estimate of actual forest 

structure. Kriging provides a geostatistical approach to interpolating forest structure values, but 
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has significant limitations related to locational accuracy due to inability to include the effects of 

slope, topographic position, and aspect into the values. The tree-to-tree distances were randomly 

distributed across the township indicating a lack of spatial autocorrelation using the Moran’s I (z-

score: -0.593, p-value: 0.582779) and a lack of high or low clusters in the high-low cluster report 

using General G (z-score: -0.593625, p-value: 0.552763). Slope and diameter were poor 

explanatory variables of density in a geographically weighted regression analysis (r2: 0.081661).   

The indexed scores for forest composition of GLO witness tree data and forest inventory 

data from Principia College in Elsah were compared to determine basic changes from 1820 to 

2017 (Figure 2). While each dataset was collected from a different spatial extent and a different 

sampling methodology, the indexed values still serve as a reference for observing overall 

changes. Additional studies could serve to validate the changes by replicating the GLO 

methodology.  A. saccharum, a shade-tolerant pyrophobic species, gained the most, particularly 

in relative density, to elevate its importance value to the highest overall, which is a common 

trend in mesophication throughout the Midwest (Fralish & McArdle, 2009; McEwan, Dyer, & 

Pederson, 2011; Nowacki & Abrams, 2015). Declining to the second highest IV, Q. alba 

experienced a relative reduction in density and increase in basal area indicating that there are 

fewer, but larger Q. alba and a problem with regeneration and recruitment in recent years. Trees 

that respond to fire by re-sprouting and quickly growing with a large root mass, as in the case of 

Q. velutina, experienced precipitous declines as seen elsewhere (Fralish, Crooks, Chambers, & 

Harty, 1991). The recovery of species generally associated with particular climatic and 

disturbance were mediated by economic and cultural values placed on their properties. Ridge-top 

species, and species associated with low density savannas, were especially susceptible to 

declines due to conversion of the flat topography to agriculture such as orchards, vineyards, and 
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row crops. Carya species were prized for their high heat content when used for fuelwood 

(Whitney, 1994) and could have been cut at a higher rate thereby lowering the relative density in 

subsequent generations. The shift from open canopy, oak dominated system to a closed canopy 

maple dominated stem is advancing rapidly.  

The broad pattern of forest cover loss and gain as described by forest transition theory in 

advanced industrialized nations is evident in the ecological history of Elsah Township over the 

past 200 years. The interim dynamics of forest coverage demonstrate a strong relationship with 

slope due to the difficulties of farming and managing highly erodible soil on steep slopes. Forest 

composition and structure were the cumulative result of a range of management practices 

throughout the settlement and development phases of the township which is causing a transition 

from a low-density oak dominated forest to a forest with mesophytic and pyrophobic species 

dominance. Where remnant conditions exist, the prairie-forest gradient of the bluffs for example, 

opportunities for the restoration of historic attributes are available. Thinning, re-introduction of 

native grass and forb species, herbicide applications for persistent invasive species, and frequent 

prescribed fire will be required to restore and maintain historically representative systems.  

Conclusion 

The variety of sources for investigating historical ecology within a township is found in a 

multiple scales and formats. By aggregating evidence into a geodatabase, the data share a 

common spatial scale that can be grouped into temporal or thematic layers for analysis. Change 

detection, limited by the resolution of the data, is readily performed and an overlay analysis of 

forest loss and gain for each time period with a slope layer revealed short- and medium-term the 

patterns of forest transition decoupling based on topography. The areas with low slope were 

converted from forest to pasture, orchards, or fields first. In contrast, the high slope areas initially 
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deforested, but canopy cover returned due to the unsuitable topography for economically 

supporting any other land use. Conservation practices and fire exclusion resulted in a steady 

increase in forest cover on these lands since 1927. While 11.6% of the forest cover remained 

intact throughout the settlement and conservation phases due to its relatively inaccessible steep 

slopes, the forest likely experienced selective harvesting, burning, and grazing.  The forest 

structure and composition in the Elsah Township experienced an increase in density which 

closed the canopy, evident as a shift in dominance to mesophytic species with declines in oak 

and hickory. A. saccharum and Q. alba underwent a reshuffling in dominance due to more recent 

changes in land-use patterns, particularly a lack of a disturbance regime that favored oak 

dominance.  Although forest cover has rebounded to 53% of the original coverage, the species 

composition, density, and basal area of the forest has departed from pre-fire suppression and pre-

settlement conditions. 
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CHAPTER 3 

LANDSCAPE-LEVEL ANALYSIS OF FOREST COMMUNITY STRUCTURE IN THE 

CONFLUENCE REGION OF THE CENTRAL MISSISSIPPI RIVER VALLEY 

 

Abstract 

 Forest communities along the Middle Mississippi River Bluffs Region contain 

distinct compositions of tree species and stand structure associated with specific topographic 

positions of floodplain, transition talus slope, bluff top, and upland. In order to assess current 

stand characteristics and ecosystem trajectory, we measured all woody stems in 316 fixed radius 

plots (79 plots per topographic position) with a plot area of 25 m2. Alpha and Beta diversity and 

diameter distributions were determined for seedling, shrub layer, and overstory stems. Previous 

studies were used to determine patterns in changing composition and structure (Chapter 2). Stem 

density increased following the re-growth of cleared land and with ingrowth of low density 

forests. For upland forest, stem density increased from 21.4 stems ha-1 in 1820 to 613 stems ha-1 

in 1936 followed by reduction to 314 stems ha-1 in 2017. Average stand diameter decreased from 

40.9 cm in 1820 to 25.3 cm in 2017 (for upland stems greater than 7.5 cm) while basal area 

increased from 3.3 m2 ha-1 in 1820 to 40.4 m2 ha-1 in 2017. Alpha diversity (diversity of sites) 

was highest in the upland overstory and in the river island shrub layer. Beta diversity (diversity 

among sites) in the overstory was highest (0.67) between the bluff and the upland while the 

lowest (0.08) was between the bluff and the river island. Mesophytic species are no longer 

restricted to watercourses and valleys as reported in historical ecological accounts and confirmed 

in the spatial analysis of witness tree records. Invasive species dominate the shrub layer in non-

hydric sites of the talus slope, upland, and particularly for bluff top where Lonicera maackii is an 
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indicator. Across all forest sites in the study, evidence of a community shift to less diversity and 

more mesophytic species is occurring. 

Introduction 

Within the confluence region of the Great Rivers, unique forest community types exist in 

the floodplain, the transition zone, the bluff edge, and the uplands (Turner, 1936). The 

composition and structure of these forest communities are influenced by a multitude of complex 

interacting factors including climate, topoedaphic factors, disturbance regimes including 

anthropogenic and natural causes, and species interactions (Kilburn & Brugam, 2010; McEwan 

et al., 2011; Nuttle, Royo, Adams, & Carson, 2013). These factors govern each site with varying 

influence on the overall forest community depending on the most limiting factor for a given 

species’ growth requirements (Burns & Honkala, 1990; Robertson, 1992). Forest inventory data 

provides a baseline for assessing the status of current forest attributes which can be compared to 

historic inventory data or used in the future to measure changes (Costanza, Faber-Langendoen, 

Coulston, & Wear, 2018). As the drivers of forest dynamics undergo change, forest structure and 

composition respond to reflect these changes (Lorimer, 1980). 

As shifting patterns in disturbance regimes produce novel conditions, the envelope of 

possible forest trajectories expand correspondingly. Disturbance regimes alter forest community 

structure by selecting for species with adaptations to the disturbance, creating new growing space 

and opportunities, and altering the site characteristic that influence growing conditions (Frelich, 

2002). The fundamental ecological role of disturbance is the freeing up and altering of resource 

availability, primarily of light, water, and nutrients, for utilization by another individual or group, 

thereby creating the potential for higher diversity (Connell, 1978, 1980). Yet, the lack of historic 

fire disturbance patterns and the addition of new disturbances (e.g. aggressive invasive species) 
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present a new definition of ecosystem disruption. Disturbances common to Midwestern forests 

that maintain ecosystem structure and composition include high frequency and low intensity fire, 

drought and flooding, insect outbreaks, wind and storm damage, ice and snow damage, as well as 

anthropogenic cutting, clearing, and changing land-use (Parker & Ruffner, 2004; Nowacki & 

Abrams, 2015). The frequency, intensity, and extent of a disturbance influence the forest 

community and can have enduring effects that provide legacies for the next dominant community 

(Nowacki & Abrams, 2008). A lack of information on shifting disturbance regimes presents a 

challenge to identifying options for continued management of intact ecosystems and restoration 

targets for the processes that govern forest dynamics. 

As the forest manager considers the range of ecological conditions found in the diverse 

landscape, homogenizing ecological drivers or management actions can be mitigated or replaced 

with actions that promote heterogeneity. Specifically, heterogeneity across the landscape and 

within each topographic position offers multiple management possibilities in the future and the 

increased potential for overall biodiversity, timber production, and non-consumptive uses.  

Maintaining or restoring a portion of the landscape in approximant pre-fire suppression and pre-

hydrological regulation structure and composition provides temporal heterogeneity and options 

for ecological restoration.  

The purpose of this study is to identify current forest conditions on the river island, talus 

slope, bluff top, and upland topographic positions and describe the historic trends of community 

development and likely future conditions. Early historical accounts and witness tree data, in 

addition to early floristic studies prior to the onset of hydrological and fire control, were 

analyzed to provide a starting point in assessing the natural historic range of variability and 

evaluating ecological trajectories. Understanding the trajectory of an ecosystem in the context of 
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environmental gradients is fundamental in adapting to new conditions and managing effectively. 

Community diversity, measured with Alpha and Beta diversity indices were calculated to reveal 

trends in community composition, since understanding diversity across the landscapes is integral 

to supporting ecological resiliency as conditions change. Diameter distributions in each 

topographic position and by species were assessed for both shrub and overstory strata.   

Materials and Methods 

Site Description 

The interaction of climate, topoedaphic factors, disturbance regimes, and species 

interactions produced four major community types, floodplain, talus slope, bluff, and upland, in 

the greater confluence region of the Illinois and Mississippi River as was documented by Turner 

(1936). This study describes patterns of forest composition and structure in four discrete sites 

that collectively represent the forest ecosystems of the confluence of the Great Rivers landscape 

as referenced in the previous presentation of written record (chapter 1), landscape paintings 

(chapter 1), GLO records (chapter 2), and our own sampling data presented in this chapter to 

adequately profile the historic dynamics that have shaped and influenced these four distinct 

ecosystem types (figure 21).  
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Figure 21. The relative location of vegetation zones in the study area within the Middle 

Mississippi River section of the American Bottoms, Illinois.  

Climatic patterns influence the growing conditions of trees (Douglass, 1937; Fritts, 

2012). Climate variation is particularly important during the establishment phases, seedling and 

sapling stages, when individuals have a low tolerance for temperature and moisture extremes 

(Burns & Honkala, 1990). A species’ ability to endure a given climatic pattern depends upon the 

adaptations of the species as well as growing conditions and overall vigor of the individual tree. 

Most Midwestern tree species possess a wide ecological amplitude (i.e. plant plasticity) which 

allows for survival in a variety of climatic conditions that exist according to elevation, latitude, 

and microclimatic conditions derived from topoedaphic factors (Harper, 1967, 1977). Across our 

study area, the river island site receives an annual precipitation of 37 to 47 inches. The average 

air temperature ranges between 52 and 57 degrees F with 184 to 228 frost free days annually. 
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Talus slope, bluff top, and upland regions receive an annual precipitation of 37 to 45 inches. The 

average air temperature is 54 to 57 degrees F with 180 to 200 frost free days (Tegeler, 2007).  

Topographic variation creates microclimates and influences soil properties that affect 

growing conditions (Beatty, 1984; Fralish, 1997).  Aspect of a slope as well as slope position and 

angle determines the amount of solar radiation a site receives (Stage & Salas, 2007). Southern 

aspects and ridges are typically warmer and dryer in the northern hemisphere. Soil properties 

vary according to the parent material and the process of weathering, biotic interactions, time, 

topography, and climate (Binkley & Fisher, 2012). Together, topography and soils contribute 

towards shaping the resource that provides the majority of nutrients and water to a tree (Burns & 

Honkala, 1990).  

In our study area, the river island site is found on Portage Island, in St. Charles County, 

MO and has a concave landform of flood-plain steps that consists of Carlow silty clay loam with 

0 to 2 percent slopes and is frequently flooded. The parent material is Alluvium. The soil has a 

hydric soil rating and is poorly drained with a depth to water table of 0 to 12 inches and a depth 

to restricted feature of more than 80 inches (Tegeler, 2007). To prevent shoreline erosion on the 

upstream portion of the island, a bullnose consisting of 25,067 tons of stone was constructed in 

2005 (US Army Corp 2014).  

Talus slope and bluff top consist of the backslope and footslope of the bluff landform on 

slopes 35 to 60 percent. These well drained soils are a complex of limestone rock outcrops and 

Lacrescent and similar soils. A typical profile has channery silt loam 0 to 21 inches, very 

gravelly silt loam 21 to 38 inches, and very flaggy silt loam 38 to 60 inches. Both the depth to a 

restrictive layer and the water table is greater than 80 inches (Tegeler, 2007).  
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Upland regions contain Goss-Menfro complex and Menfro silt loam on hillslopes and 

loess hill landforms, respectively. The Goss Menfro complex occurs on well drained slopes 35 to 

60 percent. The depth to a restrictive feature varies from 2 to 30 inches and the water table is 

deeper than 80 inches. The typical profile has gravelly stilt loam 0 to 11 inches and very gravelly 

silty clay 11 to 80 inches. Menfro silt loam occurs on well drained, eroded slopes 5 to 10 percent. 

The depths to a restrictive feature and to the water table are more than 80 inches.  A typical 

profile has silt loam 0 to 7 inches, silty clay loam 7 to 56 inches, and silt loam 56 to 80 inches. 

Menfro silt loam is considered farmland of statewide importance (Tegeler, 2007).  

River island forest disturbances are currently dominated by flood events. Fires and tree 

cutting occurred on the river islands until the Two Rivers National Wildlife Refuge of the US 

Fish and Wildlife Service obtained ownership and management responsibilities. During the field 

measurements, no evidence of recent tree cutting or stumps was observed. Historic river floods 

have occurred in 58 events where the water level crested above 21 feet since 1844 (USGS, 2018) 

The creation of Pool 26, first dammed in 1938 in order to improve navigation for barge traffic 

(Frankie & Mikulic, 2007), altered flood dynamics in floodplain and river island forests (Nelson 

& Sparks, 1998).  

Preliminary analysis and field observations of fire scars as well as historical accounts 

suggest that frequent and low intensity surface fires were common on the talus slope, bluff top, 

and upland regions in the late 1800s and early 1900s. The Bluff Line railway line existed at the 

base of the bluff from 1890 to 1933 (Hosmer & Williams, 1986) and sparks from the 

locomotives were reported as the source of many fires that traveled up the talus slope and 

reached the top of the bluff where a fire trail was constructed to contain the spread of these 

frequent fires. This example of fuel fragmentation suggests that fire frequency would be less on 
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the upland forest regions than the talus and bluff sites. From at least 1860 to 1930, burning of the 

bluffs was an annual event in order to preserve and enhance the view of the Mississippi River 

from the estates perched atop the bluff (Ross, 1974).  Livestock grazed the bluffs, fields, and 

forests from 1820 to about 1930.  

Jack White (2000) compiled ecological accounts of the Big River Assessment Area for 

the Illinois Department of Natural Resources’ Critical Trends Assessment Program which 

includes Elsah Township. These accounts were analyzed for references to forest conditions 

within close proximity to Elsah Township and within the confluence region of the Big Rivers. In 

addition, accounts of fire behavior, fire ecology, and protection from fire as well as tree cutting 

were included for insight into two major ecological drivers of change that shape the vegetation 

communities depending on the application or suppression of these activities.  

Data Collection 

For each of the four forest sites, 79 plot centers were randomly located within the 

respective study zones using the “Random Point Generator” tool in ArcGIS 10.1. The points 

were uploaded to a Juno Trimble GPS device with the mobile mapping software ArcPad 10.0 for 

navigation to the plot’s location. Each fixed circular plot consisted of a 2.82 m radius (25 m2 

area). All living woody stems larger than 1 cm dbh (1.37 m above ground) were identified and 

diameters were measured at dbh to the nearest 10th of a centimeter. Woody stems less than 1 cm 

dbh were tallied according to species. Using species area curve function in PC-ORD 6.21, the 

flattening of the slope in the tail of the species curve indicated that the sampling intensity was 

sufficient to accurately represent the species of the area. For future dendrochronological analysis, 

the largest tree of each species in a plot was cored with an increment borer as close to the ground 

as the handle of the increment borer would allow, typically within 0.25 meters. In addition, the 
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herbaceous vegetation within a 1 m2 subplot at the center of the 25 m2 was identified and 

coverage was estimated. Canopy coverage was estimated with convex hemispherical 

densitometer.  The longitude and latitude for each plot was captured and buffered with a 2.82 m 

radius which allowed topographical characteristics from a LiDAR derived DEM to be obtained 

with the “Zonal Statistics” tool in ArcGIS 10.1. Historical data was collected from Turner’s 1936 

study of the lower Illinois River Valley forest communities. 

Analysis 

Within each site, river island, talus slope, bluff face, or upland, the stems ha-1 and basal 

area in m2 ha-1 were calculated by multiplying the sum of density and sum of basal area by 5.063 

each since the 79 plots in each site totaled 1975 m2.  Seedlings density was determined by 

multiplying the count of seedlings by 5.063 within each site. The diameter distributions with 

individual species’ contributions for each site were graphed for shrub and overstory layers.  

Alpha diversity, a reference to the overall diversity of a site, was calculated for each site 

using a dominance index (Simpson Diversity Index) for the seedling, shrub, and overstory layers. 

The Simpson Diversity Index supplies the probability of two randomly selected data points 

representing the same species.  

Simpson Index (D) = 1 − ∑ 𝑝𝑖
2𝑠

𝑖=1  

where p is the proportion (n/N) of individuals of one particular species (i) found (n) 

divided by the total number of individuals found (N), Σ is the sum of the calculations, and s is the 

number of species. 

Beta diversity was by calculating the Sorenson Similarity Index for each site comparison 

for seedling, shrub, and overstory layers to assess overall community similarity based upon the 
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species present. Additionally, current forest composition was compared to Turner’s 1936 forest 

composition study using the Sorenson Similarity Index. 

Sorenson’s Coefficient =  
2𝐶

𝑆1+𝑆2
 

where C is the number of species that are shared between the two communities, S1 and 

S2 are the total numbers of species found in community 1 and 2, respectively. 

Indicator species analysis using the Dufrêne and Legendre method (1997) was conducted 

in PC-ORD 6.21 with density and basal area data for the common species. An indicator value is 

calculated by using the relative abundance and relative frequency of a species for each 

predefined group. The groups were assigned as the four zones of river island, talus slope, bluff 

top, and upland. Density and basal area for species with significant values (p < 0.05) were 

reported for each zone (Peck, 2010). 

Results 

Despite the close proximity of the river island, talus slope, bluff top, and upland forest 

communities, each community type exhibits unique structural and compositional attributes. 

Following the period of settlement, forest regrowth occurred and early stages of stand 

development contained densities at high levels. Stem density increased from 21.4 stems ha-1 in 

1820 to 613 stems ha-1 in 1936 followed by reduction to 314 stems ha-1 in 2017, which is 

consistent with the principles of stand dynamics (Oliver & Larson, 1990). Average stand 

diameter decreased from 40.9 cm in 1820 to 25.3 cm in 2017 (for upland stems greater than 7.5 

cm) while basal area increased from 3.3 m2 ha-1 in 1820 to 40.4 m2 ha-1 in 2017. 

The river island forest contained the greatest basal area of 85.49 m2 ha-1 in overstory trees 

(>15 cm dbh) and the most seedlings (<1 cm dbh) at 64,810 stems ha-1, yet the fewest shrub 

layer (>1 and <15 cm dbh) stems at 60.76 stems ha-1 and lowest basal area at 2.79 m2 ha-1 (Table 
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4).  The talus slope had the greatest density of overstory trees at 384.81 stems ha-1 and highest 

basal area of shrub layer stems at 5.6 m2 ha-1 and yet possessed the fewest seedlings at 9,580 

stems ha-1. The bluff top contained the greatest density of shrub layer stems at 5,245.57 ha-1 and 

the lowest basal area of overstory trees at 23.91 m2 ha-1.  

Table 4  

Stem density and basal area for each topographic zone. 

 Overstory Shrub Layer 

Ground 

Layer 

Zone Stem ha-1 BA m2 ha-1 Stem ha-1 BA m2 ha-1 

Seedlings 

ha-1 

Bluff 308.9 23.9 5245.6 3.7 29,646 

River 354.4 85.5 860.8 2.8 64,810 

Talus 384.8 32.5 3326.6 5.6 9,580 

Upland 313.9 40.4 3483.5 2.8 12,577 

 

The river island had the lowest alpha diversity of the overstory and seedling layers at 63.9 

and 6.6, respectively, yet the highest shrub layer diversity at 93.7. The bluff top contains the 

highest seedling diversity at 78.3 and nearly the highest overstory diversity at 93.6, but the 

lowest shrub layer diversity at 59.7.  The upland region had the highest overstory diversity at 

95.3.  

Table 5 

Simpson Diversity Index for each topographic zone. 

Strata Zone 
Simpson 

Diversity Index 

Max 

Diversity     

1-1/n 

Simpson's 

Index as % 

of max. 

Overstory Layer 

Bluff 0.88 0.94 93.57 

River 0.57 0.89 63.87 

Talus 0.73 0.92 80.01 

Upland 0.9 0.94 95.3 
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Shrub Layer Bluff 0.58 0.97 59.67 

River 0.83 0.89 93.74 

Talus 0.72 0.96 74.9 

Upland 0.67 0.96 69.73 

Seedling Layer 

Bluff 0.77 0.98 78.33 

River 0.06 0.88 6.6 

Talus 0.47 0.95 49.4 

Upland 0.72 0.96 74.65 

 

Beta diversity was calculated using the Sorenson Similarity Index (Table 6) which 

provides a comparison of species found within each zone. In general, the river island zone 

possessed the least similarity with each of the other zones in each stratum. For the overstory 

stratum, the bluff and upland contain the greatest similarity with a Sorenson Coefficient (SC) of 

0.67 followed by the talus and upland SC at 0.55. In the shrub stratum, the bluff and talus shared 

the highest SC at 0.62 followed by the bluff and upland SC at 0.59.  The seedling stratum SC 

was highest in the talus and upland at 0.59 and followed by the same SC of 0.52 in the bluff and 

talus as well as the bluff and upland. 

Table 6  

The Sorenson Similarity Index for overstory, shrub, and seedling for each zone. 

Sorenson Similarity Index 

Zone 
Overstory 

Layer 

Shrub 

Layer 

Seedling 

Layer 

Bluff vs River 0.08 0.10 0.04 

Bluff vs Talus 0.50 0.62 0.52 

Bluff vs Upland 0.67 0.59 0.52 

River vs Talus 0.10 0.12 0.14 

River vs Upland 0.15 0.18 0.06 

Talus vs  Upland 0.55 0.53 0.59 

 

The shift in species composition from 1936 to 2017 was calculated using the Sorenson 

Similarity Index (Table 4). The upland region remained the most stable while the talus slope had 
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the lowest amount of similarity. For the upland region, species with diminutive growth forms 

such as Cercis canadensis, Cornus florida, Morus rubra, Rhus glabra, Vibrunum rufidulum, and 

Cornus asperifolia, were absent in the 2017 data while larger species including Carya glabra, 

Carya tomentosa, Celtis tenuifolia, Diospyros virginiana, Tilia americana, Acer negundo, and 

Ulmus rubra established during the 80 year period. The overall forest density decreased by 51% 

or 321 stems ha-1 with Quercus alba decreasing by 77% or 154 stems ha-1 and Acer saccharum 

increasing by 59% or 44 stems ha-1. Both Quercus velutina and Quercus rubra decreased 59% 

and 44%, respectively. The talus slope experienced significant change during the past 80 years 

with 9 of the original 29 species and 3 new species currently occupying the zone. The stem 

density decreased 65% to 385 stems ha-1.  The two most numerous current tree species, Acer 

saccharum and Quercus muhlenbergii, both decreased by 32% and 60%, respectively, thus 

indicating a greater decrease for Q. muhlenbergii. A shift in species composition on the river 

island is characterized by significant declines in Ulmus americana, Carya illinoiensis, and 

Quercus palustris, while Acer saccharinum increased 58%. The overall stem density decreased 

39% to 230 stems ha-1.  

Table 7  

Sorenson similarity index for community composition from 1936 to 2017. 

Change 1936 to 2017 Sorenson  Stems ha-1 1936 Stems ha-1 2017 

Bluff NA NA NA 

River 0.48 585 354 

Talus 0.44 1110 385 

Upland 0.59 635 314 

 

Indicator species analysis (Table 8) for the density and total basal area for each species 

was conducted using the zones as the grouping variable.  The bluff had the most indicator 

species, 13, which included Lonicera maackii.  The individuals in the Quercus genus existed 
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primarily on the bluff with 287 individuals (including seedlings) representing all five species 

with indicators of Q. velutina (den), Q. stellata (BA), and Q. muehlenbergii (den). Three species 

of Quercus with 97 individuals were located on the talus slope with indicators of Q. 

muehlenbergii  (BA) and Q. rubra (BA). Four species of Quercus on the upland were found with 

40 individuals with Quercus alba (BA) and (DEN) as the indicators. No members of Quercus 

were identified on the river island.  Acer saccharum (BA) and (Den) were strong indicators for 

the talus slope, but also found on the bluff and upland regions. On the river island, Acer 

saccharinum (BA) and (Den) were strong indicators and were not found on other sites. 

Table 8  

Indicator species analysis for each topographic zone. 

Species Density or Basal Area 
Indicator 

Value p-value 

   
Bluff 

Cercis canadensis (den) 26.1 0.0002* 

Celtis tenuifolia (den) 30.8 0.0002* 

Fraxinus americana (den) 47.2 0.0002* 

Lonicera maackii (den) 48 0.0002* 

Parthenocissus quinquefolia 

(den) 37.2 0.0002* 

Quercus muehlenbergii (den) 39.8 0.0002* 

Rhus aromatica (den) 55.1 0.0002* 

Vitis aestivalis (den) 20.5 0.0002* 

Quercus stellata (BA) 9 0.0004* 

Cornus drummondii (den) 17.2 0.0008* 

Juglans nigra (den) 7.8 0.0018* 

Quercus velutina (den) 9.4 0.0028* 

Lonicera maackii (BA) 22.6 0.0054* 

Upland 

Asinima triloba (den) 13.1 0.0002* 

Lindera benzoin (den) 48.4 0.0002* 

Sassafras albidum (den) 19.4 0.0002* 

Quercus alba  (BA) 8.3 0.0016* 

Carya ovata  (BA) 6.2 0.0026* 
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Note: P-values with * are significant at the 0.05 level. 

Sassafras albidum  (BA) 9.5 0.0058* 

Carya tomentosa (BA) 5.7 0.01* 

Quercus alba (den) 6.5 0.0134* 

River 

Acer saccharinum (BA) 39.2 0.0002* 

Acer saccharinum (den) 92.4 0.0002* 

Celtis laevigata (den) 17.7 0.0002* 

Fraxinus pennsylvanica (BA) 20.6 0.0002* 

Morus rubra (BA) 21.5 0.0002* 

Ulmus americana (den) 15.5 0.0008* 

Salix nigra (den) 7.6 0.001* 

Acer negundo  (BA) 5.4 0.0304* 

Populus deltoides  (BA) 3.8 0.0444* 

Salix nigra  (BA) 3.8 0.0464* 

Talus 

Acer saccharum (BA) 29.8 0.0002* 

Acer saccharum (den) 25.3 0.0002* 

Celtis occidentalis  (BA) 21.9 0.0002* 

Celtis occidentalis (den) 28 0.0002* 

Quercus muehlenbergii  (BA) 13.7 0.0024* 

Quercus rubra (BA) 9.1 0.0102* 
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Figure 22. Tree diameter distribution for stems greater than 15 in dbh across the Middle 

Mississippi River landscape.  

Across the four zones of the landscape, the majority of smaller trees are found on the 

talus slope and bluff top, and the majority of the larger trees are located on the river island and in 

the upland regions.  
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Figure 23. Diameter distribution of river island stems greater than 15 in dbh. 
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Figure 24. Diameter distribution of talus slope stems greater than 15 in dbh. 
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Figure 25. Diameter distribution of bluff top stems greater than 15 in dbh. 
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Figure 26. Diameter distribution of upland stems greater than 15 in dbh. 
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(Figure 23) had 13 species and is dominated by A. saccharum in diameters 15-45 cm. The largest 
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24) had 16 species and the steepest inverse-J distribution of the four communities. The largest 

trees, 45-70 cm are dominated by Q. muehlenbergii, Q. velutina, and A. saccharum while the 

remaining distribution remains diverse. The upland community (Figure 25) had 17 species and 

contains a cohort of large stems (85-89.9 cm dbh) made up of Q. alba, Q. rubra, and C. glabra at 

a cumulative density of 20 stems ha-1. Stems in the range of 45-70 cm dbh include Q. velutina in 

addition to Q. alba, Q. rubra, and C. glabra. At the small end of the distribution, A. saccharum 

occupies each diameter class 15-45 cm dbh. 

 

Figure 27. Diameter distribution of stems less than 15 in dbh. 
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Figure 28. Diameter distribution of river island stems less than 15 in dbh. 
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Figure 29. Diameter distribution of talus slope stems less than 15 in dbh. 
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Figure 30. Diameter distribution of bluff top stems less than 15 in dbh. 
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Figure 31. Diameter distribution of upland stems less than 15 in dbh. 
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dominant overstory species, P. deltoides, was absent from the shrub layer.  In the talus slope, 

bluff top, and upland zones, L. maackii was a dominant component of the shrub layer, 

particularly in size classes 0-6 cm dbh. On the talus slope (Figure 28), C. drummondii was a 

major component of 0-4 cm dbh size classes while A. saccharum was present in every shrub size 

class. The bluff top (Figure 29) had the greatest shrub density with representation from 30 

species. Diversity from several shrub and tree species was present, but significantly less dense 

than L. maackii. The upland region (Figure 30) was occupied with 24 species. In the smaller 

diameter classes, L. benzoin and A. triloba comprised a significant portion of the density. 
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Figure 32. Diameter distribution of 1820 witness trees based on frequency in Elsah Township. 
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Carya sp. Q. stellata, and Q. marilandica were prominent in the midsection of the distribution. 

Relative dominance is primarily attributed to Q. alba (31%), Q. velutina (27%), and Carya sp 

(15%) with minor elements of Q. stellata (6%), Q. marilandica (4%), and P. deltoides (4%). 

Other species were each less than 2% of the relative dominance.  

 

Figure 33.  Map of the witness trees symbolized by species and proportional symbols 

representing diameter size. Yellow represents hickory, black is Q. velutina, white is Q alba. 
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The witness tree record was uploaded into a GIS and symbolized according to species 

and diameter. The oak-hickory forest type dominated in the uplands while the valley bottoms 

contained more diverse mesophytic species.  Note that the overlapping symbols prevent all 

species to be represented in this map layout.  

Discussion  

Regional pre-settlement Public Land Survey vegetation studies concur with the historical 

narratives of early visitors and settlers of the area.  Green, Jersey, and Macoupin Counties were 

analyzed for relationships between forest community attributes and topoedaphic variables and 

found floodplains hosted Salix sp., Populus deltoides, Acer spp., and Fraxinus spp, the bluffline 

contained Quercus alba, Quercus velutina and Carya spp., and prairie with low density 

groupings of Quercus palustris, Quercus stellata, and Quercus marilandica (Brugam, Kilburn, & 

Luecking, 2016). This study did not empirically address density or basal area other than 

analyzing average species’ diameters and distance from the quarter section corner. Prairie, 

barrens, scattering timber, and forest were analyzed in Greene and Jersey Counties and the 

average distance from the quarter section point to an observed tree for each species were 

calculated (Figure 33) (Kilburn, Tutterow, & Brugam, 2009). These data indicate general forest 

density by species and ecosystem structure (i.e. prairie, barrens, scattering timber, and forest) 

across the landscape at the time of the survey and when converted to density, range between 

approximately 1 to 15 stems ha-1. 

 The indicator species results (Table 8) are generally consistent with the observations 

made in the Kilburn, Tutterow, and Burgam study, except for some small but notable exceptions. 

Q. palustris and Q. marilandica were not present in the 2017 data.  
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Alpha and Beta Diversity 

Diversity across the landscape remained consistent with the intermediate disturbance 

hypothesis wherein diversity is highest in systems where disturbances are neither so severe that 

only ruderal and pioneer species can persist nor infrequent enough that only climax species exist, 

but intermediate where both ruderal and climax species can exist within the system (Connell, 

1978, 1980). Large tree diversity was highest on the upland site where flooding does not exist 

and fire was less frequent than the bluff top or talus slope. The establishment of overstory 

diversity occurred prior to the invasion of L. maackii and fire suppression. Diversity in the shrub 

layer was highest on the river island which is the only site where L. maackii was absent, 

suggesting the competitive ability of the invasive shrub negatively impacts diversity. Seedling 

diversity was highest on the bluff top where fire had been introduced as a management tool in 

sections of the study area thereby creating a range of conditions. Lonicera maackii, although 

found in all non-hydric zones, is an indicator for former prairie-savanna structure on the bluff top 

where light levels are moderate to high, disturbance was historically frequent, and topoedaphic 

conditions permitted an extended duration of prairie-savanna systems. The canopy coverage is 

non-contiguous and the leaf area index of the trees in this area is relatively low, allowing light 

resources to pass to the lower strata. Overstory diversity is highest in the upland area which 

contains a variety of micro-sites, deep and well drained soils that do not flood, and less frequent 

fire. 

Stability of Historic Forest Conditions 

Witness tree analysis in Elsah Township supplies evidence that prior to Euro-American 

settlement, trees were widely distributed with 21.4 stems ha-1 and a basal area of 3.3 m2 ha-1 in 

1820 in the upland. A floodplain study of witness tree records collected from 1815-1817 at the 
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Illinois confluence found that stem density averaged 86.8 stems per hectare with notes of 

“scattering timber” and “thinly timbered” in the GLO surveyor notes ( Nelson, Redmond, & 

Sparks, 1995). Prior to settlement, early ecological descriptions of the region confirm that the 

margins of waterways and valleys were densely forested with mesophytic species while the 

uplands were primarily prairies with islands of oaks and hickories. These accounts depict a 

landscape with vast stretches of prairie ecosystems across flat land and near the tops of ridges 

and mature trees, primarily maple, willow, cottonwood, sycamore, and pecan with close spacing 

near water courses. Ascending from the valley bottoms, tree composition shifted to oak and 

hickory dominance and tree spacing increased until woodland became savanna and finally 

transition to prairie. After a century of settlement activities that involved the clearing and 

regrowth of forest in a large portions of the area resulted the establishment of a dense young 

forest with a higher mesophytic percentage. By 1936, the stem density in the wider upland area 

increased to 613 stems ha-1 following the abandonment of farmland and the implementation of 

fire suppression (note that basal area is not available for this time period) (Turner, 1936).  As the 

forest advanced through the stages of stand development, stem density reduced to 314 stems ha-1 

with a basal area of 40.4 m2 ha-1 in 2017. However, average stand diameter decreased from 40.9 

cm in 1820 to 25.3 cm in 2017 (for upland stems greater than 7.5 cm, which was the lowest value 

for diameters in the 1820 data and applied to the 2017 data in order to accommodate 

comparisons). Forest density and basal area increases are reflected by concomitant compositional 

changes in species dominance within size classes.  Forest density on mid slopes and ridges 

appears unstable, shifting from low density to high density. Species composition is shifting to 

mesophytic and pyrophobic species, particularly in the lower to mid strata.  
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Trends of Forest Composition and Structure 

Comparing the current stem density data to Turner’s 1936 data suggest the forest 

communities have transitioned from the stem exclusion stage to the understory re-initiation or 

old growth stage.  In three of the zones, river island, talus slope, and upland region, stem density 

decreased by 39%, 65%, and 51%, respectively. Each of these areas displays an inverse-J 

diameter distribution which indicates that this mixed community is multi-aged. In the 

progression of stand dynamics, stem initiation occurs after a disturbance resulting in the 

availability of new growing space and a high density of seedlings and saplings. At the time of 

Turner’s surveys, forest development would have been in the early stages with high stem 

densities following the forest clearances that occurred during settlement. In addition, fire 

suppression as a cultural value had been employed for two decades. The lack of fire combined 

with the establishment and growth of new stems resulted in forests with high stem density. Since 

all trees were greater than 15 (cm), the stem exclusion phase of forest development was likely 

common across the landscape in 1936. Aerial photographs from 1941, just five years after 

Turner’s studies, indicate a mixture of open grown trees with the forest floor clearly visible and 

areas with continuous forest canopy coverage in the upland regions. 

Across the Eastern US, mesophication has been documented widely in a variety of forest 

types and sites (Nowacki & Abrams, 2008; Shotola, Weaver, Robertson, & Ashby, 1992). 

Evidence of mesophication is expressed uniquely in each of the four study zones using Acer 

genus as an example. Whereas the presence of A. saccharum was found in each non-hydric site, 

the shrub layer and the overstory layer of the talus slope, where rooting conditions favor its 

requirements, was pervaded by A. saccharum in each size class. The upland region contains a 

cohort of A. saccharum in diameter class 15-45 cm dbh, with minor amounts in the shrub layer 
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and none larger than 45 cm dbh. The bluff top contained A. saccharum at periodic intervals and 

at the large side of the diameter distribution. The xeric bluff top contains micro-valleys with deep 

soil and access to calcareous limestone which provides suitable growing conditions for A. 

saccharum. On the river island, A. saccharinum dominates every size class. Similar floristic 

studies have observed a rise in A. saccharinum and decline in bottomland hardwood species due 

to a change in hydrology following the impoundment of the Mississippi River in 1938 (Nelson & 

Sparks, 1998). The rising dominance of the genus Acer across the landscape serves as a 

homogenizing agent that reduces sub-canopy light resources, inhibits fire spread, and will 

eventually lead to a reduction in diversity if not check by management interventions. For now, 

overstory diversity is highest in the upland area which contains a variety of micro-sites, deep and 

well drained soils that do not flood, and less frequent fire. 

Lonicera maackii, although found in all non-hydric zones, is an indicator for former 

prairie-savanna structure where light levels are moderate to high, disturbance was historically 

frequent, and topoedaphic conditions permitted an extended duration of prairie-savanna systems. 

The canopy coverage is non-contiguous and the leaf area index of the trees in this area is 

relatively low, allowing light resources to pass to the lower strata. 

Indicator Species Analysis 

Indicator species analysis assists with determining important members of a community. 

The bluff top contained significant indicator values for 11 species with density and 2 species for 

basal area, Quercus stellata and Lonciera maackii. Because Q. stellata is slow growing, shade 

intolerant, and drought resistant with long, thick taproots (Burns & Honkala, 1990), the exposed 

conditions of the bluff top reduce the competitive ability of other species. Although L. maackii is 

shade tolerant, secondary diameter growth is rapid with abundant light resources. The 11 species 
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with significant values for density (i.e. 5,246 shrub stratum stems ha-1) suggests that many 

species are establishing in the absence of disturbance. The upland region is characterized by 4 

species with density and 4 species with basal area indicator values. Large shade intermediate and 

fire resistant Q. alba, particularly wolf trees with large open grown crowns, are abundant in the 

upland region. The supportive role of Carya species in the dominance of the oak-hickory forest 

type is found in the significant indicator values for basal area in C. ovata and C. tomentosa. Due 

to the few species that were found on both the river island and the other forest types, most of 

these species are indicators, 4 for density and 6 for basal area. The talus slope contained 4 

species with basal area and 2 species with density for indicators. A. saccharum and C. 

occidentalis had density and basal area as significant indicator values for the talus slope. Both 

are pyrophobic while A. saccharum is shade tolerant and C. occidentalis is intermediate shade 

tolerant. Basal area significant indicator values occurred for shade intermediate Q. 

muehlenbergii, and Q. rubra, but notably not for density, thus suggesting that the Quercus 

component established under different disturbance and light conditions. The soil of the talus 

slope had variable texture with a deep rooting zone (greater than 80 inches) with abundant 

moisture, mitigating the effects of typical late summer dry periods or severe drought conditions.  

A. saccharum had a higher leaf area index that demands greater water resources which allows the 

species to thrive when water is a limiting factor in growth in less favorable sites. 

Disturbance as a Driver of Forest Composition 

The pattern of contemporary forest development diverged from historic patterns due to 

the alteration of disturbance regimes. Frelich (2002) synthesized disturbance ecology for the 

Lake States and connected ecosystem development to the effects of disturbance regimes. Prior to 

river impoundment, the river island was subjected to variable river flows with expressed dry 
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periods that permitted the establishment and growth of hardwoods. Following the regulation of 

river flows by the lock and dam system in 1938, seasonal droughts failed to have a material 

effect on river levels. Furthermore, no evidence of active management on the river island to 

promote the establishment and growth of hardwoods was found. Prior to governmental 

ownership of the river island, fuelwood and other forest products were harvested, creating higher 

light conditions that would allow hardwood regeneration. Until recently, fire management 

focused on the suppression of fires caused by a variety of ignition sources thereby limiting the 

ecological effects of frequent surface fires. This lack of fire coincided with the removal of 

grazing pressures and the regrowth of woody stems across many open sites. Pyrophobic species 

otherwise filtered by fire, were allowed to persist and grow. The talus slope and bluff top had the 

most fire, same topoedaphic conditions, particularly a southern aspect, and had the highest 

community similarity for shrub layers, and the second most similar communities within the 

overstory and seedling layers.  

Conclusion 

Within the past 200 years, the forest communities in the confluence region of the 

Mississippi and Illinois rivers have undergone significant change in forest density and 

composition. Stem density increased from 21.4 stems ha-1 in 1820 to 613 stems ha-1 in 1936 

followed by reduction to 314 stems ha-1 in 2017. Average stand diameter decreased from 40.9 

cm in 1820 to 25.3 cm in 2017 (for upland stems greater than 7.5 cm). The diameter distribution 

of the forest prior to Euro-American settlement was multimodal and contained only a trace of 

mesophytic species. The forest across all landscape positions is currently represented by an 

inverse J-distribution with a large contingent of mesophytic species in the smaller diameter 

classes. Furthermore, since 1990 new exotic invaders are spreading rapidly on non-hydric sites 
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and impairing the ability of hardwoods to regenerate and outcompeting herbaceous layer plants.  

Alpha diversity was highest in the upland overstory and in the river island shrub layer. Beta 

diversity in the overstory was highest (0.67) between the bluff and the upland while lowest 

(0.08) between the bluff and the river island. Management considerations for the bluff top 

community are addressed after further analysis in chapter 5. General management of upland 

areas as related to historical trends in forest development and anthropogenic influences in forest 

disturbance are discussed in chapter 1.  
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CHAPTER 4 

FLORISTIC ANALYSIS OF THE FOREST-PRAIRIE GRADIENT AND MANAGEMENT 

RECOMMENDATIONS ALONG THE BLUFFS OF THE MISSISSIPPI RIVER IN JERSEY 

COUNTY, ILLINOIS 

 

Abstract 

Hill prairie vegetation on the limestone bluffs of the central Mississippi River Valley 

represents a significant portion of the remaining xeric prairie, savanna, and woodland systems of 

the Midwest. This study examines the structure, composition, and temporal community patterns 

of the forest-prairie gradient by employing hierarchical cluster analysis and non-metric multi-

dimensional scaling in combination with indicator species analysis and dendrochronological 

methods. Results suggest that the four general community types exist on the forest-prairie 

gradient: Group 1 consists of the woodland community structure with significant indicator values 

for the density of Juniperus virginiana (indicator value 58.4, p-value = 0.0002), Carya glabra 

(45, 0.0022), Quercus stellata (23.7, 0.0424), and Lonicera maackii (74.2, 0.0002) and a high 

basal area (BA) of J. virgniana (21.4, 0.0276) and L. maackii (47.9, 0.0054). The first year of L. 

maackii presence was 1964 with the primary wave of invasion beginning in 1990 (N=410). 

Group 2 contains bare soil coverage in the subplot (40.4, 0.0002) as the one indicator at a 

significant level. The species with the highest BA in Group 2 include Acer saccharum (9.08 m2  

ha-1), Q. velutina (5.89 m2  ha-1), and Q. muehlenbergii (5.32 m2  ha-1). Group 3 typifies the hill 

prairie community with the sole indicator of grass coverage in the subplots (39.7, 0.0196). Group 

4 represents the stage of forest development following the cessation of disturbance events and 

the trajectory advancing towards a mesophytic forest and contains 14 significant indicators. This 
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research can be used to plan forest management at the landscape level with multiple forest types 

in the Middle Mississippi River Bluffs Region.  

Introduction 

Practitioners of ecological restoration in Midwestern oak savannas and woodlands have 

identified a declining trend in areal extent and sometimes complete loss of these natural 

communities over the past 70 years (McClain & Anderson, 1990; McClain & Ebinger, 2012; 

McClain, Moorehouse, & Ebinger, 2009; Owens & Cole, 2003; Robertson, Schwartz, Olson, 

Dunphy, & Clarke, 1995; Schwartz, Robertson, Dunphy, Olson, & Trame, 1997; Taft & Kron, 

2014). The changing landscape has prompted regional initiatives that seek to restore and enhance 

prairies, savannas, woodlands, and forests (McTaggert, 2017). The management focus broadly 

favors xeric adapted species with lower woody stem densities by applying prescribed fire, 

reducing density of smaller size classes, and managing invasive species with herbicide 

treatments (Kilburn, 1970; McTaggert, 2017; Taft & Kron, 2014). 

The hill prairie enclaves of grass and forb dominated vegetation within an otherwise 

contiguous upland hardwood forest garnered the attention of botanists due to their floristic 

diversity and relative rarity following the loss of wide prairie expanses to agricultural 

development (Brugam et al., 2016). The midsection of forest-prairie continuum, consisting of 

woodland and savanna structure, received limited attention in the botanical literature despite the 

rapid rate of loss and critical role in mediating prairie-forest dynamics. 

Awareness of hill prairies as an element of the forest-prairie gradient initiated scientific 

studies related to the mechanisms that enabled prairie community composition to exist (Evers, 

1955; McClain & Anderson, 1990; Vestal, 1918). In an 1918 study in Illinois, Vestal described a 

pattern of small prairie communities found on south-facing slopes at the top of ridges where the 
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topography contained excessive slopes unsuitable for converting to farmland and where 

disturbances such as fire, cutting, grazing, and trampling limited, but did not prevent, the 

encroachment of the surrounding forest (Vestal, 1918). Later, Evers (1955) suggested that the 

topoedaphic conditions in hill prairies on high cliffs created a microclimate that was unfavorable 

for mesophytic forest invasion. However, hill prairies on lower cliffs were subject to the 

modifying microclimate effects of a forest canopy and therefore subject to invasion. Seasonal 

rainfall may allow for the establishment of seedlings until a dry year extinguished the seedling 

cohort resulting in a stable equilibrium between forest and prairie systems. Evers did not attempt 

to describe successional patterns in hill prairies, but he provided maps of prairies communities 

and their spatial extent. These early attempts at assessing the stability of hill prairies transition to 

an examination of community trajectories as mounting evidence of ecosystem instability began 

to grow. Photographic documentation of hill prairie encroachment and loss at Pere Marquette 

State Park in Grafton, Illinois demonstrated a shift towards seedling survival and the 

establishment of a woody stem cohort including Cornus drummondii (rough-leaved dogwood) 

and Lonicera maackii (bush honeysuckle) leading to the loss of the prairie vegetation within 15 

to 22 years (McClain & Anderson, 1990).  Forty years after Evers, Robertson et al. (1995) 

examined changes to select hill prairie communities as described by Evers and found that the 

average extent decreased by 63 percent, despite various management interventions including 

burning and cutting, with the most common prairie invaders including C. drummondii (rough-

leaved dogwood), Juniperus virginiana (Eastern redcedar), and Rhus glabra (smooth sumac). 

Community composition of the prairie-forest gradient shifted to a forest dominated system. 

 The purpose of this study is to identify current vegetation communities and 

compositional changes to the hill prairie-forest gradient community over the past century. An 
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understanding of vegetation patterns provides managers with a historical context of community 

change trajectories and likely future conditions under select management applications. Coupling 

stem age data with community composition and structure allows a temporal pattern of forest-

prairie dynamics to emerge beyond the initial observation of identifying the occurrence of forest 

encroachment. Pairing management activities to stand conditions will result in better continuity 

with historical disturbance regimes and improved ecological restoration success.  

Methods 

Site Description 

The study site was located on Principia College campus in Jersey County on the 

limestone bluffs of the Mississippi River in west-central Illinois. The soil consisted of wind-

blown loess with an average of more than 80% sand, less than 20% silt, and less than 2% clay 

(Kilburn & Warren, 1963). Slopes ranged from 21 to 71 degrees with an average of 54 degrees. 

Aspect averaged 206 degrees for a southwest orientation and the average elevation was 615 feet 

above sea level.  

Pre-settlement forest conditions found in Elsah Township consisted of low density oaks 

and hickories with an average density of 8.7 stems per acre with a mean basal area of 14.6 square 

feet per acre. Euro-American settlement activities decreased the areal extent of forest coverage 

resulting in all but 11.6% of the township losing forest coverage at some point (Chapter 2). 

Accounts of European explorers contain observations of suitable pasture land on the bluffs, 

confirming the low tree density of the area prior to settlement (White, 2000) (also see Chapter 1). 

Vegetation Sampling 

Using ArcGIS 10.4, the study area was outlined based upon bluff top areas with a 

historically herbaceous ground cover as observed in historic photographs. The random point 
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generator tool from the Data Management toolbox was used to create 79 points within the study 

area. The points were downloaded onto a Trimble Juno 3B device in order to navigate to the 

center of the points. In June and July of 2016, vegetation measurements were obtained in 79 

circular, each 25 m2 in area. All woody stems were identified and stems >1 cm dbh were 

measured for diameter and height. Stems <1 cm dbh. were identified and counted. In each plot, 1 

m2 subplots were delineated and percent cover of forb, grass, woody stems, and bare soil/leaf 

litter were estimated. Canopy cover was estimated using a convex spherical densitometer at the 

center of each plot. Aspect and slope were measured using a compass and clinometer, 

respectively. Soil samples were obtained and analyzed by SGS North America, Inc. for pH, 

macro- and micro-nutrients, and CEC.   

Dendrochronological Methods 

We obtained tree cores from all stems with a dbh >10 cm and cross sections from all 

stems with a dbh <10 cm. Samples were prepared following the procedures presented by Stokes 

and Smiley (1968). The small cross sections were crossdated using the Yamaguchi (1991) List 

Method (N=590) and the cores and larger cross sections were measured using a Velmex 

measuring station with Measure J2X software to the nearest 0.001 of a millimeter (N=101).  

Each group of species were validated using COFECHA with a 22 year cubic smoothing spline 

examining and a 30 year segment with a successively lagged 15 years. The critical correlation 

with a 99% confidence level is .4226.  For each plot, two columns were added, one for the oldest 

tree age and one for the average tree age, to be included in the ordination analysis.  

Statistical Analysis  

Importance values for each species were calculated by averaging relative density, relative 

dominance, and relative frequency.  Cluster analysis using a hierarchical agglomerative 
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polythetic process in PC-ORD 6.21 was performed to identify similar groups of community 

composition and structure. The parameters of the cluster analysis utilized the Euclidean distance 

measure and Ward’s method of group linkage methods resulting in a 2.98 percent chaining 

which is below the 15 to 25 percent chaining threshold that indicates poor performance if 

exceeded (Peck, 2010). Group selection was conducted automatically by allowing the 

hierarchical cluster analysis to identify and assign groups based on group-average linkages.  

Indicator values were determined for each species’ basal area and density using the species’ 

abundance and constancy of occurrence of a species in a group. 

Non-metric multi-dimensional scaling was preformed using PC-ORD 6.21 with the 

guidance of Peck (2010) and McCune and Grace (2002). A 2D solution was selected with a 

mean stress of 11.25 which is between the optimal range of 5 to 15. 

Results  

 The sampling effort of 79 circular plots each with an area of 25 m2 provided 

sufficient saturation to capture the diversity of species within the study site (Figure 34). We 

observed one woody species in very low abundance, Liriodendro tulipifera, in the study site but 

not present in the sampling.  
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Figure 34: The species area curve with a flattening curve approaching sampling saturation for 53 

woody species in 79 plots.  

Table 9. 

Importance values for the woody stem species using averaging their relative basal area, relative 

density, and relative frequency. 

Species/Coverage 

Total 

Basal 

Area 

Total 

Stems Frequency 

Relative 

Basal 

Area 

Relative 

Density 

Relative 

Frequency 

Importance 

Value 

Lonicera maackii 4.24 3217 75 21.07 46.27 11.01 26.12 

Rhus aromatica 0.00 1084 44 0.01 15.59 6.46 7.35 

Fraxinus americana 2.04 393 54 10.11 5.65 7.93 7.90 

Cercis canadensis 0.41 286 35 2.05 4.11 5.14 3.77 

Celtis occidentalis 0.50 260 45 2.48 3.74 6.61 4.28 

Cornus drummondii 0.66 182 24 3.30 2.62 3.52 3.15 

Quercus muehlenbergii 3.03 177 43 15.05 2.55 6.31 7.97 

Celastrus orbiculatus 0.00 146 25 0.00 2.10 3.67 1.92 

Parthenocissus quinquefolia 0.00 134 29 0.00 1.93 4.26 2.06 

Rhus typhina 0.00 107 1 0.00 1.54 0.15 0.56 

Rhus glabra 0.01 88 8 0.05 1.27 1.17 0.83 

Sassafras albidum 0.42 79 11 2.11 1.14 1.62 1.62 

Acer saccharum 2.42 63 24 12.04 0.91 3.52 5.49 

Quercus stellata 1.26 61 9 6.24 0.88 1.32 2.81 

Carya glabra 0.76 61 27 3.76 0.88 3.96 2.87 

Fraxinus quadrangulata 0.05 61 20 0.27 0.88 2.94 1.36 
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Diospyros virginiana 0.16 57 12 0.80 0.82 1.76 1.13 

Cornus florida 0.10 52 14 0.48 0.75 2.06 1.09 

Ostrya virginiana 0.10 50 18 0.48 0.72 2.64 1.28 

Ptelea trifoliata 0.01 48 16 0.07 0.69 2.35 1.04 

Juniperus virginiana 0.42 39 19 2.10 0.56 2.79 1.82 

Rhamnus cathartica 0.16 33 22 0.78 0.47 3.23 1.49 

Vitis aestivalis 0.00 33 16 0.00 0.47 2.35 0.94 

Prunus serotina 0.00 30 11 0.00 0.43 1.62 0.68 

Juglans nigra 0.25 27 7 1.26 0.39 1.03 0.89 

Ailanthus altissima 0.32 25 2 1.57 0.36 0.29 0.74 

Quercus velutina 1.31 20 12 6.53 0.29 1.76 2.86 

Symphoricarpos orbiculatus 0.00 18 3 0.00 0.26 0.44 0.23 

Quercus rubra 0.59 16 8 2.92 0.23 1.17 1.44 

Lindera benzoin 0.00 14 5 0.00 0.20 0.73 0.31 

Quercus alba 0.18 12 4 0.92 0.17 0.59 0.56 

Campsis radicans 0.00 12 3 0.00 0.17 0.44 0.20 

Ulmus americana 0.15 11 4 0.74 0.16 0.59 0.50 

Robinia pseudoacacia 0.04 11 3 0.18 0.16 0.44 0.26 

Rubus allegheniensis 0.00 8 1 0.00 0.12 0.15 0.09 

Celtis tenuifolia 0.03 5 3 0.14 0.07 0.44 0.22 

Toxicodendron radicans 0.00 5 3 0.00 0.07 0.44 0.17 

Amelanchier arborea 0.07 4 2 0.37 0.06 0.29 0.24 

Tillia americana 0.16 3 3 0.78 0.04 0.44 0.42 

Acer negundo 0.02 3 3 0.11 0.04 0.44 0.20 

Elaeagnus umbellata 0.00 3 3 0.00 0.04 0.44 0.16 

Lonicera Japonica 0.00 3 2 0.00 0.04 0.29 0.11 

Euonymus fortunei 0.00 3 1 0.00 0.04 0.15 0.06 

Carya tomentosa 0.25 2 2 1.25 0.03 0.29 0.52 

Euonymus alatus 0.00 2 2 0.00 0.03 0.29 0.11 

Rosa carolina 0.00 2 1 0.00 0.03 0.15 0.06 

Asimina triloba 0.00 1 1 0.00 0.01 0.15 0.05 

Quercus imbricaria 0.00 1 1 0.00 0.01 0.15 0.05 

Totals 20.132 6952 681 100 100 100 100 

 

The species with the highest importance value across the south facing bluff ridge were L. 

maackii (26.1), Quercus muehlenbergii (7.9), Fraxinus Americana (7.8), Rhus aromatica (7.3), 

Acer saccharum (5.4), Celtics occidentalis (4.3), Cercis canadensis (3.7), Cornus drummondii 

(3.1), Carya glabra (2.8), and Quercus velutina (2.8). The species with the highest relative basal 

area include L. maackii (21.0), Quercus muehlenbergii (15.1), Acer saccharum (12.0), Fraxinus 
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Americana (10.1), and Quercus velutina (6.5). Relative density was dominated by L. maackii 

(46.3), Rhus aromatica (15.6), Fraxinus americana (7.9), Cercis canadensis (5.1), and Celtics 

occidentalis (4.3).   

 

 

Figure 35: Hierarchical cluster analysis for identifying groups. 

The hierarchical cluster analysis for identifying groups based on community similarity 

found 4 groups (Figure 35). Using Euclidean distance measure and Ward’s method of group 

linkage method, a 2.98 percent chaining effect occurred. Group selection was assigned 

automatically, but limited to 4 due to the practicality of interpretation and considerations of 

management scenarios. Groups 1 and 3 consisted of the remnant savanna structure and the hill 
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prairie community, respectively. Groups 2 and 4 consisted of the Acer dominated areas and stem 

initiation/transition areas, respectively.  

 

 

Figure 36. Non-metric multidimensional scaling of the four groups. 

The ordination results from the non-metric multidimensional scaling revealed separation 

of the four groups found in the hierarchical cluster analysis, with centroids shown. Minor plot 

overlap exists between groups 2 and 3 and also 2 and 4.  

 

Table 10 

 

Indicator species analysis for the bluff groups. 

Species Group 
Indicator 

Value 
Mean S.Dev P-value 

Remnant Savanna Group   

Juniperus virginiana 1 58.4 14.9 6.03 0.0002 

Lonicera maackii 1 74.2 33.6 5.38 0.0002 

Seedings 1 49.1 31 3.31 0.0002 

Carya glabra 1 45 17.9 6.03 0.0022 

Lonicera maackii (BA) 1 47.9 25.9 5.98 0.0054 

Juniperus virginiana (BA) 1 21.4 9 4.93 0.0276 

Woody Stem Coverage 1 36.1 28.7 3.54 0.0368 

Quercus stellata 1 23.7 12 5.97 0.0424 
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Fraxinus americana 1 45.3 30.1 7.57 0.0522 

Carya glabra (BA) 1 20.8 11.3 5.58 0.064 

Celtis occidentalis (BA) 1 18.6 12.7 6.08 0.1452 

Rhus aromatica (BA) 1 9.1 5.1 3.25 0.2454 

Carya tomentosa (BA) 1 8.2 6.2 3.59 0.2707 

Lonicera japonica 1 7.9 6.3 3.67 0.3303 

Quercus stellata (BA) 1 9.8 8.9 4.91 0.3313 

Juglans nigra (BA) 1 7.8 6.1 3.87 0.3391 

Toxicodendro radicans 1 7.2 6.9 4.01 0.3445 

Amelanchier arborea (BA) 1 7.7 6.3 3.52 0.3547 

Carya tomentosa 1 7 6.3 3.46 0.4239 

Amelanchier arborea 1 7 6.3 3.45 0.4351 

Quercus rubra 1 8 9.8 5.24 0.5349 

Ostrya virginiana 1 5.5 7.5 4.36 0.6047 

Robinia pseudoacacia (BA) 1 4.4 6.2 3.63 0.7187 

Elaeagnus umbellata 1 5.2 7 3.83 0.7776 

Acer Group   

Bare soil/Leaf Litter 

Coverage 
2 40.4 27.6 3.04 0.0002 

Acer negundo 2 8.3 7 3.88 0.2533 

Sassafras albidum 2 13.5 11.8 5.88 0.2975 

Sassafras albidum (BA) 2 8.3 7 4.29 0.3409 

Acer saccharum (BA) 2 15.3 15 6.27 0.3751 

Ailanthus altissima (BA) 2 5.6 6 3.64 0.5365 

Ailanthus altissima 2 5.6 6 3.64 0.5365 

Ptelea trifoliata (BA) 2 5.6 6.1 3.47 0.6549 

Rhus glabra (BA) 2 5.6 6.4 3.48 0.7349 

Tilia Americana (BA) 2 4.5 7 4.04 0.802 

Lindera benzoin 2 4.2 8.2 4.75 0.9052 

Acer negundo (BA) 2 2.8 5.1 3.25 1 

Euonymus alatus 2 2.8 5.1 3.24 1 

Hill Prairie Group   

Grass Coverage 3 39.7 22.1 6.37 0.0196 

Rhus glabra 3 16.8 10.6 5.69 0.1234 

Cornus florida (BA) 3 6.3 6.9 3.75 0.4761 

Ptelea trifoliata 3 12.4 13.9 6.11 0.5143 

Asimina triloba 3 4.2 5 3.17 0.5459 

Rubus allegheniensis 3 4.2 5.1 3.24 0.5481 

Quercus imbricaria 3 4.2 5 3.19 0.5493 

Celtis tenuifolia 3 5.8 6.9 4.02 0.6237 

Celtis tenuifolia (BA) 3 4.9 6.9 4.04 0.6757 

Quercus alba (BA) 3 3.6 6.1 3.83 0.8078 

Rhamnus cathartica (BA) 3 5.2 9.7 5.23 0.8464 

Quercus muehlenbergii 

(BA) 
3 10 16.2 6.07 0.8992 
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Symphoricarpos orbiculatus 3 2.9 7 4.18 0.9496 

Transition Group   

Cornus drummondii (BA) 4 48.1 14 5.73 0.0008 

Cercis canadensis 4 54.1 21.2 6.41 0.0014 

Prunus serotina 4 40.9 11.5 5.78 0.0024 

Quercus muehlenbergii 4 45.8 22.8 5.51 0.0032 

Cornus florida 4 41 13.1 6.18 0.0044 

Cercis canadensis (BA) 4 33.1 11.1 5.54 0.005 

Cornus drummondii 4 40.1 17.3 6.26 0.0076 

Rhus aromatica 4 42.5 24.8 6.83 0.0216 

Celtis occidentalis 4 37.3 23 5.93 0.0264 

Quercus velutina 4 24.5 11.8 5.68 0.0348 

Celastrus orbiculatus 4 33.6 18.5 6.81 0.0352 

Fraxinus quadrangulata 4 31.5 16.4 6.62 0.0358 

Ulmus americana 4 18.4 7.5 4.37 0.036 

Diospyrus virginiana (BA) 4 20.4 10.1 5.46 0.0498 

Forb Coverage 4 36.8 27.4 5.1 0.0514 

Quercus rubra (BA) 4 17 8.1 4.68 0.0578 

Acer saccharum 4 25.5 16.4 5.75 0.0766 

Rhamnus cathartica 4 24.5 15.7 5.78 0.083 

Vitis aestivalis 4 21.9 13.7 6.03 0.0918 

Rhus typhina 4 12.5 5 3.2 0.0954 

Rosa carolina 4 12.5 5.1 3.27 0.1066 

Parthenocissus 

quinquefolia 
4 26.2 19.1 6.35 0.1218 

Juniperus virginiana 4 15.2 9.6 5.27 0.1362 

Diospyrus virginiana 4 20.5 13.8 6.88 0.1552 

Campsis radicans 4 10.3 7 4.19 0.158 

Robinia pseudoacacia 4 10.2 6.9 4.16 0.162 

Tilia americana 4 8.7 7 3.79 0.1728 

Ostrya virginiana 4 19.1 14.8 6.25 0.198 

Quercus alba 4 8.4 7.5 4.5 0.2891 

Euonymus alatus 4 7.2 6.4 3.59 0.3069 

Fraxinus quadrangulata 

(BA) 
4 6.9 7.5 4.39 0.3559 

Ulmus Americana (BA) 4 7.3 6.3 3.59 0.4069 

Fraxinus ameriana (BA) 4 15.7 16.5 6.1 0.4445 

Quercus velutina (BA) 4 6 8.5 5.08 0.5997 

 

Indicator species analysis identified the significant species in each group of hill prairie 

vegetation types. Indicator values are based on a scale of 100 with higher values showing 

corresponding to stronger associations. Significant indicators have p-values <0.05. Indicators 



116 

 

 

 

without significant values are placed in a group even though their presence in other groups is 

strong. The remnant savanna group, group 1, consists of the community with a significant 

(p<0.05) indicator values of the density of J. virginiana (indicator value 58.4, p-value = 0.0002), 

C. glabra (45, 0.0022), and Q. stellata (23.7, 0.0424) and a high basal area of J. virgniana (21.4, 

0.0276).  The sugar maple group, group 2 contains one indicator coverage at a significant level, 

bare soil or leaf litter coverage in the subplot (40.4, 0.0002). The hill prairie group, group 3, has 

the sole indicator of grass coverage in the subplots (39.7, 0.0196). Group 4, the transition group 

has 14 significant indicator species.  

Table 11 

Average stem density per ha and average basal area for each bluff group. 

Group Type 
Average Stem 

Density per ha 

 

Average Basal 

Area (m2) per 

ha 

1 Remnant Savanna Group: J. virginiana, C. glabra,  

Q. stellata with L. maackii 95,454.45 36.40 

2 Sugar Maple Group: Bare/Litter with A. saccharum 25,911.08 32.25 

3 Hill Prairie Group: Grass with Q. velutina and F. 

americana 59,950 30.85 

4 Transition Group: C. florida and C. canadensis 13,266.69 15.70 

 

 

Stem density and basal area was highest in the remnant savanna group and lowest in the 

transition group (Table 11).  

Dendrochronology Results 

The earliest tree ring on a stem served as the establishment year and was plotted 

according to species and group membership (Figure 37). Tree ring width series were cross-dated 

using the COFECHA program. Several species failed to meet the .4226 threshold, but Q. velutina 

achieved a series intercorrelation of .503 with an average mean sensitivity of .243 over a mean 
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length of series of 80.5 years. The number of stems that establish each year is positively 

correlated, r(635) = 0.212, p = .003) with the 10 yr moving average of the Palmer Drought 

Severity Index (PDSI), as well as the raw PDSI values, r(635)=.142, p = .049. In 1990, the 

invasion of L. maackii significantly increased. In the 1940s, a cohort of A. saccharum established 

in addition to steady recruitment in the 1960s and 1970s. 

 

Figure 37. The establishment dates of stems for each species by group. 
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Figure 38. The Palmer Drought Severity Index for area including Elsah Township since 1905.  

The Palmer Drought Severity Index (Cook, 2004) was smoothed with a 10 year moving 

average beginning in 1905 (Figure 38). Positive values indicate higher amounts of moisture that 

are available for plant use and negative values represent drought conditions. The decadal 

oscillations between wet and dry periods ended when a prolonged wet cycle beginning in the 

early 1970s began and persisted with only minor dry periods in this region. 

Table 12 

Average establishment year for bluff woody stems. 

Species 

Oldest 

year 

on 

record 

Average 

establishment 

year 

Std. Dev. 

of Year 

Acer saccharum 1940 1965 14.00933 

Ailanthus altissima 1985 2002 9.414286 

Amelanchier arborea 1890 1937 66.46804 

Carya glabra 1944 1979 26.77116 

Carya tomentosa 1883 1883 NA 

Celtis occidentalis 1968 1982 8.21381 

Celtis tenuifolia 2010 2011 0.707107 

Cercis canadensis 1983 1997 6.885086 

Cornus drummondii 1975 2000 9.523747 

Cornus florida 1972 1977 7.81025 

Diospyros virginiana 2007 2011 2.615203 

Fraxinus americana 1916 1978 21.97642 
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Fraxinus quadrangulata 1941 1974 25.46894 

Juglans nigra 1938 1985 40.46398 

Juniperus virginiana 1901 1968 30.9736 

Lonicera maackii 1964 2004 6.068465 

Ostrya virginiana 1979 1979 NA 

Ptelea trifoliata 2007 2008 0.707107 

Quercus alba 1938 1967 41.01219 

Quercus muehlenbergii 1832 1958 34.53826 

Quercus rubra 1949 1960 8.01041 

Quercus stellata 1859 1912 41.76422 

Quercus velutina 1881 1948 38.58324 

Rhamnus cathartica 1973 1992 18.59211 

Rhus aromatica 2008 2008 0.57735 

Rhus glabra 2011 2012 1.414214 

Robinia pseudoacacia 2007 2008 1.414214 

Sassafras albidum 1949 1989 18.74166 

Tillia americana 1975 1975 NA 

Ulmus americana 1966 1969 3.535534 

 

One-way ANOVA and Tukey HSD post hoc test revealed the average age of L. maackii in the 

remnant savanna group (group 1) was significantly older than the sugar maple group and the 

transition group, F(3,406)=11.46 p = <0.001, but not different than the hill prairie group. No 

other post-hoc comparison was significant.  

 

Discussion 

The homogenizing influences in the dynamics of the hill prairie and surrounding low-

density forest have created a concern about the loss of biodiversity and especially the loss of 

graminoid and forb species. Since 1955, observers have questioned the stability of the prairie 

species and noted the gradual encroachment of the hill prairies but the pattern of woody stem 

initiation was limited to the inside boundaries of the hill prairie (Evers, 1955; Robertson et al., 

1995). Unlike any prior hill prairie study, this study sought to include the hill prairies and 

surrounding low density forest that once contained a prairie assemblage as a single gradient of 
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vegetation communities. This more inclusive view of the system enabled historical conditions to 

be incorporated into an analysis that factored in the temporal parameters of ecological change.      

The results suggest that the prairie-forest dynamic is influenced by a number of complex 

interacting factors.  The steady increase of mesophytic species and the invasion of exotic shrubs 

coupled with the persistence of a wet cycle and modification to historic disturbance regimes have 

resulted in a persistent encroachment of hill prairies and the surrounding low density forest. The 

wet period since the mid 1970’s would facilitate the germination and establishment of woody 

stems, in addition to the growth of extant trees, and accelerate the rate of encroachment. Without 

widespread frequent surface fires to check the growth of woody stems, the prairie species were 

outcompeted and largely disappeared.  

While this study focused on the pattern of woody stem initiation in the prairie forest 

mosaic, the impacts of composition, shading, and leaf drop on prairies communities are  

fundamental elements of a restoration plan and understanding the ecological mechanisms of 

encroachment.  Studies of woody stem encroachment into prairies have observed the shading 

effect caused declines in C4 grasses, hemi-parasites, legumes, and perennial dicot forbs 

abundance (Taft & Kron, 2014).  Additional studies found that C4 grasses and perennial dicot 

forbs to be negatively impacted (Briggs, Hoch, & Johnson, 2002; Lett & Knapp, 2003). 

 This remnant savanna group was highly susceptible to recent forest conversion as 

demonstrated by high woody stem coverage (indicator value: 36.1, p-value: 0.0368) in the 

subplots and seedling density of all species (49.1, 0.0002). Of the four main community groups 

identified, both L. maackii density (74.2, 0.0002) and basal area (47.9, 0.0054) were indicators of 

group 1.  The first year of L. maackii presence was 1964, however the average establishment 

year was 2004 (st. dev. 6.1) with the primary wave of invasion beginning in 1990 (N=410). 
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Notably, 5 of the oldest 10 trees in the study site are Q. stellata. The basal area of additional 7 

species was assigned to group 1, but not at a significant level. The invasion of exotic woody 

shrubs is associated with savanna and woodland community structure.  

The management of the remnant savanna community is limited to a short timeframe due 

to the rapidly changing dominance (i.e. instable system dynamics) within the next cohort. 

Mechanical intervention with stump treatments will return the forest structure to a range of 

woodland to savanna stem densities. However, establishing a prairie community under the forest 

canopy will require frequent application of prescribed fire in addition to foliar spraying of 

herbicides to prevent the establishment of invasive species and undesirable woody stems. Inter-

seeding with grass and forb species may be necessary depending on the site (Schramm, 1978, 

1990).  

The sugar maple group, group 2 contains just one indicator species at a significant level, 

bare ground or leaf litter coverage in the subplot (40.4, p = 0.0002). The lack of ground layer 

vegetation is due to the high degree of shading and limitation of light resources at the forest floor 

(Belsky & Canham, 1994). The species assigned to Group 2, but not at a significant value, 

include A. negundo density, S. albidum density and basal area, and A. saccharum basal area. 

Attenuating the mesophytic influence along the forest-prairie gradient involves limiting 

the island effect by thinning at the edges of the mesophytic patches to reduce shading of prairie 

and savanna species.  Thinning within the patch is viable where xeric savanna structure remains, 

especially where numerous young mesophytic species are below the canopy of traditional 

savanna species (e.g. Q. stellata). Depending on weather conditions and fuel loading, prescribed 

fire in this area would cause significant mortality, particularly to the small diameter Acer species 

and S. albidum, and the resulting ecosystem trajectory would be uncertain. 
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The hill prairie group, group 3, typifies the intact hill prairie community with the sole 

indicator of grass coverage in the subplots (39.7, p = 0.0196).  These small openings in the 

canopy with steep southern exposure provide ample light resources for prairie grasses and forbs 

to persist.   

The prairie dominated sites should maintained with frequent fire to reduce the 

establishment and growth of woody species (Schramm, 1990). Thinning, particularly of 

mesophytic species, near the prairie edge would increase solar radiation, temperatures, and the 

desiccating effects of wind (Burns & Honkala, 1990).  

The transition group, group 4 represents the stage of forest development following the 

cessation of disturbance events and the trajectory advancing towards a mesophytic forest. This 

community has 14 indicators that include Cornus drummondii density and basal area, Cercis 

canadensis density and basal area, Prunus serotina density, Quercus muehlenbergii density, 

Rhus aromatica density, Celtis occidentalis density, Fraxinus quadrangulata density, Ulmus 

americana density, and Diospyros virginana basal area.  

The re-introduction of fire to areas with high stem densities would serve to reduce woody 

stem coverage, but would require frequent application over a long timeframe. However, because 

the relatively low amount of invasive species is desirable, caution should be exercised since 

interventions could unintentionally increase the probability of encouraging the establishment and 

spread of invasive species. Fire would serve as a filter and promote fire tolerant species which 

have a lower leaf area index (Reich, Walters, & Ellsworth, 1991) and would allow greater light 

resources to support a prairie component.  

Seedlings highly correlated with axis 1 (r2 = 0.956) and found predominately in Group 1 

but in descending order of density groups 4, 2, and 3. L. maackii highly correlated with axis 1 
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(r2=0.745) but followed a slightly different pattern from the seedings, with the greatest density in 

group 1 and followed by 2, 4, then 3.  

Conservation projects are constrained to the financial resources available to meet the 

objectives and goals. In terms of management priority, Groups 3 and 1 (hill prairie and remnant 

savanna) should receive the most attention due to the extant connection to historical ecological 

conditions. The hill prairies represent a significant portion of the remnant prairie in the state of 

Illinois. The remnant savanna converted to a closed canopy system rapidly and requires frequent 

disturbance in the form of surface fires (or analogous mechanical and herbicide treatment) to 

maintain the prairie component with a low density, pyrophylic forest community. Groups 4 and 2 

(stem initiation and Acer) should be included in treatments if enough resources for management 

are available. The stem initiation areas have shifted from grass and forb dominance and will 

require significant management to restore. While fire alone will not restore the ecological 

conditions of 50 years prior, it will enable the coexistence of prairie species and may reduce the 

density of the woody stems after annual burns are applied for multiple years. The Acer 

dominated area contains no vestiges of historic ecological conditions and restoration efforts 

would respond slowly. The most likely outcome in response to canopy removal would be the 

establishment and dominance of invasive species.  

The significant correlation between stem initiation with climatic patterns was observed in 

this study. Since the early 1970s, the oscillation between wet and dry cycles terminated and an 

extended wet period, with only minor dry instances, has persisted in the area.  This climatic 

pattern will exacerbate woody stem encroachment within the forest-prairie gradient by 

mesophytic and invasive species without management activities that promote historic ecological 

functions. 
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Conclusion 

Restoration and continued management of the forest-prairie gradient advances from an 

understanding of the main community types within the continuum. Hierarchical cluster analysis 

was employed to identify groups based on community similarity and found 4 groups within the 

hill prairie ecosystems along the bluffs of the Mississippi River. Non-metric multidimensional 

scaling revealed separation of the four groups with minor plot overlap. Groups 3 (hill prairie) and 

1 (remnant savanna) should receive the most attention due to their significance as a system 

similar to historic and diminishing conditions and Groups 4 (transition) and 2 (sparse ground 

layer with Acer overstory) should be included in restoration efforts as funding allows.  
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CHAPTER 5 

A FOREST MANAGEMENT APPROACH THAT INTEGRATES HISTORICAL 

CONDITIONS FROM DIVERSE SOURCES AT MULTIPLE SCALES 

 

Current ecological trajectories and evolving social forces in the Midwest present the 

forest manager with difficult choices. As these ecological communities deviate from historical 

conditions, the impacts to economic potential, wildlife habitat quality, and ecosystem services 

becomes uncertain. Provisioning for the future includes retaining representative ecological 

conditions similar to historic conditions (i.e. oak woodland and savanna) across the landscape in 

addition to allowing current trends to advance towards closed canopy mesophytic forests 

(McTaggert, 2017). This process of mesophication is in disequilibrium with climatic forces 

(Nowacki & Abrams, 2015) and if climate trends continue, the result may lead to the collapse of 

forest ecosystems in the Midwest.  Restoration of historical forest structure and composition, in 

some portion of the total landscape, is a critical element of conserving the range of biodiversity. 

Studies, like this dissertation, provide the historical context for understanding long-term forest 

dynamics in a highly variable landscape. In each natural area, the balance between restoration of 

historic conditions and allowing unchecked ecological development of invasive species and 

mesophytic forests is situational dependent and constrained by the financial and labor resources 

of the decision makers.  

Managing forest ecosystems requires current inventory data and an understanding of the 

historical ecological drivers that influenced forest composition and structure. In the confluence 

area of the Middle Mississippi River Bluffs Region, topographic variation can be divided into 

four unique settings: upland, bluff, talus slope, and river island. Each setting is governed by 

different topoedaphic conditions, fire frequency, flooding events, and anthropogenic activity.  
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Table 13 

Stem density and basal area for each topographic zone. 

 Overstory Shrub Layer Ground Layer 

Zone Stem ha-1 BA m2 ha-1 Stem ha-1 BA m2 ha-1 Seedlings ha-1 

Bluff 308.86 23.91 5245.57 3.74 29,646 

River 354.43 85.49 860.76 2.79 64,810 

Talus 384.81 32.52 3326.58 5.60 9,580 

Upland 313.92 40.36 3483.54 2.83 12,577 

 

Invasive species became a major management problem over the past 50 years in the 

Midwest. In the study area, dendrochronology revealed that bush honeysuckle (Lonicera 

maackii) invaded the forest as early as 1964 but proliferated starting in 1990.   Influencing the 

dominance of invasive species by reducing the density and biomass can require significant 

resources over repeated treatments, but addressing their presence is vital prior to initiating any 

type of canopy disturbance (Chen & Matter, 2017). Treatments that disturb the soil or increase 

light levels on the forest floor should be followed by a monitoring routine and targeted treatment 

of invasive species to prevent their dominance of a site (Shields et al., 2015). The most dominant 

invasive species L. maackii, was found on all non-hydric sites and most dominant on the bluff 

where light levels were the highest. Other invasive species were observed, but not at high levels 

or with the potential of site dominance.  Over multiple entries, autumnal chemical treatments by 

aerial spraying, midst spraying, or stump cut of L. maackii have been demonstrated to be 

effective at decreasing its dominance (Nyboer & Edgin, 2017). 

Historical Trends in Ecological Development 

 Across the landscape, forest dynamics were influenced by disturbance patterns and site 

conditions. The ecological effects of prescribed fire are well documented in oak-hickory systems 

and restoring a fire regime could have multiple ecological benefits.  Nevertheless, fire should be 
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precluded from areas where mesophytic species are desired. Seasonality of the burns can 

influence the ecological effects, but most burns are conducted in the late winter to minimize the 

duration of exposed soil. Historically, fire was applied with regularity which favored pryophytic 

species and lead to the dominance of prairie vegetation with reserves of low oak-hickory stands 

on the upper slopes. Researchers have posited that even floodplain forests have a fire regime that 

mediates forest competition and dominance (Nelson et al., 1995). Mespophytic vegetation 

existed near water courses due to the higher moisture levels and topographic barriers to fire 

travel. Across the landscape, the application of fire in a range of frequencies, from annually in 

the forest-prairie gradient of the bluffs to none in areas where pyrophobic vegetation is desired, 

will promote diversity. 

 Forest development across the landscape began with low density and high basal area 

stands  at the time of settlement (Table 13). In the early part of the 1900s, disturbance regimes 

shifted and fire frequency diminished resulting in stem density increasing significantly and basal 

area decreasing. The stages of stand development progressed and the current mature forest has 

lost density but gained basal area. These trends are consistent with the general patterns of forest 

development.  

Table 14 

Changes in stem density and basal area over time on the river island, talus slope, bluff, and 

upland positions. 

 River Island Talus slope Bluff Upland 

Year 
Stem ha-1 BA m2 ha-1 Stem ha-1 BA m2 ha-1 Stem ha-1 BA m2 ha-1 Stem ha-1 BA m2 ha-1 

1820 86.8 NA NA NA NA NA 21.4 36 

1936 584.56 NA 1109 NA NA NA NA NA 

2017 354.43 85.49 384.81 32.52 308.86 23.91 313.92 40.36 
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Upland Hardwood Forest 

 Silvicultural treatments in the Midwest have the opportunity to forge a unique approach 

that utilizes historical conditions as targets for management and combine ecological restoration 

with economic returns. The evidence presented in this dissertation supports the use of 

silvicultural methods that reduce stem density, favor pyrophilic species with the use of fire, and 

establish an herbaceous ground layer. Witness tree analysis for Elsah Township (circa 1820) 

suggests that forest was dominated by a variety of oaks with a density of 21.4 stems ha-1 and a 

basal area of 36 m2 ha-1. The few but large stems is confirmed by Rebecca Burlend in 1831, “Not 

a few (trees) are to be found in the last stage of decay, their patriarchal dignity gradually 

submitting to the all-subduing influence of time.” In particular, she noticed that, “Numbers (of) 

more (trees) are quite hollow, in which bees, owls, and rabbits … find shelter” (White, 2000). 

Cuttings should often be paired with prescribed fire and invasive species treatments depending 

on the site. The primary befit of including silvicultural options in management planning is the 

potential income produced by harvesting over-mature trees. The concept of a regulated forest 

that reliably and indefinite produces a consistent oak harvest may be possible across the 

Midwestern landscape. The two primary silvicultural methods consistent with historical 

conditions include variable retention harvesting and oak-shelterwood. Both methods produce 

suitable light environments for the germination and establishment of oak and hickories species 

and require a minimum of 5 hectares to implement. Future studies should detail the relative 

benefits and drawbacks of each approach.  

Variable retention harvesting uses an individualized approach to reaching management 

goals and preparing the forest for desired future conditions. Trees are removed based on their 

maturity, effects on neighboring trees, species, and impact on the regeneration of a new cohort. 
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For example, if oak regeneration was one of the management goals, a variable retention harvest 

would focus on removing trees with a significant shading effect and reducing canopy coverage 

so that light would penetrate to the forest floor, which would constitute about 50% of the cutting 

unit. About 20% of the area would be retained as closed canopy forest and serve as refugia for 

shade tolerant species, including both flora and fauna. In an area with topography, the region 

along the drainages or valleys could serve as this retention which would be historical consistent 

with the spatial orientation of forest structure. In 1830, James Hall observed that the forests were 

distributed as “marking the course of some tributary stream and sometimes in vast groves” and 

on the slopes and ridges, trees were “standing alone like islands, in this wilderness of grass and 

flowers.”  Likewise, Henry Allyn was a surveyor in 1816 and noted that “The country all prarie 

[sic] except here & there an island of timber of from 100 to 500 acres, & a narrow list of timber 

along the margins of the largest streams.” In addition, stream management zone (SMZ) 

regulations from best management practices (BMP) would be satisfied with the location of the 

retention along the ephemeral or perennial streams. The variable retention method requires an 

intimate knowledge of the forest and the spatial arrangement of tree species and size classes. The 

remaining 30% of the area may be cleared as small to large patches.  

The oak-shelterwood relies on a preparatory cutting to reduce unwanted vegetation, an 

establishment cutting to allow oak regeneration to initiate, and a final overstory removal to 

harvest mature trees and release the next cohort. The historical basis for the oak shelterwood is 

noted by James Hall’s description of the landscape as “hundreds of acres embellished with a kind 

of open woodland” and that trees “occasionally collected in clusters, while now and then the 

shade deepens into the gloom of the forest.” The primary objective of this oak-shelterwood is the 

establishment of advance oak regeneration, which is a niche currently occupied my maples, 
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associated mesophytic species, and invasive species. Shelterwood can retain the overstory for 

extended periods to add additional growth to the overstory trees. Clearcutting presents a number 

of challenges to perpetuating oak forests including loss of legacy trees to provide light, heat, and 

moisture moderation and seed sources. Single tree selection is problematic in providing the 

proper regeneration conditions on most sites and will lead a forest conversion to a dominance of 

shade tolerant species. 

Table 15 

Comparison of variable retention and oak-shelterwood harvest methods. 

Attribute Variable Retention Oak-Shelterwood 

Light Low to high Medium to high 

Moisture Dry to moist Dry 

Closed canopy reserves ~20% 0% 

Low density canopy ~50% 100% 

Ease of implementation Moderate Easy 

Preservation of legacies High Medium 

Entries per cycle 1 3 

Min. cutting unit (ha) 5 5 

Example residuals of an upland stand with  314 stems ha-1 and a basal area of 40.36 m2 ha-1 

Residual density (stems ha-1) 87.8 50 

Residual basal area (m2 ha-1) 20 23.9 

   

 To establish an herbaceous ground layer the seedbed can be prepared by clearing leaf 

litter with fire or mechanically as in following a timber harvest. Providing seed to the site may be 

necessary to re-introduce species. Typically, broadcast spreading the seed by hand directly 

following a burn is effective. Annual burns for the first 5 years will assist in establishing the 

herbaceous coverage and prevent the suppressing influence of accumulating leaf litter.  

Fire can be an effective tool for reaching management goals. Provided a trained fire crew 

and proper containment measures are implemented, burns can quickly treat a large area, 
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discriminating against species with sensitivity to heat, thin bark, small diameters, or weak re-

sprouting abilities. Surface fires reduce the mulching effect of forest litter and allow more 

herbaceous plant germination and growth. Although fires can initially and temporarily accelerate 

soil erosion, the establishment of a widespread herbaceous layer reduces the long-term erosion 

rates.   Mechanical interventions that mimic some the ecological effects of fire may be suitable in 

areas where fires are inappropriate.  

 The upland region of Principia College land contains 314 stems ha-1 with a basal area of 

40.36 m2 ha-1.  The large diameter trees are dominated by oaks and hickories, while the small end 

of the diameter distribution contains maples, elms, and sassafras with small components of oak 

and hickory. The middle of the distribution is a mix of all species. Oaks have received special 

attention due to their economic importance, wildlife connections, and difficulty in regenerating.  

The field forester knows that a stand prescription must be adapted to each acre in the stand. A 

shelterwood in this forest type with a goal of oak regeneration would focus on retaining stems 

above 45 cm which results in a retaining of 50 stems ha-1 with a basal area of 23.9 m2 ha-1 and 

removing 264 stems ha-1 with a basal area of 16.5 m2 ha-1. This is for stems greater than 15 cm 

dbh. These metrics are approaching the reference conditions from 1820 of 21.4 stems ha-1 and a 

basal area of 36 m2 ha-1. Shrub layer (between 1 and 15 cm dbh) contains 3483.5 stems ha-1 with 

a basal area of 2.8 m2 ha-1 and is dominated by invasive shrubs. All shrubs layer stems, except 

those of oaks, hickories, and other desired species, can be removed, and will likely be damaged 

or removed during the overstory operations.  

A variable retention harvest would have similar residual values as the shelterwood, but 

the spatial arrangement of the trees would be different. As an example, let’s use 10 ha as a 

potential harvest unit for variable retention. If the forest on mesic sites were retained and 
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consisted of 20% of the area (2 ha), approximately 628 stems with a basal area of 81 m2 would 

exist in the reserves. In the gaps which occupy 30% of the area (3 ha), 942 stems ha with a basal 

area of 121 m2 would be removed. The remaining area, 50% (5 ha), would receive a treatment 

similar to shelterwood. Stems above 45 cm would be removed which results in a retaining of 250 

stems with a basal area of 119.5 m2 and removing 1320 stems with a basal area of 82.5 m2. The 

total residual stand in the 10 ha of variable retention harvest unit would consist of 878 stems with 

a basal area of 200.1 m2 or 87.8 stems ha-1 and basal area of 20 m2 ha-1. 

Table 16 

Stem density and basal area comparison.  

Stand Density (stems ha-1) Basal Area (m2 ha-1) 

Current condition 314 40.36 

Reference condition from 1820 21.4 36 

Residual shelterwood 50 23.9 

Residual variable retention 87.8 20.1 

 

Further silvicultural considerations include the idea of under-planting with oaks and the 

pressure of herbivores on seedlings. Under-planting with oaks is a possibility for establishing a 

cohort, but the cost of artificial regeneration is usually prohibitive. In addition, newly planted 

seedlings are often preferred by browsers like deer and rabbits. Assisted natural regeneration, or 

weeding near desired seedlings and providing fencing, may allow naturally established oaks to 

advance to the sapling stage. Although regenerating an oak dominated forest is a goal of 

managing a regulated forest, diversity of tree species will be found in the regeneration and 

contribute to overall diversity. Prescribe fire after the slash has partially decomposed and the 

herbaceous layer can support the fire spread can tilt the composition to pyrophylic species and 

mechanical thinning can release crop trees and aid in establishing dominance. 
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Bluff Forest-prairie Gradient 

The ecology on the bluffs contains four primary vegetation communities, each with a 

need for an individualized approach to management. Initially, the bluff region would have 

occasional trees such as post oak (Quercus stellata), Blackjack oak (Quercus marilandica), and 

various hickories (Carya spp) with distant spacing or in small clusters. Higher density forest 

would occur in the micro-valleys and contain a wider range of species. Oil paintings of the area 

by Fredrick Oakes Sylvester in the early 1900s depict the extensive prairie vegetation and 

location of trees (figs 2 and 3). As the era of fire suppression, conservation, and economic shifts 

initiated, the vegetation  community began to change. In 1950, Evers predicted that the hill 

prairie communities were stable due to the thin soil and southern aspect. However, as the 

decades progressed, woody invasion began to accelerate. Aerial photographs of the bluffs in the 

1970s indicate that although the forest was encroaching, vast prairie components existed . In the 

1960s, bush honeysuckle (L. maackii) spread to the forest and the invasion began in 1990. The 

understory of the oak savanna/woodland was the initial area to be invaded. The prairies continue 

to exist only in the absence of overstory trees. Hierarchal cluster analysis detected the four main 

communities as open prairie, recently encroached prairie, former woodland/savanna with major 

shrub invasion, and closed canopy mesophytic forest with no prairie elements. 

 

Table 17 

Average stem density and average basal area for each bluff group. 

Group Type 

Average 

Stem 

Density ha-1 

 Average 

Basal Area 

(m2) ha-1 

1 Remnant Savanna: J. virginiana, C. glabra,  Q. 

stellata with L. maackii 95,454.45 36.40 
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2 Sugar Maple: Bare/Litter with A. saccharum 25,911.08 32.25 

3 Hill Prairie: Grass with Q. velutina and F. 

americana 59,950 30.85 

4 Transition: C. florida and C. canadensis 13,266.69 15.70 

 

In all vegetation types except the sugar maple type, regular prescribed fire would be 

beneficial. Experiments that assess the benefits and costs of burn frequency and seasonality 

would help the manager optimize restoration activities. At least annual burning is required until 

the woody stems decline to smaller numbers. As Gershom Flagg described in the area between 

1817 and 1853, “the fire kills & checks the growth every year” and “the timber is all destroyed” 

(White, 2000) The ecological effects of fire in this system also support the use of annual fire. 

The treatment of invasive species is especially important with alterations to the canopy. Using 

herbicide to check the regrowth of invasives following cutting or fire will be essential to 

maintaining a resilient system. Fire is especially effective since stem density ranges between 

13,267 and 95,454 stems ha-1 and cutting by hand would be labor intensive except at a small 

scale. There is little evidence to suggest that the hill prairies can persist into the future without 

significant management intervention to restore the processes that allowed grasses and forbs to 

dominate. Without management, hill prairies will be lost just as the savanna and woodland 

disappeared. 

River Island Forest 

The management of the river island forest is heavily influenced by the hydrological 

patterns of the Mississippi River (Yin, 1998). Rainfall and snowmelt provide volume to the flow 

level and are regulated by the Army Corps of Engineers to accommodate a variety of demand 

including maintaining adequate levels for barge traffic (Grubaugh & Anderson, 1989). Post river 

impoundment, sugar maple (Acer saccharinum) ascended to the primary position of ecological 
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importance and the bottomland hardwoods declined significantly (Nelson & Sparks, 1998; 

Nelson et al., 1995). River island forest provides essential habitat to avian species along the 

Mississippi Flyway (Twedt & Loesch, 1999). Currently, the river island contains the forest with 

the highest amount of basal area at 85.5 m2 ha-1 in the overstory the least amount in the shrub 

layer at 2.8, indicating that this forest is mature. However, the overstory contained the lowest 

diversity at 63.9% of the maximum potential diversity. Because Lonicera maackii is intolerant of 

flooding condition, it is not found on the river islands, elevating the shrub layer to the highest 

diversity at 93.7% of the maximum. In addition the seedling diversity was exceptional low at 

6.6% of the maximum and the lowest of all four topographic positions, thus indicating a 

homogenizing influence is suppressing diversity with impacts lasting into the future. Due to the 

historical diversity found in the forest prior to river impoundment and the lack of current 

diversity, management activities should focus on restoring diversity, especially trees in the 

bottomland hardwood group. Regenerating hardwoods is hindered by an uncertain hydrological 

regime that could terminate a newly established cohort.  

Stand regeneration methods in bottomland hardwood forests have been studied using 

seeds (Kroschel, King, & Keim, 2016), stump sprouts (Knapp, Olson, & Dey, 2017), cuttings, 

bare root, and containerized stock (Gardiner & Oliver, 2005). Due to the difficulty of achieving 

restoration targets and establishing trees, as evident in the 90% failure rate of the 1992 Wetlands 

Reserve Program in Mississippi, the restoration of functions and natural landscape patterns 

instead of narrowly defined reference conditions is a favored management approach (Groninger, 

2005; Stanturf, Schoenholtz, Schweitzer, & Shepard, 2001). Defining restoration goals in 

realistic terms, utilizing ecological processes like the migration and establishment of volunteer 
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vegetation, and integrating flexibility into the approach could increase the success rate of 

bottomland silviculture (Groninger, 2005).  

Talus Slope Forest 

 The talus slope transition forest comprises the small percentage of the landscape and has 

been impacted by development activities. Stem density in the overstory (384.8 stems ha-1) and 

shrub layer basal area (5.6 m2 ha-1) were highest on the talus slope, indicating that this forest may 

have the youngest cohort of the four topographic positions. The forest is dominated by a strong 

Acer saccharum component in the smaller diameter classes and Quercus muehlenbergii 

throughout the diameter distribution. Historically, this forest type is likely the most similar to 

pre-settlement conditions since, as Daniel Harmon Brush noted, “Great groves of sugar maples 

were common along the little streams that came down through the hills, from which came most 

of the sugar used by the settlers for many years.” Interestingly, when comparing diversity from 

1936 to 2017, the talus slope had the lowest consistency and the greatest density reduction from 

1110 to 385 stem ha-1.  The change of diversity could be subject to the declining influence of fire 

as well as the maturation of the forest through the stages of stand development. Historic 

photographs from the 1800s show a sparse talus slope. This area was closest to the river and 

steam ships on the river would supply their fuelwood with the closest available resources. Fire 

would be regularly sparked by railways along the river and consume any newly established 

vegetation. Management of the talus slope has no clear mandate since it is a small area with steep 

slopes, except for tourism officials who have expressed interest in clearing views to the 

magnificent bluffs from the River Road. 

Conclusion 
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 Incorporating ecological history into stand prescriptions and forest restoration projects 

will strengthen the viability of the project and ensure continuity in historical trajectories. By 

doing so, mangers will create the most conservative approach to preserving biodiversity as 

rapidly changing conditions affect trends in forest development. As ecosystems advance into 

novel states in the absence of historic disturbance regimes, the manager must decide what 

percentage of the landscape can be representative of the desired conditions found in historical 

processes, structure, and composition.  Each stand will require an assessment of historic and 

current conditions to determine when the departure from ecological baseline conditions began 

and how far the departure has progressed. Based on this information, stands can be optimal 

prioritized for management based on the ability and resources of the landowner.    
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