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CHAPTER 1

INTRODUCTION

This section reviews multiple linear regression models, including variable selection and

data splitting, and follows Olive and Zhang (2024) and Olive, Alshammari, Pathiranage, and

Hettige (2024) closely. Consider a multiple linear regression model with response variable Y

and predictors x = (x1, ..., xp). Then there are n cases (Yi,x
T
i )

T , and the sufficient predictor

SP = α + xTβ. For these regression models, the conditioning and subscripts, such as i,

will often be suppressed. Ordinary least squares (OLS) is often used for the multiple linear

regression (MLR) model.

Let the first multiple linear regression model be

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (1.1)

for i = 1, ..., n. Here n is the sample size and the random variable ei is the ith error. Assume

that the ei are independent and identically distributed (iid) with expected value E(ei) = 0

and variance V (ei) = σ2. In matrix notation, these n equations become Y = Xβ+ e where

Y is an n× 1 vector of dependent variables, X is an n× p matrix of predictors, β is a p× 1

vector of unknown coefficients, and e is an n× 1 vector of unknown errors.

Let the second multiple linear regression model be Y |xTβ = α + xTβ + e or Yi =

α + xT
i β + ei or

Yi = α + xi,1β1 + · · ·+ xi,pβp + ei = α + xT
i β + ei (1.2)

for i = 1, ..., n. Let the ei be as for model (1.1). In matrix form, this model is

Y = Xϕ+ e, (1.3)

where Y is an n× 1 vector of dependent variables, X is an n× (p+ 1) matrix with ith row

(1,xT
i ), ϕ = (α,βT )T is a (p + 1) × 1 vector , and e is an n × 1 vector of unknown errors.

Also E(e) = 0 and Cov(e) = σ2In where In is the n× n identity matrix.
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For estimation with ordinary least squares, let the covariance matrix of x be Cov(x) =

Σx = E[(x − E(x))(x − E(x))T = E(xxT ) − E(x)E(xT ) and η = Cov(x, Y ) = ΣxY =

E[(x−E(X)(Y −E(Y ))] = E(xY )−E(x)E(Y ) = E[(x−E(x))Y ] = E[x(Y −E(Y ))]. Let

η̂ = η̂n = Σ̂xY = SxY =
1

n− 1

n∑
i=1

(xi − x)(Yi − Y )

and

η̃ = η̃n = Σ̃xY =
1

n

n∑
i=1

(xi − x)(Yi − Y ).

Then the OLS estimators for model (1.3) are ϕ̂OLS = (XTX)−1XTY , α̂OLS = Y − β̂
T

OLSx,

and

β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY = Σ̂
−1

x η̂.

For a multiple linear regression model with independent, identically distributed (iid) cases,

β̂OLS is a consistent estimator of βOLS = Σ−1
x ΣxY under mild regularity conditions, while

α̂OLS is a consistent estimator of E(Y )− βT
OLSE(x).

Cook, Helland, and Su (2013) showed that the one component partial least squares

(OPLS) estimator β̂OPLS = λ̂Σ̂xY estimates λΣxY = βOPLS where

λ =
ΣT
xYΣxY

ΣT
xYΣxΣxY

and λ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

(1.4)

for ΣxY ̸= 0. If ΣxY = 0, then βOPLS = 0. Also see Basa, Cook, Forzani, and Marcos

(2022) andWold (1975). Olive and Zhang (2024) derived the large sample theory for η̂OPLS =

Σ̂xY and OPLS under milder regularity conditions than those in the previous literature.

The OPLS estimator is computed from the OLS simple linear regression (SLR) of Y on

W = Σ̂
T

xY x, giving Ŷ = α̂OPLS + λ̂W = α̂OPLS + β̂
T

OPLSx.

The marginal maximum likelihood estimator (MMLE or marginal least squares estima-

tor) is due to Fan and Lv (2008) and Fan and Song (2010). This estimator computes the

marginal regression of Y on xi resulting in the estimator (α̂i,M , β̂i,M) for i = 1, ..., p. Then

β̂MMLE = (β̂1,M , ..., β̂p,M)T . For multiple linear regression, the marginal estimators are the
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simple linear regression estimators, and (α̂i,M , β̂i,M) = (α̂i,SLR, β̂i,SLR). Hence

β̂MMLE = [diag(Σ̂x)]
−1Σ̂xY . (1.5)

If the ti are the predictors are scaled or standardized to have unit sample variances, then

β̂MMLE = β̂MMLE(t, Y ) = Σ̂tY = I−1Σ̂tY = η̂OPLS(t, Y ) (1.6)

where (t, Y ) denotes that Y was regressed on t, and I is the p × p identity matrix. Olive,

Alshammari, Pathiranage, and Hettige (2024) gave some large sample theory for the MMLE.

Sparse regression methods can be used for variable selection even if n/p is not large: the

OLS submodel uses the predictors that had nonzero sparse regression estimated coefficients.

These methods include least angle regression, lasso, relaxed lasso, elastic net, and sparse

regression by projection. See Efron et al. (2004, p. 421), Meinshausen (2007, p. 376), Qi et

al. (2015), Tay, Narasimhan, and Hastie (2023), Rathnayake and Olive (2023), Tibshirani

(1996), and Zou and Hastie (2005).

Data splitting divides the training data set of n cases into two sets: H and the validation

set V where H has nH of the cases and V has the remaining nV = n−nH cases i1, ..., inV
. An

application of data splitting is to use a variable selection method, such as forward selection

or lasso, on H to get submodel Imin with a predictors, then fit the selected model to the cases

in the validation set V using standard inference. See, for example, Rinaldo et al. (2019).

High dimensional regression has n/p small. A fitted or population regression model

is sparse if a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with J ≥

10. Otherwise the model is nonsparse. A high dimensional population regression model is

abundant or dense if the regression information is spread out among the p predictors (nearly

all of the predictors are active). Hence an abundant model is a nonsparse model.

Olive and Zhang (2024) proved that there are often many valid population models for

multiple linear regression, gave theory for Σ̂xY and OPLS, gave theory for data splitting

estimators, and gave some theory for the MMLE for multiple linear regression under the

constant variance assumption.
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Chapter 2 gives some large sample theory, while Chapter 3 considers tests of hypotheses.
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CHAPTER 2

LARGE SAMPLE THEORY

Olive and Zhang (2024) derived the large sample theory for η̂OPLS = Σ̂xY and OPLS,

including some high dimensional tests for low dimensional quantities such as HO : βi =

0 or H0 : βi − βj = 0. These tests depended on iid cases, but not on linearity or the

constant variance assumption. Hence the tests are useful for multiple linear regression with

heterogeneity. Data splitting uses model selection (variable selection is a special case) to

reduce the high dimensional problem to a low dimensional problem.

The following Olive and Zhang (2024) theorem gives the large sample theory for η̂ =

Ĉov(x, Y ). This theory needs η = ηOPLS = ΣxY to exist for η̂ = Σ̂xY to be a consistent

estimator of η. Let xi = (xi1, ..., xip)
T and let wi and zi be defined below where

Cov(wi) = Σw = E[(xi − µx)(xi − µx)
T (Yi − µY )

2)]−ΣxYΣ
T
xY .

Then the low order moments are needed for Σ̂z to be a consistent estimator of Σw.

Theorem 1. Assume the cases (xT
i , Yi)

T are iid. Assume E(xkij Y
m
i ) exist for j = 1, ..., p

and k,m = 0, 1, 2. Let µx = E(x) and µY = E(Y ). Let wi = (xi − µx)(Yi − µY ) with

sample mean wn. Let η = ΣxY . Then a)

√
n(wn − η)

D→ Np(0,Σw),
√
n(η̂n − η)

D→ Np(0,Σw), (2.1)

and
√
n(η̃n − η)

D→ Np(0,Σw).

b) Let zi = xi(Yi − Y n) and vi = (xi − xn)(Yi − Y n). Then Σ̂w = Σ̂z + OP (n
−1/2) =

Σ̂v +OP (n
−1/2). Hence Σ̃w = Σ̃z +OP (n

−1/2) = Σ̃v +OP (n
−1/2).

c) Let A be a k× p full rank constant matrix with k ≤ p, assume H0 : AβOPLS = 0 is true,

and assume λ̂
P→ λ ̸= 0. Then

√
nA(β̂OPLS − βOPLS)

D→ Nk(0, λ
2AΣwAT ). (2.2)
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We will give a sketch of the proofs of a) and c). Also see Olive, Alshammari, Pathiranage,

and Hettige (2024). For a), note that
√
n(wn−η)

D→ Np(0,Σw) by the multivariate central

limit theorem since the wi are iid with E(wi) = η = Cov(x, Y ) and Cov(w) = Σw. Then

it can be shown that nη̃n =
n∑

i=1

(xi − µx + µx − x)(Yi − µY + µY − Y ) =
∑
i

(xi − µx)(Yi − µY ) =
∑
i

wi − nan =∑
i

wi − n(µx − x)(µY − Y ).

Hence
√
n(η̃n − η) =

√
n(wn − η) + oP(1).

Thus
√
n(η̃n − η)

D→ Np(0,Σw)

by Slutsky’s theorem. c) If H0 is true, then Aη = 0, and

√
nA(β̂OPLS − βOPLS) =

√
nA(λ̂η̂ − λ̂η + λ̂η − βOPLS) =

λ̂A
√
n(η̂ − η) +A

√
n(λ̂− λ)η = Zn + bn

D→ Nk(0, λ
2AΣwAT )

since bn = 0 when H0 is true.

For iid cases, βMMLE = V −1ΣxY = V −1ΣxβOLS where V = diag(σ2
1, ..., σ

2
p) =

diag(Σx). For standardized predictors, let sj and σj be the sample and population

standard deviations of xj. Let ti = D̂xi = diag(1/s1, ..., 1/sp)xi and ui = Dxi =

diag(1/σ1, ..., 1/σp)xi. Note that V̂
−1

= D̂
2
and V −1 = D2. Olive and Zhang (2024)

proved that Σ̂tY is a
√
n consistent estimator of ΣuY . For iid cases, βMMLE(t, Y ) = ΣtY =

ηOPLS(t, Y ).

Olive, Alshammari, Pathiranage, and Hettige (2024) show that

√
n





s21

...

s2p

Σ̂xY


−



σ2
1

...

σ2
p

ΣxY




=

√
n(ĉ− c)

D→ N2p

0,

 Σv Σv,w

Σw,v Σw


 . (2.3)
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Let

g(c) = βMMLE =


g1(c)

...

gp(c)

 =


σ1Y /σ

2
1

...

σpY /σ
2
p

 .

Let Dg = (D1,D2) where D1 = diag(−σ1Y /σ4
1,−σ2Y /σ4

2, ...,−σpY /σ4
p) and D2 =

D2 = diag(1/σ2
1, 1/σ

2
2, ..., 1/σ

2
p). Typically Σ̂xij

Y = OP (1), but if Σxij
Y = 0, then Σ̂xij

Y =

OP (n
−1/2).

Theorem 2. Let the cases (xT
i , Yi)

T be iid such that Equation (2.3) holds. Then a)

√
n(β̂MMLE − βMMLE)

D→ Np(0,ΣMMLE) ∼ Np

0,Dg

 Σv Σv,w

Σw,v Σw

DT
g

 .

Let A be a full rank k × p constant matrix such that Aβ = (βi1 , ..., βik)
T with i1, i2, ..., ik

distinct. Hence the jth row of A has a 1 in the ijth position and zeroes elsewhere. Assume

H0 : AβMMLE = 0. Then b)

√
nA(β̂MMLE − βMMLE)

D→ Nk(0,AD2ΣwD2AT ).

c) For standardized predictors, assume H0 : AβMMLE(t, Y ) = AΣtY = 0. Then

√
nA(β̂MMLE(t, Y )− βMMLE(t, Y )) =

√
nA(Σ̂tY −ΣuY )

D→ Nk(0,ADΣwDAT ).

Proof. Theorem 2a) holds by the multivariate delta method.

b) Note that
√
nA(β̂MMLE − βMMLE) =

√
nA(D̂

2
Σ̂xY −D2ΣxY ) =

√
nA(D̂

2
Σ̂xY −D2Σ̂xY +D2Σ̂xY −D2ΣxY ) =

√
nA(D̂

2
−D2)Σ̂xY +

√
nAD2(Σ̂xY −ΣxY )

where by Theorem 1,

√
nAD2(Σ̂xY −ΣxY )

D→ Nk(0,AD2ΣwD2AT ).
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Now
√
nA(D̂

2
−D2)Σ̂xY =

A


√
n
(

1
s21
− 1

σ2
1

)
Σ̂x1Y

...

√
n
(

1
s2p

− 1
σ2
p

)
Σ̂xpY

 =


√
n
(

1
s2i1

− 1
σ2
i1

)
Σ̂xi1

Y

...

√
n

(
1
s2ik

− 1
σ2
ik

)
Σ̂xik

Y

 = oP (1)

if (Σxi1
Y , ...,Σxik

Y )
T = 0. Hence the result follows if H0 is true.

c) Note that
√
nA(Σ̂tY −ΣuY ) =

√
nA(Σ̂tY − Σ̂uY + Σ̂uY −ΣuY ) =

√
nA(Σ̂tY − Σ̂uY ) +

√
nA(Σ̂uY −ΣuY ) where by Theorem 1,

√
nA(Σ̂uY −ΣuY ) =

√
nAD(Σ̂xY −ΣxY )

D→ Nk(0,ADΣwDAT ).

Now
√
nA(Σ̂tY − Σ̂uY ) =

√
nA(D̂Σ̂xY −DΣ̂xY ) =

√
nA(D̂ −D)Σ̂xY =

A


√
n
(

1
s1
− 1

σ1

)
Σ̂x1Y

...

√
n
(

1
sp

− 1
σp

)
Σ̂xpY

 =


√
n
(

1
si1

− 1
σi1

)
Σ̂xi1

Y

...

√
n
(

1
sik

− 1
σik

)
Σ̂xik

Y

 ,

and
√
nA(Σ̂tY − Σ̂uY ) = op(1) if (Σxi1

Y , ...,Σxik
Y )

T = 0. Hence if H0 is true, then

√
nA(Σ̂tY −ΣuY )

D→ Nk(0,ADΣwDAT ). □

It can be shown that if Σ̂z = (cij), then D̂Σ̂zD̂ = (bij) where bij = cij/(sisj).

Olive, Alshammari, Pathiranage, and Hettige (2024) considered testing using Theorem

1a), estimating AΣwAT with AΣ̂zA
T .

The following simple testing method reduces a possibly high dimensional problem to a

low dimensional problem. Testing H0 : AβOPLS = 0 versus H1 : AβOPLS ̸= 0 is equivalent

to testing H0 : Aη = 0 versus H1 : Aη ̸= 0 where A is a k × p constant matrix. Let

Cov(Σ̂xY ) = Cov(η̂) = Σw be the asymptotic covariance matrix of η̂ = Σ̂xY . In high

dimensions where n < 5p, we can’t get a good nonsingular estimator of Cov(Σ̂xY ), but
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we can get good nonsingular estimators of Cov(Σ̂uY ) = Cov((η̂i1, ..., η̂ik)
T ) with u = xI =

(xi1, ..., xik)
T where n ≥ Jk with J ≥ 10. (Values of J much larger than 10 may be needed

if some of the k predictors and/or Y are skewed.) Simply apply Theorem 1 to the predictors

u used in the hypothesis test, and thus use the sample covariance matrix Σ̂zI
of the vectors

ui(Yi − Y ). Hence we can test hypotheses like H0 : βi − βj = 0. In particular, testing

H0 : βi = 0 is equivalent to testing H0 : ηi = σxi,Y = 0 where σxi,Y = Cov(xi, Y ).

The tests with β̂OPLS = λ̂η̂ and k predictor variables may not be as good as the tests

with η̂ since λ̂ needs to be a good estimator of λ. Note that λ̂ can be a good estimator if

η̂Tx is a good estimator of ηTx.

Note that the tests with η̂ using k predictors xij do not depend on other predictors,

including important predictors that were left out of the model (underfitting). Hence the

tests can have considerable resistance to underfitting and overfitting. The tests also have

some resistance to measurement error: assume that (xT
i ,u

T
i , vi, Yi)

T are iid but wi = xi+ui

and Zi = Yi + vi are observed instead of (xi, Yi). Then β̂OLS(w, Z) estimates Σ−1
wΣwZ ,

while Σ̂wZ estimates Cov(x, Y ) if Cov(x, v)+Cov(u, Y )+Cov(u, v) = 0, which occurs, for

example, if x v, u Y , and u v.
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CHAPTER 3

REGRESSION WITH HETEROGENEITY

A multiple linear regression model with heterogeneity is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei (3.1)

for i = 1, ..., n where the ei are independent with E(ei) = 0 and V (ei) = σ2
i . In matrix form,

this model is

Y = Xβ + e,

where Y is an n×1 vector of dependent variables, X is an n×p matrix of predictors, β is a

p×1 vector of unknown coefficients, and e is an n×1 vector of unknown errors. Also E(e) = 0

and Cov(e) = Σe = diag(σ2
i ) = diag(σ2

1, ..., σ
2
n) is an n × n positive definite matrix. In

Chapter 2, the constant variance assumption was used: σ2
i = σ2 for all i. Hence heterogeneity

means that the constant variance assumption does not hold. A common assumption is that

the ei = σiϵi where the ϵi are independent and identically distributed (iid) with V (ϵi) = 1.

See, for example, Zhou, Cook, and Zou (2023).

Weighted least squares (WLS) would be useful if the σ2
i were known. Since the σ2

i

are not known, ordinary least squares (OLS) is often used. The OLS theory for MLR with

heterogeneity often assume iid cases.
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CHAPTER 4

EXAMPLE AND SIMULATIONS

Example. The Hebbler (1847) data was collected from n = 26 districts in Prussia in

1843. Let Y = the number of women married to civilians in the district with a constant and

predictors x1 = the population of the district in 1843, x2 = the number of married civilian

men in the district, x3 = the number of married men in the military in the district, and x4 =

the number of women married to husbands in the military in the district. Sometimes the per-

son conducting the survey would not count a spouse if the spouse was not at home. Hence Y

and x2 are highly correlated but not equal. Similarly, x3 and x4 are highly correlated but not

equal. Then β̂OLS = (0.00035, 0.9995,−0.2328, 0.1531)T , forward selection with OLS and the

Cp criterion used β̂I,0 = (0, 1.0010, 0, 0)T , lasso had β̂L = (0.0015, 0.9605, 0, 0)T , lasso vari-

able selection β̂LV S = (0.00007, 1.006, 0, 0)T , β̂MMLE = (0.1782, 1.0010, 48.5630, 51.5513)T ,

and β̂OPLS = (0.1727, 0.0311, 0.00018, 0.00018)T . With scaled predictors, β̂MMLE(t, Y ) =

Σ̂tY = (40678.97, 40937.98, 21877.44, 22308.46)T . The fitted values from the MMLE estima-

tor tend not to estimate Y . Let W = xT β̂MMLE and perform the simple linear regression of

Y on W to get the reweighted or scaled estimators α̂R and b. Then β̂R = bβ̂MMLE. Then

the fitted values Ŷi = α̂R +xT
i β̂R can be used for prediction. If the scaled predictors u have

unit sample variances, then β̂OPLS(u, Y ) = β̂R(u, Y ).

Next, we describe a small WLS simulation study somewhat similar to that done by

Rajapaksha and Olive (2024). The simulation used ψ = 0 and 1/
√
p; and k = 1 and p − 1

where k and ψ are defined in the following paragraph.

Let u = (1 xT )T where x is the (p − 1) × 1 vector of nontrivial predictors. In the

simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the m = p− 1 elements of

the vector wi are independent and identically distributed (iid) N(0,1). Let the m×m matrix

A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i ̸= j. Then the vector xi = Awi

so that Cov(xi) = Σx = AAT = (σij) where the diagonal entries σii = [1 + (m− 1)ψ2] and
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the off diagonal entries σij = [2ψ + (m− 2)ψ2]. Hence the correlations are cor(xi, xj) = ρ =

(2ψ + (m − 2)ψ2)/(1 + (m − 1)ψ2) for i ̸= j where xi and xj are nontrivial predictors. If

ψ = 1/
√
cp, then ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the predictor

vectors cluster about the line in the direction of (1, ..., 1)T . Let Yi = 1+1xi,1+ · · ·+1xi,k+ei

for i = 1, ..., n. Hence α = 1 and ϕ = (1, .., 1, 0, ..., 0)T with k + 1 ones and p− k − 1 zeros.

The zero mean iid errors ẽi = ϵi were iid from five distributions: i) N(0,1), ii) t3, iii)

EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100). Only distribution iii)

is not symmetric. Then wtype = 1 if ei = ϵi (the WLS model is the OLS model), 2 if

ei = |xT
i β − 5|ϵi, 3 if ei =

√
(1 + 0.5x2i2)ϵi, 4 if ei = exp[1 + log(|xi2|) + ...+ log(|xip|)]ϵi, 5 if

ei = [1 + log(|xi2|) + ...+ log(|xip|)]ϵi, 6 if ei = [exp([log(|xi2|) + ...+ log(|xip|)]/(p− 1))]ϵi, 7

if ei = [[log(|xi2|) + ...+ log(|xip|)]/(p− 1)]ϵi, The last four types were special cases of types

suggested by Romano and Wolf (2017). For type 6, the weighting function is the geometric

mean of |xi2|, ..., |xip|. For n = 100 and p = 100 with ψ ̸= 0, the CI lengths were too long

for wtype = 4.

When ψ = 0 and wtype = 1, the OLS confidence intervals for βi should have length

near 2t96,0.975σ/
√
n ≈ 2(1.96)σ/10 = 0.392σ when n = 100 and the iid zero mean errors have

variance σ2.

The simulation computed ηOPLS = ΣxY = (η1, ..., ηp−1)
T = ΣxβOLS where Σx =

AAT is a (p − 1) × (p − 1) matrix. Storage problems can occur if p > 10000. Then the

Theorem 1 large sample 100(1− δ)% CI is η̂i ± tn−1,1−δ/2SE(η̂i) could be computed for each

ηi. If 0 is not in the confidence interval, then H0 : ηi = 0 and H0 : βiE = 0 are both rejected

for estimators E = OPLS and MMLE. In the simulations with n = 50, p = 4, and ψ > 0, the

maximum observed undercoverage was about 0.05 = 5%. Hence the program has the option

to replace the cutoff tn−1,1−δ/2 by tn−1,up where up = min(1− δ/2 + 0.05, 1− δ/2 + 2.5/n) if

δ/2 > 0.1,

up = min(1− δ/4, 1− δ/2 + 12.5δ/n)

if δ/2 ≤ 0.1. If up < 1 − δ/2 + 0.001, then use up = 1 − δ/2. This correction factor was
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used in the simulations for the nominal 95% CIs, where the correction factor uses a cutoff

that is between tn−1,0.975 and the cutoff tn−1,0.9875 that would be used for a 97.5% CI. The

nominal coverage was 0.95 with δ = 0.05. Observed coverage between 0.94 and 0.96 suggests

coverage is close to the nominal value. Pötscher and Preinerstorfer (2023) noted that WLS

tests tend to reject H0 too often (liberal tests with undercoverage).

The simulation computed p− 1 confidence intervals [Lin, Uin] for ηi = Cov(xi, Y ) = σiY

for i = 1, ..., p − 1 = 99. Let σ2
i = V ar(xi), the variance of the ith predictor xi. Let

βMMLE(t, Y ) = η(t) and βi,MMLE(t,Y ) = Cov(ti, Y ) = ηi(t). Then the program checked

whether βi,MMLE(t,Y ) = Cov(ti, Y ) = ηi(t) = σiY /σi was in the interval (1/si)[Lin, Uin].

5000 intervals were generated for each ηi(t), and the coverage was the proportion of times

ηi(t) was in its interval. Hence if η1(t) was in its interval 4750/5000 = 0.95, then the observed

coverage was 0.95. This procedure corresponds to a large sample test for H0 : ηi(t) = 0 only

if ηi(t) = 0. This occurred when ψ = 0 for i = 2, ..., p− 1 = 99, but not for i = 1 or ψ = 0.1.

The correction factor was used.

To summarize the p − 1 intervals, the average length of the p − 1 intervals over 5000

runs was computed. Then the minimum, mean, and maximum of the average lengths was

computed. The proportion of times each interval contained its population parameter was

computed. These proportions were the observed coverages of the p − 1 intervals. Then

the minimum observed coverage was found. The percentage of the observed coverages that

were ≥ 0.9, 0.92, 0.93, 0.94, and 0.96 were also recorded. The coverage of the test H0 :

βI,MMLE(t,Y ) = ηI(t) = 0 was recorded and a correction factor was not used. Here I =

{98, 99}.

Suppose AβMMLE(t, Y ) = Aη(t) = (ηi1(t), ..., ηik(t))
T = βI,MMLE(t, Y ) = ηI(t)

where I = {i1, ..., ik}. Let D̂I = diag(1/si1 , ..., 1/sik). Let u = xI = (xi1, ..., xik)
T . The

test statistic for the test H0 : AβMMLE(t, Y ) = βI,MMLE(t, Y ) = Aη(t) = ηI(t) = 0 is

Tn = nη̂(t)AT (AD̂Σ̂zD̂AT )−1Aη̂(t) = nη̂T
I (t)(D̂IΣ̂zI

D̂I)
−1η̂I(t)

D→ χ2
k when H0 is true.

The simulation used I = {98, 99} and tested H0 : Aη(t) = (η98(t), η99(t))
T = 0. In the
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simulation H0 was true for k = 1 and ψ = 0, but false for either ψ = 0.1 or k = 99.

In the simulation if the model is linear, βOLS = (1, 0, ..., 0)T for k = 1, and βOLS = 1 for

k = 99. If ψ = 0 and the model is linear, then Σx = Ip, λ = 1, and βOLS = βOPLS = ΣxY .

Then λ̂ was often less than 0.5 for n = 100 and p = 100. If ψ = 0.1, k = 99, and the model

is linear, then λ = 1/116.64 = 0.008573, βOLS = βOPLS = 1, and ΣxY = 116.64 1. Now λ̂

tended to be close to λ. The models appeared to be linear except for wtype=4 with ψ = 0.1.

(This model appeared to generate massive outliers with entries of Σ̂xY often larger than

1050 for n = 100 and p = 100.)

source("http://parker.ad.siu.edu/Olive/slpack.txt")

args(mmlesim2)

function (n = 100, p = 4, k = 1, nruns = 100, eps = 0.1, shift = 9,

etype = 1, wtype = 1, psi = 0, cfac = "T", indices = c(1,2), alph = 0.05)

mmlesim2(n=100,p=100,k=1,nruns=5000,etype=1,wtype=1,psi=0,indices = c(98,99))

$lens

[1] 0.5879743 0.5912557 0.7146509

$covprop

[1] 0.9494000 1.0000000 1.0000000 1.0000000 1.0000000 0.7676768

$testcov

[1] 0.9416

#change etype and psi to get the rest of Table 4.1.

#then repeat to get Tables 4.2-4.7 corresponding to wtype =2,...,7

#do not use psi=0.1 for wtype=4

#then repeat with k=99 to get Tables 4.8-4.14
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#so the first two line of table 4.8 use the following R command

mmlesim2(n=100,p=100,k=99,nruns=5000,etype=1,wtype=1,psi=0,indices = c(98,99))



16

Table 4.1. Cov(t,Y), wtype=1, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9494 1.0 1.0 1.0 1.0 0.7677 0.9416

len 1 0.5880 0.5913 0.7147

100 100 0.1 0.6362 0.0 0.0 0.0 0.0 0.0 0.0006

len 1 0.7908 0.7938 0.9146

100 100 0 0.9488 1.0 1.0 1.0 1.0 0.9596 0.9466

len 2 0.7975 0.8042 0.8969

100 100 0.1 0.7350 0.0 0.0 0.0 0.0 0.0 0.0284

len 2 0.9592 0.9648 1.0710

100 100 0 0.9514 1.0 1.0 1.0 1.0 0.8586 0.9456

len 3 0.5853 0.5887 0.7118

100 100 0.1 0.6366 0.0 0.0 0.0 0.0 0.0 0.0008

len 3 0.7909 0.7943 0.9186

100 100 0 0.9472 1.0 1.0 1.0 1.0 0.8081 0.9464

len 4 0.4793 0.4823 0.6277

100 100 0.1 0.5740 0.0 0.0 0.0 0.0 0.0 0.0

len 4 0.7141 0.7175 0.8511

100 100 0 0.9662 1.0 1.0 1.0 1.0 1.0 0.9600

len 5 1.3556 1.3676 1.4303

100 100 0.1 0.8494 0.9899 0.8990 0.0202 0.0 0.0 0.2676

len 5 1.4664 1.4773 1.5483
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Table 4.2. Cov(t,Y), wtype=2, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9524 1.0 1.0 1.0 1.0 0.8485 0.9498

len 1 1.7597 1.7666 1.8901

100 100 0.1 0.9206 1.0 1.0 0.9899 0.9899 0.0 0.5762

len 1 1.9283 1.9363 2.0839

100 100 0 0.9590 1.0 1.0 1.0 1.0 0.9697 0.9502

len 2 2.8021 2.8259 2.9580

100 100 0.1 0.9368 1.0 1.0 1.0 0.9899 0.1616 0.7614

len 2 2.9824 3.0173 3.2102

100 100 0 0.9584 1.0 1.0 1.0 1.0 0.9495 0.9432

len 3 1.7316 1.7416 1.8727

100 100 0.1 0.8536 0.9899 0.4646 0.0202 0.0 0.0 0.4856

len 3 1.9105 1.9200 2.0719

100 100 0 0.9552 1.0 1.0 1.0 1.0 0.6970 0.9476

len 4 1.0758 1.0796 1.1946

100 100 0.1 0.8618 0.9899 0.9697 0.0606 0.0 0.0 0.1674

len 4 1.2474 1.2524 1.3807

100 100 0 0.9698 1.0 1.0 1.0 1.0 1.0 0.9646

len 5 5.2170 5.2842 5.4717

100 100 0.1 0.9616 1.0 1.0 1.0 1.0 1.0 0.8688

len 5 5.4372 5.5098 5.7000
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Table 4.3. Cov(t,Y), wtype=3, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9406 1.0 1.0 1.0 1.0 0.8889 0.9408

len 1 0.7137 0.7204 0.9963

100 100 0.1 0.8594 0.9899 0.9798 0.1010 0.0 0.0 0.0584

len 1 1.0774 1.0842 1.3391

100 100 0 0.9532 1.0 1.0 1.0 1.0 0.9798 0.9482

len 2 1.0308 1.0435 1.4228

100 100 0.1 0.9158 1.0 0.9899 0.9899 0.9899 0.0 0.3182

len 2 1.5167 1.5346 1.9025

100 100 0 0.9442 1.0 1.0 1.0 1.0 0.9495 0.9448

len 3 0.7095 0.7163 0.9906

100 100 0.1 0.8426 0.9899 0.1212 0.0 0.0 0.0 0.0602

len 3 1.0669 1.0749 1.3253

100 100 0 0.9372 1.0 1.0 1.0 0.9899 0.8384 0.9488

len 4 0.5319 0.5369 0.7417

100 100 0.1 0.7414 0.0 0.0 0.0 0.0 0.0 4e-04

len 4 0.8297 0.8343 1.0203

100 100 0 0.9676 1.0 1.0 1.0 1.0 1.0 0.9656

len 5 1.8191 1.8481 2.4701

100 100 0.1 0.9464 1.0 1.0 1.0 1.0 0.8182 0.5944

len 5 2.5991 2.6376 3.2597
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Table 4.4. Cov(t,Y), wtype=4, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9424 1.0 1.0 1.0 1.0 0.8182 0.9396

len 1 0.4152 0.4179 0.5797

100 100 0 0.9468 1.0 1.0 1.0 1.0 0.7879 0.9430

len 2 0.4151 0.4185 0.5808

100 100 0 0.9452 1.0 1.0 1.0 1.0 0.7879 0.9412

len 3 0.4141 0.4173 0.5800

100 100 0 0.9456 1.0 1.0 1.0 1.0 0.7778 0.9460

len 4 0.4153 0.4185 0.5806

100 100 0 0.9430 1.0 1.0 1.0 1.0 0.7980 0.9476

len 5 0.4156 0.4186 0.5812
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Table 4.5. Cov(t,Y), wtype=5, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9556 1.0 1.0 1.0 1.0 0.8081 0.9498

len 1 25.6886 25.7753 25.8629

100 100 0.1 0.9592 1.0 1.0 1.0 1.0 0.9899 0.9434

len 1 22.4987 22.5958 22.6681

100 100 0 0.9608 1.0 1.0 1.0 1.0 1.0 0.9508

len 2 41.8712 42.4539 42.9896

100 100 0.1 0.9624 1.0 1.0 1.0 1.0 1.0 0.9512

len 2 35.7635 35.9848 36.2287

100 100 0 0.9596 1.0 1.0 1.0 1.0 0.9899 0.9502

len 3 25.2238 25.3569 25.4858

100 100 0.1 0.962 1.0 1.0 1.0 1.0 1.0 0.9518

len 3 21.7499 21.8569 21.9813

100 100 0 0.9546 1.0 1.0 1.0 1.0 0.6970 0.9446

len 4 14.9002 14.9325 14.9651

100 100 0.1 0.9600 1.0 1.0 1.0 1.0 1.0 0.9386

len 4 13.0557 13.1212 13.1664

100 100 0 0.9676 1.0 1.0 1.0 1.0 1.0 0.9566

len 5 78.8742 79.5146 80.5798

100 100 0.1 0.9720 1.0 1.0 1.0 1.0 1.0 0.9696

len 5 66.2657 67.0948 67.9840
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Table 4.6. Cov(t,Y), wtype=6, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9446 1.0 1.0 1.0 1.0 0.8384 0.9458

len 1 0.4726 0.4760 0.6230

100 100 0.1 0.7044 0.0 0.0 0.0 0.0 0.0 0.0062

len 1 0.8804 0.8862 0.9959

100 100 0 0.9430 1.0 1.0 1.0 0.8990 0.9438

len 2 0.5576 0.5622 0.6926

100 100 0.1 0.8068 0.9899 0.8788 0.0202 0.0 0.0 0.1016

len 2 1.1215 1.1300 1.2269

100 100 0 0.9454 1.0 1.0 1.0 1.0 0.7677 0.9392

len 3 0.4702 0.4737 0.6203

100 100 0.1 0.7012 0.0 0.0 0.0 0.0 0.0 0.0110

len 3 0.8780 0.8827 0.9929

100 100 0 0.9436 1.0 1.0 1.0 1.0 0.7778 0.9432

len 4 0.4352 0.4383 0.5967

100 100 0.1 0.6026 0.0 0.0 0.0 0.0 0.0 0.0

len 4 0.7499 0.7538 0.8808

100 100 0 0.9528 1.0 1.0 1.0 1.0 0.9899 0.9536

len 5 0.8236 0.8301 0.9256

100 100 0.1 0.8736 0.9899 0.9899 0.9899 0.9192 0.0 0.3582

len 5 1.7889 1.8044 1.8797
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Table 4.7. Cov(t,Y), wtype=2, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9462 1.0 1.0 1.0 1.0 0.7677 0.9428

len 1 0.4909 0.4942 0.6393

100 100 0.1 0.5576 0.0 0.0 0.0 0.0 0.0 0.0

len 1 0.7089 0.7121 0.8479

100 100 0 0.9476 1.0 1.0 1.0 1.0 0.8384 0.9466

len 2 0.6011 0.6053 0.7280

100 100 0.1 0.6092 0.0 0.0 0.0 0.0 0.0 0.0032

len 2 0.7670 0.7719 0.8976

100 100 0 0.9486 1.0 1.0 1.0 1.0 0.8485 0.9454

len 3 0.4917 0.4948 0.6378

100 100 0.1 0.5642 0.0 0.0 0.0 0.0 0.0 0.0

len 3 0.7087 0.7119 0.8486

100 100 0 0.9412 1.0 1.0 1.0 1.0 0.7677 0.9438

len 4 0.4424 0.4456 0.6008

100 100 0.1 0.5308 0.0 0.0 0.0 0.0 0.0 0.0

len 4 0.6873 0.6905 0.8288

100 100 0 0.9610 1.0 1.0 1.0 1.0 1.0 0.9520

len 5 0.9246 0.9322 1.0256

100 100 0.1 0.7130 0.0 0.0 0.0 0.0 0.0 0.0442

len 5 0.9714 0.9776 1.0851
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Table 4.8. Cov(t,Y), wtype=1, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9558 1.0 1.0 1.0 1.0 0.7475 0.7794

len 1 4.1765 4.191 4.2072

100 100 0.1 0.6446 0.0 0.0 0.0 0.0 0.0 0.0

len 1 55.8424 56.0056 56.1395

100 100 0 0.9572 1.0 1.0 1.0 1.0 0.6970 0.7808

len 2 4.2080 4.2221 4.2372

100 100 0.1 0.6544 0.0 0.0 0.0 0.0 0.0 0.0

len 2 55.8814 56.0213 56.2027

100 100 0 0.9556 1.0 1.0 1.0 1.0 0.7273 0.7728

len 3 4.1770 4.1874 4.2021

100 100 0.1 0.6470 0.0 0.0 0.0 0.0 0.0 0.0

len 3 55.8012 55.9117 56.0715

100 100 0 0.9558 1.0 1.0 1.0 1.0 0.6869 0.7762

len 4 4.1566 4.1707 4.1815

100 100 0.1 0.6656 0.0 0.0 0.0 0.0 0.0 0.0

len 4 55.6662 55.7832 55.9467

100 100 0 0.9534 1.0 1.0 1.0 1.0 0.7071 0.7934

len 5 4.3706 4.3883 4.4056

100 100 0.1 0.6488 0.0 0.0 0.0 0.0 0.0 0.0

len 5 55.7942 55.9609 56.1033
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Table 4.9. Cov(t,Y), wtype=2, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9558 1.0 1.0 1.0 1.0 0.8586 0.8806

len 1 6.0201 6.0561 6.0852

100 100 0.1 0.8824 0.0101 0.0 0.0 0.0 0.0 0.0052

len 1 84.1735 84.5533 84.8488

100 100 0 0.9594 1.0 1.0 1.0 1.0 0.9798 0.9098

len 2 8.2496 8.3314 8.4043

100 100 0.1 0.9206 1.0 1.0 0.202 0.0 0.0 0.1148

len 2 116.3386 116.9796 117.8122

100 100 0 0.9550 1.0 1.0 1.0 1.0 0.8990 0.8724

len 3 6.0025 6.0375 6.0724

100 100 0.1 0.8686 0.0 0.0 0.0 0.0 0.0 0.0108

len 3 83.3535 83.7542 84.1129

100 100 0 0.9550 1.0 1.0 1.0 1.0 0.7778 0.8282

len 4 4.8565 4.8795 4.9060

100 100 0.1 0.7960 0.0 0.0 0.0 0.0 0.0 0.0

len 4 66.2198 66.5422 66.8346

100 100 0 0.9672 1.0 1.0 1.0 1.0 1.0 0.9320

len 5 13.5602 13.7399 13.9179

100 100 0.1 0.9464 1.0 1.0 1.0 1.0 0.0 0.3876

len 5 190.8627 193.5616 195.2268
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Table 4.10. Cov(t,Y), wtype=3, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9542 1.0 1.0 1.0 1.0 0.6465 0.7736

len 1 4.1875 4.2033 4.2424

100 100 0.1 0.6546 0.0 0.0 0.0 0.0 0.0 0.0

len 1 55.6332 55.7922 55.9306

100 100 0 0.9536 1.0 1.0 1.0 1.0 0.7172 0.7750

len 2 4.2733 4.2880 4.3857

100 100 0.1 0.6548 0.0 0.0 0.0 0.0 0.0 0.0

len 2 55.7211 55.8550 56.0081

100 100 0 0.9528 1.0 1.0 1.0 1.0 0.6566 0.7764

len 3 4.1907 4.2048 4.2464

100 100 0.1 0.6456 0.0 0.0 0.0 0.0 0.0 0.0

len 3 55.5695 55.7683 55.9422

100 100 0 0.9552 1.0 1.0 1.0 1.0 0.6869 0.7744

len 4 4.1605 4.1753 4.1899

100 100 0.1 0.6518 0.0 0.0 0.0 0.0 0.0 0.0

len 4 55.8532 55.9591 56.1145

100 100 0 0.9556 1.0 1.0 1.0 1.0 0.7071 0.8034

len 5 4.5595 4.5785 4.9064

100 100 0.1 0.6518 0.0 0.0 0.0 0.0 0.0 0.0

len 5 55.9470 56.0910 56.2531
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Table 4.11. Cov(t,Y), wtype=4, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9548 1.0 1.0 1.0 1.0 0.7071 0.7734

len 1 4.1464 4.1661 4.1864

100 100 0 0.9518 1.0 1.0 1.0 1.0 0.6869 0.7698

len 2 4.1451 4.158 4.1718

100 100 0 0.9536 1.0 1.0 1.0 1.0 0.6768 0.7672

len 3 4.1474 4.1624 4.1800

100 100 0 0.9550 1.0 1.0 1.0 1.0 0.6566 0.7834

len 4 4.1514 4.1657 4.1805

100 100 0 0.9530 1.0 1.0 1.0 1.0 0.6869 0.7758

len 5 4.1539 4.1698 4.1909
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Table 4.12. Cov(t,Y), wtype=5, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9554 1.0 1.0 1.0 1.0 0.8384 0.9342

len 1 25.9718 26.0702 26.1539

100 100 0.1 0.7080 0.0 0.0 0.0 0.0 0.0 0.0

len 1 59.8454 60.0393 60.1912

100 100 0 0.9614 1.0 1.0 1.0 1.0 1.0 0.9504

len 2 41.9568 42.2773 42.6367

100 100 0.1 0.7610 0.0 0.0 0.0 0.0 0.0 0.0014

len 2 66.5732 66.7847 67.0689

100 100 0 0.9592 1.0 1.0 1.0 1.0 0.9899 0.9466

len 3 25.4799 25.6927 25.8542

100 100 0.1 0.6870 0.0 0.0 0.0 0.0 0.0 0.0

len 3 59.9161 60.1259 60.3537

100 100 0 0.9554 1.0 1.0 1.0 1.0 0.6061 0.9386

len 4 15.4473 15.4940 15.5340

100 100 0.1 0.6688 0.0 0.0 0.0 0.0 0.0 0.0

len 4 57.1978 57.3393 57.5555

100 100 0 0.9706 1.0 1.0 1.0 1.0 1.0 0.9652

len 5 78.6911 79.5101 80.5015

100 100 0.1 0.8254 0.0 0.0 0.0 0.0 0.0 0.0374

len 5 88.1044 88.8691 89.4105
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Table 4.13. Cov(t,Y), wtype=6, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9544 1.0 1.0 1.0 1.0 0.6970 0.7876

len 1 4.1519 4.1701 4.1862

100 100 0.1 0.6476 0.0 0.0 0.0 0.0 0.0 0.0

len 1 55.8405 55.9836 56.1013

100 100 0 0.9546 1.0 1.0 1.0 1.0 0.7172 0.7686

len 2 4.1665 4.1840 4.1979

100 100 0.1 0.6526 0.0 0.0 0.0 0.0 0.0 0.0

len 2 55.652 55.8189 5.9662

100 100 0 0.9556 1.0 1.0 1.0 1.0 0.6768 0.7760

len 3 4.1638 4.1765 4.1896

100 100 0.1 0.6482 0.0 0.0 0.0 0.0 0.0 0.0

len 3 55.7288 55.8413 56.0507

100 100 0 0.9552 1.0 1.0 1.0 1.0 0.8081 0.7708

len 4 4.1552 4.1688 4.1834

100 100 0.1 0.6544 0.0 0.0 0.0 0.0 0.0 0.0

len 4 55.5730 55.7176 55.8253

100 100 0 0.9540 1.0 1.0 1.0 1.0 0.6566 0.7828

len 5 4.2118 4.2288 4.2457

100 100 0.1 0.6534 0.0 0.0 0.0 0.0 0.0 0.0

len 5 55.8898 55.9881 56.1200
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Table 4.14. Cov(t,Y), wtype=7, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9516 1.0 1.0 1.0 1.0 0.7071 0.7788

len 1 4.1488 4.1652 4.1801

100 100 0.1 0.6458 0.0 0.0 0.0 0.0 0.0 0.0

len 1 55.6886 55.8332 55.9948

100 100 0 0.9552 1.0 1.0 1.0 1.0 0.7475 0.7666

len 2 4.1813 4.1951 4.2114

100 100 0.1 0.6572 0.0 0.0 0.0 0.0 0.0 0.0

len 2 55.6032 55.7499 55.9100

100 100 0 0.9538 1.0 1.0 1.0 1.0 0.6970 0.7862

len 3 4.1675 4.1805 4.1952

100 100 0.1 0.6530 0.0 0.0 0.0 0.0 0.0 0.0

len 3 55.6779 55.8306 55.9538

100 100 0 0.9532 1.0 1.0 1.0 1.0 0.7273 0.7634

len 4 4.1521 4.1646 4.1768

100 100 0.1 0.6474 0.0 0.0 0.0 0.0 0.0 0.0

len 4 55.6705 55.8728 56.0141

100 100 0 0.9536 1.0 1.0 1.0 1.0 0.6768 0.7756

len 5 4.2364 4.2489 4.2645

100 100 0.1 0.6592 0.0 0.0 0.0 0.0 0.0 0.0

len 5 55.7683 55.9199 56.0564
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The simulation used Theorem 2c) for testing with nominal level 0.05. For Table

4.1, when ψ = 0, H0 was true except for β1,MMLE(t, Y ) = η1(t). However, the interval

[L1n/s1, U1n/s1] tended to contain η1(t) = η1/σ1 near 95% of the time. The maximum av-

erage interval length 0.7147 on the 2nd line of Table 4.1 corresponded to the first interval

for η1(t). When ψ = 0.1 H0 was never true. Then the minimum average coverage 0.6362

on the third line of Table 4.1 corresponded to η1(t). The remaining coverages were all near

0.84. Hence none of the 99 intervals had coverage over 0.9. The low coverages in the last

column for testcov mean that the test for H0 : (η98(t), η99(t))
T = 0 had good power. The

power 0.7324= 1-0.2676 was worst for etype=5.
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CHAPTER 5

CONCLUSIONS

The response plot of ϕ̂OPLS versus Y and the EE plot of ϕ̂
T

OPLSx versus ϕ̂
T

OLSx can be

used to check whether OPLS is useful. See Olive (2013) for more on these two plots.

Software

The R software was used in the simulations. See R Core Team (2020). Pro-

grams are in the Olive (2023) collections of R functions slpack.txt, available from

(http://parker.ad.siu.edu/Olive/slpack.txt). The function mmlesim2 was used to make the

tables.
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