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CHAPTER 1

INTRODUCTION

This chapter reviews multiple linear regression models, including variable selection and

data splitting, and follows Olive and Zhang (2024) and Olive, Alshammari, Pathiranage,

and Hettige (2024) closely. Consider a multiple linear regression model with response vari-

able Y and predictors x = (x1, ..., xp). Then there are n cases (Yi,x
T
i )

T , and the sufficient

predictor SP = α + xTβ. For these regression models, the conditioning and subscripts,

such as i, will often be suppressed. Ordinary least squares (OLS) is often used for the

multiple linear regression (MLR) model.

Let the first multiple linear regression model be

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (1.1)

for i = 1, ..., n. Here n is the sample size and the random variable ei is the ith error. Assume

that the ei are independent and identically distributed (iid) with expected value E(ei) = 0

and variance V (ei) = σ2. In matrix notation, these n equations become Y = Xβ + e

where Y is an n× 1 vector of dependent variables, X is an n× p matrix of predictors, β

is a p× 1 vector of unknown coefficients, and e is an n× 1 vector of unknown errors.

Let the second multiple linear regression model be Y |xTβ = α + xTβ + e or Yi =

α + xT
i β + ei or

Yi = α + xi,1β1 + · · ·+ xi,pβp + ei = α + xT
i β + ei (1.2)

for i = 1, ..., n. Let the ei be as for model (1.1). In matrix form, this model is

Y = Xϕ+ e, (1.3)

where Y is an n× 1 vector of dependent variables, X is an n× (p+1) matrix with ith row

(1,xT
i ), ϕ = (α,βT )T is a (p+ 1)× 1 vector , and e is an n× 1 vector of unknown errors.

Also E(e) = 0 and Cov(e) = σ2In where In is the n× n identity matrix.
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For estimation with ordinary least squares, let the covariance matrix of x be Cov(x) =

Σx = E[(x− E(x))(x− E(x))]T = E(xxT )− E(x)E(xT ) and η = Cov(x, Y ) = ΣxY =

E[(x − E(x)(Y − E(Y ))] = E(xY ) − E(x)E(Y ) = E[(x − E(x))Y ] = E[x(Y − E(Y ))].

Let

η̂ = η̂n = Σ̂xY = SxY =
1

n− 1

n∑
i=1

(xi − x)(Yi − Y )

and

η̃ = η̃n = Σ̃xY =
1

n

n∑
i=1

(xi − x)(Yi − Y ).

Then the OLS estimators for model (1.3) are ϕ̂OLS = (XTX)−1XTY , α̂OLS = Y − β̂
T

OLSx,

and

β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY = Σ̂
−1

x η̂.

For a multiple linear regression model with independent, identically distributed (iid) cases,

β̂OLS is a consistent estimator of βOLS = Σ−1
x ΣxY under mild regularity conditions, while

α̂OLS is a consistent estimator of E(Y )− βT
OLSE(x).

Cook, Helland, and Su (2013) showed that the one component partial least squares

(OPLS) estimator β̂OPLS = λ̂Σ̂xY estimates λΣxY = βOPLS where

λ =
ΣT
xYΣxY

ΣT
xYΣxΣxY

and λ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

(1.4)

for ΣxY ̸= 0. If ΣxY = 0, then βOPLS = 0. Also see Basa, Cook, Forzani, and Marcos

(2022) and Wold (1975). Olive and Zhang (2024) derived the large sample theory for

η̂OPLS = Σ̂xY and OPLS under milder regularity conditions than those in the previous

literature. The OPLS estimator is computed from the OLS simple linear regression (SLR)

of Y on W = Σ̂
T

xY x, giving Ŷ = α̂OPLS + λ̂W = α̂OPLS + β̂
T

OPLSx.

The marginal maximum likelihood estimator (MMLE or marginal least squares esti-

mator) is due to Fan and Lv (2008) and Fan and Song (2010). This estimator computes the

marginal regression of Y on xi resulting in the estimator (α̂i,M , β̂i,M) for i = 1, ..., p. Then

β̂MMLE = (β̂1,M , ..., β̂p,M)T . For multiple linear regression, the marginal estimators are the
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simple linear regression (SLR) estimators, and (α̂i,M , β̂i,M) = (α̂i,SLR, β̂i,SLR). Hence

β̂MMLE = [diag(Σ̂x)]
−1Σ̂x,Y . (1.5)

If the ti are the predictors are scaled or standardized to have unit sample variances, then

β̂MMLE = β̂MMLE(t, Y ) = Σ̂t,Y = I−1Σ̂t,Y = η̂OPLS(t, Y ) (1.6)

where (t, Y ) denotes that Y was regressed on t, and I is the p× p identity matrix.

Sparse regression methods can be used for variable selection even if n/p is not large: the

OLS submodel uses the predictors that had nonzero sparse regression estimated coefficients.

These methods include least angle regression, lasso, relaxed lasso, elastic net, and sparse

regression by projection. See Efron et al. (2004, p. 421), Meinshausen (2007, p. 376), Qi et

al. (2015), Tay, Narasimhan, and Hastie (2023), Rathnayake and Olive (2023), Tibshirani

(1996), and Zou and Hastie (2005).

Data splitting divides the training data set of n cases into two sets: H and the

validation set V where H has nH of the cases and V has the remaining nV = n − nH

cases i1, ..., inV
. An application of data splitting is to use a variable selection method,

such as forward selection or lasso, on H to get submodel Imin with a predictors, then fit

the selected model to the cases in the validation set V using standard inference. See, for

example, Rinaldo et al. (2019).

High dimensional regression has n/p small. A fitted or population regression model is

sparse if a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with J ≥ 10.

Otherwise the model is nonsparse. A high dimensional population regression model is

abundant or dense if the regression information is spread out among the p predictors (nearly

all of the predictors are active). Hence an abundant model is a nonsparse model.

Olive and Zhang (2024) proved that there are often many valid population models for

multiple linear regression, gave theory for Σ̂x,Y and OPLS, gave theory for data splitting

estimators, and gave some theory for the MMLE for multiple linear regression under the

constant variance assumption.
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Chapter 2 gives some large sample theory, while Chapter 3 considers tests of hypothe-

ses.
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CHAPTER 2

LARGE SAMPLE THEORY

Olive and Zhang (2024) derived the large sample theory for η̂OPLS = Σ̂xY and OPLS,

including some high dimensional tests for low dimensional quantities such as HO : βi = 0

or H0 : βi − βj = 0. These tests depended on iid cases, but not on linearity or the

constant variance assumption. Hence the tests are useful for multiple linear regression with

heterogeneity. Data splitting uses model selection (variable selection is a special case) to

reduce the high dimensional problem to a low dimensional problem.

The following Olive and Zhang (2024) theorem gives the large sample theory for η̂ =

Ĉov(x, Y ). This theory needs η = ηOPLS = Σx,Y to exist for η̂ = Σ̂x,Y to be a consistent

estimator of η. Let xi = (xi1, ..., xip)
T and let wi and zi be defined below where

Cov(wi) = Σw = E[(xi − µx)(xi − µx)
T (Yi − µY )

2)]−ΣxYΣ
T
xY .

Then the low order moments are needed for Σ̂z to be a consistent estimator of Σw.

Theorem 1. Assume the cases (xT
i , Yi)

T are iid. Assume E(xkij Y
m
i ) exist for j =

1, ..., p and k,m = 0, 1, 2. Let µx = E(x) and µY = E(Y ). Let wi = (xi − µx)(Yi − µY )

with sample mean wn. Let η = Σx,Y . Then a)

√
n(wn − η)

D→ Np(0,Σw),
√
n(η̂n − η)

D→ Np(0,Σw), (2.1)

and
√
n(η̃n − η)

D→ Np(0,Σw).

b) Let zi = xi(Yi − Y n) and vi = (xi − xn)(Yi − Y n). Then Σ̂w = Σ̂z + OP (n
−1/2) =

Σ̂v +OP (n
−1/2). Hence Σ̃w = Σ̃z +OP (n

−1/2) = Σ̃v +OP (n
−1/2).

c) Let A be a k × p full rank constant matrix with k ≤ p, assume H0 : AβOPLS = 0 is

true, and assume λ̂
P→ λ ̸= 0. Then

√
nA(β̂OPLS − βOPLS)

D→ Nk(0, λ
2AΣwAT ). (2.2)
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We will give a sketch of the proofs of a) and c). Also see Olive, Alshammari, Pathiran-

age, and Hettige (2024). For a), note that
√
n(wn − η)

D→ Np(0,Σw) by the multivariate

central limit theorem since the wi are iid with E(wi) = η = Cov(x, Y ) and Cov(w) = Σw.

Then it can be shown that nη̃n =
n∑

i=1

(xi − µx + µx − x)(Yi − µY + µY − Y ) =
∑
i

(xi − µx)(Yi − µY ) =
∑
i

wi − nan =∑
i

wi − n(µx − x)(µY − Y ).

Hence
√
n(η̃n − η) =

√
n(wn − η) + oP(1).

Thus
√
n(η̃n − η)

D→ Np(0,Σw)

by Slutsky’s theorem.

c) If H0 is true, then Aη = 0, and

√
nA(β̂OPLS − βOPLS) =

√
nA(λ̂η̂ − λ̂η + λ̂η − βOPLS) =

λ̂A
√
n(η̂ − η) +A

√
n(λ̂− λ)η = Zn + bn

D→ Nk(0, λ
2AΣwAT )

since bn = 0 when H0 is true.

For iid cases, βMMLE = V −1Σx,Y = V −1ΣxβOLS where V = diag(σ2
1, ..., σ

2
p) =

diag(Σx). For standardized predictors, let sj and σj be the sample and population

standard deviations of xj. Let ti = D̂xi = diag(1/s1, ..., 1/sp)xi and ui = Dxi =

diag(1/σ1, ..., 1/σp)xi. Note that V̂
−1

= D̂
2
and V −1 = D2. Olive and Zhang (2024)

proved that Σ̂t,Y is a
√
n consistent estimator of Σu,Y . For iid cases, βMMLE(t, Y ) =

Σt,Y = ηOPLS(t, Y ).

Olive, Alshammari, Pathiranage, and Hettige (2024) show that

√
n





s21

...

s2p

Σ̂xY


−



σ2
1

...

σ2
p

ΣxY




=

√
n(ĉ− c)

D→ N2p

0,

 Σv Σv,w

Σw,v Σw


 . (2.3)
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Let

g(c) = βMMLE =


g1(c)

...

gp(c)

 =


σ1Y /σ

2
1

...

σpY /σ
2
p

 .

Let Dg = (D1,D2) where D1 = diag(−σ1Y /σ4
1,−σ2Y /σ4

2, ...,−σpY /σ4
p) and D2 =

D2 = diag(1/σ2
1, 1/σ

2
2, ..., 1/σ

2
p). Typically Σ̂xij

Y = OP (1), but if Σxij
Y = 0, then Σ̂xij

Y =

OP (n
−1/2).

Theorem 2. Let the cases (xT
i , Yi)

T be iid such that Equation (2.3) holds. Then a)

√
n(β̂MMLE − βMMLE)

D→ Np(0,ΣMMLE) ∼ Np

0,Dg

 Σv Σv,w

Σw,v Σw

DT
g

 .

Let A be a full rank k × p constant matrix such that Aβ = (βi1 , ..., βik)
T with i1, i2, ..., ik

distinct. Hence the jth row of A has a 1 in the ijth position and zeroes elsewhere. Assume

H0 : AβMMLE = 0. Then b)

√
nA(β̂MMLE − βMMLE)

D→ Nk(0,AD2ΣwD2AT ).

Proof. Theorem 2a) holds by the multivariate delta method.

b) Note that
√
nA(β̂MMLE − βMMLE) =

√
nA(D̂

2
Σ̂xY −D2ΣxY ) =

√
nA(D̂

2
Σ̂xY −D2Σ̂xY +D2Σ̂xY −D2ΣxY ) =

√
nA(D̂

2
−D2)Σ̂xY +

√
nAD2(Σ̂xY −ΣxY )

where by Theorem 1,

√
nAD2(Σ̂xY −ΣxY )

D→ Nk(0,AD2ΣwD2AT ).

Now
√
nA(D̂

2
−D2)Σ̂xY =

A


√
n
(

1
s21
− 1

σ2
1

)
Σ̂x1Y

...

√
n
(

1
s2p

− 1
σ2
p

)
Σ̂xpY

 =


√
n
(

1
s2i1

− 1
σ2
i1

)
Σ̂xi1

Y

...

√
n

(
1
s2ik

− 1
σ2
ik

)
Σ̂xik

Y

 = oP (1)
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if (Σxi1
Y , ...,Σxik

Y )
T = 0. Hence the result follows if H0 is true. □

It can be shown that if Σ̂z = (cij), then D̂
2
Σ̂zD̂

2
= (bij) where bij = cij/(s

2
i s

2
j).



9

CHAPTER 3

TESTING

Olive, Alshammari, Pathiranage, and Hettige (2024) considered testing using Theorem

1a), estimating AΣwAT with AΣ̂zA
T .

The following simple testing method reduces a possibly high dimensional problem

to a low dimensional problem. Testing H0 : AβOPLS = 0 versus H1 : AβOPLS ̸= 0 is

equivalent to testing H0 : Aη = 0 versus H1 : Aη ̸= 0 where A is a k× p constant matrix.

Let Cov(Σ̂xY ) = Cov(η̂) = Σw be the asymptotic covariance matrix of η̂ = Σ̂xY . In

high dimensions where n < 5p, we can’t get a good nonsingular estimator of Cov(Σ̂xY ),

but we can get good nonsingular estimators of Cov(Σ̂uY ) = Cov((η̂i1, ..., η̂ik)
T ) with u =

xI = (xi1, ..., xik)
T where n ≥ Jk with J ≥ 10. (Values of J much larger than 10 may be

needed if some of the k predictors and/or Y are skewed.) Simply apply Theorem 1 to the

predictors u used in the hypothesis test, and thus use the sample covariance matrix Σ̂zI

of the vectors ui(Yi−Y ). Hence we can test hypotheses like H0 : βi−βj = 0. In particular,

testing H0 : βi = 0 is equivalent to testing H0 : ηi = σxi,Y = 0 where σxi,Y = Cov(xi, Y ).

The tests with β̂OPLS = λ̂η̂ and k predictor variables may not be as good as the tests

with η̂ since λ̂ needs to be a good estimator of λ. Note that λ̂ can be a good estimator if

η̂Tx is a good estimator of ηTx.

Note that the tests with η̂ using k predictors xij do not depend on other predictors,

including important predictors that were left out of the model (underfitting). Hence the

tests can have considerable resistance to underfitting and overfitting. The tests also have

some resistance to measurement error: assume that (xT
i ,u

T
i , vi, Yi)

T are iid butwi = xi+ui

and Zi = Yi + vi are observed instead of (xi, Yi). Then β̂OLS(w, Z) estimates Σ−1
wΣwZ ,

while Σ̂wZ estimates Cov(x, Y ) if Cov(x, v) + Cov(u, Y ) + Cov(u, v) = 0, which occurs,

for example, if x v, u Y , and u v.
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CHAPTER 4

REGRESSION WITH HETEROGENEITY

A multiple linear regression model with heterogeneity is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei (4.1)

for i = 1, ..., n where the ei are independent with E(ei) = 0 and V (ei) = σ2
i . In matrix

form, this model is

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of unknown errors.

Also E(e) = 0 and Cov(e) = Σe = diag(σ2
i ) = diag(σ2

1, ..., σ
2
n) is an n×n positive definite

matrix. In Section 2, the constant variance assumption was used: σ2
i = σ2 for all i. Hence

heterogeneity means that the constant variance assumption does not hold. A common

assumption is that the ei = σiϵi where the ϵi are independent and identically distributed

(iid) with V (ϵi) = 1. See, for example, Zhou, Cook, and Zou (2023).

Weighted least squares (WLS) would be useful if the σ2
i were known. Since the σ2

i

are not known, ordinary least squares (OLS) is often used. The OLS theory for MLR with

heterogeneity often assume iid cases.
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CHAPTER 5

EXAMPLE AND SIMULATIONS

Example. The Hebbler (1847) data was collected from n = 26 districts in Prussia in

1843. Let Y = the number of women married to civilians in the district with a constant

and predictors x1 = the population of the district in 1843, x2 = the number of married

civilian men in the district, x3 = the number of married men in the military in the dis-

trict, and x4 = the number of women married to husbands in the military in the district.

Sometimes the person conducting the survey would not count a spouse if the spouse was

not at home. Hence Y and x2 are highly correlated but not equal. Similarly, x3 and x4

are highly correlated but not equal. Then β̂OLS = (0.00035, 0.9995,−0.2328, 0.1531)T , for-

ward selection with OLS and the Cp criterion used β̂I,0 = (0, 1.0010, 0, 0)T , lasso had β̂L =

(0.0015, 0.9605, 0, 0)T , lasso variable selection β̂LV S = (0.00007, 1.006, 0, 0)T , β̂MMLE =

(0.1782, 1.0010, 48.5630, 51.5513)T , and β̂OPLS = (0.1727, 0.0311, 0.00018, 0.00018)T . The

fitted values from the MMLE estimator tend not to estimate Y . Let W = xT β̂MMLE and

perform the simple linear regression of Y onW to get the reweighted or scaled estimators α̂R

and b. Then β̂R = bβ̂MMLE. Then the fitted values Ŷi = α̂R+xT
i β̂R can be used for predic-

tion. If the scaled predictors u have unit sample variances, then β̂OPLS(u, Y ) = β̂R(u, Y ).

Next, we describe a small WLS simulation study somewhat similar to that done by

Rajapaksha and Olive (2024). The simulation used ψ = 0 and 1/
√
p; and k = 1 and p− 1

where k and ψ are defined in the following paragraph.

Let u = (1 xT )T where x is the (p − 1) × 1 vector of nontrivial predictors. In the

simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the m = p − 1 elements

of the vector wi are independent and identically distributed (iid) N(0,1). Let the m ×m

matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i ̸= j. Then the

vector xi = Awi so that Cov(xi) = Σx = AAT = (σij) where the diagonal entries

σii = [1 + (m − 1)ψ2] and the off diagonal entries σij = [2ψ + (m − 2)ψ2]. Hence the
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correlations are cor(xi, xj) = ρ = (2ψ+ (m− 2)ψ2)/(1+ (m− 1)ψ2) for i ̸= j where xi and

xj are nontrivial predictors. If ψ = 1/
√
cp, then ρ→ 1/(c+ 1) as p→ ∞ where c > 0. As

ψ gets close to 1, the predictor vectors cluster about the line in the direction of (1, ..., 1)T .

Let Yi = 1 + 1xi,1 + · · ·+ 1xi,k + ei for i = 1, ..., n. Hence α = 1 and ϕ = (1, .., 1, 0, ..., 0)T

with k + 1 ones and p− k − 1 zeros.

The zero mean iid errors ẽi = ϵi were iid from five distributions: i) N(0,1), ii) t3, iii)

EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100). Only distribution iii)

is not symmetric. Then wtype = 1 if ei = ϵi (the WLS model is the OLS model), 2 if

ei = |xT
i β− 5|ϵi, 3 if ei =

√
(1+0.5x2i2)ϵi, 4 if ei = exp[1+ log(|xi2|)+ ...+ log(|xip|)]ϵi, 5 if

ei = [1+ log(|xi2|)+ ...+ log(|xip|)]ϵi, 6 if ei = [exp([log(|xi2|)+ ...+ log(|xip|)]/(p− 1))]ϵi, 7

if ei = [[log(|xi2|)+ ...+log(|xip|)]/(p− 1)]ϵi, The last four types were special cases of types

suggested by Romano and Wolf (2017). For type 6, the weighting function is the geometric

mean of |xi2|, ..., |xip|. For n = 100 and p = 100 with ψ ̸= 0, the CI lengths were too long

for wtype = 4.

When ψ = 0 and wtype = 1, the OLS confidence intervals for βi should have length

near 2t96,0.975σ/
√
n ≈ 2(1.96)σ/10 = 0.392σ when n = 100 and the iid zero mean errors

have variance σ2.

The simulation computed ηOPLS = ΣxY = (η1, ..., ηp−1)
T = ΣxβOLS where Σx =

AAT is a (p − 1) × (p − 1) matrix. Storage problems can occur if p > 10000. Then the

Theorem 1 large sample 100(1−δ) CI is η̂i±tn−1,1−δ/2SE(η̂i) could be computed for each ηi.

If 0 is not in the confidence interval, then H0 : ηi = 0 and H0 : βiE = 0 are both rejected for

estimators E = OPLS and MMLE. In the simulations with n = 50, p = 4, and ψ > 0, the

maximum observed undercoverage was about 0.05 = 5%. Hence the program has the option

to replace the cutoff tn−1,1−δ/2 by tn−1,up where up = min(1− δ/2 + 0.05, 1− δ/2 + 2.5/n)

if δ/2 > 0.1,

up = min(1− δ/4, 1− δ/2 + 12.5δ/n)

if δ/2 ≤ 0.1. If up < 1 − δ/2 + 0.001, then use up = 1 − δ/2. This correction factor
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was used in the simulations for the nominal 95% CIs, where the correction factor uses a

cutoff that is between tn−1,0.975 and the cutoff tn−1,0.9875 that would be used for a 97.5% CI.

The nominal coverage was 0.95 with δ = 0.05. Observed coverage between 0.94 and 0.96

suggests coverage is close to the nominal value. Pötscher and Preinerstorfer (2023) noted

that WLS tests tend to reject H0 too often (liberal tests with undercoverage).

The simulation computed p−1 confidence intervals [Lin, Uin] for ηi = Cov(xi, Y ) = σiY

for i = 1, ..., p − 1 = 99. Let σ2
i = V ar(xi), the variance of the ith predictor xi. Then

the program checked whether βi,MMLE = σiY /σ
2
i was in the interval (1/s2i )[Lin, Uin]. 5000

intervals were generated for each βi,MMLE, and the coverage was the proportion of times

βi,MMLE was in its interval. Hence if β1,MMLE was in its interval 4750/5000 = 0.95, then

the observed coverage was 0.95. This procedure correspond to a large sample test for

H0 : βi,MMLE = 0 only if βi,MMLE = 0. This occurred when ψ = 0 for i = 2, ..., p− 1 = 99,

but not for i = 1 or ψ = 0.1. The correction factor was used.

To summarize the p− 1 intervals, the average length of the p− 1 intervals over 5000

runs was computed. Then the minimum, mean, and maximum of the average lengths was

computed. The proportion of times each interval contained its population parameter was

computed. These proportions were the observed coverages of the p − 1 intervals. Then

the minimum observed coverage was found. The percentage of the observed coverages

that were ≥ 0.9, 0.92, 0.93, 0.94, and 0.96 were also recorded. The coverage of the test

H0 : βI,MMLE = 0 was recorded and a correction factor was not used. Here I = {98, 99}.

Suppose AβMMLE = (βi1,MMLE, ..., βik,MMLE)
T = βI,MMLE where I = {i1, ..., ik}.

Let D̂2
I = diag(1/σ̂2

i1
, ..., 1/σ̂2

ik
). Let u = xI = (xi1, ..., xik)

T . The test statistic for the

test H0 : AβMMLE = βI,MMLE = 0 is Tn = nβ̂
T

MMLEA
T (AD̂

2
Σ̂zD̂

2
AT )−1Aβ̂MMLE =

nβ̂
T

I,MMLE(D̂
2

IΣ̂zI
D̂

2

I)
−1β̂I,MMLE

D→ χ2
k whenH0 is true. The simulation used I = {98, 99}

and tested H0 : AβMMLE = (β98,MMLE, β99,MMLE)
T = 0. In the simulation H0 was true

for k = 1 and ψ = 0, but false for either ψ = 0.1 or k = 99.

In the simulation if the model is linear, βOLS = (1, 0, ..., 0)T for k = 1, and βOLS = 1
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for k = 99. If ψ = 0 and the model is linear, then Σx = Ip, λ = 1, and βOLS = βOPLS =

ΣxY . Then λ̂ was often less than 0.5 for n = 100 and p = 100. If ψ = 0.1, k = 99, and the

model is linear, then λ = 1/116.64 = 0.008573, βOLS = βOPLS = 1, and ΣxY = 116.64 1.

Now λ̂ tended to be close to λ. The models appeared to be linear except for wtype=4 with

ψ = 0.1. (This model appeared to generate massive outliers with entries of Σ̂xY often

larger than 1050 for n = 100 and p = 100.)

source("http://parker.ad.siu.edu/Olive/slpack.txt")

args(mmlesim)

function (n = 100, p = 4, k = 1, nruns = 100, eps = 0.1, shift = 9,

etype = 1, wtype = 1, psi = 0, cfac = "T", indices = c(1,2), alph = 0.05)

mmlesim(n=100,p=100,k=1,nruns=5000,etype=1,wtype=1,psi=0,indices = c(98,99))

$lens

[1] 0.5924335 0.5958773 0.7172263

$covprop

[1] 0.9494000 1.0000000 1.0000000 1.0000000 1.0000000 0.7676768

$testcov

[1] 0.9416

#change etype and psi to get the rest of Table 1.

#then repeat to get Tables 2-7 corresponding to wtype =2,...,7

#do not use psi=0.1 for wtype=4

#then repeat with k=99 to get Tables 8-14

#so the first two line of table 8 use the following R command

mmlesim(n=100,p=100,k=99,nruns=5000,etype=1,wtype=1,psi=0,indices = c(98,99))
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The simulation used Theorem 2b) for testing with nominal level 0.05. For Table 5.1,

when ψ = 0, H0 was true except for β1,MMLE. However, the interval [L1n/s
2
1, U1n/s

2
1] tended

to contain β1,MMLE = η1/σ
2
1 near 95% of the time. The maximum average interval length

0.7172 on the 2nd line of Table 5.1 corresponded to the first interval for β1,MMLE. When

ψ = 0.1 H0 was never true. Then the minimum average coverage 0.0616 on the third line

of Table 5.1 corresponded to β1,MMLE. The remaining coverages were all near 0.47. Hence

none of the 99 intervals had coverage over 0.9. The low coverages in the last column for

testcov mean that the test for H0 : (β98,MMLE, β99,MMLE)
T = 0 had good power. The power

0.7284 = 1-0.2716 was worst for etype=5.
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Table 5.1. Cov(x,Y), wtype=1, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9494 1.0 1.0 1.0 1.0 0.7677 0.9416

len 1 0.5924 0.5959 0.7172

100 100 0.1 0.0616 0.0 0.0 0.0 0.0 0.0 0.0002

len 1 0.5634 0.5675 0.6526

100 100 0 0.9468 1.0 1.0 1.0 1.0 0.9091 0.9506

len 2 0.7993 0.8063 0.8977

100 100 0.1 0.2124 0.0 0.0 0.0 0.0 0.0 0.0304

len 2 0.6877 0.6933 0.7654

100 100 0 0.9476 1.0 1.0 1.0 1.0 0.8283 0.9476

len 3 0.5883 0.5927 0.7143

100 100 0.1 0.0704 0.0 0.0 0.0 0.0 0.0 0.0006

len 3 0.5629 0.5659 0.6530

100 100 0 0.9450 1.0 1.0 1.0 1.0 0.7475 0.9392

len 4 0.4813 0.4860 0.6297

100 100 0.1 0.0314 0.0 0.0 0.0 0.0 0.0 0.0

len 4 0.5090 0.5118 0.6074

100 100 0 0.9668 1.0 1.0 1.0 1.0 1.0 0.9630

len 5 1.3696 1.3813 1.4494

100 100 0.1 0.5352 0.0 0.0 0.0 0.0 0.0 0.2716

len 5 1.0420 1.0518 1.1095
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Table 5.2. Cov(x,Y), wtype=2, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9546 1.0 1.0 1.0 1.0 0.7778 0.9446

len 1 1.7674 1.7776 1.8998

100 100 0.1 0.7760 0.0606 0.0 0.0 0.0 0.0 0.5588

len 1 1.3769 1.3839 1.4835

100 100 0 0.9592 1.0 1.0 1.0 1.0 0.9798 0.9508

len 2 2.8057 2.8348 2.9808

100 100 0.1 0.8818 0.9899 0.9899 0.8889 0.0404 0.0 0.761

len 2 2.1529 2.1704 2.2933

100 100 0 0.9586 1.0 1.0 1.0 1.0 0.9293 0.946

len 3 1.7413 1.7542 1.8670

100 100 0.1 0.688 0.0 0.0 0.0 0.0 0.0 0.4852

len 3 1.3672 1.3752 1.4809

100 100 0 0.9500 1.0 1.0 1.0 1.0 0.7980 0.9442

len 4 1.0817 1.0876 1.2036

100 100 0.1 0.509 0.0 0.0 0.0 0.0 0.0 0.171

len 4 0.8906 0.8938 0.9841

100 100 0 0.9706 1.0 1.0 1.0 1.0 1.0 0.9616

len 5 5.2574 5.3112 5.5066

100 100 0.1 0.9330 1.0 1.0 1.0 0.9899 0.6263 0.872

len 5 3.9485 3.9880 4.1461
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Table 5.3. Cov(x,Y), wtype=3, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9378 1.0 1.0 1.0 0.9899 0.8889 0.9454

len 1 0.7194 0.7254 0.9955

100 100 0.1 0.4686 0.0 0.0 0.0 0.0 0.0 0.0516

len 1 0.7705 0.7761 0.9581

100 100 0 0.9554 1.0 1.0 1.0 1.0 0.9697 0.9522

len 2 1.0474 1.0653 1.4667

100 100 0.1 0.6988 0.0 0.0 0.0 0.0 0.0 0.319

len 2 1.0830 1.0933 1.3541

100 100 0 0.9442 1.0 1.0 1.0 1.0 0.9899 0.9536

len 3 0.7110 0.7182 0.9824

100 100 0.1 0.42 0.0 0.0 0.0 0.0 0.0 0.0626

len 3 0.7591 0.7646 0.9418

100 100 0 0.9366 1.0 1.0 1.0 0.9899 0.8384 0.9452

len 4 0.5380 0.5420 0.7454

100 100 0.1 0.1394 0.0 0.0 0.0 0.0 0.0 0.0004

len 4 0.5891 0.5936 0.7261

100 100 0 0.9692 1.0 1.0 1.0 1.0 1.0 0.9638

len 5 1.8420 1.8642 2.5108

100 100 0.1 0.8446 0.9899 0.0202 0.0 0.0 0.0 0.5986

len 5 1.8849 1.9095 2.3632
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Table 5.4. Cov(x,Y), wtype=4, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9482 1.0 1.0 1.0 1.0 0.7778 0.9472

len 1 0.4183 0.4215 0.5824

100 100 0 0.9474 1.0 1.0 1.0 1.0 0.7879 0.946

len 2 0.4186 0.4215 0.5812

100 100 0 0.9442 1.0 1.0 1.0 1.0 0.7475 0.9396

len 3 0.4180 0.4213 0.5824

100 100 0 0.9474 1.0 1.0 1.0 1.0 0.7980 0.9396

len 4 0.4183 0.4216 0.5842

100 100 0 0.9432 1.0 1.0 1.0 1.0 0.7980 0.9384

len 5 0.4182 0.4220 0.5823
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Table 5.5. Cov(x,Y), wtype=5, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9556 1.0 1.0 1.0 1.0 0.8081 0.9454

len 1 25.8386 25.9548 26.0704

100 100 0.1 0.9588 1.0 1.0 1.0 1.0 0.9798 0.9428

len 1 16.0245 16.1075 16.1926

100 100 0 0.9582 1.0 1.0 1.0 1.0 0.9899 0.9552

len 2 41.8352 42.2946 42.7194

100 100 0.1 0.962 1.0 1.0 1.0 1.0 1.0 0.9496

len 2 25.3209 25.6154 25.8194

100 100 0 0.9586 1.0 1.0 1.0 1.0 0.9697 0.9486

len 3 25.3915 25.5700 25.7321

100 100 0.1 0.9624 1.0 1.0 1.0 1.0 1.0 0.9556

len 3 15.5181 15.6073 15.7101

100 100 0 0.9534 1.0 1.0 1.0 1.0 0.6465 0.9344

len 4 15.0130 15.0736 15.1274

100 100 0.1 0.9552 1.0 1.0 1.0 1.0 0.8586 0.9344

len 4 9.3428 9.3775 9.4283

100 100 0 0.9712 1.0 1.0 1.0 1.0 1.0 0.9678

len 5 78.9781 80.0866 81.0103

100 100 0.1 0.9702 1.0 1.0 1.0 1.0 1.0 0.9666

len 5 46.9618 47.3816 47.8914
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Table 5.6. Cov(x,Y), wtype=6, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9392 1.0 1.0 1.0 0.9899 0.7576 0.9412

len 1 0.4758 0.4793 0.6242

100 100 0.1 0.1196 0.0 0.0 0.0 0.0 0.0 0.0048

len 1 0.6270 0.6316 0.7083

100 100 0 0.9460 1.0 1.0 1.0 1.0 0.9091 0.9494

len 2 0.5615 0.5662 0.6941

100 100 0.1 0.3294 0.0 0.0 0.0 0.0 0.0 0.1016

len 2 0.8122 0.8182 0.8810

100 100 0 0.9472 1.0 1.0 1.0 1.0 0.7677 0.94

len 3 0.4749 0.4784 0.6240

100 100 0.1 0.1204 0.0 0.0 0.0 0.0 0.0 0.0124

len 3 0.6244 0.6274 0.7057

100 100 0 0.9432 1.0 1.0 1.0 1.0 0.7475 0.9458

len 4 0.4386 0.4417 0.5948

100 100 0.1 0.0362 0.0 0.0 0.0 0.0 0.0 0.0004

len 4 0.5337 0.5373 0.6265

100 100 0 0.9558 1.0 1.0 1.0 1.0 0.9899 0.9562

len 5 0.8212 0.8308 0.9290

100 100 0.1 0.582 0.0 0.0 0.0 0.0 0.0 0.348

len 5 1.2700 1.2790 1.3235
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Table 5.7. Cov(x,Y), wtype=7, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9408 1.0 1.0 1.0 1.0 0.8182 0.9442

len 1 0.4945 0.4984 0.6379

100 100 0.1 0.0296 0.0 0.0 0.0 0.0 0.0 0.0

len 1 0.5059 0.5084 0.6034

100 100 0 0.9496 1.0 1.0 1.0 1.0 0.8081 0.9508

len 2 0.6044 0.6095 0.7335

100 100 0.1 0.0642 0.0 0.0 0.0 0.0 0.0 0.0032

len 2 0.5489 0.5526 0.6412

100 100 0 0.9448 1.0 1.0 1.0 1.0 0.7980 0.9482

len 3 0.4939 0.4973 0.6371

100 100 0.1 0.0322 0.0 0.0 0.0 0.0 0.0 0.0

len 3 0.5073 0.5101 0.6064

100 100 0 0.9398 1.0 1.0 1.0 0.9899 0.7475 0.9448

len 4 0.4452 0.4484 0.6029

100 100 0.1 0.0216 0.0 0.0 0.0 0.0 0.0 0.0

len 4 0.4881 0.4908 0.5889

100 100 0 0.9554 1.0 1.0 1.0 1.0 0.9899 0.953

len 5 0.9289 0.9377 1.0237

100 100 0.1 0.2136 0.0 0.0 0.0 0.0 0.0 0.048

len 5 0.6935 0.6979 0.7683
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Table 5.8. Cov(x,Y), wtype=1, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9522 1.0 1.0 1.0 1.0 0.6364 0.7606

len 1 4.2015 4.2193 4.2395

100 100 0.1 0.0856 0.0 0.0 0.0 0.0 0.0 0.0

len 1 39.6266 39.7735 39.8931

100 100 0 0.9536 1.0 1.0 1.0 1.0 0.6566 0.7804

len 2 4.2380 4.2573 4.2847

100 100 0.1 0.0868 0.0 0.0 0.0 0.0 0.0 0.0

len 2 39.7353 39.8570 39.9980

100 100 0 0.9542 1.0 1.0 1.0 1.0 0.6667 0.763

len 3 4.2053 4.2244 4.2489

100 100 0.1 0.0866 0.0 0.0 0.0 0.0 0.0 0.0

len 3 39.6370 39.8321 39.9596

100 100 0 0.9534 1.0 1.0 1.0 1.0 0.6162 0.7714

len 4 4.1830 4.1981 4.2145

100 100 0.1 0.0878 0.0 0.0 0.0 0.0 0.0 0.0

len 4 39.6609 39.7963 39.9213

100 100 0 0.9544 1.0 1.0 1.0 1.0 0.6566 0.797

len 5 4.3955 4.4142 4.4411

100 100 0.1 0.0906 0.0 0.0 0.0 0.0 0.0 0.0

len 5 39.7994 39.9387 40.0825
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Table 5.9. Cov(x,Y), wtype=1, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9566 1.0 1.0 1.0 1.0 0.8384 0.8714

len 1 6.0682 6.1104 6.1547

100 100 0.1 0.5324 0.0 0.0 0.0 0.0 0.0 0.001

len 1 59.8775 60.1838 60.4348

100 100 0 0.9588 1.0 1.0 1.0 1.0 0.9798 0.9084

len 2 8.2322 8.3247 8.4038

100 100 0.1 0.7222 0.0 0.0 0.0 0.0 0.0 0.112

len 2 82.6070 83.1059 83.6569

100 100 0 0.9560 1.0 1.0 1.0 1.0 0.8788 0.857

len 3 6.0430 6.0813 6.1275

100 100 0.1 0.4908 0.0 0.0 0.0 0.0 0.0 0.0084

len 3 59.4855 59.8701 60.2404

100 100 0 0.9558 1.0 1.0 1.0 1.0 0.7677 0.8312

len 4 4.8889 4.9096 4.9323

100 100 0.1 0.249 0.0 0.0 0.0 0.0 0.0 0.0

len 4 47.3216 47.4682 47.6399

100 100 0 0.9672 1.0 1.0 1.0 1.0 1.0 0.9358

len 5 13.7658 13.9827 14.1819

100 100 0.1 0.8364 0.0 0.0 0.0 0.0 0.0 0.379

len 5 136.5261 137.9956 139.6727
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Table 5.10. Cov(x,Y), wtype=3, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9532 1.0 1.0 1.0 1.0 0.7475 0.7806

len 1 4.2175 4.2378 4.2579

100 100 0.1 0.0868 0.0 0.0 0.0 0.0 0.0 0.0

len 1 39.7822 39.8852 40.0177

100 100 0 0.954 1.0 1.0 1.0 1.0 0.6869 0.787

len 2 4.3028 4.3193 4.4224

100 100 0.1 0.089 0.0 0.0 0.0 0.0 0.0 0.0

len 2 39.7079 39.8377 39.9930

100 100 0 0.9560 1.0 1.0 1.0 1.0 0.6869 0.7798

len 3 4.2230 4.2387 4.2745

100 100 0.1 0.0908 0.0 0.0 0.0 0.0 0.0 0.0

len 3 39.8010 39.9154 40.0738

100 100 0 0.9520 1.0 1.0 1.0 1.0 0.7071 0.7808

len 4 4.1897 4.2070 4.2234

100 100 0.1 0.0886 0.0 0.0 0.0 0.0 0.0 0.0

len 4 39.7975 39.9045 40.0552

100 100 0 0.9542 1.0 1.0 1.0 1.0 0.7879 0.8054

len 5 4.5927 4.6159 4.9178

100 100 0.1 0.089 0.0 0.0 0.0 0.0 0.0 0.0

len 5 39.8697 40.0144 40.1339
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Table 5.11. Cov(x,Y), wtype=4, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9548 1.0 1.0 1.0 1.0 0.6667 0.7654

len 1 4.1817 4.1997 4.2172

100 100 0 0.9548 1.0 1.0 1.0 1.0 0.6970 0.7822

len 2 4.1837 4.1964 4.2137

100 100 0 0.9530 1.0 1.0 1.0 1.0 0.6465 0.7736

len 3 4.1745 4.1944 4.2111

100 100 0 0.9530 1.0 1.0 1.0 1.0 0.6162 0.7682

len 4 4.1829 4.2015 4.2165

100 100 0 0.9560 1.0 1.0 1.0 1.0 0.6465 0.774

len 5 4.1768 4.1948 4.2152
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Table 5.12. Cov(x,Y), wtype=5, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9544 1.0 1.0 1.0 1.0 0.8384 0.9368

len 1 26.2274 26.3463 26.4535

100 100 0.1 0.1484 0.0 0.0 0.0 0.0 0.0 0.0

len 1 42.7226 42.90669 43.04279

100 100 0 0.9596 1.0 1.0 1.0 1.0 0.9899 0.9468

len 2 42.2069 42.6059 42.9960

100 100 0.1 0.249 0.0 0.0 0.0 0.0 0.0 0.0016

len 2 47.5802 47.7618 48.1024

100 100 0 0.9582 1.0 1.0 1.0 1.0 0.9697 0.9468

len 3 25.6196 25.7906 25.9427

100 100 0.1 0.1576 0.0 0.0 0.0 0.0 0.0 0.0

len 3 42.6949 42.8347 42.9833

100 100 0 0.9546 1.0 1.0 1.0 1.0 0.6263 0.9324

len 4 15.5986 15.6459 15.6971

100 100 0.1 0.1108 0.0 0.0 0.0 0.0 0.0 0.0

len 4 40.7900 40.8949 41.0656

100 100 0 0.9706 1.0 1.0 1.0 1.0 1.0 0.9618

len 5 79.1203 80.1179 81.2339

100 100 0.1 0.4888 0.0 0.0 0.0 0.0 0.0 0.0312

len 5 63.0536 63.4663 63.9176
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Table 5.13. Cov(x,Y), wtype=6, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9542 1.0 1.0 1.0 1.0 0.6364 0.7662

len 1 4.1789 4.1953 4.2146

100 100 0.1 0.0884 0.0 0.0 0.0 0.0 0.0 0.0

len 1 39.7041 39.8250 39.9557

100 100 0 0.9558 1.0 1.0 1.0 1.0 0.7374 0.7812

len 2 4.1980 4.2180 4.2351

100 100 0.1 0.0894 0.0 0.0 0.0 0.0 0.0 0.0

len 2 39.6567 39.8099 39.9254

100 100 0 0.9538 1.0 1.0 1.0 1.0 0.6566 0.7762

len 3 4.1906 4.2056 4.2291

100 100 0.1 0.0878 0.0 0.0 0.0 0.0 0.0 0.0

len 3 39.7497 39.8436 39.9748

100 100 0 0.9542 1.0 1.0 1.0 1.0 0.6061 0.7724

len 4 4.1826 4.2015 4.2200

100 100 0.1 0.0906 0.0 0.0 0.0 0.0 0.0 0.0

len 4 39.7650 39.8915 40.0254

100 100 0 0.9544 1.0 1.0 1.0 1.0 0.7677 0.7646

len 5 4.2335 4.2583 4.2725

100 100 0.1 0.0854 0.0 0.0 0.0 0.0 0.0 0.0

len 5 39.7333 39.8840 39.9717
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Table 5.14. Cov(x,Y), wtype=7, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9564 1.0 1.0 1.0 1.0 0.7374 0.7698

len 1 4.1871 4.2082 4.2245

100 100 0.1 0.0878 0.0 0.0 0.0 0.0 0.0 0.0

len 1 39.7434 39.8520 39.97510

100 100 0 0.9552 1.0 1.0 1.0 1.0 0.6061 0.7774

len 2 4.2087 4.2269 4.2431

100 100 0.1 0.0942 0.0 0.0 0.0 0.0 0.0 0.0

len 2 39.7524 39.8647 39.9743

100 100 0 0.9538 1.0 1.0 1.0 1.0 0.6970 0.77

len 3 4.1933 4.2078 4.2290

100 100 0.1 0.0948 0.0 0.0 0.0 0.0 0.0 0.0

len 3 39.7562 39.9038 40.0663

100 100 0 0.9526 1.0 1.0 1.0 1.0 0.6364 0.781

len 4 4.1778 4.1969 4.2174

100 100 0.1 0.0818 0.0 0.0 0.0 0.0 0.0 0.0

len 4 39.7661 39.8912 39.9916

100 100 0 0.9556 1.0 1.0 1.0 1.0 0.6465 0.7884

len 5 4.2710 4.2871 4.3051

100 100 0.1 0.0918 0.0 0.0 0.0 0.0 0.0 0.0

len 5 39.6105 39.7635 39.8746
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CHAPTER 6

CONCLUSION

The response plot of ϕ̂OPLS versus Y and the EE plot of ϕ̂
T

OPLSx versus ϕ̂
T

OLSx can

be used to check whether OPLS is useful. See Olive (2013) for more on these two plots.

Software

The R software was used in the simulations. See R Core Team (2020). Programs

are available from the Olive (2023) collections of R functions slpack.txt, available from

(http://parker.ad.siu.edu/Olive/slpack.txt). The function mmlesim was used to make the

tables.
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