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The memristor is an emerging nano-device. Low power operation, high density, 

scalability, non-volatility, and compatibility with CMOS Technology have made it a 

promising technology for memory, Boolean implementation, computing, and logic 

systems. This dissertation focuses on testing and design of such applications. In 

particular, we investigate on testing of memristor-based memories, design of memristive 

implementation of Boolean functions, and reliability and design of neuromorphic 

computing such as neural network. In addition, we show how to modify threshold logic 

gates to implement more functions.  

Although memristor is a promising emerging technology but is prone to defects 

due to uncertainties in nanoscale fabrication. Fast March tests are proposed in Chapter 

2 that benefit from fast write operations. The test application time is reduced significantly 

while simultaneously reducing the average test energy per cell. Experimental evaluation 

in 45 nm technology show a speed-up of approximately 70% with a decrease in energy 

by approximately 40%. DfT schemes are proposed to implement the new test methods. 
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In Chapter 3, an Integer Linear Programming based framework to identify current-

mode threshold logic functions is presented. It is shown that threshold logic functions can 

be implemented in CMOS-based current mode logic with reduced transistor count when 

the input weights are not restricted to be integers. Experimental results show that many 

more functions can be implemented with predetermined hardware overhead, and the 

hardware requirement of a large percentage of existing threshold functions is reduced 

when comparing to the traditional CMOS-based threshold logic implementation. 

In Chapter 4, a new method to implement threshold logic functions using 

memristors is presented. This method benefits from the high range of memristor’s 

resistivity which is used to define different weight values, and reduces significantly the 

transistor count. The proposed approach implements many more functions as threshold 

logic gates when comparing to existing implementations. Experimental results in 45 nm 

technology show that the proposed memristive approach implements threshold logic 

gates with less area and power consumption. 

Finally, Chapter 5 focuses on current-based designs for neural networks. CMOS 

aging impacts the total synaptic current and this impacts the accuracy. Chapter 5 

introduces an enhanced memristive crossbar array (MCA) based analog neural network 

architecture to improve reliability due to the aging effect. A built-in current-based 

calibration circuit is introduced to restore the total synaptic current. The calibration circuit 

is a current sensor that receives the ideal reference current for non-aged column and 

restores the reduced sensed current at each column to the ideal value. Experimental 

results show that the proposed approach restores the currents with less than 1% 

precision, and the area overhead is negligible. 
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CHAPTER 1 

INTRODUCTION 

The memristor is an emerging nano-device. Low power operation, high density, 

scalability, non-volatility, and compatibility with CMOS Technology have made it a 

promising technology for memory, Boolean implementation, computing, and logic 

systems. This dissertation focuses on testing and design of such applications. In 

particular, we investigate on testing of memristor-based memories, design of memristive 

implementation of Boolean functions, and reliability and design of neuromorphic 

computing such as neural network. In addition, we will show how to modify threshold logic 

gates to implement more functions.  

Nano scale devices are prone to defects due to design marginalities, imperfection 

in fabrication process, and process variation [24]. Some defects impact the logical 

behavior of resistive memory cells. Others impact the temporal behavior. Chapter 2 

focuses on testing of memristor-based memory, and introduces a novel approach to 

reduce the test application time using fast write operations. The proposed method 

benefits from the behavior of memristor device which is nonlinear and asymmetric. The 

approach is taking into consideration the random memristive behavior and sneak-paths 

in crossbar memory. A new Design for Testability (DfT) mechanism is required to 

implement the proposed fast write operation. The experimental results on DfT 

implementation in 45nm technology will be reported in Chapter 2 to evaluate the 

effectiveness of the proposed approach. 

Threshold Logic Gate (TG) is a promising candidate for the future digital circuits. 
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A Boolean function that can be implemented as a single TG is called Threshold Logic 

Function (TF). In a TF, there is an integer weight for each input. An input pattern evaluates 

the function to logic one only when the sum of the active weights is greater than (or equal) 

to a predetermined integer weight value called the threshold weight. Otherwise, it 

evaluates the function to logic 0. 

A small fraction of binary functions are TFs, and this limits the impact of TGs in 

digital circuit synthesis. Thus, our focus shifts on identifying more functions as TFs. 

Chapter 3 benefits from the higher order definition of TF and shows that a weight in a TF 

can be activated by a group of active inputs.  

Moreover, TF implementations consist of three components: two differential 

networks (input networks) and a sensor (sense amplifier). The power dissipation of a TG 

depends primarily on two factors: the transistor count of the input networks which is the 

total number of unit size transistors that implements weights and the sensor size which is 

proportional to the transistor count of input networks. Therefore, Chapter 3 proposes a 

new method to reduce the transistor count of the input networks by introducing non-

integer weights. 

The transistor count reduces further when weights are implemented by resistive 

devices. This has been investigated in Chapter 4. Chapter 4 proposes a new method to 

implement efficiently the higher order weight components using non-volatile resistive 

memories (memristors). The resistance value of a memristor is called its memristance, 

and the range of memristance is used to define different weight values. This method of 

weight implementation reduces significantly the transistor count of the input networks. 

Chapter 4 is an extended version of the Chapter 5. 
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Artificial neural networks (ANNs) are machine-learning systems for pattern 

matching, character and speech recognition, and big data management among other 

applications. They consist of an input layer, an output layer and multiple hidden layers. 

Each layer consists of several neurons. Each neuron has multiple inputs that are typically 

real numbers and one output that is typically a real number. Every input signal is 

convolved with a predetermined weight value called the synaptic weight. A neuron 

calculates the weighted sum of all the convolved signals, and it is mapped to the output 

signal by a component called the activation function. 

It is observed that analog-based ANNs may result in erroneous computations due 

to transistor aging. In particular, Bias Temperature Instability (BTI), and to a lesser extent, 

dielectric breakdown as well as Hot Carrier Injections (HCI) shift the threshold voltage of 

the CMOS transistor causing the reduction in the drain current. Therefore, the synaptic 

current reduces as CMOS component of the cell ages. This impacts the value of each 

convolution. It is experimentally shown in Chapter 5 that the aging impacts the 

computational accuracy of analog ANNs. 

Chapter 5 introduces an enhanced memristive crossbar array (MCA) based ANN 

architecture to improve reliability due to the aging effect. The MCA is enhanced by an 

extra row (the calibration row) and an extra column (the spare column). A built-in current-

based calibration circuit is introduced to restore the total synaptic current. The calibration 

circuit is a current sensor that receives the ideal reference current for non-aged column 

and restores the reduced sensed current at each column to the ideal value. It will be 

shown that the enhances MCA columns with a calibration circuit alleviates the aging effect 

and maintain invariant sum of synaptic currents. 
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CHAPTER 2 

EFFICIENT TESTING OF METAL-OXIDE MEMRISTOR-BASED MEMORY 

2.1 Introduction 

The memristor is an emerging nano-device [1, 2]. Low power operation, high 

density, scalability, non-volatility, and compatibility with CMOS Technology have made it 

a promising technology for memory, computing, and logic systems [3-10]. Resistive 

memories are also appealing to 3D circuit designs. 

Memristor-based memory is a hybrid memory where memory cells are 

implemented using memristors and access memory circuitry is implemented using CMOS 

transistors [11]. The performance of CMOS-based components, implemented in deep-

submicron, is impacted by the variation of the process parameters which has become a 

serious design and test challenge [12]. Furthermore, variations in the length, area, and 

doping concentration of the memristors impact the write time in memory cells [19]. 

Memristor-based memory is also prone to short, open and bridging faults in metal lines 

[11]. 

This chapter focuses on testing memristor-based memory, and introduces a novel 

approach to reduce the test application time using fast write operations. March tests are 

presented, i. e., algorithms that consist of traversals of the whole memory array where 

the same read or write operations apply to each cell [13]. The proposed March tests 

benefit from the behavior of memristor device which is nonlinear and asymmetric. In 

particular, switching from the ON state to the OFF state is significantly slower than the 

inverse [14, 15]. Memristors exhibit a random behavior in resistivity change during read 
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and write operations [16, 17], and such variability must be taken into consideration when 

testing for manufacturing defects. 

The approaches in [18-22] test memristor-based memories by reading 

simultaneously multiple cells. These cells are called the Region of Detection (RoD). This 

is done in order to reduce the impact of unwanted current paths, also called sneak paths, 

which may cause errors during test. However, these techniques use the imprecise linear 

symmetric model in [23], and also are not applicable to high density crossbars. The 

reduction on the number of read operations does not have a significant impact on the test 

application time since read operations are much faster than writes. March tests with fast 

write operations are presented where the effect of sneak paths is eliminated by applying 

appropriate voltages at the cells of the RoD. Such March tests reduce test application 

time and power. 

This is the first time that write operations with different time duration are introduced 

in March tests. The non-March testing approaches in [24-27] use variable length write 

operations to detect faults which were undetectable by March tests but rely on the linear 

symmetric model and do not consider the random nature of memristors. We present 

March tests for such faults under the non-linear asymmetric model while taking into 

consideration the random memristive behavior. 

In all the above cases, experimental evidence in 45nm technology shows that 

March tests with the new fast write operation reduce the test application time by at least 

70% while reducing the average test energy per cell by at least 40%. This chapter 

considers blocked-based crossbar memory which is known to limit the side effect due to 

the sneak path [3, 28]. Such memory is implemented by a crossbar architecture which is 
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combination of CMOS transistors and memristors [3, 11]. A new Design for Testability 

(DfT) mechanism is presented in order to implement the proposed fast write operation in 

crossbar architecture. Its design uses ideas proposed in [19], [24] and [27], and 

implementation in 45nm technology shows that the area overhead of the DfT is only 8.875 

𝜇𝑚2 per column. 

This chapter is organized as follows. Section 2.2 provides preliminaries on the 

metal-oxide memristor device which is used without loss of generality. It outlines recent 

advances on verilog-base modeling of its behavior, and existing fault models for defects 

in memristors. The proposed method and related March tests are introduced in Section 

2.3. Experimental evaluation in 45nm technology is also presented. The DfT mechanism 

to implement the proposed method is presented in Section 2.4. Section 2.5 concludes the 

chapter. 

 

2.2 Preliminaries 

This work assumes that memristors are implemented as bipolar metal-oxide two-

terminal devices [1, 3] because accurate models for its behavior have been developed 

[15]. However, the presented March tests apply to all types of memristors. 

2.2.1 The bipolar metal-oxide memristor 

This memristor is formed by a metal-oxide-metal thin film sandwiched between two 

electrodes [1, 3]. Bipolar metal-oxide memristors are variable resistors. Resistance 

switching in such memristors relates to the drift and diffusion direction of the mobile 

oxygen anions and oxygen vacancies created under Joule heating and electric fields [29]. 

One of the most common switching oxide is TiO2 [30].  
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The memristor is written and read by biasing positive and negative voltages across 

the electrodes [21]. These voltages will be denoted by 𝑉𝑤𝑟𝑖𝑡𝑒 and 𝑉𝑟𝑒𝑎𝑑, respectively. By 

applying a positive voltage across the device, the motion of anions and oxygen vacancies 

results in a nanoscale-conducting filament, and this decreases the total resistance of the 

device [30-33]. This is logic 1 and is referred to as state 1. On the other hand, in order to 

write logic 0 (also referred to as state 0), a negative voltage should apply across the 

memristor. In this case, oxygen vacancies and anions drift back, and this results in a 

partial dissolution of the filament, which increases the total resistance [30-33]. The 

magnitude of the voltage for write 0 (w0) may be different to the one for write 1 (w1). 

The resistance value of a memristor is called its memristance, and the range of 

memristance is used to define different logic states. Let 𝑅𝑂𝑁 and 𝑅𝑂𝐹𝐹 denote the 

minimum and maximum possible resistance value, respectively [34]. Logic 1 occurs when 

the memristance value is in the range [𝑅𝑂𝑁 .. 0.4(𝑅𝑂𝐹𝐹 − 𝑅𝑂𝑁)] and logic 0 when the 

memristance value is in the range [0.6(𝑅𝑂𝐹𝐹 − 𝑅𝑂𝑁) .. 𝑅𝑂𝐹𝐹]. The pulse time should be 

long enough to change the resistance from one state into the boundary of the 

complementary state. 

The behavior of any bipolar metal-oxide memristor device (including TiO2-based) 

is nonlinear and asymmetric on transitions from one state to another [14, 15]. The ON 

switching (logic 0 to logic 1) is significantly faster than the OFF switching (logic 1 to logic 

0). The ON switching is abrupt because the drift and diffusion of the oxygen vacancies 

have different directions for positive and negative voltages [14]. 

Figure 2.1 shows the conductivity and resistivity transition behavior of a memristor 

for w1 and w0 operations using the Voltage-controlled ThrEshold Adaptive Memristor 
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(VTEAM) model [15]. Manufactured bipolar metal-oxide memristors exhibit stochastic 

behavior during write operations [16]. In particular, when applying a pulse w1 to the 

memristor, the device does not switch immediately, and waits for a time period 𝑡𝑤𝑎𝑖𝑡1. In 

[36], the difference between the application time of the write pulse in the normal mode of 

operation and the time that the device starts to switch is called the wait (switching) time. 

As shown in Figure 2.1 (b), the current does not change during the wait time 𝑡𝑤𝑎𝑖𝑡1 and is 

considered to be zero [36]. On the other hand, when applying a w0 pulse, the current is 

initially high and does not change during the wait time 𝑡𝑤𝑎𝑖𝑡0. (See also Figure 2.1 (a).) 

Times 𝑡𝑤𝑎𝑖𝑡1 and 𝑡𝑤𝑎𝑖𝑡0 may differ. Experimental results in [6, 16, 17, 30, 37, 38] on 

manufactured bipolar metal-oxide memristors show that the wait time varies from cycle-

to-cycle. Its behavior is stochastic, and has been modeled by a Poisson distribution. This 

is due to the stochastic nature of the filament formation [16, 17]. It has been observed 

that the wait time is always less than the transition time [30, 39]. This is also shown in 

Figure 2.1. 

The wait time strongly depends on the magnitude of the applied voltage, and 

decreases to at most 10% of the transition time when the when the applied voltage 

increases by 1-2 V [17, 36, 37, 40, 41]. For this reason, the proposed March tests use 

3.3V for write operations instead of 1.2V that is used in the normal mode of operation. 

A read in the normal mode of operation consists of two different stages: The first 

stage extracts the memristance value and determines the logic state. For this task, it is 

necessary to apply a stable pulse across the memristor (𝑉𝑟𝑒𝑎𝑑). The sensed current 𝐼𝑚𝑒𝑚 

through the memristor depends on the memristance value. 
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The reference current in state 0 is denoted by 𝐼𝑟𝑒𝑓0, and the 𝐼𝑟𝑒𝑓1denotes the 

reference current in logic sate 1. Let 𝐼𝑟𝑒𝑓 be (𝐼𝑟𝑒𝑓0 + 𝐼𝑟𝑒𝑓1)/2. The logic state is determined 

using a sense amplifier (implemented in CMOS technology) that compares the sensed 

current 𝐼𝑚𝑒𝑚 with the reference current 𝐼𝑟𝑒𝑓 of an ideal device. The duration of the first 

stage mostly depends on the CMOS sensing circuitry, and the duration of 𝑉𝑟𝑒𝑎𝑑 must be 

long enough so that the sense amplifier can sense the current through the examined cell. 

The first stage may change the data stored in the memory cell. However, for the 

data to remain intact, an inverse pulse must be applied as the second stage (also called 

recovery scheme) of the read operation [3, 11]. This stage is a short write operation whose 

duration depends mainly on the memristor. The total duration of normal read operation is 

 

    (a) The w0 operation.              (b) The w1 operation.          

Figure 2.1.  Resistivity and current behavior for writes in the normal 

mode of operation for a bipolar metal-oxide memristor with 

𝑅𝑂𝑁=100Ω, 𝑅𝑂𝐹𝐹=100KΩ, 𝑉𝑤𝑟𝑖𝑡𝑒 = 1.2𝑉, 𝑉𝑟𝑒𝑎𝑑 = 0.8𝑉, using [15, 35]. 
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sum of the duration of the two stages. The amplitude of 𝑉𝑟𝑒𝑎𝑑 is 0.8V in the normal as well 

as the test mode. It is always lower than the write voltage to minimize the above-

mentioned destructive effect of the read operation [6]. However, March tests use writes 

after reads, and therefore the second stage of read operation is not needed when testing. 

Figure 2.2 shows the transition behavior of a memristor for all four operations (w0, 

w1, r0, and r1) during test using the VTEAM model in [15], with the parameter values in 

[35], and 𝑉𝑤𝑟𝑖𝑡𝑒=3.3V in a memristor with 𝑅𝑂𝑁=100Ω and 𝑅𝑂𝐹𝐹=100KΩ. The value of 0 is 

stored within 255ns whereas the value of 1 is stored within 59ns. These are the minimum 

required access times during w0 and w1. A single clock is used, and hence the access 

time is dominated by w0. A complete read operation requires 33.5ns.  

2.2.2 Memristor-based crossbar memory 

The crossbar memory consists of two perpendicular sets of wires. There is one 

memristor at the intersection of each vertical and horizontal lines which are called column 

and row, respectively. As shown in Figure 2.3, in order to limit the number of sneak paths, 

  

Figure 2.2.  Resistivity behavior for all four operations (w0, w1, r0, 

and r1) during test for a bipolar metal-oxide memristor with 

𝑅𝑂𝑁=100Ω, 𝑅𝑂𝐹𝐹=100KΩ, 𝑉𝑤𝑟𝑖𝑡𝑒 = 3.3𝑉, 𝑉𝑟𝑒𝑎𝑑 = 0.8𝑉, using [15, 35]. 
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the larger array is divided into smaller regions, called tiles, which are isolated by 

transistors. 

The crossbar architecture provides inherent parallelism for read and write 

operations on cells in different tiles for the normal mode of operation. Parallel reads and 

writes can be implemented using the row decoder, and the row and column pulse 

 

Figure 2.3.  Hybrid crossbar architecture using the combination of 

memristor and isolating transistor [3, 28].  

 

  



 

12 
 

generators. (See also [28].)  

Read operation requires a sense amplifier which compares the output current to a 

predetermined threshold. Figure 2.3 illustrates how to test a memristor using a sense 

amplifier. The threshold is adjusted by the reference current 𝐼𝑟𝑒𝑓. The read voltage across 

the memristor and 𝑅𝑆 results into memristor current 𝐼𝑚𝑒𝑚 during the read operation, and 

𝐼𝑚𝑒𝑚 is compared to 𝐼𝑟𝑒𝑓 and is compared to the current through the threshold resistor 𝑅𝑇 

[3, 25, 28]. If 𝐼𝑚𝑒𝑚 is greater than 𝐼𝑟𝑒𝑓 the output shows logic 1. Inversely, any current less 

than 𝐼𝑟𝑒𝑓 changes the output to logic 0.  

As mentioned earlier, this chapter focuses on the testing mode of operation. In 

order to benefit from the crossbar architecture, appropriate enhancements must be made. 

Such DfT enhancements are described in Section 2.4.  

2.2.3 Intrinsic and extrinsic faults 

Nano scale devices are prone to defects due to design marginalities, imperfection 

in fabrication process, and process variation [24]. Some defects impact the logical 

behavior of resistive memory cells. Others impact the temporal behavior. Fault models 

have been defined to handle all types of defects. The following list existing fault models 

for memristor-based memory. Defects that impact the behavior of a memristor are 

modeled by faults which are called intrinsic [42]. However, there are defects that occur 

either between different memristors or in CMOS components that surround the memory 

cells. Such defects are modeled by faults which are called extrinsic [42]. A precise 

analysis for fault models and efficient DfT is required to keep the test time and cost low.  

Intrinsic faults (also called self-faults) occur due to parametric variations of the 

memristor [18]. Variation in size (the ratio of length over area) and doping density may 
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impact the logic and temporal behavioral of the device. Size and doping variations have 

been modeled by changing the physical parameters of the device such as 𝑅𝑜𝑛, 𝑅𝑜𝑓𝑓, and 

the mobility of the charge [22]. For example, a variation in length causes a change in 𝑅𝑜𝑛, 

𝑅𝑜𝑓𝑓. The change in resistivity, denoted by 𝛥𝑅, is 𝜌( 𝛥𝐿/ 𝐴). A variation on the area impacts 

𝛥𝑅 as 𝜌[ (𝐿 ∙ 𝛥𝐴)/𝐴(𝐴 − 𝛥𝐴)]. A variation in doping affects the mobility of the charge 

carriers. This changes the rate of the transitions. 

Figure 2.4 (a) shows the effect of -10%, -5%, 5% and 10% variation in doping. It 

can be seen that it affects the slope of the transition and therefore the transition time. The 

higher the doping, the faster the rate is, and the transition accelerates. Figure 2.4 (b) 

shows the impact of -10%, -5%, 5% and 10% size variation using the model in [15]. As 

the size increases, 𝑅𝑂𝐹𝐹 increases, and therefore the transition time is increased. 

The works in [11, 13, 18, 20, 24, 25, 43] consider different intrinsic fault models. 

They include the stuck-at fault (SAF), slow write fault (SWF), and deep state fault models. 

These fault models cover the range of size and doping variations as well as other types 

of defects such as open and shorts that may be caused by missing metal or extra metal. 

They are summarized in the following. 

Single Stuck-at faults: When the memristor is undoped or fully doped, there is no 

transition in the memristance value. Undoped memristors are modeled as single stuck-

at-0 (SA0) faults and fully doped memristors are modeled as single stuck-at-1 (SA1) faults 

[11, 19]. A single stuck-at fault corresponds to a fixed logic (0 or 1) at a single storing 

element in the memory. A SA0 is defined by <1/0>; where 0 is the unintended output 

while logic 1 is the fault-free output after a w1 operation. Similarly, a SA1 is defined by 

<0/1>; where 1 is the unintended output while logic 0 is the fault-free output after a w0 
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operation. The necessary condition for a test to detect all stuck-at faults requires that a 0 

and a 1 must be read from each cell [11]. 

An open is an unintended defect due to imperfection in lithography and pattern 

process, missing materials, broken nanowires, and parameter fluctuation of CMOS-based 

devices [26]. Opens increase the resistivity of the affected rows or columns, and hence 

prevent writing the appropriate value inside the memristor. These defects are modeled by 

single stuck-at faults in memristors [19]. An open in a column may affect read and write 

operations to the cells along the column. Also an open in a row causes all cells after the 

 

(a) 

     

 (b) 

Figure 2.4.  The effect of 5% and 10% variation on (a) doping concentration, 

and (b) the ratio of length over area. Results were obtained using [15] with 

𝑅𝑂𝑁=100Ω and 𝑅𝑂𝐹𝐹=100KΩ, 𝑉𝑤𝑟𝑖𝑡𝑒 = 1.2𝑉. 
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fault location to be inaccessible. These defects are also modeled by single stuck-at fault 

in memristors [19]. Note that the stuck-at fault model has been also proposed for 

conventional CMOS-based memory [13]. 

Slow write faults: A small decrease in dopant density (also called under-doping), 

is modeled as a slow write fault (SWF). During the write operation, the transition from one 

state to another is much slower than the expected behavior of memristor. Slow write 0 

(SW0) is denoted in [24] by <1W0/X1>. X1 denotes the final state which can be either 

undefined (X) or 1. If the final state is 1 then the slow write fault is equivalent to the slow 

transition fault to state 0, also denoted as TF0. If the final state is X the slow write fault is 

also called the undefined state fault to state 0, also denoted as USF0 [24]. Similarly, the 

faults slow write 1 (SW1) denoted by <0W1/X0>, models dopant–related defects that 

impact the memristor’s behavior when the final state is 1. They can be either TF1 or USF1. 

A test that sensitizes and detects all slow write faults must have the following 

necessary condition [11]: Each cell must undergo a rise transition and a fall transition, 

and be read after each, before undergoing any further transitions. For example, SW1 is 

sensitized by the w0 operation, followed by a w1 operation. A subsequent r1 operation 

will detect the fault. 

Deep faults: Deep faults were introduced in [18] to model transitions that were 

believed to be slower than those modeled by slow write faults, occurring when many write 

operations precede a read. Simulations were presented that used a linear and symmetric 

I-V relation [3]. However, these faults are non-applicable to metal-oxide memristors 

whose behavior is nonlinear and asymmetric. Extensive experiments on different sizes 

with the accurate model in [15] were conducted. The results revealed that the transition 
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time from 0 to 1 and 1 to 0 were not impacted by the number of write operations prior to 

a read. As an example, Figure 2.5 (a) shows the transition time from 0 to 1 for the w0, 

w0, w1, r1 sequence, and Figure 2.5 (b) shows the transition time from 1 to 0 for w1, w1, 

w0, r0. We observe strong similarity in the transitions shown in Figure 2.2 and Figure 2.5 

(a). Likewise, the transition from 1 to 0 in Figure 2.2 and Figure 2.5 (b) are very similar. 

Therefore, tests for metal-oxide memristor defects should not consider deep faults, and 

only consider the slow write fault model. 

 

(a) 

 

(b) 

Figure 2.5. (a) The transition time from 0 to 1 for the w0, w0, w1, r1 

sequence and (b) the transition time from 1 to 0 for w1, w1, w0, r0 

sequence. 𝑅𝑂𝑁=100Ω and 𝑅𝑂𝐹𝐹=100KΩ, 𝑉𝑤𝑟𝑖𝑡𝑒 = ±1.2𝑉, 𝑉𝑟𝑒𝑎𝑑 =

±0.8𝑉. 

 



 

17 
 

Extrinsic faults occur due to defects in crossbar structure [19], address decoding 

error [13], imperfection in lithography, missing materials, broken nanowires [24] rather 

than the parametric variation in the memristor. This chapter considers shorted 

rows/columns (SRC) coupling fault as extrinsic faults.  

Coupling fault: Coupling fault (CF) arises due to defects in crossbar structure rather 

than the parametric variation in the memristor [19]. A coupling fault (CF) means that a 

transition in memory cell 𝑗 causes an unwanted change in memory cell 𝑖. A resistive short 

between adjacent rows or columns or between a row and a column is modeled as a SRC 

coupling fault [19]. A transition in aggressor cell results into the same transition in the 

victim cell which is horizontally or vertically adjacent to the aggressor cell. 

Let 𝑥 denote either value 0 or value 1. Let 𝑥̅ denote the complement value of 𝑥. A 

SRC fault is defined by < 𝑥w1;0/1/-> or < 𝑥w0;1/0/->. The necessary condition for a test 

to detect all SRC faults is: The test must read 𝑥 from cell 0, write 𝑥̅ to cell 0, read 𝑥 from 

cell 1, write 𝑥̅ to cell 1, for the entire memory. 

Notice that the above fault models are also adopted to conventional CMOS-based 

memory testing because defects also impact logical as well as temporal behavior. 

 

2.3 The proposed test methods 

2.3.1 March tests 

The test operation w0 is significantly slower than the w1, r1 and r0 [28]. Thus, the 

time performance of the existing March test is dominated by the w0 operation. The main 

objective of the proposed March tests is to reduce the time duration of the w0 operation. 

The test time is decreased by defining a new write operation 𝑓𝑤0 that substitutes the w0 
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operation. As mentioned in Section 2.1, tests are done in elevated voltage 3.3V. 

In defect free memory, the size of all memristors does not vary significantly 

because the amount of intra-chip variations typically does not exceed 10% [21, 22]. Let 

us denote the size of a memristor (length over area) as L/A. Since the geometrical 

variation induced by lithography process variations vary in the same way all over the chip, 

the average amount of variation in L/A can be determined by choosing randomly some 

cells and checking the upper bound in the resistance value. A March test that writes 0 

and reads 0 at each cell will determine the smallest L/A among all cells.  

In contrast to the normal mode of operation, during test the r0 and r1 operations 

use different reference currents which we call 𝐼𝑟𝑒𝑓0 and 𝐼𝑟𝑒𝑓1, respectively. Their values 

depend on the logic state boundaries. As in [18-21], it is assumed that such currents have 

been determined. We note that 𝐼𝑟𝑒𝑓1 > 𝐼𝑟𝑒𝑓 and 𝐼𝑟𝑒𝑓0 < 𝐼𝑟𝑒𝑓. Let the respective resistive 

values be denoted as 𝑅𝑟𝑒𝑓0 and 𝑅𝑟𝑒𝑓1. The resistive region between 𝑅𝑟𝑒𝑓0 and 𝑅𝑟𝑒𝑓1 is 

called the undefined region. (See also Figure 2.6) Testing considers the undefined region, 

as we mentioned earlier in the slow write fault model. 

In analysis of a resistive cell, both size and doping parameters have been 

considered. The worst-case scenario occurs when the length increases while the area 

and doping concentration decreases. Doping variation affects only the rate of transition, 

and variation in L/A changes 𝑅𝑂𝐹𝐹 whereas 𝑅𝑂𝑁 is practically invariant. (See also Figure 

2.4) So the resistance of the cell in state 1 is practically invariant. A negative voltage 

(operation w0) across the memristor in state 1 may increase the memristance, and forces 

it to move out of state 1. Once this happens, the voltage is not further applied and a read 

operation detects whether the read resistivity has exceeded 𝑅𝑟𝑒𝑓1. 
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Let T𝑓𝑤0 denote the time for 𝑓𝑤0. T𝑓𝑤0 must be long enough to move the cell out 

of state 1. Therefore, it should be longer than the sum of the 𝑡𝑤𝑎𝑖𝑡0 and the time required 

to change the resistivity from 𝑅𝑂𝑁 to the boundary of state 1. (See also Figure 2.6) 

The following presents March tests for different fault models. We assume that 𝑇𝑤1 

is as high as 𝑇𝑓𝑤0 (in practice it is less), and that 𝑇𝑟0 = 𝑇𝑟1 (which is always the case). 

That way, we need only two different access times: 𝑇𝑟 for read operations and 𝑇𝑤 ≈ 2𝑇𝑟 

for write operations. The access time for w0 operation is the same as in normal mode of 

operation. All results are generated using the same write voltage to ensure a fair 

comparison between the proposed and existing tests. 

Table 2.1 lists notations that will be used throughout this section. Notation || 

indicates parallel addressing of the cells in a tile. This operation is used to initialize all 

cells in a row to either 1 or 0. The driving current suffices as the number of cells per row 

is limited. 

Stuck-at Fault: The Existing March test for Stuck-At Fault (EMSAF) in equation 

(2.1) detects all stuck-at faults [11]:  

 

Figure 2.6.  The undefined state for a memristor cell, and the value 

of 𝑇𝑓𝑤0 considering 10% doping variation. The memristor also suffers 

from 10% increment in size (L/A). 
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EMSAF: {⇕ (w1) ; ⇕ (r1) ; ⇕ (w0) ; ⇕ (r0)}                             (2.1) 

The test time is 2𝑛(𝑇𝑤0 + 𝑇𝑟), where 𝑛 denotes the number of memory cells. 

The proposed March test does not apply w0. To detect SA1, we apply a 𝑓𝑤0 in 

order to change the current state of the cell from 1 to a predetermined intermediate 

resistivity 𝑅𝑟𝑒𝑓1. Unlike the existing EMSAF, all cells are initialized to 1 by applying a 

parallel write operation for all cells in an entire row. A fast write 𝑓𝑤0 from 1 to 0 followed 

by a read operation results in a resistivity value greater than 𝑅𝑟𝑒𝑓1. A read operation after 

𝑓𝑤0 will detect if there is slow transition from 1 to 0. 

In summary, we test for SA1 with March { ⇕ (𝑓𝑤0, 𝑟𝑟𝑒𝑓1)}. The operations (𝑓𝑤0, 

𝑟𝑟𝑒𝑓1) determine whether the cell is moved out of state 1. The reference current 𝐼𝑟𝑒𝑓1 is the 

expected output current of the sense amplifier for resistivity value of 𝑅𝑟𝑒𝑓1. If there is a 

fault in the examined cell, the output current will be more than 𝐼𝑟𝑒𝑓1 and the sense amplifier 

will show logic 1. 

The proposed March test for all SA0 and SA1 is called Fast March test for Stuck-

At Fault (FMSAF): 

Table 2.1.  Notation for the March Tests. 

Symbol Operation 

r A read operation 

w A write operation 

r0 (r1) Read a 0 (1) from the memory location 

w0 (w1) Write a 0 (1)  to the memory location 

⇕ Addressing order can be either increasing or decreasing 

|| parallel addressing of all cells in an entire row in a tile 

𝑓𝑤0 
Write a 0 to the memory location and quickly stop this operation 
after the initial resistivity changes, and the device conducts current. 

𝑟𝑟𝑒𝑓1 Read operation with reference current 𝐼𝑟𝑒𝑓1. 

𝑟𝑟𝑒𝑓0 Read operation with reference current 𝐼𝑟𝑒𝑓0. 
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FMSAF: { ∥ (w1)};{ ⇕ (r1) ; ⇕ (𝑓𝑤0, 𝑟𝑟𝑒𝑓1)}                                (2.2) 

The test time for the proposed FMSAF in an 8×8 tile is (9𝑛 ∕ 8)𝑇𝑤 + 2𝑛𝑇𝑟. Open 

defects behave like SA0 and shorts to 𝑉𝑑𝑑 behave like SA1 [20]. Hence, the proposed 

FMSAF can also detect open and short defects. 

Transition Fault: The Existing March test for Transition Fault (EMTF) in equation 

(2.3) detects all transition faults [18]: 

EMTF: { ⇕ (w0, w1) ; ⇕ (r1) ; ⇕ (w0, r0)}                                 (2.3) 

EMTF uses 3𝑛 writes followed by 2𝑛 reads in a memory with 𝑛 cells. The test time 

is 𝑛(3𝑇𝑤0 + 2𝑇𝑟). 

The proposed March test to detect TF0 is {||(w1)};{⇕(fw0, 𝑟𝑟𝑒𝑓1)}. All cells must be 

initialized to 1 by applying a parallel write operation in all rows. TF0 is sensitized by 

applying a 𝑓𝑤0 in order to change the state from 1 to resistive value 𝑅𝑟𝑒𝑓1. One 𝑟𝑟𝑒𝑓1 per 

cell will detect this fault since it tests whether the cell is fast enough to move from one 

state to another state. For an ideal cell, the output current of sense amplifier is expected 

to be less than 𝐼𝑟𝑒𝑓1. However, for a faulty cell, the memristance value is not in the 

expected range, and the output current is more than 𝐼𝑟𝑒𝑓1. Hence, the sense amplifier 

shows logic 1. The proposed March test for all TF0 and TF1 is called the Fast March test 

for Transition Fault (FMTF):  

FMTF: { ∥ (w0, w1)};{ ⇕ (r1) ; ⇕ (𝑓𝑤0, 𝑟𝑟𝑒𝑓1)}                              (2.4) 

The test time for the proposed FMTF in an 8×8 tile is (𝑛 8⁄ )(𝑇𝑤0 + 9𝑇𝑤) + 2𝑇𝑟. 

Shorted Rows/Columns: The Existing March test for Shorted Rows/Columns 

(EMSRC) detect all SRC faults that propagate to a higher or lower address memory [19]: 

EMSRC: {⇕(w1); ⇑(r1,w0); ⇓(r0,w1); ⇕(w0); ⇑(r0,w1); ⇓(r1,w0)}                (2.5) 
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EMSRC uses 6𝑛 writes followed by 4𝑛 reads in a memory with 𝑛 cells. The total 

test time is 𝑛(6𝑇𝑤0 + 4𝑇𝑟). EMSRC detects SRC faults by reading the value 1 (0) from cell 

𝑖, writing 0 (1) to cell 𝑖 and for the entire memory with higher (lower) address location. It 

tests whether a write operation to cell 𝑖 changes the state of cell 𝑗. 

The proposed March test for all SRC faults that propagate to a higher or lower 

address is called Fast March test for Shorted Rows/Columns (FMSRC). It is similar to 

EMSRC except that w0 is substituted by 𝑓𝑤0: 

FMSRC:    {∥(w1)};{⇑(r1,𝑓𝑤0);⇓(𝑟𝑟𝑒𝑓1,w1)};{∥(w0)};{⇑(r0, w1);⇓(r1,𝑓𝑤0)}       (2.6) 

The test time is (𝑛 8⁄ )(𝑇𝑤0 + 33𝑇𝑤) + 4𝑇𝑟. Current 𝐼𝑟𝑒𝑓1 that corresponds to 

resistivity 𝑟𝑟𝑒𝑓1 distinguishes state 1 from resistivity 𝑅𝑟𝑒𝑓1.  

The Existing March Test (EMT) in [19, 20, 22] detects all intrinsic and extrinsic 

faults:  

EMT:   {M0:⇕(w0); M1:⇑(r0,w1,r1); M2:⇓(r1,w0,r0) 

M3:⇕(w1); M4:⇑(r1,w0); M5:⇓(r0,w1);}                       (2.7) 

The following explains how EMT sensitizes and detects the various faults. Faults 

SA1 are sensitized and detected by M2. Faults SA0 are sensitized and detected by M1. 

Faults TF1 are sensitized by M0 and the write operation w1 of M1, and are detected by 

the read operation r1 of M1. Faults TF0 are sensitized by the w1 of M1 and the w0 of M2, 

and are detected by the r0 of M2. The SRC faults that propagate to a higher memory 

address are sensitized and detected by M1 and M4, and the SRC faults that propagate 

to a lower memory address are sensitized and detected by M2 and M5. Observe that the 

EMT is dominated by the w0 operations.  

The proposed March test to detect all SAFs, TFs, and SRCs is called the Fast 
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March Test (FMT):  

FMT:      { ∥ (w0)};{ ⇑ (r0, w1, r1); ⇓ (r1, 𝑓𝑤0, 𝑟𝑟𝑒𝑓1)}; 

   { ∥ (w1)};{ ⇓ (r1, 𝑓𝑤0); ⇑ (𝑟𝑟𝑒𝑓1, w1)}                       (2.8) 

This test is much faster than the EMT. The total test time is (𝑛 8⁄ )(𝑇𝑤0 + 33𝑇𝑤) +

6𝑇𝑟.  

The March test of equation (2.8) has a 𝑤𝑥 followed by ⇑ (𝑟𝑥,… ,𝑤𝑥̅) and ⇓

(𝑟𝑥̅, … ,𝑤𝑥) conditions, and thus also detects all address decoder faults (AFs) [13]. An 

address decoder fault (AF) occurs in any of the following scenarios: Multiple cells are 

accessed by a certain address, no cell is accessed by a certain address, a certain cell is 

not accessed by any address or a certain cell is accessed by multiple addresses [13].  

Undefined State Fault: The proposed FMT can also detect USF1 which is 

explained in [25, 26]. USFs have emerged due to the analog nature of the memristor 

device. Traditional March tests such as the EMT in equation (2.7) cannot guarantee the 

detection of such a fault [26]. A normal w1 operation will put the faulty cell into the 

undefined state X instead of state 1. A weak stress 𝑓𝑤0𝑙 (such as 𝑓𝑤0 with less duration) 

will change the state to 0. However, the time duration of 𝑓𝑤0𝑙 is not enough to flip the 

state of a fault-free cell from 1 to 0. A read operation immediately after 𝑓𝑤0𝑙 will detect 

the USF1. The reference current should be set according to the upper bound of the 

undefined region. (See also Figure 2.7 (a).) Any 𝐼𝑚𝑒𝑚 less than the 𝐼𝑟𝑒𝑓0 results in 

detecting a USF1 in the cell. The proposed March test to detect all USF1s is called the 

Fast March test for Undefined State Fault 1 (FMUSF1):  

FMUSF1: { ∥ (w0)};{ ⇕ (w1, 𝑓𝑤0𝑙, 𝑟𝑟𝑒𝑓0)}                                  (2.9) 

Changing 0 to 1 in FMUSF1 does not result to a robust test for USF0 since 𝑓𝑤1 is 
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not a robust operation. The following presents a test for USF0 that uses another fast write 

operation 𝑓𝑤0ℎ with more duration when compared to 𝑓𝑤0. Its time duration should be 

enough to set the cell in the upper boundary of undefined region. (See also Figure 2.7 

(b).) The proposed March test to detect all USF0s is called the Fast March test for 

Undefined State Fault 0 (FMUSF0):  

FMUSF0: { ∥ (w0)};{ ⇕ (𝑓𝑤0ℎ, 𝑓𝑤0, 𝑟𝑟𝑒𝑓0)}                                (2.10) 

2.3.2 Experimental evaluation 

Let 𝑇𝑟1, 𝑇𝑤1, 𝑇𝑟0, 𝑇𝑤0 denote the times for r1, w1, r0, w0, respectively. Table 2.2 

compares 𝑇𝑓𝑤0 with 𝑇𝑟1, 𝑇𝑤1, 𝑇𝑟0, and 𝑇𝑤0. These times were obtained with SPICE 

simulation using [15] under different size and doping variations for the metal-oxide 

memristor. Simulations were done using 45nm CMOS technology with 𝑅𝑂𝑁 =100Ω, 

 

(a) 

 

(b) 

Figure 2.7.  Simulation results for the fault free and faulty cell with 

(a) USF1 and (b) USF0. 
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𝑅𝑂𝐹𝐹 =100KΩ, 𝑅𝑟𝑒𝑓1 =40KΩ, 𝑅𝑟𝑒𝑓0 =60KΩ, 𝑉𝑤𝑟𝑖𝑡𝑒 = ±3.3V, 𝑉𝑟𝑒𝑎𝑑 =0.8V, and the 

temperature was set to 27°C. All memristor parameters were set as in [35]. SPICE 

simulation revealed that 𝐼𝑟𝑒𝑓1 = 82µA and 𝐼𝑟𝑒𝑓0 = 55µA. 

Table 2.2 shows the impact of doping and size (L/A) variations. The first row 

represents the nominal condition without variation. The second row represents the 

instance when L/A increased by 1% and doping decreased by 1%. The last row 

represents the worst case instance which corresponds to a 10% increase in L/A with a 

10% decrease in doping. Columns two to five show the values of 𝑇𝑟1, 𝑇𝑤1, 𝑇𝑟0, and 𝑇𝑤0 

for the listed instances when the wait time is maximized and equal to 10% of the transition 

time. Observe that 𝑇𝑤0 is always very high compared to 𝑇𝑓𝑤0. Also observe that 𝑇𝑓𝑤0, 𝑇𝑤1, 

𝑇𝑟1, and 𝑇𝑟0 are always in the same order. Similar characteristics are observed for 

different values of 𝑅𝑂𝐹𝐹 ∕ 𝑅𝑂𝑁. All read operations are reported at 0.8V. Observed that 𝑇𝑟1 

and 𝑇𝑟0 are very fast because the second pulse that nullifies the read disturbance is not 

needed during the test.  

The following simplifies test operation times by assuming that 𝑇𝑤0 is approximately 

Table 2.2.  Time Duration (in 𝑛𝑠) of 𝑤1, 𝑟1, 𝑤0, 𝑟0, 𝑓𝑤0 for Different 45𝑛𝑚 

Instances when Size Increases and Doping Decreases. 𝑅𝑂𝑁 =100Ω, 

𝑅𝑂𝐹𝐹 =100KΩ, 𝑅𝑟𝑒𝑓1 =40KΩ, 𝑅𝑟𝑒𝑓0 =60KΩ,  𝑉𝑤𝑟𝑖𝑡𝑒 = ±3.3V, 𝑉𝑟𝑒𝑎𝑑 =0.8V. 

Variation 𝑇𝑟1 𝑇𝑤1 𝑇𝑟0 𝑇𝑤0 𝑇𝑓𝑤0 

0% 33.5 59.0 33.5 255 61.7 

1% 34.3 61.3 34.3 262 64.1 

2% 35.2 63.2 35.2 269 66.7 

5% 36.5 68.0 36.5 280 73.0 

10% 38.4 71.9 38.4 288 77.4 
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7.5 times slower than any read operation, and that 𝑇𝑤1 is approximately two times slower 

than any read operation. See also Table 2.2. 

Based on the above assumptions, in a memory with 𝑛 cells using 8×8 tiles, the test 

time of EMSAF is 19𝑛𝑇𝑟 whereas the time of the proposed FMSAF is 4.25𝑛𝑇𝑟. This is 

almost a 4.5X speed-up over EMSAF. The test time of EMTF is 24.5𝑛𝑇𝑟 but the test time 

of the proposed FMTF is 5.18𝑛𝑇𝑟. This is almost a 5X speed-up over EMTF. Furthermore, 

the EMSRC detects SRCs in 49𝑛𝑇𝑟 time while the test time for FMSRC is 13.18𝑛𝑇𝑟. This 

is a 4X speed-up over EMSRC. (See also Table 2.4.) 

Table 2.3 shows the average energy per operation in a random cell during test. 

Observe that 𝑓𝑤0 requires significantly less energy when compared to w0. 

Table 2.4 summarizes and compares the proposed FMT March test to the EMT. 

Table 2.3.  Average Energy Needed for 𝑤1, 𝑟1, 𝑤0, 𝑟0, and 𝑓𝑤0 in a 

Random Cell Using 45 𝑛𝑚 CMOS Technology with 𝑅𝑂𝑁 =100Ω, 

𝑅𝑂𝐹𝐹 =100KΩ, 𝑉𝑤𝑟𝑖𝑡𝑒 = ±3.3V, and 𝑉𝑟𝑒𝑎𝑑 =0.8V. 

Operation 𝑤0 𝑟0 𝑤1 𝑟1 𝑓𝑤0 

Energy (pJ/cell) 29.07 0.23 3.74 0.23 3.98 

 

Table 2.4. Time and Average Energy of Existing and Proposed March Tests Using 

45𝑛𝑚 CMOS Technology with 𝑅𝑟𝑒𝑓1 = 0.4𝑅𝑜𝑓𝑓, 𝑅𝑟𝑒𝑓0 = 0.6𝑅𝑜𝑓𝑓, 𝑉𝑤𝑟𝑖𝑡𝑒 = ±3.3V, 

𝑉𝑟𝑒𝑎𝑑 =0.8V. 

Existing March Test Proposed Fast March Test 
% improvement in test time 

using tile (8×8) 
% improvement in 

average test energy per 

cell Name 
Test Time 

(n cells) 
Energy per 

cell (PJ) 
Name 

Test Time 
(n cells) 

Energy per 
cell (PJ) 

𝑅𝑂𝑁=100Ω 

𝑅𝑂𝐹𝐹=100kΩ 

𝑅𝑂𝑁=100Ω 

𝑅𝑂𝐹𝐹 =150kΩ 

EMSAF 19𝑛𝑇𝑟 33.25 FMSAF 4.25𝑛𝑇𝑟 8.18 77.6 79.0 75 

EMTF 24.5𝑛𝑇𝑟 61.7 FMTF 5.18𝑛𝑇𝑟 36.4 78.8 80.5 41 

EMSRC 49𝑛𝑇𝑟 98.1 FMSRC 13.18𝑛𝑇𝑟 49.3 73.5 74.4 50 

EMT 51𝑛𝑇𝑟 99.3 FMT 15.18𝑛𝑇𝑟 50.2 70.1 71.3 49 
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Column 7 shows the improvement of the test time with 𝑅𝑂𝑁 = 100Ω and 𝑅𝑂𝐹𝐹 = 100KΩ. 

Similar results with 𝑅𝑂𝑁 = 100Ω and 𝑅𝑂𝐹𝐹 = 150KΩ are given in Column 8. An 70% 

improvement in test application time is observed. Columns 6 and 7 list the time of the 

existing March tests minus the time of the proposed fast March tests over the time of the 

existing March tests. The last column also lists the average energy improvement to test 

a memory cell. The average test energy per cell is reduced at least by 40%. 

2.3.3 More reliable March tests considering sneak paths 

This section introduces March tests for testing the crossbar architecture of Figure 

2.3 in the presence of sneak paths. The sneak path error may occur during a r0 operation 

from a cell at logic 0 when there is also a parallel path that has several cells at logic 1. 

Let M𝑖,𝑗 be the memristor in row 𝑖 and column 𝑗. The proposed fast write operation 𝑓𝑤0 is 

applied to reduce the test time of existing sneak path March tests. We use the analysis in 

[44-46] to determine the number of cells in the RoD.  

Figure 2.8 shows a sneak path with ordered cells M1,4, M3,4 and M3,2, it is labeled 

as Path 2. Assume an r0 for cell M1,2 in logic 0, and let M1,4, M3,4 and M3,2 be in logic 1. 

Instead of the current relating to Path 1 through M1,2, the output current 𝐼𝑜𝑢𝑡𝑝𝑢𝑡 is the sum 

of the current of Path 1 through M1,2 and the current of Path 2 through M1,4, M3,4 and M3,2. 

Therefore, 𝐼𝑜𝑢𝑡𝑝𝑢𝑡 erroneously determines logic 1 in cell M1,2. This section presents 

reliable tests that avoid this side-effect. 

To avoid sneak paths during test, [45] proposed to ground all rows expect the one 

being read. However, this technique is power consuming due to lower equivalent 

resistance that affects the measured current. Instead, this paper uses the symmetric and 

asymmetric grounding techniques proposed in [44] which are more efficient. 



 

28 
 

An array A is a sneak-path-free array if and only if the “1”s in every two rows have 

either full-overlap or no-overlap [44]. The proposed method uses the above-mentioned 

conditions. 

Let 𝑏 be an integer. The proposed method grounds all rows except: The examined 

row 𝑖, 𝑏 rows above the row 𝑖, and 𝑏 rows below the row 𝑖. This operation controls the 

power consumption due to reduced grounding, and sneak paths are limited to the set of 

the 2𝑏 + 1 ungrounded rows which must be controlled during the test.  

During the r0 operation, all the cells in the set of ungrounded rows are initialized 

to logic 0 (high resistance) before applying r0 to any cells in row 𝑖. This reduces the effect 

of the bounded number of sneak paths in the set and decreases significantly the currents 

through the existing sneak paths. The RoD is the union of all cells in ungrounded rows. 

Therefore, the RoD for an 𝑛 × 𝑛 array contains 𝑛(2𝑏 + 1) cells. The reference currents in 

this algorithm are the same as the ones used for the March tests in equation (2.1) through 

equation (2.10).  

The following notation is used at the March tests of this section.  

↕𝑖,±𝑏: All cells in rows between (𝑖 − 𝑏) and (𝑖 + 𝑏) are accessed in either increasing 

 

Figure 2.8.  Sneak-path testing in a 4×4 high density crossbar 

memory. 



 

29 
 

or decreasing order. 

↓𝑖,±𝑏 (resp. ↑𝑖,±𝑏): All cells in rows between (𝑖 − 𝑏) and (𝑖 + 𝑏) are accessed  in 

decreasing (resp., increasing) order. 

↓𝑖,+𝑏 (resp. ↑𝑖,+𝑏): All cells in rows between 𝑖 and (𝑖 + 𝑏) are accessed in decreasing 

(resp., increasing) order. 

↓𝑖,−𝑏 (resp. ↑𝑖,−𝑏): All cells in rows between (𝑖 − 𝑏) and 𝑖 are accessed in decreasing 

(resp., increasing) order. 

↕𝑖: All cells in rows 𝑖 are accessed in either increasing or decreasing order.  

Stuck-at Fault: The proposed FMSAF in equation (2.5) is modified to reduce the 

effect of unwanted sneak paths during the test by grounding rows. The proposed test to 

detect all SA1 and SA0 is called the Fast Sneak Path Test for SAF (FSPTSAF):  

FSPTSAF: { ∥ (w1)};{⇕(r1)}; {↕𝑖,±𝑏(fw0);↕𝑖(𝑟𝑟𝑒𝑓1)}                          (2.11) 

The test time is the same as that of FMSAF. The value of 𝑏 controls the energy 

per cell. Table 2.5 shows that the energy per cell increases as 𝑏 decreases. FSPTSAF is 

sneak path free when 𝑏 = 0. 

Transition Fault: The proposed test to detect all TFs is called the Fast Sneak Path 

Test for TF (FSPTTF): 

FSPTTF:{ ∥ (w0,w1)};{⇕ (r1)}; {↕𝑖,±𝑏(fw0); ↕𝑖(𝑟𝑟𝑒𝑓1)}                        (2.12) 

Test time is the same as in FMTF. Table 2.5 shows a reduction in energy as 𝑏 

increases, and the test is sneak path free when 𝑏 = 0. 

Shorted Rows/Columns: The proposed Fast Sneak Path Test for SRC is called 

FSPTSRC: 

FSPTSRC:  {∥(w1)};{⇑(r1,fw0)};{↓𝑖,+𝑏(𝑟𝑟𝑒𝑓1,w1)};{⇓(r1, fw0)};{↑𝑖,−𝑏(𝑟𝑟𝑒𝑓1,w1)}    (2.13) 
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The test time is the same as in FMSRC. Table 2.5 shows that the energy per cell 

increases as 𝑏 decreases, and when 𝑏 = 0, the test is free sneak paths effects. 

The proposed test for all SAF, TF, SRC is called Fast Sneak Path Test (FSPT): 

FSPT:   {∥(w1)};{⇑(r1, 𝑓𝑤0); ↓𝑖,±𝑏(𝑟𝑟𝑒𝑓1); ↓𝑖,+𝑏(𝑟𝑟𝑒𝑓1,w1)} 

{∥(w0)};{↑𝑖,−𝑏(r0,w1); ⇓(r1, 𝑓𝑤0)}                   (2.14) 

Table 2.5 shows the benefits in energy as 𝑏 increases and when 𝑏 = 0, the test is 

free sneak paths effects. Similar observations hold when experimenting with different 

combinations of 𝑅𝑂𝐹𝐹 and 𝑅𝑂𝑁. 

 

2.4 DfT for the proposed tests 

Memristor operations either in normal mode or testing mode rely mainly on the 

duration of the access time on columns and rows. Every operation requires a specific 

access time [11, 25]. A programmable DfT scheme is presented in order to be able to 

assign different access times for the proposed test operations. 

Figure 2.9 depicts the proposed DfT to implement the FMT March tests in equation 

(2.8). The description assumes 45nm technology. The DfT circuit contains one timer to 

control the access time duration of the write operation called the W-Timer. At any time, 

one of the timers is selected. The timer is shown on the left part of Figure 2.9, and the 

Table 2.5. The Average Energy of the Pulse Applied to a Row and a Column in Order 

to Test One Cell Using Tile (8×8) for the Proposed Sneak-path March Tests. 

𝑏 FSPTSAF FSPTTF FSPTSRC FSPT FSPTSAF FSPTTF FSPTSRC FSPT 

0 12.3 43.0 54.9 55.3 12.7 44.3 57.1 58.0 

1 11.4 40.7 53.1 53.6 12.0 42.1 53.9 54.5 

2 8.9 39.1 52.1 52.1 9.3 40.1 53.2 53.2 
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associated selection hardware is shown above them. The timer supplies appropriate time 

duration to the row and column pulse generations. The DfT also consists of a reference 

current selection scheme and associated sense amplifiers. (See bottom of Figure 2.9.) 

Therefore, the write and read operations are mode dependent.  

The W-Timer sets two different access times for write: The normal mode write time 

which is set to max{𝑇𝑤1, 𝑇𝑤0} for w0 and w1 in normal mode operation, and a time 𝑇𝑤 

which is equal to 𝑇𝑤1 and 𝑇𝑓𝑤0. In the test mode, 𝑇𝑤0 is the same as in the normal mode. 

Test signal T can activate the appropriate access time by using two different 

transistors: M1 (PMOS) and M2 (NMOS). The timer activates the row and column pulse 

generators which can supply the voltage to the rows and columns, respectively. M1 and 

M2 switch between the normal mode and the test mode. When T is low, M1 is switched 

 

Figure 2.9.  Schematic of the proposed DfT. 
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on and the normal mode is activated. The output of the timer (𝑇𝑤𝑟𝑖𝑡𝑒) is activated for 

nominal access time 𝑇𝑤𝑟𝑖𝑡𝑒=𝑇𝑤0=288ns. On the contrary, when the T is high, M2 is 

switched on. This activates the fast write operation by supplying the pulse generator for 

𝑇𝑤𝑟𝑖𝑡𝑒=𝑇𝑤=77.4 ns. Time 𝑇𝑤0 is also used for w1 in test mode.  

During the read operation, the sense amplifier compares the 𝐼𝑚𝑒𝑚 with the 𝐼𝑟𝑒𝑓. 

The sense amplifier has three different reference currents. During the normal mode, 𝐼𝑟𝑒𝑓 

is set to (𝐼𝑟𝑒𝑓1 + 𝐼𝑟𝑒𝑓0)/2. During the test mode, 𝐼𝑟𝑒𝑓1=82µA and 𝐼𝑟𝑒𝑓0=55µA are used as 

reference currents.  

In order to calibrate the access times during testing, [24] and [26] proposed a 

programmable DfT with different access time settings. This circuit copes with the 

unexpected effect of process variations during post-silicon test. Therefore, the timer can 

be tuned during the test [26]. 

Figure 2.10 shows the programmable version of the proposed DfT of equation 

(2.8). Depending on the selection signals S[3:1], the decoder will set W-Timer to activate 

one of the time durations. The timer in turn activates the row and column pulse generators 

which can supply the voltage to the memristor-based array. The circuitry inside the dotted 

line can be enhanced with the peripheral circuitry in [19, 47] or the BIST architecture in 

[22] to accommodate in FSPT March test in equation (2.14) that considering sneak path 

effects. 

Figure 2.11 shows the proposed DfT for detecting USFs using FMUSF1 and 

FMUSF0 of Section 2.3.1. The W-Timer sets four different time durations for write 

operations: A write time which is set to max{𝑇𝑤1, 𝑇𝑤0} for w0 and w1 in the normal mode 

of operation, and three different times  𝑇𝑓𝑤0, 𝑇𝑓𝑤0𝑙, 𝑇𝑓𝑤0ℎ for the fast writes 𝑓𝑤0, 𝑓𝑤0𝑙, 
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𝑓𝑤0ℎ, respectively. Depending on the selection signals S0 and S1, the decoder will set 

the W-Timer to activate one of the time durations. During the test mode, the reference 

current 𝐼𝑟𝑒𝑓0 is set to 55µA.  

The total area overhead of the proposed DfT depends only on the number of 

columns in the two dimensional memory because the timer, the decoder, the column 

pulse generator (that implements parallel writes in a row), and the reference current 

multiplexer must access each column. These components are shown inside a dotted line 

in Figure 2.10 and Figure 2.11. The DfT overhead does not depend on the number of 

rows and the number of tiles. 

We implemented the proposed DfT in Cadence using 45nm CMOS technology. 

The timer was implemented by a 5-bit asynchronous counter which contains five J-K Flip-

 

Figure 2.10.  Schematic of the proposed programmable DfT. 
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flops and three NAND gates. The column pulse generator consists of two NMOS 

transistors which connect the appropriate voltages to the column during test and normal 

mode of operations. The area overhead of the designed DfT was found to be only 

8.875µm2 per column.  

 

2.5 Conclusions 

A methodology for testing the bi-state hybrid crossbar architecture in [28] has been 

presented. The proposed March test used a new fast write operation and reduced the test 

application time by 70% and the test energy by 40%. The method was extended to 

consider sneak paths in order to increase reliability with similar test application time. A 

programmable DfT Scheme has been proposed to implement the methods, and its 

 

Figure 2.11.  Schematic of the proposed USF DfT. 
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overhead was analyzed.  

The proposed methods have been presented assuming that each memory cell is 

a bipolar metal-oxide memristor which is a popular technology. The methods can be 

generalized to other types of memristors as long as they have nonlinear and asymmetric 

characteristics in the switching parameters. 
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CHAPTER 3 

A GENERALIZED APPROACH TO IMPLEMENT EFFICIENT CMOS-

BASED THRESHOLD LOGIC FUNCTIONS 

3.1 Introduction 

Threshold Logic Gate (TG) is a promising candidate for the future digital circuits. 

Recent synthesis approaches show that TG-based circuits exhibit less delay, power 

dissipation, and silicon area [48-52]. A Boolean function that can be implemented as a 

single TG is called Threshold Logic Function (TF). In a TF, there is an integer weight for 

each input. When the input is set to binary value 1 then the weight is active. An input 

pattern evaluates the function to logic one only when the sum of the active weights is 

greater than (or equal) to a predetermined integer weight value called the threshold 

weight [57-59]. Otherwise, it evaluates the function to logic 0. In this paper, such a TF 

function is called a 1𝑠𝑡-order TF and will be denoted as a 1-TF. A 𝑛-input 1-TF 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is formally defined as [58]: 

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛 )  =

{
 
 

 
 
1           𝑖𝑓      ∑𝑤𝑖 ∙ 𝑥𝑖 ≥ 𝑤𝑇

𝑛

𝑖=1

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

, (3.1) 

where 𝑥𝑖, 𝑖 = 1,… , 𝑛, are binary input variables, 𝑤𝑖 is the weight corresponding to the 𝑖𝑡ℎ 

input, and 𝑤𝑇 is the threshold weight (threshold value). The 1-TF 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is also 

uniquely identified by the set of threshold and input integer weights [𝑤1, 𝑤2, … , 𝑤𝑛; 𝑤𝑇]. 

1-TF implementations consist of three components: two differential networks (input 

networks) and a sensor (sense amplifier) [51-57]. One input network implements positive 
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input weights and negative threshold weight and the other one implements the negative 

input weights and the positive threshold weight. The sensor evaluates the output by 

comparing and amplifying the difference between the sum of active weights of the two 

input networks.  

In CMOS-based TGs, the power dissipation depends primarily on two factors: the 

transistor count of the input networks which is the total number of unit size transistors that 

implements weights and the sensor size which is proportional to the transistor count of 

input networks [52]. Input networks implement the weights with NMOS (or PMOS) 

transistors connected in parallel. Let 𝑋 denote the width of a minimum size transistor 

which implements the unit weight. Each transistor implements a weight 𝑤 and its width is 

𝑤 ∙ 𝑋, and the gate of the transistor is connected to an input. (The area of a transistor with 

width 𝑤 ∙ 𝑋 is practically the same as 𝑤 minimum size transistor.) The gate of the NMOS 

transistor for the threshold is connected to the power supply (it is active for all input 

patterns). The length of all transistors is the same and is determined by the used 

technology. The less transistor count in input networks, the lower the power dissipation 

in the differential network of a TG is. Furthermore, a reduced transistor count 

subsequently reduces the sensor size, which, in turn, decreases further the power 

dissipation [52]. 

This chapter proposes a new method to reduce the transistor count of the input 

networks by introducing non-integer weights. This method is applicable to all existing TG 

implementations. In order to demonstrate the impact of non-integer weights on TGs in 

terms of area, power dissipation, and delay, this chapter focuses on the current-mode 

TGs (CTGs) implementation which is a popular PMOS- and NMOS-based 
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implementation. (See [52-53], among others.) 

A small fraction of binary functions are 1-TFs [58], and this limits the impact of TGs 

in digital circuit synthesis. Thus, our focus shifts on identifying TFs that are not 1-TF. A 

higher order TF, also called 𝑘𝑡ℎ-order TF (𝑘-TF) in this chapter, was introduced in [60]. 

For each input pattern, a weight in a 𝑘-TF can be activated by a group of 𝑘 active inputs, 

1 ≤ 𝑘 ≤ 𝑛. Such a weight is called a 𝑘-weight.  

Let 𝑥𝑖1, 𝑖1 = 1,… , 𝑛, be binary input variables, 𝑤𝑇 denote the threshold weight, and 

integer weight 𝑤𝑖1,𝑖2,…,𝑖𝑚 denote the 𝑚-weight, 1 ≤ 𝑚 ≤ 𝑘, that is activated by the group of 

𝑚 inputs 𝑖1, 𝑖2, …, and 𝑖𝑚. The 𝑘-TF formulation for an 𝑛-input function is [60]: 

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ) = 

{
 
 
 

 
 
 1                  𝑖𝑓         ∑ 𝑤𝑖1𝑥𝑖1

𝑛

𝑖1=1

+⋯+ ∑ ∑ … ∑ 𝑤𝑖1,𝑖2,…,𝑖𝑚𝑥𝑖1𝑥𝑖2 …𝑥𝑖𝑚

𝑛

𝑖𝑚=𝑖𝑚−1+1

𝑛−𝑚

𝑖2=𝑖1+1

𝑛−𝑚+1

𝑖1=1

                                               +⋯+ ∑ ∑ … ∑ 𝑤𝑖1,𝑖2,…,𝑖𝑘𝑥𝑖1𝑥𝑖2 …𝑥𝑖𝑘

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

≥ 𝑤𝑇

0                                                                                                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

, (3.2) 

Let us consider the recently proposed synthesis approach in [51] where a flip-flop 

at the output of the circuit together with a portion of the predecessor combinational logic 

is replaced by a single TG. Since more functions can be identified as a single 𝑘-TG by 

equation (3.2), each output cone will more likely be implemented with fewer gates and 

one 𝑘-TG as the final gate. 

This chapter presents an Integer Linear Programming (ILP) formulation to assign 

efficiently weights to a 𝑘-TF so that the CTG implementation has low transistor count, 

and, subsequently, low power and delay. Weight variations due to CMOS-aging, circuit 

parasitics, and process variations are also taken into consideration.  
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It will be shown that many more TFs can be implemented as CTG without 

increased transistor count when compared to CTGs using traditional 1-TF definition. 

Moreover, the cost of certain CTGs that are 1-TF is reduced when considering the 𝑘-TF 

definition.  

This chapter is organized as follows. Section 3.2 provides preliminaries on 1-TFs, 

including a scalable integer linear programming (ILP) based method to identify 1-TF and 

assign weights. Section 3.3 proposes an ILP capable of reducing the transistor count 

using rational weight values. A new method to identify and implement higher order TFs is 

presented in Section 3.4. An efficient approach to implement higher order TFs using 

rational weights is presented in Section 3.5. Section 3.6 provides experimental results. 

Section 3.7 concludes the paper and outlines future work that includes fast synthesis of 

complex circuit specifications and beyond CMOS k-TF implementations. We will build 

upon existing 1-TF based synthesis methods [51-72] and 1-TF resistive-based 

implementations [50, 75-79]. 

 

3.2 Preliminaries on the algorithmic infrastructure 

This section provides with definitions and properties of 1-TF implemented using 

integer weights. It is also outlines some algorithmic aspects for scalable identification of 

threshold logic functions.  

Positive (negative) function: Assume that function 𝑓 is expressed in a disjunctive 

form. Function 𝑓 is positive (negative) in variable 𝑥𝑖 if the variable 𝑥̅𝑖 (𝑥𝑖) does not appear 

in the expression of 𝑓. Function 𝑓 is a positive (negative) function if it is positive (negative) 

in all variables [58]. 
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Unate Function (UF): Assume function 𝑓 is expressed in a disjunctive form. 𝑓 is 

unate in variable 𝑥𝑖 if 𝑓 is either positive or negative in variable 𝑥𝑖 [58]. A function is a UF 

if it is unate in all variables. In other words, a function 𝑓 is a UF, if and only if, for each 

variable 𝑥𝑖, 𝑓𝑥𝑖  (𝑓𝑥̅𝑖) ⊇ 𝑓𝑥̅𝑖(𝑓𝑥𝑖). 

Non-unate functions are called Binate Functions (BFs). All 1-TFs are UF [58]. 

However, higher order TFs may be BF [60]. 

Modified Chow’s Parameters [58]: For an 𝑛-input function, the Modified Chow’s 

parameter (𝑚𝑖) of variable 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛, is defined as the difference between the number 

of fully specified product terms in the onset of the function that have 𝑥𝑖 = 1, and the fully 

specified product terms in the onset of that have 𝑥𝑖 = 0. 

Let 𝑚⃗⃗ 𝑓 = (𝑚1, … ,𝑚𝑛) be the set of Modified Chow’s parameters of all 𝑛 variables 

for an 𝑛-input UF 𝑓. Function 𝑓 is positive (negative) in variable 𝑥𝑖, if and only if, 𝑚𝑖 > 0 

(𝑚𝑖 < 0). Therefore, function 𝑓 is a positive (negative) UF if all members of set 𝑚⃗⃗ 𝑓 are 

non-zero and positive (negative) [58]. 

Negation property [58]: The negation of any variable results into a new set of 

weights. Let 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑛) be [𝑤1, 𝑤2, … , 𝑤𝑖, … , 𝑤𝑛; 𝑤𝑇]. The negation of variable 

𝑥𝑖, (𝑥𝑖 → 𝑥̅𝑖), changes the weight configuration to [𝑤1, 𝑤2, … , −𝑤𝑖, … , 𝑤𝑛; 𝑤𝑇 − 𝑤𝑖]. 

In order to determine if a function is a 1-TF, we form an ILP constraint per input 

pattern using the right-hand side of equation (3.1) according to the binary evaluation of 

the function for the pattern [58]. However, the ILP requires more variables in order to 

implement TFs with low hardware overhead. The objective function in the ILP must 

minimize the absolute value of the weights, some of which may be negative. Negative 

weights can be assigned using three variables for each weight. (Details are omitted for 
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brevity.) However, such an approach introduces unnecessarily many variables and 

impacts ILP scalability. The following present an improved ILP where only one variable 

per weight is needed.  

Let 𝑓 be the examined non-positive UF. First, we find the Modified Chow’s 

parameter for every variable. Every variable 𝑥𝑖 that corresponds to negative weight 𝑤𝑖 

has a negative Modified Chow’s parameter. Such variables must be complemented. This 

implies that the weight 𝑤𝑖 will be activated when 𝑥𝑖 = 0. The new set of input variables 

ensures that all weights are positive.  

Next, we form an ILP for function 𝑓 with the new set of variables, one variable per 

weight and an additional variable for the threshold weight. There is one constraint per 

input pattern to satisfy the functionality, and one constraint per variable that bind the range 

of that variable. The ILP objective minimizes the sum of the variables. The weight 

configuration is assigned from the ILP solution and the negation property. The following 

example illustrates the approach. 

Example 1: Consider the three-input function 𝐹1 = 𝑥2 + 𝑥1𝑥3
′ . In 𝐹1, 𝑚⃗⃗ 𝐹1 =

(1,3, −1). Parameter 𝑚3 is negative, and hence variable 𝑥3 must be complemented before 

forming the ILP. Table 3.1 lists the inequalities extracted from the truth value of 𝐹1 using 

equation (3.1). The first three columns show the truth table of function 𝐹1. Column four 

shows the linear inequalities. Weights 𝑤1 and 𝑤2 are activated when 𝑥1 = 1 and 𝑥2 = 1, 

while weight 𝑤3 is activated when 𝑥3 = 0. The last row shows the objective function that 

minimizes quantity 𝑤𝑇 + ∑ 𝑤𝑖
3
𝑖=1 . For the set of constraints in Table 3.1, [𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] =

[1,2,1; 2] is an optimum solution. Hence, 𝐹1 is a 1-TF and its weight configuration, using 

the negation property, is 𝑤𝐹1 = [𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] = [1,2, −1; 1]. □ 
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The performance of the CMOS transistor which implements a weight is impacted 

by circuit parasitics, process variations, and aging. Transistor aging is caused by Bias 

Temperature Instability (BTI), dielectric breakdown, and hot career injections [72-74] that 

shift the threshold voltage and decrease the current through the transistors [80-81]. This 

is called weight aging. Process variations impact transistor width and length, and 

therefore they may modify the designed weight. However, all CTG weights will be shifted 

by the same factor and in the same direction, and therefore weight assignment is not that 

sensitive to process variations. Finally, parasitics are evaluated accurately with post-

layout simulations. 

Let value 𝐶 denote the maximum weight deviation due to the above factors. It is 

obtained with SPICE simulations on the predetermined technology as explained in 

Section 2.6. Let |𝑤| denote the absolute value of weight 𝑤. The pattern dependent 

inequalities of the ILP are rewritten as ∑ (𝑤𝑖 − 𝐶 ∙ |𝑤𝑖|) ∙ 𝑥𝑖 > 𝑤𝑇 + 𝐶 ∙ |𝑤𝑇|𝑖  when function 

Table 3.1. The Linear Inequalities for 𝐹1 = 𝑥2 + 𝑥1𝑥3
′  

with Activation Signals 𝑥1, 𝑥2, and 𝑥3
′ . 

Truth Table 

Inequalities Input Value 
(𝑥1𝑥2𝑥3) 

𝐹1 

𝑃0 000 0 𝑤3 < 𝑤𝑇 

𝑃1 001 0 0 < 𝑤𝑇 

𝑃2 010 1 𝑤2 + 𝑤3 ≥ 𝑤𝑇 

𝑃3 011 1 𝑤2 ≥ 𝑤𝑇 

𝑃4 100 1 𝑤1 + 𝑤3 ≥ 𝑤𝑇 

𝑃5 101 0 𝑤1 < 𝑤𝑇 

𝑃6 110 1 𝑤1 +𝑤2 + 𝑤3 ≥ 𝑤𝑇 

𝑃7 111 1 𝑤1 + 𝑤2 ≥ 𝑤𝑇 

Minimize: 𝑤𝑇 +∑𝑤𝑖

3

𝑖=1
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evaluates to 1, and as ∑ (𝑤𝑖 + 𝐶 ∙ |𝑤𝑖|) ∙ 𝑥𝑖 < 𝑤𝑇 − 𝐶 ∙ |𝑤𝑇|𝑖  for the remaining input 

patterns. The above may only change the total sum of weights. For example, the weight 

configuration in Example 1 considering 𝐶 = 5% becomes 𝑤 = [𝑤1, 𝑤2, 𝑤3;  𝑤𝑇] =

[2,4, −2; 1]. This weight assignment results in a reliable CTG implementation. □ 

 

3.3 Efficient design of first-order threshold functions based on rational 

weights 

The previous section described an ILP formulation that implements 1-weight by 

assigning an integer value 𝑤 to each input variable and the variable for the threshold. 

This section shows how to form an ILP capable of implementing weights that are fractions 

𝑤
𝑙⁄ , where 𝑤 and 𝑙 are integers, and is an extension of the preliminary results presented 

in [82] for the special case where 𝑙 = 2. 

 In contrast to the ILP method in the previous section, each weight value assigned 

by the new ILP is different from the implemented weight. The novelty is that the ILP 

assigns an integer value 𝑤 to each variable so that the value of the respective weight 

when evaluating the TF (as in Equation 1) is 𝑤 𝑙⁄  for some predetermined integer 𝑙. The 

flexibility of implementing rational weights results into significant reduction in the transistor 

count of CTGs with subsequent reduction in power and delay. 

In CTGs that have been identified as 1-TF, each integer weight is implemented by 

a component that is connected to the components for the other weights, including the 

threshold. Each input weight component is controlled by an input variable. Such weights 

and components are called 1𝑠𝑡-order weights (or 1-weight) and 1𝑠𝑡-order components, 

respectively.  
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Let 𝑋 denote the width of a minimum size transistor and 𝐼 the active current through 

this transistor. The CTG implementation in [53] implements an integer 1-weight with value 

𝑤 using either a single NMOS (or PMOS) transistor with width 𝑤 ∙ 𝑋 or 𝑤 minimum size 

transistors which are connected in parallel. The active current through this component is 

𝑤 ∙ 𝐼. A transistor (weight) is active when its corresponding input is set to 1 (or 0 in case 

of using PMOS). 

The proposed approach implements a rational 1-weight using multiple minimum 

size transistors connected in series. A 1-weight with value 𝑤 𝑙⁄  is implemented with 𝑙 

NMOS (or PMOS) transistors which are connected in series. The transistor gates are 

connected to each other and are controlled by the corresponding input. The width of each 

transistor is 𝑤 ∙ 𝑋 and the active current through them is 
𝑤

𝑙
∙ 𝐼. The transistor count of this 

component is 𝑙 times the transistor count of a 1𝑠𝑡-order component that implements an 

integer 1-weight with value 𝑤.  

Figure 3.1 shows the 1𝑠𝑡-order components that implement rational 1-weights with 

value 1 𝑗⁄ , for 1 ≤ 𝑗 ≤ 𝑙, given a predetermined integer 𝑙. The figure also shows the active 

current through them. The active current decreases when 𝑗 increases. It is true that adding 

a transistor increases the capacitance of that component, and this increases the power 

dissipation. However, when a TF is implemented by rational components of Figure 3.1, 

the total transistor count of the gate reduces, and this reduces significantly the power 

dissipation of the gate. 

Let 𝑥𝑖, 𝑖1 = 1,… , 𝑛, be binary input variables, 𝑗, 𝑤𝑖
𝑗
, and 𝑤𝑇

𝑗
 integer values. 𝑤𝑖

𝑗
 the 

1-weight component with value 𝑤𝑖
𝑗
/𝑗 corresponding to the 𝑖𝑡ℎ input, 1 ≤ 𝑗 ≤ 𝑙, and 𝑤𝑇

𝑗
 the 
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threshold weight component with value 𝑤𝑇
𝑗
/𝑗. In the proposed method, the ILP assigns 𝑙 

different integer weights 𝑤𝑖
𝑗
 for each input 𝑖, 1 ≤ 𝑗 ≤ 𝑙, but the value of each 𝑤𝑖

𝑗
 is 

1

𝑗
𝑤𝑖
𝑗
 

when the TF is evaluated. When the TF is evaluated, the total value for input variable 𝑥𝑖 

is ∑
1

𝑗
𝑤𝑖
𝑗𝑙

𝑗=1 . Likewise, the ILP assigns 𝑙 different integer weights 𝑤𝑇
𝑗
 for the threshold, 1 ≤

𝑗 ≤ 𝑙. However, the value of each 𝑤𝑇
𝑗
 is 

1

𝑗
𝑤𝑇
𝑗
 when the TF is evaluated. The total value for 

the threshold weight 𝑤𝑇 is ∑
1

𝑗
𝑤𝑇
𝑗𝑙

𝑗=1  when the TF is evaluated. 

Based on the above, an 𝑛-input 1-TF 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is defined as 

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ) =

{
 
 

 
 
1             𝑖𝑓                ∑((∑

1

𝑗
𝑤𝑖
𝑗

𝑙

𝑗=1

) ∙ 𝑥𝑖)

𝑛

𝑖=1

≥∑
1

𝑗
𝑤𝑇
𝑗

𝑙

𝑗=1

0                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

, (3.3) 

Although a 1-weight component with value 𝑤 𝑙⁄  requires a significant number of 

transistors, the flexibility of allowing rational weights allows the ILP to assign values to the 

respective variables so that the sum of the values assigned is much lower than the sum 

of values for the ILP that is restricted to integer weights. That way, the transistor count for 

    

Figure 3.1. 1𝑠𝑡-order components that implement rational 1-

weights with value 1 𝑗⁄ , for 1 ≤ 𝑗 ≤ 𝑙. 
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the CTG may be reduced.  

Before we elaborate on the details in forming the ILP of a function, we show that 

we have identified 1-TFs whose transistor count is reduced when considering rational 

weights due to the flexibility in selecting the appropriate weight values. The following 

shows that a 1-TF with integer weights can be implemented with less number of 

transistors when considering rational weights when 𝑙 = 2, i.e., non-integer weights that 

are multiples of 0.5. It also shows that the transistor count reduces further when 𝑙 = 4, 

i.e., non-integer weights that are multiples of 0.25.  

Example 2: Consider the 5-variable function 𝐹2 = 𝑥2𝑥5
′ + 𝑥1

′𝑥2𝑥4
′ + 𝑥1

′𝑥3𝑥5
′ +

𝑥1
′𝑥4
′𝑥5

′ . It is a TF with optimum integer weight configuration 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] =

[−7,9,2, −5,−12;−4] using the ILP in Section 3.2 and considering 𝐶 = 5%. The transistor 

count for implementing input weights is 39. However, when 𝑙 = 2 (weights are multiple of 

0.5), this function can be implemented as 𝑤′ = [𝑤1
1, 𝑤2

1, 𝑤3
1, 𝑤4

1, 𝑤4
2, 𝑤5

1, 𝑤5
2; 𝑤𝑇

1] = [−4,5,1,

−2,−1, −6,−1;−2]. The total transistor count reduces to 24. Moreover, when 𝑙 = 4, 

weight set changes to 𝑤′′ = [𝑤1
1, 𝑤1

4, 𝑤2
1, 𝑤2

4, 𝑤3
2, 𝑤4

1, 𝑤4
4, 𝑤5

1; 𝑤𝑇
1] = [−2,1,2,1,1, −1,−1,

−3;−1], and the total transistor count reduces to 23. 

Figure 3.2 shows the CTG implementation of 𝐹2 with integer weights [53] and the 

proposed method when 𝑙 = 4. In Figure 3.2, 𝑋 denotes the size of a minimum width 

transistor to implement a unit integer 1-weight. □ 

The proposed ILP formulation is an extension of the one in [58] that was explained 

in Section 3.2. It has 2𝑛 + 𝑙(𝑛 + 1) constraints with 𝑙(𝑛 + 1) unknown variables. There is 

a constraint per input pattern to satisfy the functionality, and 𝑙(𝑛 + 1) constraints that 

determine the range of each variable. The weight at input 𝑖 and the threshold weight are 
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∑
1

𝑗
𝑤𝑖
𝑗𝑙

𝑗=1  and ∑
1

𝑗
𝑤𝑇
𝑗𝑙

𝑗=1 , respectively, for some integer value 𝑗 and predetermined 𝑙. 

In addition, the ILP must minimize the transistor count considering that any rational 

1-weight with value 𝑤 𝑙⁄  requires 𝑙 times more transistors than any integer 1-weight with 

  
(a) 
 

  
(b) 

Figure 3.2.  The CTG implementation for function 𝐹2 in example 

3 when using (a) integer weights [53] (b) rational 1-weights with 

value 𝑤 𝑗⁄ , for when 1 ≤ 𝑗 ≤ 𝑙 and 𝑙 = 4. 
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value 𝑤. Therefore, the ILP must minimize quantity 

∑𝑗𝑤𝑇
𝑗

𝑙

𝑗=1

+∑(∑𝑗𝑤𝑖
𝑗

𝑙

𝑗=1

)

𝑛

𝑖=1

 (3.4) 

The example below illustrates the ILP-based approach to identify a 1-TF and 

assign optimum weights that are multiples of 0.5 (𝑙 = 2).  

Example 3: Consider UF 𝐹3 = 𝑥1 + 𝑥2𝑥3. Table 3.2 lists the ILP inequalities of 𝐹3 

based on the proposed ILP framework and 1-TF formulation in equation (3.3) considering 

𝑙 = 2. The last row shows the objective function of ILP-solver introduced in equation (3.4). 

For the set of constraints listed in Table 3.2, 𝑤 = [𝑤1
1, 𝑤2

1, 𝑤3
1, 𝑤4

1;  𝑤𝑇
1, 𝑤𝑇

2] = [2,1,1; 1,1] 

is an optimum solution for 𝐹3. □ 

For non-positive UF 𝑓, in order to avoid implementing the negative weights, we 

Table 3.2.  The Truth Table and the ILP Constraints for UF 𝐹3. 

( 0 < 𝑤𝑇
1 + 0.5 ∙ 𝑤𝑇

2  ⟺  0 < 2 ∙ 𝑤𝑇
1 + 𝑤𝑇

2  ) 

Truth Table 

Inequalities Input Pattern 
(𝑥1𝑥2𝑥3) 

𝐹3 

𝑃0 000 0 0 < 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃1 001 0 2𝑤3
1 + 𝑤3

2 < 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃2 010 0 2𝑤2
1 + 𝑤2

2 < 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃3 011 1 2𝑤2
1 + 𝑤2

2 + 2𝑤3
1 + 𝑤3

2 > 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃4 100 1 2𝑤1
1 + 𝑤1

2 > 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃5 101 1 2𝑤1
1 + 𝑤1

2 + 2𝑤3
1 + 𝑤3

2 > 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃6 110 1 2𝑤1
1 + 𝑤1

2 + 2𝑤2
1 + 𝑤2

2 > 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃7 111 1 2𝑤1
1 + 𝑤1

2 + 2𝑤2
1 + 𝑤2

2 + 2𝑤3
1 + 𝑤3

2 > 2𝑤𝑇
1 + 𝑤𝑇

2 

∀ 𝑤𝑥
𝑦
∈ {𝑤𝑇

1 , 𝑤1
1, 𝑤2

1, 𝑤3
1}:   0 ≤ 𝑤𝑥

𝑦
≤ 10 

∀ 𝑤𝑥
𝑦
∈ {𝑤𝑇

2, 𝑤1
2, 𝑤2

2, 𝑤3
2}:   𝑤𝑥

𝑦
∈ {0, 1} 

minimize: 𝑤𝑇
1 + 2 ∙ 𝑤𝑇

2 +∑(𝑤𝑖
1 + 2 ∙ 𝑤𝑇

2)

3

𝑖=1
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form the above mentioned ILP by using the method explained in Section 3.2. 

 

3.4 Higher-order implementation of threshold functions using integer 

weights 

A small fraction of binary functions are 1-TFs [50] and can be implemented as a 

single TG. In order to identify more threshold functions and increase the impact of TFs in 

digital synthesis, we consider the generalized 𝑘-TF definition described in equation (3.2). 

Preliminary results for the special case where 𝑘 = 2 were presented in [83]. This section 

shows TF implementations using integer weights. The next section shows that the 

transistor count can be further reduced using rational weights. 

A 𝑘-weight is implemented with 𝑘 NMOS (or PMOS) transistors of the same size 

(according to the respective weight) which are connected in series, and the transistor 

gates are connected to 𝑘 CTG inputs. The size of each transistor in a component that 

implements a 𝑘-weight with value 𝑤 is set to  𝑘 ∙ 𝑤 ∙ 𝑋 to keep the active current of a unit 

𝑘-weight equal to the active current of a unit 1-weight. Thus, the total transistor count of 

a 𝑘-weight component is 𝑘2 times more than the transistor count of a 1-weight that 

implements the same weight value. This transistor count ratio is called the penalty factor 

and is taken into consideration to force the ILP-solver to find the minimum possible 

transistor count. Such gates are called 𝑘-CTGs. Figure 3.3 shows the 𝑘-weight 

components, their transistor count, and active current through them for 1 ≤ 𝑘 ≤ 4. 

The approach is presented in two steps. First, we consider UFs for which the ILP 

does not use many variables. Then, we present an ILP for BFs. The latter requires more 

variables and is less scalable.  
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An ILP formulation is presented to implement a UF as a 𝑘-CTG, as in equation 

(3.2) with minimum transistor count. The proposed ILP is an improvement of [60]. The 

ILP contains 2𝑛 + 𝑛′ + 1 constraints with 𝑛′ + 1 variables, where 𝑛′ = ∑ (
𝑛
𝑚
)𝑘

𝑚=1  is the 

total number of 𝑚-weights, 1 ≤ 𝑚 ≤ 𝑘. There is a constraint per input pattern to satisfy 

the functionality, and 𝑛′ + 1 constraints that bind the range of threshold and each input 

weight. Once a UF 𝑓 is given, the Modified Chow’s parameters [58] for all inputs and 

groups of inputs determine the negative weights. To form an efficient ILP, every product 

of 𝑚 inputs 𝑥𝑖1 ∙ 𝑥𝑖2 ∙ … ∙ 𝑥𝑖𝑚, 1 ≤ 𝑚 ≤ 𝑘, that activates an 𝑚-weight with a negative 

Modified Chow’s parameter must be complemented. A 1-weight (𝑚-weight when 𝑚 = 1) 

with negative Modified Chow’s parameter is activated as in 1-TF. A 𝑚-weight, 2 ≤ 𝑚 ≤ 𝑘, 

with negative Modified Chow’s parameter will be activated when at least one of its input 

is set to 0. The ILP with the appropriate activation signals determines whether function 𝑓 

is a 𝑘-TF. The penalty factors appear as the coefficient of weights in the objective function 

of the ILP. The following objective function minimizes the 𝑘-CTG transistor count: 

   

Figure 3.3.  𝑘-weight components for 1 ≤ 𝑘 ≤ 4. 
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𝑤𝑇 + 1 ∙ ∑ 𝑤𝑖1

𝑛

𝑖1=1

+ 4 ∙ ∑ ∑ 𝑤𝑖1,𝑖2

𝑛

𝑖2=2

𝑛−1

𝑖1=1

+⋯+ 𝑘2 ∙ ∑ ∑ … ∑ 𝑤𝑖1,𝑖2,…,𝑖𝑘

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

 (3.5) 

The weight configuration will then be assigned using the ILP solution and the 

negation property. The following examples illustrate the concept of 𝑘-TF and the ILP-

based method to identify a 𝑘-TF. 

Example 4: Consider a 4-input UF 𝐹4 = 𝑥1
′ + 𝑥3𝑥2

′ + 𝑥3𝑥4
′  with a set of all unknown 

weights 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2, 𝑤1,3, 𝑤1,4, 𝑤2,3, 𝑤2,4, 𝑤3,4; 𝑤𝑇]. The set of Modified Chow’s 

parameters of either an input or a pair of inputs that activates a weight is 𝑚⃗⃗ 𝐹1 =

(−5,−1,+3,−1, −9,−5,−9,−5, −7,−5). To form an efficient ILP, first every product term 

(activation signal) with negative 𝑚𝑖 must be complemented. In this example, all inputs 

and pairs of inputs must be complemented except 𝑥3. 

Table 3.3 lists the inequalities of 𝐹4 based on the 2-TF definition and by considering 

positive weights. For an input pattern, weight 𝑤 (either 1-weight or 2-weight) appears in 

the inequality when its activation signal evaluates to 1. The objective function for a 2-TF 

is to minimize quantity 𝑤𝑇 + 1 ∙ ∑ 𝑤𝑖
4
𝑖=1 + 4 ∙ ∑ ∑ 𝑤𝑖,𝑗

4
𝑗=2

3
𝑖=1 . For the set of constraints listed 

in Table 3.3, an optimum solution is 𝑤 = [3, 0, 2, 0, 0, 0, 0, 1, 0, 1; 2]. Using the negation 

property, 𝐹4 = [−3,0,2,0,0,0,0,−1,0, −1;−2]. When considering 𝐶 = 5% weight variation, 

the weight configuration becomes 𝑤 = [−6,0,4,0,0,0,0,−2,0, −2;−5]. □  

Example 5: Function 𝐹5 = 𝑥1𝑥2
′ + 𝑥1

′𝑥2 + 𝑥1𝑥2𝑥3
′  is neither an 1-TF nor 2-TF. It is a 

3-TF and the weight configuration to implement as a 3-CTG is 𝑤 = [𝑤1, 𝑤2, 𝑤1,2,3;  𝑤𝑇] =

[2 , 2 , −4 ; 1] considering 5% weight variation (𝐶 = 5%). □ 

The solutions for functions 𝐹4 and 𝐹5 in Examples 4 and 5 illustrate that many 1-

weight, 2-weights, and 3-weights are assigned to zero. This means that a 𝑘-TF does not 
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necessarily need all 𝑘-weight components when implementing as a 𝑘-CTG. Moreover, 

the transistor count, and hence, the hardware requirement of many existing threshold 

functions (1-TFs) is reduced using higher order components. The following show that a 

1-TF can be implemented as proposed 2-CTG with lower cost than the respective 1-CTG. 

Example 6: Consider the 4-variable function 𝐹6 = 𝑥4𝑥3 + 𝑥3𝑥2 + 𝑥3𝑥1 + 𝑥2𝑥1. It is 

a 1-TF with optimum weight configuration 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4; 𝑤𝑇] = [4,4,6,2; 7] using the 

ILP in [58]. The transistor count or the total sum of threshold and input weights of 1-CTG 

is 23. Let 𝑋 denote the area of a unit 1-weight transistor. The total area of the input 

Table 3.3.  The Truth Table and ILP Constraints for 𝐹4 Considering All 

Inputs and Pairs of Inputs Are Complemented Except 𝑥3. 

Truth Table 

Inequalities Input Pattern 
(𝑥1𝑥2𝑥3𝑥4) 

𝐹4 

𝑃0 0000 1 𝑤1 + 𝑤2 +𝑤4 + 𝑤1,2 +𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 ≥ 𝑤𝑇 

𝑃1 0001 1 𝑤1 +𝑤2 + 𝑤1,2 + 𝑤1,3 + 𝑤1,4 +𝑤2,3 +𝑤2,4 +𝑤3,4 ≥ 𝑤𝑇 

𝑃2 0010 1 𝑤1 + 𝑤2 + 𝑤3 +𝑤4 + 𝑤1,2 +𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 ≥ 𝑤𝑇 

𝑃3 0011 1 𝑤1 +𝑤2 + 𝑤3 + 𝑤1,2 + 𝑤1,3 +𝑤1,4 +𝑤2,3 +𝑤2,4 ≥ 𝑤𝑇 

𝑃4 0100 1 𝑤1 + 𝑤4 + 𝑤1,2 + 𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 ≥ 𝑤𝑇 

𝑃5 0101 1 𝑤1 + 𝑤1,2 + 𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤3,4 ≥ 𝑤𝑇 

𝑃6 0110 1 𝑤1 + 𝑤3 + 𝑤4 + 𝑤1,2 + 𝑤1,3 + 𝑤1,4 + 𝑤2,4 + 𝑤3,4 ≥ 𝑤𝑇 

𝑃7 0111 1 𝑤1 + 𝑤3 +𝑤1,2 +𝑤1,3 + 𝑤1,4 ≥ 𝑤𝑇 

𝑃8 1000 0 𝑤2 + 𝑤4 +𝑤1,2 + 𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 < 𝑤𝑇 

𝑃9 1001 0 𝑤2 + 𝑤1,2 + 𝑤1,3 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 < 𝑤𝑇 

𝑃10 1010 1 𝑤2 + 𝑤3 + 𝑤4 + 𝑤1,2 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 ≥ 𝑤𝑇 

𝑃11 1011 1 𝑤2 + 𝑤3 +𝑤1,2 + 𝑤2,3 + 𝑤2,4 ≥ 𝑤𝑇 

𝑃12 1100 0 𝑤4 +𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 < 𝑤𝑇 

𝑃13 1101 0 𝑤1,3 + 𝑤2,3 + 𝑤3,4 < 𝑤𝑇 

𝑃14 1110 1 𝑤3 +𝑤4 + 𝑤1,4 +𝑤2,4 +𝑤3,4 ≥ 𝑤𝑇 

𝑃15 1111 0 𝑤3 < 𝑤𝑇 

minimize: 𝑤𝑇 + 1 ∙∑𝑤𝑖

4

𝑖=1

+ 4 ∙∑ ∑ 𝑤𝑖,𝑗

4

𝑗=i+1

3

𝑖=1
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networks is 23 ∙ 𝑋. 

However, this function can be implemented as a 2-CTG with weight configuration 

𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2, 𝑤1,3, 𝑤1,4, 𝑤2,3, 𝑤2,4, 𝑤3,4; 𝑤𝑇] = [2, 2, 2, 0, 0, 0, 0, 0, 0, 2; 3]. Each 2-

weight requires 4 more times the transistor count of a 1-weight that implements the same 

weight. The transistor count reduces to (2 + 2 + 2) + 4 ∙ (2) + (3) = 17, and thus, the 

total area of the input networks of the 2-CTG reduces to 17 ∙ 𝑋.  

Figure 3.4 shows the 1-CTG [53] and proposed 2-CTG implementations of 𝐹6 and 

the size of transistors that implements 1-weights and 2-weights considering 𝑋 as the size 

of a minimum width transistor to implement a unit 1-weight. The length of all the PMOS 

and NMOS transistors is the same and determined by the used technology. □  

The remaining of the section considers BFs. The correlation between the sign of 

the Modified Chow’s parameters and the sign of weights only holds for UFs. The ILP for 

    

(a)                                                                    (b) 

Figure 3.4. The CTG implementation for function 𝐹6 = 𝑥4𝑥3 + 𝑥3𝑥2 + 𝑥3𝑥1 + 𝑥2𝑥1 

with (a) 1-CTG as 1-TF [53] (b) proposed 2-CTG as 2-TF [82]. 
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a BF works as in [60] and contains 2𝑛 + 3(𝑛 + 𝑛′ + 1) constraints with 3(𝑛 + 𝑛′ + 1) 

variables, where 𝑛′ = (
𝑛
2
) is the total number of 2-weights. Each weight can be either 

positive or negative. The objective function is to minimize quantity 

|𝑤𝑇| + 1 ∙ ∑|𝑤𝑖1|

𝑛

𝑖1=1

+ 4 ∙ ∑ ∑|𝑤𝑖1,𝑖2|

𝑛

𝑖2=2

𝑛−1

𝑖1=1

+⋯+ 𝑘2 ∙ ∑ ∑ … ∑ |𝑤𝑖1,𝑖2,…,𝑖𝑘|

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

 (3.6) 

where |𝑤𝑥|, denotes the absolute value for each weight 𝑤𝑥, and 𝑤𝑥 ∈ {𝑤𝑇 , 𝑤𝑖, 𝑤𝑖,𝑗}. Let 

y𝑥 be a binary variable, and 𝑈 denote a predetermined upper bound of |𝑤𝑥| for each 

weight 𝑤𝑥. For each 𝑤𝑥, two variables 𝑤𝑥
+ and 𝑤𝑥

− are used, and the bound on the 

absolute value 𝑤𝑥 is enforced using the following constraints: 

{

0 ≤ 𝑤𝑥
+ ≤ 𝑈 ∙ 𝑦𝑥           

0 ≤ 𝑤𝑥
− ≤ 𝑈 ∙ (1 − 𝑦𝑥)

𝑦𝑥 ∈ {0,1}                         

 (3.7) 

Then 𝑤𝑥 = 𝑤𝑥
+ − 𝑤𝑥

−. In addition, for CTG the ILP should minimize quantity  

𝑤𝑇
+ + 𝑤𝑇

− + ∑(𝑤𝑖1
+ + 𝑤𝑖1

−)

𝑛

𝑖1=1

+ 4 ∙ ∑ ∑(𝑤𝑖1,𝑖2
+ +𝑤𝑖1,𝑖2

−)

𝑛

𝑖2=2

𝑛−1

𝑖1=1

+⋯+ 

(3.8) 

 

𝑘2 ∙ ∑ ∑ … ∑ (𝑤𝑖1,𝑖2,…,𝑖𝑘
+ + 𝑤𝑖1,𝑖2,…,𝑖𝑘

−)

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

 

The example below illustrates the ILP-based approach to identify a BF as a 2-TF 

and assign optimum weights to implement 2-CTG with minimum possible transistor count.  

Example 7: Consider BF 𝐹7 = 𝑥1𝑥3
′ + 𝑥2𝑥3. Table 3.4 lists the ILP inequalities of 

𝐹7 based on the 𝑘-TF formulation in equation (3.2) when 𝑘 = 2. The last two rows show 

the constraints and the objective function of ILP-solver introduced in equations (3.7) and 

(3.8) to assign negative weights and minimize the sum of weights. For the set of 

constraints listed in Table 3.4, 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤1,2, 𝑤1,3, 𝑤2,3; 𝑤𝑇] = [2,0,0,0, −2, 2; 1] is an 
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optimum solution for 𝐹7 when considering 5% weight variation. □ 

 

3.5 Efficient design of higher-order threshold functions using rational 

weights 

This section applies the method of Section 3.3 on high order TFs so that their 

implementation has less transistor count because of rational weight assignment. 

In 𝑘-TFs, each weight component may be controlled by more than one input. When 

𝑙 ≤ 𝑘, a 𝑘-weight with value 𝑤/𝑙 is implemented with 𝑘 transistors connected in series 

each with size 
𝑤∙𝑘

𝑙
∙ 𝑋. In this case, the transistor count is 

𝑤

𝑙
∙ 𝑘2 times the transistor count 

of a unit integer 1-weight component.  

Table 3.4.  The Truth Table and the ILP Constraints for BF 𝐹7. 

Truth Table 

Inequalities Input Pattern 
(𝑥1𝑥2𝑥3) 

𝐹7 

𝑃0 000 0 0 < 𝑤𝑇
+ − 𝑤𝑇

− 

𝑃1 001 0 𝑤3
+ − 𝑤3

− < 𝑤𝑇
+ −𝑤𝑇

− 

𝑃2 010 0 𝑤2
+ − 𝑤2

− < 𝑤𝑇
+ −𝑤𝑇

− 

𝑃3 011 1 𝑤3
+ − 𝑤3

− + 𝑤2
+ − 𝑤2

− +𝑤2,3
+ −𝑤2,3

− ≥ 𝑤𝑇
+ − 𝑤𝑇

− 

𝑃4 100 1 𝑤1
+ − 𝑤1

− ≥ 𝑤𝑇
+ − 𝑤𝑇

− 

𝑃5 101 0 𝑤3
+ − 𝑤3

− + 𝑤1
+ − 𝑤1

− +𝑤1,3
+ −𝑤1,3

− < 𝑤𝑇
+ − 𝑤𝑇

− 

𝑃6 110 1 𝑤2
+ − 𝑤2

− + 𝑤1
+ − 𝑤1

− +𝑤1,2
+ −𝑤1,2

− ≥ 𝑤𝑇
+ − 𝑤𝑇

− 

𝑃7 111 1 
𝑤3

+ − 𝑤3
− + 𝑤2

+ −𝑤2
− + 𝑤1

+ − 𝑤1
− +𝑤2,3

+ − 𝑤2,3
− + 𝑤1,3

+ − 𝑤1,3
−

+ 𝑤1,2
+ − 𝑤1,2

− ≥ 𝑤𝑇
+ − 𝑤𝑇

− 

∀ 𝑤𝑥
+, 𝑤𝑥

− ∈ {𝑤𝑇
+, 𝑤𝑇

−, 𝑤1
+, 𝑤1

−, 𝑤2
+, 𝑤2

−, 𝑤3
+, 𝑤3

−, 

𝑤1,2
+, 𝑤1,2

−, 𝑤1,3
+, 𝑤1,3

−, 𝑤2,3
+, 𝑤2,3

−}: 
{

0 ≤ 𝑤𝑥
+ ≤ 𝑈 ∙ 𝑦𝑥            

0 ≤ 𝑤𝑥
− ≤ 𝑈 ∙ (1 − 𝑦𝑥)

𝑦𝑥 ∈ {0,1}                         

 

minimize:          𝑤𝑇
+ + 𝑤𝑇

− + ∑ (𝑤𝑖
+ + 𝑤𝑖

−)3
𝑖=1 + 4 × ∑ ∑ (𝑤𝑖,𝑗

+ +𝑤𝑖,𝑗
−)3

𝑗=𝑖+1
2
𝑖=1  
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For the case when 𝑙 > 𝑘, a 𝑘-weight can be implemented with 𝑙 transistors 

connected in series each with size 𝑤 ∙ 𝑋. In this case, the transistor count of this 

component is 𝑙 ∙ 𝑤 times the transistor count of a unit integer 1-weight component.  

The ILP will select the implementation with the smallest penalty factor in order to 

find the minimum possible transistor count. Figure 3.5 considers 𝑙 = 5, and shows the 𝑘-

weights for 𝑘 = 2 and 𝑘 = 3. In particular, it shows all minimum penalty factor components 

for 𝑘 = 2 and 1 < 𝑗 ≤ 5 as well as for 𝑘 = 3 and 1 < 𝑗 ≤ 5. 

Let 𝐼 denote the active current through a minimum size transistor that implements 

a unit integer 1-weight. The active current through a rational 𝑘-weight component with 

value 𝑤/𝑙 is 
𝑤

𝑙
∙ 𝐼.  

 

Figure 3.5. Rational 𝑘-weights components with values 1/𝑗  for 2 ≤ 𝑘 ≤

3 and 1 ≤ 𝑗 ≤ 5. 
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Let 𝑤𝑖1,𝑖2,…,𝑖𝑚
1  be an integer value for a weight component that is activated by 𝑚 

inputs 𝑖1, 𝑖2, …, and 𝑖𝑚. Let also 𝑤𝑖1,𝑖2,…,𝑖𝑚
𝑗

∈ {0,1, … , 𝑗 − 1}, 2 < 𝑗 ≤ 𝑙, denote a rational 𝑚-

weight with value 𝑤𝑖1,𝑖2,…,𝑖𝑚
𝑗

/𝑗 corresponding to the group of 𝑚 inputs 𝑖1, 𝑖2, …, and 𝑖𝑚, and 

1 ≤ 𝑚 ≤ 𝑘. The 𝑚-weight 𝑤𝑖1,𝑖2,…,𝑖𝑚 is represented by ∑
1

𝑗
𝑤𝑖1,𝑖2,…,𝑖𝑚
𝑗𝑙

𝑗=1  in the definition of 

the TF. Based on the above, 

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ) = 

{
 
 
 
 

 
 
 
 
1                                                            𝑖𝑓                    ∑ ((∑

1

𝑗
𝑤𝑖1
𝑗

𝑙

𝑗=1

) ∙ 𝑥𝑖1)

𝑛

𝑖1=1

+⋯+

             ∑ ∑ … ∑ ((∑
1

𝑗
𝑤𝑖1,𝑖2,…,𝑖𝑘
𝑗

) ∙ 𝑥𝑖1𝑥𝑖2 …𝑥𝑖𝑘

𝑙

𝑗=1

)

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

≥∑
1

𝑗
𝑤𝑇
𝑗

𝑙

𝑗=1

0                                                                                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

, (3.9) 

where 𝑥𝑖1, 𝑖1 = 1,… , 𝑛, are binary input variables, 𝑗, 𝑤𝑖1,𝑖2,…,𝑖𝑚
𝑗

, and 𝑤𝑇
𝑗
 are integer 

values, and 𝑤𝑇
𝑗
 is the threshold weight with value 𝑤𝑇

𝑗
/𝑗. 

Before we elaborate on the details in forming the ILP of a function, we show that 

we have identified 𝑘-TFs whose transistor count is reduced when considering rational 

weights due to the flexibility in selecting the appropriate weight values. 

Example 8: Consider again function 𝐹5 in Example 5. The weight configuration 

changes to 𝑤 = [𝑤1
1,  𝑤1

2, 𝑤2
1, 𝑤2

2, 𝑤3,4,5
1 ; 𝑤𝑇

1] = [1, 1, 1, 1, 1; 2] with transistor count 17 and 

𝑤 = [𝑤1
1, 𝑤2

1, 𝑤3,4,5
3 ; 𝑤𝑇

1, 𝑤𝑇
3] = [1, 1, 2; 1,1] with transistor count 12 when 𝑙 is 2 and 3, 

respectively. The transistor count may decrease when 𝑙 increases. □ 

When comparing to a minimum size transistor as a unit integer 1-weight, the 

component that implements any rational 𝑘-weight with value 𝑤/𝑙, for 𝑘 > 1 or 𝑙 > 1, 
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imposes more transistor count. Therefore, an effective ILP-based framework is needed 

to identify a TF and assign appropriate weights using minimum possible number of non-

integer higher order weights. 

The ILP formulations to identify and implement either a UF or a BF as a 𝑘-CTG 

with minimum transistor count is an extension of the formulations presented in Section 

3.4. In particular, we start with UF, and then we present the ILP for BF. 

The ILP formulation to identify and implement a UF as a 𝑘-CTG using non-integer 

weights has 2𝑛 + 𝑙(𝑛′ + 1) constraints with 𝑙(𝑛′ + 1) variables, where 𝑛′ = ∑ (
𝑛
𝑖
)𝑘

𝑖=1  is the 

total number of 𝑚-weights, 1 ≤ 𝑚 ≤ 𝑘. The Modified Chow’s parameters of all groups of 

𝑚 inputs determine the negative weights (including all 𝑚-weights). To form an efficient 

ILP, every product of 𝑚 inputs (𝑥𝑖1 ∙ 𝑥𝑖2 ∙∙∙ 𝑥𝑖𝑚), that activates a 𝑚-weight, with a negative 

Modified Chow’s parameter must be complemented. An 𝑚-weight with negative Modified 

Chow’s parameter will be activated when at least one of 𝑥𝑖1, 𝑥𝑖2, and 𝑥𝑖𝑚 is set to 0. The 

ILP with the appropriate activation signals determines whether function 𝑓 is a 𝑘-TF. 

For each input pattern, any 𝑚-weight 𝑤𝑖1,𝑖2,…,𝑖𝑚, 1 ≤ 𝑚 ≤ 𝑘, in Section 3.4 is 

substituted with 𝑙 unknown variables so that 𝑤𝑖1,𝑖2,…,𝑖𝑚 = ∑
1

𝑗
𝑤𝑖1,𝑖2,…,𝑖𝑚
𝑗𝑙

𝑗=1 . Likewise, the 

threshold weight is replaced by equation (3.5). In addition, the ILP must minimize the 

transistor count considering that any 𝑚-weight with value 𝑤/𝑗 requires 𝑗 ∙ 𝑓(𝑗 − 𝑘) +
𝑚2

𝑗
∙

𝑓(𝑘 − 𝑗) multiplied by the minimum size transistor that implements a unit integer 1-weight, 

where 𝑓(𝑡) is the unit step function that evaluates to 1 when 𝑡 ≥ 0, and evaluates to 0 

when 𝑡 < 0.  Therefore, the ILP must minimize quantity 
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∑𝑗 ∙ 𝑤𝑇
𝑗

𝑙

𝑗=1

+ ∑ (∑𝑗 ∙ 𝑤𝑖1
𝑗

𝑙

𝑗=1

) +⋯+

𝑛

𝑖1=1

 

(3.10) 

+ ∑ ∑ … ∑ (∑(𝑗 ∙ 𝑓(𝑗 − 𝑘) +
𝑘2

𝑗
∙ 𝑓(𝑘 − 𝑗)) ∙ 𝑤𝑖1,𝑖2,…,𝑖𝑘

𝑗

𝑙

𝑗=1

)

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

 

The weight configuration will then be assigned using the solution from ILP and the 

negation property. The example below illustrates the ILP-based approach to identify a 2-

TF and assign optimum half integer weights (𝑙 = 2). 

Example 9: Consider again the UF 𝐹4 in Example 4 with a set of non-zero integer 

weights 𝑤 = [𝑤1, 𝑤3, 𝑤2,3, 𝑤3,4; 𝑤𝑇] = [−6,4, −2,−2;−5]. Let each input weight variable in 

weight set 𝑤 is replaced by ∑
1

𝑗
𝑤𝑖1,𝑖2,…,𝑖𝑚
𝑗2

𝑗=1 . Likewise, the threshold variable 𝑤𝑇 is 

replaced by ∑
1

𝑗
𝑤𝑇
𝑗2

𝑗=1 . Table 3.5 lists the inequalities of 𝐹4. The last row shows the 

objective function of ILP-solver introduced in equation (3.10). For the set of constraints 

listed in Table 3.5, 𝑤 = [𝑤1
1, 𝑤2

1, 𝑤3
1, 𝑤4

1;  𝑤𝑇
1, 𝑤𝑇

2] = [2,1,1; 1,1] is an optimum solution 

for 𝐹4. □ 

Many of the constraints in the ILP are redundant. We use the simplification method 

which is the extension of the one in [70] to eliminate redundant constraints which makes 

the ILP formulation smaller and possibly faster to solve. As an example consider the UF 

in Example 9. If 2𝑤1
1 + 𝑤1

2 > 2𝑤𝑇
1 +𝑤𝑇

2, any constraint containing 2𝑤1
1 + 𝑤1

2 must be 

greater than 2𝑤𝑇
1 + 𝑤𝑇

2. Therefore, the last 3 constraints are redundant and can be 

removed from ILP.  

The correlation between the sign of the Modified Chow’s parameters and the sign 
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of weights only holds for UFs. The ILP formulation to identify and implement a BF as a 𝑘-

CTG using non-integer weights contains 3 times more unknown variables that the one for 

a UF. Each weight can be either positive or negative. The objective function is to minimize 

the sum of absolute value of variables that are implemented using equation (3.7). In 

addition, for 𝑘-CTG the ILP should minimize quantity 

∑𝑗(𝑤𝑇
𝑗+
+ 𝑤𝑇

𝑗−
)

𝑙

𝑗=1

+ ∑ (∑𝑗 (𝑤𝑖1
𝑗 +
+ 𝑤𝑖1

𝑗 −
)

𝑙

𝑗=1

) +⋯

𝑛

𝑖1=1

 

(3.11) 

+ ∑ ∑ … ∑ (∑(𝑗 ∙ 𝑓(𝑗 − 𝑘) +
𝑘2

𝑗
∙ 𝑓(𝑘 − 𝑗))(𝑤𝑖1,𝑖2,…,𝑖𝑘

𝑗 +
+𝑤𝑖1,𝑖2,…,𝑖𝑘

𝑗 −
𝑙

𝑗=1

))

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

 

The simplification method in [70] is not extendable to BFs. Therefore, the ILP for a 

BF slower than the one for a UF. The example below illustrates the ILP-based approach 

to identify a BF as a 2-TF and assign optimum integer and non-integer weights to 

Table 3.5.  The Truth Table and the ILP Constraints for UF 𝐹4. 

(0 < 𝑤𝑇
1 + 0.5 ∙ 𝑤𝑇

2  ⟺  0 < 2 ∙ 𝑤𝑇
1 + 𝑤𝑇

2 ) 

Truth Table 

Inequalities Input Pattern 
(𝑥1𝑥2𝑥3) 

𝐹4 

𝑃0 000 0 0 < 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃1 001 0 2𝑤3
1 + 𝑤3

2 < 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃2 010 0 2𝑤2
1 + 𝑤2

2 < 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃3 011 1 2𝑤2
1 + 𝑤2

2 + 2𝑤3
1 + 𝑤3

2 + 2𝑤2,3
1 + 𝑤2,3

2 > 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃4 100 1 2𝑤1
1 + 𝑤1

2 > 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃5 101 1 2𝑤1
1 + 𝑤1

2 + 2𝑤3
1 + 𝑤3

2 + 2𝑤1,3
1 + 𝑤1,3

2 > 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃6 110 1 2𝑤1
1 + 𝑤1

2 + 2𝑤2
1 + 𝑤2

2 + 2𝑤1,2
1 + 𝑤1,2

2 > 2𝑤𝑇
1 + 𝑤𝑇

2 

𝑃7 111 1 
2𝑤1

1 + 𝑤1
2 + 2𝑤2

1 + 𝑤2
2 + 2𝑤3

1 +𝑤3
2 + 2𝑤1,2

1 + 𝑤1,2
2  

+2𝑤1,3
1 +𝑤1,3

2 + 2𝑤2,3
1 + 𝑤2,3

2 > 2𝑤𝑇
1 +𝑤𝑇

2 

minimize: 𝑤𝑇
1 + 2 ∙ 𝑤𝑇

2 +∑(𝑤𝑖
1 + 2 ∙ 𝑤𝑖

2) +

𝑛

𝑖=1

∑ ∑ (4 ∙ 𝑤𝑖,𝑗
1 + 2 ∙ 𝑤𝑖,𝑗

2 )

𝑛

𝑗=i+1

𝑛−1

𝑖=1
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implement efficient 2-CTG.  

Example 10: Consider again the BF 𝐹7 in Example 7 with set of integer weight 

values 𝑤 = [𝑤1, 𝑤1,3, 𝑤2,3; 𝑤𝑇] = [2, −2, 2; 1] and transistor count 19. Table 3.6 lists the 

ILP inequalities of 𝐹7 based on the 𝑘-TF formulation described in equation (3.9). For 

simplicity, we consider 𝑘 = 2 and 𝑙 = 2. The last two rows show the ILP constraints and 

the ILP objective function of introduced in equations (3.7) and (3.11) to assign negative 

weights and minimize the sum of weights. For the set of constraints listed in Table 3.6, 

Table 3.6.  The Truth Table and the ILP Constraints for BF 𝐹7. 

Truth Table 

Inequalities Input Pattern 
(𝑥1𝑥2𝑥3) 

𝐹7 

𝑃0 000 0 0 < 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ −𝑤𝑇

2− 

𝑃1 001 0 2𝑤3
1+ − 2𝑤3

1− +𝑤3
2+ − 𝑤3

2− < 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2− 

𝑃2 010 0 2𝑤2
1+ − 2𝑤2

1− +𝑤2
2+ − 𝑤2

2− < 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2− 

𝑃3 011 1 
+2𝑤3

1+ − 2𝑤3
1− + 𝑤3

2+ − 𝑤3
2− + 2𝑤2

1+ − 2𝑤2
1− +𝑤2

2+ −𝑤2
2− 

+2𝑤2,3
1 +

− 2𝑤2,3
1 −

+ 𝑤2,3
2 +

− 𝑤2,3
2 −

≥ 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2− 

𝑃4 100 1 2𝑤1
1+ − 2𝑤1

1− +𝑤1
2+ − 𝑤1

2− ≥ 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2− 

𝑃5 101 0 
2𝑤1

1+ − 2𝑤1
1− + 𝑤1

2+ − 𝑤1
2− + 2𝑤3

1+ − 2𝑤3
1− + 𝑤3

2+ − 𝑤3
2− 

+2𝑤1,3
1 +

− 2𝑤1,3
1 −

+𝑤1,3
2 +

−𝑤1,3
2 −

< 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2− 

𝑃6 110 1 
2𝑤1

1+ − 2𝑤1
1− +𝑤1

2+ −𝑤1
2− + 2𝑤2

1+ − 2𝑤2
1− +𝑤2

2+ − 𝑤2
2− 

+2𝑤1,2
1 +

− 2𝑤1,2
1 −

+𝑤1,2
2 +

−𝑤1,2
2 −

≥ 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2− 

𝑃7 111 1 

2𝑤1
1+ − 2𝑤1

1− +𝑤1
2+ −𝑤1

2− + 2𝑤2
1+ − 2𝑤2

1− +𝑤2
2+ − 𝑤2

2− + 2𝑤3
1+ 

−2𝑤3
1− + 𝑤3

2+ − 𝑤3
2− + 2𝑤1,2

1 +
− 2𝑤1,2

1 −
+ 𝑤1,2

2 +
− 𝑤1,2

2 −
+ 2𝑤1,3

1 +
 

−2𝑤1,3
1 −

+ 𝑤1,3
2 +

− 𝑤1,3
2 −

+ 2𝑤2,3
1 +

− 2𝑤2,3
1 −

+ 𝑤2,3
2 +

− 𝑤2,3
2 −

≥ 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2− 

∀ 𝑤𝑥
∓ ∈ {𝑤𝑇

1∓, 𝑤𝑇
2∓, 𝑤1

1∓, 𝑤1
2∓, 𝑤2

1∓, 𝑤2
2∓, 𝑤3

1∓, 

𝑤3
2∓𝑤1,2

1 ∓
, 𝑤1,2

2 ∓
, 𝑤1,3

1 ∓
, 𝑤1,3

2 ∓
, 𝑤2,3

1 ∓
, 𝑤2,3

2 ∓
}: 

{

0 ≤ 𝑤𝑥
+ ≤ 𝑈 ∙ 𝑦𝑥            

0 ≤ 𝑤𝑥
− ≤ 𝑈 ∙ (1 − 𝑦𝑥)

𝑦𝑥 ∈ {0,1}                         

 

minimize: 

𝑤𝑇
1+ +𝑤𝑇

1− + 2𝑤𝑇
2+ + 2𝑤𝑇

2− +∑∑𝑗 ∙ (𝑤𝑖
𝑗+
+𝑤𝑖

𝑗−
)

2

𝑗=1

3

𝑖=1

+ 

∑ ∑ ∑(𝑗 ∙ 𝑓(𝑗 − 2) +
4

𝑗
∙ 𝑓(2 − 𝑗)) ∙ (𝑤𝑎,𝑏

𝑗 +
+𝑤𝑎,𝑏

𝑗 −
)

2

𝑗=1

3

𝑏=a+1

2

𝑎=1
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𝑤 = [𝑤1
1,  𝑤1

2, 𝑤1,3
1 , 𝑤1,3

2 , 𝑤2,3
1 , 𝑤2,3

2 ; 𝑤𝑇
1,  𝑤𝑇

2] = [1, 0, −1, 0, 1, 0; 0, 1] is an optimum solution 

for 𝐹7. The transistor count reduces to 11. □ 

 

3.6 Experimental results 

The proposed ILP-based approach has been implemented in the C++ language 

on an Intel Xenon 2.4GHz with 8GB memory. To evaluate its impact, we examined non-

scalable functions with up to fifteen inputs. An 𝑛-input non-scalable function is a function 

that requires non-empty levels of variables in the Binary Decision Diagram (BDD) 

representation for some ordering of the variables [83]. In another word, in a non-scalable 

function, no input variable is don’t care, and, therefore, all variables (and/or their 

complements) appear in the minimum sum-of-product expression of the function. 

Table 3.7 presents non-scalable 𝑛-input 𝑘-TFs using rational 𝑘-weights with value 

𝑤/𝑙 for different 𝑛, 𝑘, and 𝑙 that  were derived using the ILP of Section 3.5. For each value 

of 𝑛 we found the 1-TFs with maximum transistor count. This was set as a bound to the 

objective function for any ILP formulation for 𝑙 ≥ 4 and 𝑘 ≥ 4. The first column in Table 

3.7 shows the number of inputs (value of 𝑛). The goal in this paper is to provide an 

indication of the percentage of all 𝑛-input functions that benefit from the proposed method. 

When 𝑛 is large it is impossible to examine all functions and, therefore, functions are 

selected randomly. For functions with 𝑛 ≥ 4, the entries in Table 3.7 were obtained by 

sampling randomly 100 thousand functions. For 𝑛 ≥ 4, the 2𝑛 bit output vector of an 𝑛-

input function was filled with either 0 or 1 at randomly selected positions (determined by 

randomly selecting an integer mod 2𝑛), and so that the number of ones in the function 

obeyed the distribution of functions based on this property. (For example, the number of 
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5-input functions with 16 ones in the output bit vector is approximately 10 times more than 

the number of 5-input functions with 10 ones.)  In order for the experiment to have more 

statistical significance, we only considered non-scalable functions, and when a function 

is generated we applied the procedure described earlier in this section to determine that 

it is non-scalable. (It is asserted that the distribution of non-scalable 𝑛-input functions 

based on the number of ones in their output bit vector is the same as the one described 

earlier for 𝑛-input functions.) 

The second column in Table 3.7 lists the number of 1-TFs identified by using the 

existing ILP-based method in [58] considering integer weights. These functions are 

implementable with existing CTGs. The third column shows the examined values of 𝑙, 𝑙 ∈

{1, 2, 3, 4}. The fourth column shows the number of 2-TFs that do not have transistor count 

higher than any of the 1-TF in column two. The fifth column shows the percentage 

increase over the number of 1-TFs in column two. Columns six to nine show similar results 

for 𝑘 ∈ {3, 4}. For all examined functions, the value of 𝐶 was set to 11% to take into 

consideration that weights may vary primarily due to aging. This value for 𝐶 was obtained 

by performing SPICE simulations on a single transistor that implements a unit integer 1-

weight in corner cases using 45nm technology [76] while the transistor was continuously 

under stress (worst-case aging scenario). We used the static aging model in [84] and we 

found that the transistor threshold voltage shifted by 50𝑚𝑉 under continuous stress. This 

increase in threshold voltage amounted to 11% decrease in the current. 

The results in Table 3.7 show that for higher value of 𝑘 and 𝑙, the ILP has more 

flexibility to assign weights so that the total transistor count decreases. Therefore, when 

𝑘 and 𝑙 increase more functions can be implemented as current mode gates using a 



 

64 
 

transistor count similar to that for the significantly less 1-TFs that were implemented as 

1-CTG. In particular, when 𝑘 = 4 and 𝑙 = 4, about 24.9 times more functions can be 

implemented as CTGs with similar or less transistor count. 

Table 3.8 lists the average execution time by the proposed ILP method to 

determine whether an examined 𝑛-input function (BF and UF) was implementable as 

proposed 𝑘-TF described in equation (3.9) for different values of 𝑘 and 𝑙, and 𝐶 set to 

11%. In our experimental evaluation, we set up an execution time upper bound of 60 

second per TF, at which point the function was aborted. Character “-” indicates that no 

results were obtained due to violation of the execution time upper bound. Observe, 

however, that the approach can handle all the UFs with at most 12 inputs. They can be 

implemented to up to the 4𝑡ℎ order when considering rational weight with value up to 4. 

These results show that the average execution time increases as the values of 𝑛, 𝑘 and 

𝑙 increases. This is due to the increase in the number of unknown variables in the ILP. 

For higher input functions (functions with more fan-ins), heuristic approaches as in [61-

63] can be used to implement UFs. However, they will not ensure that all TFs can be 

identified, and the weight configuration of the identified TFs is not necessarily optimum. 

Furthermore, they do not apply to BFs. 

Table 3.9 lists the number of 1-TFs identified by using the existing ILP-based 

method in [58] considering integer weights. Let Δ denote the percentage reduction in CTG 

transistor count. Columns three to eight show the number of TFs listed in second column 

that were implemented with less transistor count when considering the proposed 𝑘-CTG 

described in equation (3.9) for 𝑘, 𝑙 ≤ 4 non-integer weights. These columns were 

generated based on different ranges of Δ, and 𝐶 set to 11%. 
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Table 3.7.  The Number of 𝑘-CTGs with Rational 𝑘-weights of Value 𝑤/𝑙 Whose 

Transistor Count is no More Than 1-CTGS with Integer Weights. 

𝑛 1-TF 𝑙 𝑘 = 2 
INCREASE 

RATIO 
𝑘 = 3 

INCREASE 
RATIO 

𝑘 = 4 
INCREASE 

RATIO 

1 2 

1 2 1 2 1 2 1 
2 2 1 2 1 2 1 
3 2 1 2 1 2 1 
4 2 1 2 1 2 1 

2 8 

1 8 1 10 1.25 10 1.25 
2 10 1.25 10 1.25 10 1.25 
3 10 1.25 10 1.25 10 1.25 
4 10 1.25 10 1.25 10 1.25 

3 72 

1 72 1 72 1 72 1 
2 188 2.61 192 2.66 192 2.66 
3 214 2.97 214 2.97 214 2.97 
4 216 3 218 3.02 218 3.02 

4 1536 

1 2566 1.7 4454 2.9 4761 3.1 
2 9012 5.87` 11059 7.2 11366 7.4 
3 9872 6.43 11063 7.2 12748 8.3 
4 11464 7.46 21043 13.7 21196 13.8 

5∗ 367 

1 4514 12.3 8110 22.1 9395 25.6 
2 7743 21.1 10202 27.8 10716 29.2 
3 7964 21.7 10312 28.1 11046 30.1 
4 8514 23.2 11450 31.2 12698 34.6 

6∗ 105 

1 1176 11.2 1827 17.4 1848 17.6 
2 1659 15.8 2467 23.5 2740 26.1 
3 1690 16.1 2478 23.6 2772 26.4 
4 1827 17.4 2887 27.5 3318 31.6 

7∗ 89 

1 1593 17.9 1877 21.1 1993 22.4 
2 2607 29.3 2919 32.8 3262 36.7 
3 2776 31.2 3017 33.9 3271 36.7 
4 2860 36.2 3506 39.4 3871 43.5 

8∗ 66 

1 1498 22.7 3438 52.1 3517 53.3 
2 3095 46.9 4468 67.7 4659 70.6 
3 3590 54.4 4481 67.9 4699 71.2 
4 3973 60.2 4765 72.2 4870 73.8 

9∗ 306 

1 2234 7.3 3610 11.8 3855 12.6 

2 5385 17.6 5905 19.3 6671 21.8 

3 5393 17.6 6089 19.9 6762 22.1 

4 7160 23.4 9057 29.6 9394 30.7 

10∗ 119 

1 1499 12.6 1880 15.8 1892 15.9 

2 2034 17.1 2983 25.1 3058 25.7 

3 2094 17.6 2991 25.1 3082 25.9 

4 2094 17.6 3177 26.7 3344 28.1 

11∗ 65 

1 886 14.3 1241 19.1 1521 23.4 

2 1670 25.7 2054 31.6 2132 32.8 

3 1813 27.9 2073 31.9 2190 33.7 

4 2067 31.8 2216 34.1 2314 35.6 

12∗ 45 

1 513 11.4 1053 23.4 1206 26.8 

2 801 17.8 1624 36.1 1773 39.4 

3 869 19.3 1643 36.5 1778 39.5 

4 886 19.7 1818 40.4 1939 43.1 

13∗ 92 

1 1343 14.6 2658 28.9 - - 

2 2907 31.6 5042 54.8 - - 

3 2925 31.8 5048 54.8 - - 

4 2930 31.8 5981 65.0 - - 

14∗ 45 

1 810 18.0 1404 31.2 - - 

2 1219 27.1 2448 54.4 - - 

3 1242 27.6 2583 57.4 - - 

4 1480 32.9 3289 73.1 - - 

15∗ 97 

1 1571 16.2 - - - - 

2 2473 25.5 - - - - 

3 2475 25.5 - - - - 

4 2774 28.6 - - - - 

TOTAL 3014  48257 16.01 72193 23.7 75218 24.9 

*     Out of 100 thousand randomly selected non-scalable functions. 
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The results in Table 3.9 show that by increasing either 𝑘 or 𝑙, many 1-TFs were 

implemented as CTG with lower transistor count, and hence with lower area and power 

dissipation. In particular, in particular, 93% of selected 1-TFs were implemented with 

approximately 45% lower transistor count. 

The following compares the transistor count of input networks, power dissipation, 

and delay of the CTG implementation of randomly selected 1-TFs and 2-TFs described 

by the weight configuration set. All functions were implemented using the CTG in [53, 83] 

considering only integer weights and using the proposed 𝑘-CTG described in Equation 9 

considering 𝑘 ≤ 4 and 𝑙 ≤ 4, and 𝐶 set to 11%. SPICE simulation took place for each 

function using the Berkeley Predictive Technology Models (PTM) for 45nm CMOS 

Table 3.8.  Average Execution Time (𝑚𝑠) Per Function For 𝑛-input 𝑘-TFs (UF and 

BF), 6 ≤ 𝑛 ≤ 15, 1 ≤ 𝑘 ≤ 4, 𝐶 = 11% considering Rational 𝑘-weights with Value 

𝑤/𝑙, 𝑙 ∈ {1,4}. 

𝑛 
TF Type 

6 7 8 9 10 11 12 13 14 15 

1-TF, 𝑙=1 50 54 72 115 250 490 1108 2e3 3e3 7e3 

1-TF, 𝑙=4 56 60 78 122 258 505 1617 22e2 36e2 8e3 

UF 2-TF, 𝑙 =1 54 60 80 125 275 508 1200 23e2 4e3 8e3 

UF 2-TF, 𝑙 =4 60 67 113 178 320 670 1420 28e2 5e3 1e4 

BF 2-TF, 𝑙=1 63 96 150 290 540 1e3 2e3 5e3 9e3 2e4 

BF 2-TF, 𝑙=4 88 103 189 502 596 18e2 39e2 1e4 2e4 - 

UF 3-TF, 𝑙=1 225 270 324 561 1e3 22e2 5e3 85e2 2e4 - 

UF 3-TF, 𝑙=4 289 450 511 887 15e2 35e2 67e2 13e3 35e3 - 

BF 3-TF, 𝑙=1 460 605 617 11e2 21e2 5e3 8e3 - - - 

BF 3-TF, 𝑙=4 481 619 705 16e2 29e2 9e3 13e3 - - - 

UF 4-TF, 𝑙 =1 13e2 14e2 2e3 3e3 65e2 14e3 3e4 - - - 

UF 4-TF, 𝑙 =4 17e2 17e2 25e3 7e3 91e2 17e3 4e4 - - - 

BF 4-TF, 𝑙 =1 2e3 2e3 4e3 8e3 13e3 - - - - - 

BF 4-TF, 𝑙 =4 23e3 3e3 51e2 15e3 - - - - - - 
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transistors [85]. The 𝑉𝐷𝐷 was set to 1.1V. The applied voltages for 𝑐𝑙𝑘 were 1.1V and 0V 

for high voltage and low voltage, respectively. The applied load was a minimum size 

CMOS inverter which had a PMOS transistor with width 240nm, and a NMOS transistor 

with width 120nm. The length of all the PMOS and NMOS transistors were set to 45nm. 

The optimum sensor size was obtained using the approach in [52].  

The first Column in Table 3.10 lists some randomly selected functions. They are 

denoted by the integer weight assignment that reflects minimum transistor count. 

Columns two to four list the transistor count of the input networks using the traditional 

approach, the power dissipation, and the delay of the CTG implementation for each 

function, respectively, using the approaches in [53, 83]. These values were obtained with 

SPICE simulations while considering corner cases by simultaneously varying the width 

and length of all transistors in input networks as well as the sensor part. Let 𝑑𝑉 denote 

the voltage difference between two output nodes. Due to the clock enable in CTGs the 

Table 3.9. The Number of 1-TFs With Lower Transistor Count When 

Considering Rational 𝑘-Weights with Value 𝑤/𝑙, 𝑘 ≤ 4, 𝑙 ≤ 4, 𝐶 = 11%. 

𝑛 1-TF 
Δ (percentage reduction in CTG transistor count) 

Δ<40% 40%≤Δ<50% 50%≤Δ<60% Δ≥60% 

1 2 2 0 0 0 

2 8 8 0 0 0 

3 72 72 0 0 0 

4 1536 112 1242 176 6 

5∗ 367 3 263 101 0 

6∗ 105 0 67 31 7 

7∗ 89 0 50 37 2 

8∗ 66 0 57 9 0 

9∗ 306 0 233 73 0 

10∗ 119 0 102 14 3 

11∗ 65 0 53 10 2 

12∗ 45 0 41 4 0 

TOTAL 2780 197 2108 455 20 

*    Out of 100 thousand randomly selected non-scalable functions. 
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delay is calculated as the time difference between the time that clock is at 50% of its final 

value and the time that 𝑑𝑉 is at 50% of its final value [52]. The power value reported in 

column three is an average value that includes leakage and dynamic power dissipation 

[12, 86].  

Columns five to eight show similar results when each function is implemented by 

the proposed 𝑘-CTG of Section 3.4 based on the formulation described in equation (3.9). 

Table 3.10. Simulation Results: Transistor Count, Power Dissipation, and Delay of 

Randomly Selected TFs in 45𝑛𝑚 Technology Using the CTG in [53, 83] and the 

Proposed 𝑘-CTG Based on equation (3.9) Using 𝑘-weights with Value 𝑤/𝑙, 𝑘 ≤ 4, 𝑙 ≤ 4, 

𝐶 = 11%. 

CTG Implementation [53] and [83] Proposed 𝑘-CTG with rational weights % Reduction 

Function with Integer Weights TC 
Power 
(µW) 

Delay 
(ps) 

Optimized Function for 𝑘 ≤ 4  

and 𝑙 ≤ 4 
TC 

Power 
(µW) 

Delay 
(ps) 

TC Power Delay 

[𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] = 

[4,2,2; 3] 
11 1.98 98 

[𝑤1
1 , 𝑤2

1, 𝑤3
1; 𝑤𝑇

1 , 𝑤𝑇
2] = 

[2,1,1; 1,1] 
7 1.40 66 36% 30% 32% 

[𝑤1, 𝑤3, 𝑤2,3, 𝑤3,4; 𝑤𝑇] = 

[−6,4,2,−2;−3] 
29 3.73 113 

[𝑤1
1, 𝑤3

1 , 𝑤2,3
1 , 𝑤3,4

2 ; 𝑤𝑇
1 ,WT

2] = 
[−3,2,1, −1;−1,−1] 

14 1.98 87 51% 47% 23% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4; 𝑤𝑇] = 

[−4,4, −2,2; 3] 
15 2.80 142 

[𝑤1
1, 𝑤2

1, 𝑤3
1 , 𝑤4

1; 𝑤𝑇
1 , 𝑤𝑇

2] = 
[−2,2,−1,1; 1,1] 

10 1.74 105 33% 38% 26% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] = 

[−7,9,2,−5,−12;−4] 
39 4.25 158 

𝑤1
1 , 𝑤1

4, 𝑤2
1 , 𝑤2

4, 𝑤3
2 , 𝑤4

1, 𝑤4
4 , 

𝑤5
1; 𝑤𝑇

1 = [−2,1,2,1,1,−1, 
−1,−3;−1] 

22 2.12 122 43% 50% 23% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6; 𝑤𝑇]
= [4,4,7,−4,−11,−11; 5] 

43 4.08 129 
[𝑤1

1, 𝑤2
1 , 𝑤3

1, 𝑤4
1, 𝑤5

1 , 𝑤6
1; 𝑤𝑇

1 , 𝑤𝑇
4] 

= [1,1,2,−1,−3,−3; 1,1] 
16 1.92 103 62% 53% 20% 

[𝑤1, 𝑤2, 𝑤3, 𝑤1,4; 𝑤𝑇] = 

[2,2,4,2; 3] 
19 3.21 118 

[𝑤1
1, 𝑤2

1, 𝑤3
1 , 𝑤1,4

1 ; 𝑤𝑇
1 ,WT

2] = 
[1,1,2,1; 1,1] 

11 1.93 87 42% 40% 26% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7, 
𝑤8, 𝑤9; 𝑤𝑇] = [−5,−5,−5, 

−5,−5,−2,2,3,3; 4] 
39 3.30 183 

[𝑤1
1, 𝑤2

1 , 𝑤3
1, 𝑤4

1, 𝑤5
1 , 𝑤6

1 , 𝑤6
3, 𝑤7

1 , 
𝑤7
3 , 𝑤8

1, 𝑤9
1; 𝑤𝑇

1 , 𝑤𝑇
3] = [−2,−2, 

−2,−2,−2,−1,1,1,−1,1,1; 1,1] 
24 2.15 143 38% 35% 22% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] = 

[5,5,3,3,−3; 4] 
23 3.76 114 

[𝑤1
1 , 𝑤2

1 , 𝑤3
1, 𝑤4

1, 𝑤5
1; 𝑤𝑇

1 , 𝑤𝑇
3] = 

[2,2,1,1,−1; 1,1] 
11 1.88 80 52% 50% 30% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] = 

[−2,−2,4,6,6; 1] 
21 3.67 173 

[𝑤1
1 , 𝑤2

1, 𝑤3
1, 𝑤4

1 , 𝑤5
1; 𝑤𝑇

2] = 
[−1,−1,2,3,3; 1] 

12 1.83 130 42% 50% 25% 

[𝑤1, 𝑤1,3, 𝑤2,3; 𝑤𝑇] = 

[2,−2,2; 1] 
19 3.21 151 

[𝑤1
1, 𝑤1,3

1 , 𝑤2,3
1 ; 𝑤𝑇

2] = 
[1, −1,1; 1] 

11 1.80 96 42% 44% 36% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7, 
𝑤8, 𝑤9, 𝑤10; 𝑤𝑇] = [2,2,2, 

2,2,2,2,2,2,2; 1] 
21 4.37 163 

[𝑤1
1 , 𝑤2

1 , 𝑤3
1, 𝑤4

1, 𝑤5
1 , 𝑤6

1, 𝑤7
1, 𝑤8

1 , 
𝑤9
1, 𝑤10

1 ; 𝑤𝑇
2] = [1,1,1,1,1,1, 

1,1,1,1; 1] 
12 1.53 112 43% 65% 31% 
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In particular, column five lists the obtained weights, column six lists the transistor count, 

column seven the power, and column eight the delay. The values in columns seven and 

eight were obtained by SPICE simulations. 

The last three columns in Table 3.10 list the percentage reduction in transistor 

count, power dissipation, and delay, respectively, when compared to the traditional 1-TF 

current-mode implementation as in [53] or the 2-TF current-mode implementation as in 

[83]. The results show a significant decrease in power dissipation as well as a significant 

decrease in the delay due to the rational higher-order weights. 

After the functions in Table 3.10 were synthesized by both the proposed method 

and the traditional in [53, 83], we proceeded to obtaining their layouts in 45nm using the 

Berkeley PTM model, and we derived the silicon area. Furthermore, we conducted post-

layout simulation to determine the power and delay (leakage and dynamic). This 

experiment was conducted in order to confirm that optimizing the transistor count at the 

input networks (as obtained by proposed ILP method) results into area reduction when 

compared to the traditional CTG methods in [53, 83], and that delay and power are also 

reduced proportion to the saving shown by simulation at the synthesis level. Note that 

post-layout simulation taken to consideration the circuit parasitics which were extracted 

from the layout of the CTG.  

As an example, Figure 3.6 (a) shows the layout of the first function listed in Table 

3.10 with integer weights [𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] = [4,2,2; 3] as in [53], and Figure 3.6 (b) shows 

the layout using rational weights [𝑤1
1, 𝑤2

1, 𝑤3
1; 𝑤𝑇

1, 𝑤𝑇
2] = [2,1, 1; 1,1] by the proposed 

method. In this case, the reduction in the area of the layout is 40%. For the remaining 

functions in Table 3.10, we observed that the reduction in area is even more significant. 
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Table 3.11 provides with details on the layout area savings for all functions in Table 

3.10. Please see the listed results in columns two, six, and nine. It is important to observe 

that the reduction in layout area is similar to the transistor count reduction in the input 

networks of those functions, as obtained by the proposed ILP-based synthesis method. 

These results show the impact of using rational weights in synthesis. 

Table 3.11 also lists detailed results on power dissipation and delay obtained from 

post-layout simulations using the traditional approaches in [53, 83] and the proposed 

method. For power-related results please see columns three, seven, and ten. For delay-

related results please see columns four, eight, and eleven. Again, observe that the 

reduction in power and delay by the proposed method, reflect the savings that were 

shown earlier in Table 3.10. In fact, the post-layout simulation showed that the saving in 

power is even higher than what was shown at the synthesis level. 

The results in Tables 3.10 and 3.11 clearly demonstrate the significance of using 

rational weights. Furthermore, the value of the 𝐶 that was set to 11% accommodates 

circuit parasitics due to interconnections, and all functions operate correctly. 

                

       (a)                                        (b) 

Figure 3.6. (a) The layout for 1-CTG implementation of function 

[𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] = [4,2,2; 3] as in [53] (b) the layout of the same function 

implemented using rational weights [𝑤1
1, 𝑤2

1, 𝑤3
1; 𝑤𝑇

1, 𝑤𝑇
2] = [2,1,1; 1,1]. 
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3.7 Conclusion 

It has been demonstrated that the presented approach can implement many more 

functions as current mode threshold logic gates with similar or less transistor count when 

compared to existing method. Also a significant percentage of existing threshold functions 

can be implemented as current mode threshold gates with approximately 60% less power 

dissipation, and 20% less delay when considering higher order non-integer weights in the 

Table 3.11. Post-Layout Results: Chip Area, Power Dissipation, and Delay of Randomly 

Selected TFs, in 45𝑛𝑚 Technology Using the CTG in [53, 83] and the Proposed 𝑘-CTG 

Based on equation (3.9) Using 𝑘-weights with Value 𝑤/𝑙, 𝑘 ≤ 4, 𝑙 ≤ 4, 𝐶 = 11%. 

CTG Implementation [53] and [83] Proposed 𝑘-CTG with rational weights % Reduction 

Function with Integer 
Weights 

Area 
(µm2) 

Power 
(µW) 

Delay 
(ps) 

Optimized Function for 𝑘 ≤ 4  

and 𝑙 ≤ 4 
Area 
(µm2) 

Power 
(µW) 

Delay 
(ps) 

Area Power Delay 

[𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] = 

[4,2,2; 3] 
10.50 4.40 167 

[𝑤1
1 , 𝑤2

1, 𝑤3
1; 𝑤𝑇

1 , 𝑤𝑇
2] = 

[2,1,1; 1,1] 
6.25 1.98 129 40% 55% 23% 

[𝑤1, 𝑤3, 𝑤2,3, 𝑤3,4; 𝑤𝑇] = 

[−6,4,2,−2;−3] 
16.80 5.90 196 

[𝑤1
1 , 𝑤3

1 , 𝑤2,3
1 , 𝑤3,4

2 ; 𝑤𝑇
1 ,WT

2] = 
[−3,2,1, −1;−1,−1] 

8.25 1.94 160 51% 67% 18% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4; 𝑤𝑇] = 

[−4,4, −2,2; 3] 
13.10 9.32 169 

[𝑤1
1, 𝑤2

1 , 𝑤3
1 , 𝑤4

1; 𝑤𝑇
1 , 𝑤𝑇

2] = 
[−2,2,−1,1; 1,1] 

6.80 3.63 133 48% 61% 21% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] = 

[−7,9,2,−5,−12;−4] 
20.00 8.44 326 

𝑤1
1 , 𝑤1

4, 𝑤2
1 , 𝑤2

4, 𝑤3
2, 𝑤4

1, 𝑤4
4, 

𝑤5
1; 𝑤𝑇

1 = [−2,1,2,1,1,−1,  
−1,−3;−1] 

11.40 2.95 270 43% 65% 17% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6; 𝑤𝑇] 
= [4,4,7,−4,−11,−11; 5] 

23.80 11.81 470 
[𝑤1

1 , 𝑤2
1 , 𝑤3

1, 𝑤4
1, 𝑤5

1 , 𝑤6
1; 𝑤𝑇

1 , 𝑤𝑇
4] 

= [1,1,2,−1,−3,−3; 1,1] 
9.10 5.07 399 62% 57% 15% 

[𝑤1, 𝑤2, 𝑤3, 𝑤1,4; 𝑤𝑇] = 

[2,2,4,2; 3] 
13.00 9.21 283 

[𝑤1
1, 𝑤2

1 , 𝑤3
1 , 𝑤1,4

1 ; 𝑤𝑇
1 ,WT

2] = 
[1,1,2,1; 1,1] 

6.90 4.32 223 47% 53% 21% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7, 
 𝑤8, 𝑤9; 𝑤𝑇] = [−5,−5,−5, 

−5,−5,−2,2,3,3; 4] 
18.40 9.16 351 

[𝑤1
1 , 𝑤2

1 , 𝑤3
1, 𝑤4

1, 𝑤5
1 , 𝑤6

1 , 𝑤6
3 , 𝑤7

1 , 
𝑤7
3, 𝑤8

1, 𝑤9
1; 𝑤𝑇

1 , 𝑤𝑇
3] = [−2,−2, 

−2,−2,−2,−1,1,1,−1,1,1; 1,1] 
11.40 4.67 284 38% 49% 19% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] = 

[5,5,3,3,−3; 4] 
13.80 8.25 490 

[𝑤1
1 , 𝑤2

1 , 𝑤3
1, 𝑤4

1, 𝑤5
1; 𝑤𝑇

1 , 𝑤𝑇
3] = 

[2,2,1,1,−1; 1,1] 
6.90 3.05 357 50% 63% 27% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] = 

[−2,−2,4,6,6; 1] 
12.90 9.79 275 

[𝑤1
1 , 𝑤2

1, 𝑤3
1, 𝑤4

1 , 𝑤5
1; 𝑤𝑇

2] = 
[−1,−1,2,3,3; 1] 

7.10 3.91 223 45% 60% 19% 

[𝑤1, 𝑤1,3, 𝑤2,3; 𝑤𝑇] = 

[2,−2,2; 1] 
12.50 8.80 415 

[𝑤1
1, 𝑤1,3

1 , 𝑤2,3
1 ; 𝑤𝑇

2] = 
[1, −1,1; 1] 

6.90 4.05 298 45% 54% 28% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7,  
𝑤8, 𝑤9, 𝑤10; 𝑤𝑇] = [2,2,2, 

2,2,2,2,2,2,2; 1] 
12.90 8.45 317 

[𝑤1
1 , 𝑤2

1, 𝑤3
1, 𝑤4

1 , 𝑤5
1 , 𝑤6

1, 𝑤7
1, 𝑤8

1 , 
𝑤9
1, 𝑤10

1 ; 𝑤𝑇
2] = [1,1,1,1,1,1, 

1,1,1,1; 1] 
7.10 2.45 253 45% 71% 20% 
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presence of aging and circuit parasitics. 

In future work, heuristic approaches will be investigated to implement higher input 

𝑘-TFs with rational weights. In addition, we will investigate the impact of emerging 

technology on resistive devices such as memristors and spin torque transfer devices. 

Synthesis of complex circuit specifications will also be built upon existing 1-TF based 

synthesis methods. 
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CHAPTER 4 

MAXIMIZING THE NUMBER OF THRESHOLD LOGIC FUNCTIONS 

USING RESISTIVE MEMORY 

4.1 Introduction 

The generalized definition of TF in equation (3.2) is called 𝑘𝑡ℎ-order TF (𝑘-TF). A 

TG that implements a 𝑘-TF is also called 𝑘-TG. Observe that when 𝑘 = 1, equation (3.2) 

simplifies to equation (3.1). The latter is also called 1-TF, and its implementations have 

been studied extensively in the literature [50-55] and [57-59], among others. As 

mentioned in Chapter 3, a TG generally contains two input networks and a sensor [104]. 

Each input network consists of several components connected in parallel. Every 

component implements a weight value. 

For each input pattern, some input components are active while the threshold 

component is always active. The binary output of the TG is determined by the sensor, 

which compares the currents (current mode TG) or voltages (differential mode TG) of the 

sum of the active components of the two input networks, and amplifies the difference. 

In TG, the power dissipation depends primarily on two factors: the number of 

parallel components of the input networks, i.e., the transistor count of the input networks 

which is the total number of unit size transistors that implements weights, and the sensor 

size which is proportional to the transistor count of input networks [52]. The less the 

transistor count in input networks, the lower the power dissipation in a TG is. A reduced 

transistor count subsequently reduces the sensor size which, in turn, decreases further 

the power dissipation [52]. 
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Several interesting CMOS-based circuit concepts have been proposed in [50-55], 

[57-59], among others, for TG implementations for the special case of 1-TF. In these 

designs, each weight component is a single NMOS (or PMOS) transistor which is 

controlled by one input. This limits the number of functions that can be implemented as 

TGs. Authors in [83] showed recently that more functions can be implemented as TGs if 

a component contains multiple transistors (connected in series) where each is controlled 

by either one or two inputs (2-TFs). In fact, they showed in [83] that the transistor count 

of several 1-TGs can be reduced when implemented as 2-TGs. 

This chapter is the extention of Chapter 3, and proposes a new method to 

implement efficiently the 𝑘-weight components in 𝑘-TGs using non-volatile resistive 

memories (memristors). The approach has been implemented for 1 ≤ 𝑘 ≤ 4. Memristors 

are used as the weight components instead of using transistors as weights. The 

resistance value of a memristor is called its memristance, and the range of memristance 

is used to define different weight values. We call such gates 𝑘𝑡ℎ-order memristive TG (𝑘-

mTG). This method of weight implementation reduces significantly the transistor count of 

the input networks. The presented work is an extended version of the abstract in [87]. 

Many memristive architectures have been proposed in the literature to implement 

1-mTGs [77]. The approaches in [48], [76], [88-91], among others, use different 

memristance values to implement weights. An advantage of these approaches as well as 

the proposed design in this paper is that the memristor can be programmed to implement 

alternative functions and, can be used for rapid prototyping [79, 92, 93]. When considering 

an upper bound on transistor count, the proposed approach, which benefits from higher 

order weight components, implements more functions as 𝑘-mTG than the existing 1-mTG 
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approaches in [48], [76], [88-91]. The difference in the transistor count is due to 

architectural considerations that are orthogonal to the goal of this chapter. For example, 

the approaches in [50], [79] use memristors in order to increase 1-TG robustness but the 

weights were implemented in CMOS technology. The proposed method attempts to 

reduce the transistor count on the input networks using mTG to implement weights, and 

this is an orthogonal design object. The proposed method is applicable to any 1-mTG 

method with a specific sensor component. 

In order to demonstrate the impact of memristive 𝑘-weights in terms of area, power 

dissipation, and delay, this chapter considers without loss of generality on the current-

mode TG (CTG) implementation in [52]. 

This chapter is organized as follows. Section 4.2 provides preliminaries and 

describes briefly the existing TG implementations. The memristive implementation of 𝑘-

TFs is proposed in Section 4.3. Section 4.4 provides experimental results, and Section 

4.5 concludes the paper. 

 

4.2 Preliminaries  

This section provides with preliminaries on bipolar metal-oxide memristors and 

overviews on TFs and their traditional CMOS-based and memristive TG implementations. 

4.2.1 Bipolar metal-oxide memristors 

This chapter assumes bipolar metal-oxide memristors. Accurate models for this 

memristor behavior have been developed in [15, 94-96]. This memristor is a two-terminal 

device that is formed by a metal-oxide-metal thin film sandwiched between two electrodes 

[1, 3]. Bipolar metal-oxide memristors are variable resistors. Resistance switching in such 
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memristors relates to the formation or partial dissolution of the nanoscale conducting 

filament. This filament changes due to the drift and diffusion direction of the mobile oxygen 

anions and oxygen vacancies created under Joule heating and electric fields [29]. 

The memristor is written (or programmed) by biasing positive and negative 

voltages across the electrodes. By applying a positive (negative) voltage across the 

device, the total resistance of the device decreases (increases) [21, 30]. Let 𝑅𝑂𝑁 and 𝐼𝑚𝑎𝑥 

denote the minimum possible resistance value and its corresponding current, 

respectively. Similarly, let 𝑅𝑂𝐹𝐹 and 𝐼𝑚𝑖𝑛 denote the maximum possible resistance value 

and its corresponding current, respectively. Figure 4.1 shows the conductivity and 

resistivity transition behavior of a memristor during writes (write operations) with positive 

and negative pulses, ±𝑉(𝑡). This behavior is accurately reflected by several models such 

as [15, 94], among others. 

As shown in Figure 4.1, when applying a pulse (either positive or negative) to the 

memristor, the device does not switch immediately, and waits for a random time. This is 

due to the stochastic nature of the filament formation. The difference between the 

application time of the write pulse and the time that the device starts to switch is called 

the wait (switching) time [16, 35, 97]. During the wait time, which varies from cycle-to-

cycle, the current and resistivity do not practically change and is considered to be fixed 

[35].  

When applying a read voltage, the current and resistivity change after the wait 

time. The resistivity change is called memristor leakage and may affect the functionality 

of current-based mTGs. Based on the stochastic behavior of the filament, it may occur 

(worst-case scenario) that there is leakage each time the gate operates. However, the 
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resistivity switching time is in milliseconds whereas the gate delay is in picoseconds. 

Therefore, reprogramming (weight tuning) to combat the memristor leakage is only 

required after millions of mTG operation cycles [98-101]. In fact, programming is done 

periodically in order to ensure that there is no discrepancy in the memristive value due to 

leakage from frequent read operations.  

Filament variability may result into imprecise memristance value. This chapter 

assumes robust programming methods, such as in [95] and [101], that program the 

memristor precisely to the targeted resistance with negligible error (less than 1%), and 

thus cope with filament variability. 

4.2.2 CMOS-based and memristive threshold logic gates 

The concept of 𝑘-TF and its operation is explained with an example.  

              

        (a) With negative pulse.               (b) With positive pulse. 

Figure 4.1. Resistivity and current behavior for positive and negative writes 

for a bipolar metal-oxide memristor with 𝑅𝑂𝑁=5KΩ, 𝑅𝑂𝐹𝐹=5MΩ, ±𝑉 = 1𝑉, 

using [15, 94]. 
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Example 1: Consider a five input 3-TF 𝐹1 with non-zero weight configuration 

{𝑤1, 𝑤2, 𝑤3, 𝑤3,4,5; 𝑤𝑇} = {2, 2, 4, −2; 3}. 1-weight 𝑤𝑖, 1 ≤ 𝑖 ≤ 3, is active when 𝑥𝑖 = 1, and 

the 3-weight 𝑤3,4,5 is active when 𝑥3 ∙ 𝑥4 ∙ 𝑥5 = 1. For a given input pattern {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} 

= {0, 1, 1, 0, 0}, we get (2 ∙ 0) + (2 ∙ 1) + (4 ∙ 1) + (−2 ∙ 1 ∙ 0 ∙ 0) = 6 > 3. Hence, for the 

above input pattern, 𝐹1 evaluates to logic one. Similarly, for input pattern {0, 0, 1, 1, 1}, we 

get (2 ∙ 0) + (2 ∙ 0) + (4 ∙ 1) + (−2 ∙ 1 ∙ 1 ∙ 1) = 2 < 3, and 𝐹1 is logic zero. □ 

In CMOS-based TG designs, parallel weight components are implemented with 

NMOS (or PMOS) transistors [50-55] and [57-59]. The area of a transistor with width 𝑤 ∙

𝑋 is practically the same as 𝑤 minimum size transistor. Let 𝑋 denote the width of a 

minimum size transistor, and 𝐼 be the active current through it. Each transistor implements 

a 1-weight with value 𝑤 when its width and current are 𝑤 ∙ 𝑋 and 𝑤 ∙ 𝐼, respectively. The 

gate of the transistor is connected to an input. The gate of the NMOS transistor for the 

threshold is connected to the power supply (it is active for all input patterns). All transistors 

have the same length which is determined by the used technology. Therefore the 

transistor count for such gates is 𝑤𝑇 + ∑ 𝑤𝑖
𝑛
𝑖=1 , which is the total sum of threshold and 

input weights.  

For higher order components, a CMOS-based 𝑘-weight with value 𝑤 is 

implemented with 𝑘 transistors of the same size which are connected in series [83].  The 

size of each transistor is 𝑘 ∙ 𝑤 ∙ 𝑋, and the current through it is 𝑤 ∙ 𝐼. The transistor gates 

are connected to 𝑘 TG inputs [83], and the transistor count of such component is 𝑘2.  

The transistor count reduces to 𝑛 + 1, independent of weight values, when weights 

are implemented with memristors [48, 76]. Each weight component consists of a 

memristor and a minimum size NMOS (or PMOS) transistor connected in series. Let 𝐼′ 



 

79 
 

be the active current through a memristive weight component when memristor is assigned 

to a memristance value 𝑅𝑚𝑎𝑥. Any weight with value 𝑤 can be implemented by 

programming the memristor to memristance 
𝑅𝑚𝑎𝑥

𝑤⁄  so that the current through this 

component becomes 𝑤 ∙ 𝐼′. The transistor count is always one and does not relate to the 

weight values. 

The significant transistor count reduction in mTGs results into lower power 

dissipation [48]. Moreover, the sensor size can be decreased because of the less effective 

capacitance of the input networks on the output nodes [82]. This reduces further the 

power dissipation without losing performance. Consider the following example. 

Example 2: Consider the 4-variable function 𝐹2 = 𝑥4𝑥3 + 𝑥3𝑥2 + 𝑥3𝑥1 + 𝑥2𝑥1. This 

function is a 1-TF with weight configuration 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4;  𝑤𝑇] = [4,4,6,2; 7]. Note 

that for implementation purposes, weights are considered to be integers, and the equality 

is removed from equation (3.2). Figure 4.2 shows the CMOS-based CTG [52] and 

memristive CTG [76] implementations of 𝐹2. Let 𝑋 denote the size of a minimum width 

transistor to implement a unit integer weight. The total transistor count reduces from 23 

to 5 when implementing 𝐹2 as a memristive CTG. □ 

A small fraction of TFs are 1-TFs [58]. This limits the impact of TGs in digital circuit 

synthesis. In order to identify more threshold functions, we consider the generalized 

higher order TF definition described in equation (3.1), and we modify the input network of 

the existing mTGs to implement efficiently such TFs. 

 

4.3 Generalized memristive threshold logic gates 

In the proposed mTG implementation, any 𝑘-weight is implemented by 𝑘 minimum 
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size transistors and a memristor, all connected in series. Therefore, the transistor count 

of any 𝑘-weight with value 𝑤 is 𝑘, and the active current through it is 𝑤 ∙ 𝐼. This current 

value is enforced with appropriate resistivity. This way, the transistor count of the gate 

reduces significantly which, in turn, reduces the power of the gate. A reduced transistor 

count subsequently reduces the sensor size which, in turn, decreases further the power 

dissipation [52]. Figure 4.3 shows the 𝑚-weight components, and their transistor count 

for 1 ≤ 𝑚 ≤ 𝑘. 

In order to determine if a function is a 𝑘-TF we form an Integer Linear Programming 

(ILP) constraint per input pattern using the right-hand side of equation (3.2) according to 

the binary evaluation of the function for the pattern [52, 83]. The transistor count ratio of 

a memristive 𝑘-weight with value 𝑤 over a memristive 1-weight with the same value is 

called the penalty factor. In order to obtain minimum possible transistor count, the ILP 

must minimize quantity 

         

(a)                                                                          (b)              

Figure 4.2.  The Current mode TG (CTG) implementations for function 𝐹2 in 

example 2 (a) CTG as in [52] (b) memristive CTG as in [76]. 
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1 ∙ ⌈
|𝑤𝑇|

𝑈
⌉ + 1 ∙ ∑ ⌈

|𝑤𝑖1|

𝑈
⌉

𝑛

𝑖1=1

+ 2 ∙ ∑ ∑ ⌈
|𝑤𝑖1,𝑖2|

𝑈
⌉

𝑛

𝑖2=2

𝑛−1

𝑖1=1

+⋯+ 𝑘

∙ ∑ ∑ … ∑ ⌈
|𝑤𝑖1,𝑖2,…,𝑖𝑘|

𝑈
⌉

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

 

(4.1) 

where 𝑈 is the upper bound on each weight component, ⌈𝑥⌉ denotes the ceiling function 

which results into the least integer that is greater than or equal to 𝑥, and |𝑤𝑥| denotes the 

absolute value for each weight 𝑤𝑥, and 𝑤𝑥 ∈ {𝑤𝑇 , 𝑤𝑖1 , 𝑤𝑖1,𝑖2 , … , 𝑤𝑖1,𝑖2,…,𝑖𝑘}. 

The performance of each CMOS transistor is impacted by process variations. Also 

the memristance changes over time due to memristor leakage. These factors may modify 

the designed weight and change the functionality of the mTG. Furthermore, weight values 

should be assigned to appropriate memristance values so that the leakage current of any 

inactive weight is negligible when compared to the active current of a unit weight. The 

following show how to assign resistive weights that tolerate weight variations.  

 

Figure 4.3.  Memristive 𝑚-weight components for 1 ≤ 𝑚 ≤ 𝑘. 
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Let constant value 𝐶 denote the maximum weight deviation and let |𝑤| denote the 

absolute value of weight 𝑤. Let 𝑤𝑖1,𝑖2,…,𝑖𝑚 denote a 𝑚-weight, 1 ≤ 𝑚 ≤ 𝑘. The pattern 

dependent inequalities of the ILP are rewritten as 

∑(𝑤𝑖1,𝑖2,…,𝑖𝑚 − 𝐶 ∙ |𝑤𝑖1,𝑖2,…,𝑖𝑚|) 𝑥𝑖1 ∙ 𝑥𝑖2 … ∙ 𝑥𝑖𝑚
∀𝑚

> 𝑤𝑇 + 𝐶 ∙ |𝑤𝑇| (4.2) 

when function evaluates to 1, and for the remaining input patterns as  

∑ (𝑤𝑖1,𝑖2,…,𝑖𝑚 + 𝐶 ∙ |𝑤𝑖1,𝑖2,…,𝑖𝑚|)𝑥𝑖1 ∙ 𝑥𝑖2 … ∙ 𝑥𝑖𝑚 < 𝑤𝑇 − 𝐶 ∙ |𝑤𝑇|

∀𝑚

 (4.3) 

The above may only change the total sum of weights. For example, the weight 

configuration of 𝐹1 in Example 1 considering 𝐶 = 5% becomes 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] 

= [2, 3, 5, 5, 5; 6]. Extensive experimental evaluation (see Section 4.4) shows that the 

value of 𝐶 does not exceed 5%. The following two examples illustrate the concept of 𝑘-

TF and the ILP-based method to identify a 𝑘-TF considering 𝐶 = 8%. 

Example 3: Consider a 4-input function 𝐹3 = 𝑥1𝑥2 + 𝑥3𝑥4 with a set of all unknown 

weights 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2, 𝑤1,3, 𝑤1,4, 𝑤2,3, 𝑤2,4, 𝑤3,4; 𝑤𝑇]. Table 4.1 lists the 

inequalities of 𝐹3 based on the 𝑘-TF definition when 𝑘 = 2. For an input pattern, weight 𝑤 

(either 1-weight or 2-weight) appears in the inequality when all its input signals evaluate 

to 1. The objective function for a 2-TF is to minimize quantity ⌈
|𝑤𝑇|

10
⌉ + 1 ∙ ∑ ⌈

|𝑤𝑖|

10
⌉4

𝑖=1 + 2 ∙

∑ ∑ ⌈
|𝑤𝑖,𝑗|

10
⌉4

𝑗=i+1
3
𝑖=1  considering weights are in the range [-10, +10]. For the set of constraints 

listed in Table 4.1, an optimum solution is 𝑤 = [0,0,0,0,2,0,0,0,0,2; 1]. □ 

Example 4: Function 𝐹4 = 𝑥1𝑥2 + (𝑥1 + 𝑥2)𝑥3𝑥4𝑥5 is neither an 1-TF nor 2-TF. It is 

a 3-TF and the weight configuration to implement as a memristive current mode 3-TG is 

𝑤 = [𝑤1, 𝑤2, 𝑤3,4,5; 𝑤𝑇] = [3, 3, 2; 4]. 
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Figure 4.4 shows the CTG implementation of 𝐹4 using memristors when 𝑘 = 3. In 

Figure 4.4, all transistors of input networks are minimum size transistors. □ 

 

4.4 Experimental results 

In order to evaluate the proposed memristive approach in terms of area, power 

dissipation, and delay, we implemented 𝑘-weights with value 𝑤, 1 ≤ 𝑘 ≤ 4 and 1 ≤ 𝑤 ≤

10, using the Berkeley Predictive Technology Models (PTM) for 45nm CMOS transistors 

[85]. For each weight value, the memristor was assigned to a memristance value so that 

Table 4.1. The Truth Table and ILP Constraints for 𝐹3 Considering 1-weights and 2-

weight and 𝐶 = 8%. 

Truth Table 

Inequalities Input Pattern 
(𝑥1𝑥2𝑥3𝑥4) 

𝐹3 

𝑃0 0000 0 0 < 0.92 ∙ 𝑤𝑇 

𝑃1 0001 0 1.08 ∙ 𝑤4 < 0.92 ∙ 𝑤𝑇 

𝑃2 0010 0 1.08 ∙ 𝑤3 < 0.92 ∙ 𝑤𝑇 

𝑃3 0011 1 0.92 ∙ (𝑤3 +𝑤4 + 𝑤3,4) ≥ 1.08 ∙ 𝑤𝑇 

𝑃4 0100 0 1.08 ∙ 𝑤2 < 0.92 ∙ 𝑤𝑇 

𝑃5 0101 0 1.08 ∙ (𝑤2 +𝑤4 + 𝑤2,4) < 0.92 ∙ 𝑤𝑇 

𝑃6 0110 0 1.08 ∙ (𝑤2 + 𝑤3 +𝑤2,3) < 0.92 ∙ 𝑤𝑇 

𝑃7 0111 1 0.92 ∙ (𝑤2 + 𝑤3 + 𝑤4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4) ≥ 1.08 ∙ 𝑤𝑇 

𝑃8 1000 0 1.08 ∙ 𝑤1 < 0.92 ∙ 𝑤𝑇 

𝑃9 1001 0 1.08 ∙ (𝑤1 +𝑤4 + 𝑤1,4) < 0.92 ∙ 𝑤𝑇 

𝑃10 1010 0 1.08 ∙ (𝑤1 + 𝑤3 +𝑤1,3) < 0.92 ∙ 𝑤𝑇 

𝑃11 1011 1 0.92 ∙ (𝑤1 + 𝑤3 + 𝑤4 + 𝑤1,3 + 𝑤1,4 + 𝑤3,4) ≥ 1.08 ∙ 𝑤𝑇 

𝑃12 1100 1 0.92 ∙ (𝑤1 + 𝑤2 +𝑤1,2) ≥ 1.08 ∙ 𝑤𝑇 

𝑃13 1101 1 0.92 ∙ (𝑤1 + 𝑤2 + 𝑤4 + 𝑤1,2 + 𝑤1,4 + 𝑤2,4) ≥ 1.08 ∙ 𝑤𝑇 

𝑃14 1110 1 0.92 ∙ (𝑤1 + 𝑤2 + 𝑤3 + 𝑤1,2 + 𝑤1,3 + 𝑤2,3) ≥ 1.08 ∙ 𝑤𝑇 

𝑃15 1111 1 0.92 ∙ (𝑤1 +𝑤2 + 𝑤3 + 𝑤4 + 𝑤1,2 + 𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4) ≥ 1.08 ∙ 𝑤𝑇 

minimize: ⌈
|𝑤𝑇|

10
⌉ + 1 ∙∑⌈

|𝑤𝑖|

10
⌉

4

𝑖=1

+ 2 ∙∑ ∑ ⌈
|𝑤𝑖,𝑗|

10
⌉

4

𝑗=i+1

3

𝑖=1
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the current through that component was proportional to its weight value. We experienced 

with the popular TiO2 bipolar metal-oxide memristors for which the VTEAM model in [15] 

allows for accurate simulations. The length of a memristor and its memristance 

boundaries 𝑅𝑂𝑁 and 𝑅𝑂𝐹𝐹 were set to 5nm, 5KΩ, and 5MΩ, respectively. The remaining 

memristor parameters were set as in [35]. VDD was set to 1𝑉. 

Figure 4.5 provides details on resistivity values to implement 𝑘-weights. For 

example, a resistivity of 450KΩ implements weight 4 whereas 300KΩ implements weight 

6. 

All function implementations listed in this section can tolerate the maximum weight 

deviation 𝐶 due to process variations in transistor parameters and any memristor leakage. 

Table 4.2 shows the current (weight) variation for memristive 𝑘-weight components 

considering 3% variation in width and length of transistors in 45nm technology. We also 

considered that there might be an additional 3% weight variation due to memristor 

    

Figure 4.4.  The memristive Current mode TG (CTG) implementations for 

function 𝐹3 in example 3. 
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leakage over time as well as any imprecise weight programming using [95, 101]. SPICE 

simulations were conducted for each 𝑘-weight component using the Berkeley Predictive 

Technology Models (PTM) for 45nm CMOS transistors [76] and VTEAM model in [15] for 

memristors with 𝑅𝑂𝑁=5KΩ, 𝑅𝑂𝐹𝐹=5MΩ. The voltage difference over components was set 

to 1V. The simulations showed that the current (weight) variation of memristive 𝑘-

weights, 1 ≤ 𝑘 ≤ 4, was lower that 8% when considering 3% variation in all transistor 

parameters combined with an additional 3% variation in weight due to leakage or 

imprecise programming. Therefore, 𝐶 was set to 8% in all following experiments. Note 

that the length and area of the memristors do not affect the functionality of the mTGs 

because 𝑅𝑂𝑁 and 𝑅𝑂𝐹𝐹 are not used as weights. 

The following compare the transistor count, sensor size, power dissipation, and 

delay of the proposed mTG implementation of randomly selected 𝑘-TFs with the CMOS-

based implementation in [83]. All functions were described by the weight configuration 

set and implemented using the current mode TG in [52] considering 𝑘 ≤ 4. The 𝑉𝐷𝐷 was 

set to 1V. The applied voltages for the clock 𝑐𝑙𝑘 were 1V and 0V for high voltage and low 

voltage, respectively. The applied load was a minimum size CMOS inverter which had a 

   

Figure 4.5. Different resistivity values to implement memristive 𝑘-

weights with value 𝑤, for 1 ≤ 𝑤 ≤ 10 and 1 ≤ 𝑘 ≤ 4. 
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PMOS transistor with width 240nm, and a NMOS transistor with width 120nm. The length 

of all the PMOS and NMOS transistors were set to 45nm. The optimum sensor size was 

obtained using the approach in [52]. 

The first Column in Table 4.3 lists the functions that are represented by the 

optimum (minimum transistor count) integer weight assignment. Columns two to five list 

the transistor count, sensor size, power dissipation, and the delay of the TG 

implementation in [83] for each function. Note that the gate delay corresponds to the 

critical input configurations where the difference between the sum of active weights 

between two input networks is minimal, and at the same time the total number of active 

components is minimum. Also, power dissipation corresponds to the average power 

(including leakage and dynamic) for all possible input patterns [12,102,103]. These values 

were obtained with SPICE simulations while considering corner cases by simultaneously 

varying the width and length of all transistors in input networks as well as the sensor part. 

Note that 𝑋 in column three denotes the size (area) of a minimum size transistor. Columns 

six to nine show similar results when considering each function is implemented by the 

proposed current mode higher order mTG implementation. The weights were 

Table 4.2.  Weight Variation for Memristive 𝑘-weight components, 1 ≤

𝑘 ≤ 4, considering 3% Variation in Width and Length of Transistors, and 

3% Variation in Memristor Leakage and Imprecise programming. 

Variation Source 
Current variation for 𝑘-weights 

1-weight 2-weight 3-weight 4-weight 

Transistor Width 2.40% 2.40% 2.28% 2.16% 

Transistor Length 2.16% 2.10% 2.04% 2.04% 

Memristor Leakage or 
Imprecise Programming 

3.0% 3.0% 3.0% 3.0% 

Total 7.56% 7.50% 7.32% 7.20% 
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implemented using the memristance values listed in Figure 4.5. 

SPICE simulations were conducted to observe the effect of current leakage 

through inactive parallel components. The sum of those currents could theoretically 

approach current from active parallel components and thus invalidate the functionality of 

the TG. It was observed that the current of an active unit weight was 40 times greater 

than the maximum leakage current of any inactive component. Simulations also showed 

that the sensor component operates correctly when higher order mTGs have up to 20 

parallel components. However, the maximum number of parallel components observed 

on any designed mTG never exceed 20, and rarely exceeded 15. Therefore all designed 

Table 4.3. Transistor Count, Sensor Size, Power Dissipation, and Delay of Randomly 

Selected 𝑘-TFs, 1 ≤ 𝑘 ≤ 4, in 45𝑛𝑚 Technology Using the CMOS Approach in [83] and 

the Proposed Memristive Approach. (𝑋 Denotes the Minimum Transistor Size.) 

Function  

[83] Proposed % Reduction 

TC 
Sensor 

size 
Power 
(µW) 

Delay 
(ps) 

TC 
Sensor 

size 
Power 
(µW) 

Delay 
(ps) 

TC 
Sensor 

size 
Power Delay 

[𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] = 

[4,2,2; 5] 
13 50 ∙ 𝑋 0.76 170 4 6 ∙ 𝑋 0.27 195 70% 88% 64% -14% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4; 𝑤𝑇] = 

[4,4,2,2; 9] 
21 50 ∙ 𝑋 0.76 178 5 6 ∙ 𝑋 0.27 208 76% 88% 64% -16% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6; 𝑤𝑇] = 

[4,4,10,−4,−8,−8; 5] 
43 72 ∙ 𝑋 0.97 205 7 6 ∙ 𝑋 0.27 215 83% 90% 72% -5% 

[𝑤1, 𝑤3, 𝑤2,3, 𝑤3,4; 𝑤𝑇] = 

[−6,4,−2,−2;−5] 
31 66 ∙ 𝑋 0.79 182 7 6 ∙ 𝑋 0.28 193 77% 90% 65% -6% 

[𝑤1, 𝑤1,3, 𝑤2,3; 𝑤𝑇] = 

[2, −2,2; 1] 
19 50 ∙ 𝑋 0.81 187 6 8 ∙ 𝑋 0.28 220 68% 84% 65% -17% 

[𝑤1, 𝑤2, 𝑤3, 𝑤1,4; 𝑤𝑇] = 

[2,2,4,2; 3] 
19 50 ∙ 𝑋 0.82 187 6 8 ∙ 𝑋 0.28 202 68% 84% 66% -8% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤4,5, 𝑤1,2,3; 𝑤𝑇] 

= [2,2, −2,−2,4, −2,2; 1] 
39 152 ∙ 𝑋 1.03 236 11 8 ∙ 𝑋 0.29 233 71% 94% 72% 1% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2, 𝑤1,3, 𝑤1,2,3; 𝑤𝑇] 

= [4,2,2,−2, −2,−2,−2; 3] 
47 166 ∙ 𝑋 1.48 259 12 11 ∙ 𝑋 0.30 245 75% 93% 79% 5% 

[𝑤3, 𝑤1,2, 𝑤2,4, 𝑤1,2,4,5; 𝑤𝑇] = 

[−2,2,−4,2;−1] 
59 470 ∙ 𝑋 3.96 312 10 11 ∙ 𝑋 0.32 278 83% 97% 92% 11% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2,3,4; 𝑤𝑇] = 

[2,2,2,2, −4; 5] 
77 450 ∙ 𝑋 4.55 320 9 10 ∙ 𝑋 0.32 290 88% 97% 93% 9% 
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mTGs operated correctly. In fact, it was observed that the higher order CMOS-based 

implementation of every designed function (as in [83]) also operated correctly. 

The last four columns in Table 4.3 list the percentage reduction in transistor count, 

sensor size, power dissipation, and delay, respectively, when compared to the CMOS-

based current-mode implementation in [83]. The listed results show a significant decrease 

in area and power dissipation and approximately same delay due to the memristive 

weights. 

Table 4.4 also lists detailed results on area, power dissipation (leakage and 

dynamic) and delay obtained from post-layout simulations for all functions in Table 4.3. 

We considered 45nm technology. Post-layout simulation has taken in to consideration 

circuit parasitics which were extracted from the layout of the TG. 

Columns two, five, and eight in Table 4.4 provides with details on the layout area 

savings for all functions in Table 4.3. Observe that the reduction in layout area is similar 

to the transistor count reduction in the input networks of those functions, as obtained by 

the proposed ILP-based synthesis method. 

Columns three, six, and nine show the power-related results, and columns four, 

seven, and ten list the delay-related results. Again, observe that the reduction in power 

and delay by the proposed method, reflect the savings that were shown earlier in Table 

4.3. In fact, post-layout simulation showed that the saving in power is even higher than 

what was shown at the synthesis level. Any difference in reported average power 

dissipation among Tables 4.3 and 4.4 is due to parasitics. 

Furthermore, the value of the constant 𝐶 that was set to 8% accommodates circuit 

parasitics due to interconnections, and all functions operated correctly. Observe that the 
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reported post-layout simulations in Table 4.4 show that the savings in power and delay 

are similar to those reported for pre-layout simulations in Table 4.3. The results in Tables 

4.3 and 4.4 clearly demonstrate the significance of using memristive 𝑘-weights. 

The following evaluates the flexibility of the proposed order mTG design in terms 

of the number of implementable functions, and compare with existing CMOS-based 

approach in [83] and memristive approaches in [48, 76, 89, 90]. The ILP-based approach 

in [83] has been modified as explained in previous section and implemented in the C++ 

language on an Intel Xenon 2.4GHz with 8GB memory. To evaluate the impact, we 

examined non-scalable functions with up to fifteen inputs. (An 𝑛-input non-scalable 

Table 4.4. Post-Layout Results: Chip Area, Power Dissipation, and Delay of Randomly 

Selected 𝑘-TFs, 1 ≤ 𝑘 ≤ 4, in 45𝑛𝑚 Technology Using the CMOS Approach in [83] 

and the Proposed Memristive Approach. 

Function 

[83] Proposed % Reduction 

Area 
(µm2) 

Power 
(µW) 

Delay 
(ps) 

Area 
(µm2) 

Power 
(µW) 

Delay 
(ps) 

Area Power Delay 

[𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] = 

[4,2,2; 5] 
11.00 1.68 280 1.96 0.67 285 82% 60% 0% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4; 𝑤𝑇] = 

[4,4,2,2; 9] 
11.56 1.96 310 1.96 0.76 360 83% 61% -16% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6; 𝑤𝑇] = 

[4,4,10,−4,−8,−8; 5] 
14.60 1.90 415 2.16 0.70 456 85% 63% -10% 

[𝑤1, 𝑤3, 𝑤2,3, 𝑤3,4; 𝑤𝑇] = 

[−6,4,−2,−2;−5] 
13.30 1.75 405 2.16 0.71 446 84% 59% -10% 

[𝑤1, 𝑤1,3, 𝑤2,3; 𝑤𝑇] = 

[2,−2,2; 1] 
11.56 1.96 250 2.40 0.68 260 79% 65% -4% 

[𝑤1, 𝑤2, 𝑤3, 𝑤1,4; 𝑤𝑇] = 

[2,2,4,2; 3] 
11.56 1.98 296 2.40 0.76 308 79% 62% -4% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤4,5, 𝑤1,2,3; 𝑤𝑇] 

= [2,2,−2,−2,4,−2,2; 1] 
20.10 2.27 370 2.55 0.82 381 87% 64% -3% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2, 𝑤1,3, 𝑤1,2,3; 𝑤𝑇] 

= [4,2,2,−2,−2,−2,−2; 3] 
20.26 3.40 476 3.36 0.90 478 83% 73% 0% 

[𝑤3, 𝑤1,2, 𝑤2,4, 𝑤1,2,4,5; 𝑤𝑇] = 

[−2,2, −4,2;−1] 
62.88 11.84 503 3.36 1.15 468 94% 90% 7% 

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2,3,4; 𝑤𝑇] = 

[2,2,2,2,−4; 5] 
62.50 12.01 542 3.36 1.22 525 94% 90% 3% 
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function requires no less than 𝑛 non-empty levels of variables in the Binary Decision 

Diagram (BDD) representation for some ordering of the variables [58].) Weight values 

were in the range [-10, +10]. 

Table 4.5 presents non-scalable 𝑛-input TFs can be implemented different TG 

approaches considering that the transistor count for each gate is bounded to 4𝑛. This was 

set as a bound to the objective function for any ILP formulation. The first column in Table 

4.5 shows the number of inputs (value of 𝑛). For 1 ≤ 𝑛 ≤ 4, we considered all possible 

functions. For functions with 𝑛 > 4, the entries in Table 4.5 were obtained by sampling 

randomly 10 thousand functions. In particular, for 𝑛 > 4, the 2𝑛 bit output vector of an 𝑛-

input function was filled with either 0 or 1 at randomly selected positions (determined by 

randomly selecting an integer mod 2𝑛), and so that the number of ones in the function 

obeyed the distribution of functions based on this property. (For example, the number of 

5-input functions with 16 ones in the output bit vector is approximately 10 times more than 

the number of 5-input functions with 10 ones.) In order for the experiment to have more 

statistical significance, we only considered non-scalable functions, and when a function 

is generated, we applied the procedure described earlier in this section to determine that 

it is non-scalable. (It is asserted that the distribution of non-scalable 𝑛-input functions 

based on the number of ones in their output bit vector is the same as the one described 

earlier for 𝑛-input functions.)  

The second column in Table 4.5 lists the number of 𝑘-TFs implemented by using 

CMOS-based method in [83] for 𝑘 = 4. The third column shows the number of 1-mTGs 

by the approaches in [48, 76]. Column four lists the number of 1-mTGs with the fixed 

resistivity approaches in [50, 79]. Column five lists the number of 𝑘-TFs implemented by 
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using the proposed mTG approach for 𝑘 = 4. The transistor count of any function in Table 

4.5 was limited to 4𝑛. For all examined functions, the value of 𝐶 was set to 8% to take 

into consideration that memristor and transistor sizes may vary due to process variations. 

The results in Table 4.5 show that more functions can be implemented as single gates 

when weights are implemented by higher order memristive components. 

The remainder of the chapter provides experimental results on 4-TFs without 

explicitly limiting the transistor count. Each function was implemented with [83] and the 

proposed memristive approach. We considered functions as in Table 4.5. For each TF 

we counted the number of transistors required. Table 4.6 shows that the proposed 

method requires significantly less transistors when compared to [83]. Each row lists 

results for different number of inputs. 

Table 4.5. Number of 𝑛-input 𝑘-TFs Using 4𝑛 Transistors. 

𝑛 [83] [48], [76] [50], [79] Proposed 

1 2 2 2 2 

2 8 8 8 10 

3 72 72 72 218 

4 37 1536 30 11514 

5∗ 18 505 12 10970 

6∗ 0 19 0 8031 

7∗ 31 78 2 18961 

8∗ 5 7 0 19922 

9∗ 3449 368 210 19320 

10∗ 1653 19 7 18998 

11∗ 2452 35 11 19936 

12∗ 1204 307 307 18725 

TOTAL 8931 2956 661 146607 

*     Out of 20 thousand randomly selected non-scalable functions. 
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Column two in Table 4.6 lists the total number of functions examined for a given 

value of 𝑛. Let Δ denote the percentage reduction in TG transistor count of the proposed 

method over [83]. Columns three shows the number of TFs that were implemented with 

transistor count savings in the range 50%-60% over [83]. Column four lists the number of 

functions where the savings are in the range 60%-75%, column five list function with 

savings in the range 75%-90%, and, finally, last column gives the number of functions 

when the savings are no less than 90%. These columns were generated based on 

different ranges of Δ.  

The results in Table 4.6 show that many 𝑘-TFs were implemented as proposed 

mTG with lower transistor count, and hence with lower area and power dissipation. 

Table 4.6. Number of 4-TFs That Can Be Implemented With Lower 

Transistor Count Using Proposed Approach. 

𝑛 
𝑘-TF as in 

[83] 

Δ (percentage reduction in CTG transistor count) 

50%<Δ<60% 60%≤Δ<75% 75%≤Δ<90% Δ≥90% 

1 2 2 0 0 0 

2 10 8 2 0 0 

3 218 58 84 76 0 

4 65160 558 16551 47085 966 

5∗ 19820 87 6244 13470 19 

6∗ 20037 33 4372 15586 46 

7∗ 19979 72 5941 13951 15 

8∗ 19960 51 5557 14319 33 

9∗ 19364 256 7348 11697 63 

10∗ 20967 1008 6079 13761 119 

11∗ 19942 50 7392 12494 6 

12∗ 19894 70 5278 13720 826 

TOTAL 225353 2253 64848 156159 2093 

*     Out of 20 thousand randomly selected non-scalable functions. 

 



 

93 
 

Approximately 98% of selected 𝑘-TFs were implemented with approximately 75% lower 

transistor count.  

 

4.5 Conclusion 

A memristive-based approach has been presented to implement many more 

functions as threshold logic gates with less transistor count when compared to CMOS-

based implementations. Experimental results show that more than 95% of threshold 

functions can be implemented with approximately 75% lower transistor count, 90% lower 

sensor size, and 70% less power consumption. 
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CHAPTER 5 

RELIABLE MEMRISTIVE NEURAL NETWORK 

5.1 Introduction 

Artificial neural networks are used in machine learning applications and intelligent 

systems where human intelligence is required for pattern matching, character and speech 

recognition, and big data management [106-110]. They consist of an input layer, an output 

layer and multiple hidden layers [111]. Each layer is made up of single neurons (called 

perceptrons) which usually perform two operations: convolution and activation. 

Convolution calculates the sum of inner products (multiplications) of inputs by their 

corresponding weights, and activation assigns the neuron output by comparing the sum 

of products with a predetermined threshold value [112, 113]. If the sum of the convolution 

is greater than the threshold weight, then the output of the neuron is logic one otherwise 

it is logic zero. The output of neuron 𝑗 is denoted by 𝑦𝑗 [107, 112-114] 

𝑦𝑗(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)  =

{
 
 

 
 
1          𝑖𝑓          ∑𝑤𝑖,𝑗 ∙ 𝑥𝑖

𝑛

𝑖=1

> 𝜃𝑗

0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

, (5.1) 

Where each 𝑥𝑖, 𝑖 = 1,… , 𝑛, is an analog external input, 𝑤𝑖,𝑗 is the synaptic weight 

corresponding to the 𝑖𝑡ℎ input of 𝑗𝑡ℎ neuron, and 𝜃𝑗 is the threshold weight (threshold 

value) of neuron 𝑗. A training process achieves the synapse weight set of each neuron 

[107, 114]. 

Neuron operations are inherently parallel and are typically performed on graphic 

processing units (GPUs) [115-118]. However, all neural network GPU-based 
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implementations methods on GPUs are very power hungry. Many neuromorphic 

architectures have been proposed recently to reduce the power dissipation, and increase 

performance. 

Approaches in [110-111, 118], among others, present efficient architectures using 

stochastic computing. The stochastic binary hybrid design in [119] splits the computation 

between different domains which can be used efficiently in near-sensor neural network 

applications. An energy/performance efficient technique on general purpose GPU 

architectures was proposed in [120]. It utilizes content addressable memory blocks in 

order to store highly frequent patterns and precomputed results. 

Memristors have been used recently to implement the synaptic weights [109, 112, 

121-122]. The programmable resistance value of a memristor is called its memristance, 

and the range of memristance is used to define different logic values and intermediate 

states. Memristors are typically placed very densely and are accessed using a crossbar 

array architecture. The crossbar architecture consists of two perpendicular sets of wires. 

There is one memristor at the intersection of each vertical and horizontal lines which are 

called the column and row, respectively. Each memristor is isolated from the others by a 

transistor connects in series to it. This prevents parallel formation of unwanted paths 

(called sneak-paths) in the crossbar architecture which may cause errors during read and 

write operations [97]. A memristor with its isolating transistor is called a cell. Each cell is 

accessed individually using row and column decoders. 

Figure 5.1 shows the MCA for feedforward NN as proposed in [126]. It consists of 

𝑛 rows and 2𝑚 columns. Each column pair in MCA consists of a low power interface 

module that generates the total synaptic current. This eliminates the additional voltage 
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converter required at each input of each layer as in [109, 124], therefore, it reduces power 

and hardware overhead.  

In Figure 5.1, the input is an array of 𝑛 real numbers 𝑋𝑖, 1 ≤ 𝑖 ≤  𝑛. All the numbers 

are in the range [0, 1]. The output of the 𝑗𝑡ℎ neuron 𝑦𝑖, 1 ≤ 𝑗 ≤ 𝑚 is a real value, and it is 

input to the next layer. Each synaptic weight 𝑊𝑖,𝑗 linking the 𝑖𝑡ℎ input and the 𝑗𝑡ℎ neuron 

consists of two adjacent memristors 𝑀𝑖,𝑗
+  and 𝑀𝑖,𝑗

−  in cells 𝐶𝑖,𝑗
+  and 𝐶𝑖,𝑗

− , respectively. Only 

one of these two memristors is in the off-state (highest possible resistivity). For instance, 

considering the 𝑗𝑡ℎ column pair, if the weight is positive, 𝑀𝑖,𝑗
+  is programmed to the specific 

weight value, and 𝑀𝑖,𝑗
−  is in the off-state. However, if the weight is negative, 𝑀𝑖,𝑗

−  is 

programmed to the weight value, and 𝑀𝑖,𝑗
+  is in the off-state. Each column in the crossbar 

array of Figure 5.1 calculates the partial weighted sum of either positive or negative 

convolutions and in part of a neuron. Let 𝐼𝑗
+ and 𝐼𝑗

− denote the synaptic current for the 

positive and negative convolutions, respectively, in the 𝑗𝑡ℎ column pair that is part of the 

 

Figure 5.1. Memristive crossbar array for feedforward NN as in [126] and the 

interface modules. 
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𝑗𝑡ℎ neuron. The difference between two 𝐼𝑗
+ and 𝐼𝑗

− is calculated by the interface module 

(IM). This is the 𝑗𝑡ℎ total synaptic current. 

It is observed that analog-based ANNs may result in erroneous computations due 

to transistor aging. In fact, the performance of the CMOS transistor in a cell 𝐶 is impacted 

by aging. In particular, Bias Temperature Instability (BTI), and to a lesser extent, dielectric 

breakdown as well as Hot Carrier Injections (HCI) shift the threshold voltage of the CMOS 

transistor causing the reduction in the drain current [97, 109, 119-122]. Therefore, the 

synaptic current reduces as CMOS component of the cell ages. This impacts the value of 

each convolution. We call this side effect as the cell aging effect. It is experimentally 

shown that cell aging impacts the computational accuracy of analog ANNs. 

This chapter presents a solution to this problem. This chapter enhances MCA 

columns with a calibration circuit to alleviate the cell-aging effect and maintain invariant 

sum of synaptic currents. The proposed approach uses a built-in current-based calibration 

circuit (CC) to restore the total synaptic (column) current. 

It should be mentioned that memristive leakage may also impact the value of 

convolutions. Techniques as in [98, 99], as well as the modifications of learning methods 

in [123, 125] can handle the memristor leakage by periodically updating the weight values, 

and, therefore memristive leakage is not the focus of this chapter. 

This chapter is organized as follows. Section 5.2 describes the current tuning 

mechanism that mitigate the cell aging effect. Section 5.3 provides with experimental 

results that show that cell aging may impact the reliability of crossbar-based 

neuromorphic applications. It also presents the experimental evaluation of the proposed 

architecture. Section 5.4 concludes the paper. 
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5.2 Enhanced architecture for improved reliability 

This section introduces an enhanced MCA based ANN architecture to improve 

reliability due to the cell aging effect. The MCA is enhanced by an extra row (the 

calibration row) and an extra column (the spare column). A built-in current-based 

calibration circuit (CC) is introduced to restore the total synaptic current. The CC is a 

current sensor that receives the ideal reference current for non-aged column and restores 

the reduced sensed current at each column to the ideal value. Figure 5.2 shows the 

enhanced MCA. 

We describe how the current is restored one column at a time. The column has 

𝑛 + 1 cells: 𝑛 cells that implement weights and one spare cell (calibration cell) for 

calibrating the current that is set initially in a high resistive state. Current calibration is 

done in three cycles. During the first cycle, all cells in the spare column are programmed 

sequentially to the same weight values as in target column. This is done by using any 

programming approach as in [98, 99]. During the second cycle, the target column is 

 

Figure 5.2. Enhanced ANN architecture including control and mapping 

unit for isolating the target column. 
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disconnected from the MCA, and the spare column is mapped to its address to ensure 

correct ANN functionality. The replacement and mapping process uses a built-in 

hardware, which implements the repair algorithm during the memory testing [127]. The 

target column is now disconnected from its neuron. During the last cycle, the restore 

operation applies to calibration cell in the target column. The memristance of this cell 

automatically assigns to a value so that the total current of the target column reflects the 

reference current. The restore operation in target column is online, and therefore, it does 

not interrupt the normal operation of the circuit. 

The built-in current-based CC is shown in Figure 5.3. It contains a current sensor 

and a feedback loop. When restoring the current, the target column 𝐶𝑗
+ is connected to 

the current sensor, a low read voltage 𝑉𝑟 is applied to the 𝑛 cells that implement weights, 

and a high write voltage 𝑉𝑤 is applied to the calibration cell. The current sensor compares 

the resulting current 𝐼𝑗
+ with a predetermined reference current 𝐼𝑗_𝑟𝑒𝑓

+ . If 𝐼𝑗
+ is less than 

𝐼𝑗_𝑟𝑒𝑓
+ , the output of the sensor is set to logic 0. During this time, 𝐼𝑗

+ increases as the 

calibration memristance decreases over time. The memristance continues to decrease 

until 𝐼𝑗
+ equals 𝐼𝑗_𝑟𝑒𝑓

+ . At that time, the output of the sensor changes to logic 1, and the 

feedback loop deactivates the restore operation. The latch in the feedback loop ensures 

stable operation. 

The current sensor contains a minimum size buffer, a sensor resistivity 𝑅𝑆, and an 

external sensor voltage 𝑉𝑆. Voltage 𝑉𝑆 in current sensor is controlled externally, and the 

resistor 𝑅𝑆 can be implemented either by a parallel network of resistors or by an additional 

memristor which can be programmed to any resistive value. During the normal mode of 

operation and the first two calibration cycles, enable signal 𝐸𝑟 is low; subsequently, the 
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current sensor is deactivated, and the output of the sensor (𝑂𝑠) has low voltage because 

of the pull-down resistivity 𝑅𝑝𝑑. During the restore operation (the third cycle), the control 

signal unit connects the target column to the current sensor through a multiplexor. In 

addition, the enable signal 𝐸𝑟 is high, and therefore, the sensor is active. When the restore 

operation starts, the voltage at node 𝑁 (𝑉𝑁) is expressed as 𝑉𝑁 = 𝑉𝑆 + 𝑅𝑆 ∙ 𝐼𝑗
+, and 

increases because 𝐼𝑗
+ increases. The calibration memristance decreases continuously 

until 𝐼𝑗
+ equals 𝐼𝑗_𝑟𝑒𝑓

+ . At this point, 𝑉𝑁 will be larger than half of bias voltage of the buffer, 

and therefore the output of the buffer changes to high voltage. 

When designing the sensor, the sensor resistivity 𝑅𝑆 and the voltages 𝑉𝑆 and 𝑉𝑟 

are determined so that 𝑉𝑁 =
𝑉𝐷𝐷

2
 when 𝐼𝑗(𝑡) = 𝐼𝑗_𝑟𝑒𝑓

+ , and by considering 𝑉𝐷𝐷 and ground 

as bias voltages for the buffer. The value of 𝐼𝑗_𝑟𝑒𝑓
+  is determined by SPICE simulation. 

Different 𝑅𝑆 and 𝑉𝑆 values can be used to sense various currents. (Note that 𝑉𝑆 < 0.5 <

𝑉𝑟 < 𝑉𝑤.) The precision in restoring the total current is directly proportional to the value 

of 𝑅𝑠. Delay and the noise sensor margins are determined by the delay and noise margins 

 

Figure 5.3. The circuitry of the proposed current-based calibration circuit. 
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of the buffer. Its noise margin also specifies the maximum number of cycles between 

every restore operation. 

The feedback loop in Figure 5.3 contains a two input AND gate, an inverter, and 

an edge-triggered latch. During the normal mode of operation, 𝐸𝑟 = 0, and the feedback 

signal 𝐹𝑗 as well as the output of the sensor block 𝑂𝑆 are initialized to 0. This operation is 

kept to be active until the output of sensor block changes to 1 (which means that the 

current 𝐼𝑗
+ of the cell 𝐶𝑗

+ is tuned). Then after, the signal 𝐹𝑗 changes to 1 immediately to 

deactivate the restore operation through the control unit. The current 𝐼𝑗
+ subsequently 

reduces to zero and forces 𝑂𝑆 to return immediately to 0. However, the Signal 𝐹𝑗 will be 1 

until 𝐸𝑟 being disable. 

Figure 5.4 shows the resistivity 𝑀𝑛+1,𝑗, current 𝐼𝑗
+ transitions, the pulse generated 

in the output of the current sensor block 𝑂𝑆, and the output of the feedback loop 𝐹𝑗 during 

restore operation applied to column 𝐶𝑗
+. As shown in Fig 5.4, 𝑂𝑆 changes to ‘1’, when the 

current 𝐼𝑗
+ is restored to the predetermined reference current. It changes again to ‘0’ when 

the feedback loop disconnects 𝑉𝑟 and 𝑉𝑤 from the target calibration cell. The time 

difference between the time that 𝑉𝑁 = 0.5 and the time that 𝐹𝑗 changes to ‘1’ is denoted 

by 𝑑𝑆. The time 𝑑𝑆 depends on the total delay of the sensor block and its feedback loop. 

During 𝑑𝑆, the current increases over its reference value. This increment determines the 

precision of the proposed current-based calibration circuit. The time 𝑑𝑆 depends strongly 

on the size of the implemented approach, which is fixed after post-silicon fabrication. 

However, the precision can be justified by 𝐼𝑗
+ transition rate during the restore operation, 

which in turn, relates to voltages 𝑉𝑤, and 𝑉𝑆. The accuracy increases with decrease in 

𝑉𝑤 − 𝑉𝑆. 
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The presented MCA enhancement may also reduce the time required to train the 

aged MCA for a new application by slightly modifying existing hardware-based training 

methods [123, 125]. Essentially, it maps any assigned memristor to appropriate value for 

aged product. Experimental evidence for the training speedup will be provided in future 

work. Finally, it is noted that aged transistors in the neurons N, the control unit, the 

decoder, and the column isolating circuit only impact the temporal characteristic of the 

components, and therefore, do not result in misclassification. In particular, it impacts 𝑑𝑠 

and hence, reduces tuning precision. However, this can be handled by assigning 

appropriate values to 𝑅𝑠 and 𝑉𝑠.  

 

5.3 Experimental results 

This section shows how CMOS aging effects the reliability of a memrisive-based 

ANN, and therefore, the proposed approach helps to mitigate the aging effect. We 

estimated the cell aging effect by assuming that the transistors were continuously under 

stress. We used the static aging model in [84] to implement aged transistors by assigning 

 

 
Figure 5.4. Timing diagram for signals 𝐸𝑟, 𝑂𝑠, and 𝐹𝑗 during the 

restore operation for target column 𝐶𝑗
+. 
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different threshold voltages. The VTEAM model [15] for TiO2 bipolar metal-oxide 

memristors was used during simulation. The length and memristance boundaries (𝑅𝑂𝑁 

and 𝑅𝑂𝐹𝐹) were set to 5nm, 5KΩ, and 5MΩ, respectively. Other memristor parameters 

were set as in [35]. Switching time for such memristor is approximately 10µs using applied 

voltage ±1𝑉. 

Memristance 𝑀𝑖,𝑗 at cell 𝐶𝑖,𝑗 was implemented with a 5-bit memristive multi-level 

cell [99, 128-130], where more than one bit of information can be implemented in a single 

cell with various levels of memristance. Since the current-voltage relation of a memristor 

is nonlinear, each level corresponding to a weight value was assigned using the approach 

in [129]. Any level or weight value can be realized by changing the memristance of the 

memristor gradually with a precise write control [99]. We used five different levels to 

implement 32 weight values. 

Figure 5.5 (a) shows current change over time for a single cell with different weight 

values, while considering only the threshold voltage increase over time. Figure 5.5 (b) 

shows how the proposed built-in current-based calibration circuit (CC) restore the current 

by using the calibration cell. This experiment assumes that a column has only two rows 

(one is for weight implementation, and the other is for calibration). The calibration 

resistivity 𝑀𝑖,𝑗 decreases systematically over time to compensate the current reduction of 

the aged cell and alleviate the aging effect. The values in Figure 5.5 were obtained 

considering 3% width and length variations for transistors [12, 105, 131-132]. The delay 

of the approach, 𝑑𝑆, is less than 130ps, and each current listed was restored at most 

within 98.8% of its initial value when 𝑉𝑤 and 𝑉𝑆 were set to 1𝑉 and 0𝑉, respectively. 

However, the precision increases as 𝑉𝑤 − 𝑉𝑆 decreases. Additional experiments showed 
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that the currents (weights) of Figure 5.5 were restored within 99.2% of their initial values 

when 𝑉𝑤 = 0.8𝑉 and 𝑉𝑆 = 0.2𝑉. 

Figure 5.6 shows how weights change due to transistor aging for various input 

voltage 𝑥𝑖 without considering memristive leakage. Only four levels of weights were 

considered during this analysis. Aging factor depends on the total time that transistors of 

the cells are active which in turn, depends on the total number of testing samples. 

However, in neural network applications, the impact of aging on current variation for each 

cell increases exponentially when the input voltage decreases. This is shown in Figure 

5.6. As an example, for a high weight value 𝑊𝑖,𝑗 with 25𝑚𝑉 threshold voltage increment, 

the current variation was more than 40% when input 𝑥𝑖 = 0.5𝑉 while it reduced to less 

than 2% when 𝑥𝑖 = 1𝑉. 

The following presents experimental evidence on the impact of the proposed 

                           

(a)                                                  (b) 

Figure 5.5.  (a) The current degradation over time due to aging, and 

(b) the calibration resistivity 𝑀𝑗 changes over time to compensate the 

current degradation. Ten different weight values are considered. 
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approach in pattern recognition. We evaluated the impact of CMOS-component aging on 

synaptic weight precisions. The accuracy and the hardware overhead of the proposed 

current-based CC were investigated on a handwritten digit recognition task using the 

neural network based MNIST database [111, 120]. 

We implemented two ANN; one was a shallow network with a single hidden layer, 

and the other one was a deep network with four hidden layers. We considered MNIST 

with 784 input neurons, 10 output neurons, 6000 training samples, and 1000 testing 

samples. We used 300 epochs (maximum number of iterations) for training. Learning rate, 

epsilon, and momentum were set to 0.001, 0.001, and 0.9, respectively. We used sigmoid 

function 𝑓(𝑥) = 1/(1 + exp(−𝑥)) as an activation function, and we introduced a threshold 

value so that if the output of the winner neuron in output layer is within the 10% of the 

expected value, the output is correct and input sample is classified. Otherwise, the sample 

cannot be classified. Furthermore, the size of testing samples were 28×28, and each pixel 

was presented by either 0 or 1. We made the analog input for each pixel by getting the 

average of the pixel binary value and its eight neighbors. Therefore, the input voltages 

 

Figure 5.6. The weights change due to transistor aging for various 

input voltage 𝑥𝑖. 
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were set in 11 levels in the range from 0V to 1V. 

The accuracy over days of stress on fully connected ANN networks with and 

without using the calibration circuit is shown in Figure 5.7 (a). The accuracy was 

determined by dividing the number of correct pattern recognized by the total number of 

testing samples. Results show a significant loss of accuracy due to aging, while it has no 

effect when using the proposed current calibration circuit (CC) along with crossbar array. 

This is due to the periodic adjustment of the memristance in the target column over days 

of stress. Figure 5.7 (b) shows that the calibration memristance of the output layer (10 

columns) reduces over time in order to compensate cell-aging effect. 

Figure 5.8 shows three testing samples from MNIST data set that were predicted 

correctly with less than 0.01% mean square error (MSE) at time 𝑡 = 0. However, 

considering continuous stress on transistors, the neural network predicts an incorrect 

value for each sample after 28 minutes. Therefore, the samples were misclassified and 

the MSE was more than 30%. 

 

    (a)                                                           (b) 

Figure 5.7 (a) The accuracy over days of stress of the implemented shallow 

and deep neural networks with and without using the built-in calibration 

circuit, and (b) calibration memristance for each column in output layer over 

days of stress to compensate the aging effect. 
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Using the proposed current tuning mechanism of Section 5.2, the current can be 

tuned with a high precision, which relates to restore voltage 𝑉𝑤 and external voltage 𝑉𝑆. 

SPICE simulation of an input neuron in presence of 3% variation in transistor, shows that 

any synaptic current in both implemented ANNs can be tuned with less than 1% precision 

(within 99% of the initial value) when 𝑉𝑤 = 1𝑉 and 𝑉𝑠 = 0𝑉. This precision should be 

considered during the weight training to assign weights so that the functionality of the 

implemented network holds.  

The proposed current-based calibration circuit was implemented in 45nm 

technology with 19 transistors and 2 resistors. The area of the designed sensor was found 

to be only 4.36 µm2. To find the winner neuron at the output layer, we implemented the 

5-bit winner-take-all (WTA) circuit with 10 inputs proposed in [109] within 0.17 mm2. The 

area overhead of the designed approach was around 0.043%. In addition, the total power 

dissipation during the calibration operation (3 cycles) to tune the current of the target 

column 97µW. The Overall increase in total power is 0.088%. 

Sample: 3217  Sample: 625 Sample: 8508 

MSE: 0.487411 MSE: 0.454202 MSE: 0.301882 

Label: 8 Label: 2 Label: 5 

Predict: 3 Predict: 1 Predict: 8 

 

Figure 5.8. Aging effect in correctness of pattern recognition for 

three different samples. 
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5.4 Conclusion 

A reliable and low power built-in current-based calibration circuit is proposed to 

periodically restore each neuron’s current when it reduces due to aging. Experimental 

results show a significant saving in both shallow and deep neural networks while the area 

overhead to ensure reliable operation is negligible.  
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CHAPTER 6 

CONCLUDING REMARKS 

Nano scale devices such as memristors are prone to defects. Some defects impact 

the logical behavior of the device. Others impact the temporal behavior. A methodology 

for testing the hybrid crossbar architecture has been presented in Chapter 2. The new 

approach used a new fast write operation in order to reduce the test application time. The 

proposed fast write operation benefits from the behavior of memristor device which is 

nonlinear and asymmetric. The random memristive behavior and sneak-paths in crossbar 

memory were also taken into consideration. 

A new Design for Testability (DfT) mechanism was proposed in Chapter 2 to 

implement the proposed fast write operation. The programmable DfT was able to assign 

different access times for the proposed fast operations. The total area overhead of the 

proposed DfT depends only on the number of columns and does not depend on the 

number of rows and the number of tiles. The experimental results in 45nm technology on 

DfT implementation showed that the area overhead of the designed DfT was found to be 

only 8.875µm2 per column. Moreover, experimental results showed that the approach 

reduced the test application time by 70% and the test energy by 40%. Also, the method 

had similar test application time when sneak paths were considered during test in order 

to increase reliability. 

The proposed methods have been presented assuming that each memory cell is 

a bipolar metal-oxide memristor which is a popular technology. The methods can be 

generalized to other types of memristors as long as they have nonlinear and asymmetric 
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characteristics in the switching parameters. Future work of Chapter 1 will investigate on 

online testing of memristor-based memories. 

Threshold logic functions (TFs) and their implementations have been investigated 

in Chapter 3. A small fraction of Boolean functions are TFs and can be implemented as 

a single gate. This limits the impact of threshold logic gates (TGs) in digital circuit 

synthesis. Chapter 3 proposed a new method to implement efficiently more functions as 

single TG. This has been done by introducing higher order non-integer weights. The 

method benefits from the higher order definition of TF and tries to control the number of 

non-zero weight components in order to reduce the TG transistor count. 

It has been demonstrated that the presented approach can implement many more 

functions as current mode TGs (CTGs) with similar or less transistor count when 

compared to existing method. In particular, for 100 thousand randomly selected functions, 

when considering up to 4th-order weights, about 24.9 times more functions can be 

implemented as CTGs with similar or less transistor count. Also around 90% of existing 

TFs can be implemented as CTGs with approximately 60% less power dissipation, and 

20% less delay when considering higher order non-integer weights in the presence of 

circuit parasitics. Future work of Chapter 3 will investigate heuristic approaches to 

implement higher order TFs with rational weights.  

In addition, Chapter 4 investigated the impact of emerging technology on resistive 

devices such as memristors. A memristive-based approach has been presented to 

implement many more functions as threshold logic gates with less transistor count when 

compared to CMOS-based implementations in Chapter 3. The resistivity range of 

memristor was used to define different weight values. 
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Experimental results showed that the transistor count was reduced further when 

implementing the weights (including 1st–order and higher order weights) with resistive 

devices. This method of weight implementation reduced significantly the transistor count 

of the TG. Experimental results showed that more than 95% of threshold functions can 

be implemented with approximately 75% lower transistor count, 90% lower sensor size, 

and 70% less power consumption. 

Chapter 5 focused on reliability of analog artificial neural network (ANN) where 

synaptic weights were implemented by memristor. It was observed that analog ANNs may 

result in erroneous computations due to transistor aging. In particular, it was shown that 

aging impacts the value of each multiplication. A new method to improve reliability was 

proposed in Chapter 5. The approach benefits from the enhanced memristive crossbar 

array (MCA) which contains an extra row (the calibration row) and an extra column (the 

spare column). A built-in current-based calibration circuit was designed to restore the total 

synaptic weight. 

Experimental results on the proposed calibration circuit in 45nm technology 

showed that the currents of aged synapses (weights) were restored within approximately 

90% of their initial values. Furthermore, the results showed that the area overhead of the 

designed circuit was around 0.043% and the total increase in power dissipation due to 

the calibration operation was 0.088%. Additional experiments on MNIST dataset showed 

a significant saving in both shallow and deep neural networks. Future work of Chapter 5 

will investigate on tuning of activation functions rather than multiplications.  
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