
Southern Illinois University Carbondale Southern Illinois University Carbondale 

OpenSIUC OpenSIUC 

Research Papers Graduate School 

8-2022 

Survival Analysis And The OLS AFT Survival Analysis And The OLS AFT 

Sanjuka Lemonge 
sanjuka.johanalemonge@siu.edu 

Follow this and additional works at: https://opensiuc.lib.siu.edu/gs_rp 

Recommended Citation Recommended Citation 
Lemonge, Sanjuka. "Survival Analysis And The OLS AFT." (Aug 2022). 

This Article is brought to you for free and open access by the Graduate School at OpenSIUC. It has been accepted 
for inclusion in Research Papers by an authorized administrator of OpenSIUC. For more information, please contact 
opensiuc@lib.siu.edu. 

https://opensiuc.lib.siu.edu/
https://opensiuc.lib.siu.edu/gs_rp
https://opensiuc.lib.siu.edu/grad
https://opensiuc.lib.siu.edu/gs_rp?utm_source=opensiuc.lib.siu.edu%2Fgs_rp%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


SURVIVAL ANALYSIS AND THE OLS AFT

by

Sanjuka Johana Lemonge

B.S., University of Kelaniya, 2019

A Research Paper
Submitted in Partial Fulfillment of the Requirements for the

Master of Science Degree

School of Mathematical and Statistical Sciences
in the Graduate School

Southern Illinois University Carbondale
August, 2022



RESEARCH PAPER APPROVAL

SURVIVAL ANALYSIS AND THE OLS AFT

by

Sanjuka Johana Lemonge

A Research Paper Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Master of Science

in the field of Mathematics

Approved by:

David J. Olive

Michael Sullivan

Yaser Samadi

Graduate School
Southern Illinois University Carbondale

July 1, 2022



AN ABSTRACT OF THE RESEARCH PAPER OF

SANJUKA JOAHANA LEMONGE, for the Master of Science degree in MATHEMATICS,
presented on JULY 1, 2022, at Southern Illinois University Carbondale.

TITLE: SURVIVAL ANALYSIS AND THE OLS AFT

MAJOR PROFESSOR: Dr. David J. Olive

This research paper examines testing the accelerated failure time (AFT) survival re-

gression model with ordinary least squares (OLS), and presents one case studies using

survival analysis.

KEY WORDS: Survival Analysis, AFT, OLS

i



ACKNOWLEDGMENTS

I would like to take this opportunity to thank my research advisor, Dr. David Olive for

overseeing my Master’s project and Dr. Michael Sullivan and Dr. Yaser Samadi for sitting

on my committee. I would also like to thank all the professors of School of Mathematical

and Statistical Sciences, SIU for their instruction and care over the past two years. Finally

I want to say to my family, thank you for all of your support and encouragement. You

have pushed me to succeed and I could not have done it without you!

ii



TABLE OF CONTENTS

CHAPTER PAGE

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CHAPTERS

1 Survival analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Weibull and Exponential Regression . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Accelerated Failure Time Models . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Examples and Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Survival Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

iii



LIST OF TABLES

TABLE PAGE

Table 4.1 AFT with OLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Table 5.1 p=4,gamma=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Table 5.2 p=8,gamma=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Table 5.3 p=4,gamma=10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Table 5.4 p=8,gamma=10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Table 5.5 p=4,gamma=0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Table 5.6 p=8,gamma=0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 5.7 p=4,gamma=0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Table 5.8 p=8,gamma=0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 5.9 p=4,gamma=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Table 5.10 p=8,gamma=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



LIST OF FIGURES

FIGURE PAGE

Figure 7.1 Histogram of Length of Service . . . . . . . . . . . . . . . . . . . . . . 22

Figure 7.2 Histogram of Length of Service . . . . . . . . . . . . . . . . . . . . . . 23

Figure 7.3 Histogram of Length of Service . . . . . . . . . . . . . . . . . . . . . . 23

Figure 7.4 Cumulative survival rates . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 7.5 Cumulative survival rates for categories of Race . . . . . . . . . . . . . 28

Figure 7.6 Cumulative survival rates for categories of Gender . . . . . . . . . . . . 31

v



1

CHAPTER 1

SURVIVAL ANALYSIS

The first four chapters follows Olive (2022a) closely.

Definition 1. Let Y ≥ 0 be the time until an event occurs. Then Y is called the

survival time or time until event. The survival time is censored if the event of interest has

not been observed. Let Yi be the ith survival time. Let Zi be the time the ith observation

(possibly an individual or machine) leaves the study for any reason other than the event of

interest. Then Zi is the time until the ith observation is censored. Then the right censored

survival time Ti of the ith observation is Ti = min(Yi, Zi). Let δi = 0 if Ti is (right) censored

(Ti = Zi) and let δi = 1 if Ti is not censored (Ti = Yi). Then the univariate survival analysis

data is (T1, δ1), (T2, δ2), ..., (Tn, δn). Alternatively, the data is T1, T
∗
2 , T3, ..., T

∗
n−1, Tn where

the * means that the case was (right) censored. Sometimes the asterisk * is replaced by a

plus +, and Yi, yi or ti can replace Ti.

Definition 2. i) The cumulative distribution function (cdf) of Y is F (t) = P (Y ≤ t).

Since Y ≥ 0, F (0) = 0, F (∞) = 1, and F (t) is nondecreasing.

ii) The probability density function (pdf) of Y is f(t) = F ′(t).

iii) The survival function of Y is S(t) = P (Y > t). S(0) = 1, S(∞) = 0 and S(t) is

nonincreasing.

iv) The hazard function of Y is h(t) =
f(t)

1− F (t)
for t > 0 and F (t) < 1. Note that

h(t) ≥ 0 if F (t) < 1.

v) The cumulative hazard function of Y is H(t) =
∫ t

0
h(u)du for t > 0. It is true that

H(0) = 0, H(∞) = ∞, and H(t) is nondecreasing.

Assume Y ≥ 0. Then F (0) = 0, S(0) = 1, and H(0) = 1. Note that S(∞) = 0 implies

that H(∞) = ∞ where limt→∞H(t) = H(∞). Note that 0 ≤ F (t) ≤ 1, 0 ≤ S(t) ≤ 1,

f(t) ≥ 0, h(t) ≥ 0, and H(t) ≥ 0.

Given one of F (t), f(t), S(t), h(t) or H(t), the following theorem shows how to find
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the other 4 quantities for t > 0. Each of these five quanities completely determines the

distribution of the random variable. In reliability analysis, the reliability function R(t) =

S(t), and in economics, Mill’s ratio = 1/h(t). In actuarial sciences, h(t) is the force of

mortality.

Theorem 1.

A) F (t) =
∫ t

0
f(u)du = 1− S(t) = 1− exp[−H(t)] = 1− exp[−

∫ t

0
h(u)du].

B) f(t) = F ′(t) = −S ′(t) = h(t)[1 − F (t)] = h(t)S(t) = h(t) exp[−H(t)] =

H ′(t) exp[−H(t)].

C) S(t) = 1− F (t) = 1−
∫ t

0
f(u)du =

∫∞
t
f(u)du = exp[−H(t)] = exp[−

∫ t

0
h(u)du].

D)

h(t) =
f(t)

1− F (t)
=
f(t)

S(t)
=

F ′(t)

1− F (t)
=

−S ′(t)

S(t)
= − d

dt
log[S(t)] = H ′(t).

E) H(t) =
∫ t

0
h(u)du = − log[S(t)] = − log[1− F (t)].

Example 1. Suppose Y ∼ EXP (λ) where λ > 0, then h(t) = λ for t > 0, f(t) = λe−λt

for t > 0, F (t) = 1 − e−λt for t > 0, S(t) = e−λt for t > 0, H(t) = λt for t > 0

and E(Y ) = 1/λ. The exponential distribution is the only distribution of a continuous

random variable Y with a constant hazard function since h(t) completely determines the

distribution of the random variable Y . Derive H(t), S(t), F (t), and f(t) from the constant

hazard function h(t) = λ for t > 0 and some λ > 0.

Solution: H(t) =
∫ t

0
h(u)du =

∫ t

0
λdu = λt for t > 0.

S(t) = e−H(t) = e−λt, for t > 0.

F (t) = 1− S(t) = 1− e−λt for t > 0.

Finally, f(t) = h(t)S(t) = λe−λt = F ′(t) for t > 0.

Example 2. If Y ∼ Weibull(γ, λ) where γ > 0 and λ > 0, then h(t) = λγtγ−1 for t > 0,

f(t) = λγtγ−1 exp(−λtγ) for t > 0, F (t) = 1−exp(−λtγ) for t > 0, S(t) = exp(−λtγ) for t >

0,H(t) = λtγ for t > 0. TheWeibull( λ, γ = 1) distribution is the EXP(λ) distribution. The

hazard function can be increasing, decreasing or constant. Hence the Weibull distribution
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often fits reliability data well, and the Weibull distribution is an important distribution in

reliability analysis. Derive H(t), S(t), F (t), and f(t) if Y ∼ Weibull(λ, γ).

Solution:

H(t) =

∫ t

0

h(u)du =

∫ t

0

λγuγ−1du = λγ
uγ

γ

∣∣∣∣t
0

= λtγ for t > 0.

S(t) = exp[−H(t)] = exp[−λtγ], for t > 0.

F (t) = 1− S(t) = 1− exp[−λtγ] for t > 0.

Finally, f(t) = h(t)S(t) = λγtγ−1 exp[−λtγ] for t > 0.
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CHAPTER 2

WEIBULL AND EXPONENTIAL REGRESSION

In a 1D regression model, the response variable Y is conditionally independent of the

p× 1 vector of predictors x given the sufficient predictor SP = h(x), written

Y x|SP or Y x|h(x), (2.1)

where the real valued function h : Rp → R. The estimated sufficient predictor ESP =

ĥ(x). An important special case is a model with a linear predictor h(x) = xTβ where

ESP = xT β̂.

Definition 3. For parametric proportional hazards regression models, the baseline

function is parametric and the parameters are estimated via maximum likelihood. Then as

a 1D regression model, SP = βT
Px, and the hazard function

hY |SP (t) ≡ hx(t) = exp(βT
Px)h0,P (t) = exp(SP )h0,P (t)

where the parametric baseline function h0,P depends on k unknown parameters but does

not depend on the predictors x. The survival function is

Sx(t) ≡ SY |SP (t) = [S0,P (t)]
exp(βT

Px) = [S0,P (t)]
exp(SP ), (2.2)

and

Ŝx(t) = [Ŝ0,P (t)]
exp(

ˆβ
T

Px) = [Ŝ0,P (t)]
exp(ESP ). (2.3)

The following univariate results will be useful for Exponential and Weibull regression.

If Y has a Weibull distribution, Y ∼ W (γ, λ), then SY (t) = exp(−λtγ) where t, λ and

γ are positive. If γ = 1, then Y has an Exponential distribution, Y ∼ EXP (λ) where

E(Y ) = 1/λ. Now V has a smallest extreme value distribution, V ∼ SEV (θ, σ), if

SV (t) = P (V > t) = exp

(
− exp

(
t− θ

σ

))
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where σ > 0 while t and θ are real. If Z ∼ SEV (0, 1), then V = θ + σZ ∼ SEV (θ, σ)

since the SEV distribution is a location scale family. Also, V = log(Y ) ∼ SEV (θ =

−σ log(λ), σ = 1/γ), and Y = eV ∼ W (γ = 1/σ, λ = e−θ/σ).

If Yi follows a Weibull regression model, then log(Yi) follows an accelerated failure time

(AFT) model: log(Yi) = α + βT
Axi + σei where the ei are iid SEV (0, 1), and log(Y )|x ∼

SEV (α + βT
Ax, σ).

Definition 4. The Weibull proportional hazards regression (WPH) model or Weibull

regression model is a parametric proportional hazards model with Y |x ∼ W (γ = 1/σ, λx)

where

λx = exp

[
−
(
α

σ
+

βT
Ax

σ

)]
= λ0 exp(β

T
Px)

with λ0 = exp(−α/σ) and βP = −βA/σ. Thus for t > 0, P (Y > t|x) =

Sx(t) = exp(−λxtγ) = exp(−λ0 exp(βT
Px)t

γ) = [exp(−λ0tγ)]exp(β
T

Px) =

[S0,P (t)]
exp(βT

Px).

As a 1D regression model, Y |SP ∼ W (γ, λ0 exp(SP )). Also,

hi(t) = hYi|xi
(t) = h

Yi|β
T

Pxi
(t) = exp(βT

Pxi)h0(t)

where h0(t) = h0(t|θ) = λ0γt
γ−1 is the Weibull baseline function. Exponential regression is

the special case of Weibull regression where σ = 1. Hence Y |x ∼ W (1, λx) ∼ EXP (λx).
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CHAPTER 3

ACCELERATED FAILURE TIME MODELS

Definition 5. For a parametric accelerated failure time model,

log(Yi) = α + βT
Axi + σei (3.1)

where the ei are iid from a location scale family. Let SP = βT
Ax. Then as a 1D regression

model, log(Y )|SP = α+SP+e. The parameters are again estimated by maximum likelihood

and the survival function is

Sx(t) ≡ SY |x(t) = S0

(
t

exp(βT
Ax)

)
,

and

Ŝx(t) = Ŝ0

(
t

exp(β̂
T

Ax)

)
where Ŝ0(t) depends on α̂ and σ̂.

For the AFT model, hi(t) = hx(t) = e−SPh0(t/e
SP ) and Si(t) = Sx(t) =

S0(t/ exp(SP )) where SP = βT
Ax. If Sx(tx(ρ)) = 1 − ρ for 0 < ρ < 1, then tx(ρ) is

the ρth percentile. For the accelerated failure time model,

tx(ρ) = t0(ρ) exp(β
T
Ax)

where t0(ρ) = exp(σei(ρ) + α) and Sei(ei(ρ)) = P (ei > ei(ρ)) = 1 − ρ. Note that the

estimated percentile ratio is free of ρ, σ̂ and α̂

t̂x1(ρ)

t̂x2(ρ)
= exp(β̂

T

A(x1 − x2)).

The acceleration factor = e−SP and t0,ρ = e−SP tx,ρ. The median survival times are related

by t0,0.5 = e−SP tx,0.5. If e−SP < 1, then the median survival time of x > the median

survival time of 0, a result that is good if the event is death, but bad if the event is time

until recovery. Note that Hx(t) = − logSx(t) = − log(S0(t/e
SP )) = H0(t/e

SP ).
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Remark 1. Assume xi > 0. Then βi > 0 increases log(Yi) and Yi, while βi < 0

decreases log(Yi) and Yi. For the Cox PH regression model, hx(t) = exp(βTx)h0(t). Hence

βi > 0 increases hazard and decreases Yi, while βi < 0 decreases hazard and increases Yi.

In the WPH model, βP = −βA/σ.

Definition 6. The Weibull AFT satisfies log(Y )|(α + βT
Ax) ∼ SEV (α + βT

Ax, σ). The

Exponential AFT is the special case with σ = 1.

Theorem 2. Weibull regression models, including Exponential regression models, are

the only models where Y follows a proportional hazards regression model and log(Y ) follows

an accelerated failure time model.

If the Weibull PH regression model holds for Yi, then log(Yi) = α+βT
Axi + σei where

ei ∼ SEV (0, 1). Thus log(Y )|x ∼ SEV (α+ βT
Ax, σ), and the log(Yi) follows a parametric

accelerated failure time model. Two other important AFTs are i) the lognormal AFT where

log(Y )|x ∼ N(α + βT
Ax, σ

2) where the Yi are lognormal and the ei ∼ N(0, 1) are normal,

and ii) the loglogistic AFT where log(Y )|x ∼ L(α + βT
Ax, σ) where the Yi are loglogistic

and the ei ∼ L(0, 1) are logistic. For the loglogistic AFT, Y follows a proportional odds

model. Y does not follow a proportional hazards regression model for the loglogistic and

lognormal AFTs.

A case consists of the measurements on a person or thing. Let (xT
i , Yi)

T be the ith

case. For example, people sick from a deadly disease who go to 3 hospitals, where Yi

is the survival time. As noted by Olive (2022b), if the cases are iid and the censoring is

independent of the cases, then the uncensored cases (xT
i , Yi)

T (where the Yi are uncensored)

may not follow the multiple linear regression model since the censoring causes the Yi to

follow a truncated distribution. However, OLS may be useful for testing H0 : Aβ = 0.
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CHAPTER 4

EXAMPLES AND SIMULATIONS

Example.

A small simulation was done using 5000 runs. So an observed coverage in [0.94, 0.96]

gives no reason to doubt that the confidence interval (CI) has the nominal coverage of

0.95. For Weibull regression, the cases were (Zi, δi,xi) where Zi = Yi is uncensored if

δi = 1, and Zi is right censored if δi = 0. Hence Zi = Ti. R code similar to that of

Zhou (2001) was used to generate data from the Weibull proportional hazards regression

model. Then SP = xT
i β = 1xi,1 + · · · + 1xi,k ∼ N(0, a2) for i = 1, ..., n. The simulations

used a = 1 where β = βP = (1, ..., 1, 0, ..., 0)T with k ones and p − k zeros. Then βA =

(−1/γ, ...,−1/γ, 0, ..., 0)T where γ = 1/σ for the Weibull regression model.

Let x = (1 uT )T where u is the p×1 vector of nontrivial predictors. In the simulations,

for i = 1, ..., n, we generated wi ∼ Np(0, I) where the p elements of the vector wi are iid

N(0,1). Let the p× p matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i ̸= j.

Then the vector zi = Awi so that Cov(zi) = Σz = AAT = (σij) where the diagonal

entries σii = [1 + (p − 1)ψ2] and the off diagonal entries σij = [2ψ + (p − 2)ψ2]. Hence

the correlations are cor(zi, zj) = ρ = (2ψ + (p − 2)ψ2)/(1 + (p − 1)ψ2) for i ̸= j. Then∑k
j=1 zj ∼ N(0, kσii + k(k − 1)σij) = N(0, v2). Let u = az/v. Then cor(xi, xj) = ρ for

i ̸= j where xi and xj are nontrivial predictors. If ψ = 1/
√
cp, then ρ → 1/(c + 1) as

p→ ∞ where c > 0. As ψ gets close to 1, the predictor vectors ui cluster about the line in

the direction of (1, ..., 1)T . Then SP = xT
i β = 1xi,1 + · · ·+ 1xi,k ∼ N(0, a2) for i = 1, ..., n.

If the cases are iid from some population, we conjecture that the OLS fit to the

uncensored cases gives a consistent estimator for γ where γ is a biased estimator of β.

Then we can test H0 : (βi1, ..., βik)
T = 0 with H0 : (γi1, ..., γik)

T = 0 using the OLS fit to

the uncensored cases. Testing H0 : β1 − β2 = 0 with H0 : γ1 − γ2 = 0 may not be possible

due to the bias of the estimator.
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Simulations were done in R. See R Core Team (2018). The R code below gives some

output. The simulation used 5000 runs, n=100,1000, p= 4,8, k=1,2, ψ = 0, 1/
√
p, 0.9, and

γ = 0.1, 0.2, 1, 5, 10. In the program arguments, gam = γ and psi = ψ. For the output

shown below, βA = (−0.2, 0.0, 0.0, 0.0)T . OLS confidence intervals were made for βi where

β0 = α. The coverage was the proportion of runs the CI contained βi, but the CI for α

gave the proportion of runs where the CI contained 0, corresponding the test H0 : α = 0.

Since H0 is not true for α, we would like the coverage to be close to 0, where the power =

1− coverage.. The program also did the OLS partial F test for H0: the reduced model is

good, where the reduced model contained α and the first k predictors. Hence H0 was true.

We expect that the coverage for the first k βi may not be close to the nominal 0.95, while

the coverage for the last p − k βi may be close to the nominal 0.95. The coverage for the

partial F test, redtest, was the proportion of runs where H0 was not rejected. Again we

expect that the coverage may be close to the nominal 0.95. The average confidence interval

(CI) lengths were scaled by multiplying the CI length by
√
n. Two line for each run were

given. The first line corresponds to the coverages, while the second line corresponds to the

scaled CI lengths. CIs for α, β1, β2, βp−1, and βp were tabled.

source("http://parker.ad.siu.edu/Olive/slpack.txt")

args(aftolssim)

function (n = 100, p = 4, k = 1, nruns = 100, psi = 0, a = 1,

gam = 5, clam = 0.1, alpha = 0.05)

aftolssim(n=100,p=4,nruns=5000,psi=0,gam=5)

$olslen

[1] 1.097681 1.108201 1.105579 1.106598 1.105377

$olscov

[1] 0.0018 0.9498 0.9480 0.9444 0.9528

$redcov
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[1] 0.9482

$betaaft

[1] 0.0 -0.2 0.0 0.0 0.0

$k

[1] 1

$coef

Intercept X1 X2 X3 X4

-0.148247421 -0.170822942 0.027490842 -0.002682143 0.009487977

$nunc

[1] 91.037

Table 4.1. AFT with OLS

n p k ψ α β1 β2 βp−1 βp Ftest

100 4 1 0 0.0018 0.9498 0.9480 0.9444 0.9528 0.9482

len 1.0977 1.1082 1.1056 1.1066 1.1055
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CHAPTER 5

SIMULATION RESULTS

Table 5.1. p=4,gamma=5

n p k ψ α β1 β2 βp−1 βp Ftest

100 4 1 0 0.0032 0.9456 0.9496 0.9512 0.9498 0.9476

len 1.0948 1.1071 1.1023 1.1029 1.1037

1000 4 1 0 0 0.9448 0.9524 0.947 0.9536 0.9484

len 1.0659 1.0684 1.0668 1.0663 1.0667

100 4 2 0 0.0036 0.9486 0.9474 0.9486 0.9486 0.95

len 1.0977 1.5671 1.5679 1.5655 1.5654

1000 4 2 0 0 0.9522 0.9502 0.9506 0.9474 0.9518

len 1.0657 1.5096 1.5095 1.5088 1.5089

100 4 1 0.9 0.0032 0.9526 0.948 0.9524 0.9518 0.9496

len 1.0973 17.7497 17.7533 17.7811 17.7482

1000 4 1 0.9 0 0.9526 0.9518 0.949 0.95 0.9564

len 1.0655 17.1021 17.0985 17.0956 17.0991

100 4 2 0.9 0.0036 0.9502 0.954 0.9432 0.9512 0.9466

len 1.0994 35.5643 35.5047 35.5607 35.5601

1000 4 2 0.9 0 0.9482 0.9466 0.9496 0.9512 0.9486

len 1.0656 34.1852 34.1754 34.1812 34.1888

100 4 1 1/
√
p 0.001 0.9542 0.953 0.9512 0.9502 0.9556

len 1.0961 2.5530 2.5524 2.5562 2.5480

1000 4 1 1/
√
p 0 0.9516 0.9474 0.9546 0.951 0.9496

len 1.0657 2.4607 2.4584 2.4611 2.4602

100 4 2 1/
√
p 0.0028 0.9486 0.9484 0.9484 0.945 0.9488

len 1.0950 4.9017 4.9140 4.8997 4.9138

1000 4 2 1/
√
p 0 0.9534 0.952 0.9506 0.9474 0.9516

len 1.0653 4.7374 4.7405 4.7390 4.7391
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Table 5.2. p=8,gamma=5

n p k ψ α β1 β2 βp−1 βp Ftest

100 8 1 0 0.0048 0.9516 0.9464 0.9478 0.9542 0.9484

len 1.1265 1.1387 1.1361 1.1361 1.1366

1000 8 1 0 0 0.9512 0.9502 0.9508 0.9536 0.9464

len 1.0676 1.0711 1.0687 1.0682 1.0690

100 8 2 0 0.0032 0.954 0.9512 0.9496 0.9458 0.9494

len 1.1269 1.6085 1.6079 1.6046 1.6058

1000 8 2 0 0 0.944 0.9546 0.9538 0.9446 0.9486

len 1.0682 1.5134 1.5133 1.5111 1.5114

100 8 1 0.9 0.0058 0.9496 0.948 0.9588 0.9462 0.9456

len 1.1252 27.4294 27.3914 27.3715 27.3836

1000 8 1 0.9 0 0.957 0.9464 0.9534 0.9486 0.95

len 1.0671 25.8083 25.7993 25.8110 25.7976

100 8 2 0.9 0.0042 0.947 0.952 0.9446 0.9526 0.9532

len 1.1241 54.7259 54.7746 54.8008 54.7028

1000 8 2 0.9 0 0.9544 0.9532 0.9502 0.9572 0.9554

len 1.0689 51.6534 51.6679 51.6588 51.6562

100 8 1 1/
√
p 0.0062 0.9472 0.9556 0.9492 0.944 0.9458

len 1.1227 3.5160 3.5120 3.5150 3.5184

1000 8 1 1/
√
p 0 0.9502 0.9508 0.9498 0.9474 0.9492

len 1.0672 3.3171 3.3134 3.3139 3.3150

100 8 2 1/
√
p 0.0052 0.9504 0.9516 0.9542 0.9552 0.9522

len 1.1244 6.8857 6.8749 6.8745 6.8714

1000 8 2 1/
√
p 0 0.9452 0.9518 0.9506 0.9528 0.9506

len 1.0683 6.4884 6.4862 6.4878 6.4837
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Table 5.3. p=4,gamma=10

n p k ψ α β1 β2 βp−1 βp Ftest

100 4 1 0 0.0048 0.9456 0.9546 0.944 0.9524 0.9538

len 0.5462 0.5512 0.5497 0.5507 0.5519

1000 4 1 0 0 0.9504 0.95 0.9504 0.953 0.9532

len 0.5320 0.5327 0.5326 0.5324 0.5325

100 4 2 0 0.0036 0.949 0.9506 0.9554 0.9502 0.9532

len 0.5467 0.7802 0.7792 0.7799 0.7780

1000 4 2 0 0 0.949 0.9528 0.9568 0.9496 0.9546

len 0.5316 0.7526 0.7527 0.7524 0.7524

100 4 1 0.9 0.0046 0.9524 0.951 0.951 0.9456 0.9496

len 0.5468 8.8284 8.8537 8.8728 8.8472

1000 4 1 0.9 0 0.9488 0.9522 0.9428 0.946 0.946

len 0.5313 8.5238 8.5305 8.5315 8.5332

100 4 2 0.9 0.0054 0.9482 0.955 0.9566 0.9492 0.9506

len 0.5471 17.6864 17.6935 17.7191 17.7183

1000 4 2 0.9 0 0.9452 0.9542 0.9516 0.947 0.953

len 0.5315 17.0573 17.0561 17.0600 17.0525

100 4 1 1/
√
p 0.0046 0.9496 0.9482 0.9476 0.9506 0.945

len 0.5460 1.2682 1.2717 1.2696 1.2689

1000 4 1 1/
√
p 0 0.9482 0.9442 0.9496 0.9514 0.9446

len 0.5318 1.2281 1.2277 1.2282 1.2282

100 4 2 1/
√
p 0.0056 0.9504 0.9526 0.9522 0.9536 0.9496

len 0.5474 2.4567 2.4504 2.4517 2.4550

1000 4 2 1/
√
p 0 0.9498 0.9506 0.9536 0.9498 0.9548

len 0.5322 2.3676 2.3680 2.3682 2.3680
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Table 5.4. p=8,gamma=10

n p k ψ α β1 β2 βp−1 βp Ftest

100 8 1 0 0.0062 0.953 0.9448 0.9488 0.947 0.9434

len 0.5619 0.5666 0.5666 0.5656 0.5666

1000 8 1 0 0 0.9474 0.9508 0.9508 0.953 0.9548

len 0.5327 0.5336 0.5332 0.5332 0.5329

100 8 2 0 0.0072 0.9508 0.95 0.9516 0.9472 0.9458

len 0.5598 0.7978 0.7991 0.7963 0.7988

1000 8 2 0 0 0.9484 0.95 0.9552 0.9472 0.9514

len 0.5332 0.7550 0.7550 0.7546 0.7546

100 8 1 0.9 0.0074 0.95 0.9542 0.9494 0.9498 0.9542

len 0.5598 13.6062 13.6213 13.6545 13.6824

1000 8 1 0.9 0 0.9492 0.9444 0.9494 0.9504 0.9492

len 0.5331 12.8792 12.8896 12.8873 12.8843

100 8 2 0.9 0.0086 0.9456 0.955 0.9474 0.9468 0.9454

len 0.5597 27.2493 27.2192 27.3153 27.3061

1000 8 2 0.9 0 0.9508 0.9432 0.9466 0.9504 0.9514

len 0.5331 25.7720 25.7557 25.7709 25.7832

100 8 1 1/
√
p 0.004 0.949 0.951 0.9434 0.9454 0.9504

len 0.5595 1.7543 1.7483 1.7535 1.7515

1000 8 1 1/
√
p 0 0.947 0.9432 0.9482 0.954 0.951

len 0.5328 1.6553 1.6562 1.6559 1.6561

100 8 2 1/
√
p 0.0056 0.9554 0.9446 0.9514 0.947 0.9518

len 0.5610 3.4389 3.4320 3.4336 3.4416

1000 8 2 1/
√
p 0 0.952 0.9424 0.9502 0.95 0.9496

len 0.5328 3.2334 3.2345 3.2357 3.2341
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Table 5.5. p=4,gamma=0.1

n p k ψ α β1 β2 βp−1 βp Ftest

100 4 1 0 0 0.1994 0.9462 0.9482 0.9472 0.9434

len 64.8313 68.3369 60.1241 60.1381 60.1601

1000 4 1 0 0 0 0.9546 0.9496 0.9516 0.9484

len 62.562 65.2185 57.5180 57.5337 57.5694

100 4 2 0 0 0.4296 0.4308 0.9478 0.9476 0.9514

len 65.2778 91.6704 91.5314 85.5791 85.6785

1000 4 2 0 0 0 0 0.9468 0.9468 0.9466

len 62.5842 87.0644 87.0277 81.3782 81.3757

100 4 1 0.9 0 0.9486 0.9524 0.951 0.9518 0.9548

len 65.0397 970.5270 970.0337 969.3072 969.7589

1000 4 1 0.9 0 0.8908 0.9482 0.9464 0.9494 0.9462

len 62.5195 922.6177 922.4574 923.0181 922.7911

100 4 2 0.9 0 0.9492 0.9534 0.9494 0.95 0.946

len 65.3116 1941.2176 1946.4222 1952.8835 1943.4188

1000 4 2 0.9 0 0.9416 0.9384 0.9516 0.9472 0.948

len 62.5349 1845.4996 1844.4384 1843.8134 1843.7230

100 4 1 1/
√
p 0 0.7058 0.9518 0.9574 0.9478 0.9556

len 65.1461 143.4593 139.498 139.5655 139.6569

1000 4 1 1/
√
p 0 0.0084 0.9492 0.9502 0.9504 0.9524

len 62.5034 136.1708 132.6081 132.5496 132.5400

100 4 2 1/
√
p 0 0.8878 0.8856 0.9514 0.9484 0.9486

len 65.0247 270.5358 270.1237 268.1231 268.245

1000 4 2 1/
√
p 0 0.3484 0.3506 0.9452 0.9446 0.9458

len 62.5512 257.4557 257.6739 255.6722 255.7433
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Table 5.6. p=8,gamma=0.1

n p k ψ α β1 β2 βp−1 βp Ftest

100 8 1 0 0 0.2394 0.9434 0.9498 0.9502 0.947

len 67.6905 71.3756 62.8130 62.8707 62.7660

1000 8 1 0 0 0 0.9564 0.9552 0.9452 0.9508

len 62.6620 65.3352 57.6591 57.6390 57.6388

100 8 2 0 0 0.4474 0.439 0.9454 0.953 0.9486

len 67.3270 94.5821 94.5079 88.2303 88.5117

1000 8 2 0 0 0 0 0.9506 0.947 0.955

len 62.7739 87.1929 87.2982 81.6529 81.6756

100 8 1 0.9 0 0.9426 0.9504 0.9452 0.9554 0.946

len 67.4179 1509.143 1513.018 1512.034 1510.2

1000 8 1 0.9 0 0.9298 0.953 0.9492 0.952 0.9534

len 62.7318 1394.644 1394.838 1393.779 1393.703

100 8 2 0.9 0 0.9498 0.9522 0.949 0.951 0.952

len 67.6638 3028.196 3029.977 3036.264 3031.546

1000 8 2 0.9 0 0.946 0.9416 0.948 0.9508 0.9472

len 62.6508 2783.915 2785.493 2784.229 2783.029

100 8 1 1/
√
p 0 0.8314 0.951 0.956 0.9506 0.9488

len 67.6548 197.5671 195.1421 194.6639 195.0724

1000 8 1 1/
√
p 0 0.0834 0.9488 0.9514 0.9578 0.9468

len 62.7311 181.8244 179.0762 178.9908 179.0377

100 8 2 1/
√
p 0 0.9092 0.9156 0.943 0.947 0.9398

len 67.289 379.5497 380.088 379.076 378.743

1000 8 2 1/
√
p 0 0.5844 0.5918 0.9518 0.9474 0.947

len 62.7317 351.5133 351.7104 350.3533 350.379
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Table 5.7. p=4,gamma=0.2

n p k ψ α β1 β2 βp−1 βp Ftest

100 4 1 0 0 0.2874 0.9476 0.9502 0.9504 0.947

len 31.3747 33.4087 29.6287 29.6546 29.6216

1000 4 1 0 0 0 0.951 0.9468 0.9482 0.9484

len 30.2424 31.8861 28.2881 28.2924 28.3152

100 4 2 0 0 0.509 0.5038 0.951 0.9522 0.9514

len 31.4606 44.6611 44.8055 42.0355 41.9561

1000 4 2 0 0 0 0 0.9502 0.9526 0.9558

len 30.2224 42.5778 42.5745 39.9780 39.9926

100 4 1 0.9 0 0.9468 0.9518 0.952 0.952 0.9526

len 31.5959 478.8191 478.2536 476.5612 478.4111

1000 4 1 0.9 0 0.9132 0.9498 0.9458 0.9514 0.9536

len 30.2521 454.3176 454.0204 453.9011 454.1279

100 4 2 0.9 0 0.952 0.9394 0.9512 0.9598 0.956

len 31.4480 950.1755 950.2043 952.0222 950.7384

1000 4 2 0.9 0 0.945 0.9356 0.9452 0.95 0.9488

len 30.2392 907.3382 907.0891 907.3986 906.9019

100 4 1 1/
√
p 0 0.7752 0.9496 0.9458 0.9522 0.9468

len 31.5295 70.4546 68.6984 68.6576 68.7149

1000 4 1 1/
√
p 0 0.025 0.9458 0.956 0.946 0.9488

len 30.2576 66.9508 65.2555 65.3091 65.2618

100 4 2 1/
√
p 0 0.8958 0.8954 0.9502 0.9438 0.9422

len 31.4559 132.9280 132.9377 131.9290 131.7833

1000 4 2 1/
√
p 0 0.4302 0.4168 0.9468 0.951 0.9458

len 30.2206 126.4858 126.5364 125.6751 125.6365
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Table 5.8. p=8,gamma=0.2

n p k ψ α β1 β2 βp−1 βp Ftest

100 8 1 0 0 0.295 0.9526 0.9496 0.9534 0.953

len 32.5228 34.5777 30.7187 30.8117 30.6650

1000 8 1 0 0 0 0.948 0.9494 0.9542 0.9512

len 30.3193 31.9731 28.3617 28.3891 28.3765

100 8 2 0 0 0.5134 0.5384 0.9444 0.9516 0.9574

len 32.4324 46.1332 46.1596 43.3077 43.2915

1000 8 2 0 0 0 0 0.95 0.9474 0.9442

len 30.3122 42.7498 42.7055 40.1117 40.0951

100 8 1 0.9 0 0.9488 0.9508 0.9412 0.945 0.9492

len 32.5756 742.1757 741.4085 743.0718 744.468

1000 8 1 0.9 0 0.9274 0.9486 0.9528 0.9464 0.9486

len 30.314 684.7783 684.8700 684.8004 685.1093

100 8 2 0.9 0 0.9472 0.9522 0.9476 0.95 0.9532

len 32.4979 1483.61 1481.41 1480.275 1484.24

1000 8 2 0.9 0 0.9384 0.944 0.9468 0.9476 0.9496

len 30.3301 1370.817 1370.123 1370.954 1369.419

100 8 1 1/
√
p 0 0.8528 0.9448 0.9498 0.9504 0.9492

len 32.5601 96.7917 95.4206 95.3259 95.3800

1000 8 1 1/
√
p 0 0.1462 0.9536 0.9494 0.9494 0.952

len 30.3362 89.3526 88.0950 88.0602 88.1289

100 8 2 1/
√
p 0 0.9312 0.9282 0.9514 0.9504 0.948

len 32.4215 186.0931 186.4105 185.5374 185.3135

1000 8 2 1/
√
p 0 0.6424 0.6538 0.9484 0.9502 0.9462

len 30.3014 172.6545 172.632 172.0048 171.9607
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Table 5.9. p=4,gamma=1

n p k ψ α β1 β2 βp−1 βp Ftest

100 4 1 0 0.0002 0.8896 0.9506 0.9538 0.9482 0.9502

len 5.5959 5.8426 5.6052 5.6142 5.6134

1000 4 1 0 0 0.3322 0.9486 0.9564 0.9498 0.9506

len 5.4293 5.6327 5.3976 5.4001 5.3977

100 4 2 0 0 0.9206 0.9112 0.9522 0.9436 0.9466

len 5.5739 8.0746 8.0663 7.8930 7.8899

1000 4 2 0 0 0.5932 0.6034 0.95 0.9498 0.9492

len 5.4248 7.7978 7.7920 7.6322 7.6319

100 4 1 0.9 0 0.9476 0.9522 0.9446 0.9514 0.9496

len 5.5780 89.7420 89.8072 89.7428 89.6237

1000 4 1 0.9 0 0.9472 0.9508 0.95 0.9468 0.9516

len 5.4308 86.6672 86.6599 86.6317 86.6336

100 4 2 0.9 0.0004 0.952 0.9552 0.9502 0.9462 0.9512

len 5.6161 180.5797 180.6311 180.2662 180.7399

1000 4 2 0.9 0 0.954 0.9514 0.9478 0.9544 0.9538

len 5.4254 172.8756 173.0179 172.8876 172.9414

100 4 1 1/
√
p 0 0.9368 0.9536 0.946 0.9458 0.9446

len 5.5869 13.0553 12.9426 12.9112 12.9560

1000 4 1 1/
√
p 0 0.8028 0.954 0.955 0.9508 0.9472

len 5.4316 12.5569 12.4568 12.4529 12.4624

100 4 2 1/
√
p 0.0004 0.951 0.9512 0.9494 0.9526 0.9472

len 5.5957 24.9579 25.0127 24.9203 24.9523

1000 4 2 1/
√
p 0 0.9074 0.9132 0.9436 0.946 0.939

len 5.4247 24.0332 24.0352 23.9714 23.9902
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Table 5.10. p=8,gamma=1

n p k ψ α β1 β2 βp−1 βp Ftest

100 8 1 0 0.0004 0.885 0.9484 0.9456 0.953 0.949

len 5.7289 5.9786 5.7300 5.7275 5.7328

1000 8 1 0 0 0.3308 0.9498 0.9492 0.9476 0.9528

len 5.4433 5.6435 5.4131 5.4132 5.4103

100 8 2 0 0.0002 0.927 0.9218 0.9482 0.9462 0.949

len 5.7373 8.3083 8.3026 8.1173 8.1315

1000 8 2 0 0 0.5886 0.5902 0.9532 0.9488 0.9496

len 5.4382 7.8157 7.8120 7.6439 7.6471

100 8 1 0.9 0.0006 0.9504 0.9498 0.9504 0.9464 0.9512

len 5.7230 138.5736 138.6580 138.7049 138.4863

1000 8 1 0.9 0 0.9496 0.9492 0.9494 0.947 0.9518

len 5.4371 130.6414 130.5683 130.5454 130.6157

100 8 2 0.9 0.0006 0.9482 0.9482 0.9486 0.9462 0.9474

len 5.7213 276.8517 276.5351 277.0885 276.9547

1000 8 2 0.9 0 0.9524 0.9446 0.9508 0.9506 0.953

len 5.4424 261.3473 261.3177 261.3832 261.4592

100 8 1 1/
√
p 0.0002 0.943 0.946 0.9504 0.954 0.9514

len 5.7534 17.9925 17.9235 17.8525 17.9150

1000 8 1 1/
√
p 0 0.8718 0.9546 0.9502 0.9444 0.9492

len 5.4369 16.8578 16.7918 16.7847 16.7889

100 8 2 1/
√
p 0.0002 0.9484 0.9568 0.9494 0.9492 0.9536

len 5.7323 34.8391 34.9193 34.8409 34.8250

1000 8 2 1/
√
p 0 0.9252 0.9312 0.9448 0.9518 0.9496

len 5.4380 32.8580 32.8374 32.8165 32.8213
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CHAPTER 6

SURVIVAL MODELS

The Kaplan-Meier method is a nonparametric statistical method for estimating sur-

vival function from survival data. By the Kaplan-Meier method, the survival function can

be represented as:

Ŝ(t) =
∏
i:ti≤t

(1− di
ni

) (6.1)

where ti is the time when the event occurs, di is the number of events occurring at time ti,

and ni is the number of survived individuals at time ti. We use the Kaplan-Meier graph

to display the survival probability with time variation, namely the approximate survival

function curve.

The Cox proportional hazard model, also known as the Cox model, is a semi-

parametric statistical method, use to estimate the impact of covariates on time when there

are covariates besides event and time in the survival data. In addition, the Cox model can

also be applied to predict the survival probability at a certain time point. The model is

based on two hypotheses:

• Proportional Hazard hypothesis: the hazard rate is in proportion to the covariates,

which means the influence of covariates on hazard does not change with time

• Logarithmic Linear hypothesis: the covariates have a linear relation with the loga-

rithmic hazard ratio.

The Cox proportional hazards regression (PH) model is

hi(t) = hYi|xi
(t) = h

Yi|β
′xi

(t) = exp(β′xi)h0(t)

where h0(t) is the unknown baseline function and exp(β′xi) is the hazard ratio.
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CHAPTER 7

REAL DATA ANALYSIS

The ‘Survival Dataset’which is used for this analysis, consists of some informa-

tion on the survival in a particular organization for 701 employees. The dataset

has 701 observations and 9 variables. Description of the variables are as below.

(https://github.com/davidcaughlin/R-Tutorial-Data-Files/blob/master/Survival.csv)

• ID- Employee Identification Number

• Start date – Start date in the organization

• Gender - Gender of the employee (Man, Woman)

• Race – Race of the employee (Black, Hispanic Latino, White)

• Pay hourly – Last hourly payment they received in Dollars

• Pay sat – Pay satisfaction level in the survey (1 to 5 scale)

• Turnover – 0= Still in organization, 1=Voluntary turnover, 2= Involuntary turnover

• Turnover date – Turnover date in the organization

• LOS – How long someone work in the organization in days

Inspect Length of Service (LOS) Variable distribution

Figure 7.1. Histogram of Length of Service
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‘Length of Service’ seems to be normally distributed.

Figure 7.2. Histogram of Length of Service

The distribution for the length of service for those people who still stay in the organi-

zation seems to be normally distributed.

Figure 7.3. Histogram of Length of Service

The distribution for the length of service for those people those people who voluntarily

turned over seems to be normally distributed.
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Kaplan-Meier Analysis

Censoring Variable.

Voluntary turnover is considered as the focal event and anything other than voluntary

turnover (if someone left the organization or they’re still in the organization) to be consid-

ered as right censored. Threfore, new variable created as ’censored’.

KM-Model 1

Call: survfit(formula = Surv(LOS, censored) ~ 1,

data = survdat, type = "kaplan-meier")

n events median 0.95LCL 0.95UCL

[1,] 701 463 1059 1022 1095

Among 701 total observations, 463 experience the focal event which is voluntary turnover.

The median length of service before someone experienced the event of voluntary turnover

is 1059 days. The 95% confidence interval of the lower limit is 1022 days, and the upper

95% confidence interval limit is 1095 days. Median is a point estimate between these two

limits here for the 95% confidence interval.

Call: survfit(formula = Surv(LOS, censored) ~ 1,

data = survdat, type = "kaplan-meier")

time n.risk n.event survival std.err lower 95% CI upper 95% CI

73 701 12 0.9829 0.00490 0.9733 0.9925

110 682 1 0.9814 0.00510 0.9715 0.9915

146 681 3 0.9771 0.00566 0.9661 0.9883

183 677 4 0.9713 0.00632 0.9590 0.9838
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According to the life table, 73 days after they started the organization, 12 people

experience the event of voluntary turnover. Which means when their length of service was

73 days, 12 people voluntarily turned over. After 110 days one person experienced the

event again and so on. The ‘n.risk’ column indicates the average number of individuals at

risk for the relevant time interval.

The survival column contains the proportion of individuals who survived past or

through the time interval in question and it’s referred to as the cumulative survival rate.

For example, the survival rate is 0.9814 for 73 days to 110 days. It implies that 98.14% of

the people have yet to experience the event in question.

Plot cumulative survival rates

Figure 7.4. Cumulative survival rates

The plot shows cumulative survival rates over time. The x-axis represents the number

of days for the time to event. The y-axis represents the cumulative survival probability.

Confidence intervals are shaded in the plot. In addition to the graph, a table shows some
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more information. 701 people are at risk at the point of zero days. When it comes to

500 days, 610 people are at risk and so on. When it gets to 2000 days everybody has

experienced the event voluntary turnover.

Kaplan-Meier Analysis-Models with categorical covariates

KM-Model 2

Call: survfit(formula = Surv(LOS, censored) ~ Race, data = survdat,

type = "kaplan-meier")

n events median 0.95LCL 0.95UCL

Race=Black 283 190 1022 986 1095

Race=HispanicLatino 79 57 1022 876 1132

Race=White 339 216 1059 1022 1095

Now the Kaplan Meier model is fitted using the ‘Race’ variable as a covariate. Out

of 283 black individuals, 190 experienced the event of voluntary turnover by the end. 57

Hispanic Latino individuals out of 79 experienced the event of voluntary turnover. 216

people who have identified as White in terms of their race experienced voluntary turnover

out of 339. The median length of service for the three groups are 1022, 1022 and 1059

respectively.
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Life tables for the three independent race groups are as shown below.

Call: survfit(formula = Surv(LOS, censored) ~ Race, data = survdat,

type = "kaplan-meier")

Race=Black

time n.risk n.event survival std.err lower 95% CI upper 95% CI

73 283 6 0.9788 0.00856 0.9622 0.9957

146 272 3 0.9680 0.01049 0.9477 0.9888

183 268 3 0.9572 0.01210 0.9337 0.9812

256 264 1 0.9535 0.01258 0.9292 0.9785

Race=HispanicLatino

time n.risk n.event survival std.err lower 95% CI upper 95% CI

73 79 2 0.9747 0.0177 0.94065 1.000

256 77 1 0.9620 0.0215 0.92079 1.000

438 74 3 0.9230 0.0302 0.86569 0.984

475 71 1 0.9100 0.0325 0.84859 0.976

Race=White

time n.risk n.event survival std.err lower 95% CI upper 95% CI

73 339 4 0.9882 0.00586 0.9768 1.000

110 333 1 0.9852 0.00656 0.9725 0.998

183 332 1 0.9823 0.00718 0.9683 0.996

219 330 3 0.9733 0.00877 0.9563 0.991
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Plot cumulative survival rate curves for categories of Race variable and Log rank test

Figure 7.5. Cumulative survival rates for categories of Race

The plot indicates three different stratums for three different race groups. In other

words, black individuals are represented by red color while the Hispanic Latino individuals

and the white individuals show in green and blue respectively. It looks like there are some

differences between three cumulative survival rate curves represented here.

Using the log rank test, we can see whether those cumulative survival rate curves are

significantly different between the different race groups. The p-value is .073 which is greater
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than our conventional .05 alpha level. It implies that these cumulative survival rates don’t

seem to differ between the different race groups.

According to the risk table, which is now separated by the three different race groups,

283, 79 and 339 individuals from Black, Hispanic Latino and White respectively are at risk

at the point of zero days. When it comes to 500 days, 241, 69, 300 people are at risk and so

on. When it gets to 2000 days, eventually everybody has experienced the event voluntary

turnover.

KM-Model 3

Call: survfit(formula = Surv(LOS, censored) ~ Gender, data = survdat,

type = "kaplan-meier")

n events median 0.95LCL 0.95UCL

Gender=Man 340 213 1022 986 1095

Gender=Woman 361 250 1059 986 1095

Another Kaplan Meier model was fitted using the ‘Gender’ variable as a covariate.

Out of 340 male individuals, 213 experienced the event of voluntary turnover by the end.

250 female individuals out of 361 experienced the event of voluntary turnover. The median

length of service for the males and females are 1022 and 1059 respectively.
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Life tables for the two independent gender groups are as shown below.

Call: survfit(formula = Surv(LOS, censored) ~ Gender, data = survdat,

type = "kaplan-meier")

Gender=Man

time n.risk n.event survival std.err lower 95% CI upper 95% CI

73 340 3 0.9912 0.00507 0.98129 1.000

146 333 1 0.9882 0.00587 0.97677 1.000

183 332 2 0.9822 0.00718 0.96827 0.996

219 330 2 0.9763 0.00828 0.96020 0.993

Gender=Woman

time n.risk n.event survival std.err lower 95% CI upper 95% CI

73 361 9 0.9751 0.00821 0.9591 0.991

110 349 1 0.9723 0.00865 0.9555 0.989

146 348 2 0.9667 0.00946 0.9483 0.985

183 345 2 0.9611 0.01020 0.9413 0.981
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Cumulative survival rate curves for categories of Gender variable and Log rank test

Figure 7.6. Cumulative survival rates for categories of Gender

The plot indicates two different stratums for two different gender groups. In other

words, male individuals are represented by red color while female individuals are shown in

green. It looks like there are some differences between the two cumulative survival rate

curves.

Using the log rank test, we can see whether those cumulative survival rate curves are

significantly different between the different gender groups. The p-value is .071 which is

greater than our conventional .05 alpha level, implying that these cumulative survival rates
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don’t seem to differ between the different gender groups.

According to the risk table, which is now separated by the two different gender groups,

340 and 361 individuals from males and females respectively are at risk at that point of

zero days. When it comes to 500 days, 300 and 310 people are at risk and so on. When it

gets in to 2000 days eventually everybody has experienced the event voluntary turnover.

Estimate Cox Proportional Hazards (PH) Model- Cox Regression Model

Cox Regression Model 1

Call:

coxph(formula = Surv(LOS, censored) ~ Race, data = survdat)

n= 701, number of events= 463

coef exp(coef) se(coef) z Pr(>|z|)

RaceHispanicLatino 0.17936 1.19645 0.15147 1.184 0.236

RaceWhite -0.14365 0.86619 0.09998 -1.437 0.151

exp(coef) exp(-coef) lower .95 upper .95

RaceHispanicLatino 1.1964 0.8358 0.8891 1.610

RaceWhite 0.8662 1.1545 0.7120 1.054

Concordance= 0.522 (se = 0.014 )

Likelihood ratio test= 5.13 on 2 df, p=0.08

Wald test = 5.28 on 2 df, p=0.07

Score (logrank) test = 5.3 on 2 df, p=0.07



33

This model compares the cumulative survival rates across the three different race cate-

gories using the ‘Black’ race category as the reference group. As given in the Kaplan-Meier

analysis, 463 people experienced voluntary turnover which is the event in question out of

701 sample size.

The concordance is an aggregate estimate of how well the model predicts individual

people’s experience of the event. It represents the proportion of pairs of individuals who

experience of the event in question. A concordance value of 0.522 indicates that the model

really does no better than chance. In other words, there’s a 50-50 chance of correctly

predicting which individuals incur the event before the other. The race covariate and the

model slightly improve the accuracy of our predictions but not by too much.

We have the likelihood ratio test, Wald test and the log rank test information. These

tests are asymptotically equivalent to one another when assuming we have a large enough

sample size. When we have smaller sample sizes it is better to use the log rank test. The

log rank test gives the same p-value we obtained from Kaplan-Meier analysis implying that

cumulative survival rates don’t seem to differ between the different race groups.
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Cox Regression Model 2

Call:

coxph(formula = Surv(LOS, censored) ~ Race + Pay_hourly + Pay_sat,

data = survdat)

n= 663, number of events= 445

(38 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|z|)

RaceHispanicLatino 0.12087 1.12848 0.15796 0.765 0.444154

RaceWhite -0.04446 0.95651 0.10367 -0.429 0.668008

Pay_hourly -0.10971 0.89609 0.03276 -3.349 0.000812 ***

Pay_sat 0.14135 1.15183 0.08135 1.738 0.082289 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

RaceHispanicLatino 1.1285 0.8862 0.8280 1.5380

RaceWhite 0.9565 1.0455 0.7806 1.1720

Pay_hourly 0.8961 1.1160 0.8404 0.9555

Pay_sat 1.1518 0.8682 0.9821 1.3509

Concordance= 0.55 (se = 0.016 )

Likelihood ratio test= 15.97 on 4 df, p=0.003

Wald test = 16 on 4 df, p=0.003

Score (logrank) test = 16.02 on 4 df, p=0.003
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This model includes two additional continuous covariates called ‘hourly pay rate for

people’ as well as their ‘pay satisfaction ratings’ together with the categorical covariate

’race’. Now the sample size is 663 instead of 701 due to the missingness of 38 observations

in ‘pay satisfaction variable’. Out of 663, 445 people experienced voluntary turnover.

The ‘Hourly pay rate’ variable is statistically significant because the p-value is less

than the conventional alpha value of 0.05 meaning that variable is statistically associated

with the risk for experiencing voluntary turnover and it is a negative association. This im-

plies that the higher hourly payments have the less risk for experiencing voluntary turnover

within the time period of the study in question. All the other three variables are not sta-

tistically significant.

Also, 0.8961 is the hazard ratio value for Hourly pay rate variable, and 1-0.8961 =

0.1039, which means the risk of an individual experiencing the focal event is going to de-

crease by about 10.4% for every additional dollar an individual earned.

The concordance value is now 0.55 which has increased by 0.028. Further, the log

rank test is statistically significant since the p-value is 0.003 (less than 0.05) which indi-

cates that this model fit the data significantly better than a null model with no covariates

in the model.
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Estimating Overall risk for a specific individual using the Cox Regression Model 2

Let’s consider a hypothetical person who is a Hispanic Latino with hourly pay rate 16

and pay satisfaction level is 4 on the 1 to 5 pay satisfaction scale.

> RaceHL = 1

> RaceW = 0

> PH = 16

> PS= 4.00

>

> Log_overallrisk = .121*RaceHL -0.044*RaceW -0.110*PH + 0.141*PS

> print(Log_overallrisk)

[1] -1.075

> exp(Log_overallrisk)

[1] 0.3412978

The log overall risk is -1.075. We can get the overall risk by the exponentiated value

which is 0.341. This means that the overall risk of voluntarily turning over is 0.341 for

this individual who is a Hispanic Latino with hourly pay rate 16 and pay satisfaction level

is 4 on the 1 to 5 pay satisfaction scale. Moreover, 1-0.3413 = 0.6587, implying that this

individual is 65.9% less likely to quit when compared to an individual with scores of zero

on each of the covariates in the model.

An individual with scores of zero on each of the covariates in the model is someone

who is black, earning zero dollars an hour which is probably not legal and have a score of

zero on the pay satisfaction scale, but the pay satisfaction scale can range from one to five.

It’s not a meaningful value. To overcome this problem, we can use some techniques and fit

the Cox regression model 3.
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Cox Regression Model 3

coxph(formula = Surv(LOS, censored) ~ HL_Race + c_pay_hourly +

c_pay_sat, data = survdat)

n= 663, number of events= 445

(38 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|z|)

HL_RaceBlack -0.12087 0.88615 0.15796 -0.765 0.444154

HL_RaceWhite -0.16533 0.84761 0.15773 -1.048 0.294567

c_pay_hourly -0.10971 0.89609 0.03276 -3.349 0.000812 ***

c_pay_sat 0.14135 1.15183 0.08135 1.738 0.082289 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

HL_RaceBlack 0.8862 1.1285 0.6502 1.2077

HL_RaceWhite 0.8476 1.1798 0.6222 1.1547

c_pay_hourly 0.8961 1.1160 0.8404 0.9555

c_pay_sat 1.1518 0.8682 0.9821 1.3509

Concordance= 0.55 (se = 0.016 )

Likelihood ratio test= 15.97 on 4 df, p=0.003

Wald test = 16 on 4 df, p=0.003

Score (logrank) test = 16.02 on 4 df, p=0.003
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Using the grand mean center of the continuous variables (for example: a person’s

hourly pay of 13.23 and we’re subtracting the overall sample mean, the resulting value is

going to be the grand mean centered value), instead of comparing to someone with making

zero pay which would probably be illegal, we can compare them to someone who’s making

average pay. Similarly with the pay satisfaction variable instead of comparing them to

someone who has a completely theoretically meaningless value (zero) on the scale of one to

five, we can use average score based on this sample.

Moreover, in the Cox regression model 3, the reference group of race variable has

changed to Hispanic Latino which was Black earlier.

The ‘Hourly pay rate’ variable is still statistically significant because the p-value is

less than the conventional alpha value of 0.05. All the other three variables are again not

statistically significant.

0.8961 is again the same hazard ratio value for Hourly pay rate variable. 1-0.8961

= 0.1039, which means the risk of an individual experiencing the focal event is going to

decrease by about 10.4% for every additional dollar an individual earned.
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Estimating Overall risk for a specific individual using the Cox Regression Model 3

Let’s consider the same hypothetical person who is a Hispanic Latino with hourly pay

rate 16 and pay satisfaction level is 4 on the 1 to 5 pay satisfaction scale. (Hourly pay rate

variable and pay satisfaction variable are grand mean centered here.)

> RaceB = 0

> RaceW = 0

> PH = 16.00 - mean(survdat$Pay_hourly,na.rm = TRUE)

> PS= 4.00 - mean(survdat$Pay_sat,na.rm = TRUE)

>

> Log_overallrisk = -.121*RaceB -0.165*RaceW -0.110*PH + 0.141*PS

> print(Log_overallrisk)

[1] -0.1623714

> exp(Log_overallrisk)

[1] 0.8501254

The log overall risk is -0.1624. We can get the overall risk by exponentiating that

value which is 0.850. This means that the overall risk of voluntarily turning over is 0.850

for this individual who is a Hispanic Latino with hourly pay rate 16 and pay satisfaction

level is 4 on the 1 to 5 pay satisfaction scale. Moreover, 1-0.85 = 0.15, implying that this

individual is 15% less likely to quit when compared to an individual with scores of zero on

each of the covariates in the model.

In other word, an individual with scores of zero on each of the covariates in the model

is someone who is Hispanic Latino, earning average hourly pay and have average pay sat-

isfaction. Now, this value is more meaningful.
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Nested model comparison of Cox regression model 1 and Cox regression model 2

The Cox regression model 1 had only one covariate, ‘race’ with 701 people in the

sample. But in the Cox regression model 2, we found out that were 38 people had missing

data for the ‘pay satisfaction ratings’ variable. Therefore, the resulting sample was 663

people for that model. In order to compare the two models, we need to make sure, we’re

comparing models with the same sample sizes. So, we must eliminate those 38 observations

from Cox regression model 1.

Call:

coxph(formula = Surv(LOS, censored) ~ Race, data = drop_na(survdat,

LOS, censored, Race, Pay_hourly, Pay_sat))

n= 663, number of events= 445

coef exp(coef) se(coef) z Pr(>|z|)

RaceHispanicLatino 0.1487 1.1604 0.1576 0.944 0.345

RaceWhite -0.1029 0.9022 0.1016 -1.013 0.311

exp(coef) exp(-coef) lower .95 upper .95

RaceHispanicLatino 1.1604 0.8618 0.8520 1.580

RaceWhite 0.9022 1.1084 0.7393 1.101

Concordance= 0.514 (se = 0.014 )

Likelihood ratio test= 2.83 on 2 df, p=0.2

Wald test = 2.9 on 2 df, p=0.2

Score (logrank) test = 2.91 on 2 df, p=0.2
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Call:

coxph(formula = Surv(LOS, censored) ~ Race + Pay_hourly + Pay_sat,

data = drop_na(survdat, LOS, censored, Race, Pay_hourly,

Pay_sat))

n= 663, number of events= 445

coef exp(coef) se(coef) z Pr(>|z|)

RaceHispanicLatino 0.12087 1.12848 0.15796 0.765 0.444154

RaceWhite -0.04446 0.95651 0.10367 -0.429 0.668008

Pay_hourly -0.10971 0.89609 0.03276 -3.349 0.000812 ***

Pay_sat 0.14135 1.15183 0.08135 1.738 0.082289 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

RaceHispanicLatino 1.1285 0.8862 0.8280 1.5380

RaceWhite 0.9565 1.0455 0.7806 1.1720

Pay_hourly 0.8961 1.1160 0.8404 0.9555

Pay_sat 1.1518 0.8682 0.9821 1.3509

Concordance= 0.55 (se = 0.016 )

Likelihood ratio test= 15.97 on 4 df, p=0.003

Wald test = 16 on 4 df, p=0.003

Score (logrank) test = 16.02 on 4 df, p=0.003



42

> anova(cox_reg1,cox_reg2)

Analysis of Deviance Table

Cox model: response is Surv(LOS, censored)

Model 1: ~ Race

Model 2: ~ Race + Pay_hourly + Pay_sat

loglik Chisq Df P(>|Chi|)

1 -2459.6

2 -2453.1 13.141 2 0.001401 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

According to the Anova, the chi-square test associated p-value is less than 0.05. That

indicates that the full model with all the covariates included (race, hourly pay rate, pay

satisfaction ratings) fits the data significantly better than the smaller nested model that

only had the race variable. In other words, the Cox regression model 2 is significantly

better than the Cox regression model 1.
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Parametric Models

Exponential model 1

Call:

survreg(formula = Surv(LOS, censored) ~ Race + Pay_hourly + Pay_sat,

data = survdat, dist = "exponential")

Value Std. Error z p

(Intercept) 6.2143 0.5261 11.81 <2e-16

RaceHispanicLatino -0.0326 0.1574 -0.21 0.8358

RaceWhite 0.0183 0.1028 0.18 0.8589

Pay_hourly 0.0923 0.0323 2.86 0.0042

Pay_sat -0.0847 0.0813 -1.04 0.2978

Scale fixed at 1

Exponential distribution

Loglik(model)= -3645.1 Loglik(intercept only)= -3650

Chisq= 9.83 on 4 degrees of freedom, p= 0.043

Number of Newton-Raphson Iterations: 4

n=663 (38 observations deleted due to missingness)
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Exponential model 2

Call:

survreg(formula = Surv(LOS, censored) ~ Gender + Pay_hourly +

Pay_sat, data = survdat, dist = "exponential")

Value Std. Error z p

(Intercept) 6.2788 0.5353 11.73 <2e-16

GenderWoman -0.0705 0.0959 -0.74 0.4623

Pay_hourly 0.0910 0.0319 2.85 0.0043

Pay_sat -0.0858 0.0813 -1.06 0.2910

Scale fixed at 1

Exponential distribution

Loglik(model)= -3644.9 Loglik(intercept only)= -3650

Chisq= 10.26 on 3 degrees of freedom, p= 0.016

Number of Newton-Raphson Iterations: 4

n=663 (38 observations deleted due to missingness)
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Weibull model 1

Call:

survreg(formula = Surv(LOS, censored) ~ Race + Pay_hourly + Pay_sat,

data = survdat, dist = "weibull")

Value Std. Error z p

(Intercept) 6.7159 0.1826 36.78 <2e-16

RaceHispanicLatino -0.0363 0.0554 -0.66 0.5118

RaceWhite 0.0153 0.0362 0.42 0.6731

Pay_hourly 0.0366 0.0116 3.16 0.0016

Pay_sat -0.0479 0.0285 -1.68 0.0934

Log(scale) -1.0453 0.0387 -27.02 <2e-16

Scale= 0.352

Weibull distribution

Loglik(model)= -3412 Loglik(intercept only)= -3419.2

Chisq= 14.4 on 4 degrees of freedom, p= 0.0061

Number of Newton-Raphson Iterations: 7

n=663 (38 observations deleted due to missingness)
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Weibull model 2

Call:

survreg(formula = Surv(LOS, censored) ~ Gender + Pay_hourly +

Pay_sat, data = survdat, dist = "weibull")

Value Std. Error z p

(Intercept) 6.6882 0.1864 35.88 < 2e-16

GenderWoman 0.0076 0.0340 0.22 0.82300

Pay_hourly 0.0389 0.0115 3.38 0.00071

Pay_sat -0.0492 0.0285 -1.73 0.08419

Log(scale) -1.0443 0.0387 -26.95 < 2e-16

Scale= 0.352

Weibull distribution

Loglik(model)= -3412.4 Loglik(intercept only)= -3419.2

Chisq= 13.58 on 3 degrees of freedom, p= 0.0035

Number of Newton-Raphson Iterations: 7

n=663 (38 observations deleted due to missingness)
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Log-Logistic model 1

Call:

survreg(formula = Surv(LOS, censored) ~ Race + Pay_hourly + Pay_sat,

data = survdat, dist = "loglogistic")

Value Std. Error z p

(Intercept) 6.5435 0.2236 29.27 <2e-16

RaceHispanicLatino -0.0233 0.0668 -0.35 0.7269

RaceWhite 0.0109 0.0433 0.25 0.8015

Pay_hourly 0.0360 0.0135 2.67 0.0077

Pay_sat -0.0340 0.0340 -1.00 0.3167

Log(scale) -1.2610 0.0404 -31.19 <2e-16

Scale= 0.283

Log logistic distribution

Loglik(model)= -3453.5 Loglik(intercept only)= -3458.1

Chisq= 9.12 on 4 degrees of freedom, p= 0.058

Number of Newton-Raphson Iterations: 4

n=663 (38 observations deleted due to missingness)
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Log-Logistic model 2

Call:

survreg(formula = Surv(LOS, censored) ~ Gender + Pay_hourly +

Pay_sat, data = survdat, dist = "loglogistic")

Value Std. Error z p

(Intercept) 6.5613 0.2270 28.91 <2e-16

GenderWoman -0.0260 0.0402 -0.65 0.518

Pay_hourly 0.0361 0.0134 2.70 0.007

Pay_sat -0.0347 0.0340 -1.02 0.307

Log(scale) -1.2604 0.0404 -31.17 <2e-16

Scale= 0.284

Log logistic distribution

Loglik(model)= -3453.5 Loglik(intercept only)= -3458.1

Chisq= 9.26 on 3 degrees of freedom, p= 0.026

Number of Newton-Raphson Iterations: 4

n=663 (38 observations deleted due to missingness)

For all the six models, pay hourly rate is an important variable. The Weibull regres-

sion model appears to fit better since the chisq pvalue is much smaller than that for the

Exponential and loglogisitic regression models.
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CHAPTER 8

CONCLUSIONS

The simulations were done in R. See R Core Team (2018). Programs are in the

collection of functions slpack.txt. See (http://parker.ad.siu.edu/Olive/slpack.txt). Table 1

was made with aftolssim.

If the cases are iid from some population, we conjecture that the OLS fit to the

uncensored cases gives a consistent estimator for γ where γ is a biased estimator of β.

Then we can test H0 : (βi1, ..., βik)
T = 0 with H0 : (γi1, ..., γik)

T = 0 using the OLS fit to

the uncensored cases. Testing H0 : β1 − β2 = 0 with H0 : γ1 − γ2 = 0 may not be possible

due to the bias of the estimator.

When the βi = 0, the confidence intervals usually contained 0. The CIs for α usually

did not contain 0, which was what was tested, and the tests were good since α ̸= 0. The

tests for the reduced model were also good.
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