
Southern Illinois University Carbondale
OpenSIUC

Dissertations Theses and Dissertations

12-1-2017

A NOVEL LINEAR DIOPHANTINE
EQUATION-BAESD LOW DIAMETER
STRUCTURED PEER-TO-PEER NETWORK
Shahriar Rahimi
Southern Illinois University Carbondale, nickrahimi@gmail.com

Follow this and additional works at: http://opensiuc.lib.siu.edu/dissertations

This Open Access Dissertation is brought to you for free and open access by the Theses and Dissertations at OpenSIUC. It has been accepted for
inclusion in Dissertations by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Rahimi, Shahriar, "A NOVEL LINEAR DIOPHANTINE EQUATION-BAESD LOW DIAMETER STRUCTURED PEER-TO-
PEER NETWORK" (2017). Dissertations. 1462.
http://opensiuc.lib.siu.edu/dissertations/1462

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/dissertations?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/etd?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/dissertations?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/dissertations/1462?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1462&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

 A NOVEL LINEAR DIOPHANTINE EQUATION-BAESD LOW DIAMETER

STRUCTURED PEER-TO-PEER NETWORK

by

Shahriar “Nick” Rahimi

B.S., IAU- TNB University, 2000

B.S., Southern Illinois University, 2009

M.S., Southern Illinois University, 2011

A Dissertation

Submitted in Partial Fulfillment of the Requirements for the

Doctor of Philosophy Degree

Department of Computer Science

in the Graduate School

Southern Illinois University Carbondale

December 2017

DISSERTATION APPROVAL

A NOVEL LINEAR DIOPHANTINE EQUATION-BAESD LOW DIAMETER

STRUCTURED PEER-TO-PEER NETWORK

By

Shahriar “Nick” Rahimi

A Dissertation Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in the field of Computer Science

Approved by:

Bidyut Gupta, Chair

Wen-Chi Hou

Henry Hexmoor

Koushik Sinha

Sam Chung

Department of Computer Science

in the Graduate School

Southern Illinois University Carbondale

Oct 30th 2017

i

AN ABSTRACT OF THE DISSERTATION OF

Shahriar “Nick” Rahimi, for the Doctor of Philosophy degree in COMPUTER SCIENCE,

presented on OCTOBER 30, 2017, at Southern Illinois University Carbondale.

TITLE: A NOVEL LINEAR DIOPHANTINE EQUATION-BAESD LOW DIAMETER

STRUCTURED PEER-TO-PEER NETWORK

MAJOR PROFESSOR: Dr. Bidyut Gupta

This research focuses on introducing a novel concept to design a scalable, hierarchical interest-

based overlay Peer-to-Peer (P2P) system. We have used Linear Diophantine Equation (LDE) as

the mathematical base to realize the architecture. Note that all existing structured approaches use

Distributed Hash Tables (DHT) and Secure Hash Algorithm (SHA) to realize their architectures.

Use of LDE in designing P2P architecture is a completely new idea; it does not exist in the

literature to the best of our knowledge. We have shown how the proposed LDE-based

architecture outperforms some of the most well established existing architecture.

We have proposed multiple effective data query algorithms considering different circumstances,

and their time complexities are bounded by (2+ r/2) only; r is the number of distinct resources.

Our alternative lookup scheme needs only constant number of overlay hops and constant number

of message exchanges that can outperform DHT-based P2P systems. Moreover, in our

architecture, peers are able to possess multiple distinct resources. A convincing solution to

handle the problem of churn has been offered. We have shown that our presented approach

performs lookup queries efficiently and consistently even in presence of churn. In addition, we

have shown that our design is resilient to fault tolerance in the event of peers crashing and

ii

leaving. Furthermore, we have proposed two algorithms to response to one of the principal

requests of P2P applications’ users, which is to preserve the anonymity and security of the

resource requester and the responder while providing the same light-weighted data lookup.

iii

DEDICATION

To: Shahram, Maman, Baba, and Asal.

iv

ACKNOWLEDGEMENTS

I am sincerely and heartily grateful to my advisor Dr. Bidyut Gupta for his excellent

support and guidance throughout my PhD journey. I believe that I am tremendously

fortunate to have worked with such an outstanding scholar. I have learned so much from

him, and without his help, I would not have been able to finish this dissertation.

My sincere thanks also goes to all my committee members, particularly Dr. Sinha for

providing me with the expertise and continued encouragement and ideas. Thanks to Dr.

Hexmoor for helping me to get started in the Ph.D. program, and to Dr. Hou, for his

continued support and help. Thanks to Dr. Sam Chung for spending hours reading my

dissertation and providing extensive feedback and comments.

Also, I would like to thank Dr. Shohreh Hemmeti, for her unconditional support,

encouragements, and patience with me during this process.

v

TABLE OF CONTENTS

CHAPTER PAGE

ABSTRACT……………………………………………………………………………………….i

DEDICATION……………………………………………………………………………….…..iii

ACKNOWLEDGMENTS……………………………………………………………………......iv

LIST OF TABLES…………….…………………………………………………………………ix

LIST OF FIGURES…………………………………………………………………………….....x

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 Problem Statement ... 1

1.2 Contributions .. 2

1.3 Document Outline .. 3

CHAPTER 2 ... 4

BACKGROUND .. 4

2.1 Traditional Network Service Models ... 5

2.1.1 Client-Server Network .. 6

2.1.2 Content Delivery Networks .. 7

2.2 Peer-to-Peer Networking .. 8

2.3 Challenges of P2P Overlay Network ... 10

2.4 Classes of P2P Overlay Networks .. 11

vi

CHAPTER 3 ... 18

LITERATURE REVIEW ... 18

CHAPTER 4 ... 28

ARCHITECTURE DESIGN .. 28

4.1 Two Level Hierarchy ... 29

4.2 Linear Diophantine Equation (LDE) and Its Solutions .. 31

4.3 Implementation of the Architecture ... 35

CHAPTER 5 ... 37

DATA LOOKUP .. 37

5.1 Intra-Group Data Lookup ... 37

5.2 Inter-Group Data Lookup ... 37

5.3 Data Lookup Complexity ... 39

CHAPTER 6 ... 41

ANONYMITY AND SECURITY CONSIDERATION .. 41

6.1 Anonymity Consideration .. 41

6.2 Security Consideration ... 43

6.3 Secure Intra-Group Data Lookup ... 44

6.4 Secure Inter-Group Data Lookup ... 45

CHAPTER 7 ... 47

METHODS TO HANDLE CHURNS .. 47

vii

7.1 Peers Joining the System .. 47

7.1.1 New Peer with Existing Resource Type ... 48

7.1.2 New Peer with New Resource Type ... 48

7.2 Fault Tolerance - Peer Crash or Leave .. 51

7.2.1 Group Member Crashes or Leaves ... 51

7.2.2 Group-Head Crashes or Leaves .. 51

CHAPTER 8 ... 53

GENERALIZATION OF THE ARCHITECTURE ... 53

8.1 Peer with Multiple Existing Resource Types ... 53

8.2 Existing Peers Declaring New Resource Types ... 54

8.3 Data Lookup Considering Generalization of the Architecture 55

8.3.1 Intra Group Lookup .. 55

8.3.2 Inter Group Lookup .. 55

8.4 Joins and Leaves ... 58

8.4.1 Concurrent Joins ... 58

8.4.2 Concurrent Leaves .. 59

8.4.3 Concurrent Joins and Leaves .. 59

8.5 Ring Maintenance .. 60

CHAPTER 9 ... 62

PERFORMANCE EVALUATION .. 62

viii

9.1 Characteristics of P2P Simulators .. 62

9.2 PeerfactSim.KOM .. 63

9.3 Implementing LDE-Based Overlay for PeerfactSim.KOM ... 64

9.4 Experimental Environment .. 66

9.4.1 Results in Stable Network ... 67

9.4.2 Results in Unstable Network .. 76

CHAPTER 10 ... 85

CONCLUSION ... 85

REFERENCES ... 87

VITA ... 95

ix

 LIST OF TABLES

TABLE PAGE

Table 4.1 ..28

Table 5.1 ..40

x

LIST OF FIGURES

FIGURE PAGE

Figure 2. 1 ... 5

Figure 2. 2 ... 6

Figure 2. 3 ... 8

Figure 2. 4 ... 14

Figure 2. 5 ... 15

Figure 2. 6 ... 17

Figure 3. 1 ... 21

Figure 3. 2 ... 22

Figure 4. 1 ... 30

Figure 5. 1 ... 37

Figure 5. 2 ... 38

Figure 6. 1 ... 42

Figure 6. 2 ... 44

Figure 6. 3 ... 46

Figure 7. 1 ... 48

Figure 7. 2 ... 49

Figure 7. 3 ... 50

Figure 8. 1 ... 54

Figure 8. 2 ... 57

Figure 9. 1 ... 64

file:///C:/Users/siu850491311/Dropbox/Papers/Disertation-10-22-Shahram.docx%23_Toc496479169
file:///C:/Users/siu850491311/Dropbox/Papers/Disertation-10-22-Shahram.docx%23_Toc496479170
file:///C:/Users/siu850491311/Dropbox/Papers/Disertation-10-22-Shahram.docx%23_Toc496479171
file:///C:/Users/siu850491311/Dropbox/Papers/Disertation-10-22-Shahram.docx%23_Toc496479174

xi

Figure 9. 2a ... 65

Figure 9. 2b ... 66

Figure 9. 3 ... 68

Figure 9. 4 ... 69

Figure 9. 5 ... 70

Figure 9. 6 ... 71

Figure 9. 7 ... 72

Figure 9. 8 ... 73

Figure 9. 9 .. 74

Figure 9. 10 ... 75

Figure 9. 11 ... 77

Figure 9. 12 ... 78

Figure 9. 13 ... 79

Figure 9. 14 ... 80

Figure 9. 15 ... 81

Figure 9. 16 ... 82

Figure 9. 17 ... 83

Figure 9. 18 ..84

Figure 9. 19 ..17

1

CHAPTER 1

INTRODUCTION

 Peer-to-Peer (P2P) Overlay networks began to gain attention in the world of data

communication in late 90s. Fifty million users of Napster [1], the first well-known P2P

application, proved the success of this new file sharing technology. Although the court of law

shut down Napster due to the unauthorized distribution of copyrighted material [2], their

enormous achievement opens a new door for industry and researchers to dig deeper into the

domain of P2P communication.

 Since then, P2P networking has been a popular way to share data among ordinary

Internet users. Consequently, P2P applications have consumed a substantial portion of the

network resources and accounts for a major amount of traffic on the Internet. Popular

applications such as, BitTorrent, Skype, Team Viewer, Facebook video messaging, Spotify, etc.,

are just few of the many successful applications that have designed based on the P2P data

communication architecture. For years, P2P traffic used to consume more than 70% of Internet

bandwidth [3]. According to Global Internet Phenomena Report (Sandvine) [4], currently, pure

P2P applications have about the 40% of Internet bandwidth consumption. Today, BitTorrent,

which is a P2P file-sharing application, alone, accounts for more than 36% of the Internet daily

terrific.

1.1 Problem Statement

P2P overlay networks are widely used in distributed systems. There are two classes of

P2P networks: unstructured and structured ones. In unstructured systems [24], peers are

organized into arbitrary topology. Flooding is usually used for data lookup. Problem arising due

2

to frequent peer joining and leaving the system, also known as churn, is handled effectively in

unstructured systems. However, it compromises with the efficiency of data query and the much

needed flexibility. Unstructured networks have excessive lookup costs and lookups are not

guaranteed. On the other hand, structured overlay networks provide deterministic bounds on data

discovery. They provide scalable network overlays based on a distributed data structure which

actually supports the deterministic behavior for data lookup. Recent trend in designing structured

overlay architectures is the use of Distributed Hash Tables (DHTs) [25, 70, 71]. Such overlay

architectures can offer efficient, flexible, and robust service [27, 29, 72, 73].

However, maintaining DHTs is a complex task and needs substantial amount of effort to

handle the problem of churn. Consequently, the major challenge facing such architectures is how

to reduce the amount of effort of handling churn while still providing an efficient data query

service.

1.2 Contributions

In this dissertation, we have presented a new hierarchical architecture in which at each

level of the hierarchy existing networks are all structured. We have used Linear Diophantine

Equation (LDE) as the mathematical base to realize the architecture. Note that most structured

approaches use DHTs to realize their architectures. Use of LDE in designing P2P architecture is

a completely new idea. We have explored many different possible advantages that can be fetched

using LDEs; some of these advantages include efficient handling of data look-up, node (peer)

join/leave, anonymity, load balancing among peers, to name a few; besides achieving fault-

tolerance is reasonably simple. We have shown that the complexity involved in maintaining

different data structures is much less than that involved in the maintenance of DHTs. On several

points, LDE-based overlay architecture can outperform DHT-based ones. The proposed

3

architecture has considered interest-based P2P systems [47, 58, 69]. The rationale behind this

choice is that users sharing common interests are likely to share similar contents, and therefore

searches for a particular type of content is more efficient if peers likely to store that content type

are neighbors [36].

1.3 Document Outline

The rest of the dissertation is organized as follows. Chapter 2 starts with reviewing the basic

concepts and terminologies in P2P overlay networks. This chapter provides a summary of the

key concepts which constitute the technical background of the dissertation and the main research

directions. Chapter 3 presents a brief review of the state of the art and provides a summary of

well-established P2P architectures. Chapter 4 reviews the concepts and solutions of LDE and

introduces the implementation of hierarchical LDE-based P2P architecture. Chapter 5 presents

algorithms for intra-group and inter-group data lookup in LDE-based P2P overlay, and then it

proceeds to compare the data lookup complexities of the presented P2P overlay with some major

structured P2P systems. Chapter 6 provides algorithms to support anonymity and security in the

LDE-based P2P overlay. Chapter 7 presents various methods to handle churns. In addition,

approaches on how a new peer is able to join or leave the LDE-based system are presented. In

Chapter 8, the generalization of the architecture, which means how a peer can possess multiple

distinct resource types, is presented. Finally, Chapter 9 provides various scenarios for

performance evaluation of hierarchical LDE-based P2P system.

4

CHAPTER 2

BACKGROUND

Every day, developers invent a new technology to answer ever-changing needs of their

clients in data communication world. The legacy protocols such as Internet Protocol (IP) network

layer protocol provide limited functionalities. Some important tasks such as locating a data in a

network, finding address of users, and many more are not supported in the old-style protocols.

Additional systems are necessary to solve these limitations. Systems such as Virtual Private

Networks (VPN) [6], P2P file sharing, Distributed Hash Tables (DHT) [7], Content Distribution

Networks (CDN) [8], [9], Wireless Ad hoc Networks [10] , etc., are just few examples of the

applications that need to coexist in the Internet and add more features to it. All of the named

systems (and many more) are required to integrate into the Internet and implement all standard

protocols and rules, so they can be functional. Internet has created through the application

programming interfaces (API). Developers are able to utilize these powerful building blocks and

construct their new topologies on top of the Internet protocols. Moreover, they do not have to

deploy new equipment or modify existing software. However, including another layer to network

stack makes the entire data communication system more complicated. For instance, the packet

header needs to be modified to fit the new requirements. Even, sometimes, overlays may have

behaviors that originate misleads in the network. For example, a corruption drops on CDN links,

can be interpreted as congestion drops by Transfer Control Protocol (TCP). All and all, any new

network that constructs on top of an underlying network and provides a new service is an overlay

network (Figure 2.1).

5

2.1 Traditional Network Service Models

The Internet has evolved a lot in the past decades. Emerging the Internet of Things (IoT)

[11] takes the data communication to the completely new level. The demand for services in the

Internet are growing exponentially. The growth of the Internet can be expected to be as large as

world’s population. Today there are more than a billion websites. In 2016 only, there were

3,434,971,237 Internet users [12]. This number has increased by 7.5 % since 2015. It is

interesting to know that the world population’s change rate was 1.13% in the same period.

Figure 2.2 shows the global Internet users per year since 1993. Traditional services in the

Internet are based on the concept of central repository of information. Today, traditional network

such as Client-Server or Content-Delivery based networks are not capable to provide the daily or

even hourly necessities of the end-users around the world.

 In the following sections, we discuss the legacy approaches of data communication and

provide reasons to support the need of more efficient data communication systems.

Figure 2.1 Overlay network on top of the Network layer

6

2.1.1 Client-Server Network

Client-Server architecture [9] model has been a fundamental way to implement distributed

systems and consequently has been heavily used for web traffic. In this model, a server provides

all the resources needed to satisfy clients’ requests [5]. However, this approach cannot deliver all

the needs and requirements for today’s web traffic. More specifically, client-server systems

impose some limitations in scalability, reliability and efficiency of distributed systems.

 Scalability is the major necessity to response to the continuous growth of the Internet.

The continuous demands for resources such as bandwidth, processing power and storage

capacity make it impossible for client-server technology to be the only architecture that

being utilized in Internet backbone.

 Reliability is a concern that needs to be addressed in server-client architecture. If the

number of servers were small then what would occur when they crash, fail, get

Figure 2.2 Internet Users in the Word per Year [12]

7

disconnected, or being mismanaged by humans? This type of distributed systems by

nature are vulnerable to the single point of failure issue.

 Efficiency in performance is challenging in server-clients practices. Responding to the

users’ requests that are distributed across the globe in a timely and accurately manner is

not as efficient as it should be.

2.1.2 Content Delivery Networks

A Content Delivery Network (CDN) is a geographically distributed network of proxy

servers and their data centers. In this model, the service provider places many copies of their

content (e.g. web pages) at set of nodes at different locations and directs the clients to use a nearby

node as the server. Several traditional web based services such as Domain Name Servers (DNS)

and Netnews [13] adopted a CDN based architecture in early days.

The CDN goal is to distribute service spatially relative to end-users to provide high

availability and high performance. CDN is mostly used to decrease the time to access to a website

content and offers a real time performance for video streaming. In CDN, the traffic comes from

the servers to their end-users (Figure 2.3). This means all traffic are loaded through servers.

Eventually content delivery model is centralized. Therefore, CDN model is also vulnerable to the

limitation that client-server model has.

8

2.2 Peer-to-Peer Networking

Peer-to-peer systems have been defined in many papers. Here are two definitions that cover

the concepts of resource sharing, self-organization, decentralization, and interconnection:

“A distributed network architecture may be called a peer-to-peer network, if the

participants share a part of their own hardware resources (processing power, storage

capacity, network link capacity, printers). These shared resources are necessary to

provide the Service and content offered by the network (e.g. file sharing or shared

workspaces for collaboration). They are accessible by other peers.”[14]

“Peer-to-peer systems are distributed systems consisting of interconnected nodes that are

able to self-organize into network topologies with the purpose of sharing resources such

as content, CPU cycles, storage and bandwidth, capable of adapting to failures and

accommodating transient populations of nodes while maintaining acceptable connectivity

Figure 2.3 Client-server model vs. Content-based model

9

and performance, without requiring the intermediation or support of a global centralized

server or authority.”[15]

The cooperative model of P2P architecture and the fact that their users (peers) bring their

own resource to share, provides a set of remarkable benefits. These types of overlay systems are

highly scalable due to the idea that the capacity of their resources such as storage, processors and

bandwidth escalates proportionally to the number of users. The load of the network spreads

across the peers; consequently, the probability of all nodes are being crashed, would be

unprecedented if not impossible. Furthermore, the distribution of the peers delivers a better

efficiency. A resource can be located in a nearby peer and this advantage can save a lot of

bandwidth and time consumption. Moreover, all the peers in a P2P system are powered with

equal abilities, accountabilities, and functionalities, despite their different possessions. In most

cases, there is no central system to oversees and controls the peers ‘operations. In addition, P2P

systems shall provide incentives for fair resource contribution for each of their users. Anonymity

support to some extent is another desire of the participants’ peers. Recently, some literatures are

also referred to P2P systems as BYOD (Bring Your Own Devices) [16].

P2P is a green technology [17]. The idle computers are sharing resources instead of

powerful servers in data centers. As a result, electricity is being saved which mean less Carbon

emission produced in the environment. Although, this is a valuable characteristic of P2P

overlays, does not receive enough credits.

In addition, in structured P2P overlay (which will be discussed later), peers are identified

by a unique address. This ID is being used for routing purposes in P2P overlays. All the methods

to generate and assign an ID such as Distributed Hash Tables (DHT) and LDE-based (which we

10

have been presented in this study) are able to provide a very large ID values. It is known that

IPv4 is limited to 232 addresses and IPv6 has its own challenges [18]. Hence, P2P routing overlay

is able to provide an additional method to decrease the routing load on the Network layer.

2.3 Challenges of P2P Overlay Network

P2P overlay networks encounter the following challenges:

 Churn: The main challenge in every P2P overlay is the unpredictability of peers. Dealing

with the constant arrival and departure of the nodes is the critical part in every P2P systems.

Unlike servers that they are always online, peer uptime is solely based on the behavior of the

user that is a member of the system [19].

 Bootstrap: How to join a P2P overlay? Which peer is going to provide initial configuration

to a newly joining node?

 Communication: How to find other peers to communicate? On the other hand, how to find

the resource that we are looking for?

 Security: Vulnerable to Sybil attack [20]. A security method is required to be implemented

in P2P communications.

 Network reachability: Most of the computers are connected to the Internet via Network

Address Translation (NAT). NAT prevents unknown incoming traffic. Sometimes, Internet

Service Providers (ISP) block the P2P traffics.

 Lookup latency: Lookup cost can be very high in some P2P applications.

 Application download: In the world today, people are used to downloading apps from a

center such as Apple or Google store, downloading and installing the P2P application can be

a little challenging for them.

11

2.4 Classes of P2P Overlay Networks

A P2P network is a logical overlay network on top of a physical network [21]. Each peer

corresponds to a node in the peer-to-peer network and resides in a node (host) in the physical

network. All peers are of equal roles. The links between peers are logical links, each of which

corresponds to a physical path in the geographical network. The physical path is determined by a

routing algorithm and composed of one or more geographical links. Logical links can be added to

the P2P network arbitrarily as long as a corresponding physical path can be found, that is, the

physical network is connected. There are two fundamentally different types of P2P networks:

unstructured and structured ones.

An unstructured P2P system [22] is composed of peers joining the network with some

loose rules, without any prior knowledge of the topology. In their early version, the network uses

controlled flooding as the mechanism to send queries across the overlay. When a peer receives

the flood query, it sends a list of all contents matching the query to the originating peer. While

flooding based techniques are effective for locating highly replicated items, they are poorly

suited for locating rare items. Clearly, this approach is not scalable as the load on each peer

grows linearly with the total number of queries and the system size. Thus, unstructured P2P

networks face one basic problem, peers rapidly become overloaded, and therefore the system

does not scale when handling a high rate of queries and sudden increases in system size. Gnutella

[23] and Yappers [25] are two examples of unstructured P2P architectures.

In newer versions of unstructured P2P, a few other methods have been introduced to reduce

the impact of flooding [26].

12

 Expanded ring search: In this method, the querying node issues a series of searches

initially with small number of hops, if no reply is received, then increases the hop limits.

 Random Walk: In random walk, the query propagates randomly though out the network.

 Gossiping: In this approach, a node issues a lookup query to a neighbor who once it

received a packet from it. Neighbor is also sending the request out to other neighbors in a

similar manner. This method is comparable to spreading a virus in a community.

Sometimes this approaches called epidemic protocol as well.

To join an unstructured system, a new peer initially connects to one of several known hosts

that are usually available. Unstructured network handle effectively the problem of churn. As it

has been stated before, churn, peer joining and leaving the system, is frequent. However,

resource lookup-time complexity in flat unstructured P2P network is O (n), n being the number

of nodes in the P2P network. On other hand, a properly designed structured architecture provide

efficient, flexible, and robust services [28], [30].

In structure overlay networks, peers organized into specific topologies. Typically, they utilize a

DHTs. Distributed hash table is a decentralized system of hash tables. DHTs are utilized to map

resources to an identifier. As a result, it provides functionalities such as data lookup, insertion,

deletion, etc. to the system.

By taking advantage of DHTs, a better complexity of O (log n) is achievable, in contrast with

unstructured networks. However, maintaining DHTs is a complex task and needs huge amount of

effort to handle the problem of churn. Hence, the major challenge facing such architectures is to

reduce the amount of effort for churn handling while still providing an efficient data query service.

13

Chord [31] [32], Pastry [33] [34], Tapestry [11] are structured P2P. We will discuss further about

each of these architectures.

Additionally, a few literature have considered server-based P2P systems as one category

of P2P architecture. They classified P2P systems into two main categories of centralized and

decentralized, based on the existent of a server [35]. Centralized P2P systems are a hybrid of

client-server and P2P models. Usually, they have one or more servers to coordinates their peer

resources. To find a specific resource, a message is sent to the system server by a requesting

peer. The server replies by sending the address of the resource holder. Centralized P2P

applications are vulnerable to single point of failure and they have limited scalability. Napster is

the most famous example of centralized P2Ps. Decentralized P2P systems are divided into

structured and unstructured classes. Furthermore, structured P2P can categorized to classes of

Flat, Hierarchical, and Hybrid (Figure 2.4).

In Flat or single tier P2P architecture, all nodes are only in one overlay and all functions

like routing are performed in that single overlay. It turns out that most of the overlays such as

Chord, Pastry, and Kademlia [37] are flat.

 Hierarchical architecture (Figure 2.5) is a P2P overlay consists of more than one

structured overlay. They have different routing mechanisms that are built into their different

layers. Generally, routing in one-layer leads to gateway to another layer. Nodes are grouped into

different clusters. Some nodes are in one overlay, and some other are participating in more than

one. The nodes that are members of more than one layer with some special responsibilities are

called Super nodes [38]. Super nodes have a large number of neighbors. They carry out tasks

such as handling data flow and connecting the layers together.

14

Normally, super nodes are the computers with better bandwidth and stronger processor

power in comparison to the other nodes. In addition, they have a longer on-line time. One of the

best P2P overlay examples for hierarchical architecture is the LDE-based hierarchical P2P that is

going to be present in this dissertation.

Hybrid P2P (Figure 2.5) Overlay is an architecture consisting of both structured and

unstructured P2P are embedded into different layers. HP2P [39], KaZaA [40], Gnutella 6.0 [41]

are few examples of this type of architecture.

Figure 2. 4 Hierarchy of P2P Overlays

P2P
Overlay

Decentralized

Structure

FlatHierarchicalHybrid

Unstructure

Centralized

15

Figure 2.5 Architecture of P2P

To summarize, as we have discussed above, current unstructured P2P architectures are

facing the traffic overload problem and their time complexity for the data lookup is related to the

number of their peers, which is substantial. While structured P2P networks typically have a better

search complexity but problems arise due to frequent peer joining and leaving which is known as

churn. Our interest-based hierarchical P2P architecture attempts to address these issues and

provide a better solution for P2P data communication.

As we are going to present our interest-based hierarchical P2P, we would like to refer to a

study that have generated the exact number of the distinct resources available in thepiratebay.org

website. Pirate Bay is the biggest host of the torrent files, which assists file sharing by BitTorrent

protocol. This study reveals that the number of distinct resource types being used is far less than

the number of peers in the Internet. In fact, it justifies the use of interest based P2P systems.

a) Centralized Architecture b) De-Centralized Architecture C) Hybrid Architecture

16

In this research [42], about 3.4 million pieces of data, over 680 thousand torrents have been

processed from thepiratebay.org. The below dataset is a sample output of distinct resources

available in this website. In addition, Figure 2.6 shows Torrent category statistics.

“Total Number of items: 679516; Music: 189278; Movies: 275763; Applications: 51173

Games: 47540; Other: 39005Porn: 63659; Sizes; TotalMusic:43125.1 average 227.84;

TotalGames: 64948.06 average1366.177; TotalMovie: 450009.6 average 1631.871;

ApplicationTotal: 17735.65 average 346.5822; PornTotal: 40811.07 average 641.0887;

OtherTotal: 6865.408 average 176.0135; PERCENTAGES %%%% ;Music: 27.85483;

Movies: 40.58227 ;Applications: 7.530801 ;Games: 6.996156; Other: 5.740115 ;Porn:

9.368286 ;Category Ratios ;Music: 3.010126 ;Movies: 1.438316 ;Games: 2.493047

;Application: 4.493691 ; Other: 3.264016 ;Sizes 1_10KB: 901 %: 0.1325944

;10_100KB: 1244 %: 0.1830715 ;100_1000KB: 15457 %: 2.274707 ;1MB: 9470 %:

1.393639 ;2_5MB: 21107 %: 3.106181 ;5_25MB: 55221 %: 8.126519 ;25_50MB: 46142

%: 6.790421 ;50_200MB: 170754 %: 25.12877 ;200_500MB: 106744 %: 15.70883

;500_1,000MB: 124043 %: 18.25461;1_2GB: 53213 %: 7.831015 ;2_4GB: 23008 %:

3.385939 ;4_6GB: 37442 %: 5.510098; 6_10GB: 10772 %: 1.585246 ;10_20GB: 2500

%: 0.3679089 ;20_100GB: 1466 %: 0.2157418 ;100+GB: 31 %: 0.004562071 ;Ratios

1_10KB: 4.647742 ;10_100KB: 4.062142 ;100_1000KB: 3.980501 ;1MB: 4.082843

;2_5MB: 4.151653;5_25MB: 3.757301 ;25_50MB: 2.848794 ;50_200MB: 2.813746;

200_500MB: 1.888859 ;500_1,000MB: 1.531591 ;1_2GB: 1.231281 ;2_4GB: 1.192464

;4_6GB: 0.9310662 ;6_10GB: 0.7831408 ;10_20GB: 0.6954312 ;100+GB: 0.7111191

;Average Number of Seeders/Leechers Ratio 1KB7.284238 …”

17

Figure 2.6 Current Torrent Categories [42]

18

CHAPTER 3

LITERATURE REVIEW

To start reviewing related P2P systems, we begin with a well-known unstructured peer to

peer.

 Gnutella is the first system that adopted unstructured P2P architecture topology. To join

the Gnutella system, a new peer initially connects to one of the several known hosts that

are usually available (e.g., list of peers available from http://gnutella.com). For lookup,

user forms a query including the search string and floods it out to its neighbors. Recipient

peers compare the string with their own resources, if they find a match, query response

messages are sent back to the sender containing information on how to download the

resource. The peer that requested the file downloads it directly. The updated version of

Gnutella 0.6 is not a flat unstructured P2P anymore [43]; it is a hierarchical network made

of leaf nodes and super nodes. Typically, three leaf nodes are connected to a super node,

and each super node is connected to more than 32 other super nodes. In Gnutella 0.6, the

maximum number of hops a query can travel has been lowered to 4. Like all of the

unstructured P2P systems, Gnutella’s lookup complexity is proportional to the number of

available peers, which can be very expensive in a relatively big P2P network.

 Freenet [44], [45] is an adaptive P2P that was designed to resist censorship. Freenet is a

loosely structured decentralized P2P network that provides anonymity for peers. The

nodes’ identifier keys are location independent; the system has no central server and

administrator. Information stored on Freenet is encrypted first, then distributed around the

network and stored on several different nodes. Peers are not aware who provides the data

19

during the lookup, even have no idea what they stored themselves as the data is encrypted.

This keeps the anonymity of their members, and hides the content that any peers hold.

Peers only have information of their neighbors. When a controlled lookup query is issued

by a node, number of query hops is decremented at each peer to prevent infinite loops.

Peers are also able to reject the request that they have received before, due to the use of a

unique random identifier for each request. In this case, the preceding peer forwards the

request to another peer and the search continues. To connect to the system, a peer is

required to know another existing user address. In Freenet, there is no peer with special

responsibility, and therefore, no hierarchy exist. As a result, there is no centralized point of

failure. Freenet should find the requested file, approximately by

O [log (n)]2 hops, n in the number of the peers in the system. Nevertheless, the system

does not guarantee that data will be found at all.

 BitTorrent [46] is designed for fast and efficient content distribution. Its architecture is

ideal for large files delivery. BitTorrent is not considered as a pure P2P system due to its

centralized server. This server is called Torrent tracker. The tracker keeps the records of

all peers who possess the complete or some portion of a file. The system works as follows:

a peer known as seeder possesses a file that wants to share it in the BitTorrent system. First,

the peer needs to generate a torrent file. The torrent file contains the information about the

file, its length, name, identification information, and URL of a tracker (tracker metadata).

The torrent file shall be placed on some torrent websites such as Pirate Bay. In order to

download a file, a user logs in to the website first and downloads the torrent file. The torrent

file is just a metadata that informs the user on how to access the seeking content. By having

the metadata, the user is able to learn on how to connect to the tracker server. The tracker

20

server associates the requester to those who possess the content. The requester (which

called leecher) is able to obtain the content from multiple seeders instead of just

downloading it from one peer. Increasing the number of leechers is equivalent to more

replicas of the content and ends up with faster download. Note that, leechers are able to

take some load off the seeders, by sharing the pieces of file that they have just downloaded.

In addition, BitTorrent implements a technique for enticing peers to contribute. In this

method peer replies with the same action that other collaborating peers previously

performed (tit for tat). BitTorrent breaks files into pieces of 64 KB – 1 MB per piece and

the torrent file also contains the hash of each file that can be used to perform an integrity

check on a downloaded piece. Regarding the routing performance, BitTorrent guarantees

to locate data and provides a constant routing state.

 Content Addressable Network (CAN) [48] developed at University of California,

Berkeley is a distributed decentralized P2P overlay. The architectural design is a virtual

multi-dimensional hyperspace with multiple zones (Figure 3.1). The entire space is

partitioned among all the nodes and every node possesses a zone in the space. Data is

stored at the enclosing zone and a key identifies this data. Each node only maintains state

for its immediate

21

neighboring nodes. This state consists of the IP address and the virtual coordinate zone of

each of its neighbors. A CAN message includes the destination coordinates. The routing

algorithm chooses the nearest neighbor to the destination. These factors make CAN a

scalable, fault-tolerant, and self-organizing P2P system. CAN routing performance is O

(d × N 1/d); N being the number of peers in network and d is the number of dimensions.

 Chord developed by Berkeley and MIT researchers uses consistent hashing [49] to assign

keys to its peers. In Chord, in order to generate the consistent hashes, IP addresses and port

numbers are used as the input of SHA-1 [50] hash function. The calculated message digest

is always 160 bits. These hash values are truncated to m bits, where m is a system

parameter. This peer ID is an integer between zero and (2m -1) bits. The peer IDs then

map to one of 2m logical points on a ring (Figure 3.2). Each node maintains a pointer to

its successor and predecessor nodes. Data lookup queries are sent and received through

the successor and predecessor nodes. Consistent hashing is designed to let peers enter and

leave the network with minimal interruptions. Essentially, Chord uses a technique where

each of the nodes in the P2P overlay selects its neighbors in an intelligent fashion. In a

Figure 3.1 CAN Architecture. d-dimensional hyperspace with N zones

22

steady state, for a total of N peers in the system, each peer maintains a routing state

information for about O (log N).

 Kademlia [37] is a P2P decentralized structured overlay network. Similar to most of the

structured P2P systems, Kademlia assigns a NodeID with the size of 160 bit to each peer.

The NodeID and {key, value} pairs are deposited on peers with IDs close to the key. The

routing algorithm which is based on the NodeID uses to find peers near a destination key.

Kademlia uses the unique idea of exclusive or (XOR) to calculate distance between two

nodes. The XOR of the two NodeIDs produces the distance between them. It uses a

single routing algorithm to locate peers near a particular ID. The Kademlia routing

protocol consists of the following steps:

o PING: inquiries a peer to verify if the node is active.

o STORE: store a {key, value} pair for later retrieval.

Figure 3.2 A 16-node Chord network

23

o FIND_NODE: takes a Node ID, and returns its associated {IP address, UDP port,

NodeID} triple.

o FIND_VALUE: is similar to FIND_NODE, send back {IP address, UDP port,

NodeID} triples, if the recipient of the request possesses the requested key in its

store

 Kademlia has a routing performance of O (log BN) +c, where c = small constant

 N-number of peers in network and b-number of bits (B = 2b) of NodeID

 Pastry [34] came out of academia as well. Pastry, just like Chord, assigns Ids to nodes,

using a consistent hashing function. The peers are hashed onto a point on a logical circle.

In Pastry, Leaf Set is defined as each node including with its successor(s) and

predecessor(s). Routing tables are based on prefix matching. The niche marketing of

Pastry is emphasizing on locality. It is considering the nodes in underlying network

topology and trying to make the neighbor edges to be short. Pastry has two metrics, Id

distance and physical distance. A peer with an Id of B bits may have up to B neighbors,

one for each of the prefix matches. A node may have many neighbors with matching

prefix, however it chooses the one with the shortest round-trip-time. Initially, shorter

prefixes are going to be assigned to the peers first. As a result, chances that peers with

shorter prefixes are being physically close to each other are very likely. Because of

prefix routing method, first a few hops are physically shorter and later ones are longer to

reach. The routing performance of Pastry is of O (log (BN); N is the number of peers and

B is the number of bits used for the base of the chosen identifier.

 KaZaA [40] is a hybrid P2P that supports meta-data searching. It is the cross of Napster

and Gnutella. Peers with high bandwidth, stronger processors are selected to act as the

24

super nodes and impose a hierarchy in overlay. Super nodes are performing as a central-

server to a group of peers. Compare to unstructured P2P, search is more efficient in

KaZaA. To perform a query, a peer just sends a lookup message to the super node instead

of flooding the system with the query. If multiple peers are hosting a queried file, then a

user can perform parallel downloading. Usually a KaZaA’s super node supports 30-50

ordinary peers. Super nodes are forming a structured P2P on top of the underlay peers. In

addition, some of the super nodes are hardcoded into the KaZaA application. To join the

system, new peers need to contact the hardcoded super nodes. In order to share any

resource with the network, the newly joined peer informs the super node with a list of

files. The super node stores the metadata of the shared files. KaZaA offers better scaling

properties than Gnutella. It provides some degree of guarantee to locate data, since

queries are routed to the super nodes.

 HP2P [39] proposes a two-layer hybrid P2P network. The HP2P network combines both

unstructured and structured P2P networks. Generally, the upper structured layer is based

on Distributed Hash Tables (mostly Chord), and the lower underlay is unstructured. The

super nodes are responsible to coordinate the lower layers’ peers. Similar to KaZaA, all

communications between layers are going through the super nodes. Considering N peers

in the entire HP2P system, and the size of each cluster being m nodes, there are at least

N/m clusters available in the H2P2. Therefore, the lookup complexity is

O (log N/m + m).

 Overnet/eDonkey [51] is another hybrid two layer P2P file sharing system. The

architecture of eDonkey is very similar to KaZaA. On upper layer, there are servers for

maintaining the metadata of shared files and the second layer is consisting of ordinary

25

peers. Any request is sent to the local server first. The local sever locates the requested

file based on the list of registered peers. eDonkey supports parallel downloading,

detection of corrupted files, file sharing, and partial sharing. In order to link to the

system, the peer needs to find out the IP address and the port of one of the servers. To

share any resource, peers are required to provide the metadata of their files to the server.

After registration, peers can either search by querying the metadata or request a particular

file through their PeerID. Reporting the availability of the resource is guaranteed through

the system. After server locates the requested file, then it informs the peer with the

address of the file owner, so the peer is able to download the files directly from the

specified locations.

 YAPPERS [25], [26] is another hybrid P2P, consisting of both structured and

unstructured P2P. The ideas of immediate and extended neighborhood provide a

relatively efficient data lookup complexity. In order to issue a data lookup query, the peer

first checks its immediate neighbors within a specified h hop distance. If the query was

unsuccessful, then the requester issues another lookup message for its extended

neighborhood, which consists of peers in 2h + 1 hops of the requester. Then, these nodes

will forward the request to the peers in their own immediate neighborhood, along with

others. Finally, all the peers in the system will be checked. YAPPERS is also susceptible

to the traffic overhead problem, due to the constant message floods through the network.

 YANG et al. [52] introduced another hybrid P2P system which is composed of two parts:

a core transit network and many stub networks. Stub networks are attached to a node in the

core transit network. The core transit network is a structured P2P overlay, which organizes

peers into a ring similar to the Pastry ring. Each peer in a transit network is assigned a peer

26

ID, which is a positive integer. Peers are inserted to the ring in the order of their IDs. The

stub networks are Gnutella-style unstructured P2P networks.

 Thau Loo et al. [53] proposed a hybrid P2P system, which treats rare and popular data

items differently. As it has been discussed before, flooding-based lookup methods are

unable to locate rare items in the network. They proposed system, attempts to solve this

issue. Their hybrid P2P overlay consists of unstructured networks on the lower layer and a

structured one on top. The super nodes form the structured layer. Multiple ordinary peers

are connected to a super node. Data lookup is first performed through the regular flooding

method. If unsuccessful, the query is sent to the connected super node. At that step, DHT

are utilized in structured network for searching rare items.

 SKYPE [54] is a P2P VoIP service based on KaZaA network structure, an overlay P2P

network consisting of ordinary and super nodes. In SKYPE an ordinary host must connect

to a super node and must authenticate itself with the SKYPE login server. Node’s

anonymity has not been considered in its design.

 Garces et al. [55] have proposed a hierarchical, fully structured P2P. The architecture has

been influenced by KaZaA. However, unlike KaZaA, a DHT-based P2P such as, Chord, or

Pastry has been implemented into both layers. The lookup complexity in this system is the

summation of the complexity of both layers. Since both layers are DHT based, the lookup

complexity in the lower layer is O (log N), where N is the number of the peers in the system,

and O (log M), is the upper layer complexity, where M is the number of the lower layer

clusters.

 HIERAS [56] is a hierarchical DHT based P2P routing algorithm. In this system, multiple

lower level rings underneath of a highest-level ring. Locality has been considered in this

27

system. The peers in lower level ring are physically closer to each other; therefore, the

latency is shorter than the layer above. In HIERAS, a lookup query first performed inside

the lower level rings. Higher level routing will be executed, if the lower level ring lookup

is unsuccessful. The lookup complexity is O (log M) + O (log N), where N is the number

of peers in the system and M is the number of the rings.

28

CHAPTER 4

ARCHITECTURE DESIGN

In this chapter, a structured architecture for hierarchical interest-based P2P system and

the required mathematical basis supporting the architecture are discussed. The following

notations along with their interpretations will be used while the architecture is defined.

We define a resource as a tuple ˂Ri, V˃, where Ri denotes the type of a resource and V is the

value of the resource. A resource can have many values. For example, let Ri denote the resource

type ‘songs’ and V’ denote a particular singer. Thus ˂Ri, V’˃ represents songs (some or all) sung

by a particular singer V’. In the our model for interest-based P2P systems, we assume that no two

peers with the same resource type Ri can have the same tuple; that is, two peers with the same

resource type Ri must have tuples ˂Ri, V’˃ and ˂Ri, V”˃ such that V’≠ V”, as shown in Table

4.1. Let S be the set of all peers in a P2P system. Then S = {PRi}, 0 ≤ i ≤ r-1. Here PRi denotes the

subset consisting of all peers with the same resource type Ri and no two peers in PRi have the

same value for Ri and the number of distinct resource types present in the system is r. Also for

each subset PRi, Pi is the first peer among the peers in PRi to join the system.

Table 4.1:

 No peers with the same resource type Ri can have

the same value (V’≠ V”)

Peer (P) Resource (R) Value (V)

Pi Ri V’

Pi Ri V”

Pj Ri V’

29

We now introduce the following architecture suitable for interest-based peer-to-peer system.

It has been assumed that no peer can have more than one resource type. Generalization of the

architecture will be considered in Chapter 8.

4.1 Two Level Hierarchy

We present a two level overlay architecture and at each level, structured networks of peers

exist. It is explained in detail below.

a. At level 1, there is a ring network consisting of the peers Pi (0 ≤ r ≤ d-1). Therefore, the

number of the current peers on the ring is r, and d is the maximum number of the peers

that can be present. This ring network is used for efficient data lookup and so it has been

named as transit ring network.

b. At level 2, there are r numbers of completely connected networks of peers. Each such

group, Gi, is formed by the peers of the subset PRi, (0 ≤ i ≤ d-1), such that all peers (ϵ PRi)

are directly connected (logically) to each other, resulting in the network diameter of 1.

Each such Gi is connected to the transit ring network via the peer Pi. We name such a

peer Pi as the group-head of network Gi.

c. Each node in the transit network maintains a Global Resource Table (GRT) that consists

of tuples of the form, <Resource Type, Resource Code, Group Head Logical Address>,

where Group Head Logical Address refers to the logical address assigned to a node by our

overlay P2P architecture.

d. Any communication between a node pi ∈ Gi and pj ∈ Gj takes place only via the respective

group-heads Pi and Pj.

The proposed architecture is depicted in Figure 4.1.

30

We shall use solutions of a given Linear Diophantine Equation (LDE) to realize the

architecture. The solutions are used to determine the following.

a. Logical addresses of peers in a subnet PRi (i.e. group Gi). Use of these addresses will

be shown to justify that all peers in Gi are directly connected to each other (logically)

forming an overlay network of diameter 1. In graph theoretic term, each Gi is a

complete graph.

b. Identifying peers that are neighbors to each other on the transit ring network.

c. Codes of distinct resource types.

Gi => Group i

Pi => group head of Group i

Level 1

Transit ring

level

G1

G0

Pi

Gr-1

Gi

P1

P0

Pr-1

Level 2

Network of Peers

Figure 4.7. A two-

level structured

architecture with

distinct resource

typesLevel 2

Network of Peers

Figure 4.1. A two-level structured architecture with distinct resource types

Figure 4.8. A two-level structured architecture with distinct resource types

31

An overview of LDEs is provided below, which will offer the mathematical foundation of the

presented architecture.

4.2 Linear Diophantine Equation (LDE) and Its Solutions

By assumption that a, b, and c are integers, the equation:

 𝑎𝑛 + 𝑐𝑘 = 𝑏 (1)

is called a LDE in geometry [57], the objective of solving the Diophantine equation is to find all

the lattice points, if there exist any. Lattice points are the integer coordinates that intersect with

equation (1). The existence of the lattice points is based on the a, b, and c. In order that there

exist integers n and k that satisfying the equation (1), it is necessary and sufficient that

 d│b, where d = gcd (a, c) (2)

To proof, let consider

 a=e.d, c=f.d. (3)

Then we can rewrite the equation (1):

 𝑏 = 𝑒𝑑𝑛 + 𝑓𝑑𝑘 = 𝑑(𝑒𝑛 + 𝑓𝑘). (4)

On the other hand, if d│b, let k. d =c. Therefore, we can find 𝑛' and 𝑘′such that:

 𝑎𝑛' + 𝑐𝑘′ = 𝑏 (5)

Thus

 𝑎(𝑛't) + 𝑐(𝑘′𝑡) = 𝑏𝑡 = 𝑏 (6)

32

Hence 𝑛 = 𝑛't and 𝑘 = 𝑘′𝑡 provide a solution for (1).

Consider for equation (1) there are w0 and z0 such that:

 𝑎𝑤0 + 𝑐𝑧0 = 𝑑 (7)

Then, an integer h can be found such that 𝑏 = 𝑑ℎ; and we let 𝑛0 = 𝑤0ℎ and 𝑘0 = 𝑧0ℎ. For

equation (1), (𝑛0, 𝑘0) is a solution. Suppose another solution is also (𝑛', 𝑘′), therefore:

 𝑎𝑛' + 𝑐𝑘′ = 𝑏 = 𝑎𝑛0 + 𝑐k0 (8)

Then,

𝑎

𝑑
𝑛' +

𝑏

𝑑
𝑘′ =

𝑎

𝑑
𝑛0 +

𝑏

𝑑
𝑘0 (9)

Hence,

𝑎

𝑑
(𝑛'- 𝑛0) =

𝑏

𝑑
(𝑘0 − 𝑘′) (10)

Since gcd (
𝑎

𝑑
,

𝑏

𝑑
) = 1, so

𝑏

𝑑
|(𝑛'- 𝑛0) (11)

Therefore, there exists an integer t such that

 (𝑛'- 𝑛0) =
𝑡𝑏

𝑑
 (12)

That is,

 𝑛′ = 𝑛0 + 𝑐 (
𝑡

𝑑
) (13)

33

It can be determined that, for each solution (𝑛', 𝑘′) of equation (1). There exists an integer t such

that:

 𝑛 = 𝑛0 + 𝑐 (
𝑡

𝑑
) (14)

 𝑘 = 𝑘0 + 𝑎 (
𝑡

𝑑
) (15)

The equation (1) can also be stated as,

 a.n ≡ b (mod c), a, b, and c are integers. (16)

 Let d│b, where d = gcd (a, c) (17)

Note that if n satisfies this

Each solution of equation (16) (and hence of (1) as well) has also the form

 𝑛 = 𝑛0 + 𝑐 (
𝑡

𝑑
) 𝑘 = 𝑘0 + 𝑎 (

𝑡

𝑑
) (18)

Where n0 and k0 constitute one specific solution and t is any integer.

Among the different values of n described by 𝑛0 + 𝑐 (
𝑡

𝑑
), note that the d values:

𝑛0, 𝑛0 +
𝑐

𝑑
, 𝑛0 + 2 (

𝑐

𝑑
) , … , 𝑛0 + (𝑑 − 1) (

𝑐

𝑑
)

34

are all mutually incongruent modulo c, because the absolute difference between any two of them

is less than c.

 Also the values of a, b, and c can be chosen as to make d very large. Similarly, note that

there are infinite other solutions which are congruent to each of the d solutions. For example, all

solutions of the form:

 (𝑛0+𝑚𝑐), m is an integer,

are mutually congruent. Similarly, all solutions of the form:

 𝑛0 + 𝑡 (
𝑐

𝑑
) + 𝑚𝑐

 are mutually congruent.

LDE Examples:

a. Consider the congruence 240.n ≡ 60 (mod 180), a = 240, b = 60, c = 180

 Here, d = gcd (240,180) = 60, and d│b. So there exist 60 (= d) mutually incongruent solutions.

These are:

n = n0 + ct/d for t = 0, 1, 2, ---, 59 and no = 1 is a solution

All solutions of the form n0 + mc (m is any integer), i.e. in this example (1 + m. 180) are congruent

to n0 = 1.

Similarly all solutions of the form (n0 + c/d +mc), i.e. (1 + 180/60 + m.180) = (4 + m.180) are

congruent to (n0 + c/d), i.e. 4

35

b. Consider the LDE 1000n ≡ 250 (mod 750)

 d = gcd (1000, 750) = 250 and d│b. Therefore, there are 250 mutually incongruent solutions.

Thus, it is shown that by appropriately selecting the values of the integers a, b, and c of LDE,

number of mutually incongruent solutions can be made very large.

Congruence Properties:

If a, b, c, and d are any integers, we can declare that:

 a ≡ a (mod c); (19)

 If a ≡ b (mod c), then b ≡ a (mod c); and (20)

 If a ≡ b (mod c), and b ≡ d (mod c); then a ≡ d (mod c) (21)

Above statements (19), (20), and (21) are the reflexive, symmetric, and the transitive properties

of congruence’s respectively [57].

4.3 Implementation of the Architecture

By assumption, that in an interest-based P2P system there are r distinct resource types (r ≤ d).

That is, a maximum of d resource types can be present. Note that this is not a restriction, because

d can be set to an extremely large value by choosing an appropriate LDE. The set of all peers in

the system can be given as

 S = {PRi}, 0 ≤ i ≤ r-1. (22)

Also as mentioned earlier, for each subset PRi (i.e. group Gi) peer Pi is the first peer with resource

type Ri to join the system. Now the mutually incongruent solutions of a given LDE is used to

solutions of a given LDE to define the architecture as follows.

36

The transit ring network (Figure.4.1) at level 1 will consist of all such Pi’s, for 0 ≤ i ≤ r-1, and

r ≤ d, such that:

i) Each Pi will be assigned the logical address (𝑛0 + 𝑖 (
𝑐

𝑑
)). Note that (𝑛0 + 𝑖 (

𝑐

𝑑
)) is the ith

mutually incongruent solution where 0 ≤ i ≤ d-1.

ii) Two peers in the ring network are neighbors if their assigned addresses differ by (
𝑐

𝑑
) , with the

exception that the first peer P0 and the last peer Pl-1 will be considered as neighbors even though

their addresses differ by (r -1)
𝑐

𝑑
. Such an exception is required for forming the ring. This

exception makes the joining of new peers having new resource types very simple.

iii) Resource type Ri possessed by peers in Gi is assigned the code (𝑛0 + 𝑖 (
𝑐

𝑑
)), which is also the

logical address of the group-head Pi of group Gi.

iv) Diameter of the ring network can be at most
𝑑

2

At level 2, all peers having the same resource type Ri will form the group Gi (i.e. the subset PRi).

Only the group-head Pi is connected to the transit ring network. Observe that any communication

between any two groups Gi and Gj takes place via the respective group-heads Pi and Pj. Peers in

Gi will be assigned with the addresses

 [𝑛0 + 𝑖 (
𝑐

𝑑
) +𝑚𝑐] , for m = 0, 1, 2 … (23)

Where m = 0 corresponds to the address of group-head Pi of Gi.

It is observed from equation (23) that all addresses in Gi are, in fact, mutually congruent solutions

for a given i. In addition, “congruence relation” is reflexive, symmetric, and transitive. Therefore,

it can be concluded that all peers in a group Gi are directly connected (logically) to each other

forming a network of diameter 1 only.

37

CHAPTER 5

DATA LOOKUP

In this section, it is proved that how the properties of LDE-based P2P architecture will be very

helpful for efficient resource queries - both for intra-group as well as inter-group resource lookups.

5.1 Intra-Group Data Lookup

Without any loss of generality, let us consider data lookup in group Gi by a peer pa possessing

< Ri, Va > and requesting for resource < Ri, Vb >. The algorithm for intragroup data lookup is

presented in algorithm Intra-Group-Lookup (Figure 5. 1 Algorithm1).

5.2 Inter-Group Data Lookup

In introduced architecture, any communication between a node pi ∈ Gi and pj ∈ Gj takes place

only via the respective group-heads Pi and Pj. Without any loss of generality let a peer pi ∈ Gi

request for a resource < Rj, V∗ >; where Rj denote a resource type and V* denotes a value. The

following steps are executed to answer the query:

Peer pi knows that Rj ∉ Gi. .Assume that there are r distinct resource types and r ≤ d. Then,

1 node pa (ϵ Gi) broadcasts in Gi for < Ri, Vb >

 // one-hop communication since Gi is a complete graph

2 if pb with < Ri, Vb > then

3 node pb unicasts < Ri, Vb > to node pa

4 else

5 search for <Ri, Vb > fails

6 end

1 node pa (ϵ Gi) broadcasts in Gi for < Ri, Vb >

 // one-hop communication since Gi is a complete graph

2 if pb with < Ri, Vb > then

3 node pb unicasts < Ri, Vb > to node pa

4 else

5 search for <Ri, Vb > fails

6 end

Figure 5.1 Algorithm 1: Intra-Group-Lookup

38

 in order to locate resource Rj, a search along the transit ring network is required. We call this

method as algorithm Inter-Group-Lookup (Figure 5.2 Algorithm 2).

1 Node pi (ϵ Gi) unicasts request for < Rj, V*> to group-head Pi

2 Pi determines resource <Rj, V*> group-head Pj’s address code from Global Resource Table

(GRT)

 // address code of Pj = resource code of Rj= n0 + j (c/d)

3 Pi computes h ← | (n0 + i (c/d)) – (n0 + j (c/d)) |

 // looking for minimum no. of hops along the transit ring

4 if h > r/2 then

5 Pi forwards the request along with the IP address of pi to its predecessor Pi-1

6 else

7 Pi forwards the request along with the IP address of pi to its successor Pi+1

8 end

9 Each intermediate group-head Pk forwards the request until the request arrives at Pj

10 if Pj possesses < Rj, V*> then

11 Pj unicasts < Rj, V*> to pi

12 else

13 Pj broadcasts the request for<Rj, V*> in group Gj

14 if Pj possesses <Rj, V*> then

15 Pj unicasts <Rj, V*> to pi

16 else

17 Pj unicasts search failed to pi

18 end

19 end

1 Node pi (ϵ Gi) unicasts request for < Rj, V*> to group-head Pi

2 Pi determines resource <Rj, V*> group-head Pj’s address code from Global Resource Table

Figure 5.2 Algorithm 2: Inter-Group-Lookup

39

5.3 Data Lookup Complexity

In Chord and other DHT based structured P2P networks, search along the chord is not

followed, because it would be very inefficient in a large peer to peer system as the maximum

number of hops required per search will be n/2, where n is the number of peers in the system. In

the introduced architecture, the use of LDE and the same logical address to denote a resource type

Ri and the corresponding group-head Pi has not only made the search process simple and efficient,

it has also made it feasible for every group-head Pi to maintain the address of every other group-

head in the transit network. This has two significant advantages:

 The maximum number of hops required per any resource search is r/2, where r is the

number of distinct resource types

 As an alternative resource lookup process, a group head Pi can directly unicast a message

to any other Pj, without having to route through the other group-heads in the transit

network. This would allow our resource lookup process to work with a constant number of

message exchanges.

Thus, the time complexity for data lookup in presented architecture is bounded by(1 +
𝑟

2
), r

being the number of distinct resource types. It has been observed in most P2P networks that the

number of peers is much larger than the number of distinct resource types. Thus, the search along

transit ring network is very efficient as it is independent of the number of peers n in the P2P system.

In contrast, for Chord and other structured P2P systems the complexity involved in data lookup is

a function of the number of nodes (peers) n in the system. In the following table, the complexity

of the introduced data lookup approach along with those of some other noteworthy structured

approaches is presented.

40

Table 5.1 Data Lookup Complexity Comparison

CAN Chord Pastry Our Work

Architecture DHT-based DHT-based DHT-based LDE-based

Lookup

Protocol

{Key, value}

pairs to map a

point P in the

coordinate

space using

uniform hash

function.

Matching

key and

NodeID.

Matching key

and prefix in

NodeID.

Inter-Group:

Routing through

Group-heads

Intra-group:

 Complete Graph

Parameters

N-number of

peers in

network

 d-number of

dimensions.

N-number

of peers in

network.

N-number of

peers in

network

 b-number of

bits (B = 2b)

used for the

base of the

chosen

identifier.

r - Number of

distinct resource

types.

N-number of

peers in network.

r << N

Lookup

Performance

O(d N 1/d)

O(log N)

O(log BN)

Inter-Group:

O(r)

Intra-group:

O(1)

41

CHAPTER 6

ANONYMITY AND SECURITY CONSIDERATION

Anonymity and security concerns are important aspects in the design of P2P networks. In this

chapter, a new data lookup algorithm considering anonymity is presented. In addition, a secure

data lookup algorithm will be present in the following section.

6.1 Anonymity Consideration

The goal is to maintain the same efficient data lookup as in the Inter-Group-Lookup (Figure

5.2, Algorithm 2), while supporting the anonymity of the resource requester and the responder.

We consider the following problem: how can a data lookup scheme can assure that two peers pi ≠

Pi ∈ Gi and pj ≠ Pi ∈ Gj, where one is the requesting peer, and the other is the responding peer

can hide their identities (i.e. IP addresses) from each other?

Firstly, it should be noted that it is not possible to maintain anonymity if both peers belong to

the same group since all peers are directly connected to each other and each peer maintains a list

of all its neighbors’ addresses in its group. However, for the case of inter-group data lookup, the

IP addresses of the requester and responder can be hidden from each other. The modified version

of algorithm Inter-Group-Lookup is presented as the algorithm Inter-Group-Anonymous

(Figure 6.1 Algorithm 1).

42

1 Node pi sends lookup request for < Rj, V*> to its group-head Pi

 // one-hop communication

2 Pi determines resource < Rj, V*> group-head Pj ’s address code from GRT

 // address code of Pj = resource code of Rj = n0 + j

3 Pi replaces the IP address of pi with its own

 // IP address of Pi will be forwarded instead of the pi’s

4 Pi sends the request packet to Pj

5 if Pj possesses < Rj, V* > then

6 Pj sends < Rj, V*> to Pi

7 Pi replaces the IP address of Pj with its own

8 Pi unicasts the response packet to pi

9 else

10 Pj replaces Pi’s IP address with its own in the request packet

11 Pj broadcasts the request for < Rj, V*> in group Gj

 // one-hop communication in Gj

12 if ∃ pj ϵ Gj with < Rj, V*> then

13 pj unicasts < Rj, V*> to Pj

 // resource found in group Gj

14 Pj replaces the IP address of pj with its own

15 Pj sends < Rj, V*> to Pi

16 Pi replaces the IP address of Pj with its own

17 Pi unicasts the response packet to pi

18 else

19 Pj sends search failed to Pi

20 Pi replaces the IP address of Pj with its own

21 Pi unicasts the response packet to pi

22 end

23 end

1 Node pi sends lookup request for < Rj, V> to its group-head Pi

 // one-hop communication

Figure 6.1 Algorithm 1. Inter-Group-Anonymous

43

6.2 Security Consideration

To achieve security from the viewpoints of authentication and confidentiality, we apply

symmetric cryptography [59] to the intra-group data communication and asymmetric

cryptography for inter-group communication. Symmetric key technique uses the same key to the

ciphering and deciphering. In symmetric cryptography, generating strong keys for the ciphers are

relatively easier compared to its asymmetric counterpart. The encryption and decryption

computations are faster since we use one key for both operations. In addition, in general it is

more difficult to break symmetric keys compared to asymmetric keys. However, it requires a

secure way to distribute the shared keys among the peers. In the introduced P2P architecture, the

use of symmetric keys for intra-group communication appears to be suitable since all peers in a

group form a complete graph and hence they all are one hop away from the group-head and from

each other. In LDE-based P2P system, it is assumed that group-heads are trustworthy peers and

they act as trusted key distributed centers [60]. In addition, when a group-head crashes or leaves,

the new group-head acts as a trusted center as well.

However, for inter-group communication, we take advantage of asymmetric

cryptography. In asymmetric cryptography [61], the keys are not identical. For each secure

communication, there is a pair of keys for encoding and decoding interchangeably. The key in

the pair that can be shared openly is called the public key. The matching key, which is kept

secret, is called the private key. Both keys can be used to encrypt a message; the other key can

act in reverse.

Furthermore, to be able to support the use of asymmetric cryptography, we do a minor

modification of GRT. A new entry is used in the GRT to represent the public key of each group-

head. Therefore, the new GRT consists of tuples of the form which was introduced in section-

44

4.1: <Resource Type, Resource Code, Group Head Logical Address, and Group Head Public-

Key>. Group-head G0 is responsible for updating the GRTs to reflect the effect of churn caused

by group-heads leaving / joining the P2P system. In addition, it is assumed that in each group, its

members share a unique master key each with the group-head for secure intra-group

communication.

6.3 Secure Intra-Group Data Lookup

For Intra-Group data lookup, without any loss of generality, let us consider that in group Gi,

peer pa possesses <Ri, Va> and requests for resource <Ri, Vb>. Notation Kmn denotes the master

key shared only by a peer pn (ϵ Gn) and the corresponding group-head Pm of group Gm. Thus, pa

has the master key, Kia, known only to itself and the group-head Pi. For secure intra-group data

lookup the following steps are followed (Figure 6.2, Algorithm 2):

1. pa issues an encrypted request for resource <Ri, Vb> to the group-head Pi.

 // This requested message is encrypted by the shared key Kia of Pi and pa. Thus, Pi

is the only one who can successfully read the message and Pi knows that it has

originated at peer pa

2. Group-head Pi decrypts the message with Kia

3. Group-head Pi broadcasts in Gi for <Ri,Vb>

4. If peer pb possesses <Ri,Vb>, it encrypts <Ri,Vb> with Kib and sends it to Pi

5. Pi decrypts the message with Kib

6. Pi encrypts the message <Ri,Vb> with Kia and sends it to the requesting peer pa

7. pa decrypts the received message with Kia and now has the resource <Ri,Vb>

8. pa issues an encrypted request for resource <Ri,Vb> to the group-head Pi.

 // This requested message is encrypted by the shared key Kia of Pi and pa. Thus, Pi

is the only one who can successfully read the message and Pi knows that it has

Figure 6.2 Algorithm 2: Secure-Intra-Group- Lookup

45

6.4 Secure Inter-Group Data Lookup

In the architecture, as we have discussed before, any communication between two peers

 pi (∈ Gi) and pj (∈ Gj) takes place only via the respective group-heads Pi and Pj. We use the

notations Pum and Prm to denote respectively the public and private keys of group-head Pm. Without

any loss of generality, let a peer pi ∈ Gi request for a resource <Rj,V∗>. Peer pi knows that Rj ∉ Gi

. Assume that there are r distinct resource types and r ≤ d.

The following steps are executed to answer the query (Figure 6.3 Algorithm 3):

1. Peer pi (ϵ Gi) encrypts the request for <Rj,V*> with Kii

2. Pi dycrypts the message with Kii and finds group-head Pj’s address code from GRT

 // address code of Pj = n0 + j (c/d)

3. Pi computes h ← | (n0 + i (c/d)) – (n0 + j (c/d)) |

 // looks for minimum no. of hops along the transit ring to reach Pj

4. if h > r/2 then

Pi encrypts the message with Puj and forwards the request to its predecessor Pi-1

5. else

Pi encrypts the message with Puj and forwards the request to its successor Pi+1

6. end

7. Each intermediate group-head Pk forwards the request until the request arrives at Pj

8. Pj decrypts the message with its own private key Prj

9. if Pj possesses <Rj,V*>

10. Pj encrypts the message with the public key Pui of Pi and unicasts it to Pi

11. else

12. Pj broadcasts the request for <Rj,V*> in group Gj

13. if ∃ pk (ϵ Gi) which possesses <Rj,V*>

46

14. pk encrypts the request message with Kjk

15. Pj decrypts the message with Kjk

16. Pj encrypts the decrypted message with the public key Pui of Pi and

 sends it to Pi

17. Pi decrypts the message with its own private key Pri

18. Pi encrypts the message<Ri,Vb> with Kii and sends it to the requesting

 peer pi

19. pi decrypts the received message with Kii

20. else

21. Pj unicasts ‘search failed’ to pi

22. end

23. End

Figure 6.3. Algorithm 3: Secure-Inter-Group-Lookup

47

CHAPTER 7

METHODS TO HANDLE CHURNS

Churn is frequent arrivals and departure of the peers in the system. In this chapter, first, an

efficient algorithm on new peers joining to the system is presented, and subsequently methods on

handling the departure of peers from the system are discussed.

7.1 Peers Joining the System

For joining a new peer to the system, two possible situations are considered:

1. A new node possessing an existing resource type wishes to join.

2. A new node with a new resource type wishes to join.

It is assumed that any new node p wishing to join the system contacts a well-known server that

sends the IP address of the group-head P0 of the first group G0 in the P2P transit network. In fact,

this IP address is also the address of the first peer to join the system. The IP address of the

server can be obtained by a DNS-like public service. New node p then sends a join request to

P0. All join requests are processed sequentially by P0 by putting arriving requests in a queue. After

a requesting new node p joins the P2P network successfully, it sends an ACK to P0. P0 then starts

processing the next request from its queue.

In the LDE-based P2P scheme, for the case of new peers joining with existing resource type, all

that is needed is every group member adds the new peer in its list of neighbors in the group. In

case of peers joining with new resource type, only three group-heads Ps-1, Ps and P0 need to

update their neighboring pointers and the GRT of the transit network nodes is updated with only

the information for the new resource Rs.

48

7.1.1 New Peer with Existing Resource Type

The method of joining for a new node with an existing resource type is quite simple

and is described in Algorithm 1 (Figure 7.1), JoinExisting. In algorithm JoinExisting, p is a new

node having an existing resource type Rk. p is assumed to have already obtained the IP

address of P0.

Figure 7.1 Algorithm 1. JoinExisting

7.1.2 New Peer with New Resource Type

Let p be a new host, which wishes to join the overlay P2P network with a new

resource type Rs. Let SR = Ri, 0 ≤ i ≤ s < d, be the set of the existing resource types in

the system with the current last node on the transit network being Ps−1. It is important to note

that d can be suitably set at the initial design phase by selecting an appropriate LDE in order

1 New peer p with resource type Rk unicasts its join request to P0

2 P0 determines the group Gk for p from its GRT

3 P0 unicasts IP address of p to Pk

4 Pk assigns p with the next available address [𝑛0 + 𝑘 (
𝑐

𝑑
) +𝑞𝑐]

5 Pk includes p in its list of neighbors in Gk

6 Pk asks all members of Gk to include p in their lists

7 Pk sends the updated list of neighbors in Gk to p

8 p establishes direct logical link to all members of Gk

1 New peer p with resource type Rk unicasts its join request to P0

2 P0 determines the group Gk for p from its GRT

3 P0 unicasts IP address of p to Pk

4 Pk assigns p with the next available address [𝑛0 + 𝑘 (
𝑐

𝑑
) +𝑞𝑐]

5 Pk includes p in its list of neighbors in Gk

6 Pk asks all members of Gk to include p in their lists

7 Pk sends the updated list of neighbors in Gk to p

8 p establishes direct logical link to all members of Gk

49

to accommodate all possible new resource types in the system. In LDE-based overlay P2P

architecture, the location of a new peer joining with a new resource type is always predetermined

unlike the existing DHT-based architectures and the rule for insertion of a new node/resource

type is as follows:

Any insertion of a peer with a new resource type always takes place between the existing

last group-head Ps-1 and the first group-head P0 on the ring.

By virtue of the logical address assignment process the code for the resource type RS will be

(n0 + s · c/d) and this code will also be the new logical address of the joining node p, also

the group-head (Ps) of a new group Gs in the system. The address of Ps−1 on the ring

network differs from that of Ps−2 and Ps by ± c/d. Figure 7.2 shows how the joining of a

new node with a new resource type happens while the join process is described in details

in Algorithm 2, JoinNew (Figure 7.3)

Figure 7.2 Joining of new host with new resource type

50

1 New peer p unicasts its join-request to P0

2 P0 assigns p with logical address 𝑛0 + 𝑠 (
𝑐

𝑑
)

3 p becomes the group-head Ps of a new group Gs and logical address of Ps = code (Rs)

4 P0 unicasts Ps’s IP address to Ps−1

5 P0 unicasts Ps−1’s IP address to Ps

6 P0 includes code of Rs in GRT

7 P0 sends a copy of its GRT to Ps

8 P0 asks all group-heads Pi, 0 ≤ i ≤ s − 1, to include code (Rs) in their GRTs

9 Do in Parallel

10 begin

11 begin

12 P0 updates its pointers to its neighbors

 //IP addresses of Ps and P1 are the pointer values

13 P0 saves IP addresses of Ps and P1 in p0 ∈ G0 with address (n0 + c)

14 end

15 begin

16 Ps−1 updates its pointers to its neighbors

 // IP addresses of Ps−2 and Ps are the pointer values

17 Ps−1 saves IP addresses of Ps−2 and Ps in Ps−1 ∈ Gs−1 with address

 𝑛0 + (𝑠 − 1)
𝑐

𝑑
+ 𝑐

18 end

19 begin

20 Ps sets its pointers to Ps−1 and P0

 // IP addresses of Ps−1 and P0 are the pointer values

21 Ps sends join-completion message to P0

22 end

23 end

Figure 7.3 Algorithm 2: JoinNew

51

7.2 Fault Tolerance - Peer Crash or Leave

Following two possible situations are considered:

1. Any group member p ∈ Gk and p ≠ Pk crashes or leaves.

2. Any group-head Pi crashes or leaves.

7.2.1 Group Member Crashes or Leaves

Let a node p ∈ Gk crash or leave and let p ≠ Pk. If p crashes, its neighbors in Gk will

know about it and each group member in Gk will simply delete the entry for p from its list of

neighbors. The direct connectivity among the rest of the group members remains intact, because

congruence relation is symmetric as well as transitive.

7.2.2 Group-Head Crashes or Leaves

The procedure to handle the case of a group-head crashing or leaving the network can be

achieved easily with a small overhead of saving pointer values present in a group-head Pi in a peer

p∗ ∈ Gi. An update from Pi to pi
∗ is triggered whenever Pi detects a change in the transit network.

In order to guard against any loss of information due to group-head Pi’s crash/leave, Pi also sends

a snapshot of its request queue to p∗each time the content of the queue is updated. The selection

of pi and the procedure to setup a new group-head are described in details below.

Step 1: Let the group-head Pi of group Gi crash or leave. If Pi crashes, its neighbors on the

transit network - Pi+1 and Pi−1 as well as those in Gi learn about it via the periodic hello packet

exchanges. If Pi leaves, it informs its neighbors on the ring as well as those in Gi via a broadcast,

prior to leaving. In the presented scheme, we use p∗ = [(n0 + i · c/d) + c] as the choice of our

52

replacement node for Pi in Gi. As mentioned earlier, peer p∗ already has the IP addresses of

Pi−1 and Pi+1 the neighbors of Gi on the transit ring network.

Step 2: A new successor of p∗ is chosen in Gi using the same rule that was applied for choosing

p∗. A new p∗∗in Gi with the logical address [(n0 + i. c/d) + 2c] is set as the successor of p∗ ∈

Gi. The IP addresses of Pi−1 and Pi+1 in the transit network as well as the GRT table from p∗

are copied to p∗∗.

Step 3: To make sure that the GRTs remain unchanged, the new group-head p∗ is now designated

as Pi and its logical address is changed from [(n0 + i · c/d) + c] to (n0 + i · c/d). This change is

broadcast to all other group members of Gi only. Observe that it will not affect the direct

connectivity relation among the neighbors in Gi, because congruence relation is symmetric as well

as transitive. Effect wise, the news of group-head crash/leave does not propagate in the system.

The above procedure leads to the following important observation. Effect of a group-head Pi’s

crash/leave is restricted only to its group Gi.

53

CHAPTER 8

GENERALIZATION OF THE ARCHITECTURE

Thus far in the architecture, we have assumed that no peer can have more than one resource

type. It may become a hard restriction in practice. Therefore, to overcome this restriction, in this

chapter, we have considered Generalization of the architecture; that is, a peer can have multiple

different resource types.

8.1 Peer with Multiple Existing Resource Types

To describe the situation, it is considered that in groupi the group-head Pi or a peer p (ϵ Gi)

wants data insertion in the system of another existing resource type Rk; note that Rk exists in groupk

and Pi /p already possesses Ri.

The solution works as follows. Peer Pi /p will become a member of groupk as well. That is, the

members of both groupi and groupk will know the IP address of Pi /p. Logically, it means that in

the overlay network, Pi /p will be directly connected to all members of both groupi and groupk.

Algorithm 1 (Figure 8.1) states its implementation.

Time complexity of Algorithm 1 is bounded by (1+ r/2), r being the number of distinct resource

types. Data insertion for more existing resource types can be done similarly.

54

8.2 Existing Peers Declaring New Resource Types

To start with, it is assumed that the P2P system has S number of distinct resource types, viz.,

R0, R1, R2 … Rs-1.

Without any loss of generality, let peer Pi /p in groupi wants a data insertion for a new resource

type Rs. Then following the way the transit ring is constructed, peer Pi /p will become the group-

head of the newly created groups possessing resource type Rs. As the recent group-head Ps, location

of Pi /p on the ring is now between Ps-1 and P0. Therefore, if it is Pi, peer Pi will appear (logically)

twice as group-heads on the ring for groupi and groups. If it is peer p, it will appear once as the

group-head of groups and once as a member of groupi. Note that Rs will have the code (n0 + s.c/d),

and it will also be another logical address for Pi /p. Now, Pi /p will ask the group-heads to update

1 Data insertion request for Rk from Pi /p is forwarded along the transit ring from group-head Pi

 to Pk // maximum r/2 hops

2 Pk assigns to Pi /p the next available address, not yet assigned in groupk.

 // the address is of the form [(n0 + kc/d) + yc], y is an integer

3a Pk broadcasts the address of Pi /p in groupk

 // Pi /p is the new member of groupk; 1-hop communication

3b each groupk member updates its list of neighbors

4 Pk unicasts a copy of neighbor list to Pi /p

 // Pi /p is now a member of Gk

1 Data insertion request for Rk from Pi /p is forwarded along the transit ring from group-head Pi

 to Pk // maximum r/2 hops

2 Pk assigns to Pi /p the next available address, not yet assigned in groupk.

 // the address is of the form [(n0 + kc/d) + yc], y is an integer

3a. Pk broadcasts the address of Pi /p in groupk

 // Pi /p is the new member of groupk; 1-hop communication

3b. each groupk member updates its list of neighbors

4 Pk unicasts a copy of neighbor list to Pi /p

 // Pi /p is now a member of Gk

Figure 8.1 Algorithm 1 Data insertion for multiple existing resource types

55

their global resource tables by including Rs and its code (n0 + sc/d) along with the IP address of

Pi /p. For implementation, Pi /p will now have another set of pointers pointing to its new neighbors,

Ps-1 and P0. Group-heads Ps-1 now changes its right neighbor from P0 to Ps and group-head P0

changes its left neighbor from Ps-1 to Ps; they adjust their pointers accordingly.

To guard against group-head crash or leave, later when more peers join this group, Pi /p will store

the IP addresses of Ps-1 and P0 in the peer with the next address [(n0 + sc/d) + c]. We will elaborate

further on fault-tolerance in Section 8.5

8.3 Data Lookup Considering Generalization of the Architecture

It is considered that a peer Pi is also the group-head Ps of groups. The proposed approach

works as well if Pi possesses any number of distinct resource types. It is assumed that the system

has r distinct resource types.

8.3.1 Intra Group Lookup

Generalization of the architecture has no effect on the Intra group lookup. Algorithm1

(Figure 5.1) is still applicable, considering the generalization of the architecture.

8.3.2 Inter Group Lookup

In the architecture, any inter group communication involves travelling along the transit

ring. Without any loss of generality let a peer pa in Gi request for a resource < Rj, V* >. The

following algorithm answers the query. In order to locate resource Rj, a search along the transit

ring network is required. The algorithm for inter group lookup considering the generalization of

the architecture is presented in Algorithm 2 (Figure 8.2).

56

However, in the introduced architecture, number of peers on the ring is the number of

distinct resource types r and it has been observed that the number of peers in most P2P networks

is too large compared to the number of distinct resource types. Therefore, such search on the ring

in the introduced architecture appears to be quite practical.

Another point to note is that use of the same logical address to denote a resource type and the

corresponding group-head has not only made the search process simple and efficient, it also has

made it feasible for every group-head to maintain the address of every other group-head in the

transit ring network. This has two significant advantages:

1. Following Algorithm 2, (Figure 8.2) the time complexity is bounded by (2 + r/2), because

maximum number of hops required per any resource search is (2 + r/2), where r is the

number of distinct resource types. Note that r « n, where n is the total number of peers in

the system.

2. As an alternative resource lookup process, using the GRT a group-head Pi can directly

unicast a message to any other group-head Pj avoiding any communication along the

transit ring network. In this way, the lookup process will need a constant number of hops

and a constant number of message exchanges.

57

1 pa (ϵ Gi) unicasts request for < Rj, V*> to group-head Pi

2 if Pi is also the group-head (Pj) for resource type Rj

3 if Pi (as Pj) possesses < Rj, V*> then

4 Pi (as Pj) unicasts < Rj, V*> to pa

5 else

6 Pi (as Pj) executes Intra-Group-Lookup in Gj Algorithm 1, (Figure 5.1)

7 else

8 Pi determines resource <Rj, V*> group-head Pj’s address code from GRT

 // address code of Pj = resource code of Rj= n0 + j (c/d)

9 Pi computes h ← | (n0 + i (c/d)) – (n0 + j (c/d)) |

 // looking for minimum no. of hops along the transit ring

10 if h > r/2 then

11 Pi forwards the request along with the IP address of pa to its predecessor Pi-1

12 else

13 Pi forwards the request along with the IP address of pa to its successor Pi+1

14 end

15 if an intermediate group-head Pk is also the group-head for resource type Rj then

16 if Pk (as Pj) possesses < Rj, V*> then

17 Pk (as Pj) unicasts < Rj, V*> to pa

18 else

19 Pk (as Pj) executes Algorithm 1, (Figure 5.1) in Gj as its group-head Pj

20 else

21 each intermediate group-head Pk forwards the request until the request arrives at Pj

22 if Pj possesses <Rj, V*> then

23 Pj unicasts <Rj, V*> to pa

24 else

25 Pj executes Intra-Group-Lookup Algorithm 1, (Figure 5.1) in Gj

26 end

Figure 8.2 Algorithm 2: Inter-Group-Lookup

58

8.4 Joins and Leaves

It is assumed that a well-known server keeps a copy of the GRT. When a new node (peer)

wishes to join the system, it contacts the server. If the request to join is for an existing resource

type, say Ri, the server sends the IP address of the group-head Pi to the node. If the request is for

a new resource type, the server sends the IP address of the group-head P0. Therefore, in introduced

design the server plays a small but very important role related to load sharing by group-heads. All

that is needed is when the GRT is updated by the group-heads, a copy is sent to the server. By

virtue of its construction, the GRT remains sorted by default and in an ascending order of the

group-heads’ logical addresses; so determining the exact group-head is O (log r).

The different possible situations of joining and leaving of peers is now presented.

8.4.1 Concurrent Joins

As pointed out earlier, a peer p either can join an existing group, or can form a new group

with the group-head being the peer itself. In the former case, since nodes in a group are directly

connected to each other, hence joining a group means forming a logical link between the peer p

and each node in the group. The procedure is presented in Section 7.1. If multiple peers join the

same group, say Gi, the join requests are queued at the group head Pi and are served on FCFS basis.

Observe that joining multiple groups can take place concurrently, because joining one group is

unrelated to joining other groups.

In case it is a new resource type Rs, the joining peer contacts P0 that is the group-head of

the very first group formed in the system. Multiple such requests eventually arrive at P0 and P0

serves the requests on FCFS basis. We can handle insertion of multiple new resource types by the

59

same peer in a similar way. Note that in our architecture joining of any new resource type always

takes place between the recent and the first groups; this feature makes such joining localized to a

single position on the ring; thereby making the joining process much simpler compared to existing

related approaches. It is obvious that the above-mentioned two kinds of joins can take place

simultaneously, because one involves existing groups and the other is about the formation of new

groups.

8.4.2 Concurrent Leaves

It is assumed that any two directly connected peers in a group or along the transit ring

exchange periodic hello packets. Whether it is a graceful leaving or abrupt leaving (crash), absence

of a hello packet from a neighboring peer is interpreted as the peer being unreachable (not alive).

That is, we do not differentiate between the above-mentioned two types of leaving. In effect, the

logical link information about the leaving peer is deleted from the routing table of each peer not

receiving the hello packet. Therefore, concurrent such leavings whether taking place in the same

group or in multiple groups amounts to the deletion of the corresponding link information in the

routing tables of the concerned non-leaving peers only. Of course, a non-leaving peer sequentially

deletes multiple link information in case multiple peers leave the same group. Note that handling

of single group-head crash has been discussed in Section 7.2. Multiple group heads’ leaving is

considered in the following section.

8.4.3 Concurrent Joins and Leaves

Observe that concurrent joins and leaves means that addition and deletion of logical links

taking place concurrently. If a peer is involved in both actions, it will do so sequentially on FCFS

basis; otherwise, different peers can execute these two operations concurrently in the system.

60

8.5 Ring Maintenance

In Section 7.2, an approach is presented to handle single group-head crash or leave. To

generalize the architecture, it is considered multiple group-heads leaving simultaneously and it is

shown that the ring will remain connected in such situations. The approach works as follows.

Let us consider the peer Pr, the group-head of group Gr. The logical address of Pr is (n0 + r.c/d).

Assume that peers pr
1 and pr

2 in Gr have the next two addresses followed by the group-head’s

address and these are [(n0 + rc/d) + c] and [(n0 + rc/d) + 2c], respectively. pr
1 acts as the

secondary group-head for group Gr to guard against the primary group-head leaving and it has

considered that during the formation of this group, Pr stores in pr
1 the addresses of its

neighboring group-heads Pr-1 and Pr+1 along with a copy of the GRT. In the event of Pr leaving,

pr
1 becomes the new primary group-head and its communication connectivity with Pr-1 and Pr+1

remains intact. It also means that pr
2 now act as the new secondary group-head for group Gr. The

new primary group-head pr
1 will save the neighbors addresses, i.e. the addresses of Pr-1 and Pr+1

in pr
2 and broadcasts to other group-heads to update their GRTs to reflect that pr

1 is now the

group-head of Gr. One noteworthy point is that peer pr
1 does not need to inform the other peers

in Gr about itself being the new group-head. The reason is simple and interesting. The way of

construction of the routing table of a peer as a new peer joins group Gr ensures that the routing-

table remains sorted by default and in an ascending order of the peers’ logical addresses in the

group. Therefore, the entries are same in each routing table and each peer knows that the peer

with the lowest logical address is the current group-head.

However how can the connectivity along the ring be maintained if multiple group-heads

leave simultaneously? It is proposed that each group-head Pr and its secondary one, pr
1 store the

tuple, [Pr-1, pr-1
1, Pr+1, pr+1

1]. The following example explains the idea.

61

Let Pi-1, Pi, and Pi+1 be the group-heads of three consecutive groups on the ring. We also

call them as primary group-heads. The resource types corresponding to the group-heads are Ri-1,

Ri, and Ri+1 respectively. Let in Pi, the secondary group-head be pi
1; similarly, the respective

secondary group-heads in Pi-1 and Pi+1 are pi-1
1

 and pi+1
1.

Therefore, both Pi-1, and pi-1
1 have the tuple [Pi-2, pi-2

1, Pi, pi
1]; similarly, both Pi and pi

1

have the tuple [Pi-1, pi-1
1, Pi+1, pi+1

1]; and both Pi+1 and pi+1
1

 have the tuple [Pi, pi
1, Pi+2, pi+2

1].

Now, let us consider the worst-case scenario of all three primary group-heads, i.e. Pi-1, Pi, and

Pi+1 leaving at the same time. It is observed that in Gi the new primary group-head pi
1 has the IP

addresses of the new primary group-heads pi-1
1

 and pi+1
1 of the groups Gi-1 and Gi+1. Therefore,

group Gi remains connected to its neighboring groups Gi-1 and Gi+1. In addition, in group Gi-1,

its new primary group-head pi-1
1

 uses the IP address of the group-head Pi-2 to communicate with

this group along the ring network; if Pi-2 leaves, new primary group-head pi-1
1

 can communicate

with this group along the ring network via the IP address of pi-2
1. Similarly, it is observed that

group Gi+1 can communicate with its neighboring groups as well. Observe that to enhance the

degree of fault-tolerance, tuple-size can be increased to include more members of a group. The

above discussion leads to the following observation.

Transit ring network remains connected even if consecutive primary group-heads leave the

system.

62

CHAPTER 9

PERFORMANCE EVALUATION

A new low diameter structured P2P overlay that can significantly enhance the efficiency

of data communications has been presented. Our claims have been proved analytically in

previous chapters. However, before any attempt to implement this new P2P architecture occurs,

first it must be analyzed and evaluated. Scalability challenge of any new P2P overlay network

makes it almost impossible to being analyzed on a real network environment. To test and analyze

our system, we have chosen the comparative evaluation approach [61]. Comparative evaluation

is one practical method to examine and judge any new P2P architecture. However, in order to be

able to make use of this method, first it is essential to select a suitable simulator.

9.1 Characteristics of P2P Simulators

The principles on which P2P simulators are able be compared and contrast the P2P

architectures are as follows: [62, 63, 64]:

1. Simulator architecture: specifies the types of P2P topologies and characteristics that

simulator can perform. Besides, it indicates whether the simulator supports discrete event

simulation engine, cycle based engine, or both. In addition, underlying networks and

protocols are being defined in the simulator. Ability to test the architecture with churn

effect is very crucial for P2P simulators.

2. Usability: The simulator documents must be user friendly, clearly defined and easy to

understand.

63

3. Scalability: By nature, P2P overlays are designed to be a solution for data

communication’s scalability issues. Hence, scalability is one significant factor on which a

simulator can be selected.

4. Interactive visualizer: A Graphical Unit Interface (GUI) to assist users to validate,

debug and assist the user to obtain the results is a big advantage for any simulator.

9.2 PeerfactSim.KOM

Based on all we have discussed in Section 9.1, PeerfactSim.KOM [65] is selected to

implement our comparative evaluation environment. It is a simulation framework with event-

driven model and we use it to evaluate our approach. PeerfactSim.KOM is an open source, java-

based simulator designed for large-scale P2P applications. An XML-based configuration file

(Figure 9.2b) is used to begin the simulation that denotes the layers included in Figure 9.1. The

functional layers of PeerfactSim.KOM, as shown in Figure 9.1, are as follows.

 User Layer: To define strategies to be performed on the application layer by user.

 Application Layer: Hosts P2P application. Currently, PeerfactSim.KOM provides a file-

sharing application and benchmarking Workloads.

 Service Layer: Provide additional services such as application layer multicast or monitoring

and management features to an application or to the whole system.

 Overlay Layer: Various structured and unstructured P2P architecture models are built into

this layer. Moreover, a class hierarchy has been provided in this layer in which it gives the

opportunity to developers to choose from these functionalities and develop a new overlay. In

other words, an application program interface (API) is integrated into this layer that

64

developer can take advantage of it and create a new P2P overlay in PeerfactSim.KOM

 Transport Layer: Supports the transmission of both TCP and UDP messages.

 Network Layer: While PeerfactSim.KOM supports static and simple network models, In

addition, it provides advanced models, as Global Network Positioning (GNP) [66], which is

based on measurements from the PingER project.

9.3 Implementing LDE-Based Overlay for PeerfactSim.KOM

PeerfactSim.Kom simulation has provided an API between the layers. Therefore, users are

able to configure their desired elements and still can use all the functions and utilities of other

layers. For our simulation, we implement our work based on the provided API. In our

implementation, operations such as store, remove, lookups are executing in LDENodeinterface

(Figure 9.2a). This interface extends LDEListenerSupported interface. LDEListenerSupported

Figure 9. 1 Layard architecture of PeerfactSim.KOM [67]

Figure 9. 2 Layard architecture of PeerfactSim.KOM [67]

65

interface registers a LDE listener .LDEObject interface, which extends LDEValue, represents an

object, which can be associated to a LDE assigned node. LDEValue interface is providing a

unified LDE service. On LDEEntry, we assign the LDE key to the object that contains a value,

according to the node based on the type of the resource. LDEListener interface is responsible to

add a new peer to associated group, get the value of the node and keep track of number of entries

in a group.

.Figure 9. 2a. LDE-based Overlay Implementation UML.

66

9.4 Experimental Environment

The core objective of the evaluation of LDE-based structured P2P is to demonstrate its highly

efficient data lookup complexity. Better lookup complexities means less communication hops in

an overlay. In our assessment, we have mainly focused on measuring the average of hop count in

various scenarios. We compute the results in different set-ups and compare them with the

performance of two of the most well established P2P networks, viz., Chord and Pastry. To begin,

we setup a simple scenario. In our first environment, we consider a stable network (i.e. with few

random churn). With the use of simulation, we compute the average of hops in our topology and

compare it with the results of Chord and Pastry in the same environment. We repeat the test by

Figure 9.2b. A part of XML configuration file.

Figure 9.2b. A part of XML configuration file.

67

changing the number of clusters in LDE-based P2P system.

In our second simulation environment, the churn model is based on KAD measurements [68].

In PeerfactSim.KOM, each simulation consists of three phases. In the first phase, peers are

joining the system in a uniformly distributed manner in 120 minutes. Publishing phase of 60

minutes is the second phase and lastly lookup phase takes 120 minutes.

9.4.1 Results in Stable Network

The metrics that we have used for the evaluation are the hop count, operation duration,

and the number of clusters in LED-based overlay. The operation duration for all the results have

been set to 300 minutes. We compute the average number of hops in very small networks (100

and 200 peers), small-to-medium sized systems (2000 peers), and lastly for medium-to-large

systems (10000 peers). For midsize and large LDE-based networks, we run the simulation three

times using 5, 10, and 15 clusters respectively. Figure 9. 3 shows that the performance of LDE-

based P2P system is better than those of Pastry and Chord, in a network of 100 peers.

68

Small-Sized Network- 100 Peers

Simulation results reveal the following:

 Average of the hops for 100 peers in 5 clusters LDE-based system: 1.1847 hop/min

 Average of the hops for 100 peers in Pastry: 1.544 hop/min

 Average of the hops for 100 peers in Chord: 4.0946 hop/min

.

Figure 9.3. Average of hops for 100 Peers in 300 minutes

Number of Clusters in LED-Based System: 5

Figure 9.3. Average of hops for 100 Peers in 300 minutes

Number of Clusters in LED-Based System: 5

69

Small-Sized Network- 200 Peers

Simulation results reveal the following:

 Average of the hops for 200 peers in 5 clusters LDE-based system: 1. 3629 hop/min

 Average of the hops for 200 peers in Pastry: 1.7570 hop/min

 Average of the hops for 200 peers in Chord: 4.6521 hop/min

Next, we evaluate the Overlay in a small-to-medium size network of 2000 nodes. We repeat the

test three times with 5, 10, and 15 clusters respectively.

Figure 9. 4. Average of hops for 200 Peers in 300 minutes

Number of Clusters in LED-Based System: 5.

Figure 9. 4. Average of hops for 200 Peers in 300 minutes

Number of Clusters in LED-Based System: 5.

70

Medium-Sized Network- 2000 Peers

Simulation results reveal the following:

 Average of the hops for 2000 peers in 5 clusters LDE-based system: 1.4847 hop/min

 Average of the hops for 2000 peers in Pastry: 2.3403 hop/min

 Average of the hops for 2000 peers in Chord: 6.3294 hop/min

Figure 9.5. Average of hops for 2000 Peers in 300 minutes;

 Number of Clusters in LED-Based System: 5.

Figure 9.5. Average of hops for 2000 Peers in 300 minutes;

 Number of Clusters in LED-Based System: 5.

71

Simulation results reveal the following:

 Average of the hops for 2000 peers in 10 clusters LDE-based system: 1.7647 hop/min

 Average of the hops for 2000 peers in Pastry: 2.3403 hop/min

 Average of the hops for 2000 peers in Chord: 6.3294 hop/min

Figure 9.6. Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 10

Figure 9.6. Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 10

72

Simulation results reveal the following:

 Average of the hops for 2000 peers in 15 clusters LDE-based system: 1.917 hop/min

 Average of the hops for 2000 peers in Pastry: 2.3403 hop/min

 Average of the hops for 2000 peers in Chord: 6.3294 hop/min

Figure 9.7 Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15.

Figure 12. 4 Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 12. 5 Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 12. 6 Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 9.7 Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15.

Figure 12. 7 Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 12. 8 Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

73

Large-Sized Network- 10000 Peers

Finally, in stable environment, we analyze the P2P overlays in a large network of 10000 peers.

 Simulation results reveal the following:

 Average of the hops for 10000 peers in 5 clusters LDE-based system: 2.2354 hop/min

 Average of the hop count for 10000 peers in Pastry: 3.224 hop/min

 Average of the hop count for 10000 peers in Chord; 7.503 hop/min

Figure 9.8. Average of hops for 10000 Peers in 300 minutes

Number of Clusters in LED-Based System: 5.

Figure 12. 8 Average of hops for 10000 Peers in 300 minutes

Number of Clusters in LED-Based System: 5

Figure 12. 8 Average of hops for 10000 Peers in 300 minutes

Number of Clusters in LED-Based System: 5

Figure 12. 8 Average of hops for 10000 Peers in 300 minutes

Number of Clusters in LED-Based System: 5

Figure 9.8. Average of hops for 10000 Peers in 300 minutes

74

Simulation results reveal the following:

 Average of the hop count for 10000 peers in 10 clusters LDE-based system: 2.552

hop/min

 Average of the hop count for 10000 peers in Pastry: 3.224 hop/min

 Average of the hop counts for 10000 peers in Chord; 7.503 hop/min

Figure 9.9. Average of hops for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 10

Figure 9.9. Average of hops for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 10

75

Simulation results reveal the following:

 Average of the hop count for 10000 peers in 15 clusters LDE-based system: 2.7511

hop/min

 Average of the hop count for 10000 peers in Pastry: 3.224 hop/min

 Average of the hop counts for 10000 peers in Chord; 7.503 hop/min

Figure 9.10. Average of hop for 10000 Peers in 300 minutes

Number of Clusters in LDE LDE-Based System: 15

76

9.4.2 Results in Unstable Network

In this set of simulation, we want to investigate the behavior of our system under more

realistic factors, for example, very frequent churn. For this reason, this time, our network is

unstable due to the usage of the Kad measurement based churn [68]. A group of scientists has

studied the behavior of peers in terms of geographical distribution, their uptime and data usage,

every five minutes, for six months. They have successfully collected 51,552 snapshots. Since then,

the results of this research have been used in many studies to simulate and evaluate the overlays

network. This study is recognized as Kad measurement based study.

In our unstable environment, we compare our topology’s hop counts with Pastry and

Chord, in very small, mid-size and large networks. For very small 100 and 200 peers have

participated in two different simulations, mid-sized networks, it is 2000, and large one, 10000

peers are contributing. As in the case of stable environment, simulation has been performed three

times with 5, 10, and 15 LDE-based clusters respectively for both 2000 and 10000 peer-networks.

Note that, in our second evaluation, the packet loss is significant due to the use of Kad

measurement churns.

77

Small-Sized Network- 100 Peers

Simulation results reveal the following:

 Average of the hops for 100 peers in 5 clusters LDE-based system: 1.3063 hop/min

 Average of the hops for 100 peers in Pastry: 1.6332 hop/min

 Average of the hops for 100 peers in Chord: 3.7325 hop/min

Figure 9.11. Average of hops for 100 Peers in 300 minutes

Number of Clusters in LDE-Based System: 5

78

Small-Sized Network- 200 Peers

Simulation results reveal the following:

 Average of the hops for 200 peers in 5 clusters LDE-based system: 1.5417 hop/min

 Average of the hops for 200 peers in Pastry: 1.8102 hop/min

 Average of the hops for 200 peers in Chord: 4.3321 hop/min

Figure 9.12. Average of hops for 100 Peers in 300 minutes

Number of Clusters in LDE-Based System: 5

79

Medium-Sized Network- 2000 Peers

Simulation results reveal the following:

 Average of the hops for 2000 peers in 5 clusters LDE-based system: 1.6803 hop/min

 Average of the hops for 2000 peers in Pastry: 2.377 hop/min

 Average of the hops for 2000 peers in Chord: 5.710 hop/min

Figure 9.13. Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 5

Figure 9.13. Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 5

80

Simulation results reveal the following:

 Average of the hops for 2000 peers in 10 clusters LDE-based system: 1.8610 hop/min

 Average of the hops for 2000 peers in Pastry: 2.377 hop/min

 Average of the hops for 2000 peers in Chord; 5.710 hop/min

Figure 9.14. Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 10

Figure 12. 11 Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 5

Figure 12. 11 Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 5

Figure 12. 11 Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 5

Figure 9.14. Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 10

81

Simulation results reveal the following:

 Average of the hops for 2000 peers in 15 clusters LDE-based is: 2.0618 hop/min

 Average of the hops for 2000 peers in Pastry: 2.377 hop/min

 Average of the hops for 2000 peers in Chord; 5.710 hop/min

Figure 9.15. Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 12. 13 Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 12. 11 Average of hop counts for 10000 Peers in 300 minutesFigure 12. 13 Average of

hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 12. 13 Average of hops for 2000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 9.16. Average of hop counts for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 5

82

Large-Sized Network-10000 Peers

Simulation results reveal the following:

 Average of the hops for 10000 peers in 5 clusters LDE-based system: 2.2843 hop/min

 Average of the hops for 10000 peers in Pastry: 6.6174 hop/min

 Average of the hops for 10000 peers in Chord: 10.2083 hop/min

Figure 9.16. Average of hop counts for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 5

Figure 12. 16 Average of hop counts for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 5

Figure 12. 17 Average of hop counts for 10000 Peers in 300 minutesFigure 12. 18 Average of

hop counts for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 5

Figure 12. 19 Average of hop counts for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 5

83

Simulation results reveal the following:

 Average of the hops for 10000 peers in 10 clusters LDE-based is: 3.5443 hop/min

 Average of the hops for 10000 peers in Pastry: 6.6174 hop/min

 Average of the hops for 10000 peers in Chord: 10.2083 hop/min

Figure 9.17 Average of hop counts for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 10

Figure 9.18 Average of hop counts for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 12. 114 Average of hop counts for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 12. 115 Average of hop counts for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15Figure 9.17 Average of hop counts for 10000

Peers in 300 minutes

Number of Clusters in LDE-Based System: 10

84

Simulation results reveal the following:

 Average of the hop for 10000 peers in 15 clusters LDE-based system: 4.1036 hop/min

 Average of the hop for 10000 peers in Pastry: 6.6174 hop/min

 Average of the hop for 10000 peers in Chord: 10.2083 hop/min

All these simulation results confirm that LDE-based P2P system performs better compared to

two of the most well established P2P systems, viz. Chord and Pastry in both stable and unstable

environments.

Figure 9.18 Average of hop counts for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 12. 116 Average of hop counts for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 12. 117 Average of hop counts for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 12. 118 Average of hop counts for 10000 Peers in 300 minutes

Number of Clusters in LDE-Based System: 15

Figure 2. 9 Overlay network on top of the Network layerFigure 9.18 Average of hop counts for

10000 Peers in 300 minutes

85

CHAPTER 10

CONCLUSION

At present, most existing structured P2P approaches use Distributed Hash Tables (DHT) to

realize their architecture. Use of DHTs guarantees efficient data insertion and data lookup

operations in structured P2P systems. However, maintaining DHT-based architecture is a

complex task due to random arrivals and departures by peers (churn) at any time. Churn handling

is still an open problem in DHT-based P2P networks. To overcome this demerit of DHT-based

architecture while improving further the efficiency of data lookup operations, in this research, we

have deviated from the existing trend of using distributed hash tables to design structured P2P

architecture. To achieve our goal, we have used a number theory based mathematical model,

known as ‘Linear Diophantine Equation (LDE) and its Mutually Incongruent Solutions’ to

realize the proposed architecture.

We have shown analytically and through numerous simulations, that LDE-based

structured architecture guarantees a significantly lighter weight mechanism to create and

maintain the overlay P2P structure as compared to some of the very well established DHT based

systems. From the viewpoint of the complexity of data lookup algorithms, the evaluation results

have shown that under various environments, the presented LDE-based P2P architecture

outperforms Chord and Pastry, two of the very few existing well-established architecture. In

addition, we have presented efficient schemes to preserve anonymity, security, and fault-

tolerance as well.

To the best of our knowledge, this work is the first to report the use of LDE in designing

structured P2P topology. One of the most noteworthy points about the architecture is that

86

complexity of different data lookup algorithms is a function of the number of distinct resource

types only, unlike in other works in which it is a function of the number of peers present in the

architecture. In this context, it may be observed that for all practical purposes, the number of

distinct resource types is significantly less than the number of peers.

87

REFERENCES

[1] Sisario, Ben (2011-10-03). “Rhapsody to Acquire Napster in Deal with Best Buy -

NYTimes.com”. United States: Mediadecoder.blogs.nytimes.com. Retrieved 2013-06-13.

[2] Douglas, G. (2004). Copyright and Peer-To-Peer Music File Sharing: The Napster Case

and the Argument Against Legislative Reform. Murdoch University Electronic Journal of

Law, Murdoch, Australia, Vol.11, Number 1 (March 2004).

[3] Steinmetz, R., & Wehrle, K. (Eds.). (2005). Peer-to-peer systems and applications (Vol.

3485 .pp 9-16). Springer.

[4] Global Internet Phenomena Report [2016], https://www.sandvine.com/trends/global-

Internet-phenomena. Retrieved 2017-9-10.

[5] Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems: concepts and

design. Pearson education. (Vol. 4, pp. 112-120).

[6] Duffield, N. G., Greenberg, A. G., Goyal, P., Mishra, P. P., Ramakrishnan, K. K., & Van

der Merwe, J. E. (2005). U.S. Patent No. 6,912,232. Washington, DC: U.S. Patent and

Trademark Office.

[7] Li, J., Stribling, J., Gil, T. M., Morris, R., & Kaashoek, M. F. (2004, February).

Comparing the Performance of Distributed Hash Tables Under Churn. In Iptps (Vol. 4,

pp. 87-99).

[8] Saroiu, S., Gummadi, K. P., Dunn, R. J., Gribble, S. D., & Levy, H. M. (2002). An

analysis of Internet content delivery systems. ACM SIGOPS Operating Systems Review,

36(SI), 315-327.

[9] Tanenbaum, A. S., & Van Steen, M. (2007). Distributed systems: principles and

https://www.sandvine.com/trends/global-Internet-phenomena
https://www.sandvine.com/trends/global-Internet-phenomena

88

paradigms. Prentice-Hall. (Fifth Edition, pp 740-748)

[10] Haas, Z. J., Deng, J., Liang, B., Papadimitratos, P., & Sajama, S. (2002). Wireless ad hoc

networks. Encyclopedia of Telecommunications.

[11] Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A

vision, architectural elements, and future directions. Future generation computer systems,

29(7), 1645-1660.

[12] Internet User in the Word. Retrieved 09/30/2017

http://www.Internetlivestats.com/Internet-users/#trend .

[13] Pan, J., Hou, Y. T., & Li, B. (2003). An overview of DNS-based server selections in

content distribution networks. Computer Networks, 43(6), 695-711.

[14] Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (Eds.). (2016). Delay tolerant networks:

Protocols and applications. CRC press.

[15] Androutsellis-Theotokis, S., & Spinellis, D. (2004). A survey of peer-to-peer content

distribution technologies. ACM computing surveys (CSUR), 36(4), 335-371.

[16] Ito, D., Niibori, M., & Kamada, M. (2016, September). A Real-Time Web-Cast System

for Classes in the BYOD Style. In Network-Based Information Systems (NBiS), 2016

19th International Conference on (pp. 520-525). IEEE.

[17] Yanovskaya, O., Yanovsky, M., & Kharchenko, V. (2014, September). The concept of

green Cloud infrastructure based on distributed computing and hardware accelerator

within FPGA as a Service. In Design & Test Symposium (EWDTS), 2014 East-West (pp.

1-4). IEEE.

[18] Caicedo, C. E., Joshi, J. B., & Tuladhar, S. R. (2009). IPv6 security challenges.

http://www.internetlivestats.com/Internet-users/#trend

89

Computer, 42(2), 36-42.

[19] Ni, L. M. (2004, December). Challenges in P2P Computing. In ISPA (p. 2).

[20] Dinger, J., & Hartenstein, H. (2006, April). Defending the Sybil attack in p2p networks:

Taxonomy, challenges, and a proposal for self-registration. In Availability, Reliability

and Security, 2006. ARES 2006. The First International Conference on (pp. 8-pp). IEEE.

[21] Koshy, P., Koshy, D., & McDaniel, P. (2014, March). An analysis of anonymity in

bitcoin using p2p network traffic. In International Conference on Financial Cryptography

and Data Security (pp. 469-485). Springer, Berlin, Heidelberg.

[22] Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., & Lim, S. (2005). A survey and

comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys &

Tutorials, 7(2), 72-93.

[23] Ripeanu, M. (2001, August). Peer-to-peer architecture case study: Gnutella network. In

Peer-to-Peer Computing, 2001. Proceedings. First International Conference on (pp. 99-

100). IEEE.

[24] Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., & Shenker, S. (2003, August).

Making gnutella-like p2p systems scalable. In Proceedings of the 2003 conference on

Applications, technologies, architectures, and protocols for computer communications

(pp. 407-418). ACM..

[25] Ganesan, P., Sun, Q., & Garcia-Molina, H. (2003). Yappers: A peer-to-peer lookup

service over arbitrary topology. In INFOCOM 2003. Twenty-Second Annual Joint

Conference of the IEEE Computer and Communications. IEEE Societies (Vol. 2, pp.

1250-1260). IEEE.

[26] P. Ganesan, Q.Sun, and H. Garcia-Molina, “Yappers: A peer-to-peer lookup service over

90

arbitrary topology,” in Proceedings of the IEEE Infocom 2003, San Francisco, USA,

March 30 - April 1 2003.

[27] Zhao, B. Y., Huang, L., Stribing, J., Rhea, S. C., Joseph, A. D., & Kubiatowicz, J. D.

(2004). Tapestry:“a global-scale overlay for rapid service deployment [J],”. IEEE Journal

on Selected Areas in Communications, 22(1).

[28] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek, F., &

Balakrishnan, H. (2003). Chord: a scalable peer-to-peer lookup protocol for internet

applications. IEEE/ACM Transactions on Networking (TON), 11(1), 17-32.

[29] M. Xu, S. Zhou, and J. Guan, “A New and Effective Hierarchical Overlay Structure for

Peer-to-Peer Networks”, Computer Communications, Elsevier, vol. 34, pp. 862-874,

2011.

[30] Korzun, D., & Gurtov, A. (2014). Hierarchical architectures in structured peer-to-peer

overlay networks. Peer-to-Peer Networking and Applications, 7(4), 359-395.

[31] Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Shenker, S. (2001). A scalable

content-addressable network (Vol. 31, No. 4, pp. 161-172). ACM.

[32] Klug, J. R., Klug, N. H., & Peterson, T. D. (2015). U.S. Patent No. 8,965,924.

Washington, DC: U.S. Patent and Trademark Office.

[33] Rowstron, A., & Druschel, P. (2001, November). Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. In IFIP/ACM International

Conference on Distributed Systems Platforms and Open Distributed Processing (pp. 329-

350). Springer, Berlin, Heidelberg.

[34] Hoßfeld, T., Oechsner, S., Tutschku, K., Andersen, F. U., & Caviglione, L. (2006,

March). Supporting vertical handover by using a pastry peer-to-peer overlay network. In

91

Pervasive Computing and Communications Workshops, 2006. PerCom Workshops 2006.

Fourth Annual IEEE International Conference on (pp. 5-pp). IEEE.

[35] Vu, Q. H., Lupu, M., & Ooi, B. C. (2009). Peer-to-peer computing: Principles and

applications. Springer Science & Business Media.

[36] Andrea Passarella, “A survey on content-centric technologies for the current internet: cdn

and p2p Solutions,” Computer Communications, vol. 35, pp. 1-32, 2012.

[37] Maymounkov, P., & Mazieres, D. (2002, March). Kademlia: A peer-to-peer information

system based on the xor metric. In International Workshop on Peer-to-Peer Systems (pp.

53-65). Springer, Berlin, Heidelberg.

[38] Hadaller, D., Regan, K., & Russell, T. (2005). Necessity of supernodes survey (Vol. 67,

p. 217). Technical report, Technical Report 2005-1, Department of Computer Science,

University of Toronto.

[39] Peng, Z., Duan, Z., Qi, J. J., Cao, Y., & Lv, E. (2007, January). HP2P: A hybrid

hierarchical P2P network. In Digital Society, 2007. ICDS'07. First International

Conference on the (pp. 18-18). IEEE.

[40] Liang, J., Kumar, R., & Ross, K. W. (2004). Understanding KaZaA.

[41] Ebrahimi, M., Bazyar, M. A., Tahmasbi, M., & Boostani, R. (2008, December).

Benefiting from data mining techniques in a hybrid Peer-to-Peer network. In Advanced

Computer Theory and Engineering, 2008. ICACTE'08. International Conference on (pp.

499-502). IEEE.

[42] Cheng, J., & Donahue, R. (2013). The Pirate Bay Torrent Analysis and Visualization.

International Journal of Science, Engineering and Computer Technology, 3(2), 38.

[43] Klingberg, T., & Manfredi, R. (2002). Gnutella 0.6. Network Working Group.

92

[44] Clarke, I., Sandberg, O., Wiley, B., & Hong, T. W. (2001). Freenet: A distributed

anonymous information storage and retrieval system. In Designing privacy enhancing

technologies (pp. 46-66). Springer Berlin Heidelberg.

[45] Clarke, I., Miller, S. G., Hong, T. W., Sandberg, O., & Wiley, B. (2002). Protecting free

expression online with freenet. IEEE Internet Computing, 6(1), 40-49.

[46] Lawey, A. Q., El-Gorashi, T. E., & Elmirghani, J. M. (2014). BitTorrent content

distribution in optical networks. Journal of lightwave technology, 32(21), 3607-3623

[47] E. Cohen, A. Fiat, H. Kaplan, “Associative search in peer-to-peer networks: harnessing

latent semantics,” vol. 2, pp. 1261-1271, 2003.

[48] Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Shenker, S. (2001). A scalable

content-addressable network (Vol. 31, No. 4, pp. 161-172). ACM.

[49] Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R., Iwamoto, K., &

Yerushalmi, Y. (1999). Web caching with consistent hashing. Computer Networks,

31(11), 1203-1213.

[50] De Canniere, C., & Rechberger, C. (2006, December). Finding SHA-1 characteristics:

General results and applications. In ASIACRYPT (Vol. 4284, pp. 1-20).

[51] Tutschku, K. (2004, April). A measurement-based traffic profile of the eDonkey file

sharing service. In PAM (Vol. 3015, pp. 12-21).

[52] Yang, B., & Garcia-Molina, H. (2001). Comparing hybrid peer-to-peer systems. In

Proceedings of the 27th Intl. Conf. on Very Large Data Bases.

[53] Loo, B. T., Huebsch, R., Stoica, I., & Hellerstein, J. M. (2004, February). The Case for a

Hybrid P2P Search Infrastructure. In IPTPS (Vol. 4, pp. 141-150).

[54] Baset, S. A., & Schulzrinne, H. (2004). An analysis of the skype peer-to-peer Internet

93

telephony protocol. arXiv preprint cs/0412017.

[55] Garces-Erice, L., Biersack, E. W., Ross, K. W., Felber, P. A., & Urvoy-Keller, G. (2003).

Hierarchical peer-to-peer systems. Parallel Processing Letters, 13(04), 643-657.

[56] Xu, Z., Min, R., & Hu, Y. (2003, October). HIERAS: a DHT based hierarchical P2P

routing algorithm. In Parallel Processing, 2003. Proceedings. 2003 International

Conference on (pp. 187-194). IEEE.

[57] Andrews, G. E. (1994). Number theory. Courier Corporation. (pp 32-36)

[58] R. Zhang and Y.C. Hu, “Assisted peer–to-peer search with partial indexing,” IEEE

Trans. Parallel and Distributed Systems, vol. 18(8), pp. 1146-1158, 2007.

[59] Kartalopoulos, S. V. (2006). A primer on cryptography in communications. IEEE

Communications Magazine, 44(4), 146-151.

[60] Ganesan, R. (1996). U.S. Patent No. 5,535,276. Washington, DC: U.S. Patent and

Trademark Office.

[61] Stallings, W. (2016). Cryptography and network security: principles and practice. 6th

edition Pearson. (pp 417-448)

[62] Naicken, S., Livingston, B., Basu, A., Rodhetbhai, S., Wakeman, I., & Chalmers, D.

(2007). The state of peer-to-peer simulators and simulations. ACM SIGCOMM

Computer Communication Review, 37(2), 95-98.

[63] Surati, S., Jinwala, D. C., & Garg, S. (2017). A survey of simulators for P2P overlay

networks with a case study of the P2P tree overlay using an event-driven

simulator. Engineering Science and Technology, an International Journal.

[64] Ebrahim, M., Khan, S., & Mohani, S. S. U. H. (2014). Peer-to-peer network simulators:

an analytical review. arXiv preprint arXiv:1405.0400.

94

[65] Graffi, K. (2011, August). PeerfactSim. KOM: A P2P system simulator—Experiences

and lessons learned. In Peer-to-Peer Computing (P2P), 2011 IEEE International

Conference on (pp. 154-155). IEEE.

[66] Ng, T. S., & Zhang, H. (2001, November). Towards global network positioning.

In Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement (pp. 25-

29). ACM.

[67] Feldotto, M., & Graffi, K. (2013, July). Comparative evaluation of peer-to-peer systems

using PeerfactSim. KOM. In High Performance Computing and Simulation (HPCS),

2013 International Conference on (pp. 99-106). IEEE.

[68] M. Steiner, T. En-Najjary, and E. Biersack, “Long Term Study of Peer Behavior in the

KAD DHT,” IEEE/ACM Transactions on Networking, vol. 17, 2009.

[69] Yang, M., & Yang, Y. (2010). An efficient hybrid peer-to-peer system for distributed

data sharing. IEEE Transactions on computers, 59(9), 1158-1171.

[70] A. Rowstron and P. Druschel, “Pastry: scalable, distributed object location and routing

for large scale peer-to-peer systems,” Proc. IFIP/ACM Intl. Conf. Distributed Systems

Platforms (Middleware), pp. 329-350, 2001

[71] Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Shenker, S. (2001). A scalable

content-addressable network (Vol. 31, No. 4, pp. 161-172). ACM.

[72] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek, F., &

Balakrishnan, H. (2003). Chord: a scalable peer-to-peer lookup protocol for internet

applications. IEEE/ACM Transactions on Networking (TON), 11(1), 17-32.

[73] D. Korzun and A. Gurtov, “Hierarchical architectures in structured peer-to-peer overlay

networks,” Peer-to-Peer Networking and Applications, Springer, pp. 1-37, March 2013.

95

VITA

Graduate School

Southern Illinois University

Shahriar “Nick” Rahimi

NickRahimi@gmail.com

IAU-TNB University

Bachelor of Science, Computer Software Engineering, May 2000

Southern Illinois University

Bachelor of Science, Information Systems Technology, December 2009

Southern Illinois University Carbondale

Master of Science, Computer Science, December 2011

Dissertation Title:

A NOVEL LINEAR DIOPHANTINE EQUATION-BAESD LOW DIAMETER

STRUCTURED PEER-TO-PEER NETWORK

Major Professor: Bidyut Gupta

Publications:

96

B. Gupta, S. Rahimi,, “Efficient Data Lookup in Non-DHT Based Low Diameter Structured

P2P Network” To be appeared on: Proc. 2017 IEEE Int. Conf. on Industrial Informatics

(INDIN 2017), Emden, Germany, July 2017.

B. Gupta, S. Koneru, A. Alyanbaawi, N.Rahimi; “A Modified Version of DVR-Based

Multicasting with Security.” , To be appeared on: Proc. 2017 IEEE Int. Conf. on Industrial

Informatics (INDIN 2017), Emden, Germany, July, 2017.

A. Alyanbaawi, B. Gupta, S.Rahimi, and K. Sinha; “An Efficient Approach for Load-Shared

and Fault- Tolerant Multicore Shared Tree Multicasting.” , To be appeared on: Proc. 2017

IEEE Int. Conf. on Industrial Informatics (INDIN 2017), Emden, Germany, July, 2017

S. Rahimi, K. Sinha and B. Gupta,, “LDEPTH: A low diameter hierarchical p2p network

architecture,” Proc. 2016 IEEE Int. Conf. on Industrial Informatics (INDIN 2016), Poitiers,

France, July, 2016.

M. Zhu, S. Rahimi “Experience Towards Integrating Parallel and Distributed Computing

Concepts at Different Levels of Undergraduate Courses” IEEE IPDPS conference, Jan 2015

M. Zhu, S. Rahimi, Promoting Teaching Effectiveness and Cultivating Interests in Parallel

and Distributed Computing, EduPar workshop in conjunction with IEEE IPDPS 2015,

Proceedings of IEEE IPDPS 2015, Hyderabad, India, May 2015

Marhamati, N., Patel, P., Althobaiti, Y., Khorasani, E. S., & Rahimi, S. (2013, May).

Revisiting Linguistic Approximation for Computing with Words. In FLAIRS Conference.

Y. Lee, S. Rahimi, S. Harvey, “A Pre-Kernel Agent Platform for Security Assurance,” in

proceedings of SSCI 2011 IA - 2011 IEEE Symposium on Intelligent Agents, IEEE Press,

pp. 1-7, Paris, France, April 2011.

97

S. Rahimi, Y. C. Lee, M. Zargham, “An Agent-Based Architecture for High Performance

Computing over the Internet,” proceedings of the International Conference on Parallel and

Distributed Systems, Rome, Italy, pp.432-444, 2010.

	Southern Illinois University Carbondale
	OpenSIUC
	12-1-2017

	A NOVEL LINEAR DIOPHANTINE EQUATION-BAESD LOW DIAMETER STRUCTURED PEER-TO-PEER NETWORK
	Shahriar Rahimi
	Recommended Citation

	tmp.1521043224.pdf.05dye

