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AN ABSTRACT OF THE THESIS OF 

 

Nick T. Harre, for the Master of Science degree in Plant, Soil, and Agricultural Systems, 

presented on March 17, 2014 at Southern Illinois University Carbondale. 

 

TITLE:  DYNAMICS OF EARLY-SEASON WEED MANAGEMENT AND SOYBEAN 

NUTRITION 

 

MAJOR PROFESSOR: Dr. Bryan G. Young 

     The popularity of growers using only postemergence (POST) herbicides for weed 

management in soybean was enabled by the commercialization of glyphosate-resistant soybean.  

The efficacy and flexibility provided by this technology diminished the use of soil residual 

herbicides and arguably, increased soybean yield loss from early-season weed competition.  

While, the rapid evolution and biogeographical spread of herbicide-resistant weeds, especially 

glyphosate-resistant biotypes, has renewed interest into the use of soil residual products, 

herbicide-resistant soybean technologies continue to be developed that may once again entice 

growers into POST-only weed management systems.  The commercial interest in soybean yield 

advancements justifies further characterizing the benefits provided by early-season weed control 

beyond those of herbicide-resistance management.  Furthermore, as awareness heightens 

regarding techniques that will enhance the sustainability of agro-ecosystems, specific focus on 

resource utilization will help to evaluate the viability of this weed management strategy. 

     Field experiments were conducted across four sites throughout southern Illinois in 2012 and 

2013 to study the influence of early-season weed management strategies on soybean nutrient 

accumulation, grain yield parameters, and the acquisition of nutrients by broadleaved and grass 

weeds.  Increasing periods of weed competition duration were established by removing weeds at 

heights of 10, 20, 30 or 45 cm with glyphosate.  A weed-free treatment utilizing a comprehensive 

soil residual and POST herbicide program was included to implement a weed-free comparison.  
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Two standard herbicide management strategies that simulate common grower practices were also 

evaluated for comparison:  flumioxazin PRE followed by glyphosate POST and two sequential 

POST glyphosate applications.  Averaged across all 11 mineral nutrients analyzed in this 

experiment, broadleaved weeds accumulated 149 and 108% more nutrients than grasses in 2012 

and 2013, respectively.  Competition from 20-cm weeds reduced the acquisition of N, P, Ca, Mg, 

S, Fe, B, Cu, and Zn by soybean in 2012; these nutrients in addition to K and Mn were reduced 

by the same level of competition in 2013.  N and Fe were the nutrients in soybean most notably 

impacted by weed interference.  Reductions in soybean grain yield were the result of competition 

with 30-cm weeds in 2012, and 10-cm weeds in 2013; while, both standard herbicide regimens 

yielded less than the weed-free treatment in 2013 only.  Additionally in 2013, average soybean 

seed weight and grain oil content was reduced when weeds were not removed before a height of 

10 and 20 cm, respectively. 

     The rate of decomposition and nutrient release was measured for waterhemp and giant foxtail 

desiccated by glyphosate at heights of 10, 20, 30, and 45 cm in two southern Illinois soybean 

fields.  Weed biomass was grown under greenhouse conditions to ensure homogeneity and 

litterbag methodology was utilized to track in situ mass and nutrient losses, expressed as a decay 

constant (k) regressed over time according to the single exponential decay model.  The effect of 

specie and height both had a strong influence on the intrinsic properties of the weed biomass and 

the associated rate of decay.  Concentrations of the recalcitrant cell wall components (cellulose, 

hemicellulose, and lignin) were generally greatest as weed height (plant age and development) 

increased and with giant foxtail compared with waterhemp.  Ca, Mg, and S concentrations were 

greater in waterhemp, while N was greater in giant foxtail.  N and K concentrations decreased 

with increasing weed height.  After 16 weeks, 10-cm waterhemp and giant foxtail detritus had 
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lost 10 and 12% more mass compared to the 45-cm height.  Decomposition rates revealed mass 

loss was highest for 10-cm waterhemp (kD = 0.022) and lowest for 45-cm giant foxtail (kD = 

0.011) and this process was negatively correlated to the overall amount of cell wall constituents 

(r = -0.73).  Nutrient release rates followed a similar trend in that shorter (younger) weeds and 

waterhemp liberated nutrients more readily.  Across all tested plant material, K was the nutrient 

most rapidly released, whereas, Ca was the most strongly retained nutrient. 

     Although the pressing challenge of managing herbicide-resistant weeds justifies the 

implementation of early-season weed control tactics, this research suggests there are ancillary 

benefits that are provided by this strategy.  The use of a robust, broad-spectrum soil residual 

herbicide program in conjunction with timely POST applications provides the foundation for 

early-season weed management, thereby minimizing non-crop nutrient use and enhancing the 

nutrient acquisition capacity in soybean.  This strategy facilitates more sustainable crop 

production by requiring fewer supplemental nutritional inputs while also protecting grain yield. 
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CHAPTER 1 

REVIEW OF LITERATURE 

 

Weeds have been a nemesis to agricultural endeavors since ancient times.  Prior to the 

utilization of modern, synthetic herbicides in the 20th century, the most effective means of weed 

control were through mechanical tillage and cultural practices such as crop rotation (Walker and 

Buchanan 1982).  With the development of the herbicide 2,4-D in the early 1940’s, producers 

were able to improve their levels of weed control thereby, stimulating an increase in production 

area of major crops (Zimdahl 2007).  Weeds reduce not only the quantity of crop yields, but the 

quality as well.  Early farmers were aware that weeds growing with crops decreased agronomic 

efficiency, however, not until the evolution of weed science research in the mid-1900’s did the 

deleterious effects of weeds become more refined.  Weeds act as a host to a variety of other pests 

such as nematodes, plant diseases, and insects (Aldrich 1984).  Research during this time often 

attempted to study the effects of weed interference; a term developed to describe the allelopathic 

and competitive tendencies of weeds.  Although the detrimental effect of allelopathy has been 

documented in greenhouse studies to reduce seedling germination and growth (Putnam 1983; 

Toai and Linscott 1979), in most production areas, the sole impact of weed competition tends to 

be of primary concern.  Still today, weed competition continues to be one of the major 

restrictions to crop production systems in North America (Subedi and Ma 2009). 

Competition exists “when two or more organisms seeks the measure it wants of any 

particular factor and when the immediate supply of the factor is below the combined demand of 

the organisms” (Clements et al. 1929).  Weeds compete with crops for light, water, nutrients, 

space, and gases.  Competition for these resources is dependent upon a variety of interactions 
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and often follows the general ecological principle of Liebig’s law of the minimum:  a factor 

limits a physiological process only as long as no other factor overrules it (Liebig 1840).  The 

quantification of the relative competitiveness of a given weed is made possible through the 

evaluation of competitive indices (CI’s).  Although no indices exist specifically for southern 

Illinois, the most recent publication in a geographically similar area is from Missouri by Bradley 

et al. (2007).  With 10 being the most competitive, they formulated the following CI’s for a 

variety of common weed species:  common sunflower (Helianthus annus) 10; giant ragweed 

(Ambrosia trifida) 8.0; common cocklebur (Xanthium strumarium) 5.5; annual morningglory 

(Ipomea spp.) 5.5; velvetleaf (Abutilon theophrasti) 4.2; shattercane (Sorghum bicolor) 3.5; giant 

foxtail (Setaria faberi) 3.0; common waterhemp (Amaranthus rudis) 2.5; common ragweed 

(Ambrosia artemisiifolia) 1.5; and fall panicum (Panicum dichotomiflorum) 1.5.  The level of 

competition is exaggerated by a variety of factors beyond weed species heterogeneity that impact 

the development and growth habit of either the crop and/or the weed such as:  weed density 

(Bradley et al. 2007; Shurtleff and Coble 1985), crop species and cultivar (Knake and Slife 1965, 

Monks and Oliver 1988), cultural practices (Di Tomaso 1995), timing of emergence (Massinga 

et al. 2001), length of competition (Crook and Renner 1990), and environmental factors 

(Patterson 1995).   

Weed Management Concepts 

In 1996, Monsanto introduced Roundup Ready Soybeans® (Glycine max L.), which were 

genetically engineered to be resistant to the herbicide glyphosate, and followed with the public 

release of glyphosate-resistant cotton (Gossypium hirsutum L.) and corn (Zea mays L.) in 1997 

and 1998, respectively (Monsanto 2010).   This new technology facilitated the implementation of 

postemergent (POST) applications of glyphosate to be made over these crops and drastically 
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altered commercial herbicide regimens.  Prior to the release of glyphosate-resistant (GR) crops, 

the utilization of preemergent (PRE) herbicides was an essential part of an integrated weed 

management program as these soil residual herbicides alleviated pressure on POST applications 

by resulting in fewer, smaller weeds (Gonzini et al. 1999).  However, after the commercialization 

of GR crops, the robust weed control attained by POST glyphosate applications lessened the 

dependence on PRE herbicides, particularly in soybean (Young 2006).  Greater consistency in 

weed control was also achieved through the use of glyphosate because its effectiveness is not as 

dependent upon environmental and edaphic factors when compared to most soil residual 

herbicides.  Consequently, in just over a decade, there has been a wide acceptance of utilizing 

GR crops.  In 2010, 93% of soybean and 70% of corn hectares in the United States were planted 

with glyphosate-resistant seed (USDA 2010). 

The greater reliance on POST herbicides with little to no soil residual activity stimulated 

interest as to the most appropriate time to implement weed control without a yield penalty 

(Knezevic et al. 2002).  The critical weed-free period and critical duration of weed competition 

are concepts of two different approaches to weed management.  The critical weed-free period is 

defined as the length of time from crop emergence weeds must be controlled in order to achieve 

a maximum crop yield.  In corn and soybean, this period is typically from three to five weeks 

after crop emergence (Barrentine 1974, Van Acker et al 1993), with weeds emerging after this 

period having no effect on crop yield.  The foundation of providing crops an earlier emergence 

date than weeds is supported by research that suggests weeds, themselves, are very intolerant of 

competition.  Knake and Slife (1965) found that giant foxtail accumulated close to 0% growth 

when soybeans were allowed to emerge three weeks prior.  Barnyardgrass (Echinochloa crus-

galli) growth was reduced by 60% when competing with soybeans that had emerged one week 
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earlier (Maun 1977).  Furthermore, Palmer amaranth (Amaranthus palmeri) emerging with corn 

reduced grain yields 60% compared to 10% when emergence was delayed thirty days (Massinga 

et al. 2001).  In soybean, CI’s of weeds are greater for those allowed to emerge with the crop 

when compared to emergence at V1 (Hock et al. 2006).   

The second approach to weed management, which focuses on the critical duration of weed 

competition, is the period weeds may grow with the crop until removal is necessary to achieve 

maximum grain yields.  This phase typically varies from two to five weeks in corn and soybean; 

however, this period has been much more inconsistent than that of the critical weed-free period 

and is largely dictated by site-specific interactions (Van Acker et al. 1993; Page et al. 2012).  A 

compilation of such studies by Zimdahl (1980) across an assortment of crops revealed a range of 

up to 22 weeks.  Extensive work by Knezevic et al. (2009) in soybean indicated that crop row 

spacing can influence the critical time of weed removal.  In 19-cm rows the ideal growth stage to 

implement weed control was V3; in 38-cm rows, V2; and in 76-cm rows, V1.  The authors also 

reported a 2% yield penalty for every growth stage delayed past the critical removal timing up to 

R3 (beginning pod) at which point yield loss was even greater.  There are inconsistencies as to 

how studies have reported the critical weed-free period and critical duration of weed 

competition; weed height, crop growth stage, and days after crop emergence have all been 

proposed (Knezevic et al. 2009; Van Acker et al. 1993). 

As the dependency on POST applications of glyphosate grew, the widespread use of this 

single mode-of-action has selected for GR weeds. Currently, there are 14 GR weed biotypes in 

the U.S. and three in Illinois (Heap 2013).  Such a great reliance on POST herbicides has led to a 

complacent understanding of proper weed management as the effectiveness of glyphosate 

provided the prospect of excellent control of weeds at heights that were previously unacceptable. 
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Weed management implies a holistic approach ranging from reducing the soil seed bank, limiting 

weed emergence with crops, and preventing weed competition with crops (Aldrich 1984).  

Focus, exclusively on weed control, meant that growers were allowing weeds to compete with 

crops often surpassing the critical duration of competition.  Carey and Kells (1995) found that 

corn grain yields can be significantly reduced despite effectively controlling 15-cm weeds.  As 

the shortcomings of POST-only weed control come to light, a more sound approach to weed and 

herbicide-resistance management has renewed interest into the utilization of soil residual 

herbicides and requires insight as to any additional benefits provided by early-season weed 

management.  

Weed-Crop Nutrient Competition 

Yet to be studied extensively in soybean, research has been conducted on the effect weed 

competition has on nutrient uptake in corn.  Gonzalez Ponce and Salas (1995) found that a mix 

of grass and broadleaved weeds reduced the N, P, and K content of corn at harvest.  Although the 

latter experiment evaluated all three primary macronutrients, much of the literature focuses 

solely on N.  Nutrient competition appears to be dependent upon a variety of weed characteristics 

including weed species, density, and height.  High densities (369 plants m-2) of common 

waterhemp consistently reduced corn biomass N accumulation when allowed to reach heights 

between 38 and 46 cm (Cordes et al. 2004).  Hellwig et al. (2002) publicized similar effects 

when no-tillage corn was allowed to compete with a mix of grass weed species at a density of 

300 shoots m-2.  This grass population, consisting of giant foxtail, barnyardgrass, and large 

crabgrass (Digitaria sanguinalis) at heights of 31 cm and greater reduced corn dry weight and N 

content.  Hans and Johnson (2002) found, despite ample control of shattercane at a height of 31 

cm, corn N accumulation had already been hindered.  These results suggest weed management 
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will likely play an integral role as growers attempt to maximize the efficiency of nutrient 

applications.   

Currently, Midwestern research has been limited to corn, nevertheless; the inherent 

anatomical and morphological differences that exist between corn and soybean make it difficult 

to extrapolate such findings.  The bush growth habit and taproot system of soybean may enable 

competition with weeds to occur at a different time than that of corn (Aldrich 1984).  The 

aboveground competition may be due in large part from the differential filtering of the available 

photosynthetically active radiation.  Thus, a denser crop canopy increases the far-red:red light 

ratio and retards the germination and growth of weeds (Rajcan et al. 2004).  Belowground 

resource competition is also likely to vary.  Corn and soybean have very dissimilar rooting 

systems; grown in the same location, soybean root density is approximately 80% less than corn 

(Barber 1978).  Moreover, influx of P and K into soybean roots was less than corn during early 

vegetative phases, yet greater than corn during later growth stages (Barber 1978).  In addition, 

soybean roots have a mechanism in which they can circumvent the intertwining of other roots, 

thereby limiting direct physical competition (Raper and Barber 1970).  

The nutrient requirements to meet the physiological demands of the leguminous soybean also 

vary from corn.  Paramount in corn fertility, N is often thought to be of lesser importance in 

soybean.  However, although a portion of the N needed for soybean production is fixated by their 

root nodules, it is estimated that 50% of their total N requirement must still be drawn from the 

soil solution indicating a greater availability of N may still increase soybean yields (Berglund 

and Helms 2003).  Although soybean nutrient deficiencies are rarely a problem across many of 

the high-producing regions, there remain exceptions particularly within the context of 

micronutrients.  Calcareous regions in the northern Corn Belt are subject to Fe deficiency 
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(Berglund and Helms 2003) while the Cerrado region of Brazil, one of the largest soybean 

production areas in the country, suffers from Zn, Cu, and Mn deficiencies across 70 to 80% of 

the area (Hitsuda et al. 2010).  Therefore, elucidating the specific nutrient drawdown capacity 

from competing weeds in soybean may enable more efficient nutrient management decisions to 

be made and allow for greater sustainability. 

Soybean-Weed Interactions 

Numerous weed competition studies have been conducted in soybean.  Most of these, 

however, have focused at any given time on the competitive effects of a single weed species. 

Barrentine (1974) found that common cocklebur populations can decrease soybean grain yields 

by up to 80% both as duration of competition and densities increase.  At a density of 8 plants m-

2, Palmer amaranth, common waterhemp, and redroot pigweed (Amaranthus retroflexus) reduced 

soybean grain yields by 79, 56, and 38%, respectively (Bensch et al. 2003).  In an area dominated 

by giant foxtail, soybean plant height was reduced by 10% while grain yields were only 68% of 

the weed-free control (Krausz et al. 2001).  Loss of grain yield in soybean as a result of weed 

interference is likely caused by fewer pods per plant (Harris and Ritter 1987).  Plant dry weight 

(Monks and Oliver 1988), shoot dry weight, height, and leaf area (Shurtleff and Coble 1985) are 

all non-yield components that have also been reduced by weed competition.  Although single-

species studies provide useful insight pertaining to weed-crop interactions, from a crop 

management standpoint, they are difficult to apply towards a typical agronomic scenario as most 

soybean fields are infested with a more heterogeneous weed species complex.  Moreover, the 

competitive impact of weed species working in conjunction is not cumulative; as two weed 

species are allowed to infest a crop, the resulting impact on crop yield is generally less than the 

sum of their monoculture influence (Chu et al. 1978; Millar et al. 2007; Van Acker et al. 1997).  
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While, research regarding weed interference in soybean appears to be quite substantial, given the 

complexity of factors involved, these results are often dictated by site-specific interactions.  

Hence, further research is required that focuses on the competitive effects of mixed weed species 

populations in soybean and under a variety of environmental and edaphic influences. 

Degradation of Weed Residue 

Weed control strategies are often considered successful upon the cessation of physiological 

activity within the plant.  However, the fate of the resources weeds possess and the lasting 

influences their decomposition will have both on the soil and the growing crop are often 

overlooked.  The weed community has a large affinity for nutrient acquisition (Aldrich 1984).  

Mineral nutrition of weeds differs both among species (Hellwig et al. 2002; Majumder et al. 

2008) and plant heights (Lindsey et al. 2013).  Shattercane, at a height of 31 cm competing with 

corn accumulated as much as 20 kg N ha-1 before it was successfully controlled via herbicidal 

means (Hans and Johnson 2002).  Large amounts of resources utilized by weeds and therefore, 

unavailable to crops not only cause reduction in grain yields, but also lessens the effectiveness of 

any nutrient management program.  The fate of resources assimilated by weeds following 

successful control measures remains poorly understood and thus, justifies the need to 

characterize the rate and extent to which nutrients will be returned to the soil and how weed 

management strategies may play an integral role. 

Decomposition of plant litter involves the physical, chemical, and biological processes that 

reduce detritus to its elemental chemical constituents (Aerts 2006).  The general model of 

decomposition follows a two-step process:  an initial, rather rapid loss of the water-soluble, labile 

nutrients, followed by a more prolonged phase in which the recalcitrant chemical elements are 

slowly broken down and stabilized as humus (Prescott 2005).  The decay continuum can vary 



9 

 

 

greatly as a result of the controlling factors and biological processes involved.  The rate of 

decomposition is controlled largely by three factors:  climate, litter quality (the chemical and 

physical attributes of plant matter), and soil organisms (Aerts 1997).  Many have speculated as to 

the single, most important factor affecting the rate and completeness of litter decomposition.  

Aerts (2006), Swift et al. (1979), and Meentemeyer (1978) speculate that the climate is the major 

determinant while Berg (2008) and Prescott (2005) believe the type of vegetation present to be 

the primary factor.  Coûteaux et al. (1995) suggest that under suitable weather conditions, the 

quality of the litter is the driving factor and under harsh weather conditions, the climatic 

influence prevails. It is important to note that much of the literature regarding the process of 

plant decomposition has been conducted in tundra, taiga, or tropical biomes.  Therefore, care 

must be taken when extrapolating results from these areas across other ecosystems given the 

vastly different climatic conditions and diversity of species possible.  Vazquez et al. (2003) and 

Parmelee et al. (1989) evaluated N mineralization of over-wintering weed residue in Ohio and 

Georgia.  Majumder et al. (2008) performed a litterbag experiment to track nutrient release and 

fungal succession of weed biomass in India.  However, Lindsey et al. (2013) is the only readily 

identifiable study in the Midwest that attempts to simulate in-season nutrient release from 

decaying weed residues.  

Anatomical Interferences of Litter Decomposition 

The plant cell wall is the largest obstacle of nutrient release due to insoluble components 

concentrated within the wall (Dickinson and Pugh 1974).  An understanding of the anatomy and 

role of this structure in the plant cell is, therefore, crucial in studying litter degradation.  The cell 

wall provides structural and mechanical support, regulates cell growth, provides carbohydrate 

storage, and acts as a physical barrier to pathogens.  Many of the chemical compounds needed to 
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fulfill such functions naturally contradict the destruction process and, thus, retard decomposition 

and nutrient release rates (Gilbert 2010).  The anatomy of the cell wall is a diverse, intricate 

network consisting of cellulose and cross-linking glycans (hemicelluloses) that reside in a pectin 

polysaccharide matrix with associated structural proteins (Carpita and Gibeaut 1993).  There are 

three regions of the cell wall:  1) the middle lamella is the outmost layer that primarily binds 

nearby cells; 2) the primary wall is deposited during active growth and division, and must allow 

for cell expansion; and 3) the secondary wall, which is deposited once active growth ceases on 

the interior of the primary wall (Carpita and Gibeaut 1993).  While all plant cells have a middle 

lamella and primary wall, the secondary wall is utilized mainly for structural support and is not 

present in all cells.  

The process of lignification can further intensify the cell wall network in certain cell types.  

Eleven different sugars comprised of four different linkage positions and two oxygen atom loci 

allow for a plethora of configuration options, all of which may impact degradation depending on 

their concentrations (Berg 2008).  Upon the cessation of primary wall growth, the formation of 

the secondary wall begins.  In certain cells, this is coupled with the deposition of lignin.  

Although lignin may appear in all layers of the cell wall, the largest concentration, 60 to 80%, is 

deposited within the secondary cell wall (Musha and Goring 1975).  Lignin production is derived 

from phenylalanine via the shikimate biosynthesis pathway (Rippert et al. 2009).  Upon cell 

differentiation, the lignin molecule forms strong covalent bonds to cellulose and other 

carbohydrate components (Vanholme et al. 2010).  Hence, the lignification process increases cell 

wall rigidity by increasing the strength of the fibrous tissue.  The final step of fortifying tissue 

strength in plants involves the biosynthesis of cutin.  Cutin is concentrated in foliage and is 

produced, along with wax, by the epidermal cells of leaves to act as a barrier to prevent water 
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loss and physical injury (Berg 2008).  The ultrastructure of plant leaves reveals that the waxy 

layer comprised of long-chain alkanes, ketones, fatty acids, and alcohols overlays the cutin 

complex predominantly consisting of hydroxyl fatty acids (Northcote 1972).  Cutin performs as a 

cement, binding the waxes to the cell wall.  This function is achieved through the orientation of 

cutin as the lipophilic groups face outwards, thus, attracting the waxes while the hydrophilic 

portion is oriented towards the polysaccharide layers of the cell wall.  As such, cutin is one of the 

most recalcitrant plant materials (Swift et al. 1979). 

Cell Wall Dynamicity 

Plant cell walls are the most plentiful sources of organic C in the world (Gilbert 2010).  

However, the organization and concentrations of these various C compounds are diverse 

throughout the plant kingdom.  Cell walls are not static.  An alteration to their orientation 

through chemical changes creates a dynamic structure that can adapt to adverse biotic and abiotic 

stimuli (Gilbert 2010).  Evolutionary adaptation has led to cell walls with differing anatomies 

and chemical compositions.  The nature of cell walls in plants comes in two forms, type I and 

type II.  While various differences exist between these, the greatest distinction lies in their 

hemicellulose fraction (Carpita and Gibeaut 1993).  Type I walls appear in the non-commelinoid 

monocots and most dicots.  Here, xyloglucan is the predominant cross-linking glycan 

(hemicellulose) with the combination of cellulose-xyloglucan aggregates accounting for 50% of 

the cell wall composition (Carpita and Gibeaut 1993).  Type II cell walls are found in the 

commelinoid monocots; this taxon contains most of the common grass species in the Poaceae 

family.  Instead of xyloglucan dominance, glucuronoarabinoxylan is the primary hemicellulosic 

component.  Furthermore, upon cell expansion, type II cell walls stimulate the production of the 

mixed-linkage β-D glucans (Carpita and Gibeaut 1993).  Another important division that can 
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occur within plant cell walls involves the chemical array of lignin.  Lignin is a diverse compound 

that differs not only among species but also within species amid cell types (Vanholme et al. 

2010).   The lignification process is much slower than, for example, cellulose biosynthesis.  

Therefore, depending on the age of the tissue at senescence, the lignin fraction is likely to be the 

cell wall element with the greatest variability in concentration (Berg 2008).  The plant cell wall 

consists primarily of high-molecular weight, water-insoluble compounds that are resistant to 

microbial depolymerization.  Given the diversity and dynamicity of such a structure, it would 

seem plausible that these variances will serve as rate regulators of plant litter degradation. 

The compounds discussed thus far have pertained to the plant cell wall and, while the 

majority of C compounds reside here, there are numerous other complexes that constitute plant 

matter.  They can be divided into high-molecular weight substances such as complex fatty acids 

and phenols; and low-weight materials such as amino acids, short-chain fatty acids and 

lightweight phenolics.  Foliar litter contains four main groups of soluble substances:  sugars, 

phenolics, hydrocarbons, and glycerides (Berg 2008).  The plant cell wall, consisting of vast 

networks of structural, interwoven compounds remains inherently, extremely porous.  The 

porosity of this structure, however, only allows the passage of the lightweight materials while 

acting as a barrier to the more complex compounds.  Hence, upon plant death, the latter will 

remain bound within the cells until acted upon by extracellular enzymes while the water-soluble 

components will be easily leached.   

Nutrient Dynamics of Plant Litter 

A more comprehensive view of plant cell stoichiometry reveals that the primary constituents 

are comprised of essential plant nutrients.  The location of nutrients within a plant varies both 

across species and at the individual plant level among cell type.  Some minerals are very specific 
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in their functional role.  For instance, the primary role of the nutrient B lies within strengthening 

of the cell wall (Matoh et al. 1996).  Conversely, an element such as N is a crucial structural, 

genetic and metabolic mineral.  Apart from C, H, and O, which are rarely limiting in abundance, 

N is the mineral nutrient required in the greatest quantities by plant life.  For example, N is a 

component of the chlorophyll pigment, amino acids, ATP, and DNA.  However, in plants, the 

most abundant source of N comes from the constituency of the enzyme Rubisco (ribulose-1,5-

bisphosphate carboxylase/oxygenase) where plants may devote as much as 50% of their leaf N 

(Ellis 1979).  The differential allocation of nutrients occurs during the active growth of plants in 

order to satisfy various physiological demands (Lambers et al. 2008).  Precisely which organs are 

the beneficiaries of this redistribution will likely influence the rate of decay and nutrient release 

due to aforementioned cell wall heterogeneity.  For example, heavily lignified stem tissue will 

likely contain fewer nutrients and decompose more slowly than succulent, green vegetation. 

Decomposition as a Process 

As stated earlier, there are two primary stages of decomposition that detritus undergoes.  The 

initial pattern of plant degradation is a loss of the water-soluble, labile compounds proceeded by 

a diminution of more complex, lignified compounds.  The preponderance of research has focused 

on this stage for two main reasons:  it is believed that the majority of the compounds and 

nutrients have been released by this point and logistical time constraints often deter long-term 

studies of humus dynamics.  It has been proposed that plant matter will eventually reach a 

maximum level of decomposition upon which further decay of the newly-formed humus is 

extremely slow (Prescott 2005).  Aber et al. (1990) and Melillo et al. (1989) suggest that this 

stage of decomposition begins at approximately 80% mass loss.  Yet, there is evidence that 

initial litter quality can change the limit value of decomposition for a species.  Van Vuuren et al. 
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(1993) and Magill and Aber (1998) found that initial biomass of high quality (narrow lignin:N) 

enters the humus stage with a greater amount of their initial mass remaining.  Therefore, 

throughout the decay continuum, high quality litter will initially decompose at a more rapid pace 

than detritus of low quality but, ultimately, to a lesser degree of completeness. 

The manner in which decomposition occurs appears to be a community-level process, 

defined by Reice (1974) as the interactions of several populations mediated by physical factors.  

As recently senesced plant matter falls to the soil surface, soil microbes and fungi begin to 

populate it.  While these organisms break down litter at the cellular level, saprophages shred the 

material into smaller portions as they feed on it (Reice 1974; Swift et al. 1979).  The primary 

decomposers are fungi and bacteria.  The diversity and abundance of these microorganisms is 

prodigious; 1 gram of soil may contain 10 billion microbes associated with thousands of species 

(Rosselló-Mora and Amann 2001).  Of the two, bacteria are both more species-rich and dynamic 

in functioning.  Fungi are strictly aerobic organisms whereas, bacteria may be found in oxic or 

anoxic environments.  Polysaccharides in plant litter can be degraded both aerobically and 

anaerobically with the former being favored and, furthermore, required for complete 

decomposition (Berg 2008). 

Both fungi and bacteria are capable of degrading cellulose and hemicellulose while, the 

ability to completely degrade lignin is rare within the decomposer spectrum.  The white-rot 

fungi, a class of basidiomycetes, and the actinomycete group of bacteria are part of the exclusive 

assemblage able to mineralize lignin (Romaní et al. 2006).  These processes require a large 

amount of free O2 and is generally why agronomic fields under conventional tillage have lower 

organic matter values than undisturbed sites.  The nutrient content, particularly N and Mn, 

present in the microsite of lignin degradation has also been shown to influence the rate of decay.  
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High concentrations of N can have a suppressing effect on the lignolytic enzyme phenol oxidase 

as evidenced by Carreiro et al. (2000) and Keyser et al. (1978).  Mn peroxidase, produced by the 

basidiomycete fungi, is an enzyme that oxidizes Mn+2 in the litter to the highly reactive and 

destructive Mn+3 ion.  By utilizing and prolonging the lifespan of this ion, lignin degradation 

transpires to a greater extent (Hofrichter 2002).  N enrichment to soils dominated by 

basidiomycete fungal populations have been correlated to soil organic matter increases, and may 

provide a greater capacity for C sequestration, however, these studies have been restricted to 

temperate and boreal forests (Sinsabaugh 2010). 

Rate-Regulators of Decomposition 

The initial stoichiometric properties of plant litter are often regressed against first-year mass 

loss in an attempt to identify which of these influence decomposition the most.  The most 

extensive review of initial properties as rate-regulators of decomposition is by Berg (2008).  By 

comparing studies across gradients of time, space, and species distribution, he was able to 

develop a few generalized patterns.  While there is variation among species, the relationships 

involving N, P, and S have all shown to be significant.  These three nutrients are essential 

constituents of nucleic acids and proteins.  Therefore, it seems logical that these will in some 

way influence plant degradation given biota’s high demand for these elements.  Other nutrients 

such as K, although appearing in relatively large amounts initially, do not perform well as an 

indicator of mass loss due to the high water solubility of K.  Of the plant cell wall components, 

lignin may provide the best relationship because it is the most recalcitrant.  For this reason, the 

lignin:N ratio appears to be superlative to the C:N ratio as an indicator of decomposition rate 

because it does not take into account the labile C in plant matter.  An understanding of how litter 

quality affects decomposition provides useful rationale in the assumption that variations in 
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species and plant heights will influence the rate at which biomass decays.   Immature plants have 

lower C:N ratios and less lignin content (Muller et al. 1988, Nicolardot 2001).  Moreover, as 

plants mature their cell walls become more heavily fortified with cellulose, hemicellulose, and 

lignin (Singh and Gupta 1977).  Gupta and Singh (1980) expanded this concept across 

monocotyledonous and dicotyledonous plants and found that aboveground biomass of grasses 

decompose at slower rates than that of broadleaves.  This is likely attributed to the higher N use 

efficiency of most grasses, thus, leading to a larger lignin:N ratio.  Given the relationship 

between plant maturity and chemical constituency, this would suggest that not only variances in 

plant species but, height as well will influence the rate of biomass breakdown and nutrient return.   

Temperature and moisture are the abiotic influences that have the greatest effect on the rate 

of plant litter decay (Swift et al. 1979).  The ideal temperature range for plant decomposition is 

30 to 40º C (Waksman and Gerretsen 1931).  At these higher temperatures, the destruction of the 

plant cell wall components, particularly cellulose and lignin, greatly increases.  After nine 

months of decomposition across a temperature gradient, the degradation of cellulose and lignin at 

37º C increased by 96 and 60%, respectively, over 7º C (Waksman and Gerretsen 1931).  

Kirschbaum (1995) found that microorganism activity often doubles for every 10º C increase in 

soil temperature.  Additionally, the presence of water in an ecosystem seems to have its largest 

impact on the activity of soil microorganisms with field capacity being the ideal edaphic level.  

Fluctuations in moisture regimes may generate more of a response in the decomposer community 

than the plant community because minute precipitation events that only affect the uppermost 

layer of soil can stimulate microbial activity (Austin 2002).  Droughty conditions not only affect 

the activity of soil microorganisms but also plant growth as well; stressed plants tend to produce 

litter that is of lesser quality (i.e. resists decomposition).  Assuming no other resources are 
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limiting, a plant with sufficient access to water would likely generate tissue that is more nutrient-

rich and readily degradable due to the less restrictive uptake of minerals from the soil.  

Therefore, decomposition rates increase along with rising temperatures and moisture levels 

(Meentemeyer 1978).   

Contemporary Assessment of Weed Residue Nutrient Release 

Stated previously, there is only one published study pertaining to in-season weed residue 

degradation in Midwestern agricultural landscapes.  Conducted by Lindsey et al. (2013), this 

group evaluated N release from common lambsquarters (Chenopodium album), common 

ragweed, and giant foxtail grown at four N rates and two weed heights.  Weeds were grown to 

10- and 20-cm heights in corn plots receiving different N rates and then harvested.  Residues 

were oven dried, finely ground, and then mixed with field soil to be placed in a laboratory 

incubator over a 12-week period.  By tracking net mineralization and immobilization rates, they 

were able to determine which types of weed residues may contribute to the soil N pool within the 

same growing season.  Giant foxtail released N more slowly than both common lambsquarters 

and common ragweed when grown without additional N.  When N fertilizer amendments were 

made, residue release rates were positively correlated.  Furthermore, weeds grown to 20 cm 

released N to a lesser extent when compared 10-cm weeds.  Lindsey et al. (2013) concluded that 

weeds may contribute to the available soil N pool if controlled by the 10-cm height and 

furthermore, to avoid N immobilization, giant foxtail should be controlled before it reaches 20 

cm in height. 

There are several reasons care must be taken when extrapolating these results to in situ 

scenarios.  First, N mineralization rates from laboratory incubations are usually greater than field 

experiments (Sanchez et al. 2001).  The weeds utilized in the latter study were freshly cut and 
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removed from the field rather than being controlled with a herbicide.  Glyphosate is the most 

commonly used POST herbicide on corn and soybean hectares.  Therefore, the majority of weed 

residues resulting from successful POST applications commercially are likely a result of the 

phytotoxic effects of this chemical.  It is plausible that the weeds in this study may differ in their 

chemical constituency when compared to glyphosate-treated plants.  The toxicity of glyphosate 

is generally attributed to the blocking of aromatic amino acid production, thus, causing 

insufficient protein synthesis.  However, there is also evidence that it can stimulate a reallocation 

of carbohydrates towards the shikimate pathway due to the deregulation of the 5-enolpyruvyl-

shikimate-3-phosphate synthase (EPSPS) enzyme which, in turn, creates a C shortage in other 

plant parts (Servaites et al. 1987; Siehl 1997).  This provides evidence that C compounds may be 

redistributed within the plant between the time of glyphosate uptake and weed death and the 

location of these carbohydrates in the affected specimen may differ from that of a freshly cut 

plant.  Finally, the residue in this experiment (Lindsey et al. 2013) was ground to pass a 1 mm 

sieve and mixed with soil to facilitate degradation.  However, in situ, this is not an accurate 

representation as much of the particle reduction of plant litter is carried out by saprophages.  This 

research provides useful information regarding N release from various weed species residues and 

how it is impacted by plant height.  Because research in this area is lacking, it is a step towards a 

better understanding of the dynamics involved with weed decomposition and nutrient release.  

However, there remains a need to quantify these parameters with methodology more closely 

adapted to field scenarios and broaden the scope of mineral release beyond that of N. 
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CHAPTER 2 

INFLUENCE OF DURATION OF WEED COMPETITION ON SOYBEAN 

NUTRIENT ACQUISITION AND GRAIN YIELD PARAMETERS 

 

Weed management implies a whole systems approach ranging from reducing the soil seed 

bank, limiting weed emergence with crops, and preventing interference with crops (Aldrich 

1984).  Weed interference encompasses the multitude of deleterious effects weeds elicit in crop 

production systems.  The most economically detrimental of these is the reduction in quantity and 

quality of grain yield that may stem from the holistic impact of allelopathy and resource 

competition.  Allelopathic effects of weeds can hinder the growth and development of 

neighboring crop plants (Toai and Linscott 1979), however, the overall influence of this on grain 

yield in agronomic crops is minor.  Therefore, direct weed-crop competition for resources is 

generally regarded as that most strongly associated to yield losses and continues to be one of the 

major restrictions to crop production systems (Subedi and Ma 2009). 

Weed-crop competition occurs when plants require resources such as water, light, nutrients, 

and gases that are limited in supply. The extent of competition depends on a variety of cultural 

practices and environmental conditions as well as the weed species spectra.  For example, at a 

density of 1 plant m-2, giant foxtail (Setaria faberi) can cause a 2.5 to 5% yield loss in soybean 

(Glycine max) compared to a 20 to 30% yield loss imposed by common cocklebur (Xanthium 

strumarium) (Bradley et al. 2007).  Two important concepts utilized for determining the timing 

of weed control are the critical duration of weed competition and the critical weed-free period.  

The latter is the period of time from crop emergence weeds must be controlled to avoid yield 

losses.  Allowing the crop to emerge before weeds provides a form of season-long suppression.  
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When giant foxtail emergence was delayed three weeks behind soybean, grass biomass 

accumulation was near 0% (Knake and Slife 1965).  Emerging with corn (Zea mays), Palmer 

amaranth (Amaranthus palmeri) reduced grain yields by 60% compared to only 10% when 

emergence was delayed 30 days (Massinga et al. 2001).  Furthermore, Hock et al. (2006) found 

that competitive indices of weeds are greater when emerging with soybean than when emerging 

at the V1 growth stage.  Alternatively, the critical duration of weed competition may be defined 

as the length of time a grower can wait before making a postemergent (POST) herbicide 

application or tillage operation to eliminate weeds.  This period is much more variable than the 

critical weed-free period (Zimdahl 1980) and is strongly associated to early-season growing 

environments with more favorable conditions requiring earlier implementation (Bradley et al. 

2007).  These two concepts form the rationale behind the preemergent (PRE) and POST 

herbicide use patterns as PRE applications are used to attain the critical weed-free period and 

POST applications used to comply with the critical duration of weed competition.   

Perhaps the most drastic change in soybean weed management occurred following the 

commercial introduction of glyphosate-resistant (GR) soybean in 1996.  Prior to the introduction 

of this technology, soil residual herbicide use had been the foundation for chemical weed control 

in soybean (Young 2006).  The effectiveness and flexibility provided by glyphosate, however, 

drastically altered herbicide use patterns as many growers began to rely solely upon POST 

glyphosate applications; in 1995, 11 active ingredients were used on at least 10% of soybean 

hectares, but by 2002 this list was reduced to simply glyphosate (Young 2006).  Although at this 

time growers were experiencing new peaks of in-crop weed control, they were also delaying 

POST applications that often exceeded the critical duration of weed competition.  Another 

repercussion related to the wide adoption of POST-only glyphosate use was the extraordinary 
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selection pressure put forth on weeds for herbicide resistance.  Instead of utilizing this 

technology to supplement the already established use of PRE herbicides that offered varying 

sites of action, growers were quick to abandon PRE herbicide use altogether.  Consequently, in 

just over a decade, there are now 14 GR weed biotypes in the U.S. and 3 in Illinois (Heap 2013).  

Thus, the utilization of glyphosate on GR soybean initially resulted in enhanced weed control, 

but ultimately facilitated the evolution of GR weeds and a diminished use of sound agronomic 

principles.   

An extended period of weed-crop competition due to delayed POST herbicide applications 

arguably, increases the prevalence of grain yield reductions.  Numerous studies have been 

conducted on this scenario in soybean, however, they are often restricted to the effects of a single 

weed species.  Common cocklebur populations can decrease soybean yields by up to 80% as 

both duration of competition and densities increase (Barrentine 1974).  Bensch et al. (2003) 

publicized the yield reducing capacity of three Amaranthus species in soybean:  Palmer 

amaranth, common waterhemp (Amaranthus rudis), and redroot pigweed (Amaranthus 

retroflexus) at a density of 8 plants m-2 caused yield losses of 79, 56, and 38%, respectively.  

While single-species experiments provide insight into specific weed-crop interactions, they do 

not accurately represent practical scenarios as many growers are often plagued by a more 

heterogeneous weed species complex and, thus, justifies the characterization of mixed-species 

competition on soybean grain yield. 

A possible causal explanation for yield reductions is nutrient drawdown from weed 

competition.  Current evaluation of nutrient competition in common agronomic crops has been 

strictly limited to corn and has shown that weed interference can result in diminished nutrient 

levels in corn tissue; N, P, and K acquisition was limited by a mixed population of grass and 
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broadleaved weeds (Gonzalez Ponce and Salas 1995), common waterhemp competing at a height 

of 38 cm reduced corn biomass N accumulation (Cordes et al. 2004), and competition from 

shattercane (Sorghum bicolor) can restrict N nutrition (Hans and Johnson 2002).  Research 

regarding nutrient competition in soybean is non-existent and regardless the crop of interest, the 

scope of the nutrients investigated has been limited to the macronutrients or simply N.  

Therefore, given the varying nutrient demands and physiological differences between these two 

crops further research is required to elucidate soybean-specific nutrient drawdown from weed 

competition. 

As growers strive to enhance soybean yields, a current trend is the use of foliar nutrient 

solutions, especially in calcareous regions where Fe deficiency is a concern (Rodríguez-Lucena 

et al. 2010).  Furthermore, new herbicide-resistant technologies with POST utility are 

forthcoming likely within the decade.  The flexibility of these programs may once again result in 

the heavy reliance on POST-only herbicide regimens by growers.  The consequence of such a 

system could result both in a greater susceptibility to nutrient drawdown from early-season weed 

competition and expenditure in crop mineral nutrition.  Perhaps if weed competition were 

eliminated altogether through the use of a comprehensive PRE/POST herbicide regimen the need 

for supplemental nutrients would be diminished and also procure sound herbicide resistance 

management tactics resulting in a more sustainable production system.  Thus, the primary 

objective of this research is to characterize the influence of weed competition duration in 

soybean by 1) assessing the effect on soybean mineral nutrition, 2) quantifying the capacity of 

nutrient accumulation by broadleaved and grass weeds, and 3) determining the influence on 

soybean grain yield and yield components. 
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MATERIALS AND METHODS 

Field experiments were conducted in 2012 and 2013 across four sites in southern Illinois 

located at the Belleville Research Center near Belleville, the Agronomy Research Center near 

Carbondale, Rend Lake College near Ina, and a producer field site near Ridgway.  For each site 

and year, the previous crop was corn.  The seedbed was conventionally tilled in order to establish 

a weed-free setting at planting.  A regionally adapted, glyphosate-resistant soybean variety, 

treated with a fungicide and insecticide was planted in 76-cm rows at a target population of 

346,000 seeds ha-1 approximately 3 cm deep (Table 2.1).  Weed growth rates were calculated by 

using the days required from soybean planting to reach 45 cm in height. All weed species at each 

location were glyphosate-susceptible. 

Herbicide Treatments.  A PRE treatment consisting of sulfentrazone + s- metolachlor + 

fomesafen (140 + 1,378 + 70 g ai ha-1) followed by a POST application of glyphosate + 

fomesafen1 (1,100 g ae + 275 g ha-1) provided weed-free conditions.  Four separate treatments of 

glyphosate2 (1,100 g ha-1) applied at the 10-, 20-, 30-, or 45-cm average weed height allowed for 

increasing levels of weed competition duration.  Two other treatments were implemented that 

enabled the comparison of two standard herbicide regimens commonly employed by growers.  

The first being a PRE application of flumioxazin3 (70 g ai ha-1) followed by a POST application 

of glyphosate (1,100 g ha-1) while the second treatment consisted of sequential POST 

applications of glyphosate (1,100 fb 1,100 g ha-1) at the 10 cm weed height and again at 21 days 

after treatment.  All glyphosate applications contained ammonium sulfate4 at 1% w/w and the 

                                                 
1 Flexstar GT 3.5, Syngenta Crop Protection, Inc., P.O. Box 18300, Greensboro, NC 27419-8300. 
2 Touchdown Total, Syngenta Crop Protection, Inc., P.O. Box 18300, Greensboro, NC, 27419-8300. 
3 Valor SX, Valent U.S.A., 1333 N. California Blvd., Walnut Creek, CA 94596. 
4 N-Pak AMS Liquid, Winfield Solutions, LLC, P.O. Box 64589, St. Paul, MN 55164-0589. 
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fomesafen-containing POST treatment was applied with methylated seed oil5 at 1% v/v.  

Herbicide applications were made using a CO2-pressurized backpack sprayer calibrated to 

provide 140 L ha-1 at a pressure of 207 kPa through a 3-m wide hand-held boom equipped with 

XR 8002 flat fan nozzles6 to ensure all four 76-cm soybean rows in a plot receive application.   

Nutrient Competition.  Once soybeans were planted, a biomass sampling schedule was 

implemented in order to track the nutrients accumulated by broadleaved weeds, grass weeds, and 

soybeans.  Collection timings occurred at the 10-, 20-, 30-, and 45-cm weed heights.  Both 

treatments receiving a PRE application were sampled at every collection date.  The remaining 

treatments were only sampled on the same date they received the POST application with the 

exception being the 45-cm weed height timing in which all treatments were assessed.  Biomass 

collection was performed prior to the herbicide application (Table 2.1).  At each collection time, 

aboveground weed biomass was gathered from a representative area within the plot.  The size of 

the area collected was documented and was at a minimum of 0.1 m2; in order to obtain enough 

weed biomass for laboratory analysis, the area sampled occasionally varied due to low weed 

densities and immature weeds.  The weeds from each sample location were then sorted into 

broadleaves and grasses and placed in paper bags.  Six soybean plants from the outside two rows 

of the plot were also collected.  All biomass was obtained by clipping specimens at the soil 

surface and carefully removing any soil that remained on the plant.  After biomass collection, 

plots were then sprayed with the designated POST herbicide.  The collected biomass was then 

oven-dried at 60º C until constant weight for dry mass determination and then analyzed for 

nutrient content7.  Determination of total N was by the Dumas combustion method while P, K, 

                                                 
5 FS MSO Ultra, GROWMARK, Inc., 1701 Towanda Ave., Bloomington, IL 61701. 
6 TeeJet Technologies, 3062 104th St., Urbandale, IA 50322. 
7 Midwest Laboratories, Inc., 13611 B St., Omaha, NE 68144. 
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Mg, Ca, S, Fe, Mn, B, Cu, and Zn concentrations in the plant tissue were measured by 

inductively-coupled plasma emission spectroscopy (ICPES) following a microwave nitric acid 

digestion.  Nutrient accumulation was then formulated as kg ha-1 by using the concentration of 

the ion in the plant and the area the biomass was collected from.  Apart from assessing foliar 

nutrients in plant tissue, soil nutrient tests were also employed.  Five soil cores from the center 

two rows of each plot were collected at planting and harvest and analyzed as a composite sample 

for N, P, K, Mg, Ca, S, Fe, Mn, B, Cu, and Zn.  Total N was quantified by Dumas methodology, 

Bray P1 was determined by colorimetric means, and the remaining ions were measured via 

ICPES.  

Soybean Grain Yield.  Once soybeans had reached maturity, but prior to harvest, data were 

collected to provide indices of grain yield by first counting the number of plants in 1 m of row 

from the center two rows of the plot.  From each meter of row, three representative plants were 

collected for a total of six plants per plot.  These plants were then used for determination of 

number of pods per plant, and then hand harvested to calculate seeds per pod.  At harvest, the 

center two rows were machine harvested.  The entire grain sample of each plot was then bagged 

individually, weighed, and adjusted to 13% moisture for grain yield determination.  A subsample 

was then analyzed for protein and oil content using a ZX-50 Near-Infrared Seed Analyzer8.  

Experimental Design and Analysis.  Plots were 15 m long by 3 m wide and arranged in a 

randomized complete block design consisting of four replications.  Soybean and weed nutrient 

accumulation were extrapolated to a kg ha-1 basis using the area collected, biomass dry weight, 

and nutrient concentration.  To allow for a broader inference to be made of the results across the 

multiple locations, data were pooled across sites.  However, due to the drastic differences in 

                                                 
8 Zeltex, Inc., 130 Western Maryland Pkwy, Hagerstown, MD 21740. 
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rainfall patterns between 2012 and 2013 (Table 2.2), years were analyzed separately.  Soybean 

nutrient accumulation and grain yield parameters were subjected to analysis of variance using the 

PROC MIXED model in SAS9 treating site as a random effect.  Means were then separated using 

Fisher’s protected LSD (α=0.05).  

 

RESULTS AND DISCUSSION 

Rainfall patterns varied greatly between the two years (Table 2.2) and thus, resulted in the 

planting and weed collection dates being adjusted as necessary (Table 2.1).  During the first three 

months of the 2012 growing season only 41% of the precipitation was received compared to the 

30-year average.  Alternatively, 2013 received 22% more precipitation than the long-term 

average.  Another repercussion associated with these environmental differences was fluctuations 

in the weed species spectra (Table 2.3).  The most notable difference was a 433, 906, 330, and 

54% increase in grass density in 2013 at Belleville, Carbondale, Ina, and Ridgway, respectively.  

Similarly, there was a 48% increase in broadleaved weed density at the Belleville location.  

Another major effect was a shift in the broadleaved weed species complex to more competitive 

species in 2013.  The late plantings and droughty conditions in 2012 at Ina and Ridgway 

facilitated the establishment of carpetweed (Mollugo verticillata), a species with a competitive 

index (CI) of 0.1.  Conversely, the following year these sites were infested with more 

competitive weeds such as morningglory (Ipomea spp.), Palmer amaranth, and waterhemp 

(Amaranthus tuberculatus) with CI’s of 5.5, 4.0, and 2.5, respectively (Bradley et al. 2007; 

Coble 1998).  Weed growth rates between sites ranged from 0.87 to 1.20 cm day-1 in 2012, from 

0.82 to 1.09 cm day-1 in 2013 and on average, differed by less than 0.1 cm day-1 between years 

                                                 
9 SAS software, Version 9.3, July 2011, SAS Institute Inc., Cary, NC 27513. 
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(data not shown).  Thus, competitive differences between the two years are more likely the result 

of a changing weed species spectrum and environmental conditions more conducive to weed-

soybean competition.  Competition from weeds did not result in any detectable differences in the 

soil nutrient analysis (data not shown) and is likely due to the inherent low sensitivity of these 

tests as reported by others (Hellwig et al. 2002). 

Nutrient Accumulation by Weeds.  Averaged across all minerals, broadleaved weeds 

assimilated 149% more nutrients than grasses in 2012 and 108% more in 2013 (Table 2.4).  The 

greater congruency between the two in 2013 is likely due to higher grass densities during this 

year.  The individual nutrients that showed the most disparity between grasses and broadleaves 

were Ca and B; both of which were accumulated more by broadleaved weeds.  Ca and B both 

have critical roles in fortifying the plant cell wall and are rich within the pectin polysaccharide 

matrix.  Because broadleaves contain more of this substance, their physiological demand for 

these ions is much greater than grasses (Hepler and Winship 2010; Hu et al. 1996).  Nutrient 

acquisition by weeds was greater for all ions in 2013 than in 2012, except Fe and Mn.  On 

average, the increase in nutrient acquisition was 29% for the primary macronutrients, 19% for 

the secondary macronutrients, and 11% for the micronutrients.  Nutrient uptake in plants is 

influenced by a number of environmental conditions.  The droughty conditions in 2012 may have 

impacted nutrient accumulation in a number of ways.  First, when plants are under stress, their 

overall nutritional demand will be less than that of a rapidly growing plant.  Also, the presence of 

soil moisture is required for effective nutrient uptake.  Plants acquire labile nutrients such as 

NO3
-, SO4

-2, and BO3
-2 primarily via mass flow and uptake non-mobile ions such as Ca+2, Mg+2, 

and K+ through diffusion.  Both of these processes are dependent upon ample soil moisture levels 
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either to transport anions in the soil solution or establish an interface by which cations may 

diffuse from the soil colloids.   

Soybean Nutrient Assimilation.  Concentrations of all nutrients in weed-free soybean plots 

were well within suggested sufficiency levels (Table 2.5) indicating adequate nutrient supplying 

power from each site.  As the magnitude of nutrient accumulation (kg ha-1) is ion-specific, data 

relating to soybean nutrition is presented as a percent relative to the weed-free treatment to 

enable a useful comparison across each nutrient.  No differences in soybean nutrient uptake were 

observed between the standard herbicide regimens and the weed-free treatment.  Therefore, only 

the effect of increasing weed heights will be discussed. 

Primary Macronutrients.  In 2012, soybean primary macronutrient acquisition was not reduced 

until weeds reached a height of 20 cm (Table 2.6).  After this initial decline, N, P, and K uptake 

by soybean was not reduced further by extending the period of weed competition from 20 to 45 

cm.  In 2013, results were more pronounced with soybean N nutrition being reduced from 

competition with weeds at a height of 10 cm, whereas, P and K levels were not impaired until 

20-cm weed competition.  Unlike 2012, after the initial decline, further reductions in N and P 

accumulation were observed in 2013 by enabling weeds to compete up to a height of 45 cm.  

Competition with 45-cm weeds reduced N, P, and K accumulation by an average of 31% in 2012 

and 39% in 2013 when compared to the weed-free treatment.  Although P and K are generally 

regarded as the most important primary macronutrients in soybean nutrition, these results suggest 

during both years N was that most strongly affected by weed competition.  Because uptake of N 

from the soil solution requires less energy than forming a symbiotic N-fixing relationship, this is 

the preferred form of acquisition by soybean (Berglund and Helms 2003) and accounts for 

approximately 50% of N within the plant (Kramer and Boyer 1995).  This reduction in soybean 
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N nutrition may be a result of direct, physical competition for N ions or an interaction that alters 

soybean root architecture and root nodule formation.  

Secondary Macronutrients.  There was much less disparity between the individual secondary 

macronutrients as Ca, Mg, and S responded similarly to increasing durations of weed 

competition (Table 2.7).  As with the primary macronutrients, soybean accumulation of the 

secondary macronutrients was not affected so long as weeds were removed before reaching 20 

cm in height.  Also, there was no significant additional impairment by competition from 45-cm 

weeds, although means continued to decline.  The critical height to remove weeds to ensure the 

greatest uptake of Ca, Mg, and S did not change in 2013.  However, by extending this period 

beyond 20 cm to 45 cm weed competition, further reductions in Mg and S occurred.  Overall, the 

impact of weed competition on soybean secondary macronutrient nutrition was greater in 2013 

than in 2012 with an average reduction by 45-cm weeds of 31% in 2012 and 37% in 2013.   

Micronutrients.  The acquisition of micronutrients by soybean in 2012 was altered by 

competition once weeds reached 20 cm in height, but beyond this height, no additional 

reductions occurred (Table 2.8).  Competition from weeds in 2013 once again resulted in a 

greater reduction in overall micronutrient accumulation with a 33% loss in 2012 versus a 47% 

loss in 2013.  In 2013, B, Cu, and Zn acquisition was impaired if weeds were not controlled by 

20 cm in height, whereas Fe and Mn levels were reduced already by the 10-cm weed removal 

timing.  Progressions in the duration of competition up to 45-cm weed heights further reduced 

the uptake of all micronutrients, except B.  Soybean micronutrient accumulation, as impacted by 

weed competition, showed a greater response to the more favorable growing season of 2013 than 

the macronutrients.  Due to the higher weed densities in this year, belowground competition was 

likely stronger and may have made it more difficult for soybean roots to extract the inherent low 
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concentrations of micronutrients from the soil.  Out of all 11 analyzed minerals in soybean, Fe 

was that most strongly impacted by weed competition in both years.  In 2013, competition from 

20-cm weeds produced soybean plants that contained only 40% the Fe of soybeans grown under 

weed-free conditions; this was less than any other nutrient in soybean, even from competition 

with 45-cm weeds.  Under aerobic conditions, Fe exists in its ferric state.  Although, normally 

present in sufficient quantities, this form of Fe is only slightly soluble and thus, very difficult for 

roots to assimilate.  In high pH and calcareous soils, ferric ions become even more insoluble – 

the primary reason growers in some northern regions of the Corn Belt are plagued with Fe 

chlorosis (Berglund and Helms 2003).  There are two strategies utilized by higher plants for Fe 

uptake.  Strategy I, used by soybean and other non-graminaceous plants, relies on the 

solubilizing power provided by H+-ATPase and the reducing capacity of ferric-chelate reductase 

within the cell wall (Kobayashi and Nishizawa 2012).  Strategy II, employed by graminaceous 

species, is generally regarded as a more efficient form of Fe uptake because it requires less 

modification of the ferric ion via the use of Fe-scavenging phytosiderophores.  The more 

resourceful uptake of Fe by grasses may explain soybean’s particular susceptibility to reduced Fe 

accumulation in response to weed competition.  Additionally, the more drastic impairment of Fe 

assimilation in 2013 may in part be explained by the 333% increase in grass weed density over 

2012.  In 2013, the difference in Fe accumulation between weed-free soybean and soybean 

competing with 45-cm weeds was 0.41 kg ha-1 (data not shown); this amount is within the range 

growers may apply as a foliar supplement (Diaz 2011; Goos and Johnson 2000).  Therefore, by 

eliminating this level of weed competition, producers may be able to reduce the application rate 

or altogether avoid the use of foliar-applied Fe. 
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Correlation analysis was utilized between relative soybean nutrient accumulation and days of 

weed competition.  These results concur with the ANOVA analysis using weed height as the 

independent variable; averaged across both years, N (r = -0.62) and Fe (r = -0.67) are the 

minerals most strongly impacted by increasing periods of weed competition duration (Table 2.9).  

For all nutrients, correlation coefficients were greater in 2013 than in 2012. 

Soybean Grain Yield.  Weed interference reduced soybean grain yields both years but the level 

of competition at which yield losses occurred differed.  In 2012, competition from weeds 30 cm 

or greater in height reduced grain yield, whereas the onset of these losses came sooner in 2013 as 

competition from 10-cm weeds elicited the same effect (Table 2.10).  The magnitude of 

reduction was greater in 2013 as competition from 45-cm weeds reduced grain yield by 13% 

compared to 7% in 2012.  However, the average yield was slightly higher in 2012 (4%) and is 

likely due to the ample rainfall later in the growing season during pollination and pod fill (Table 

2.2).  For this experiment, the period of active competition between weeds and soybean occurred 

during the droughty period of 2012; hence, the less early-season precipitation received during 

this year is one probable explanation as to why yield reductions from weed competition were 

more pronounced in 2013.  Other authors have noted the variability associated with determining 

the critical duration of weed competition in soybean and how this may be influenced by 

environmental conditions (Hagood et al. 1980; Halford et al. 2001; Patterson 1995; Van Acker et 

al. 1993).  During a growing season with ample rainfall, Harris and Ritter (1987) noted a 15% 

soybean grain yield loss from a 4-week period of weed competition compared to only 4 and 0% 

losses during droughty years.  The correlation coefficient (r) between yield and days of 

competition was -0.21 (p=0.066) in 2012 and -0.54 (p<0.001) in 2013 (Table 2.11).  In a similar 
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study in corn, Hans and Johnson (2002) reported a much stronger coefficient of -0.84 between 

days of weed competition and grain yield. 

Compared to the weed-free treatment, the only yield reductions from the standard PRE/POST 

and POST/POST herbicide treatments occurred in 2013.  Weed control ratings taken at the time 

of POST application for the PRE flumioxazin treatment were never greater than 82% (data not 

shown).  The short half-life of flumioxazin under anaerobic conditions and the ample soil 

moisture in 2013 likely facilitated rapid degradation resulting in unsatisfactory control and 

enabled early-season competition from weeds.  The timing of the first application in the 

sequential POST treatment coincided with the 10-cm weed removal height and yields of these 

treatments did not differ from each other.  This indicates the second POST application may not 

have been warranted as it did not provide an enhancement in yield.  However, it may still offer 

other benefits not assessed in this project such as preventing late-season weed escapes from 

producing seed. 

Yield Components.  Beyond overall grain yield, no differences between additional yield 

components were observed in 2012.  Soybean seed weight and oil content responded to weed 

competition in 2013 (Table 2.10).  A decline in seed weight occurred when weeds were not 

removed before reaching 10 cm in height while, oil content was not reduced until the 20-cm 

weed removal height.  The ability of weeds to reduce soybean seed weight has been well 

documented (Burnside 1979; Eaton et al. 1976; Felton 1976); however, few have been able to 

establish a connection between weed competition and reduced oil content (Chhokar et al. 1995).  

Millar et al. (2007) found high levels of weed competition generally increased the concentration 

of protein in soybean seed, while, tending to reduce the oil content.  Because oil is the most 

resource-consuming macromolecule synthesized by soybean (Rodriguez and Vivian 2011) it 
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would seem logical that any stressor may alter the production of this vital seed component.  

Dombos and Mullen (1992) and Ghassemi-Golezani and Lotfi (2013) have illustrated this effect 

in response to salt and drought stress.  Although weed competition had no effect on pods per 

plant or seeds per pod, other researchers have noted such findings (Burnside 1979; Eaton et al. 

1976) with the largest losses generally attributable to fewer seeds per pod (Harris and Ritter 

1987). 

These results suggest the critical duration of weed competition in soybean is greatly 

dependent on climatic influences as it has both a direct effect on the growth and development of 

the crop and an indirect effect by altering the relative competitiveness of weeds through a 

changing species spectrum.  There are discrepancies in how critical removal timings are 

reported.  Crop growth stage, days after crop emergence (DAE), and weed height have all been 

suggested (Knezevic et al. 2009; Van Acker et al. 1993).  Although this study focuses primarily 

on weed height at the time of removal, to facilitate the comparison across studies it seems 

imperative to include such information when reporting data (Table 2.12).  In general for this 

study, to maximize nutrient availability to soybean, weeds should be managed prior to reaching 

20 cm in height.  This height corresponds to 33 to 34 DAE and the V2 to V4 growth stage.  To 

circumvent yield losses, the critical removal timing was 30 cm (40 DAE, V4) in 2012 and 10 cm 

(27 DAE, V2) in 2013.  Knezevic et al. (2003) reported the critical period of weed control for 

soybean planted in 76-cm rows to be during the V1 growth stage.  Van Acker et al. (1993) 

epitomize the inherent variability associated with this concept as they report a range of 9 to 38 

DAE.  

The weed-free treatment utilizing a robust, broad-spectrum PRE/POST herbicide regimen 

provided the most consistent soybean nutrient and yield data across both years.  These results, 
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given such drastic climatic differences between 2012 and 2013, reveal one of the numerous 

benefits of utilizing comprehensive herbicide programs.  As the evolution of herbicide-resistant 

weeds continue to challenge growers to adapt, more are adopting the implementation of PRE 

herbicides for resistance management reasons.  However, the selection of soil residual products 

is frequently driven by economic decisions in an attempt to minimize input costs and often 

results in the underutilization of effective PRE options.  Consequently, only partial weed control 

may be achieved resulting in escapes that must be dealt with through POST applications.  These 

results show that early-season weed competition can hinder soybean nutrient uptake and grain 

yield.  By eliminating this level of interference through the use of more dynamic, broad-spectrum 

soil residual herbicides, growers can circumvent these losses and may establish a more effective 

nutrient and herbicide-resistant weed management plan.  Thus, sound weed management 

practices that include soil residual herbicides to minimize the duration of weed competition 

preserves soybean grain yield, mitigates the evolution of herbicide-resistant weeds, and reduces 

nutrient competition with soybean may help alleviate micronutrient deficiencies and the need for 

supplemental foliar fertilizers in some geographies and provide for an overall, more sustainable 

soybean production system.
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Table 2.1.  Year, location, soil characteristics, planting dates, soybean varieties, weed collection and herbicide application dates, and 

harvest dates for field experiments. 

Year Location Soil class Variety Planting datea 

Weed collection datesb  

10 cm 20 cm 30 cm 45 cm Harvest date 

2012 Belleville 
Pierron silt 

loam 
NK S46-A1 22-May 15-Jun 20-Jun 24-Jun 30-Jun 25-Oct 

 Carbondale Stoy silt loam NK S46-A1 24-May 24-Jun 29-Jun 6-Jul 14-Jul 29-Oct 

 Ina 
Wynoose silt 

loam 
NK S39-U2 28-Jun 24-Jul 1-Aug 9-Aug 15-Aug 24-Oct 

 Ridgway 
Sexton silt 

loam 
NK S39-U2 2-Jul 1-Aug 9-Aug 15-Aug 23-Aug 22-Oct 

          

2013 Belleville 
Pierron silt 

loam 
NK S46-L2 15-Jun 5-Jul 13-Jul 18-Jul 22-Jul 22-Oct 

 Carbondale Stoy silt loam NK S46-L2 19-May 17-Jun 23-Jun 26-Jun 4-Jul 24-Oct 

 Ina 
Wynoose silt 

loam 
NK S46-L2 22-Jun 16-Jul 22-Jul 29-Jul 5-Aug 26-Oct 

 Ridgway 
Sexton silt 

loam 
NK S46-L2 28-May 26-Jun 3-Jul 9-Jul 16-Jul 19-Oct 

a Preemergent herbicide treatments applied at planting. 

b Postemergent herbicide treatments applied on weed collection dates. 

  

3
5
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Table 2.2.  Monthly rainfall at Ina, IL in 2012 and 2013. 

Year May June July August September October 

 --------------------------------------------mm------------------------------------------- 

2012 60 20 47 166 151 87 

2013 143 87 143 83 25 125 

       

30 Year 

Average 
104 99 103 88 76 72 
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Table 2.3.  Predominant broadleaf and grass weed species and mid-season densities for each 

location and year. 

Year Location Broadleaf species Densitya Grass species Density 

   plants m-2  plants m-2 

2012 Belleville giant ragweed 

waterhemp 

29 fall panicum 6 

 Carbondale morningglory spp. 

giant ragweed 

38 giant foxtail 16 

 Ina carpetweed 160 green foxtail 10 

 Ridgway carpetweed 

redroot pigweed 

22 fall panicum 

large crabgrass 

35 

      

2013 Belleville giant ragweed 

waterhemp 

43 fall panicum 32 

 Carbondale morningglory spp. 

common ragweed 

32 giant foxtail 161 

 Ina Palmer amaranth 

waterhemp 

25 fall panicum 43 

 Ridgway waterhemp 

morningglory spp. 

21 fall panicum 

large crabgrass 

54 

a When more than one species is listed, the density represents the average of the two. 
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Table 2.4.  Broadleaf and grass weed nutrient accumulation at the 45-cm weed removal timing in 

2012 and 2013, pooled across sites. 

 2012  2013 

Nutrient Broadleaf Grass Broadleaf Grass 

 --------------------------------------kg ha-1------------------------------------------- 

N 35.8 28.0  45.1 24.2 

P 5.59 4.79  9.87 6.29 

K 62.0 53.3  89.2 52.3 

Ca 27.2 5.74  36.3 5.06 

Mg 7.61 2.93  7.98 3.35 

S 3.89 2.25  5.09 2.45 

 ---------------------------------------g ha-1------------------------------------------- 

Fe 931 363  236 121 

Mn 289 145  115 64.7 

B 39.7 5.16  102 4.67 

Cu 12.3 11.9  18.7 10.0 

Zn 56.5 41.0  83.9 40.3 
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Table 2.5.  Soybean nutrient concentrations from foliar analysis for each site and year from weed-free plots. 

Year Location N P K Ca Mg S Fe Mn B Cu Zn 

  ----------------------------------%---------------------------------- ---------------------------ppm-------------------------- 

2012 Belleville 3.46 0.48 4.27 1.46 0.38 0.30 175 47 46 10 47 

 Carbondale 3.59 0.35 2.83 1.86 0.34 0.25 241 89 31 9 36 

 Ina 3.66 0.37 2.29 1.76 0.49 0.23 305 72 29 8 23 

 Ridgway 3.85 0.40 3.48 1.49 0.41 0.26 196 166 31 13 55 

             

2013 Belleville 4.09 0.44 4.20 1.42 0.35 0.29 196 50 44 9 48 

 Carbondale 3.99 0.49 3.45 1.69 0.37 0.29 361 82 37 11 32 

 Ina 4.05 0.43 3.87 1.47 0.36 0.28 180 62 39 9 42 

 Ridgway 4.71 0.40 3.50 1.25 0.34 0.28 122 74 32 8 34 

             

Sufficiency levela NAb 0.25 2.00 0.40 0.25 0.15 30 20 25 5 15 
a Minimum nutrient concentrations for soybean according to the Illinois Agronomy Handbook (Fernández and Hoeft 2009). 

 
b None listed

3
9
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Table 2.6.  Relative soybean primary macronutrient accumulation at the 45-cm weed removal 

timing in 2012 and 2013, pooled across sites. 

Weed removal 

timinga 

  2012      2013   

N  P  K   N  P  K  

 ------------------------------------% of weed-free------------------------------- 

10 cm 101 ab 104 a 110 a  90 b 100 ab 101 a 

20 cm 73 b 79 b 80 cd  72 c 77 c 75 b 

30 cm 74 b 78 b 93 b-d  68 cd 74 cd 73 b 

45 cm 67 b 68 b 71 d  59 d 63 d 67 b 

PRE/POSTb 96 a 94 a 96 a-c  94 ab 106 a 103 a 

POST/POSTb 103 a 107 a 103 ab  90 ab 95 ab 94 a 

a Means within each column followed by the same letter do not differ significantly from the 

weed-free according to Fisher’s protected LSD (α = 0.05). 

 
b Standard herbicide regimens 
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Table 2.7.  Relative soybean secondary macronutrient accumulation at the 45-cm weed removal 

timing in 2012 and 2013, pooled across sites. 

Weed 

removal 

timing 

  2012      2013   

Ca  Mg  S   Ca  Mg  S  

 ------------------------------------% of weed-free------------------------------- 

10 cm 103 aa 101 a 103 a  97 ab 100 ab 96 a 

20 cm 78 b 78 b 77 b  71 c 74 c 75 b 

30 cm 78 b 77 b 79 b  69 c 72 cd 70 bc 

45 cm 68 b 68 b 70 b  62 c 64 d 62 c 

PRE/POSTb 96 a 95 a 95 a  105 a 105 a 99 a 

POST/POSTb 108 a 107 a 107 a  90 b 90 b 92 a 

a Means within each column followed by the same letter do not differ significantly from the 

weed-free according to Fisher’s protected LSD (α = 0.05). 

 
b Standard herbicide regimens 
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Table 2.8.  Relative soybean micronutrient accumulation at the 45-cm weed removal timing in 2012 and 2013, pooled across sites. 

Weed 

removal 

timing 

    2012     
 

    2013     

Fe  Mn  B  Cu  Zn  
 

Fe  Mn  B  Cu  Zn 
 

 -------------------------------------------------------------% of weed-free------------------------------------------------------------ 

10 cm 91 aa 93 ab 101 ab 100 a 98 ab 
 

71 bc 86 b 99 a 98 ab 104 a 

20 cm 61 b 76 bc 80 d 73 b 78 cd 
 

40 d 61 c 77 b 74 c 80 cd 

30 cm 60 b 75 bc 84 cd 75 b 79 cd 
 

37 d 57 cd 75 b 72 c 72 d 

45 cm 51 b 71 c 76 d 65 b 73 d 
 

31 d 47 d 67 b 60 d 60 e 

PRE/POSTb 90 a 93 a-c 94 bc 90 a 93 bc 
 

83 b 102 a 102 a 102 a 107 a 

POST/POSTb 102 a 105 a 109 a 102 a 109 a 
 

59 c 79 b 94 a 91 b 92 bc 

a Means within each column followed by the same letter do not differ significantly from the weed-free according to Fisher’s protected 

LSD (α = 0.05). 

 
b Standard herbicide regimens 

 

 

 

 

 

 

 

4
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Table 2.9.  Pearson correlation coefficients of relative soybean nutrient accumulation and days of 

weed competition in 2012 and 2013, pooled across sites. 

Nutrient 2012 2013 

Nitrogen -0.56a -0.68 

Phosphorus -0.47 -0.57 

Potassium -0.28 -0.54 

Calcium -0.49 -0.60 

Magnesium -0.49 -0.61 

Sulfur -0.48 -0.70 

Iron -0.58 -0.76 

Manganese -0.38 -0.68 

Boron -0.34 -0.56 

Copper -0.49 -0.56 

Zinc -0.35 -0.52 

a All coefficients are highly significant (p<0.01)
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Table 2.10.  Soybean grain yield characteristics in 2012 and 2013, pooled across sites. 

Year 
Weed removal 

timing 

 
Yield  

200 

seed wt. 
 Pods   Seeds   Protein  Oil  

   kg ha-1  g  plant-1  pod-1  %  %  

2012 Weed-free  3745 aa 35.1 a 42.9 a 2.29 a 39.3 ab 20.0 a 

 10 cm  3788 a 35.0 a 43.3 a 2.20 a 39.1 b 20.0 a 

 20 cm  3648 a-c 34.8 ab 40.6 ab 2.23 a 39.5 ab 19.9 a 

 30 cm  3430 c 35.2 a 41.2 ab 2.30 a 39.7 a 19.9 a 

 45 cm  3489 bc 35.3 a 39.1 b 2.28 a 39.4 ab 20.0 a 

 PRE/POSTb  3606 a-c 35.2 a 41.6 ab 2.31 a 39.1 b 19.9 a 

 POST/POSTb  3731 ab 33.9 b 44.2 a 2.26 a 39.2 b 19.9 a 

               

2013 Weed-free  3716 a 33.7 a 42.6 ab 2.26 a 38.7 ab 21.6 a 

 10 cm 
 

3445 b 32.6 b 40.1 ab 2.16 ab 38.6 ab 21.5 
a

b 

 20 cm  3456 b 32.7 b 37.7 b 2.22 ab 38.9 a 21.2 c 

 30 cm  3456 b 32.4 bc 39.1 ab 2.19 ab 38.6 ab 21.2 c 

 45 cm  3278 c 31.8 c 42.3 ab 2.14 ab 38.3 b 21.2 c 

 PRE/POST  3520 b 32.5 b 44.2 a 2.14 ab 38.8 a 21.2 c 

 POST/POST  
3486 b 32.7 b 39.3 ab 2.17 ab 38.7 ab 21.3 

b

c 
a Means within each column and for each year followed by the same letter do not differ significantly according to Fisher’s protected 

LSD (α = 0.05).  
 

b Standard herbicide regimens

4
4
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Table 2.11.  Pearson correlation coefficients of relative soybean yield parameters and days of 

weed competition in 2012 and 2013, pooled across sites. 

Parameter 
2012  2013 

r p  r p 

Grain yield -0.21 0.066  -0.54 <0.001 

Seed weight 0.08 0.478  -0.52 <0.001 

Pods plant-1 -0.23 0.037  -0.10 0.389 

Seeds pod-1 -0.04 0.703  -0.21 0.058 

Protein 0.17 0.135  -0.07 0.531 

Oil -0.12 0.295  -0.39 <0.001 
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Table 2.12.  Days after soybean emergence and soybean growth stage associated to each weed 

removal height. 

Year 
Weed removal 

height 

Days after 

emergence 

Soybean growth 

stagea 

2012 10 cm 28 V2 

 20 cm 34 V3-V4 

 30 cm 40 V4 

 45 cm 47 V5-R1 

    

2013 10 cm 27 V2 

 20 cm 33 V2-V3 

 30 cm 38 V3-V4 

 45 cm 45 V4-R1 

a Differences in planting dates resulted in minor variances in soybean growth stage therefore, 

ranges are provided. 
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CHAPTER 3 

DECAY AND NUTRIENT RELEASE PATTERNS OF WEED RESIDUES FOLLOWING 

POSTEMERGENT CONTROL 

 

Successful postemergent (POST) weed management is often the result of timely herbicide 

applications made prior to the critical duration of weed competition.  However, the temporal 

disconnect between when weeds should be controlled versus when weeds can be controlled often 

results in substandard weed management practices with ensuing yield losses.  One possible 

explanation behind such yield detriments is nutrient competition between the weeds and crop.  

The propensity of weeds to accumulate nutrients differs both among species (Majumder et al. 

2008) and plant heights (Lindsey et al. 2013).  Known to be one of the most competitive weeds, 

giant ragweed (Ambrosia trifida) can accumulate up to 104 kg ha-1 of N during one growing 

season (Johnson et al. 2007).  The exploitation of resources by weeds, therefore, threatens not 

only to hamper the immediate productivity of crops, but also the sustainability of production 

agronomic systems.  While the ability of weeds to reduce yields is well established and their 

capacity to accumulate nutrients is marginally understood, knowledge regarding the fate of 

nutrients following POST herbicide control is absent.  As concerns mount about the impact 

nutrients from agro-ecosystems have on the environment, it is imperative to thoroughly identify 

and quantify the sinks and sources of these nutrients and how weed dynamics such as specie and 

height may affect these processes.  Granted, recent work by Lindsey et al. (2013) exposed N 

mineralization rates were influenced by these two factors and provides credence for further 

investigations, the methodology used in this experiment does not accurately mimic in situ 

processes; weeds were harvested fresh, finely-ground, mixed with soil, and then placed in a 



48 

 

 

laboratory incubator.  Because research in this area is lacking, Lindsey et al. (2013) provided a 

better understanding of the dynamics involved with weed decomposition and nutrient release.  

However, there remains a need to quantify these parameters with methodology more closely 

adapted to field scenarios and broaden the scope of mineral release beyond that of N.  The 

prospective role weeds play in the nutrient cycling in agronomic fields may elucidate any 

ancillary effects provided by sound weed management practices and bolster a more efficient 

form of crop mineral nutrition by ensuring sustenance is available at the proper time. 

Much of the literature regarding the decay continuum and nutrient release patterns of plant 

litter stems from work conducted in ecosystems that differ greatly from Midwestern agronomic 

settings.  Yet, when looking across these studies, much can still be learned about the dynamics 

and processes involved.  Decomposition of plant litter involves the physical, chemical, and 

biological processes that reduce detritus to its elemental chemical constituents (Aerts 2006).  The 

decay continuum is generally regarded as a biphasic process:  initially, there is a rapid loss of the 

water-soluble, labile compounds such as simple sugars; followed by a more persistent phase in 

which the recalcitrant cell wall compounds are enzymatically degraded (Berg 2008).  The 

resulting product of plant litter degradation is stabilized humus; at which point further losses are 

immeasurably slow (Prescott 2005).  For any given site, the primary rate regulator of 

decomposition is the quality of the litter; this may be viewed as the stoichiometric proportions of 

recalcitrant versus labile plant compounds.  Van Vuuren et al. (1993) and Magill and Aber 

(1998) suggest that high quality litter (e.g., low lignin:N ratio) initially decomposes at a faster 

rate than litter of poor quality, yet, ultimately enters the humus stage with more mass remaining.  

There is much debate as to the single, most useful litter quality parameter in predicting the decay 

rate of plant matter.  However, a comprehensive analysis across gradients of time, space, and 
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specie distribution by Berg (2008) revealed a few generalized patterns as to which initial 

chemical constituents were most often strongly associated to decay rates.  Because of their 

essential role in nucleic acid synthesis, N, P, and S tend to have the strongest positive 

correlations while; the cell wall components consisting of cellulose, hemicellulose, and lignin are 

often negatively correlated.  

Weed specie and height are two critical aspects that influence the probability of successful 

POST herbicide applications.  To examine how heterogeneity within these factors may affect the 

course of decomposition, a physiological understanding of the largest obstacle to this process is 

critical.  The plant cell wall is the most abundant source of organic C in the world.  The primary 

functions of this structure are to provide mechanical and structural support, regulate cell growth, 

provide energy storage, and inhibit pathogen invasion (Gilbert 2010).  With such robust 

functions to fulfill, the cell wall inherently possesses the affinity to impede the process of 

decomposition.  The cell wall is a dynamic structure consisting of three regions:  the middle 

lamella, primary wall, and secondary wall (Dickinson and Pugh 1974).  While the utility and 

composition of each region differ to some extent, as an entire entity, the cell wall can be viewed 

as an intricate network composed of cellulose and cross-linking glycans (hemicelluloses) 

residing in a pectin polysaccharide matrix with associated structural proteins (Carpita and 

Gibeaut 1993).  The ultrastructure and chemical constituency of cell walls are not static 

throughout the plant kingdom.  There exist two forms of walls that differ primarily in the 

hemicellulose fraction, type I and type II.  Xyloglucan is the predominant hemicellulose in type I 

walls and is found in most dicots while, glucuronoarabinoxylan is that most commonly found in 

the type II walls of monocots.  Furthermore, type II walls produce the mixed-linkage β-D 

glucans that further bolster structural support (Carpita and Gibeaut 1993).   



50 

 

 

Lignin is known to be one of the most recalcitrant plant substances.  Lignin increases cell 

wall rigidity by forming covalent bonds to cellulose (Vanholme et al. 2010) and in some tissues 

may compose 60 to 80% of the secondary cell wall (Musha and Goring 1975). The lignification 

process also results in cell wall heterogeneity.  Because this phase is much slower than cellulose 

biosynthesis, lignin suffices as the cell wall component most strongly associated to tissue 

maturity and plant height (Berg 2008).  Hence, given the rate regulating capacity of the cell wall 

together with the dynamic nature of this structure, it is probable that decomposition and nutrient 

release rates will differ according to weed specie and plant height variances.   

Two of the most pernicious and prolific weed species encountered by growers in the 

Midwestern U.S. are waterhemp (Amaranthus tuberculatus) and giant foxtail (Setaria faberi).  

The vast prevalence of these species coupled with their affinity to competitively reduce grain 

yields suggests these are exemplary weed species to be used in the characterization of weed 

biomass degradation and to expose the subsidiary effects of poor weed management due to 

delayed herbicide applications.  A rapid loss of nutrients from weeds in-season would minimize 

the risk of environmental losses after harvest by liberating minerals early enough for them to still 

be utilized by the crop.  Therefore, the purpose of this study was to quantify the rate of 

decomposition and nutrient release of weed residues following POST herbicide control.  Specific 

objectives include 1) determine the effect of weed height at the time of herbicide application 2) 

evaluate the influence imposed by a grass versus broadleaf, and 3) examine the relationship 

between the initial chemical properties of the weed residue and the liberation of nutrients over 

time. 
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MATERIALS AND METHODS 

Decomposition and nutrient release rates were determined for aboveground biomass of 

waterhemp and giant foxtail grown to heights of 10, 20, 30, and 45 cm in 2013 during the 

months of June through September at the Agronomy Research Center near Carbondale, IL and a 

producer field site near Ridgway, IL.   

Weed Biomass Accumulation.  In order to acquire sufficient biomass and achieve the 

appropriate weed heights for June implementation, plants were grown under greenhouse 

conditions starting in February.  Waterhemp10 and giant foxtail11 were sown into pots containing 

field soil; this growing media was preferred due to a preliminary experiment that revealed the 

propensity of waterhemp to have a higher percentage of its dry weight allocated to foliage if 

grown in potting soil (data not shown).  Soil pH was 6.5, soil organic matter was 1.15%, and 

cation exchange capacity was 8.73 cmol kg-1.  NO3-N concentration in the soil was 27.5 mg kg-1 

and NH4-N was 2.7 mg kg-1.  Bray P1 was 72 mg kg-1 and Mehlich III extractable K, Ca, Mg, 

and S concentrations in the soil were 116, 986, 70, and 20 mg kg-1, respectively.  Pots were 

fertilized for plant maintenance every other week with a macro- and micronutrient-containing 

fertilizer12.  Specimens were grown under 30º C conditions and placed under auxiliary lighting of 

120 to 140 µmol m-2 s-1 provided by high pressure sodium bulbs to mimic a 16-hour day.  To 

appropriately simulate a common grower practice for POST weed control, glyphosate13 (1,100 g 

ae ha-1) was applied once weeds reached the targeted heights of 10, 20, 30, or 45 cm.  This 

particular glyphosate formulation did not contain an activator adjuvant; therefore, a nonionic 

                                                 
10 Collected from an indigenous field population near Belleville, IL 62221. 
11 Collected from an indigenous field population near Carbondale, IL 62901. 
12 Jack’s Classic Professional, JR Peters, Inc., 6656 Grant Way, Allentown, PA 18106. 
13 Touchdown HiTech, Syngenta Crop Protection, Inc., P.O. Box 18300, Greensboro, NC 27419-8300. 
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surfactant14 was included at 0.5% v/v.  The herbicide application was made with a single-nozzle 

spray booth calibrated to deliver 140 L ha-1 at a pressure of 207 kPa.  Specimens were then 

harvested 7 days after treatment by clipping the weeds at the soil surface.  The biomass was then 

allowed to air-dry in the greenhouse at 35º C until constant weight.   

In situ Degradation of Weed Litter.  A litterbag experiment (Cobo et al. 2002, Majumder et al. 

2008, Swift et al. 1979) was conducted to track decomposition and nutrient release rates.  

Litterbags15 were 20 x 20 cm, constructed of nylon, with a 2-mm mesh on the bottom and a 5-

mm mesh on the upper side.  The finer mesh keeps detritus in the bag, while the larger mesh 

facilitates macrofaunal entry and air circulation (Swift et al. 1979).  Twenty bags for each 

treatment were filled with air-dry material equivalent to 5 g on a dry weight basis and then 

closed with plastic ties.  For the 30- and 45-cm treatments, specimens were cut into two 

segments before being placed in a bag.  Care was given to ensure the proportion of stems and 

leaves used accurately represented a whole plant sample.  Furthermore, handling loss bags were 

filled for each species in order to account for any weight loss during transport (Swift et al. 1979).  

A larger, 10-g sample was also taken at this time and used for determination of the initial 

chemical characteristics of the plant materials.  The experimental field area was conventionally 

tilled and then planted with soybeans16 in 76-cm rows at a target population of 346,000 seeds ha-

1 to simulate common agronomic practices.  A blanket application of the herbicides 

sulfentrazone, s-metolachlor, and fomesafen was applied at 140, 1,378, and 70 g ai ha-1 prior to 

soybean emergence to limit initial weed pressure and were maintained weed-free via glyphosate 

applied at 1,100 g ae ha-1 at the V4 soybean growth stage.   

                                                 
14 Activator 90, Loveland Products Inc., P.O. Box 1286, Greeley, CO 80632. 
15 EFE & GB Nets, P.O. Box 1, Bodmin, Cornwall, UK, PL311YJ. 
16 NK S46-L2, Syngenta Seeds, 11055 Wayzata Blvd., Minnetonka, MN 55305. 



53 

 

 

Litterbags were placed into the field during the first week of June and anchored to the soil 

surface between two soybean rows using fabric staples.  In order to capture the anticipated 

exponential decay, a geometric sampling schedule of 2, 4, 7, 11, and 16 weeks was implemented.  

At this time, one bag from each treatment was removed from the field and placed into a plastic 

bag for transport back to the laboratory.  Weed residues were removed from the bags and sorted 

from other debris using forceps at which point they were rinsed with deionized water for no 

longer than 15 seconds to avoid the risk of leaching minerals from the plant material (Baker and 

Plank 1992).  Detritus were then oven dried at 60º C until constant weight for dry weight 

determination and then ground and mixed using a Sample Prep 8000M mixer/mill17 to pass a 1-

mm screen before elemental analysis.  The C and N contents were determined by flash 

combustion using a FLASH 2000 analyzer18.  P, K, Ca, Mg, and S were measured using 

inductively-coupled plasma emission spectroscopy (ICPES) following a microwave nitric acid 

digestion.  In order to correct for any contaminant that remained on the plant material after 

washing, ash content was measured to enable the use ash-free dry weights as a more suitable 

measure of mass (Cobo et al. 2002, Palm and Sanchez 1990).  Ash content was determined by 

igniting the specimen in a muffle furnace at 500º C for two hours in order to oxidize the organic 

material.  To quantify the cell wall components present in the initial plant material, neutral 

detergent fiber (NDF), acid detergent fiber (ADF), and lignin concentrations were measured by 

reflux methodology (Undersander et al. 1993, Van Soest et al. 1991).  Cellulose concentrations 

were calculated by subtracting lignin from ADF while, the hemicellulose fraction was 

determined by subtracting ADF from NDF (Lindsey et al. 2013).   

                                                 
17 SPEX, 15 Liberty St., Metuchen, NJ 08840. 
18 Thermo Scientific, 81 Wyman St., Waltham, MA 02451. 
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Experimental Design and Analysis.  Treatments were arranged in a randomized complete block 

design with four replications.  Each block consisted of the 76-cm inter-row space between two 

soybean rows and spanned the length of 15 m.  Litterbags were arranged in a serpentine line 

between the rows and spaced 10 cm apart.  So as to fulfill the objectives of this experiment, data 

were pooled across both sites so that a larger inference may be formed as to the effect of each 

treatment.  The mass and nutrients remaining at each collection time were analyzed using two-

way factorial ANOVA, treating species and height as the main effects.  The means were then 

separated using Fisher’s protected LSD (α=0.05).  In order to determine a single parameter 

useful in describing the rate of decay over the entire experimental period, decay constants, or k 

values, were derived according to the single exponential decay model:   

                                                              -k = ln(X/X0)/t                                                                 [1]                     

where X is the final dry weight or nutrient content, X0 is the initial dry weight or nutrient 

content, and t is time (Olson 1963).  To examine the association between decay constants and the 

initial chemical properties of the weed biomass, Pearson product-moment correlation was used.  

Finally, to establish which factor had a greater influence over both the initial stoichiometric 

properties of the plant material and the rate of decay, multiple regression analysis using weed 

species and height as the independent variables was employed.  All statistical analyses were 

performed using SAS.19 

 

RESULTS AND DISCUSSION 

Weed Residue Quality.  All initial quality parameters, excluding lignin, were influenced by the 

interaction of specie and height (α = 0.05) (data not shown).  The 10-cm waterhemp contained 

                                                 
19 Version 9.3, July 2011, SAS Institute Inc., Cary, NC 27513 
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the lowest amounts of NDF, ADF, cellulose, hemicellulose, and lignin (Table 3.1).  Conversely, 

45-cm giant foxtail showed the highest levels of NDF, ADF, cellulose, and lignin.  Generally, the 

amount of cell wall components was greater in taller weeds and in giant foxtail; illustrated by the 

positive values of β in Table 3.2.  NDF, ADF, cellulose, and hemicellulose were all strongly 

associated to changes in plant height and weed species (R2 = 0.84 – 0.96).  The specie influence 

(β = 0.87) on NDF was twice as strong as height (β = 0.42) and even more pronounced on the 

amount of hemicellulose (β = 0.96 and 0.19, respectively).  Marten and Andersen (1975) 

reported a greater abundance of cell wall constituents, particularly hemicellulose, in giant foxtail 

than in redroot pigweed (Amaranthus retroflexus)—a member of the same plant family as 

waterhemp.  Lignin content was the only initial parameter not influenced by a specie effect (p = 

0.78) and was instead, driven primarily by plant height.  Initial nutrient concentrations of P, Ca, 

Mg, and S were generally greater in waterhemp, whereas N was greater in giant foxtail (Table 

3.3).  Concentrations of N and K decreased with increasing plant heights.  A similar relationship 

was observed for N content in giant foxtail by Lindsey et al. (2013). 

Decomposition and Nutrient Release.  Each location received at least 25 mm of rainfall within 

the first week of litterbag deployment.  There was little variation in the rainfall (< 20 mm) and 

temperature data between each site (data not shown), therefore, the average of the two across the 

entire experimental period are presented in Figure 3.1.  Dry weight loss and nutrient release were 

subjective to the interaction of specie and height (α = 0.05) (data not shown).  The largest dry 

weight losses occurred during the first 4 weeks of the experiment with only minor subsequent 

losses and followed the anticipated exponential decay trend (Figure 3.2).  At the end of 16 

weeks, 10-cm waterhemp and giant foxtail had lost 10 and 12% more mass than the 45-cm weed 

height.  Release of nutrients was similarly asymptotic (Figures 3.3 and 3.4), excluding Ca 
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(Figure 3.4a).  Other researchers (Cobo et al. 2002; Palm and Sanchez 1990) have observed 

initial increases in Ca content and slower rates of release and has been attributed to the 

accumulation of Ca by fungi residing on the residues.  Following a similar trend to overall dry 

weight loss, smaller weeds liberated nutrients to a greater extent than larger weeds and 

waterhemp more so than giant foxtail.  For both species, 10- and 20-cm weeds had less than 20% 

of their initial N content remaining by 4 weeks; 30- and 45-cm waterhemp and giant foxtail did 

not reach this same level until 11 and 16 weeks of decomposition, respectively (Figure 3.3a).  P 

release occurred much sooner for waterhemp than giant foxtail (Figure 3.3b).  At 2 weeks, 10-cm 

waterhemp had only 19% P remaining compared to 39% in 10-cm giant foxtail.  After 4 weeks, 

all treatments had less than 10% of their initial K remaining (Figure 3.3c).  K is regarded as one 

of the most water-soluble plant compounds (Berg 2008) and given the ample rainfall received 

during the early stages of decomposition this nutrient was the most susceptible to leach from 

weed residue.   

Decomposition rates, according to the single exponential decay model, showed that mass loss 

was highest in 10-cm waterhemp (kD = 0.022) and lowest in 45-cm giant foxtail (kD = 0.011) 

(Table 3.4).  Nutrient release rates showed a similar response to the specie and height influence 

as mass loss.  The highest k values were for K release (kK = 0.030 – 0.043) while, Ca liberation 

was the slowest (kCa = 0.009 – 0.025).  Release of nutrients from waterhemp followed the order 

of K > S > Mg > P > N > Ca and from giant foxtail, K > Mg > N > P > S > Ca.  Rates of decay 

and nutrient release in this experiment are consistent with those of Murungu et al. (2011) in 

which grazing vetch, forage peas, and oats were evaluated.  However, they tended to be slower 

than those presented by Cobo et al. (2002) in which a number of green manures were analyzed in 

a more tropical environment.  These differences can likely be attributed to climatic variables as it 
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is well established that temperature and precipitation can affect the rate of decomposition (Swift 

et al. 1979). 

The influence of plant height and phylogenic class observed in this experiment concur with 

previous research.  Lindsey et al. (2013) documented the affinity of 10-cm weeds to release N at 

a faster rate than 20-cm weeds.  Moreover, there is substantial evidence that broadleaves tend to 

decompose and release nutrients sooner than grasses (Gupta and Singh 1981; Lindsey et al. 

2013; Murungu et al. 2011).  The specie influence was stronger than height variations for all k 

values except K and were greatest for P and S release (β = -0.83 and -0.87, respectively) (Table 

3.5).  For K release, the β weight for height was -0.61 compared to -0.41 for the specie influence.  

The negative values for β indicate faster decay and release rates for waterhemp compared to 

giant foxtail. 

Rate Regulating Effect of Initial Chemical Characteristics.  Significant negative correlations 

were found between NDF, ADF, cellulose, hemicellulose, and lignin and the rates of 

decomposition and release of all nutrients; while positive correlations were found for the initial 

concentrations of P, Ca, Mg, and S in the weed residue (Table 3.6).  Across all k values, NDF 

appeared to be the best negatively correlated predictor and has been reported by others as an 

excellent indicator of decay rates (Cobo et al. 2002; Gupta and Singh 1981).  P and S were the 

nutrients with the strongest correlation to the rate of decomposition.  Given the essential role 

these play in amino acid synthesis, they are among the minerals most often limiting microbial 

growth (Lambers et al. 2008); hence, greater concentrations of them in the plant litter are likely 

to stimulate microbial activity and enhance degradation (Vivanco and Austin 2006).  In contrast 

to other authors (Müller et al. 1988; Murungu et al. 2011), quality parameters such as N, and the 

ratios of lignin:N and C:N were very poorly correlated.  The specie influence was stronger for 
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most of the k values, yet lignin concentrations differed only according to weed height (Table 

3.2).  Therefore, those initial quality parameters that responded to both specie and height 

changes, such as NDF, ADF, cellulose, and hemicellulose, expressed a stronger relationship.  

The weeds investigated in this research were desiccated while still in the juvenile stage.  Many of 

the studies that have identified lignin or the lignin:N ratio as the most suitable predictor of 

decomposition have dealt with more mature biomass such as leaf litterfall in forested areas 

(Aerts 1997; Meentemeyer 1978).  Since lignin is a relatively expensive energy investment for 

plants, juvenile specimens often contain less of this substance.  Therefore, while the use of lignin 

as a predictor of decay rates are adequate when studying mature plants, the use of NDF or other 

cell wall components, such as cellulose, may be better suited when juvenile plants are of interest 

and may have specific implications regarding the decomposition of cover crops as these are often 

terminated before reaching full maturity. 

 Decomposition integrates the effects of environmental processes and the biochemical 

constituency of plant matter.  It is often difficult to distinguish whether differences in decay rates 

are simply due to intrinsic variances in initial litter quality or more by interactions that take place 

following plant desiccation.  These results suggest the decomposition of weed residues are 

strongly regulated by the amount of cell wall components the plant has generated and the amount 

of these are influenced both by a weed specie and height effect.  Research that combines the 

impact of both a change in specie and maturity has not previously been conducted in situ.  The 

litterbag method is capable of quantifying the release of nutrients, but not the precise amount, 

that will be made plant-available; some will be utilized by soil microbes or in the case of N, lost 

due to volatility.  Recent evidence even suggests that POST glyphosate applications may 

influence nitrous oxide emissions from weeds (Bailey and Davis 2013).  Despite this caveat of 
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litterbag methodology, the results obtained from this experiment are consistent with those of 

Lindsey et al. (2013), in which a similar project was performed using laboratory incubation 

methods to detect when N released from weeds would become plant-available.  In both studies, a 

grass weed contained more recalcitrant plant compounds than a broadleaved weed and this also 

increased along with plant height.  The previous authors concluded that N acquired by weeds 

may be recycled quickly enough to be utilized by the crop within the same growing season if 

weeds were controlled at a height of 10 cm and that early-season control was particularly critical 

for this to occur from the recalcitrant giant foxtail.   

The weed heights used in this experiment span a range of POST application timings 

commonly used by growers, while the two species constitute only a small portion of the diversity 

of weeds encountered in agricultural fields.  Given the large differences observed between the 

two species, avenues of future research could include elucidating decomposition and nutrient 

release rates for other common weed species and how cultural practices (crop species, row 

spacing, tillage type) may further impact these processes.  Weed residues in this experiment were 

placed in the field at the same time, regardless of height, to ensure each treatment was exposed to 

identical environmental conditions.  However, in practice this would not be the case as the 

maturity differences of the treatments would result in days to weeks of separation between the 

initial start of decomposition.  Therefore, weed height affects both the intrinsic properties of 

weed biomass as evaluated in this study, as well as the temporal start of decomposition.  In this 

way, the impact of weed height on the rate of decomposition is likely greater than what is 

reported here.  Future research efforts should attempt to identify more precisely how both the 

maturity and time at which weeds are controlled dictate decay and nutrient release rates.  For 

example, control of 45-cm weeds would not only occur later than 10-cm weeds, but this timing 
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may also coincide with the more droughty summer months and, thereby, further impede 

decomposition.  By further elucidating the complex interactions involved with the nutrient 

release of plant litter and how this responds to changing weed dynamics and cultural practices, 

growers may be able to make more informed weed management decisions enabling greater 

synchrony between weed nutrient release and crop utilization. 
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Table 3.1.  Initial chemical constituency of waterhemp (AMATA) and giant foxtail (SETFA) at 10, 20, 30, and 45 cm weed heights. 

Specie Height NDFa 
 

ADF 
 

CEL 
 

HEM 
 

L 
 

L:N  
C:N  

 cm ------------------------------------------%----------------------------------------     

AMATA 10 24.36 fb 14.96 e 13.41 d 9.40 f 1.55 c 0.62 c 16.20 d 

 20 25.89 f 15.23 e 13.67 d 10.66 e 1.56 c 0.77 c 20.08 c 

 30 37.29 e 24.26 d 21.79 c 13.03 d 2.47 ab 1.69 a 27.87 b 

 45 40.64 d 26.47 c 23.97 b 14.17 d 2.50 ab 1.85 a 30.46 a 

                

SETFA 10 47.98 c 25.25 cd 23.61 b 22.73 c 1.65 c 0.50 c 12.59 e 

 20 50.39 b 24.34 d 22.71 bc 26.05 ab 1.63 c 0.53 c 13.77 e 

 30 56.68 a 29.55 b 27.56 a 27.13 a 1.99 bc 0.74 c 15.76 d 

 45 58.13 a 31.13 a 28.14 a 25.37 b 2.99 a 1.23 b 16.77 d 

a Abbreviations:  NDF, neutral detergent fiber, ADF, acid detergent fiber, CEL, cellulose, HEM, hemicellulose, L, lignin. 
 

b Means within each column followed by the same letter do not differ significantly according to Fisher’s protected LSD (α = 0.05). 

6
1
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Table 3.2.  Multiple regression analysis for specie and height influence on initial chemical 

characteristics of weed biomass. 

Chemical 

Parameter 
Variable P βb R2 

NDFa 
Height <0.0001 0.42 

0.94 
Speciec <0.0001 0.87 

     

ADF 
Height <0.0001 0.65 

0.84 
Specie <0.0001 0.65 

     

CEL 
Height <0.0001 0.61 

0.83 
Specie <0.0001 0.69 

     

HEM 
Height <0.0001 0.19 

0.96 
Specie <0.0001 0.96 

     

L 
Height <0.0001 0.75 

0.53 
Specie 0.78 0.03 

a Abbreviations:  NDF, neutral detergent fiber, ADF, acid detergent fiber, CEL, cellulose, HEM, 

hemicellulose, L, lignin. 
 

b Standardized estimates (β weights) enable the direct comparison between discrete and 

continuous data of different scales. 

c Tests the change from waterhemp to giant foxtail (e.g. a positive β indicates a larger value 

associated with the chemical parameter in giant foxtail over waterhemp). 
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Table 3.3.  Initial nutrient concentration of waterhemp (AMATA) and giant foxtail (SETFA) at 

10, 20, 30, and 45 cm weed heights. 

Specie Height N P K Ca Mg S 

 cm -------------------------------------%------------------------------------- 

AMATA 10 2.52 0.32 2.27 1.05 0.65 0.34 

 20 2.02 0.37 1.99 0.99 0.68 0.35 

 30 1.48 0.27 1.74 0.88 0.52 0.25 

 45 1.35 0.28 1.71 1.16 0.57 0.26 

        

SETFA 10 3.31 0.19 2.50 0.40 0.37 0.21 

 20 3.05 0.20 2.75 0.43 0.51 0.22 

 30 2.68 0.17 1.46 0.45 0.47 0.19 

 45 2.49 0.14 1.93 0.64 0.48 0.18 

LSDa 0.18 0.02 0.16 0.09 0.04 0.02 

a Fisher’s protected LSD (α = 0.05). 
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Figure 3.1.  Climatogram illustrating bi-monthly mean temperature and precipitation received 

during the experimental period, averaged across Carbondale and Ridgway, in 2013. 
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Figure 3.2.  Dry weight loss from decaying waterhemp and giant foxtail residues, corresponding 

to weed removal timings of 10, 20, 30, and 45 cm plant heights.  Vertical bars for each collection 

timing denote Fisher’s protected LSD (α = 0.05). 
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Figure 3.3.  Release of primary macronutrients (N, P, K) from decaying waterhemp and giant 

foxtail residues corresponding to weed removal timings of 10, 20, 30, and 45 cm plant heights.  

Vertical bars for each collection timing denote Fisher’s protected LSD (α = 0.05).  
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Figure 3.4.  Release of secondary macronutrients (Ca, Mg, S) from decaying waterhemp and 

giant foxtail residues corresponding to weed removal timings of 10, 20, 30, and 45 cm plant 

heights.  Verticals bars for each collection timing denote Fisher’s protected LSD (α = 0.05).
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Table 3.4.  Decomposition (kD) and N (kN), P (kP), K (kK), Ca (kCa), Mg (kMg) and S (kS) release rates for waterhemp (AMATA) and 

giant foxtail (SETFA) at 10, 20, 30, and 45 cm weed heights, obtained when fitting dry weight and nutrient remaining against time (d) 

according to the single exponential decay model (Olson 1963).  

Specie Height kD 
 

kN 
 

kP 
 

kK 
 

kCa 
 

kMg 
 

kS 
 

 cm ------------------------------------------------------------------d-1---------------------------------------------------------------- 

AMATA 10 0.022 aa 0.035 a 0.037 a 0.043 a 0.025 a 0.039 a 0.040 a 

 20 0.018 b 0.029 b 0.034 b 0.039 b 0.022 b 0.034 b 0.037 a 

 30 0.017 bc 0.024 c 0.029 c 0.036 cd 0.018 c 0.030 c 0.032 b 

 45 0.015 cd 0.022 cd 0.026 c 0.034 d 0.018 c 0.028 cd 0.030 b 

                

SETFA 10 0.016 c 0.022 cd 0.021 d 0.038 bc 0.011 d 0.026 de 0.021 c 

 20 0.015 cd 0.019 de 0.020 d 0.038 bc 0.010 d 0.028 cd 0.018 cd 

 30 0.013 de 0.016 e 0.016 e 0.030 e 0.009 d 0.024 e 0.015 de 

 45 0.011 e 0.015 e 0.014 e 0.031 e 0.009 d 0.024 e 0.014 e 

a Means within each column followed by the same letter do not differ significantly according to Fisher’s protected LSD  (α = 0.05). 

6
8
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Table 3.5.  Multiple regression analysis for specie and height influence on decomposition (kD), 

and N (kN), P (kP), K (kK), Ca (kCa), Mg (kMg) and S (kS) release rates of weed biomass. 

Decay/release 

constant 
Variable P βa R2 

kD 
Height <0.0001 -0.52 

0.57 
Specieb <0.0001 -0.56 

     

kN 
Height <0.0001 -0.49 

0.65 
Specie <0.0001 -0.65 

     

kP 
Height <0.0001 -0.41 

0.85 
Specie <0.0001 -0.83 

     

kK 
Height <0.0001 -0.61 

0.53 
Specie <0.0001 -0.41 

     

kCa 
Height <0.0001 -0.26 

0.68 
Specie <0.0001 -0.79 

     

kMg 
Height <0.0001 -0.44 

0.63 
Specie <0.0001 -0.67 

     

kS 
Height <0.0001 -0.31 

0.85 
Specie <0.0001 -0.87 

a Standardized estimates (β weights) enable the direct comparison between discrete and 

continuous data of different scales. 

 
b Tests the change from waterhemp to giant foxtail (e.g. a negative β indicates a larger k value 

associated with waterhemp). 
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Table 3.6.  Pearson correlation coefficients (r) between initial chemical characteristics of weed 

residue and their decomposition (kD), and N (kN),P (kP), K (kK), Ca (kCa), Mg (kMg) and S (kS) 

release rates. 

  kD kN kP kK kCa kMg kS 

NDFa  -0.73*** -0.81*** -0.93*** -0.66*** -0.84*** -0.83*** -0.91*** 

ADF  -0.74*** -0.79***  -0.86*** -0.73*** -0.74*** -0.83*** -0.80*** 

CEL  -0.74*** -0.80*** -0.88*** -0.72*** -0.76*** -0.84*** -0.82*** 

HEM  -0.66*** -0.75*** -0.90*** -0.55*** -0.84*** -0.75*** -0.92*** 

L  -0.50*** -0.45*** -0.42*** -0.57*** -0.27* -0.44*** -0.32* 

L:N  -0.17 -0.11 0.04 -0.29* 0.13 -0.11 0.17 

C:N  0.06 0.11 0.32* -0.09 0.36** 0.12 0.43*** 

N  -0.12 -0.19 -0.40** 0.06 -0.44*** -0.22 -0.50*** 

P  0.65*** 0.72*** 0.89*** 0.56*** 0.80*** 0.75*** 0.89*** 

K  0.21 0.15 0.06 0.47*** -0.04 0.17 -0.02 

Ca  0.44*** 0.55*** 0.73*** 0.30* 0.74*** 0.59*** 0.78*** 

Mg  0.51*** 0.59*** 0.75*** 0.41*** 0.71*** 0.71*** 0.73*** 

S  0.70*** 0.79*** 0.91*** 0.63*** 0.81*** 0.82*** 0.87*** 

a Abbreviations:  NDF, neutral detergent fiber, ADF, acid detergent fiber, CEL, cellulose, HEM, 

hemicellulose, L, lignin. 
 

*, **, *** = probabilities associated to Pearson correlation coefficients at p < 0.05, p < 0.01 and p < 

0.001, respectively. 
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CHAPTER 4 

CONCLUSIONS 

 

The evolution of herbicide-resistant weeds has resulted in a dramatic reassessment of weed 

management strategies in soybean.  The efficacy provided by postemergent (POST) herbicides 

such as glyphosate is often no longer satisfactory to meet grower demands in areas plagued by 

these troublesome weed biotypes that may also have resistance to multiple other herbicide sites 

of action.  The challenge of herbicide-resistant weeds in soybean production has led to a 

resurgent use of soil residual herbicides and other early-season weed management tactics to 

combat their spread.  In regions that remain unaffected by glyphosate-resistant weeds, POST 

herbicides are still an effective and viable option for weed control; however, prior knowledge 

would suggest that such a great reliance on POST-only control measures are precisely the cause 

for the fruition of herbicide-resistant weeds.  Furthermore, the flexibility provided by POST 

strategies would make it appear to be the most parsimonious choice, yet this can often result in a 

complacent understanding of what constitutes a timely herbicide application in order to avoid 

crop yield losses from prolonged weed competition.  To facilitate the implementation of more 

sound weed and herbicide-resistant management tactics, an evaluation of additional benefits 

provided by early-season weed management in soybean was performed in this research. 

The use of a broad-spectrum preemergent (PRE) and POST herbicide can provide early-

season weed-free conditions that enhance nutrient uptake by the crop.  Soybean establishment 

under these conditions affords the crop a competitive advantage over weeds and serves as a form 

of season-long weed suppression to realize maximum yield potential.  When weeds are allowed 

to infest the crop, the magnitude of competition is regulated by the duration of this period and 
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environmental influences.  Competition from weeds, even at heights commonly found today, 

possess the capacity to diminish soybean acquisition of all 11 minerals analyzed in this research.  

Fertilizer recommendations are made based on the expected physiological demand by the crop 

yet, the accumulation of nutrients by weeds can be prodigious.  Thus, growers interested in 

utilizing foliar applied nutrients and maximizing fertilizer use efficiency should first, and 

foremost, adopt sound weed management strategies to eliminate weed and nutrient competition. 

Under favorable growing conditions, the levels of nutrient competition and grain yield reductions 

elicited by weeds are intensified compared to droughty conditions, under which water appears to 

be the most-limiting resource.  This in part, may be explained by the adaptive nature of the weed 

species complex.  As the number dwindles for effective POST herbicide options in soybean for 

the control of herbicide-resistant broadleaved weeds, weed management decisions for this crop 

should place emphasis on the successful control of these species as they are also more effective 

competitors for nutrients than grasses as demonstrated with waterhemp in this research.   

If the attempt to establish weed-free conditions fails, nutrient competition between the crop 

and weeds will ensue.  Growers do not make fertilizer applications with the intent of a partial 

amount being used by weeds and unavailable to the crop.  Given a finite amount of mineral 

resources in the soil, to maximize agronomic efficiency it is critical to ensure inputs intended for 

the crop are utilized by only the crop.  By controlling weeds early in the growing season, the 

nutrient recycling process is accelerated and can result in the bioavailability of weed-bound 

nutrients during the same growing season.  The rate at which these resources are returned from 

weed residues is surely dictated by the environmental status, but is also strongly regulated by the 

intrinsic properties of the weeds and future research efforts should attempt to gain a more 

comprehensive understanding of how species and site interactions influence these properties.   
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With greater insight of how weed dynamics effect the nutrient recycling process, more informed 

management decisions can be made that minimize post-harvest environmental losses. 

The judicious and timely use of broad-spectrum PRE and POST herbicides are essential for 

mitigating the rapid development of herbicide-resistant weeds.  This research concludes there is 

additional agronomic merit provided by this management strategy when used in soybean.  Weed 

escapes from soil residual herbicides should be controlled in an urgent manner as delayed POST 

applications enable weeds to have a more pronounced impact on the nutrient status at a given 

site.  Early-season weed management not only reduces the extent of nutrient competition 

between weeds and soybean, but also facilitates the speed at which minerals are recycled and 

contribute to the soil nutrient pool.  As a result, control of early-season weeds suffices as a 

logical weed management strategy as it offers a more sustainable approach that suitably manages 

herbicide-resistant weeds, increases the efficiency of nutrient management systems, and 

enhances soybean yield potential. 
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APPENDIX A.  Test of treatment as a fixed effect in 2012 generated from the mixed model 

design. 

Dependent 

variablea 

2013  2013 

F Value p 
 

F Value p 

Nitrogenb 12.50 <0.001 
 

18.51 <0.001 

Phosphorus 10.00 <0.001 
 

17.38 <0.001 

Potassium 5.22 <0.001 
 

13.01 <0.001 

Calcium 11.45 <0.001 
 

17.57 <0.001 

Magnesium 7.31 <0.001 
 

18.84 <0.001 

Sulfur 11.18 <0.001 
 

21.08 <0.001 

Iron 8.91 <0.001 
 

26.34 <0.001 

Manganese 2.49 <0.001 
 

27.01 <0.001 

Boron 8.45 <0.001 
 

13.98 <0.001 

Copper 8.50 <0.001 
 

16.61 <0.001 

Zinc 6.44 <0.001 
 

19.29 <0.001 

Grain Yield 2.34 0.038 
 

7.80 <0.001 

Seed Weight 2.20 0.051 
 

5.91 <0.001 

Pods plant-1 1.71 0.127 
 

1.49 0.191 

Seeds pod-1 0.39 0.881 
 

1.06 0.391 

Protein 1.92 0.085 
 

1.11 0.365 

Oil 0.33 0.917 
 

3.73 0.002 

a Degrees of freedom:  main effect = 6 ; error = 90 
b Soybean nutrient accumulation 
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APPENDIX B.  Progression of soybean nutrient accumulation in 2012 and 2013, pooled across sites. 

Year 
Weed 

height 
N P K Ca Mg S Fe Mn B Cu Zn 

  -------------------------------kg ha-1------------------------------- --------------------------g ha-1-------------------------- 

2012 10 cm 20.0 1.88 13.1 7.43 2.05 1.25 191 63.7 13.8 5.15 20.4 

 20 cm 32.8 2.91 20.4 11.8 3.24 1.98 471 105 21.3 8.26 32.1 

 30 cm 53.6 5.06 36.7 21.1 5.57 3.28 493 140 39.0 13.9 51.5 

 45 cm 80.4 7.95 59.3 34.9 8.92 5.19 567 215 66.7 23.2 81.9 

             

2013 10 cm 10.3 0.98 7.32 4.48 0.94 0.74 148 34.5 8.72 2.00 8.34 

 20 cm 26.4 2.47 19.3 9.57 1.99 1.69 194 57.4 21.7 4.73 19.4 

 30 cm 35.2 3.54 29.4 13.0 2.78 2.38 222 68.7 30.2 7.18 27.5 

 45 cm 67.5 6.40 52.2 22.9 5.15 4.31 484 125 56.0 13.1 50.6 

 

  

8
6
 

 



87 

 

 

 

APPENDIX C.  Progression of broadleaved weed nutrient accumulation in 2012 and 2013, pooled across sites. 

Year 
Weed 

height 
N P K Ca Mg S Fe Mn B Cu Zn 

  -------------------------------kg ha-1------------------------------- --------------------------g ha-1-------------------------- 

2012 10 cm 18.1 2.42 21.0 8.58 3.82 1.42 185 54.4 10.1 5.08 16.6 

 20 cm 27.5 3.27 33.2 14.2 5.35 2.42 475 135 17.9 8.85 30.2 

 30 cm 28.9 3.86 38.1 18.4 5.52 2.58 632 194 21.7 9.3 36.7 

 45 cm 35.8 5.59 62.0 27.2 7.61 3.89 931 289 39.7 12.3 56.5 

             

2013 10 cm 9.41 1.55 13.1 5.44 1.45 0.92 165 31.6 9.02 2.41 10.4 

 20 cm 22.7 3.85 30.5 15.8 3.83 2.47 168 77.5 35.3 7.02 32.2 

 30 cm 29.4 3.30 58.3 23.9 6.12 3.64 169 112 55.0 10.2 48.9 

 45 cm 45.1 6.87 89.2 36.3 7.98 5.09 236 115 102 18.7 83.9 
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APPENDIX D.  Progression of grass weed nutrient accumulation in 2012 and 2013, pooled across sites. 

Year 
Weed 

height 
N P K Ca Mg S Fe Mn B Cu Zn 

  -------------------------------kg ha-1------------------------------- --------------------------g ha-1-------------------------- 

2012 10 cm 9.92 1.01 10.3 1.23 0.81 0.65 89.7 28.2 1.14 2.97 10.8 

 20 cm 15.7 1.92 22.6 2.34 1.47 1.07 152 46.1 1.89 5.27 19.9 

 30 cm 13.3 1.72 19.4 1.78 1.24 0.96 164 50.4 1.24 4.72 14.5 

 45 cm 28.0 4.79 53.3 5.74 2.93 2.25 363 145 5.16 11.9 41.0 

             

2013 10 cm 7.24 1.10 9.12 1.11 0.55 0.54 51.9 13.5 0.75 2.05 6.13 

 20 cm 16.3 3.36 26.0 2.89 1.61 1.31 96.1 38.9 1.98 5.73 17.5 

 30 cm 20.2 4.62 36.7 4.04 2.39 1.81 115 47.5 3.01 8.19 25.1 

 45 cm 24.2 6.29 52.3 5.06 3.35 2.45 121 64.7 4.67 10.0 40.3 

8
8
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APPENDIX E.  Root mean square errors obtained while fitting the data according to the single 

exponential decay model of waterhemp (AMATA) and giant foxtail (SETFA) at 10, 20, 30, and 

45 weed heights. 

Specie Height 
 

kD kN kP kK kCa kMg kS 

 cm         

AMATA 10 
 

0.103 0.045 0.040 0.013 0.098 0.034 0.041 

 20 
 

0.118 0.079 0.046 0.019 0.111 0.047 0.046 

 30 
 

0.155 0.120 0.076 0.033 0.173 0.076 0.068 

 45 
 

0.159 0.128 0.087 0.037 0.109 0.079 0.072 

          

SETFA 10 
 

0.111 0.088 0.100 0.019 0.311 0.065 0.098 

 20 
 

0.121 0.111 0.109 0.020 0.214 0.072 0.114 

 30 
 

0.098 0.133 0.128 0.037 0.298 0.076 0.130 

 45 
 

0.120 0.160 0.133 0.030 0.153 0.079 0.149 
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