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In this work, we establish the Lyapunov-type inequalities for the fractional boundary

value problems with Hilfer derivative for different boundary conditions. We apply this

inequality to fractional eigenvalue problems and prove one of the important results of real

zeros of certain Mittag-Leffler functions and improve the bound of the eigenvalue using the

Cauchy-Schwarz inequality and Semi-maximum norm. We extend it for higher order cases.
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INTRODUCTION

The theory of fractional derivatives goes back to Leibniz’s note in his letter to

L’Hôspital, dated 30 September 1695, in which the meaning of a one-half ordered derivative

is discussed. Leibniz’s note led to the appearance of the theory of derivatives and integrals

of arbitrary order, which by the end of nineteenth century took more or less finished form

due primarily to Liouville, Grünwald, Letnikov, Riemann and Caputo. Recently, there

have been several books on the subject of fractional derivatives and fractional integrals,

see [30], [36], [39], [44], [49]. More recently, a remarkably large family of generalized Rie-

mannLiouville fractional derivative of order α (0 < α < 1) and type β (0 ≤ β ≤ 1)

was introduced [23], [25]. Which is written in the more general form as the generalized

Riemann-Liouville fractional derivative (GRLFD) or Hilfer fractional derivative (HFD) of

order α (n− 1 < α ≤ n ∈ N and type β (0 ≤ β ≤ 1) [24], [51], [52].

Fractional differential equations have been of great interest recently. It is caused

both by the intensive development of the theory of fractional calculus itself and by the

applications. Apart from diverse areas of mathematics, fractional differential equations

arise in rheology, dynamical processes in selfsimilar and porous structures, fluid flows,

electrical networks, viscoelasticity, chemical physics, and many other branches of science.

It should be noted that most of papers and books on fractional calculus are devoted

to the solvability of linear fractional differential equations. A remarkable research is done

on the Lyapunov-type inequality (LTI) for integer order boundary value problems (see [7],

[10], [21], [22], [41], [47], [50], [54], [55], [56] and the references therein). The Lyapunov

inequality [34] has proved to be very useful in the study of spectral properties of ordinary

differential equations (see [7], [41]). This inequality can be stated as follows:

Theorem 0.0.1. (See [34]) A necessary condition for the Boundary Value Problem (BVP)

BVP 1

1



y′′(t) + q(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = 0,

to have nontrivial solutions is that ∫ b

a

|q(s)|ds > 4

b− a
,

where q is a real and continuous function. The constant 4 in the above inequality is sharp

so that it cannot be replaced by a larger number.

There are several generalizations and extensions of Theorem 0.0.1. Hartman and

Wintner [19] proved that if u is a nontrivial solution to BVP 1, then∫ b

a

(b− s)(s− a)q+(s)ds > b− a,

where q+(s) is the positive part of q defined as

q+(s) = max{q(s), 0}.

We call the above inequality as Hartman and Wintner inequality. For other generalizations

and extensions of the classical Lyapunov’s inequality, we refer to [3], [8], [9], [10], [11],

[14], [19], [21], [32], [41], [42], [55] and the references therein. Recently, there are some

papers dealing with the Lyapunov-type inequality of Fractional Boundary Value Problems

(FBVPs) have appeared. Ferreira in [15] and [16], Jleli and Samet [26], [27], [28], and

Rong and Bai [48] have established Lyapunov-type inequalities (LTIs) for FBVPs of order

α, α ∈ (1, 2] and different boundary conditions. In [43], we obtained the LTI for FBVP

of order 2 < α ≤ 3. We also improved the lower bound of the smallest eigenvalue of the

eigenvalue problem using the semi-maximum norm and Cauchy-Schwarz inequalities. In

these work the authors considered the FBVPs with either Riemann-Liouville or Caputo

derivatives. Motivated by the above work, in this work we consider FBVPs involving a

Hilfer derivative operator.

2



The aim in writing this paper is to establish the Lyapunov-type inequality for frac-

tional boundary value problems with Hilfer derivative operator Dα,β
a+ of order α, α ∈ (1, 2],

α ∈ (2, 3] and α ∈ (3, 4], and type β ∈ [0, 1]. The advantage of considering the FBVP and

fractional eigenvalue problem (FEP) with the Hilfer derivative is that the obtained results

allow us to give results for Riemann-Liouville as well as Caputo derivative FBVPs and FEPs

as its particular cases. Here possible, basic ideas are studied by using the equivalent integral

equation form of the fractional boundary value problems and the properties of correspond-

ing Green’s function. We consider both integer and fractional order eigenvalue problems,

determine a lower bound for the smallest eigenvalue using a Lyapunov-type inequality, and

improve this bound using a semi maximum norm and Cauchy-Schwarz inequality. We use

the improved lower bounds to obtain intervals where certain Mittag-Leffler functions have

no real zeros. Further, for both the fractional and the integer order eigenvalue problems, we

give a comparison between the smallest eigenvalue and its lower bounds obtained from the

semi maximum norm and Lyapunov-type and Cauchy-Schwarz inequalities. Results show

that the Lyapunov-type inequality gives the worse and the Cauchy-Schwarz inequality gives

the best lower bound estimates for the smallest eigenvalues.

It is necessary to note that many authors have been devoted to studying zeros of

Mittag-Leffler function (see [38] and references therein), and the basic works in this direction

are due to A. Veeman and M.M. Dzhrbashjan (see [4], [13]). In [5] the authors carried

out spectral analysis of one class of integral operators associated with fractional order

differential equations which arise in mechanics by establishing a connection between the

eigenvalues of these operators and the zeros of Mittag-Leffler type functions. This may

become the extension of our work in future.

The outline of the thesis is as follows.

Chapter 1 deals with preliminary materials; definitions and lemmas necessary for the deriva-

tions in this work.

In chapter 2, we use the basic results from chapter 1 and explain the procedure to

3



establish a Lyapunov-type inequality of general fractional boundary value problem. Also,

give three methods to obtain the lower bound estimate of the smallest eigenvalue of the

general fractional eigenvalue problem.

Chapter 3 contains the Lyapunov-type inequality and eigenvalue estimate for fractional

problems of order α, α ∈ (1, 2].

Chapter 4 includes the Lyapunov-type inequalities and eigenvalue estimates for frac-

tional problems of order α, α ∈ (2, 3] with a mixed set of Dirichlet and Neumann, and a

mixed set of fractional Dirichlet, Neumann and fractional Neumann boundary conditions.

In chapter 5, we discuss about the Lyapunov-type inequalities and eigenvalue estimates

for fractional problems of order α, α ∈ (3, 4] with different boundary conditions.

4



CHAPTER 1

PRELIMINARIES

In this chapter we briefly review the definitions of fractional operators, properties from

such topics of Analysis as functional spaces, special functions, Laplace transforms and some

preliminary materials.

1.1 SPACES OF INTEGRABLE, ABSOLUTELY CONTINUOUS, AND

CONTINUOUS FUNCTIONS

Here we present definitions of spaces of p-integrable, Lebesgue integrable, absolutely

continuous, and continuous functions. Most of the results stated here are well known and

can be found in any standard textbook, for example [30], [31], [49].

Definition. Consider the space Xp
c (a, b) of those complex-valued Lebesgue measurable

functions f on [a, b] for which ||f ||Xp
c
<∞, where the norm is defined by

||f ||Xp
c
=

(∫ b

a

|tcf(t)|pdt
t

) 1
p

, c ∈ R, 1 ≤ p <∞,

and for the case p = ∞

||f ||X∞
c

= ess supa≤x≤b[x
c|f(x)|].

In particular, when c = 1/p, the space Xp
c coincides with the classical Lp(a, b)-space

with

||f ||p =
(∫ b

a

|f(t)|pdt
) 1

p

, 1 ≤ p <∞, (1.1)

||f ||∞ = ess supa≤x≤b|f(x)|. (1.2)

The case p = 1 describes the space of Lebesque integrable functions.

Definition. The space L(a, b) of Lebesgue measurable functions f(t) on a finite interval

[a, b](b > a) of the real line R is defined as

L(a, b) = {f : ||f ||1 =
∫ b

a

|f(t)|dt <∞}.

5



For norm in (1.1) we shall also use the notations

||f ||p = ||f ||Lp = ||f ||Lp(a,b). (1.3)

Let us give some properties of Lp-spaces:

1. The Minkowsky inequality

||f + g||p ≤ ||f ||p + ||g||p , (1.4)

so that Lp(a, b) is a normed space. It is also known that Lp(a, b) is a complete space.

2. The Hölder inequality∫ b

a

|f(x)g(x)|dx ≤ ||f ||p||g||q,
1

p
+

1

q
= 1, (1.5)

where f(x) ∈ Lp(a, b), g(x) ∈ Lq(a, b). In particular, if p = q = 2 describes the

Cauchy-Schwarz inequality ∫ b

a

|f(x)g(x)|dx ≤ ||f ||2||g||2. (1.6)

Definition. Let [a, b] be a finite interval and let AC[a, b] be the space of functions f which

are absolutely continuous on [a, b]. It is known that (see [31], p. 338) AC[a, b] coincides

with the space of primitives of Lebesgue summable functions:

f(x) ∈ AC[a, b] ⇔ f(x) = c+

∫ x

a

ϕ(t)dt, ϕ(t) ∈ L(a, b), (1.7)

and therefore an absolutely continuous function f(x) has a summable derivative f ′(x) =

ϕ(x) almost everywhere on [a, b]. Thus (1.7) yields

ϕ(t) = f ′(t), c = f(a). (1.8)

Definition. Let AC[a, b] be the space of real-valued functions f(t) which are absolutely

continuous on [a, b]. We denote by ACn[a, b] the space of real-valued functions f(t) which

have continuous derivatives up to order n− 1 on [a, b] such that f (n−1)(t) ∈ ACn[a, b]:

ACn[a, b] =
{
f : [a, b] → R : (Dn−1f)(t) ∈ AC[a, b]; D ≡ d

dt

}
, n ∈ N.

In particular, AC1[a, b] = AC[a, b].
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This space is characterized by the following assertion [49].

Lemma 1.1.1. The space ACn[a, b] consists of those and only those functions f(x) which

can be represented in the form

f(x) = (Ina+ϕ)(x) +
n−1∑
k=0

ck(x− a)k, (1.9)

where ϕ(t) ∈ L(a, b), ck(k = 0, 1 · · · , n− 1) are arbitrary constants, and

(Ina+ϕ)(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1ϕ(t)dt. (1.10)

It follows from (1.9) that

ϕ(t) = fn(t), ck =
fk(a)

k!
.

Proof. The proof can be found at Lemma 2.4 in Samko et al [49].

1.2 SPECIAL FUNCTIONS

In this section we give definitions and basic properties of those functions which are

relevant in the theory of Fractional Calculus. These include the Gamma function, the Beta

function, the Hypergeometric function and the Mittag-Leffler function.

1.2.1 Gamma Function

The Euler’s Gamma function Γ(z) which generalizes the factorial n! and allows n to

take also non-integer and complex values [44].

Definition. The gamma function Γ(z) is defined by the integral

Γ(z) =

∫ ∞

0

e−ttz−1dt, (1.11)

which converges in the right half of the complex plane R(z) > 0.

The Gamma function has one of the basic properties given by

Γ(z + 1) = zΓ(z), R(z) > 0. (1.12)
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This recursion relationship can be used to define the factorial operation for integral values

of z, because Γ(1) = 1. Thus, we can write

Γ(n+ 1) = nΓ(n) = n! , (1.13)

when n is an integer.

1.2.2 Beta Function

Definition. The beta function is defined by the Euler integral of the first kind: [30]

B(z, w) =

∫ 1

0

tz−1(1− t)w−1dt, R(z) > 0,R(w) > 0. (1.14)

This function is connected with the gamma functions by the relation

B(z, w) =
Γ(z)Γ(w)

Γ(G+ w)
. (1.15)

1.2.3 Hypergeometric Function

Definition. The Gauss hypergeometric function 2F1(a, b; c; z) is defined in the unit disk

as the sum of the hypergeometric series [49]

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, (1.16)

where |z| < 1; a, b, c and the variable z may be complex (c ̸= 0,−1,−2, · · · ) and (a)k is

the Pochhammer symbol given by (a)k = a(a+ 1) · · · (a+ k − 1), k = 1, 2, · · · , (a)0 ≡ 1.

1.2.4 Mittag-Leffler Function

The MittagLeffler function, which is generalization of exponential function, plays an

important role in the theory of fractional differential equations and is connected with

gamma function.

Definition. The function Eα(z) defined by

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, z, α ∈ C,R(α) > 0, (1.17)
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was introduced by Mittag-Leffler [37] and is known as one parameter Mittag-Leffler func-

tion. It is an entire function of z. The basic properties of this function are as follows [20],

[30]: When α = 1 and α = 2, we have

E1(z) = ez, E2(z
2) = cosh(z) and E2(−z2) = cos(z). (1.18)

Definition. A two-parameter function of the Mittag-Leffler type is defined by the series

expansion

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α, β, z ∈ C, R(α),R(β) > 0. (1.19)

In particular, when β = 1, Eα,β(z) coincides with the Mittag-Leffler function

Eα,1(z) = Eα(z). (1.20)

It follows from (1.19) that

E1,2(z) =
ez − 1

z
and E2,2(z

2) =
sinh(z)

z
. (1.21)

We obtain some other special cases which are discussed in section A-3 (see appendix). The

following differentiation formula is satisfied by (1.19) [30], [20]:

dm

dzm
[zβ−1Eα,β(±λzα)] = zβ−m−1Eα,β−m(±λzα), λ ∈ C,R(β −m) > 0,m ∈ N. (1.22)

In particular, when m = 1 and β = 1 the relationship [35]

d

dz
[Eα,1(−λzα)] = −λzα−1Eα,α(−λzα) (1.23)

holds. The function Eα,β(z) has the integral representation

Eα,β(z) =
1

2π

∫
C

tα−βet

tα − z
dt, (1.24)

where the path of integration C is a loop which starts and ends at −∞ and encircles the

circular disk |t| ≤ |z|1/α in the positive sense: |arg(t)| ≤ π on C.
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Definition. The Laplace transform of the function f(z), z ∈ (0,∞) is defined by

(Lf)(s) =
∫ ∞

0

e−szf(z)dz, s ∈ C.

If the above integral is convergent at a point s0 ∈ C, then it converges absolutely for s ∈ C,

R(s) > R(s0).

Using the above definition, the Laplace transform of the function ϕ(z) =

zβ−1Eα,β(±λzα) is given as

(Lϕ)(s) = sα−β

sα ∓ λ
, R(s) > 0, λ ∈ C, |λs−α| < 1,

and its inverse relationship is given as

L−1

[
sα−β

sα ∓ λ

]
= zβ−1Eα,β(±λzα), R(s) > 0, λ ∈ C, |λs−α| < 1, (1.25)

where L−1 is the inverse Laplace transform operator.

1.3 FRACTIONAL INTEGRALS, FRACTIONAL DERIVATIVES AND

THEIR PROPERTIES

Considerable work has been done on fractional calculus in recent years. Several def-

initions of the fractional integrals and derivatives have been proposed. These include the

Riemann-Liouville, Caputo, Grünwald-Letnikov, Weyl, Marchaud, Miller-Ross, Riesz and

Hilfer fractional derivatives (see [23], [30], [36], [39], [44], [49] for details). Much of the tools

from fractional calculus necessary for this work could be found, among others, in [30], [36],

[39], [44], [49], [51] and [52].

1.3.1 Fractional Integral

For an n-fold integral there is a well known formula∫ x

a

dx

∫ x

a

dx · · ·
∫ x

a

ϕ(x)dx =
1

(n− 1)!

∫ x

a

(x− t)n−1ϕ(t)dt. (1.26)
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Since (n − 1)! = Γ(n), we observe that the right-hand side of (1.26) may have a meaning

for non-integer values of n. So, it is natural to define integration of a non-integer order as

follows.

Definition. Let [a, b] be a finite interval on the real axis R. The Riemann-Liouville frac-

tional integrals Iαa+ and Iαb− of order α > 0 are defined by

(Iαa+f)(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, (1.27)

and

(Iαb−f)(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt (1.28)

respectively. They are also called left-sided and right-sided Riemann-Liouville fractional in-

tegrals respectively [30], [49]. Fractional integrals (1.27) and (1.28) are defined for functions

f(x) ∈ L(a, b), existing almost everywhere.

The following result yields the boundedness of the fractional integration operators

Iαa+f and Iαb−f from the space Lp(a, b)(1 ≤ p ≤ ∞) with the norm||f ||p defined in (1.1).

Lemma 1.3.1. The fractional integration operators Iαa+ and Iαb− with α > 0 are bounded

in Lp(a, b), 1 ≤ p ≤ ∞:

||Iαa+f ||p ≤ K||f ||p, ||Iαb−f ||p ≤ K||f ||p,
(
K =

(b− a)α

α|Γ(α)|

)
. (1.29)

Proof. The proof can be found in Samko et al [49].

We note a simple relation for the ”reflection operator” Q: (Qϕ)(x) = ϕ(a+ b− x)

QIαa+ = Iαb−Q, QIαb− = Iαa+Q. (1.30)

The fractional integration by parts formula∫ b

a

ϕ(x)(Iαa+ψ)(x)dx =

∫ b

a

ψ(x)(Iαb−)(x)dx (1.31)
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is valid. It can be proved directly by interchanging the order of integration by Dirichlet

formula (A-2) in the left-hand side of (1.31). Formula (1.31) is true if

ϕ(x) ∈ Lp, ψ(x) ∈ Lq,
1

p
+

1

q
≤ 1 + α, p ≥ 1, q ≥ 1.

Fractional integration has the following semi-group property:

If α > 0 and β > 0, then the equations

Iαa+I
β
a+ϕ = Iα+β

a+ ϕ and Iαb−I
β
b−ϕ = Iα+β

b− ϕ (1.32)

are satisfied in any point for ϕ(t) ∈ C[a, b] and almost every point for ϕ(t) ∈ L(a, b). They

are true in any point even for ϕ(t) ∈ L(a, b) if α + β ≥ 1. The proof of (1.32) is direct

Iαa+I
β
a+ϕ =

1

Γ(α)Γ(β)

∫ x

a

(x− t)α−1dt

∫ t

a

(t− s)β−1ϕ(s)ds

and interchanging the order of integration by Fubini’s theorem (A-2.1) and setting t =

s+ τ(x− s), we have

Iαa+I
β
a+ϕ =

B(α, β)

Γ(α)Γ(β)

∫ x

a

(x− s)α+β−1ϕ(s)ds,

which gives (1.32).

It can be directly verified that the the fractional integral of the power function ϕ(x) =

(x− a)β−1, R(β) > 0, yields power function of the same form. It is given by [49]

Iαa+ϕ =
Γ(β)

Γ(α + β)
(x− a)α+β−1, α > 0. (1.33)

We obtain the semi-group properties of generalized Kα
P -operator defined in [1]. These are

discussed in section A-4 (see appendix). We note that the work on generalized fractional

operators is done in [2], [29] and [43]. For fractional differentiation, it is natural to introduce

it as an operation inverse to fractional integration.

1.3.2 Riemann-Liouville Fractional Derivative

We define the Riemann-Liouville fractional derivatives according to Bai [6], Kilbas et

al [30], I. Podlubny [44] and Samko et al [49].
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Definition. The Riemann-Liouville fractional derivative operatorsDα
a+f andDα

b−f of order

α > 0 of a continuous function f : (a,∞) → R are defined by

(Dα
a+f)(x) =

1

Γ(n− α)

( d
dx

)n ∫ x

a

(x− t)n−α−1f(t)dt, (1.34)

and

(Dα
b−f)(x) =

(−1)n

Γ(n− α)

( d
dx

)n ∫ b

x

(t− x)n−α−1f(t)dt, (1.35)

where n = [α] + 1, provided that the right sides are pointwise defined on (a,∞).

The composition of the fractional integration operator Iαa+ with the fractional differ-

entiation operator Dα
a+ is given by the following result.

Lemma 1.3.2. Let α > 0 and n = [α] + 1.

(a) If 1 ≤ p ≤ ∞ and f(x) ∈ Iαa+(L
p), then

(Iαa+D
α
a+f)(x) = f(x). (1.36)

(b) If f(x) ∈ L(a, b) and (In−α
a+ f)(x) ∈ ACk[a, b], 0 ≤ k ≤ n− 1 then the equality [52]

(Iαa+D
α
a+f)(x) = f(x)−

n−1∑
k=0

dk

dxk
(In−α

a+ f)(a+)
(x− a)α−n+k

Γ(α− n+ k + 1)
, (1.37)

holds almost everywhere on [a, b].

(c) The equality

(Dα
a+I

α
a+f)(x) = f(x) (1.38)

is valid for any summable function f(x).

Proof. The proof is given in Samko et al. [49], (Theorem 2.4).

It can be directly verified that the the Riemann-Liouville derivative of the power

function ϕ(x) = (x − a)β−1, R(β) > 0 yields power function of the same form. It is given

by [49]

Dα
a+ϕ =

Γ(β)

Γ(β − α)
(x− a)β−α−1, α > 0. (1.39)
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1.3.3 Caputo Fractional Derivative

Next we present the definitions and some properties of the Caputo fractional deriva-

tives.

Definition. Let α ≥ 0. If f(x) ∈ ACn[a, b] then the left-sided and right-sided Caputo

fractional derivatives (CDα
a+f)(x) and (CDα

b−f)(x) exist almost everywhere on [a, b], and

are represented by

(CDα
a+f)(x) =

1

Γ(n− α)

∫ x

a

(x− t)n−α−1fn(t)dt, (1.40)

and

(CDα
b−f)(x) =

(−1)n

Γ(n− α)

∫ b

x

(t− x)n−α−1fn(t)dt, (1.41)

respectively. Where n = [α] + 1.

The following inverse property for Caputo fractional derivative is valid.

Lemma 1.3.3. Let α > 0 and n = [α] + 1. If f(x) ∈ ACn[a, b] then

(Iαa+
CDα

a+f)(x) = f(x)−
n−1∑
k=0

fk(a)

k!
(x− a)k. (1.42)

Proof. This is Lemma 2.22 of Kilbas et al. [30].

Similar result exists for right-sided Caputo fractional derivative as well.

1.3.4 Hilfer Fractional Derivative

In [23], [24] an infinite family of fractional Riemann-Liouville derivatives having the

same order were introduced as follows.

Definition. The Hilfer Fractional Derivative (HFD) or generalized Riemann-Liouville frac-

tional derivative (GRLFD) of order 0 < α < 1, and type 0 ≤ β ≤ 1 with respect to t, is

defined as (
Dα,β

a+ y
)
(t) =

(
I
β(1−α)

a+
d

dt

(
I
(1−β)(1−α)

a+ y
))

(t), (1.43)

whenever the right-hand side exists.
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In Hilfer et al. [25], this definition for n − 1 < α ≤ n, n ∈ N and 0 ≤ β ≤ 1, is

rewritten in a more general form:(
Dα,β

a+ y
)
(t) =

(
I
β(n−α)

a+
dn

dtn

(
I
(1−β)(n−α)

a+ y
))

(t) =
(
I
β(n−α)

a+ Dβ+βn−αβ
a+ y

)
(t). (1.44)

In the above definition, type β allows Dα,β
a+ to interpolate continuously between the classical

Riemann-Liouville fractional derivative and the Caputo fractional derivative. As in the case

β = 0, equation (1.44) reduces to the classical Riemann-Liouville fractional derivative (1.34)

and for β = 1, it gives the Caputo fractional derivative (1.40).

The difference between fractional derivatives of different types becomes apparent from

Laplace transformation. The Laplace transform formula of (1.44) is defined as follows [51],

[52]:

For n− 1 < α ≤ n, n ∈ N and 0 ≤ β ≤ 1, the Laplace transform formula

L{Dα,β
0+ y(t); s} = sαY (s)−

n−1∑
k=0

sn−k−1−β(n−α) d
k

dtk

(
I
(1−β)(n−α)

0+ y
)
(0+), (1.45)

is valid. In [52], the compositional property of Riemann-Liouville fractional integral oper-

ator with the HFD operator is obtained.

Lemma 1.3.4. [52] Let y ∈ L(a, b), n − 1 < α ≤ n, n ∈ N, 0 ≤ β ≤ 1, I
(n−α)(1−β)

a+ y ∈

ACk[a, b]. Then the Riemann-Liouville fractional integral Iαa+ and the HFD operator Dα,β
a+

are connected by the relation(
Iαa+D

α,β
a+ y

)
(t) = y(t)−

n−1∑
k=0

(t− a)k−(n−α)(1−β)

Γ(k − (n− α)(1− β) + 1)
lim
t→a+

dk

dtk

(
I
(n−α)(1−β)

a+ y
)
(t). (1.46)

Proof. Using the representation (1.44) and applying the compositional properties (1.32)

and (1.37) we get(
Iαa+D

α,β
a+ y

)
(t) =

(
Iαa+I

β(n−α)

a+ Dα+βn−αβ
a+ y

)
(t) =

(
I
α+β(n−α)

a+ D
α+β(n−α)

a+ y
)
(t)

= y(t)−
n−1∑
k=0

(t− a)k−(n−α)(1−β)

Γ(k − (n− α)(1− β) + 1)
lim
t→a+

dk

dtk

(
I
(n−α)(1−β)

a+ y
)
(t).
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We obtain a result for the Hilfer derivative of the power function, which is given in

the following Lemma.

Lemma 1.3.5. The following result holds true for the fractional derivative operator Dα,β
a+

defined by (1.44):

Dα,β
a+

[
(x−a)µ−1

]
(t) =

Γ(µ)

Γ(µ− α)
(t−a)µ−α−1, (t > a;α > 0; 0 ≤ β ≤ 1;R(µ) > 0). (1.47)

Proof. We observe from equations (1.39) and (1.33) that

Dα+nβ−αβ
a+

[
(x− a)µ−1

]
(t) =

Γ(µ)

Γ(µ− α− nβ + αβ)
(t− a)µ−α−nβ+αβ−1,

and

I
β(n−α)

a+ Dα+nβ−αβ
a+

[
(x− a)µ−1

]
(t) =

Γ(µ)

Γ(µ− α− nβ + αβ)
· Γ(µ− α− nβ + αβ)

Γ(µ− α)
(t− a)µ−α−1,

which, in light of the definition (1.44) yield

Dα,β
a+

[
(x− a)µ−1

]
(t) = I

β(n−α)

a+ Dα+nβ−αβ
a+

[
(x− a)µ−1

]
(t)

=
Γ(µ)

Γ(µ− α)
(t− a)µ−α−1.

just as in the assertion (1.47) of the Lemma.

1.3.5 Lyapunov Inequality

In this work we establish the Lyapunov-type inequality for the fractional boundary

value problems. The Lyapunov inequality is established for the integer order problem. We

restate the Theorem 0.0.1 discussed in introduction to list in this chapter as one of the

necessary preliminaries for this work. It is stated in the following result.

Theorem 1.3.6. (See [34]) A necessary condition for the Boundary Value Problem (BVP)

Problem P1:

y′′(t) + q(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = 0, (1.48)
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to have nontrivial solutions is that ∫ b

a

|q(s)|ds > 4

b− a
, (1.49)

where q is a real and continuous function. The constant 4 in equation (1.49) is sharp so

that it cannot be replaced by a larger number.
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CHAPTER 2

FRACTIONAL BOUNDARY VALUE AND EIGENVALUE PROBLEMS

In this chapter we consider the general fractional boundary value problems (FBVPs)

and fractional eigenvalue problems (FEVPs). We also discuss three methods for eigenvalue

estimate.

2.1 GENERAL FRACTIONAL BOUNDARY VALUE PROBLEM

Proposition 2.1.1. Let n− 1 < α ≤ n, n ∈ N and β ∈ [0, 1]. We consider the FBVP

Problem P2: (
Dα,β

a+ y
)
(t) + q(t)y(t) = 0, a < t < b, (2.1)

where q is a real valued continuous function in interval [a, b] and boundary conditions are:

Boundary conditions B1:

a1y(a) + a2

(
DI

(2−α)(1−β)

a+ y
)
(a) = 0; D ≡ d

dt
,

b1y(b) + b2Dy(b) = 0, (2.2)

with a21 + a22 ̸= 0, b21 + b22 ̸= 0. OR

Boundary conditions B2:

d1y(a) + d2

(
I
(3−α)(1−β)

a+ y
)
(a) = 0

d3y
′(a) + d4

(
D2I

(3−α)(1−β)

a+ y
)
(a) = 0,

e1y(b) + e2y
′(b) = 0, (2.3)

with d21 + d22 ̸= 0, d23 + d24 ̸= 0, e21 + e22 ̸= 0. OR

Boundary conditions B3:

yi(a) = yi(b) = 0, i = 0, 1 (2.4)

or

yi(a) = yi(b) = 0, i = 0, 2 (2.5)

18



or

yi(a) = y′′(b) = 0, i = 0, 1, 2. (2.6)

Then the FBVP (2.1) can be written in its equivalent integral form as

y(t) =

∫ b

a

G(t, s)q(s)y(s)ds, (2.7)

where G(t, s) is a Green’s function. Green’s function depends on the BVPs which will be

addressed latter in the chapters.

From (2.7), it follows that if y is a nontrivial continuous solution of the FBVPs (2.1)-

(2.2) or (2.1) and (2.3) or (2.1) and (2.4) or (2.1) and (2.5) or (2.1) and (2.6) then

|y(t)| ≤
∫ b

a

|G(t, s)q(s)||y(s)|ds. (2.8)

Let B = C[a, b] be a Banach space endowed a norm

||y||∞ = max
a≤t≤b

|y(t)|, y ∈ B. (2.9)

Hence, from (2.8) we get

||y||∞ ≤ max
a≤t≤b

∫ b

a

|G(t, s)q(s)|ds||y||∞,

or equivalently,

1 ≤ max
a≤t≤b

∫ b

a

|G(t, s)q(s)|ds. (2.10)

Using the properties of Green’s function G(t, s) particularly, maxa≤t,s≤b |G(t, s)| = Gmax in

(2.10) gives the inequality ∫ b

a

|q(s)|ds ≥ 1

Gmax

, (2.11)

called the Lyapunov-type inequality for FBVPs (2.1)-(2.2) or (2.1) and (2.3) or (2.1) and

(2.4) or (2.1) and (2.5) or (2.1) and (2.6). Additionally from (2.7) and the Cauchy-Schwarz

inequality (CSI) we obtain that

y2(t) ≤
[∫ b

a

|G(t, s)q(s)|2ds
] [∫ b

a

y2(s)ds

]
. (2.12)
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Integrating this inequality over [a, b] and then dividing the result by ||y||2, we get

1 ≤
[∫ b

a

∫ b

a

|G(t, s)q(s)|2dsdt
]
, (2.13)

we call (2.13) the CSI for FBVPs (2.1)-(2.2) or (2.1) and (2.3) or (2.1) and (2.4) or (2.1)

and (2.5) or (2.1) and (2.6).

2.2 GENERAL FRACTIONAL EIGENVALUE PROBLEM

Now, consider the following linear Fractional Differential Equation (FDE) and the

boundary conditions. Let n− a < α ≤ n, n ∈ N and β ∈ [0, 1].

Problem P3: (
Dα,β

a+ y
)
(t) + λy(t) = 0, a < t < b, (2.14)

with the boundary conditions B1 OR B2 OR B3 ie.

a1y(a) + a2

(
DI

(2−α)(1−β)

a+ y
)
(a) = 0,

b1y(b) + b2Dy(b) = 0,

OR

d1y(a) + d2

(
I
(3−α)(1−β)

a+ y
)
(a) = 0

e1y(b) + e2y
′(b) = 0,

or

d3y
′(a) + d4

(
D2I

(3−α)(1−β)

a+ y
)
(a) = 0,

e1y(b) + e2y
′(b) = 0,

OR

yi(a) = yi(b) = 0, i = 0, 1

or

yi(a) = yi(b) = 0, i = 0, 2
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or

yi(a) = y′′(b) = 0, i = 0, 1, 2.

where the function y(t) and the number λ are unknown. A function y(t) that satisfies

equations (2.14) and the boundary conditions B1 or B2 or B3 is known as an eigenfunction,

the corresponding λ the eigenvalue associated with y(t), and the problem a fractional

eigenvalue problem (FEP). Next, we give three methods to estimate the lower bound for the

smallest eigenvalue of Problem P3. Note that FBVPs (2.1) with the boundary conditions

B1 or B2 or B3, and P2 are the same except that q(t) in equation (2.1) has been replaced

with λ to obtain equation (2.14). Thus, the LTI equation (2.11) and the CSI equation

(2.13) for FBVPs (2.1) with the boundary conditions B1 or B2 or B3 can be used to find

a lower bound for the smallest eigenvalue of Problem P3. These are called two methods;

LTI and CSI methods. In the discussion to follow, we will use the following definition for

a Lyapunov inequality lower bound.

Definition. A Lyapunov Inequality Lower Bound (LILB) is defined as a lower estimate for

the smallest eigenvalue obtained from Lyapunov-type inequality given in equation (2.11).

Setting q(t) = λ in (2.11), we obtain LILB of Problem P3 as

λ ≥ 1

(b− a)Gmax

.

If we replace q(t) = λ in (2.13), then we obtain a lower bound for the smallest eigenvalue

of Problem P3

λ ≥
[∫ b

a

∫ b

a

G2(t, s)dsdt

]− 1
2

. (2.15)

In the discussion to follow, we define a Cauchy-Schwarz Inequality Lower Bound as follows:

Definition. A Cauchy-Schwarz Inequality Lower Bound (CSILB) is defined as an estimate

of the lower bound for the smallest eigenvalue obtained from the Cauchy-Schwarz inequality

of type given in equation (2.15).
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To describe the Semi Maximum Norm method, note that a linear FBVP P2 reduces

to

1 ≤ max
a≤t≤b

∫ b

a

|G(t, s)q(s)|ds

(see (2.10)), and for a FEP P3, q(s) in the above equation is replaced with λ to obtain

λ ≥ 1

maxa≤t≤b

∫ b

a
|G(t, s)|ds

. (2.16)

The above inequality gives a lower bound estimate for the smallest eigenvalue. In this case,

we do not take the maximum norm of |G(t, s)| but only the maximum norm of the integral∫ b

a
|G(t, s)|ds over [a, b], and for this reason, we call this method of obtaining a lower bound

for λ the Semi Maximum Norm method. Also note that

max
a≤t≤b

∫ b

a

|G(t, s)|ds ≤ (b− a) max
[a,b]×[a,b]

|G(t, s)|

and therefore the Semi Maximum Norm method provides a better estimate for the smallest

eigenvalue than that provided by the Lyapunov-type inequalities. In the sequel we define

a Semi Maximum Norm Lower Bound as follows.

Definition. A Semi Maximum Norm Lower Bound (SMNLB) is defined as the lower es-

timate for the smallest eigenvalue obtained from the Semi Maximum Norm inequality of

type given in (2.16).
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CHAPTER 3

LYAPUNOV-TYPE INEQUALITY AND EIGENVALUE ESTIMATES FOR

FRACTIONAL PROBLEMS OF ORDER α, α ∈ (1, 2]

In this section we establish Lyapunov-type inequalities for the FBVPs with the Dirich-

let, and a mixed set of Dirichlet and Neumann boundary conditions. We also obtain the

eigenvalue estimates for the smallest eigenvalue of FEPs. We apply these estimates to

obtain the interval in which certain Mittag-Leffler functions have no real zeros.

3.1 LYAPUNOV-TYPE INEQUALITY FOR FBVP WITH THE DIRICH-

LET BOUNDARY CONDITIONS

Replacing a1 = b1 = 1, a2 = b2 = 0 in equation (2.2) we obtain the FBVP from (2.1)

with n = 2 as follows.

Problem P4:(
Dα,β

a+ y
)
(t) + q(t)y(t) = 0, a < t < b, 1 < α ≤ 2, 0 ≤ β ≤ 1,

y(a) = y(b) = 0. (3.1)

Lemma 3.1.1. Problem P4 can be written as (2.7) where

G(t, s) =
1

Γ(α)


(

t−a
b−a

)1−(2−α)(1−β)

(b− s)α−1 − (t− s)α−1, a ≤ s ≤ t ≤ b,(
t−a
b−a

)1−(2−α)(1−β)

(b− s)α−1, a ≤ t ≤ s ≤ b,

(3.2)

is the Green’s function for the problem.

Proof. Taking Iαa+ on the first equation of P4 and using Lemma 1.3.4, we obtain

y(t) = c1
(t− a)−(2−α)(1−β)

Γ(1− (2− α)(1− β))
+ c2

(t− a)1−(2−α)(1−β)

Γ(2− (2− α)(1− β))
−
∫ t

a

(t− s)α−1

Γ(α)
q(s)y(s)ds,

(3.3)

where c1 and c2 are the real constants given by

c1 =
(
I
(2−α)(1−β)

a+ y
)
(a), c2 =

d

dt

(
I
(2−α)(1−β)

a+ y
)
(a).
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Since y(a) = 0, we get c1 = 0. Now y(b) = 0 gives

c2 =
Γ(2− (2− α)(1− β))

Γ(α)(b− a)1−(2−α)(1−β)

∫ b

a

(b− s)α−1q(s)y(s)ds.

Hence, equality (3.3) becomes

y(t) =
1

Γ(α)

( t− a

b− a

)1−(2−α)(1−β)
∫ b

a

(b− s)α−1q(s)y(s)ds− 1

Γ(α)

∫ t

a

(t− s)α−1q(s)y(s)ds,

which can be written as equation (2.7) with G(t, s) given by (3.2). This concludes the

proof.

Lemma 3.1.2. The function G defined in Lemma 3.1.1 satisfies the following property:

|G(t, s)| ≤ (b− a)α−1[α− 1 + β(2− α)]α−1+β(2−α)[α− 1]α−1

Γ(α)[α− (2− α)(1− β)]α−(2−α)(1−β)
, (3.4)

(t, s) ∈ [a, b]× [a, b].

Proof. Let us define two functions

G1(t, s) := (b− s)α−1
( t− a

b− a

)1−(2−α)(1−β)

− (t− s)α−1, a ≤ s ≤ t ≤ b,

and

G2(t, s) := (b− s)α−1
( t− a

b− a

)1−(2−α)(1−β)

, a ≤ t ≤ s ≤ b.

Here, G2 is an increasing function in t. And 0 ≤ G2(t, s) ≤ G2(s, s). Using
(

t−a
t−s

)2−α

>(
b−a
b−s

)2−α

and since 0 ≤ β(2− α) < 1, we get ( t−a
b−a

)β(2−α) < 1, for a ≤ s < t ≤ b, we get

∂G1

∂s
= (α− 1)(t− a)α−2

[(t− a

t− s

)2−α

−
(b− a

b− s

)2−α( t− a

b− a

)1+β(2−α)
]
≥ 0. (3.5)

Hence, for a given t, G1(t, s) is an increasing function of s ∈ [a, t]. Hence,

max
t∈[a,b]

|G(t, s)| = G(t, t).

Here,

G(t, t) =
1

Γ(α)

( t− a

b− a

)1−(2−α)(1−β)

(b− t)α−1.
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Let

f(t) = (t− a)1−(2−α)(1−β)(b− t)α−1, t ∈ [a, b].

Now, we differentiate f(t) on (a, b), and we obtain after simplifications

f ′(t) = (t− a)−(2−α)(1−β)(b− t)α−2 [(1− (2− α)(1− β))(b− t)− (α− 1)(t− a)] .

Observe that f ′(t) has a unique zero, attained at the point

t = t∗ =
b(2− α)(1− β)− b− a(α− 1)

(2− α)(1− β)− α
.

Since, f ′′(t∗) ≤ 0, we conclude that

max
t∈[a,b]

f(t) = f(t∗) =
(b− a)α−(2−α)(1−β)[1− (2− α)(1− β)]1−(2−α)(1−β)[α− 1]α−1

[α− (2− α)(1− β)]α−(2−α)(1−β)
.

This gives

|G(t, t)| ≤ (b− a)α−1[1− (2− α)(1− β)]1−(2−α)(1−β)[α− 1]α−1

Γ(α)[α− (2− α)(1− β)]α−(2−α)(1−β)
.

This completes the proof of Lemma.

Theorem 3.1.3. If a nontrivial continuous solution of the problem P4 exists, then for P4

the LTI is ∫ b

a

|q(s)|ds ≥ Γ(α)[α− (2− α)(1− β)]α−(2−α)(1−β)

(b− a)α−1[α− 1 + β(2− α)]α−1+β(2−α)[α− 1]α−1
(3.6)

and in particular, for α = 2 and β = 0 or β = 1 in P4 gives the standard Lyapunov

inequality for BVP (1.48) as (1.49).

Proof. Using (3.4) in LTI equation (2.11) proves the inequality (3.6). Replacing α = 2 and

β = 0 or β = 1 in (3.6) we obtain (1.49).
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3.1.1 Eigenvalue Problem with the Dirichlet boundary conditions and Eigen-

value Estimates

Setting a1 = b1 = 1, a2 = b2 = 0 in equation (2.2) and from (2.14) with n = 2, we

obtain the FEP

Problem P5: (
Dα,β

a+ y
)
(t) + λy(t) = 0, a < t < b, 1 < α ≤ 2, 0 ≤ β ≤ 1,

y(a) = y(b) = 0. (3.7)

Corollary 3.1.4. Let λ be the smallest eigenvalue of FEP P5. Then for α ∈ (1, 2] and

β ∈ [0, 1], the smallest eigenvalue estimates of FEP P5 are given by

1. the LILB

λ ≥ Γ(α)[α− (2− α)(1− β)]α−(2−α)(1−β)

(b− a)α[α− 1 + β(2− α)]α−1+β(2−α)[α− 1]α−1
(3.8)

and in particular, for integer order eigenvalue problem (IOEP) P5, i.e. α = 2 and

β = 0 or β = 1 this bound is

λ ≥ 4

(b− a)2
(3.9)

2. the SMNLB

λ ≥ Γ(α + 1)α
α

1−β(2−α)

(b− a)α[α− 1 + β(2− α)]
α−1+β(2−α)
1−β(2−α) [1− β(2− α)]

(3.10)

and in particular, for IOEP P5, this bound is

λ ≥ 8

(b− a)2
(3.11)

3. and CSILB

λ ≥ Γ(α)

(b− a)α

[
4α− 1 + 2β(2− α)

2α(2α− 1)[2α− 1 + 2β(2− α)]
− 2

α
C1(α)

]−1/2

, (3.12)

where C1(α) =
∫ 1

0
tα−(2−α)(1−β)+1

2F1(1− α, 1;α+ 1; t)dt and 2F1(a, b; c; t) is a hyper-

geometric function and in particular, for IOEP P5, CSILB is

λ ≥ 3
√
10

(b− a)2
. (3.13)
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Proof. Setting q(t) = λ in equations (3.6) and (1.49), the inequalities in the first part

follow. Substituting the Green’s function from equation (3.2), in (2.16) and (2.15), and

simplifying the results, we obtain the inequalities respectively in equations (3.10) and (3.12).

Setting α = 2 in equations (3.8), (3.10) and (3.12) we get the inequalities (3.9), (3.11) and

(3.13).

We first consider the integer order case, i.e. α = 2 and β = 0 or β = 1, and a = 0 and

b = 1. For this case, the LILB, SMNLB and CSILB for the smallest λ of FEP P5 are given

as 4, 8 and 3
√
10 ≃ 9.48683, respectively (see equations (3.9), (3.11) and (3.13)) . For

α = 2, the FEP P5 with a = 0 and b = 1 can be solved in closed form using the tools from

integer order calculus. Results show, that the smallest eigenvalue of FEP P5 for α = 2 is

the root of sin(
√
λ) = 0, which gives the smallest eigenvalue as λ ≃ 9.86960. Comparing

this λ with its estimate above, it is clear that among LILB, SMNLB and CSILB for integer

α the CSILB provides the best estimate for the smallest eigenvalue. The FEP P5 can also

be solved and its eigenvalues can be determined for arbitrary α, α ∈ (1, 2] as a root of the

Mittag-Leffler function Eα,α+β(2−α)(z). This is explained in the following theorem and its

proof.

Theorem 3.1.5. For 1 < α ≤ 2, β ∈ [0, 1], a = 0 and b = 1, the FEP P5 has an infinite

number of eigenvalues, and they are the roots of the Mittag-Leffler function Eα,α+β(2−α)(z),

i.e. the eigenvalues satisfy

Eα,α+β(2−α)(−λ) = 0. (3.14)

Proof. To prove this, we take Laplace transform of the first equation in P5 with a = 0 and

b = 1, using (1.45) for n = 2 which after some manipulations leads to

Y (s) =
a0s

1−β(2−α)

sα + λ
+
a1s

−β(2−α)

sα + λ
, (3.15)

where Y (s) is the Laplace transform of y(t) and ai = Di
[
I
(1−β)(2−α)

0+ y
]
(0+), i = 0, 1. Taking

inverse Laplace transform of equation (3.15) and using equation (1.25), we obtain

y(t) = a0t
(α−1+β(2−α))−1Eα,α−1+β(2−α)(−λtα) + a1t

α+β(2−α)−1Eα,α+β(2−α)(−λtα). (3.16)
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Using the boundary conditions of P5 we obtain (3.14).

We compute the smallest eigenvalues for FEP P5 from equation (3.14) and its LILB,

SMNLB and CSILB for different α, α ∈ (1, 2] and β = 0, 1 from equations (3.8), (3.10) and

(3.12). Notice that according the definition of Hilfer derivative in (1.44), β = 0, β = 1 and

n = 2 give respectively the results for classical Riemann-Liouville and Caputo derivative

FBVP as well as FEVP. A few results reduce to the the work on LTI for FBVPs in [15],

and [16]. Particularly, for β = 0 and β = 1 in FBVP P4 and FEP P5, reduce to the results

in [15] and [16] respectively. The results are shown in the following tables 3.1 and 3.2.

LTI LILB SMNLB CSILB∫ b

a
|q(s)|ds ≥ λ ≥ λ ≥ λ ≥ Γ(α)

(b−a)α
·

Γ(α)4α−1

(b−a)α−1 [15] Γ(α)4α−1

(b−a)α
[15] Γ(α+1)αα

(b−a)α(α−1)α−1

[
4α−1

2α(2α−1)2
− 2

α
C1(α)

]−1/2

;

C1(α) =∫ 1

0
t2α−1

2F1(1− α, 1;α + 1; t)dt

Table 3.1. Results for α ∈ (1, 2] and β = 0 (FBVP P4 and FEP P5
with Riemann-Liouville derivative)

For comparison purpose, we compute the smallest eigenvalues for FEP P5 with a = 0

and b = 1 for particular values of type β = 0 and β = 1 and its LILB, SMNLB and CSILB

for different α, α ∈ (1, 2] from Tables 3.1 and 3.2. The results are shown in figures 3.1 and

3.2 respectively. These figures clearly demonstrate that among the three estimates consid-

ered here, the LILB provides the worse estimate and the CSILB and SMNLB provide better

estimate for the smallest eigenvalues of FEP P5 for β = 0, 1. We use MATHEMATICA

and MATLAB code to find the smallest eigenvalue of the Mittag-Leffler functions. We note

that the MATLAB code was contributed by Podlubny [45], and the algorithm is based on
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LTI LILB SMNLB CSILB∫ b

a
|q(s)|ds ≥ λ ≥ λ ≥ λ ≥ Γ(α)

(b−a)α
·

Γ(α)αα

(b−a)α−1(α−1)α−1 [16]
Γ(α)αα

(b−a)α(α−1)α−1 [16]
Γ(α+1)α

α
α−1

(b−a)α(α−1)

[
2α+3

6α(2α−1)
− 2

α
C1(α)

]−1/2

;

C1(α) =∫ 1

0
tα+1

2F1(1− α, 1;α + 1; t)dt

Table 3.2. Results for α ∈ (1, 2] and β = 1 (FBVP P4 and FEP P5
with Caputo derivative)

the paper of Gorenflo et al. [17]. By this code we can calculate the MittagLeffler func-

tion with desired accuracy. Throughout this work we calculate the MittagLeffler function

with the accuracy 10−5. Setting β = 1 in equation (3.14), it reduces to Eα,2(−λ) = 0.

We analyzed that Eα,2(z) has no solution for α = 1.1 to α = 1.5991152. Furthermore,

for α = 1.5991152, Eα,2(z) has no real zeros and an infinite number of complex zeros.

Whereas for α = 1.5991153, Eα,2(z) has two real zeros and an infinite number of complex

zeros. (see [12], [18]). We note that if α = 1.5991153 to α = 2, the FEP P5 with a = 0,

b = 0 and β = 1 has zero solutions. For α = 1.5991153, 1.6, 1.7, 1.8, 1.9, 2, we calculate the

eigenvalues. Which is shown in figure 3.2.

We now consider an application of the lower bounds for the smallest eigenvalues of

FEP P5 found in Corollary 3.1.4 and Theorem 3.1.5. In [15], [16], [26], [27], [28] and

[48], the authors have applied the LILB to the FEPs for α ∈ (1, 2] to find the interval in

which certain Mittag-Leffler functions have no real zeros. On the other hand, in [43], we

applied the improved bounds to obtain these intervals for certain Mittag-Leffler functions

for α ∈ (2, 3]. We follow a similar procedure, which is discussed in the following theorem.

29



1.2 1.4 1.6 1.8 2
0

2

4

6

8

α

λ

 

 

LILB
SMNLB
CSILB
LE

Figure 3.1. Comparison of the lower bounds for λ obtained from max-
imum norm, Lyapunov-type and Cauchy-Schwarz inequalities with the
lowest eigenvalue. (−◦−: LILB; −+− : SMNLB; −∗−: CSILB; −2−:
LE - the Lowest Eigenvalue λ) (a = 0, b = 1, β = 0, Riemann-Liouville
derivative FEP P5 )

Theorem 3.1.6. Let 1 < α ≤ 2 if β = 0, and 1.5991153 ≤ α ≤ 2 if β ∈ (0, 1]. Then based

on the LILB, SMNLB and CSILB inequalities, the Mittag-Leffler function Eα,α+β(2−α)(z)

has no real zeros in the following domains:

LILB inequality:

z ∈
(
− Γ(α)[α− (2− α)(1− β)]α−(2−α)(1−β)

[α− 1 + β(2− α)]α−1+β(2−α)[α− 1]α−1
, 0

]
, (3.17)

SMNLB inequality:

z ∈
(
− Γ(α + 1)α

α
1−β(2−α)

[α− 1 + β(2− α)]
α−1+β(2−α)
1−β(2−α) [1− β(2− α)]

, 0
]
, (3.18)

CSILB inequality:

z ∈

(
−Γ(α)

[
4α− 1 + 2β(2− α)

2α(2α− 1)[2α− 1 + 2β(2− α)]
− 2

α
C1(α)

]−1/2

, 0

]
. (3.19)

Proof. Let λ be the smallest eigenvalue of the FEP P5, then z = λ is the smallest value

of z for which Eα,α+β(2−α)(−z) = 0. If there is another z smaller than λ for which
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Figure 3.2. Comparison of the lower bounds for λ obtained from max-
imum norm, Lyapunov-type and Cauchy-Schwarz inequalities with the
lowest eigenvalue. (− ◦ −: LILB; − + − : SMNLB; − ∗ −: CSILB;
−2−: LE - the Lowest Eigenvalue λ) (a = 0, b = 1, β = 1, Caputo
derivative FEP P5 )

Eα,α+β(2−α)(−z) = 0, then it will contradict that λ is the smallest eigenvalue. Therefore,

Eα,α+β(2−α)(z) has no real zero for z ∈ (−λ, 0]. Now, according to LILB,

λ ≥ Γ(α)[α− (2− α)(1− β)]α−(2−α)(1−β)

[α− 1 + β(2− α)]α−1+β(2−α)[α− 1]α−1

(see equation (3.8)). Thus, Eα,α+β(2−α)(z) has no real zero for

z ∈
(
− Γ(α)[α− (2− α)(1− β)]α−(2−α)(1−β)

[α− 1 + β(2− α)]α−1+β(2−α)[α− 1]α−1
, 0

]
.

This proves equation (3.17). Equations (3.18) and (3.19) are proved in a similar fashion.

From figures 3.1 and 3.2, it is clear that among the three inequalities discussed here,

LILB provides the smallest interval, and CSILB and SMNLB provide the larger intervals in

which the Mittag-Leffler function Eα,α+β(2−α)(z) has no real zero. Particularly, we discuss

two cases, β = 0 and β = 1.

31



3.2 LYAPUNOV-TYPE INEQUALITY FOR FBVP WITH A MIXED SET

OF DIRICHLET AND NEUMANN BOUNDARY CONDITIONS

Setting a1 = b2 = 1, a2 = b1 = 0 in equation (2.2) and from (2.1) with n = 2, we

obtain the FBVP

Problem P6:

(
Dα,β

a+ y
)
(t) + q(t)y(t) = 0, a < t < b, 1 < α ≤ 2, 0 ≤ β ≤ 1,

y(a) = 0, Dy(b) = 0. (3.20)

We note that to establish the Lyapunov-type inequality for Problem P6, we employ the

methods of Jleli, Ragoub and Samet [26], [27] in the following argument. We begin by

rewriting the Greens function in terms of H(t, s).

Lemma 3.2.1. Problem P6 can be written as (2.7) where G(t, s) = H(t,s)
Γ(α)(b−s)2−α and H(t, s)

is given by

H(t, s) =


(α−1)(t−a)1−(2−α)(1−β)(b−a)(2−α)(1−β)

1−(2−α)(1−β)
− (t− s)α−1(b− s)2−α, a ≤ s ≤ t ≤ b,

(α−1)(t−a)1−(2−α)(1−β)(b−a)(2−α)(1−β)

1−(2−α)(1−β)
, a ≤ t ≤ s ≤ b.

(3.21)

Proof. Taking Iαa+ on the first equation of P6 and using Lemma 1.3.4, we get equation (3.3)

as discussed in Lemma 3.1.1, that is

y(t) = c1
(t− a)−(2−α)(1−β)

Γ(1− (2− α)(1− β))
+ c2

(t− a)1−(2−α)(1−β)

Γ(2− (2− α)(1− β))
− 1

Γ(α)

∫ t

a

(t− s)α−1q(s)y(s)ds.

Since, y(a) = 0, we obtain c1 = 0. Thus we get

y(t) = c2
(t− a)1−(2−α)(1−β)

Γ(2− (2− α)(1− β))
− 1

Γ(α)

∫ t

a

(t− s)α−1q(s)y(s)ds.

The time derivative of the above equation gives

Dy(t) = c2[1−(2−α)(1−β)] (t− a)−(2−α)(1−β)

Γ(2− (2− α)(1− β))
−α− 1

Γ(α)

∫ t

a

(t−s)α−1q(s)y(s)ds. (3.22)
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Now y′(b) = 0 gives

c2 =
Γ(2− (2− α)(1− β))(α− 1)(b− a)(2−α)(1−β)

[1− (2− α)(1− β)]Γ(α)

∫ b

a

(b− s)α−2q(s)y(s)ds.

Hence, we get

y(t) =
(α− 1)(t− a)1−(α−2)(1−β)(b− a)(2−α)(1−β)

Γ(α)[1− (2− α)(1− β)]

∫ b

a

(b− s)α−2q(s)y(s)ds

− 1

Γ(α)

∫ t

a

(t− s)α−1q(s)y(s)ds.

This concludes the proof.

Lemma 3.2.2. The function H defined in Lemma 3.2.1 satisfies the following property:

|H(t, s)| ≤ b− a

α− 1 + β(2− α)
max

{
α− 1, β(2− α)

}
,

(t, s) ∈ [a, b]× [a, b].

Proof. Here H(t, s) is an increasing function of t for a ≤ t < s ≤ b. For a ≤ s < t ≤ b and

a fixed s ∈ [a, b], since,
(

b−a
t−a

)(2−α)(1−β)

<
(

b−a
t−a

)(2−α)

<
(

b−s
t−s

)2−α

, we get

∂H

∂t
= (α− 1)

[(b− a

t− a

)(2−α)(1−β)

−
(b− s

t− s

)2−α
]
≤ 0.

So, in a ≤ s < t ≤ b for a given s, H(t, s) is a decreasing function of t ∈ [s, b]. Hence,

max
t∈[a,b]

H(t, s) ≤ max{|H(s, s)|, |H(b, s)|}.

After some calculations we obtain

|H(b, s)| ≤ b− a

α− 1 + β(2− α)
max{α− 1, β(2− α)}

and

|H(s, s)| ≤ (α− 1)(s− a)1−(2−α)(1−β)

α− 1 + β(2− α)(b− a)(α−2)(1−β)

≤ (α− 1)(b− a)

α− 1 + β(2− α)
,

which concludes the proof.
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Theorem 3.2.3. If a nontrivial continuous solution of the FBVP P6 exists, then the LTI

is given by ∫ b

a

(b− s)α−2|q(s)|ds ≥ Γ(α)[α− 1 + β(2− α)]

(b− a)max
{
α− 1, β(2− α)

} . (3.23)

Proof. Using Lemma 3.2.1 in equation (2.10) we obtain

1 ≤ 1

Γ(α)
max
a≤t≤b

∫ b

a

(b− s)α−2|H(t, s)q(s)|ds.

Now an application of Lemma 3.2.2 proves the inequality (3.23).

3.2.1 Eigenvalue Problem with a mixed set of Dirichlet and Neumann bound-

ary conditions and Eigenvalue Estimates

Setting a1 = b2 = 1, a2 = b1 = 0 in equation (2.2) and from (2.14) with n = 2, we

obtain the FEP

Problem P7:

(
Dα,β

a+ y
)
(t) + λy(t) = 0, a < t < b, 1 < α ≤ 2, 0 ≤ β ≤ 1,

y(a) = Dy(b) = 0. (3.24)

The eigenvalue estimates for the smallest eigenvalue of FEP P7 can be obtained in the

similar way as we discussed in Corollary 3.1.4.

Corollary 3.2.4. Let λ be the smallest eigenvalue of FEP P7. For α ∈ (1, 2] and β ∈ [0, 1]

the eigenvalue estimates for the smallest eigenvalue of FEP P7 are given by

1. the LILB

λ ≥ Γ(α)(α− 1)[α− 1 + β(2− α)]

(b− a)αmax
{
α− 1, β(2− α)

} (3.25)

and in particular, for IOEP P7, i.e. α = 2 and β = 0 or β = 1 this bound is

λ ≥ 1

(b− a)2
(3.26)
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2. the SMNLB

λ ≥ Γ(α+ 1)[α− 1 + β(2− α)]α

(b− a)α [2(α− 1)α−1 − (α− 1 + β(2− α))α−1(1− β(2− α))]
(3.27)

and in particular, for IOEP P7, SMNLB is

λ ≥ 2

(b− a)2
(3.28)

3. and CSILB

λ ≥ Γ(α)
(b−a)α

[
2α(α−1)2(2α−1)+[α−1+β(2−α)]2[2α−1+2β(2−α)](2α−3)

2α(2α−1)[α−1+β(2−α)]2[2α−1+2β(2−α)](2α−3)
− 2(α−1)C2(α)

α[1−(2−α)(1−β)]

]−1/2

,

(3.29)

where C2(α) =
∫ 1

0
tα−(2−α)(1−β)+1

2F1(2−α, 1;α+1; t)dt, α > 3
2
and in particular, for

IOEP P7, CSILB is

λ ≥
√
6

(b− a)2
. (3.30)

Proof. Setting q(t) = λ in equation (3.23) and evaluating the resulting integral, the first

inequality in the first part follows. Substituting the Green’s function from equation (3.21),

in (2.15) and simplifying the result, we obtain the inequality in equation (3.29). Substitut-

ing α = 2 and β = 0 or β = 1, in inequalities (3.25) and (3.29), prove the inequalities (3.26)

and (3.30) respectively. To prove (2), notice that the maximum of
∫ b

a
|G(t, s)|ds occurs at

t = b for s ∈ [a, t]. From (3.21) we get

(b− a)(α− 1)

1− (2− α)(1− β)
− (b− s) = 0

which is satisfied by

s = s∗ =
bβ(2− α) + a(α− 1)

α− 1 + β(2− α)
.

Hence,

max
t∈[a,b]

∫ b

a

|G(t, s)|ds =
∫ s∗

a

|G(b, s)|ds+
∫ b

s∗
|G(b, s)|ds. (3.31)
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Using G(t, s) from (3.21) in (3.31) we obtain

max
t∈[a,b]

∫ b

a

|G(t, s)|ds = 2(α− 1)α−1 − (α− 1 + β(2− α))α−1(1− β(2− α))

(b− a)−αΓ(α + 1)[α− 1 + β(2− α)]α
. (3.32)

Substituting (3.32) in (2.16) completes the proof.

We notice that (3.29) becomes unbounded when α ≤ 3
2
. Hence the CSILB for FEP

P7 holds for α > 3
2
.

For the integer order case, i.e. α = 2, a = 0 and b = 1, the LILB, SMNLB and CSILB

for the smallest λ of FEP P7 are given as 1, 2 and
√
6 ≃ 2.4495, respectively (see equations

(3.26), (3.28) and (3.30)) . For α = 2, the smallest eigenvalue of FEP P7 with a = 0 and

b = 1 is the root of cos(
√
λ) = 0, which gives the smallest eigenvalue as λ ≃ 2.4674011.

Comparing this λ with its estimate above, it is clear that among LILB, SMNLB and CSILB

for integer α the CSILB provides the best estimate for the smallest eigenvalue.

The eigenvalues of the FEP P7 for α ∈ (1, 2] are the roots of the Mittag-Leffler function

given in the following theorem.

Theorem 3.2.5. The FEP P7 for 1 < α ≤ 2, β ∈ [0, 1], a = 0 and b = 1 has

an infinite number of eigenvalues, and they are the roots of the Mittag-Leffler function

Eα,α+β(2−α)−1(z), i.e. the eigenvalues satisfy

Eα,α+β(2−α)−1(−λ) = 0 (3.33)

Proof. The proof is similar to the proof of Theorem 3.1.5.

We compute the smallest eigenvalues for FEP P7 from equation (3.33) and its LILB,

SMNLB and CSILB for different α, α ∈ (1, 2] and β = 0 and β = 1 from equations (3.25),

(3.27) and (3.29). The results are shown in the following tables 3.3 and 3.4.

For comparison purpose, we compute the smallest eigenvalues for FEP P7 with a = 0

and b = 1 for particular values of type β = 0 and β = 1 and its LILB, SMNLB and CSILB

for different α, α ∈ (1, 2] from tables 3.3 and 3.4. The results are shown in figures 3.3 and

36



LTI LILB SMNLB CSILB∫ b

a
(b− s)α−2|q(s)|ds λ ≥ λ ≥ λ ≥ Γ(α)

(b−a)α
·

≥ Γ(α)
b−a

Γ(α)(α−1)
(b−a)α

Γ(α+1)(α−1)α

(b−a)α

[
4α−3

2α(2α−1)(2α−3)
− 2C2(α)

α

]−1/2

,

α > 3
2
, C2(α) =∫ 1

0
t2α−1

2F1(2− α, 1;α + 1; t)dt

Table 3.3. Results for α ∈ (1, 2] and β = 0 (FBVP P6 and FEP P7
with Riemann-Liouville derivative)

3.4 respectively. We note that a few results for the particular case β = 1 in FBVP and

FEP P7, reduce to the results in [27] (page 447, 449). From the figures it is clear that the

CSILB and SMNLB provide better estimate for the smallest eigenvalues than LILB of FEP

P7 for β = 0 and β = 1. We notice that in figure 3.3, the CSILB is valid for α ∈ (1.5, 2].

We apply the lower bounds for the smallest eigenvalues of FEP P7 with a = 0 and

b = 1 found in Corollary 3.2.4 and Theorem 3.2.5 for α ∈ (1, 2] to find the interval in which

the Mittag-Leffler function Eα,α+β(2−α)−1(z) has no real zeros.

Theorem 3.2.6. Let 1 < α ≤ 2. The Mittag-Leffler function Eα,α+β(2−α)−1(z) has no real

zeros in the following domains:

LILB inequality:

z ∈

−Γ(α)(α− 1)[α− 1 + β(2− α)]

max
{
α− 1, β(2− α)

} , 0

 , (3.34)

SMNLB inequality:

z ∈
(
− Γ(α + 1)[α− 1 + β(2− α)]α

[2(α− 1)α−1 − (α− 1 + β(2− α))α−1(1− β(2− α))]
, 0
]
, (3.35)
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Figure 3.3. Comparison of the lower bounds for λ obtained from max-
imum norm, Lyapunov-type and Cauchy-Schwarz inequalities with the
lowest eigenvalue. (−◦−: LILB; −+− : SMNLB; −∗−: CSILB; −2−:
LE - the Lowest Eigenvalue λ) (a = 0, b = 1, β = 0, Riemann-Liouville
derivative FEP P7 )
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Figure 3.4. Comparison of the lower bounds for λ obtained from max-
imum norm, Lyapunov-type and Cauchy-Schwarz inequalities with the
lowest eigenvalue. (− ◦ −: LILB; − + − : SMNLB; − ∗ −: CSILB;
−2−: LE - the Lowest Eigenvalue λ) (a = 0, b = 1, β = 1, Caputo
derivative FEP P7 )
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LTI LILB SMNLB CSILB∫ b

a
(b− s)α−2|q(s)|ds λ ≥ λ ≥ λ ≥ Γ(α)

(b−a)α
·

≥ Γ(α+1)
(b−a)α

·
[
2(α−1)2α(2α−1)+3(2α−3)

6α(2α−1)(2α−3)

Γ(α)
(b−a)max{α−1,2−α} [27]

Γ(α)(α−1)
(b−a)α max{α−1,2−α} [27]

(α−1)−1

2(α−1)α−2−1
−2(α−1)C2(α)

α

]−1
2
;

α > 3
2
, C2(α) =∫ 1

0
tα+1

2F1(2− α, 1;α + 1; t)dt

Table 3.4. Results for α ∈ (1, 2] and β = 1 (FBVP P6 and FEP P7
with Caputo derivative)

CSILB inequality:

z ∈
(
−Γ(α)

[
2α(α−1)2(2α−1)+[α−1+β(2−α)]2[2α−1+2β(2−α)](2α−3)

2α(2α−1)[1−(2−α)(1−β)]2[2α−1+2β(2−α)](2α−3)
− 2(α−1)C2(α)

α[1−(2−α)(1−β)]

]−1/2

, 0

]
.

(3.36)

Proof. The proof is similar to the proof of Theorem 3.1.6.

From figures 3.3 and 3.4, it is clear that among the three inequalities, LILB provides

the smallest interval, and CSILB and SMNLB provide the larger intervals in which the

Mittag-Leffler functions Eα,α+β(2−α)−1(z) for β = 0 and β = 1, have no real zero.
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CHAPTER 4

LYAPUNOV-TYPE INEQUALITY AND EIGENVALUE ESTIMATES FOR

FRACTIONAL PROBLEMS OF ORDER α, α ∈ (2, 3]

In this chapter we establish Lyapunov-type inequalities for the Hilfer derivative frac-

tional boundary value problem with a mixed set of Dirichlet and Neumann, and a mixed

set of fractional Dirichlet, Neumann and fractional Neumann boundary conditions. We

also obtain the eigenvalue estimates for the smallest eigenvalue of FEPs. We apply these

estimates to obtain the interval in which Mittag-Leffler functions have no real zeros.

4.1 LYAPUNOV-TYPE INEQUALITY FOR FBVP WITH A MIXED SET

OF DIRICHLET AND NEUMANN BOUNDARY CONDITIONS

Setting d1 = d3 = 1, d2 = d4 = 0, and e2 = 1, e1 = 0 in equation (2.3) we obtain from

equation (2.1) with n = 3 the FBVP

Problem P8: (
Dα,β

a+ y
)
(t) + q(t)y(t) = 0, α ∈ (2, 3], β ∈ [0, 1], a < t < b,

y(a) = 0, y′(a) = 0, y′(b) = 0, (4.1)

Lemma 4.1.1. Problem P8 can be written as (2.7) where

G(t, s) =
1

Γ(α)


(α−1)(t−a)2−(3−α)(1−β)(b−s)α−2

(b−a)1−(3−α)(1−β)[2−(3−α)(1−β)]
− (t− s)α−1, a ≤ s ≤ t ≤ b,

(α−1)(t−a)2−(3−α)(1−β)(b−s)α−2

(b−a)1−(3−α)(1−β)[2−(3−α)(1−β)]
, a ≤ t ≤ s ≤ b,

(4.2)

is the Green’s function for the problem.

Proof. Taking Iαa+ on the first equation of P8 and using Lemma 1.3.4 with n = 3, we obtain

y(t) = c1
(t− a)−(3−α)(1−β)

Γ(1− (3− α)(1− β))
+ c2

(t− a)1−(3−α)(1−β)

Γ(2− (3− α)(1− β))
+ c3

(t− a)2−(3−α)(1−β)

Γ(3− (3− α)(1− β))

−
∫ t

a

(t− s)α−1

Γ(α)
q(s)y(s)ds, (4.3)
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where c1, c2 and c3 are the real constants given by

c1 =
(
I
(3−α)(1−β)

a+ y
)
(a), c2 =

d

dt

(
I
(3−α)(1−β)

a+ y
)
(a), c3 =

d2

dt2

(
I
(3−α)(1−β)

a+ y
)
(a).

Since y(a) = 0, we get c1 = 0. Taking time derivative of equation (4.3) we obtain

y′(t) = c2
[1− (3− α)(1− β)](t− a)−(3−α)(1−β)

Γ(2− (3− α)(1− β))
+ c3

[2− (3− α)(1− β)](t− a)1−(3−α)(1−β)

Γ(3− (3− α)(1− β))

− (α− 1)

Γ(α)

∫ t

a

(t− s)α−2q(s)y(s)ds, (4.4)

and setting y′(a) = y′(b) = 0, we get c2 = 0 and

c3 =
Γ(3− (3− α)(1− β))(α− 1)

Γ(α)(b− a)1−(3−α)(1−β)[2− (3− α)(1− β)]

∫ b

a

(b− s)α−2q(s)y(s)ds.

Hence, equality (4.3) becomes

y(t) =
(α− 1)(t− a)2−(3−α)(1−β)

Γ(α)(b− a)1−(3−α)(1−β)[2− (3− α)(1− β)]

∫ b

a

(b− s)α−2q(s)y(s)ds

− 1

Γ(α)

∫ t

a

(t− s)α−1q(s)y(s)ds,

which can be written as equation (2.7) with G(t, s) given by (4.2). This concludes the

proof.

Lemma 4.1.2. The Green’s function G defined by (4.2) satisfies the following properties:

1. G(t, s) is a continuous function on [a, b]× [a, b].

2. G(t, s) ≥ 0 for all a ≤ t, s ≤ b.

3.

|G(t, s)| ≤ 2(b− a)α−1(α− 2)α−2

Γ(α)[2− (3− α)(1− β)]α−1
, (t, s) ∈ [a, b]× [a, b]. (4.5)

Proof. Let us define two functions

G1(t, s) :=
(α− 1)(t− a)2−(3−α)(1−β)(b− s)α−2

(b− a)1−(3−α)(1−β)(2− (3− α)(1− β))
− (t− s)α−1, a ≤ s ≤ t ≤ b,
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and

G2(t, s) :=
(α− 1)(t− a)2−(3−α)(1−β)(b− s)α−2

(b− a)1−(3−α)(1−β)(2− (3− α)(1− β))
, a ≤ t ≤ s ≤ b.

Property (1) is trivial. Indeed, it is clear that both G1 and G2 are continuous on

their domains, and that G1(s, s) = G2(s, s), whence (1) follows. To prove (2), note

that G2(t, s) ≥ 0. To prove that G1(t, s) ≥ 0, note that 0 < α − 1, 0 ≤ β(3 − α),

and for a ≤ s < t ≤ b, we have (b − s)(t − a) − (t − s) = (b − t)(s − a) ≥ 0,

( b−s
b−a

)α−2 > ( b−s
b−a

)α−1 > ( t−s
t−a

)α−1, t − a < b − a. Since, 0 ≤ β(3 − α) < 1, we get

0 < ( t−a
b−a

)β(3−α) < 1. Hence,

G1(t, s) = (t− a)α−1

[
α− 1

2− (3− α)(1− β)

( b− s

b− a

)α−2( t− a

b− a

)β(3−α)

−
( t− s

t− a

)α−1
]

> (t− a)α−1

[( b− s

b− a

)α−1( t− a

b− a

)β(3−α)

−
( t− s

t− a

)α−1
]
≥ 0.

Which concludes that (2) is true. To prove (3), since (t − a)2−(3−α)(1−β) is an increasing

function in t so, for a given s, G2(t, s) is an increasing function of t. Similarly, using

( b−s
b−a

)α−2 > ( t−s
t−a

)α−2 for a ≤ s < t ≤ b, we get

∂G1

∂t
= (α− 1)(t− a)α−2

[( t− a

b− a

)β(3−α)( b− s

b− a

)α−2

−
( t− s

t− a

)α−2
]
≥ 0.

So, for a given s, G1(t, s) is an increasing function of t ∈ (s, b]. Hence,

max
t∈[a,b]

|G(t, s)| = G(b, s) =
(α− 1)(b− a)(b− s)α−2 − (b− s)α−1[2− (3− α)(1− β)]

Γ(α)[2− (3− α)(1− β)]
.

(4.6)

Let

f(s) = (α− 1)(b− a)(b− s)α−2 − (b− s)α−1[2− (3− α)(1− β)], t ∈ [a, b].

Now, we differentiate f(s) on (a, b), and we obtain after simplifications

f ′(s) = (α− 1)(b− s)α−3[(2− (3− α)(1− β))(b− s)− (α− 2)(b− a)].

Observe that f ′(s) has a unique zero, attained at the point

s = s∗ =
b(1− β(3− α)) + a(α− 2)

2− (3− α)(1− β)
.
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Since, f ′′(s∗) ≤ 0, which concludes that

max
t∈[a,b]

f(s) = f(s∗) =
2(b− a)α−1(α− 2)α−2

[2− (3− α)(1− β)]α−2 .

Hence

G(b, s) ≤ 2(b− a)α−1(α− 2)α−2

Γ(α) [2− (3− α)(1− β)]α−1 .

This proves part (3). This completes the proof.

Theorem 4.1.3. If a nontrivial continuous solution of the FBVP P8 exists, then∫ b

a

[
(α− 1)(b− a)(b− s)α−2 − (b− s)α−1[2− (3− α)(1− β)]

]
|q(s)|ds

≥ Γ(α) [2− (3− α)(1− β)]α−1 (4.7)

and more specifically, ∫ b

a

|q(s)|ds ≥ Γ(α) [2− (3− α)(1− β)]α−1

(b− a)α−1(α− 2)α−2
, (4.8)

and for integer order case α = 3 and β = 0 or β = 1,∫ b

a

|q(s)|ds ≥ 8

(b− a)2
, (4.9)

Proof. Using equation (4.6) into (2.10), proves the inequality (4.7) and using property (3)

of Lemma 4.1.2 in LTI equation (2.11) proves the inequality in equation (4.8). Setting

α = 3 and β = 0 or β = 1 in (4.8), we get (4.9).

The inequality in equation (4.7) is called a Hartman-Wintner type inequality, and

the inequalities in equations (4.8) and (4.9) are called the Lyapunov-type inequalities for

problem P8 of fractional and integer orders, respectively.

4.1.1 Eigenvalue Estimate For Fractional Eigenvalue Problem With a Mixed

Set of Dirichlet and Neumann Boundary Conditions

In this section we consider the FEP and discuss the smallest eigenvalue estimates

using the inequalities discussed in Chapter 2. Setting d1 = d3 = 1, d2 = d4 = 0, and
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e2 = 1, e1 = 0 in equation (2.3) and from equation (2.1) with n = 3 we get

Problem P9:

(
Dα,β

a+ y
)
(t) + λy(t) = 0, α ∈ (2, 3], β ∈ [0, 1], a < t < b,

y(a) = 0, y′(a) = 0, y′(b) = 0, (4.10)

Corollary 4.1.4. Let λ be the smallest eigenvalue of FEP P9. Then for α ∈ (2, 3] and

β ∈ [0, 1] the smallest eigenvalue estimates of FEP P9 are given by

1. the LILB

λ ≥ Γ(α) [2− (3− α)(1− β)]α−1

(b− a)α(α− 2)α−2
(4.11)

and in particular, for IOEP P9, i.e. α = 3, and β = 0 or β = 1 this bound is

λ ≥ 8

(b− a)3
(4.12)

2. the SMNLB

λ ≥ Γ(α + 1)[α− 1 + β(3− α)]α+1

(b− a)α [2(α− 1)α−1[α− 1 + β(3− α)]− (1− β(3− α))[α− 1 + β(3− α)]α]

(4.13)

and in particular, for IOEP P9, this bound is

λ ≥ 12

(b− a)3
(4.14)

3. and CSILB

λ ≥ Γ(α)
(b−a)α

[
(α−1)2

[2−(3−α)(1−β)]2(2α−3)[5−2(3−α)(1−β)]
+ 1

2α(2α−1)
− 2(α−1)C1(α)

α[2−(3−α)(1−β)]

]−1/2

,

(4.15)

where C1(α) =
∫ 1

0
tα−(3−α)(1−β)+2

2F1(2− α, 1;α + 1; t)dt and in particular, for IOEP

P9, CSILB is

λ ≥
√
315

(b− a)3
. (4.16)

44



Proof. Substituting q(t) = λ in equation (4.8), the inequality in the first part follow.

Substituting the Green’s function from equation (4.2), in (2.16) and (2.15), and simplifying

the results, we obtain the inequalities respectively in equations (4.13) and (4.15). Setting

α = 3 in equations (4.11), (4.13) and (4.15) we get the inequalities (4.12), (4.14) and

(4.16).

We first consider the integer order case, i.e. α = 3, and β = 0 or β = 1. For this

case, the LILB, SMNLB and CSILB for the smallest λ of FEP P9 with a = 0 and b = 1

are given as 8, 12 and
√
315 ≃ 17.7482, respectively (see equations (4.12), (4.14) and

(4.16)) . For α = 3, the FEP P9 can be solved in closed form using the tools from integer

order calculus. Results show, that the smallest eigenvalue of FEP P9 for α = 3 is the

root of exp(−3λ1/3/2) − 2 sin(
√
3λ1/3/2 + π/6) = 0, which gives the smallest eigenvalue

as λ ≃ 27.4545. Comparing this λ with its estimate above, it is clear that among LILB,

SMNLB and CSILB for integer α the CSILB provides the best estimate for the smallest

eigenvalue.

The FEP P9 can also be solved and its eigenvalues can be determined for arbitrary α,

α ∈ (2, 3] and β ∈ [0, 1] as a root of the Mittag-Leffler function Eα,α+β(3−α)−1(−λ). This is

discussed in the following theorem.

Theorem 4.1.5. The FEP P9 with a = 0 and b = 1, for 2 < α ≤ 3 has an infinite number

of eigenvalues, and they are the roots of the Mittag-Leffler function Eα,α+β(3−α)−1(z), i.e.

the eigenvalues satisfy

Eα,α+β(2−α)−1(−λ) = 0. (4.17)

Proof. To prove this, we take Laplace transform of the first equation in P9, using (1.45)

for n = 3 which after some manipulations leads to

Y (s) =
a0s

2−β(3−α)

sα + λ
+
a1s

1−β(3−α)

sα + λ
+
a3s

−β(3−α)

sα + λ
, (4.18)

where Y (s) is the Laplace transform of y(t) and ai = Di
[
I
(1−β)(3−α)

0+ y
]
(0+), i = 0, 1, 2.

45



2.2 2.4 2.6 2.8 3
0

5

10

15

20

25

α

λ

 

 

LILB
SMNLB
CSILB
LE

Figure 4.1. Comparison of the lower bounds for λ obtained from max-
imum norm, Lyapunov-type and Cauchy-Schwarz inequalities with the
lowest eigenvalue. (− ◦ −: LILB; − + − : SMNLB; − ∗ −: CSILB;
−2−: LE - the Lowest Eigenvalue λ)(β = 0, Riemann-Liouville deriva-
tive FEP P9 )

Taking inverse Laplace transform of equation (4.18) and using equation (1.25), we obtain

y(t) = a0t
α+β(3−α)−3Eα,α+β(3−α)−2(−λtα) + a1t

α+β(3−α)−2Eα,α+β(3−α)−1(−λtα)

+ a3t
α+β(3−α)−1Eα,α+β(3−α)(−λtα). (4.19)

Using the boundary conditions of P9 we obtain (4.17).

For comparison purpose, we compute the smallest eigenvalues for FEP P9 from

equation (4.17) and its LILB, SMNLB and CSILB for different α, α ∈ (2, 3] and

β = 0, 0.5 and 1 from equations (4.11), (4.13) and (4.15). The results are shown in

figures 4.1, 4.2 and 4.3.

These figures clearly demonstrate that among the three estimates considered here,

the LILB provides the worse estimate and the CSILB provides the best estimate for the

smallest eigenvalues of FEP P9. Furthermore, figure 4.2 for β = 0.5 shows the eigenvalue

estimate for mixed behavior of Riemann-Liouville and Caputo derivative FEP. We now
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Figure 4.2. Comparison of the lower bounds for λ obtained from max-
imum norm, Lyapunov-type and Cauchy-Schwarz inequalities with the
lowest eigenvalue. (− ◦ −: LILB; − + − : SMNLB; − ∗ −: CSILB;
−2−: LE - the Lowest Eigenvalue λ) (β = 0.5, mixed behavior of
Riemann-Liouville and Caputo derivative FEP P9 )
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Figure 4.3. Comparison of the lower bounds for λ obtained from max-
imum norm, Lyapunov-type and Cauchy-Schwarz inequalities with the
lowest eigenvalue. (− ◦ −: LILB; − + − : SMNLB; − ∗ −: CSILB;
−2−: LE - the Lowest Eigenvalue λ)(β = 1, Caputo derivative FEP
P9 )
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consider an application of the lower bounds for the smallest eigenvalues of FEP P9 found

in Corollary 4.1.4 and Theorem 4.1.5. In [15], [16], [28] and [48], the authors have applied

the LILB to the FEPs for α ∈ (1, 2] to find the interval in which certain Mittag-Leffler

functions have no real zeros. On the other hand, we apply the improved lower bounds to

to find the interval in which certain Mittag-Leffler functions have no real zeros. The results

for α ∈ (2, 3] are given in the following theorem.

Theorem 4.1.6. Let 2 < α ≤ 3 and β ∈ [0, 1]. Then based on the LILB, SMNLB and

CSILB inequalities, the Mittag-Leffler function Eα,α+β(2−α)−1(z) has no real zeros in the

following domains:

LILB inequality:

z ∈

(
−Γ(α) [2− (3− α)(1− β)]α−1

(α− 2)α−2
, 0

]
, (4.20)

SMNLB inequality:

z ∈
(
− Γ(α + 1)[α− 1 + β(3− α)]α+1

2(α− 1)α−1[α− 1 + β(3− α)]− (1− β(3− α))[α− 1 + β(3− α)]α
, 0
]
, (4.21)

CSILB inequality:

z ∈
(
− Γ(α)

[
(α−1)2

[2−(3−α)(1−β)]2(2α−3)[5−2(3−α)(1−β)]
+ 1

2α(2α−1)
− 2(α−1)C1(α)

α[2−(3−α)(1−β)]

]−1/2

, 0
]
.

(4.22)

Proof. Let λ be the smallest eigenvalue of the FEP P9 then z = λ is the smallest

value of z for which Eα,α+β(2−α)−1(−z) = 0. If there is another z smaller than λ for

which Eα,α+β(2−α)−1(−z) = 0, then it will contradict that λ is the smallest eigenvalue.

Therefore, Eα,α+β(2−α)−1(z) has no real zero for z ∈ (−λ, 0]. Now, according to LILB,

λ ≥ Γ(α)[2−(3−α)(1−β)]α−1

(α−2)α−2 (see equation (4.11)). Thus, Eα,α+β(2−α)−1(z) has no real zero for

z ∈
(
−Γ(α)[2−(3−α)(1−β)]α−1

(α−2)α−2 , 0
]
. This proves equation (4.20). Equations (4.21) and (4.22)

are proved in a similar way.

From figures 4.1, 4.2 and 4.3, it is clear that among the LILB provides the small-

est interval and CSILB provide the largest interval in which the Mittag-Leffler function
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Eα,α+β(2−α)−1(z) has no real zero. We note that for β = 0 and α ∈ (2, 3] in (4.1) and (4.10)

in [43], we obtain the similar results. So, this section is the generalized case of our work in

[43].

4.2 LYAPUNOV-TYPE INEQUALITY FOR FBVP WITH A MIXED SET

OF FRACTIONAL DIRICHLET, NEUMANN AND FRACTIONAL

NEUMANN BOUNDARY CONDITIONS

In this section we obtain Lyapunov-type inequality and eigenvalue estimate for FBVP

and FEP with a mixed set of fractional Dirichlet, Neumann and fractional Neumann bound-

ary conditions. Setting d2 = d4 = 1, d1 = d3 = 0 and e2 = 1, e1 = 0 in equation (2.3) we

obtain from equation (2.1) with n = 3 the FBVP

Problem P10:

(
Dα,β

a+ y
)
(t) + q(t)y(t) = 0, α ∈ (2, 3], β ∈ [0, 1], a < t < b,(

I
(3−α)(1−β)

a+ y
)
(a) = 0, y′(b) = 0,

d2

dt2

(
I
(3−α)(1−β)

a+ y
)
(a) = 0. (4.23)

Since in (4.23), first, second and third boundary conditions include the fractional Dirichlet,

integer order derivative, and composition of derivative and fractional integral respectively,

we call the boundary conditions in (4.23) as a mixed set of fractional Dirichlet, Neumann

and fractional Neumann boundary conditions. Here we will use procedure similar to the

procedure used in the previous section 4.1 to derive the Lyapunov-type inequality for FBVP

(4.23). We will do this by finding the Green’s function G(t, s).

Lemma 4.2.1. Problem P10 can be written as (2.7) where

G(t, s) =
1

Γ(α)


(α−1)(t−a)1−(3−α)(1−β)(b−s)α−2

(b−a)−(3−α)(1−β)[1−(3−α)(1−β)]
− (t− s)α−1, a ≤ s ≤ t ≤ b,

(α−1)(t−a)1−(3−α)(1−β)(b−s)α−2

(b−a)−(3−α)(1−β)[1−(3−α)(1−β)]
, a ≤ t ≤ s ≤ b,

(4.24)

is the Green’s function for the problem.
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Proof. The proof is similar to Lemma 4.1.1.

Lemma 4.2.2. The function G defined in Lemma 4.2.1 satisfies the following property:

|G(t, s)| ≤ (α− 2)α−2(b− a)α−1

Γ(α)[1− (3− α)(1− β)]α−1
, (t, s) ∈ [a, b]× [a, b]. (4.25)

Proof. For a ≤ t ≤ s ≤ b, G(t, s) is an increasing function of t we get for a ≤ s ≤ t ≤ b

and fixed s ∈ (a, b), ∂G
∂t

≥ 0. Which gives

max
t∈[a,b]

|G(t, s)| = |G(b, s)| = (α− 1)(b− s)α−2 − [1− (3− α)(1− β)](b− s)α−1

Γ(α)[1− (3− α)(1− β)]
.

This proves the inequality (4.25) after some calculations.

Theorem 4.2.3. If a nontrivial continuous solution of the FBVP P10 exists, then the

Lyapunov-type inequality is given by∫ b

a

|q(s)|ds ≥ Γ(α) [1− (3− α)(1− β)]α−1

(b− a)α−1(α− 2)α−2
, (4.26)

and for integer order case α = 3 and β = 0 or β = 1 in (4.23) the LTI is given by∫ b

a

|q(s)|ds ≥ 2

(b− a)2
, (4.27)

Proof. Using equation (4.25) into (2.11), proves the inequality (4.26) and taking α = 3 and

β = 0 or β = 1 in (4.26), we get the inequality in equation (4.27).

4.2.1 Eigenvalue Estimate For Fractional Eigenvalue Problem With a Mixed

Set of fractional Dirichlet, Neumann and fractional Neumann Boundary

Conditions

We consider the FEP by taking d2 = d4 = 1, d1 = d3 = 0 and e2 = 1, e1 = 0 in

equation (2.3) and from equation (2.14) with n = 3 as follows.

Problem P11: (
Dα,β

a+ y
)
(t) + λy(t) = 0, α ∈ (2, 3], β ∈ [0, 1], a < t < b,(

I
(3−α)(1−β)

a+ y
)
(a) = 0, y′(b) = 0,

d2

dt2

(
I
(3−α)(1−β)

a+ y
)
(a) = 0. (4.28)

50



We use the method similar to section 4.1.1 to obtain the eigenvalue estimate for FEP P11.

Corollary 4.2.4. Let λ be the smallest eigenvalue of FEP P11. Then the smallest eigen-

value estimates of FEP P11 for α ∈ (2, 3] and β ∈ [0, 1] are given by

1. the LILB

λ ≥ Γ(α) [1− (3− α)(1− β)]α−1

(b− a)α(α− 2)α−2
. (4.29)

and in particular, for IOEP P11, i.e. α = 3 and β = 0 or β = 1 this bound is

λ ≥ 2

(b− a)3
(4.30)

2. the SMNLB

λ ≥ Γ(α+ 1)[α− 2 + β(3− α)]

2(b− a)α(α− 1)2−β(3−α)
. (4.31)

and in particular, for IOEP P11, this bound is

λ ≥ 3

(b− a)3
(4.32)

3. and CSILB

λ ≥ Γ(α)
(b−a)α

[
(α−1)2

[1−(3−α)(1−β)]2(2α−3)[3−2(3−α)(1−β)]
+ 1

2α(2α−1)
− 2(α−1)C1(α)

α[1−(3−α)(1−β)]

]−1/2

,

(4.33)

where C1(α) =
∫ 1

0
tα−(3−α)(1−β)+1

2F1(2− α, 1;α + 1; t)dt and in particular, for IOEP

P11, CSILB is

λ ≥
√
15

(b− a)3
. (4.34)

Proof. Setting q(t) = λ in equation (4.26), the first inequality in the first part follow.

Taking α = 3 and β = 0 or β = 1 in (4.29), proves (4.30). Substituting the Green’s

function from equation (4.24), in (2.16) and (2.15), and simplifying the results, we obtain

the inequalities respectively in equations (4.31) and (4.33). Setting α = 3 in equations

(4.29), (4.31) and (4.33) we get the inequalities (4.30), (4.32) and (4.34).
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For α = 3, a = 0 and b = 1, the FEP P11 can be solved in closed form.

Results show, that the smallest eigenvalue of FEP P11 for α = 3 is the root of

exp(−λ1/3) + 2 exp(λ1/3/2) cos(
√
3/2λ1/3) = 0, which gives the smallest eigenvalue as

λ ≃ 6.3297. Comparing this λ with its estimate above, it is clear that among LILB,

SMNLB and CSILB for integer α, the CSILB provides the best estimate for the smallest

eigenvalue.

The FEP P11 can also be solved and its eigenvalues can be determined for arbitrary

α, α ∈ (2, 3] and β ∈ [0, 1] as a root of the Mittag-Leffler function Eα,α+β(3−α)−2(−λ).

Theorem 4.2.5. The FEP P11 for 2 < α ≤ 3, a = 0 and b = 1 has an infinite number of

eigenvalues, and they are the roots of the Mittag-Leffler function Eα,α+β(3−α)−2(z), i.e. the

eigenvalues satisfy

Eα,α+β(2−α)−2(−λ) = 0. (4.35)

Proof. Taking the Laplace transform of the first equation of FEP P11 and using its bound-

ary conditions proves (4.35).

We compute the smallest eigenvalues for FEP P11 from equation (4.35) and compare

it with its LILB, SMNLB and CSILB for different α, α ∈ (2, 3] and β = 0, 0.5 and 1

from equations (4.29), (4.31) and (4.33). The results are shown in figures 4.3, 4.4 and

4.5. These figures clearly demonstrate that among the three estimates considered here,

the LILB provides the worse estimate and the CSILB provides the best estimate for the

smallest eigenvalues of FEP P11. Moreover, figure 4.5 for β = 0.5 shows the eigenvalue

estimate for mixed behavior of Riemann-Liouville and Caputo derivative FEP. We now

consider an application of the lower bounds for the smallest eigenvalues of FEP P11 found

in Corollary 4.2.4 and Theorem 4.2.5.

Theorem 4.2.6. Let 2 < α ≤ 3, and β ∈ [0, 1]. Then based on the LILB, SMNLB and

CSILB inequalities, the Mittag-Leffler function Eα,α+β(2−α)−2(z) has no real zeros in the
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Figure 4.4. Comparison of the lower bounds for λ obtained from max-
imum norm, Lyapunov-type and Cauchy-Schwarz inequalities with the
lowest eigenvalue. (− ◦ −: LILB; − + − : SMNLB; − ∗ −: CSILB;
−2−: LE - the Lowest Eigenvalue λ)(β = 0, Riemann-Liouville deriva-
tive FEP P11 )
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Figure 4.5. Comparison of the lower bounds for λ obtained from max-
imum norm, Lyapunov-type and Cauchy-Schwarz inequalities with the
lowest eigenvalue. (−◦−: LILB; −+− : SMNLB; −∗−: CSILB; −2−:
LE - the Lowest Eigenvalue λ)(β = 0.5, mixed behavior of Riemann-
Liouville and Caputo derivative FEP P11 )
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Figure 4.6. Comparison of the lower bounds for λ obtained from max-
imum norm, Lyapunov-type and Cauchy-Schwarz inequalities with the
lowest eigenvalue. (− ◦ −: LILB; − + − : SMNLB; − ∗ −: CSILB;
−2−: LE - the Lowest Eigenvalue λ)(β = 1, Caputo derivative FEP
P11 )

following domains:

LILB inequality:

z ∈

(
−Γ(α) [1− (3− α)(1− β)]α−1

(α− 2)α−2
, 0

]
, (4.36)

SMNLB inequality:

z ∈
(
− Γ(α+ 1)[α− 2 + β(3− α)]

2(α− 1)2−β(3−α)
, 0
]
, (4.37)

CSILB inequality:

z ∈
(
− Γ(α)

[
(α−1)2

[1−(3−α)(1−β)]2(2α−3)[3−2(3−α)(1−β)]
+ 1

2α(2α−1)
− 2(α−1)C1(α)

α[1−(3−α)(1−β)]

]−1/2

, 0
]
.

(4.38)

Proof. The proof is similar to the proof of Theorem 4.1.6.

From figures 4.4, 4.5 and 4.6, it is clear that among the three inequalities, CSILB

provide the largest interval in which the Mittag-Leffler functions Eα,α+β(2−α)−2(z), β = 0,

β = 0.5 and β = 1 have no real zero.
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CHAPTER 5

LYAPUNOV-TYPE INEQUALITY AND EIGENVALUE ESTIMATES FOR

FRACTIONAL PROBLEMS OF ORDER α, α ∈ (3, 4]

In this chapter we consider the FBVPs and FEPs of order α, α ∈ (3, 4]. We consider

the FBVP by replacing q(t) by −q(t), a = 0, b = 1 and n = 4 in (2.1) and λ by −λ in

(2.14) with boundary conditions B3. i.e we consider the general FBVP as

(
Dα,β

a+ y
)
(t)− q(t)y(t) = 0, 0 < t < 1, 3 < α ≤ 4, 0 ≤ β ≤ 1, (5.1)

with the boundary conditions B3:

yi(0) = yi(1) = 0, i = 0, 1 (5.2)

or

yi(0) = yi(1) = 0, i = 0, 2 (5.3)

or

yi(0) = y′′(1) = 0, i = 0, 1, 2. (5.4)

and FEP as

(
Dα,β

a+ y
)
(t)− λy(t) = 0, 0 < t < 1, 3 < α ≤ 4, 0 ≤ β ≤ 1, (5.5)

with the boundary conditions (5.2) or (5.3) or (5.4). We establish Lyapunov-type in-

equalities with different integer order boundary conditions. We also obtain the eigenvalue

estimates for the smallest eigenvalue of FEPs using the LILB and CSILB methods dis-

cussed in Chapter 2. We apply these estimates to obtain the intervals in which certain

Mittag-Leffler functions have no real zeros.

55



5.1 FRACTIONAL BOUNDARY AND EIGENVALUE PROBLEMS WITH

FIRST BOUNDARY CONDITIONS OF B3

In this section we consider the FBVP (5.1) and FEP (5.5) with boundary conditions

(5.2).

5.1.1 Lyapunov-type Inequality For Fractional Boundary Value Problem with

first Boundary conditions of B3

We first consider FBVP (5.1)-(5.2).

Problem P12: (
Dα,β

a+ y
)
(t)− q(t)y(t) = 0, 0 < t < 1,

y(0) = 0, y′(0) = 0, y(1) = 0, y′(1) = 0. (5.6)

In particular for P12, if α = 4 and β = 0 or β = 1 the integer order boundary value problem

(IOBVP) is

Problem P13:

y′′′′(t)− q(t)y(t) = 0, 0 < t < 1,

y(0) = 0, y′(0) = 0, y(1) = 0, y′(1) = 0, (5.7)

which represents the differential equation with clamped beam conditions.

Lemma 5.1.1. Problem P12 can be written as (2.7) with a = 0 and b = 1 where

G(t, s) =
1

Γ(α)



(1− s)α−2
{
t2−(4−α)(1−β) [(α− 1)− (3− (4− α)(1− β))(1− s)]

+t3−(4−α)(1−β) [(2− (4− α)(1− β))(1− s)− (α− 1)]
}

+(t− s)α−1, 0 ≤ s ≤ t ≤ 1,

(1− s)α−2
{
t2−(4−α)(1−β) [(α− 1)− (3− (4− α)(1− β))(1− s)]

+t3−(4−α)(1−β) [(2− (4− α)(1− β))(1− s)− (α− 1)]
}

, 0 ≤ t ≤ s ≤ 1,

(5.8)
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is the Green’s function for the problem.

Proof. Taking Iα0+ on the first equation of P12 and using Lemma 1.3.4 with a = 0 and for

n = 4, we obtain

y(t) = c0
t−(4−α)(1−β)

Γ(1− (4− α)(1− β))
+ c1

t1−(4−α)(1−β)

Γ(2− (4− α)(1− β))
+ c2

t2−(4−α)(1−β)

Γ(3− (4− α)(1− β))

+ c3
t3−(4−α)(1−β)

Γ(4− (4− α)(1− β))
+

∫ t

0

(t− s)α−1

Γ(α)
q(s)y(s)ds, (5.9)

where ci =
di

dti

(
I
(4−α)(1−β)

0+ y
)
(0+), i = 0, 1, 2, 3 are the real constants. Applying the first

two boundary conditions of P12, we get c0 = c1 = 0 and using the last two boundary

conditions of P12, we obtain

c2 =
Γ(3− (4− α)(1− β))

Γ(α)

∫ 1

0

[(α− 1)− (3− (4− α)(1− β))(1− s)] (1−s)α−2q(s)y(s)ds.

and

c3 =
Γ(4− (4− α)(1− β))

Γ(α)

∫ 1

0

[(2− (4− α)(1− β))(1− s)− (α− 1)] (1−s)α−2q(s)y(s)ds.

Hence, equality (5.9) becomes

y(t) =
1

Γ(α)

{
t2−(4−α)(1−β)

∫ 1

0

[(α− 1)− (3− (4− α)(1− β))(1− s)] (1− s)α−2q(s)y(s)ds

+ t3−(4−α)(1−β)

∫ 1

0

[(2− (4− α)(1− β))(1− s)− (α− 1)] (1− s)α−2q(s)y(s)ds

+

∫ t

0

(t− s)α−1q(s)y(s)ds

}
,

which can be written as equation (2.7) with G(t, s) given by (5.8). This concludes the

proof.

Lemma 5.1.2. The function G defined in equation (5.8) satisfies the following property:

|G(t, s)| ≤ (α− 2)(α− 1)α−1[3− (4− α)(1− β)]3−(4−α)(1−β)

Γ(α)[2α− 2 + β(4− α)]2α−2+β(4−α)
, (5.10)

(t, s) ∈ [0, 1]× [0, 1].
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Proof. It follows from (5.8) that for 0 ≤ t < s ≤ 1, G is an increasing function of t and

|G(t, s)| ≤ |G(s, s)| ≤ s2−(4−α)(1−β)(1− s)α−1

Γ(α)
[(α− 2)s− β(4− α)(1− s)]

≤ (α− 2)s3−(4−α)(1−β)(1− s)α−1

Γ(α)
. (5.11)

For 0 < s < t ≤ 1, we have (1− s)α−2 > (1− s/t)α−2, 2− 3t < 1 and 1− s > 1− t. Now,

for a fixed s ∈ (0, 1) let us define

Γ(α)ψs(t) = (t− s)α−1 + (1− s)α−2
{
t2−(4−α)(1−β) [(α− 1)− (3− (4− α)(1− β))(1− s)]

+t3−(4−α)(1−β) [(2− (4− α)(1− β))(1− s)− (α− 1)]
}
.

Taking the time derivative of this equation and after some calculations gives

Γ(α)ψ′
s(t) = tα−2

{
(α− 1)(1− s/t)α−2 + tβ(4−α)−1(1− s)α−2 {(α− 1) [(2− 3t)− (1− t)

(4− α)(1− β)]− (1− s)(1− t)(2− (4− α)(1− β))(3− (4− α)(1− β))}}

< tα−2(1− s)α−2
{
(α− 1) + tβ(4−α)−1 [(α− 1)− (α− 1)(4− α)(1− β)(1− t)

− (1− t)2(2− (4− α)(1− β))(3− (4− α)(1− β))
]}

< 0, t ∈ (s, 1).

On the other hand, we have

lim
t→s+

ψs(t) = |G(s, s)|.

Hence, for 0 < s < t ≤ 1, we have

|G(t, s)| ≤ max {|ψs(s)|, |ψs(1)|} . (5.12)

However, ψs(1) = 0. Hence we get

max
t∈[0,1]

|G(t, s)| ≤ |G(s, s)|. (5.13)

To prove equation (5.10), let us take in equation (5.11)

ϕ(s) = s3−(4−α)(1−β)(1− s)α−1, s ∈ [0, 1].
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Differentiating ϕ(s) with respect to s, and setting ϕ′(s) to 0, we obtain that ϕ(s) has an

extremum at s = s∗ = (3− (4−α)(1− β))/(2α− 2+ β(4−α)), s∗ ∈ (0, 1). We notice that

ϕ′′(s) < 0 at s = s∗. which indicates that ϕ(s) is maximum at s = s∗, and

max
0≤s≤1

ϕ(s) = ϕ(s∗) =
(3− (4− α)(1− β))3−(4−α)(1−β)(α− 1)α−1

[2α− 2 + β(4− α)]2α−2+β(4−α)
,

which together with equations (5.13) and (5.11) proves (5.10).

Theorem 5.1.3. If a nontrivial continuous solution of the FBVP P12 exists, then the LTI

is given by ∫ 1

0

|q(s)|ds ≥ Γ(α)[2α− 2 + β(4− α)]2α−2+β(4−α)

(α− 2)(α− 1)α−1[3− (4− α)(1− β)]3−(4−α)(1−β)
, (5.14)

and in particular, for α = 4 and β = 0 or β = 1 in (5.14) gives the Lyapunov-type inequality

for IOBVP P13 as ∫ 1

0

|q(s)|ds ≥ 192. (5.15)

Proof. Using (5.10) in ((2.12) proves the inequality (5.14). Replacing α = 4 and β = 0 or

β = 1 in (5.14), we obtain (5.15).

We note that the inequality in (5.15) is the Lyapunov-type inequality for P13, which

is obtained by Yang in [54].

5.1.2 Eigenvalue Problem with first boundary conditions of B3 and Eigenvalue

Estimates

We consider FEP (5.5) with boundary conditions (5.2) to obtain the FEP

Problem P14: (
Dα,β

a+ y
)
(t)− λy(t) = 0, 0 < t < 1

y(0) = 0, y′(0) = 0, y(1) = 0, y′(1) = 0. (5.16)

Corollary 5.1.4. Let λ be the smallest eigenvalue of FEP P14 for α ∈ (3, 4] and β ∈ [0, 1].

Then the smallest eigenvalue estimates of FEP P14 are given by
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1. the LILB

λ ≥ Γ(α)[2α− 2 + β(4− α)]2α−2+β(4−α)

(α− 2)(α− 1)α−1[3− (4− α)(1− β)]3−(4−α)(1−β)
(5.17)

and in particular, for integer order eigenvalue problem P14, i.e. α = 4 and β = 0 or

β = 1 this bound is

λ ≥ 192 (5.18)

2. and CSILB

λ ≥ Γ(α)

{
2

α
[(α− 1)C1(α)− (3− (4− α)(1− β))C2(α)− (α− 1)C4(α)

+ (2− (4− α)(1− β))C3(α)] +
1

7− 2(4− α)(1− β)

[
(α− 1)2

2α− 3

− (α + 1− β(4− α))(2− (4− α)(1− β))

2α− 1

]
+

2− (4− α)(1− β)

2(3− (4− α)(1− β))

− (α− 1)2

(2α− 3)(3− (4− α)(1− β))
− 2− (4− α)(1− β)

2α− 1
+

2α2 − α + 1

2α(2α− 1)

+
1

5− 2(4− α)(1− β)

[
(α− 1)2

2α− 3
− (α− β(4− α))(3− (4− α)(1− β))

2α− 1

]}−1/2

,

(5.19)

where

C1(α) =

∫ 1

0

tα+2−(4−α)(1−β)
2F1(2− α, 1;α + 1; t)dt,

C2(α) =

∫ 1

0

tα+2−(4−α)(1−β)
2F1(1− α, 1;α + 1; t)dt,

C3(α) =

∫ 1

0

tα+3−(4−α)(1−β)
2F1(1− α, 1;α + 1; t)dt,

C4(α) =

∫ 1

0

tα+3−(4−α)(1−β)
2F1(2− α, 1;α + 1; t)dt.

And in particular, for IOEP P14, CSILB is

λ ≥ 1260

√
11

71
. (5.20)
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Proof. Setting q(t) = λ in equations (5.14) and (5.15), the inequalities in the first part

follow. Substituting the Green’s function from equation (5.8), in (2.13) and simplifying the

result, we obtain the inequality in equation (5.19). Setting α = 4 and β = 0 or β = 1 in

equation (5.19), we get the inequality (5.20).

We first consider the integer order case, i.e. α = 4 and β = 0 or β = 1 in equation

(5.16) (IOEP P14). For this case, the LILB and CSILB for the smallest λ of IOEP P14

are given as 192 and 1260
√

11
71

≃ 495.95, respectively (see equations (5.18) and (5.20)).

The IOEP P14 can be solved in closed form. Result shows, that the smallest eigenvalue

of IOEP P14 is the root of cosh(λ1/4) cos(λ1/4) = 1, which gives the smallest eigenvalue

as λ ≃ 500.564. Comparing this λ with its estimate above, it is clear that among LILB

and CSILB for integer α the CSILB provides the best estimate for the smallest eigenvalue.

The FEP P14 can also be solved and its eigenvalues can be determined for arbitrary α,

α ∈ (3, 4] as a root of a combination of Mittag-Leffler functions. This is explained in the

following theorem.

Theorem 5.1.5. For 3 < α ≤ 4 and β ∈ [0, 1], the FEP P14 has an infinite number of

eigenvalues, and they are the roots of combination of the Mittag-Leffler functions

Eα,α+β(4−α)−2(z)Eα,α+β(4−α)(z)− (Eα,α+β(4−α)−1(z))
2,

i.e. the eigenvalues satisfy

Eα,α+β(4−α)−2(λ)Eα,α+β(4−α)(λ)− (Eα,α+β(4−α)−1(λ))
2 = 0. (5.21)

Proof. To prove this, we take Laplace transform of the first equation in P14 using (1.45)

for n = 4, we obtain

Y (s) =
a0s

3−β(4−α)

sα − λ
+
a1s

2−β(4−α)

sα − λ
+
a2s

1−β(4−α)

sα − λ
+
a3s

−β(4−α)

sα − λ
, (5.22)

where Y (s) is the Laplace transform of y(t) and ai = Di
[
I
(1−β)(4−α)

0+ y
]
(0+), i = 0, 1, 2, 3.
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Taking inverse Laplace transform of equation (5.22) using equation (1.25), we get

y(t) = a0t
α+β(4−α)−4Eα,α+β(4−α)−3(λt

α) + a1t
α+β(4−α)−3Eα,α+β(4−α)−2(λt

α)

+ a2t
α+β(4−α)−2Eα,α+β(4−α)−1(λt

α) + a3t
α+β(4−α)−1Eα,α+β(4−α)(λt

α). (5.23)

Using the boundary conditions of P14 in (5.23), we obtain (5.21).

For comparison purpose, we compute the smallest eigenvalues for FEP P14 from equa-

tion (5.21) and its LILB and CSILB for β = 0 and β = 1 for different α, α ∈ (3, 4] from

equations (5.17) and (5.19). The results are shown in figures 5.1 and 5.2 respectively.

These figures clearly demonstrate that among the two estimates considered here, the LILB

provides the worse estimate and the CSILB provides the best estimate for the smallest

eigenvalues of FEP P14 for β = 0 and β = 1. We use MATHEMATICA to find the small-

est eigenvalues of combinations of the Mittag-Leffler functions. For solving equation (5.21)

taking β = 1 and α ∈ (3, 4] for λ, we examine using MATHEMATICA that

Eα,2(λ)Eα,4(λ)− (Eα,3(λ))
2 = 0 (5.24)

has no solution for α = 3.1 to α = 3.469391976. Whereas for α = 3.469391977 to α = 4,

equation (5.24) has solutions. For α = 4 the smallest eigenvalue of (5.24) is 500.56390.

Hence, for the combination of Mittag-Leffler functions (5.24), we calculate the eigenvalues

for α = 3.469391977, 3.5, 3.6, 3.7, 3.8, 3.9 and 4. Which is shown in figure 5.2.

We apply the improved bounds to obtain the interval in which the combination of

Mittag-Leffler functions have no real zeros in the following theorem.

Theorem 5.1.6. Let 3 < α ≤ 4 if β ∈ [0, 1), and 3.469391977 ≤ α ≤ 4 if β = 1. Then

based on the LILB and CSILB inequalities, the combination of Mittag-Leffler functions

Eα,α+β(4−α)−2(z)Eα,α+β(4−α)(z)− (Eα,α+β(4−α)−1(z))
2 (5.25)

have no real zeros in the following domains:

LILB inequality:

z ∈
(
− Γ(α)[2α− 2 + β(4− α)]2α−2+β(4−α)

(α− 2)(α− 1)α−1[3− (4− α)(1− β)]3−(4−α)(1−β)
, 0

]
, (5.26)
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Figure 5.1. Comparison of the lower bounds for λ obtained from
Lyapunov-type and Cauchy-Schwarz inequalities with the lowest eigen-
value. (−◦−: LILB; −∗−: CSILB; −2−: LE - the Lowest Eigenvalue
λ) (β = 0, Riemann-Liouville derivative FEP P14 )

CSILB inequality:

z ∈
(
−Γ(α)

{
2

α
[(α− 1)C1(α)− (3− (4− α)(1− β))C2(α)− (α− 1)C4(α)

+ (2− (4− α)(1− β))C3(α)] +
1

7− 2(4− α)(1− β)

[
(α− 1)2

2α− 3

− (α + 1− β(4− α))(2− (4− α)(1− β))

2α− 1

]
+

2− (4− α)(1− β)

2(3− (4− α)(1− β))

− (α− 1)2

(2α− 3)(3− (4− α)(1− β))
− 2− (4− α)(1− β)

2α− 1
+

2α2 − α + 1

2α(2α− 1)

+
1

5− 2(4− α)(1− β)

[
(α− 1)2

2α− 3
− (α− β(4− α))(3− (4− α)(1− β))

2α− 1

]}−1/2

, 0

]
.

(5.27)

Proof. Let λ be the smallest eigenvalue of the FEP P14, then z = λ is the smallest value

of z for which

Eα,α+β(4−α)−2(z)Eα,α+β(4−α)(z)− (Eα,α+β(4−α)−1(z))
2 = 0. (5.28)

If there is another z smaller than λ for which equation (5.28) is satisfied by z, then it
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Figure 5.2. Comparison of the lower bounds for λ obtained from
Lyapunov-type and Cauchy-Schwarz inequalities with the lowest eigen-
value. (−◦−: LILB; −∗−: CSILB; −2−: LE - the Lowest Eigenvalue
λ) (β = 1, Caputo derivative FEP P14 )

will contradict that λ is the smallest eigenvalue. Therefore, (5.25) has no real zero for

z ∈ (−λ, 0]. Now, according to LILB,

λ ≥ Γ(α)[2α− 2 + β(4− α)]2α−2+β(4−α)

(α− 2)(α− 1)α−1[3− (4− α)(1− β)]3−(4−α)(1−β)

(see equation (5.17)). Thus, (5.28) has no real zero for

z ∈
(
− Γ(α)[α− (2− α)(1− β)]α−(2−α)(1−β)

[α− 1 + β(2− α)]α−1+β(2−α)[α− 1]α−1
, 0

]
.

This proves equation (5.26). Equation (5.27) can be proved in a similar way.

From figures 5.1 and 5.2, it is clear that among the two inequalities discussed in this

chapter, LILB provides the smallest interval, and CSILB provides the largest interval in

which the combination of Mittag-Leffler functions have no real zero. Particularly, we discuss

two cases, β = 0 and β = 1.

In the succeeding sections 5.2-5.3, we follow the same procedure as we discussed in

section 5.1 to obtain the Lyapunov-type inequalities for the FBVPs and eigenvalue estimates
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for the FEPs with other integer order boundary conditions of B3. We omit the proof of

some results in the following sections 5.2 and 5.3.

5.2 FRACTIONAL BOUNDARY AND EIGENVALUE PROBLEMS WITH

SECOND BOUNDARY CONDITIONS OF B3

In this section we consider the FBVP (5.2) and FEP (5.5) with the boundary condi-

tions (5.3).

5.2.1 Lyapunov-type Inequality For Fractional Boundary Value Problem with

second Boundary conditions of B3

We first consider FBVP (5.2) and (5.3).

Problem P15:

(
Dα,β

a+ y
)
(t)− q(t)y(t) = 0, 0 < t < 1,

y(0) = 0, y′′(0) = 0, y(1) = 0, y′′(1) = 0. (5.29)

In particular for P15, if α = 4 and β = 0 or β = 1 then the IOBVP is

Problem P16:

y′′′′(t)− q(t)y(t) = 0, 0 < t < 1,

y(0) = 0, y′′(0) = 0, y(1) = 0, y′′(1) = 0, (5.30)

which represents the differential equation with a simply-supported beam boundary condi-

tions.
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Lemma 5.2.1. Problem P15 can be written as (2.7) where

G(t, s) =
1

Γ(α)



(1−s)α−3

2[3−2(4−α)(1−β)]

{
t1−(4−α)(1−β) [(α− 1)(α− 2)− (3− (4− α)(1− β))

(2− (4− α)(1− β))(1− s)2]− t3−(4−α)(1−β) [(4− α)(1− β)

(1− (4− α)(1− β))(1− s)2 + (α− 1)(α− 2)]}

+(t− s)α−1, 0 ≤ s ≤ t ≤ 1,

(1−s)α−3

2[3−2(4−α)(1−β)]

{
t1−(4−α)(1−β) [(α− 1)(α− 2)− (3− (4− α)(1− β))

(2− (4− α)(1− β))(1− s)2]− t3−(4−α)(1−β) [(4− α)(1− β)

(1− (4− α)(1− β))(1− s)2 + (α− 1)(α− 2)]} , 0 ≤ t ≤ s ≤ 1,

(5.31)

is the Green’s function for the problem.

Proof. The proof is similar to Lemma 5.1.1.

Lemma 5.2.2. The Green’s function defined in equation (5.31) satisfies the following prop-

erty:

|G(t, s)| ≤ (α− 1)(α− 2)(α− 3)α−3[α− 3 + β(4− α)]α−3+β(4−α)

2Γ(α)[2α− 6 + β(4− α)]2α−6+β(4−α)[3− 2(4− α)(1− β)]
, (5.32)

(t, s) ∈ [0, 1]× [0, 1].

Proof. The proof is similar to Lemma 5.1.2.

Theorem 5.2.3. If a nontrivial continuous solution of the FBVP P15 exists, then the LTI

is given by∫ 1

0

|q(s)|ds ≥ 2Γ(α)[2α− 6 + β(4− α)]2α−6+β(4−α)[3− 2(4− α)(1− β)]

(α− 1)(α− 2)(α− 3)α−3[α− 3 + β(4− α)]α−3+β(4−α)
, (5.33)

and in particular, for α = 4 and β = 0 or β = 1 in (5.29) gives the Lyapunov-type inequality

for IOBVP P16 as ∫ 1

0

|q(s)|ds ≥ 24. (5.34)
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Proof. Using Lemma 5.2.2 in LTI equation (2.11), we obtain the inequality (5.33). Setting

α = 4 and β = 0 or β = 1 in (5.33), proves (5.34).

5.2.2 Eigenvalue Problem with second Boundary conditions of B3 and Eigen-

value Estimates

Let us consider FEP (5.5) with the boundary conditions (5.3) given as follows.

Problem P17:

(
Dα,β

a+ y
)
(t)− λy(t) = 0, 0 < t < 1

y(0) = 0, y′′(0) = 0, y(1) = 0, y′′(1) = 0. (5.35)

Corollary 5.2.4. Let λ be the smallest eigenvalue of FEP P17 for α ∈ (3, 4] and β ∈ [0, 1].

Then the smallest eigenvalue estimates of FEP P17 are given by

1. the LILB

λ ≥ 2Γ(α)[2α− 6 + β(4− α)]2α−6+β(4−α)[3− 2(4− α)(1− β)]

(α− 1)(α− 2)(α− 3)α−3[α− 3 + β(4− α)]α−3+β(4−α)
(5.36)

and in particular, for integer order eigenvalue problem (IOEP) P18, i.e. α = 4 and

β = 0 or β = 1 this bound is

λ ≥ 24, (5.37)
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2. and CSILB

λ ≥ Γ(α)

{
1

α(3− 2(4− α)(1− β))
[(α− 1)(α− 2)C1(α)− (α− 1)(α− 2)

C4(α)− (3− (4− α)(1− β))(2− (4− α)(1− β))C2(α)− (4− α)

(1− β)(1− (4− α)(1− β))C3(α)] +

[
(α− 1)2(α− 2)2

2α− 5

+
(3− (4− α)(1− β))2(2− (4− α)(1− β))2

2α− 1
− (3− (4− α)(1− β)) ·

(2− (4− α)(1− β))
2(α− 1)(α− 2)

2α− 3

]
1

4[3− 2(4− α)(1− β)]3

+
1

2α(2α− 1)
+

[
(α− 1)2(α− 2)2

2α− 5
+

(4− α)2(1− β)2(1− (4− α)(1− β))2

2α− 1

+
2(α− 1)(α− 2)(4− α)(1− β)(1− (4− α)(1− β))

2α− 3

]
·

1

4[3− 2(4− α)(1− β)]2(7− 2(4− α)(1− β))

− 1

2[3− 2(4− α)(1− β)]2(5− 2(4− α)(1− β))

[
(α− 1)2(α− 2)2

2α− 5
+

(α− 1)

2α− 3

(α− 2) [(4− α)(1− β)(1− (4− α)(1− β))− (3− (4− α)(1− β))

(2− (4− α)(1− β))]− (1− (4− α)(1− β))(4− α)(1− β)

(3− (4− α)(1− β))(2− (4− α)(1− β))

2α− 1

]}−1/2

, (5.38)

where

C1(α) =

∫ 1

0

tα+1−(4−α)(1−β)
2F1(3− α, 1;α + 1; t)dt,

C2(α) =

∫ 1

0

tα+1−(4−α)(1−β)
2F1(1− α, 1;α + 1; t)dt,

C3(α) =

∫ 1

0

tα+3−(4−α)(1−β)
2F1(1− α, 1;α + 1; t)dt,

C4(α) =

∫ 1

0

tα+3−(4−α)(1−β)
2F1(3− α, 1;α + 1; t)dt.

And in particular, for IOEP P17, CSILB is

λ ≥ 15
√
42. (5.39)
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Proof. Setting q(t) = λ in equations (5.33) and (5.34), the inequalities in the first

part follow. Substituting the Green’s function from equation (5.31), in (2.15) with

a = 0 and b = 1, and simplifying the result, we obtain the inequality in equation

(5.38). Setting α = 4, and β = 0 or β = 1, in equation (5.38), we get the inequality

(5.39).

We first consider the integer order case, i.e. α = 4 and β = 0 or β = 1 in equation

(5.35) (IOEP P17). For this case, the LILB and CSILB for the smallest λ of IOEP P17

are given as 24 and 15
√
42 ≃ 97.211, respectively (see equations (5.37), and (5.39). For

α = 4, the IOEP P17 can be solved in closed form. Result shows, that the smallest

eigenvalue of P18 is the root of sinh(λ1/4) sin(λ1/4) = 0, which gives the smallest eigenvalue

as λ = π4 ≃ 97.4091. Comparing this λ with its estimate above, it is clear that among

LILB, and CSILB for integer α the CSILB provides the best estimate for the smallest

eigenvalue. The FEP P17 can also be solved and its eigenvalues can be determined for

arbitrary α, α ∈ (3, 4] as a root of the combination of Mittag-Leffler functions. This is

explained in the following theorem.

Theorem 5.2.5. For 3 < α ≤ 4 and β ∈ [0, 1], the FEP P17 has an infinite number of

eigenvalues, and they are the roots of combination of the Mittag-Leffler functions

Eα,α+β(4−α)(z)Eα,α+β(4−α)−4(z)− (Eα,α+β(4−α)−2(z))
2(z),

i.e. the eigenvalues satisfy

Eα,α+β(4−α)(λ)Eα,α+β(4−α)−4(λ)− (Eα,α+β(4−α)−2(λ))
2 = 0. (5.40)

Proof. To prove this, we take Laplace transform of the first equation in P19 and we obtain

equation (5.22). Taking inverse Laplace transform of equation (5.22) and using equation
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(1.25), we get (5.23) as discussed in Theorem 5.1.5. Using the first boundary condition of

P17 in (5.23) we get a0 = 0 and taking the time derivative of (5.23) we get

y′(t) = a1t
α+β(4−α)−4Eα,α+β(4−α)−3(λt

α) + a2t
α+β(4−α)−3Eα,α+β(4−α)−2(λt

α)

+ a3t
α+β(4−α)−2Eα,α+β(4−α)−1(λt

α). (5.41)

Using the second boundary condition of P17 in (5.41) we get a1 = 0. Taking the time

derivative of (5.41) and using the last two boundary conditions of P17 we obtain (5.40).

Remark. We notice that for β = 1 in FEP P17 then from (5.41) we have

y′(t) = a1Eα,1(λt
α) + a2tEα,2(λt

α) + a3t
2Eα,3(λt

α). (5.42)

Taking the time derivative of (5.42) using (1.23) we obtain

y′′(t) = a1λt
α−1Eα,α(λt

α) + a2Eα,1(λt
α) + a3tEα,2(λt

α),

which after using the last three boundary conditions gives

λEα,α(λ)Eα,4(λ)− (Eα,2(λ))
2 = 0. (5.43)

Using MATHEMATICA we examine that for α = 3.1 to α = 3.32, equation (5.43) has no

solutions. Whereas, for α = 3.33, equation (5.43) has solution. We compute the eigenvalues

for α = 3.33, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 and 4 from equation (5.43). Which is shown in figure

5.3.

Remark. If β ∈ [0, 1] in FEP P17 then in equation (5.40) for α ∈ (3, 4], α+β(4−α)−4 ≤ 0

which does not satisfy the condition of the definition of Mittag-Leffler function (1.19).

Hence, equation(5.40) can not be solved for β ∈ [0, 1].

For comparison purpose, we compute the smallest eigenvalues of FEP P17 with β = 1

from equation (5.43), and its LILB and CSILB for different α, α ∈ [3.33, 4] and β = 1

from equations (5.36) and (5.38). The results are shown in figure 5.3. This figure clearly
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Figure 5.3. Comparison of the lower bounds for λ obtained from
Lyapunov-type and Cauchy-Schwarz inequalities with the lowest eigen-
value. (−◦−: LILB; −∗−: CSILB; −2−: LE - the Lowest Eigenvalue
λ) (β = 1, Caputo derivative FEP P17 )

demonstrates that among the two estimates considered here, the LILB provides the worse

estimate and the CSILB provides the best estimate for the smallest eigenvalues of FEP

P17 for β = 1.

We apply the improved bounds to obtain the interval in which the combination of

Mittag-Leffler functions have no real zeros in the following theorem.

Theorem 5.2.6. Let 3.33 ≤ α ≤ 4. Then based on the LILB and CSILB inequalities, the

combination of Mittag-Leffler functions

zEα,α(z)Eα,4(z)− (Eα,2(z))
2 (5.44)

have no real zeros in the following domains:

LILB inequality:

z ∈
(
− 6Γ(α)(α− 2)α−3

(α− 1)(α− 3)α−3
, 0

]
, (5.45)
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CSILB inequality:

z ∈
(
−Γ(α)

{
1

3α
[(α− 1)(α− 2)C1(α)− (α− 1)(α− 2)C4(α)− 6C2(α)] +

1

2α(2α− 1)

− 2(α− 1)(α− 2)

45(2α− 3)
+

2(α− 1)2(α− 2)2

945(2α− 5)
+

1

3(2α− 1)

}−1/2

, 0

]
. (5.46)

Proof. Let λ be the smallest eigenvalue of the FEP P17 with β = 1, then z = λ is the

smallest value of z for which

zEα,α(z)Eα,4(z)− (Eα,2(z))
2 = 0.

If there is another z smaller than λ for which above equation is satisfied by z, then it

will contradict that λ is the smallest eigenvalue. Therefore, (5.44) has no real zero for

z ∈ (−λ, 0]. Now, according to LILB with β = 1, we get

λ ≥ 6Γ(α)(α− 2)α−3

(α− 1)(α− 3)α−3

(see equation (5.36)). Thus, (5.44) has no real zero for

z ∈
(
− 6Γ(α)(α− 2)α−3

(α− 1)(α− 3)α−3
, 0

]
.

This proves equation (5.45). Equation (5.46) can be proved in a similar way by setting

β = 1 in equation (5.38).

5.3 FRACTIONAL BOUNDARY AND EIGENVALUE PROBLEMS WITH

THIRD BOUNDARY CONDITIONS OF B3

In this section we consider by replacing −q(t) by q(t) in FBVP (5.1), and −λ by λ in

FEP (5.5) with boundary conditions (5.4).
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5.3.1 Lyapunov-type Inequality For Fractional Boundary Value Problem with

third Boundary conditions of B3

We first consider FBVP (5.1) with the boundary conditions (5.4).

Problem P18: (
Dα,β

a+ y
)
(t) + q(t)y(t) = 0, 0 < t < 1,

y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′(1) = 0. (5.47)

Lemma 5.3.1. Problem P18 can be written as (2.7) where

G(t, s) =
1

Γ(α)



(α−1)(α−2)
[2−(4−α)(1−β)][3−(4−α)(1−β)]

t3−(4−α)(1−β)(1− s)α−3 − (t− s)α−1,

0 ≤ s ≤ t ≤ 1,

(α−1)(α−2)
[2−(4−α)(1−β)][3−(4−α)(1−β)]

t3−(4−α)(1−β)(1− s)α−3,

0 ≤ t ≤ s ≤ 1,

(5.48)

is the Green’s function for the problem P18.

Proof. Taking Iα0+ on the first equation of P18 and using Lemma 1.3.4 with a = 0 and for

n = 4, we obtain

y(t) = c0
t−(4−α)(1−β)

Γ(1− (4− α)(1− β))
+ c1

t1−(4−α)(1−β)

Γ(2− (4− α)(1− β))
+ c2

t2−(4−α)(1−β)

Γ(3− (4− α)(1− β))

+ c3
t3−(4−α)(1−β)

Γ(4− (4− α)(1− β))
−
∫ t

0

(t− s)α−1

Γ(α)
q(s)y(s)ds,

where ci =
di

dti

(
I
(4−α)(1−β)

0+ y
)
(0+), i = 0, 1, 2, 3 are the real constants. Applying the first

three boundary conditions of P18, we get c0 = c1 = c2 = 0 and using the last boundary

condition of P18, we obtain

c3 =
Γ(4− (4− α)(1− β))(α− 1)(α− 2)

Γ(α)(3− (4− α)(1− β))(2− (4− α)(1− β))

∫ 1

0

(1− s)α−3q(s)y(s)ds.

Hence, we get

y(t) =
(α− 1)(α− 2)t3−(4−α)(1−β)

Γ(α)(2− (4− α)(1− β))(3− (4− α)(1− β))

∫ 1

0

(1− s)α−3q(s)y(s)ds

−
∫ t

0

(t− s)α−1

Γ(α)
q(s)y(s)ds,
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which can be written as equation (2.7) with G(t, s) given by (5.48). This concludes the

proof.

Lemma 5.3.2. The Green’s function defined in equation (5.48) satisfies the following prop-

erty:

|G(t, s)| ≤ |G(1, s)| ≤ 2(α− 2)
α−1
2 (α− 3)

α−3
2

Γ(α) [(2− (4− α)(1− β))(3− (4− α)(1− β))]
α−1
2

, (5.49)

(t, s) ∈ [0, 1]× [0, 1].

Proof. The proof is similar to Lemma 5.1.2.

Theorem 5.3.3. If a nontrivial continuous solution of the FBVP P18 exists, then the LTI

is given by ∫ 1

0

|q(s)|ds ≥ Γ(α) [(2− (4− α)(1− β))(3− (4− α)(1− β))]
α−1
2

2(α− 2)
α−1
2 (α− 3)

α−3
2

, (5.50)

and in particular, for α = 4 and β = 0 or β = 1 in (5.47) this bound is∫ 1

0

|q(s)|ds ≥ 9
√
3. (5.51)

Proof. Using Lemma 5.3.2 in equation (2.11) we obtain the inequality (5.50). Setting α = 4

and β = 0 or β = 1 in (5.50), proves (5.51).

We notice that the inequalities in (5.50) and (5.51) give better estimates than the

inequalities given in [40].

5.3.2 Eigenvalue Problem with third Boundary conditions of B3 and Eigen-

value Estimates

We now consider FEP (5.5) with boundary conditions (5.4) as

Problem P19: (
Dα,β

a+ y
)
(t) + λy(t) = 0, 0 < t < 1

y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′(1) = 0. (5.52)
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Corollary 5.3.4. Let λ be the smallest eigenvalue of FEP P19. Then for α ∈ (3, 4] and

β ∈ [0, 1], the smallest eigenvalue estimates of FEP P19 are given by

1. the LILB

λ ≥ Γ(α) [(2− (4− α)(1− β))(3− (4− α)(1− β))]
α−1
2

2(α− 2)
α−1
2 (α− 3)

α−3
2

(5.53)

and in particular, for IOEP P19, i.e. α = 4 and β = 0 or β = 1 in P19, this bound

is

λ ≥ 9
√
3 (5.54)

2. and CSILB

λ ≥ Γ(α)

{
1

2α(2α− 1)
− 2(α− 1)(α− 2)C1(α)

α(3− (4− α)(1− β))(2− (4− α)(1− β))
+

(α− 1)2

(2α− 5)

· (α− 2)2

(3− (4− α)(1− β))2(2− (4− α)(1− β))2(7− 2(4− α)(1− β))

}−1/2

,

(5.55)

where C1(α) =
∫ 1

0
tα+3−(4−α)(1−β)

2F1(3− α, 1;α + 1; t)dt and in particular, for IOEP

P19, CSILB is

λ ≥ 72

√
35

71
. (5.56)

Proof. Setting q(t) = λ in equations (5.50) and (5.51), the inequalities in the first part

follow. Substituting the Green’s function from equation (5.48), in (2.15) with a = 0 and

b = 1, and simplifying the result, we obtain the inequality in equation (5.55). Setting

α = 4, and β = 0 or β = 1, in equation (5.55), we get the inequality (5.56).

We first consider the integer order case, i.e. α = 4 and β = 0 or β = 1 in equation

(5.52). For this case, the LILB and CSILB for the smallest λ of FEP P19 are given as

9
√
3 ≃ 15.588 and 72

√
35
71

≃ 50.5519, respectively (see equations (5.54) and (5.56)). We

notice that equations (5.53) and (5.54) give a better lower bound estimate for the smallest

λ than that is given in [40]. For α = 4 and β = 0 or β = 1, the FEP P19 can be solved in

closed form. Result shows, that the smallest eigenvalue of FEP P19 for α = 4 and β = 0 or
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β = 1 is the root of sin(λ1/4/
√
2) cosh(λ1/4/

√
2) + cos(λ1/4/

√
2) sinh(λ1/4/

√
2) = 0, which

gives the smallest eigenvalue as λ ≃ 125.140. Comparing this λ with its estimate above, it

is clear that among LILB and CSILB for integer α the CSILB provides the best estimate

for the smallest eigenvalue. The FEP P19 can also be solved and its eigenvalues can be

determined for arbitrary α, α ∈ (3, 4] as a root of the certain Mittag-Leffler function. This

is explained in the following theorem.

Theorem 5.3.5. For 3 < α ≤ 4 and 0 ≤ β ≤ 1, the FEP P19 has an infinite number of

eigenvalues, and they are the roots of the Mittag-Leffler function Eα,α+β(4−α)−2(z) i.e. the

eigenvalues satisfy

Eα,α+β(4−α)−2 = 0. (5.57)

Proof. The proof is similar to Theorem 5.1.5.

For comparison purpose, we compute the smallest eigenvalues of FEP P19 from equa-

tion (5.57) and its LILB and CSILB for different α, α ∈ (3, 4], β = 0 and β = 1 from

equations (5.53) and (5.55). The results are shown in figures 5.4 and 5.5. These figures

clearly demonstrate that among the two estimates considered here, the LILB provides the

worse estimate and the CSILB provides the best estimate for the smallest eigenvalues of

FEP P19 for β = 0 and β = 1.

In [40], the authors have applied the LILB to the FEPs with Riemann-Liouville deriva-

tive for α ∈ (3, 4] to find the interval in which certain Mittag-Leffler functions have no real

zeros. On the other hand, we apply the improved bounds to obtain these intervals for

certain Mittag-Leffler functions. Which is given in the following theorem.

Theorem 5.3.6. Let 3 ≤ α ≤ 4 and β ∈ [0, 1]. Then based on the LILB and CSILB

inequalities, the Mittag-Leffler function Eα,α+β(4−α)−2(z) has no real zeros in the following

domains:
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Figure 5.4. Comparison of the lower bounds for λ obtained from
Lyapunov-type and Cauchy-Schwarz inequalities with the lowest eigen-
value. (−◦−: LILB; −∗−: CSILB; −2−: LE - the Lowest Eigenvalue
λ) (β = 0, Riemann-Liouville derivative FEP P19 )

LILB inequality:

z ∈

(
−Γ(α) [(2− (4− α)(1− β))(3− (4− α)(1− β))]

α−1
2

2(α− 2)
α−1
2 (α− 3)

α−3
2

, 0

]
, (5.58)

CSILB inequality:

z ∈
(
−Γ(α)

{
1

2α(2α− 1)
− 2(α− 1)(α− 2)C1(α)

α(3− (4− α)(1− β))(2− (4− α)(1− β))
+

(α− 1)2

(2α− 5)

· (α− 2)2

(3− (4− α)(1− β))2(2− (4− α)(1− β))2(7− 2(4− α)(1− β))

}−1/2

, 0

]
. (5.59)

Proof. The proof is similar to Theorem 5.1.6.

From figures 5.4 and 5.5, it is clear that among the two inequalities discussed in this

chapter, LILB provides the smallest interval, and CSILB provides the largest interval in

which the Mittag-Leffler function Eα,α+β(4−α)−2(z) has no real zero. Particularly, we discuss

two cases, β = 0 and β = 1.
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Figure 5.5. Comparison of the lower bounds for λ obtained from
Lyapunov-type and Cauchy-Schwarz inequalities with the lowest eigen-
value. (−◦−: LILB; −∗−: CSILB; −2−: LE - the Lowest Eigenvalue
λ) (β = 1, Caputo derivative FEP P19 )
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[8] Çakmak, D. Lyapunov-type integral inequalities for certain higher order differential

equations, Appl. Math. Comput. 216 (2010), 368-373.
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APPENDIX I

DEFINITIONS AND THEOREMS

Important well-known general theorems and definitions that are mentioned in the main

body of text are collected below for easy reference.

A-1 VOLTERRA INTEGRAL EQUATIONS

Definition. A Volterra integral equation of the first kind is an integral equation of the

form

f(x) =

∫ x

a

K(x, t)ϕ(t)dt,

where K(x, t) is a known integral kernel.

Definition. A Volterra integral equation of the second kind is an integral equation of the

form

ϕ(x) = f(x) +

∫ x

a

K(x, t)ϕ(t)dt,

where K(x, t) is a known integral kernel and f(x) is a given function [33]

A-2 FUBINI’S THEOREM

This allows us to interchange the order of integration in repeated integrals:

Theorem A-2.1. Let Ω1 = [a, b], Ω2 = [c, d], −∞ ≤ a < b ≤ ∞ and let f(x, y) be a

measurable function defined on Ω1 × Ω2. If at least one of the integrals∫
Ω1

dx

∫
Ω2

f(x, y)dy,

∫
Ω2

dy

∫
Ω1

f(x, y)dx,

∫∫
Ω1×Ω2

f(x, y)dxdy (A-1)

is absolutely convergent, then they coincide (see [49], p. 9).
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DIRICHLET FORMULA

The foll0owing particular case of the Fubini’s theorem A-2.1 holds, namely∫ b

a

dx

∫ x

a

f(x, y)dy =

∫ b

a

dy

∫ b

y

f(x, y)dx (A-2)

assuming that one of these integrals is absolutely convergent. This is called the Dirichlet

formula [49].

ABEL’S EQUATION

Here we give the definition and a method to solve the Abels equation adopted by

Samko, et al, [49]. The integral equation

1

Γ(α)

∫ x

0

ϕ(t)dt

(x− t)1−α
= f(x), x > 0, (A-3)

where 0 < α < 1, is called Abel’s equation. Equation (A-3) may be solved in the following

way. Changing x to t and t to s respectively in (A-3), multiplying both sides of the equation

by (x− t)α and integrating we have∫ x

a

dt

(x− t)α

∫ t

a

ϕ(s)

(t− s)1−α
= Γ(α)

∫ x

a

f(t)dt

(x− t)α
. (A-4)

Interchanging the order of integration in the left-hand side by Dirichlet formula A-2) we

arrive at ∫ x

a

ϕ(s)ds

∫ x

a

dt

(x− t)α(t− s)1−α
= Γ(α)

∫ x

a

f(t)dt

(x− t)α
. (A-5)

The inner integral is evaluated using the change of variable t = s+τ(x−s) and application

of the formulae (1.14) and (1.12):∫ x

s

(x− t)−α(t− s)α−1dt =

∫ 1

0

τα−1(1− τ)−αdτ

= B(α, 1− α) = Γ(α)Γ(1− α).

Therefore ∫ x

a

ϕ(s)ds =
1

Γ(1− α)

∫ x

a

f(t)dt

(x− t)α
.
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After differentiation we have:

ϕ(x) =
1

Γ(1− α)

d

dx

∫ x

a

f(t)dt

(x− t)α
. (A-6)

So, if (A-3) has a solution, this solution is necessarily given by (A-6) and therefore it is

unique. The case α = 1 is clear, while the case α > 1 is reduced to the case 0 < α < 1, by

differentiating (A-6). Analogously, the Abel equation of the form

1

Γ(α)

∫ b

x

ϕ(t)dt

(t− x)1−α
= f(x), x ≤ b (A-7)

is considered and instead of (A-3), one obtains for 0 < α < 1 the following inversion formula

ϕ(x) = − 1

Γ(1− α)

d

dx

∫ b

x

f(t)dt

(t− x)α
. (A-8)

[49].
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APPENDIX II

A-3 SOME SPECIAL CASES OF MITTAG-LEFFLER FUNCTION Eα,β(Z)

We obtain some special cases of the Mittag-Leffler function Eα,β(z).

Lemma A-3.1. Let α, β, λ ∈ C then

t2E3,3(−λ3t3) =
1

3λ2

[
e−λt − eλt/2 cos

(√3

2
λt
)
+
√
3eλt/2 sin

(√3

2
λt
)]

(A-9)

t3E4,4(−λ4t4) =
1

2
√
2λ3

[
−2 cos

( λ√
2
t
)
sinh

( λ√
2
t
)
+ 2 sin

( λ√
2
t
)
cosh

( λ√
2
t
)]

(A-10)

Proof. Taking the Laplace transform on left hand side of equations (A-9) and (A-10) we

get,

L
[
t2E3,3(−λ3t3)

]
=

1

s3 + λ3

=
1

3λ2

[
3λ2

s3 + λ3

]
. (A-11)

and

L
[
t3E4,4(−λ4t4)

]
=

1

s4 + λ4
=

1

2
√
2λ3

[
2
√
2λ3

s4 + λ4

]

=
1

2
√
2λ3

[ √
2λ(λ2 − s2)

(λ2 −
√
2λs+ s2)(λ2 +

√
2λs+ s2)

+

√
2λ(λ2 + s2)

(λ2 −
√
2λs+ s2)(λ2 +

√
2λs+ s2)

]
(A-12)

respectively. Using (1.25), we take the inverse Laplace transform on the last parts of (A-

11) and (A-12) give respectively the right hand sides of equations (A-9) and (A-10). This

completes the proof.

A-4 SEMIGROUP PROPERTY OF Kα
P -OPERATOR

The Kα
P -operator was introduced in [1].
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Definition. Let f(x) ∈ L(a, b). The operator Kα
P is defined as

Kα
Pf(x) = r

∫ x

a

kα(x, t)f(t)dt+ q

∫ b

x

kα(t, x)f(t)dt, (A-13)

where r, q and α (n − 1 < α < n), a, b (a < b) are some real parameters, n is a positive

integer, P =< a, x, b, r, q > is a parameter set, and kα(x, t) is a kernel which may depend

on α.

We note that in [53], we have taken kα(x, t) = exp(−αt). If we take

kα(x, t) =
(x− t)α−1e−(x−t)

Γ(α)
(A-14)

in (A-13) then the following results hold.

Proposition A-4.1. Let α, β > 0 and if f(x) ∈ L(a, b), then the semi-group properties for

operator in (A-13) with kernel (A-14) given by

Kα
P1
Kβ

P1
f(x) = Kα+β

P1
f(x) (A-15)

Kα
P2
Kβ

P2
f(x) = Kα+β

P2
f(x) (A-16)

hold at almost every point x ∈ [a, b]. Where P1 =< a, x, b, 1, 0 > and P2 =< a, x, b, 0, 1 >.

If α+ β > 1, then the above relations hold at any point of [a, b] [30],[49].

Proof. For P = P1 =< a, x, b, 1, 0 > in equation (A-13) gives

Kα
P1
f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1e−(x−t)f(t)dt, x ∈ (a, b].

Now

Kα
P1
Kβ

P1
f(x) =

1

Γ(α)Γ(β)

∫ x

a

(x− s)α−1e−(x−s)ds

∫ s

a

(s− t)β−1e−(s−t)f(t)dt

=
1

Γ(α)Γ(β)

∫ x

a

(x− s)α−1ds

∫ s

a

(s− t)β−1e−(x−t)f(t)dt

=
1

Γ(α)Γ(β)

∫ x

a

e−(x−t)f(t)dt

∫ x

t

(x− s)α−1(s− t)β−1ds

=
1

Γ(α + β)

∫ x

a

e−(x−t)(x− t)α+β−1f(t)dt

= Kα+β
P1

f(x).
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Which proves (A-15). Similarly, to prove equation (A-16) using P = P2 =< a, x, b, 0, 1 >

in equation (A-13) we get,

Kα
P2
f(x) =

1

Γ(α)

∫ b

x

(t− x)α−1e−(t−x)f(t)dt, x ∈ (a, b].

Now

Kα
P2
Kβ

P2
f(x) =

1

Γ(α)Γ(β)

∫ b

x

(s− x)α−1e−(s−x)ds

∫ b

s

(t− s)β−1e−(t−s)f(t)dt

=
1

Γ(α)Γ(β)

∫ b

x

(s− x)α−1ds

∫ b

s

(t− s)β−1e−(t−x)f(t)dt

=
1

Γ(α)Γ(β)

∫ b

x

e−(t−x)f(t)dt

∫ t

x

(s− x)α−1(t− s)β−1ds

=
1

Γ(α + β)

∫ b

x

e−(t−x)(t− x)α+β−1f(t)dt

= Kα+β
P2

f(x).

This completes the proof.

If we take

k(x, t) = (x− t)β−1Eσ
α,β [(x− t)α] , (A-17)

in (A-13), where

Eσ
α,β [z] =

∞∑
k=0

(σ)k
Γ(αk + β)

zk

k!
, α, β, σ ∈ C (R(α),R(β),R(σ) > 0),

the generalized Mittag-Leffler function. It was introduced by Prabhakar [46]. The following

results hold.

Proposition A-4.2. Let α, β, ν > 0 and if f(x) ∈ L(a, b), then the semi-group properties

for operator in (A-13) with kernel (A-17) given by

Kβ
P1
Kν

P1
f(x) = Kβ+ν

P1
f(x) (A-18)

Kβ
P2
Kν

P2
f(x) = Kβ+ν

P2
f(x) (A-19)

hold at almost every point x ∈ [a, b]. If β+ ν > 1, then the above relations hold at any

point of [a, b] [30],[49].
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Proof. For P = P1 =< a, x, b, 1, 0 > in equation (A-13)

Kβ
P1
f(x) =

∫ x

a

(x− u)β−1Eσ
α,β [(x− u)α] f(u)du, x ∈ (a, b]

Kβ
P1
Kν

P1
f(x) =

∫ x

a

(x− u)β−1Eσ
α,β [(x− u)α] du

∫ u

a

(u− t)ν−1Eµ
α,ν [(u− t)α] f(t)dt

=

∫ x

a

[∫ x

t

(x− u)β−1(u− t)ν−1Eσ
α,β [(x− u)α]Eµ

α,ν [(u− t)α] du

]
f(t)dt

=

∫ x

a

[∫ x−t

0

(x− t− τ)β−1τ ν−1Eσ
α,β [(x− t− τ)α]Eµ

α,ν [τ
α] du

]
f(t)dt.

(A-20)

We have taken u − t = τ ⇒ du = dτ, u → t ⇒ τ → 0, u → x ⇒ τ → x − t in the above

derivation. We first prove the following:∫ x−t

0

(x− t− τ)β−1Eσ
α,β [(x− t− τ)α] τ ν−1Eµ

α,ν [τ
α] du = xβ+ν−1Eσ+µ

α,β+ν [x
α] . (A-21)

Using

L
[∫ x−t

0

k(x− t− τ)ϕ(t)dt

]
(s) = L [k(x)] (s)L [ϕ(x)] (s),

we take the Laplace transform on equation (A-21) we obtain

L
[∫ x−t

0

(x− t− τ)β−1Eσ
α,β [(x− t− τ)α] τ ν−1Eµ

α,ν [τ
α] du

]
=

s−β

(1− s−α)σ
s−ν

(1− s−α)µ
=

s−(β+ν)

(1− s−α)σ+µ
. (A-22)

Taking inverse Laplace transform on (A-22) proves (A-21). Hence using (A-21) in (A-20)

we obtain

Kβ
P1
Kν

P1
f(x) =

∫ x

a

(x− u)β+ν−1Eσ+µ
α,β+ν [(x− u)α] f(u)du = Kβ+ν

P1
f(x).

This proves (A-18). In the similar way (A-19) can be proved.
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