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1CHAPTER 1

INTRODUCTION

Suppose that the response variable Yi and at least one predictor variable xi,j are

quantitative with xi,1 ≡ 1. Let xTi = (xi,1, ..., xi,p) and β = (β1, ..., βp)
T where β1

corresponds to the intercept. Then the multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xTi β + ei (1.1)

for i = 1, ..., n. This model is also called the full model. Here n is the sample size, and

assume that the random variables ei are independent and identically distributed (iid)

with variance V(ei) =σ2. In matrix notation, these n equations become

Y = Xβ + e (1.2)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

β is a p× 1 vector of unknown coefficients, and e is an n× 1 vector of unknown errors.

The ith fitted value Ŷi = xTi β̂ and the ith residual ri = Yi − Ŷi where β̂ is an estimator

of β. Ordinary least squares (OLS) is often used for inference if n/p is large.

Variable selection is the search for a subset of predictor variables that can be deleted

without important loss of information. Following Olive and Hawkins (2005),



2a model for variable selection can be described by

xTβ = xTSβS + xTEβE = xTSβS (1.3)

where x = (xTS ,x
T
E)T , xS is an aS × 1 vector, and xE is a (p− aS)× 1 vector.

Given that xs is in the model, βE = 0 and E denotes the subset of terms that

can be eliminated given that the subset S is in the model. Let xI be the vector of a

terms from a candidate subset indexed by I and let xO be the vector of the remaining

predictors (out of the candidate submodel). Suppose that S is a subset of I and that

model (1.3) holds. Then

xTβ = xTSβS = xTSβS + xTI/Sβ(I/S) + xTO0 = xTI βI , (1.4)

where xI/S denotes the predictors in I that are not in S. Since this is true regardless of

the values of the predictors, βO = 0 if S ⊆ I.

Forward selection forms a sequence of submodels I1, ..., Ip where Ij uses j predictors

including the constant. Let I1 use x∗1 = x1 ≡ 1: the model has a constant but no

nontrivial predictors. To form I2, consider all models I with two predictors including x∗1.

Compute Q2(I) = SSE(I) = RSS(I) = rT (I)r(I) =
∑n

i=1 r
2
i (I) =

∑n
i=1(Yi − Ŷi(I))2.

Let I2 minimize Q2(I) for the p− 1 models I

that contain x∗1 and one other predictor. Denote the predictors in I2 by x∗1, x
∗
2. In

general, to form Ij consider all models I with j predictors including variables x∗1, ..., x
∗
j−1.



3Compute Qj(I) = rT (I)r(I) =

∑n
i=1 r

2
i (I) =

∑n
i=1(Yi − Ŷi(I))2. Let Ij minimize Qj(I) for the p − j + 1 models I that

contain x∗1, ..., x
∗
j−1 and one other predictor not already selected. Denote the predictors

in Ij by x∗1, ..., x
∗
j . Continue in this manner for j = 2, ...,M = p where n ≥ 10p and p is

fixed.

When there is a sequence of M submodels, the final submodel Id needs to be selected.

Let the candidate model I contain a terms, including a constant. Let xI and β̂I be a×1

vectors. Then there are many criteria used to select the final submodel Id. For a given

data set, p, n, and σ̂2 act as constants, and a criterion below may add a constant or

be divided by a positive constant without changing the subset Imin that minimizes the

criterion.

Let criteria CS(I) have the form

CS(I) = SSE(I) + aKnσ̂
2.

These criteria need a good estimator of σ2. The criterion Cp(I) = AICS(I) uses Kn = 2

while the BICS(I) criterion uses Kn = log(n). Typically σ̂2 is the OLS full model

MSE =
n∑
i=1

r2i
n− p

when n/p is large. Then σ̂2 = MSE is a
√
n consistent estimator of σ2 under mild

conditions by Su and Cook (2012).



4The following criterion are described in Burnham and Anderson (2004), but

still need n/p large. AIC is due to Akaike (1973) and BIC to Schwarz (1978).

AIC(I) = n log

(
SSE(I)

n

)
+ 2a, and

BIC(I) = n log

(
SSE(I)

n

)
+ a log(n).

Let Imin be the submodel that minimizes the criterion using variable selection with

OLS. Following Nishii (1984), P (S ⊆ Imin) → 1 as n → ∞ if Cp or AIC is used for

forward selection, backward elimination, or all subsets. If β̂I is a × 1, form the p × 1

vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. Since fewer

than 2p regression models I contain the true model, and each such model gives a
√
n

consistent estimator β̂I,0 of β, the probability that Imin picks one of these models goes

to one as n → ∞. Hence β̂Imin,0
is a
√
n consistent estimator of β under model (1.3).

See Pelawa Watagoda and Olive (2019) and Olive (2017a: p. 123, 2017b: p. 176).

Chapter 2 describes bootstrap confidence intervals and regions, and chapter 3 gives

a simulation for confidence intervals for βi after variable selection.



5CHAPTER 2

BOOTSTRAP CONFIDENCE REGIONS

Mixture distributions are useful for variable selection since asymptotically β̂Imin,0
is

a mixture distribution of β̂Ij ,0 where S ⊆ Ij. See Equation (1.3). A random vector u has

a mixture distribution if u equals a random vector uj with probability πj for j = 1, ..., J .

Definition 1. The distribution of a g× 1 random vector u is a mixture distribution if the

cumulative distribution function (cdf) of u is

Fu(t) =
J∑
j=1

πjFuj
(t) (2.1)

where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2, and Fuj
(t) is

the cdf of a g × 1 random vector uj. Then u has a mixture distribution of the uj with

probabilities πj.

Theorem 1. Suppose E(h(u)) and the E(h(uj)) exist. Then

E(h(u)) =
J∑
j=1

πjE[h(uj)] and E(u) =
J∑

j=1

πjE[uj]. (2.2)

Hence Cov(u) = E(uuT )− E(u)E(uT ) = E(uuT )− E(u)[E(u)]T =

∑J
j=1 πjE[uju

T
j ]− E(u)[E(u)]T =

J∑
j=1

πjCov(uj) +
J∑
j=1

πjE(uj)[E(uj)]
T − E(u)[E(u)]T . (2.3)



6If E(uj) = θ for j = 1, ..., J , then E(u) = θ and

Cov(u) =
J∑
j=1

πjCov(uj).

Definition 2. The population mean of a random p× 1 vector X = (X1, ..., Xp)
T is

E(X) = (E(X1), ..., E(Xp))
T

and the p× p population covariance matrix

Cov(X) = E(X − E(X))(X − E(X))T = (σij).

That is, the ij entry of Cov(X) is Cov(Xi, Xj) = σij.

Note that Cov(X) is a symmetric positive semidefinite matrix. The following results

are useful. If X and Y are p× 1 random vectors, a a conformable constant vector, and

A and B are conformable constant matrices, then

E(a+X) = a+ E(X) and E(X + Y ) = E(X) + E(Y ) (2.4)

and

E(AX) = AE(X) and E(AXB) = AE(X)B. (2.5)

Thus

Cov(a+AX) = Cov(AX) = ACov(X)AT . (2.6)



7For the multivariate normal (MVN) distribution X ∼ Np(µ,Σ). Then E(X) = µ

and

Cov(X) = Σ.

Inference will consider bootstrap confidence intervals and bootstrap confidence re-

gions for bootstrap hypothesis testing. Applying the shorth prediction interval and the

Olive (2013) prediction region to the bootstrap sample will give the bootstrap confidence

intervals and regions.

Consider predicting a future test random variable Zf given iid training data

Z1, ..., Zn. A large sample 100(1−δ)% prediction interval (PI) for Zf has the form [L̂n, Ûn]

where P (L̂n ≤ Zf ≤ Ûn)→ 1− δ as the sample size n→∞. The shorth(c) estimator is

useful for making prediction intervals. Let Z(1), ..., Z(n) be the order statistics of Z1, ..., Zn.

Then let the shortest closed interval containing at least c of the Zi be

shorth(c) = [Z(s),Z(s+c−1)]. (2.7)

Let dxe be the smallest integer ≥ x, e.g., d7.7e = 8. Let

kn = dn(1− δ)e. (2.8)

Frey (2013) showed that for large nδ and iid data, the shorth(kn) PI has maximum

undercoverage ≈ 1.12
√
δ/n, and used the shorth(c) estimator as the large sample 100(1−



8δ)% PI where

c = min(n, dn[1− δ + 1.12
√
δ/n ] e). (2.9)

Example 1. Given below were votes for preseason 1A basketball poll from Nov.

22, 2011 WSIL News where the 778 was a typo: the actual value was 78. As shown

below, finding shorth(3) from the ordered data is simple. If the outlier was corrected,

shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]

We also want to use bootstrap tests. Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0

where θ0 is a known g×1 vector. Given training data z1, ...,zn, a large sample 100(1−δ)%

confidence region for θ is a set An such that P (θ ∈ An)→ 1− δ as n→∞. Then reject

H0 if θ0 is not in the confidence region An. For model (1.1), let θ = Aβ where A is a

known full rank g × p matrix with 1 ≤ g ≤ p.

To bootstrap a confidence region, Mahalanobis distances and prediction regions will



9be useful. Consider predicting a future test value zf , given past training data

z1, ...,zn where the zi are g × 1 random vectors. A large sample 100(1− δ)% prediction

region is a set An such that P (zf ∈ An)→ 1− δ as n→∞. Let the g× 1 column vector

T be a multivariate location estimator, and let the g × g symmetric positive definite

matrix C be a dispersion estimator. Then the ith squared sample Mahalanobis distance

is the scalar

D2
i = D2

i (T,C) = D2
zi

(T,C) = (zi − T )TC−1(zi − T ) (2.10)

for each observation zi. Notice that the Euclidean distance of zi from the estimate of

center T is Di(T, Ig) where Ig is the g × g identity matrix. The classical Mahalanobis

distance Di uses (T,C) = (z,S), the sample mean and sample covariance matrix where

z =
1

n

n∑
i=1

zi and S =
1

n− 1

n∑
i=1

(zi − z)(zi − z)T. (2.11)

Let qn = min(1− δ + 0.05, 1− δ + g/n) for δ > 0.1 and

qn = min(1− δ/2, 1− δ + 10δg/n), otherwise. (2.12)

If 1− δ < 0.999 and qn < 1− δ + 0.001, set qn = 1− δ. Let

c = dnqne. (2.13)

Let (T,C) = (z,S), and let D(Un) be the 100qnth sample quantile of the Di. Then the

Olive (2013) large sample 100(1−δ)% nonparametric prediction region for a future value



10zf given iid data z1, ...,zn is

{z : D2
z(z,S) ≤ D2

(Un)}, (2.14)

while the classical large sample 100(1− δ)% prediction region is

{z : D2
z(z,S) ≤ χ2

g,1−δ}. (2.15)

Definition 3. Suppose that data x1, ...,xn has been collected and observed. Often the

data is a random sample (iid) from a distribution with cdf F . The empirical distribution is

a discrete distribution where the xi are the possible values, and each value is equally likely.

If w is a random variable having the empirical distribution, then pi = P (w = xi) = 1/n

for i = 1, ..., n. The cdf of the empirical distribution is denoted by Fn.

Example 2. Let w be a random variable having the empirical distribution given by

Definition 3. Show that E(w) = x ≡ xn and Cov(w) =
n− 1

n
S ≡ n− 1

n
Sn.

Solution: Recall that for a discrete random vector, the population expected value

E(w) =
∑
xipi where xi are the values that w takes with positive probability pi. Simi-

larly, the population covariance matrix

Cov(w) = E[(w − E(w))(w − E(w))T ] =
∑

(xi − E(w))(xi − E(w))Tpi.

Hence

E(w) =
n∑
i=1

xi
1

n
= x,



11and

Cov(w) =
n∑
i=1

(xi − x)(xi − x)T
1

n
=
n− 1

n
S. �

Example 3. If W1, ...,Wn are iid from a distribution with cdf FW , then the

empirical cdf Fn corresponding to FW is given by

Fn(y) =
1

n

n∑
i=1

I(Wi ≤ y)

where the indicator I(Wi ≤ y) = 1 if Wi ≤ y and I(Wi ≤ y) = 0 if Wi > y. Fix n

and y. Then nFn(y) ∼ binomial (n, FW (y)). Thus E[Fn(y)] = FW (y) and V [Fn(y)] =

FW (y)[1− FW (y)]/n. By the central limit theorem,

√
n(Fn(y)− FW (y))

D→ N(0, FW (y)[1− FW (y)]).

Thus Fn(y)− FW (y) = OP (n−1/2), and Fn is a reasonable estimator of FW if the sample

size n is large.

Suppose there is data w1, ...,wn collected into an n× p matrix W . Let the statistic

Tn = t(W ) = T (Fn) be computed from the data. Suppose the statistic estimates θ =

T (F ), and let t(W ∗) = t(F ∗
n) = T ∗

n indicate that t was computed from an iid sample from

the empirical distribution Fn: a sample w∗
1, ...,w

∗
n of size n was drawn with replacement

from the observed sample w1, ...,wn. This notation is used for von Mises differentiable

statistical functions in large sample theory. See Serfling (1980, ch. 6). The empirical



12bootstrap or nonparametric bootstrap or naive bootstrap draws B samples of size n

from the rows of W , e.g. from the empirical distribution of w1, ...,wn. Then T ∗
jn is

computed from the jth bootstrap sample for j = 1, ..., B.

Example 4. Suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and the sample

median Tn is 4. Using R, we drew B = 2 bootstrap samples (samples of size n drawn

with replacement from the original data) and computed the sample median T ∗
1,n = 3 and

T ∗
2,n = 4.

b1 <- sample(1:7,replace=T)

b1

[1] 3 2 3 2 5 2 6

median(b1)

[1] 3

b2 <- sample(1:7,replace=T)

b2

[1] 3 5 3 4 3 5 7

median(b2)

[1] 4

The bootstrap has been widely used to estimate the population covariance matrix



13Cov(Tn) of a statistic Tn, for testing hypotheses, and for obtaining confidence

regions (often confidence intervals). An iid sample T1n, ..., TBn of size B of the statistic

would be very useful for inference, but typically we only have one sample of data and

one value Tn = T1n of the statistic. Often Tn = t(w1, ...,wn), and the bootstrap sample

T ∗
1n, ..., T

∗
Bn is formed where T ∗

jn = t(w∗
j1, ...,w

∗
jn).

The residual bootstrap is often useful for additive error regression models of the form

Yi = m(xi) + ei = m̂(xi) + ri = Ŷi + ri for i = 1, ..., n where the ith residual ri = Yi− Ŷi.

Let Y = (Y1, ..., Yn)T , r = (r1, ..., rn)T , and let X be an n × p matrix with ith row xTi .

Then the fitted values Ŷi = m̂(xi), and the residuals are obtained by regressing Y on X.

Here the errors ei are iid, and it would be useful to be able to generate B iid samples

e1j, ..., enj from the distribution of ei where j = 1, ..., B. If the m(xi) were known, then

we could form a vector Y j where the ith element Yij = m(xi) + eij for i = 1, ..., n. Then

regress Y j on X. Instead, draw samples r∗1j, ..., r
∗
nj with replacement from the residuals,

then form a vector Y ∗
j where the ith element Y ∗

ij = m̂(xi) + r∗ij for i = 1, ..., n. Then

regress Y ∗
j on X.

The Olive (2017ab, 2018) prediction region method obtains a confidence region

for θ by applying the nonparametric prediction region (2.15) to the bootstrap sample

T ∗
1 , ..., T

∗
B. Let T

∗
and S∗

T be the sample mean and sample covariance matrix of the



14bootstrap sample. Assume nS∗
T

P→ ΣA. See Machado and Parente (2005) for

regularity conditions for this assumption.

Following Bickel and Ren (2001), let the vector of parameters θ = T (F ), the statistic

Tn = T (Fn), and T ∗ = T (F ∗
n) where F is the cdf of iid x1, ...,xn, Fn is the empirical

cdf, and F ∗
n is the empirical cdf of x∗

1, ...,x
∗
n, a sample from Fn using the nonparametric

bootstrap. If
√
n(Fn − F )

D→ zF , a Gaussian random process, and if T is sufficiently

smooth (has a Hadamard derivative Ṫ (F )), then
√
n(Tn−θ)

D→ u and
√
n(T ∗

i −Tn)
D→ u

with u = Ṫ (F )zF . Olive (2017b) used these results to show that if u ∼ Ng(0,ΣA), then

√
n(T

∗ − Tn)
D→ 0,

√
n(T ∗

i − T
∗
)
D→ u,

√
n(T

∗ − θ)
D→ u, and that the prediction region

method large sample 100(1− δ)% confidence region for θ is

{w : (w − T ∗
)T [S∗

T ]−1(w − T ∗
) ≤ D2

(UB)} = {w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} (2.16)

where D2
(UB) is computed from D2

i = (T ∗
i −T

∗
)T [S∗

T ]−1(T ∗
i −T

∗
) for i = 1, ..., B. Note that

the corresponding test for H0 : θ = θ0 rejects H0 if (T
∗ − θ0)T [S∗

T ]−1(T
∗ − θ0) > D2

(UB).

The modified Bickel and Ren (2001) large sample 100(1− δ)% confidence region is

{w : (w − T )T [S∗
T ]−1(w − Tn) ≤ D2

(UB ,T )
} = {w : D2

w(Tn,S
∗
T ) ≤ D2

(UB ,T )
} (2.17)

where D2
(UB ,T )

is computed from D2
i = (T ∗

i − Tn)T [S∗
T ]−1(T ∗

i − Tn). See Olive (2017b, p.

170).



15Since (2.17) is a large sample confidence region by Bickel and Ren (2011),

so is (2.16) if
√
n(T

∗ − Tn)
P→ 0. Olive (2017b, pp. 171-172) proved (2.16) is a large

sample confidence region. Pelawa Watagoda and Olive (2019) have a simpler proof.

The remainder of this section follows Pelawa Watagoda and Olive (2019) closely.

For OLS variable selection with Cp, let β̂Ij = (XT
Ij
XIj)

−1XT
Ij
Y = DjY , Tn = β̂Imin,0

and Tjn = β̂Ij ,0 = Dj,0Y where Dj,0 adds rows of zeroes to Dj corresponding to the xi

not in Ij. Let Tn = Tkn = β̂Ik,0 with probabilities πkn where πkn → πk as n→∞. Denote

the πk with S ⊆ Ik by πj. The other πk = 0 by Nishii (1984). Then
√
n(β̂Ij − βIj)

D→

Naj(0, σ
2V j) and ujn =

√
n(β̂Ij ,0−β)

D→ uj ∼ Np(0, σ
2V j,0) where n(XT

Ij
XIj)

−1 P→ V j

and V j,0 adds columns and rows of zeroes corresponding to the xi not in Ij. Hence

Σj = σ2V j,0 is singular unless Ij corresponds to the full model.

Then Pelawa Watagoda and Olive (2019) showed

√
n(β̂Imin,0

− β)
D→ u (2.18)

where the cdf of u is Fu(z) =
∑

j πjFuj
(z). Thus u is a mixture distribution of the

uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjσ
2V j,0. The values of

πj depend on the OLS variable selection method with Cp, such as backward elimination,

forward selection, and all subsets. Let A be a g × p full rank matrix with 1 ≤ g ≤ p.



16Then

√
n(Aβ̂Imin,0

−Aβ)
D→ Au = v (2.19)

where Au has a mixture distribution of the Auj ∼ Ng(0, σ
2AV j,0A

T ) with probabilities

πj.

Two special cases are interesting. First, suppose πd = 1 so u ∼ ud ∼ Np(0,Σd).

This special case occurs for Cp if aS = p so S is the full model, and for methods like BIC

that choose IS with probability going to one.

The second special case occurs if for each πj > 0, Auj ∼ Ng(0,AΣjA
T ) =

Ng(0,AΣAT ). Then
√
n(Aβ̂Imin,0

− Aβ)
D→ Au ∼ Ng(0,AΣAT ). This special case

occurs for β̂S if the nontrivial predictors are orthogonal or uncorrelated with zero mean

so XTX/n → diag(d1, ..., dp) as n → ∞ where each di > 0. Then β̂S has the same

multivariate normal limiting distribution for Imin and for the OLS full model.

For g = 1, the percentile method uses an interval that contains UB ≈ kB = dB(1−δ)e

of the T ∗
i from a bootstrap sample T ∗

1 , ..., T
∗
B where the statistic Tn is an estimator of

θ based on a sample of size n. Note that the squared Mahalanobis distance D2
θ =

(θ − T ∗)2/S2∗
T ≤ D2

(UB) is equivalent to θ ∈ [T ∗ − S∗
TD(UB), T ∗ + S∗

TD(UB)], which is an

interval centered at T ∗ just long enough to cover UB of the T ∗
i . If D is the 100qBth

sample quantile of |T ∗
i − T

∗|, then the prediction region method large sample CI for



17θ is

T
∗ ±D.

Similarly, the Bickel and Ren CI is an interval centered at Tn just long enough to cover

UB,T ≈ kB of the T ∗
i . Hence the prediction region method CI and Bickel and Ren CI are

both special cases of the percentile method if g = 1. Efron (2014) used a similar large

sample 100(1−δ)% confidence interval centered at T
∗

assuming that T
∗

is asymptotically

normal. The Frey (2013) shorth(c) interval (2.8) (with c given by (2.10)) applied to the T ∗
i

gives a confidence interval that is a practical implementation of the Hall (1988) shortest

bootstrap interval based on all possible bootstrap samples.

Note that correction factors bn → 1 are used in large sample confidence intervals

and tests if the limiting distribution is N(0,1) or χ2
p, but a tdn or pFp,dn cutoff is used:

tdn,1−δ/z1−δ → 1 and pFp,dn,1−δ/χ
2
p,1−δ → 1 if dn →∞ as n→ 1. Using correction factors

for prediction intervals and bootstrap confidence regions improves the performance for

moderate sample size n.

Note that if
√
n(Tn − θ)

D→ U and
√
n(T ∗

i − Tn)
D→ U where U has a unimodal

probability density function symmetric about zero, then the confidence intervals from

the two confidence regions, the shorth confidence interval, and the “usual” percentile

method confidence interval are asymptotically equivalent (use the central proportion of



18the bootstrap sample, asymptotically).

A geometric argument is useful. Assume T1, ..., TB are iid with nonsingular covari-

ance matrix ΣTn . Then the large sample 100(1 − δ)% prediction region Rp = {w :

D2
w(T ,ST ) ≤ D2

(UB)} centered at T contains a future value of the statistic Tf with prob-

ability 1 − δB → 1 − δ as B → ∞. Hence the region Rc = {w : D2
w(Tn,ST ) ≤ D2

(UB)}

centered at a randomly selected Tn contains T with probability 1−δB. If
√
n(Tn−θ)

D→ u

with E(u) = 0 and Cov(u) = Σu, then for fixed B with vi ∼ u,

√
n(T − θ)

D→ 1

B

B∑
i=1

vi ∼ ANg

(
0,

Σu
B

)
.

Hence (T − θ) = OP ((nB)−1/2), and T gets arbitrarily close to θ compared to Tn as

B →∞. Hence Rc is a large sample 100(1− δ)% confidence region for θ as n,B →∞.

We also need (nST )−1 to be fairly well behaved (not too ill conditioned) for each n ≥ 20g,

say. This condition is weaker than (nST )−1 P→ Σ−1
u .

If
√
n(Tn−θ) and

√
n(T ∗

i −Tn) both converge in distribution to u ∼ Ng(0,ΣA), say,

then the bootstrap sample data cloud of T ∗
1 , ..., T

∗
B is like the data cloud of iid T1, ..., TB

shifted to be centered at Tn. Then region (2.17) is a confidence region by the geometric

argument since D(UB ,T ) tends to be larger than D(UB), and (2.16) is a confidence region

if
√
n(T

∗ − Tn)
P→ 0.

Much of the bootstrap confidence region theory does not apply to the variable



19selection estimator Tn = Aβ̂Imin,0
with θ = Aβ, because Tn is not smooth since Tn

is equal to the estimator Tjn with probability πjn for j = 1, ..., J . Here A is a known

full rank g × p matrix with 1 ≤ g ≤ p. We have
√
n(Tn − θ)

D→ v by (2.19) where

E(v) = 0, and Σv =
∑

j σ
2AV j,0A

T . Hence the geometric argument holds: applying

the prediction region (2.14) to an iid sample T1, ..., TB and then centering the region at

Tn gives a large sample confidence region for θ. For variable selection, we will next show

that the bootstrap sample data cloud T ∗
1 , ..., T

∗
B tends to be slightly more variable than

the data cloud of iid T1, ..., TB for large n.

Assume p is fixed, n ≥ 20p, and that the error distribution is unimodal and not

highly skewed. The response plot and residual plot are plots with Ŷ = xT β̂ on the

horizontal axis and Y or r on the vertical axis, respectively. Then the plotted points in

these plots should scatter in roughly even bands about the identity line (with unit slope

and zero intercept) and the r = 0 line, respectively. If the error distribution is skewed or

multimodal, then much larger sample sizes may be needed.

For the bootstrap, suppose that T ∗
i is equal to T ∗

ij with probability ρjn for j = 1, ..., J

where
∑

j ρjn = 1, and ρjn → πj as n→∞. Let Bjn count the number of times T ∗
i = T ∗

ij

in the bootstrap sample. Then the bootstrap sample T ∗
1 , ..., T

∗
B can be written as

T ∗
1,1, ..., T

∗
B1n,1

, ..., T ∗
1,J , ..., T

∗
BJn,J



20where the Bjn follow a multinomial distribution and Bjn/B
P→ ρjn as B →∞.

Denote T ∗
1j, ..., T

∗
Bjn,j

as the jth bootstrap component of the bootstrap sample with sample

mean T
∗
j and sample covariance matrix S∗

T,j. Then

T
∗

=
1

B

B∑
i=1

T ∗
i =

∑
j

Bjn

B

1

Bjn

Bjn∑
i=1

T ∗
ij =

∑
j

ρ̂jnT
∗
j .

Similarly, we can define the jth component of the iid sample T1, ..., TB to have sample

mean T j and sample covariance matrix ST,j.

For the residual bootstrap, we use the fitted values and residuals from the OLS

full model to obtain Y ∗, but fit β̂ for a method such as forward selection, lasso, et

cetera. Consider forward selection where each component uses a β̂Ij . Let Ŷ = Ŷ OLS =

Xβ̂OLS = HY be the fitted values from the OLS full model whereH = X(XTX)−1XT .

Let rW denote an n × 1 random vector of elements selected with replacement from

the OLS full model residuals. Following Freedman (1981) and Efron (1982, p. 36),

Y ∗ = Xβ̂OLS +rW follows a standard linear model where the elements rWi of rW are iid

from the empirical distribution of the OLS full model residuals ri. Hence

E(rWi ) =
1

n

n∑
i=1

ri = 0, V (rWi ) = σ2
n =

1

n

n∑
i=1

r2i =
n− p
n

MSE,

E(rW ) = 0, and Cov(Y ∗) = Cov(rW) = σ2
nIn.

Then β̂
∗
Ij

= (XT
Ij
XIj)

−1XT
Ij
Y ∗ = DjY

∗ with Cov(β̂
∗
Ij

) = σ2
n(XT

Ij
XIj)

−1 and E(β̂
∗
Ij

) =



21(XT
Ij
XIj)

−1XT
Ij
E(Y ∗) = (XT

Ij
XIj)

−1XT
Ij
HY = β̂Ij since HXIj = XIj . The

expectations are with respect to the bootstrap distribution where Ŷ acts as a constant.

For the above residual bootstrap with Cp, let Tn = Aβ̂Imin,0
and Tjn = Aβ̂Ij ,0 =

ADj,0Y where Dj,0 adds rows of zeroes to Dj corresponding to the xi not in Ij. If

S ⊆ Ij, then
√
n(β̂Ij − βIj)

D→ Naj(0, σ
2V j) and

√
n(β̂Ij ,0 − β)

D→ uj ∼ Np(0, σ
2V j,0)

where V j,0 adds columns and rows of zeroes corresponding to the xi not in Ij. Using

Theorem 1, E(T ∗) =
∑

j ρjnTjn =
∑

j ρjnAβ̂Ij ,0 and S∗
T is a consistent estimator of

Cov(T ∗) =
∑
j

ρjnCov(T ∗
jn) +

∑
j

ρjnAβ̂Ij ,0β̂
T

Ij ,0
AT − E(T ∗)[E(T ∗)]T

where asymptotically the sum is over j : S ⊆ Ij. If θ0 = 0, then nS∗
T = ΣA + OP (1)

where

nCov(Tn)
P→ ΣA =

∑
j

σ2πjAV j,0A
T .

Then (nS∗
T )−1 tends to be “well behaved” if ΣA is nonsingular.

For the residual bootstrap with forward selection nCov(Tjn) and nCov(T ∗
jn) both

converge in probability to σ2AV j,0A
T , and are close for n ≥ 20p since Cov(T ∗

jn) ≈

(n − p)Cov(Tjn)/n. Hence the jth component of an iid sample T1, ..., TB and the jth

component of the bootstrap sample T ∗
1 , ..., T

∗
B have the same variability asymptotically.

Since E(Tjn) = θ, each component of the iid sample is centered at θ. Since E(T ∗
jn) =

Tjn = Aβ̂Ij ,0, the bootstrap components are centered at Tjn. Geometrically, separating



22the component clouds so that they are no longer centered at one value makes the

overall data cloud larger. Thus the variability of T ∗
n is larger than that of Tn for variable

selection, asymptotically. Hence the prediction region applied to the bootstrap sample is

slightly larger than the prediction region applied to the iid sample, asymptotically (we

want n ≥ 20p). Hence cutoff D̂2
1,1−δ = D2

(UB) gives coverage close to or higher than the

nominal coverage for confidence regions (2.16) and (2.17), using the geometric argument.

The deviation T ∗
i − Tn tends to be larger in magnitude than the deviations T

∗ − θ,

Tn − θ, and T ∗
i − T

∗
. Hence the cutoff D̂2

2,1−δ = D2
(UB ,T )

tends to be larger than D2
(UB).

The bootstrap sample data cloud is centered at T
∗ ≈

∑
j ρjnTjn. The Tjn are computed

from the same data set and hence correlated. In simulations for n ≥ 20p and (2.16) and

(2.17), the coverage tends to get close to or higher than 1− δ for B ≥ max(400, 50p) so

that S∗
T is a good estimator of Cov(T ∗).

Undercoverage can occur if bootstrap sample data cloud is less variable than the

iid data cloud, e.g., if (n − p)/n is not close to one. Coverage can be higher than the

nominal coverage for two reasons: i) the bootstrap data cloud is more variable than the

iid data cloud of T1, ..., TB, and ii) zero padding.

To see the effect of zero padding, consider H0 : Aβ = βO = 0 where βO =

(βi1 , ...., βig)T and O ⊆ E in (1.3) so that H0 is true. Suppose a nominal 95% confi-



23dence region is used and U(B) = 0.96. Hence the confidence region (2.16) or (2.17)

covers at least 96% of the bootstrap sample. If β̂
∗
O,j = 0 for more than 4% of the

β̂
∗
O,1, ..., β̂

∗
O,B, then 0 is in the confidence region and the bootstrap test fails to reject H0.

If this occurs for each run in the simulation, then the observed coverage will be 100%.

If β̂
∗
j = 0 for j = 1, ..., B, then the CI using the shorth, (2.16), or (2.17) is [0, 0],

and the pvalue for H0 : βj = 0 is one. (This result holds since [0, 0] contains 100% of

the β̂∗
j in the bootstrap sample.) For large sample theory tests, the pvalue estimates the

population pvalue.

Note that there are several important variable selection models, including the model

given by Equation (1.3). Another model is xTβ = xTSi
βSi

for i = 1, ..., J . Then there

are J ≥ 2 competing “true” nonnested submodels where βSi
is aSi

× 1. For example,

suppose the J = 2 models have predictors x1, x2, x3 for S1 and x1, x2, x4 for S2. Then

x3 and x4 are likely to be selected and omitted often by forward selection for the B

bootstrap samples. Hence omitting all predictors xi that have a β∗
ij = 0 for at least one

of the bootstrap samples j = 1, ..., B could result in underfitting, e.g. using just x1 and

x2 in the above J = 2 example. Regions (2.16) and (2.17) should still be useful.

Suppose the predictors xi have been standardized. Then another important regres-

sion model has the βi taper off rapidly, but no coefficients are equal to zero. For example,



24βi = e−i for i = 1, ..., p.



25CHAPTER 3

EXAMPLE AND SIMULATIONS

Figure 1 shows 10%, 30%, 50%, 70%, 90% and 98% prediction regions for a future

value of Tf for two multivariate normal distributions. The plotted points are iid T1, ..., TB

with B = 100.

Example. The Hebbler (1847) data was collected from n = 26 districts in Prussia

in 1843. We will study the relationship between Y = the number of women married to

civilians in the district with the predictors x1 = constant, x2 = pop = the population of

the district in 1843, x3 = mmen = the number of married civilian men in the district, x4

= mmilmen = number of married men in the military in the district, and x5 = milwmn =

the number of women married to husbands in the military in the district. Sometimes the

person conducting the survey would not count a spouse if the spouse was not at home.

Hence Y and X3 are highly correlated but not equal. Similarly, x4 and x5 are highly

correlated but not equal. We expect that Y = x3 + e is a good model. Forward selection

with Cp selected the model with a constant and mmen.

Let x = (1 uT )T where u is the (p − 1) × 1 vector of nontrivial predictors. In the

simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the m = p− 1 elements

of the vector wi are iid N(0,1). Let the m×m matrix A = (aij) with aii = 1 and aij = ψ
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a)

b) 

Figure 3.1. Prediction Regions



27where 0 ≤ ψ < 1 for i 6= j. Then the vector ui = Awi so that Cov(ui)

= Σu = AAT = (σij) where the diagonal entries σii = [1+(m−1)ψ2] and the off diagonal

entries σij = [2ψ + (m− 2)ψ2]. Hence the correlations are cor(xi, xj) = ρ = (2ψ + (m−

2)ψ2)/(1 + (m− 1)ψ2) for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/
√
cp,

then ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the predictor vectors

cluster about the line in the direction of (1, ..., 1)T . Let Yi = 1 + 1xi,2 + · · ·+ 1xi,k+1 + ei

for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T with k + 1 ones and p− k − 1 zeros.

The zero mean errors ei were iid from five distributions: i) N(0,1), ii) t3, iii) EXP(1)

- 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100). Only distribution iii) is not

symmetric.

A small simulation was done using B = max(1000, n, 20p) and 5000 runs. So an

observed coverage in [0.94, 0.96] gives no reason to doubt that the CI has the nominal

coverage of 0.95. The simulation used p = 7; n = 10p, 25p, n = Jp; ψ = 0, 1/
√
p, and

0.9; and k = 1 and 2. We tried to choose J so that the shorth CIs gave coverages ≥ 0.93.

Simulations in Imhoff (2018) suggested that the shorth CI may need larger sample size n

than the (2.16) and (2.17) CIs to have coverage ≥ 0.93. We expect the (2.16) CI average

length to be less than that of the (2.17) CI, especially when the predictors are highly

correlated.



28When ψ = 0, the full model least squares confidence intervals for βi should

have length near 2tn−p,0.975σ/
√
n ≈ 2(1.96)σ/

√
n when the iid zero mean errors have

variance σ2. The simulation computed the Frey shorth(c) CI, prediction region method

CI, and Bickel and Ren CI for each βi The nominal coverage was 0.95 with δ = 0.05.

Observed coverage between 0.94 and 0.96 would suggest coverage is close to the nominal

value.

The regression models used the residual bootstrap on the forward selection estimator

β̂Imin,0
. Table 1 gives results for when the iid errors ei ∼ N(0, 1). Two rows for each CI

giving the observed confidence interval coverages and average lengths of the confidence

intervals.

install.packages("leaps") #one time per computer

source("http://lagrange.math.siu.edu/Olive/slpack.txt")

library(leaps);Y <- marry[,3]; X <- marry[,-3]

temp<-regsubsets(X,Y,method="forward"); out<-summary(temp)

out$cp [1] -0.8268967 1.0151462 3.0029429 5.0000000

Selection Algorithm: forward

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "



292 ( 1 ) " " "*" "*" " "

3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

record coverages and average lengths for b1, b2, ... bp-1, bp for

shorth CIs, prediction region method CIs and Bickel and Ren CIs

vscisim(n=70,p=7,k=1,psi=0.0,type=1,nruns=5000) #2 hours

$scicov

[1] 0.9364 0.9370 0.9954 0.9956 0.9974 0.9952 0.9978

$savelen

[1] 0.4709592 0.4760565 0.3901531 0.3904700 0.3873577 0.3888251 0.3872584

$prcicov

[1] 0.9302 0.9346 0.9934 0.9932 0.9954 0.9938 0.9966

$pravelen

[1] 0.4610427 0.4660094 0.4760685 0.4760695 0.4767312 0.4760690 0.4751954

$brcicov

[1] 0.9344 0.9358 0.9930 0.9930 0.9952 0.9928 0.9954

$bravelen

[1] 0.4656170 0.4705133 0.5418484 0.5421790 0.5445051 0.5458890 0.5450134



30$beta [1] 1 1 0 0 0 0 0

$k [1] 1

Table 3.1. Bootstrap CIs with Cp, p = 7, N(0,1) errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

70,1,0 0.9364 0.9370 0.9954 0.9956 0.9974 0.9952 0.9978

shlen 0.4710 0.4761 0.3902 0.3905 0.3874 0.3888 0.3873

70,1,0 0.9302 0.9346 0.9934 0.9932 0.9954 0.9938 0.9966

prlen 0.4610 0.4660 0.4761 0.4761 0.4767 0.4761 0.4752

70,1,0 0.9344 0.9358 0.9930 0.9930 0.9952 0.9928 0.9954

brlen 0.4656 0.4705 0.5418 0.5421 0.5445 0.5459 0.5450

Suppose ψ = 0. Then from chapter 2, β̂S has the same limiting distribution for Imin

and the full model. Note that the average lengths and coverages for forward selection

Imin CIs for β1 and β2 were close to the expected full model lengths 3.92/
√
n = 0.469.

There was slight undercoverage since ψ = 0 and (n− p)/n = 0.9 for n = 10p. For k = 1,

the lengths were shorter for β3, ..., β7 and the coverages were higher than 0.95 for the

inactive predictors since zeros often occurred for inactive β̂∗
j .
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ERROR TYPE 1 EXAMPLES

Table 4.1. Bootstrap CIs with Cp, p = 7, N(0,1) errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

70,2,0 0.9376 0.9362 0.9352 0.9976 0.9966 0.9964 0.9956

shlen 0.4715 0.4769 0.4773 0.3891 0.3893 0.3902 0.3883

70,2,0 0.9304 0.9310 0.9320 0.9962 0.9954 0.9952 0.9942

prlen 0.4620 0.4668 0.4671 0.4768 0.4782 0.4775 0.4771

70,2,0 0.9330 0.9332 0.9334 0.9962 0.9954 0.9956 0.9942

brlen 0.4652 0.4703 0.4710 0.5440 0.5453 0.5431 0.5452

175,1,0 0.9448 0.9458 0.9970 0.9972 0.9988 0.9976 0.9980

shlen 0.3003 0.3020 0.2454 0.2450 0.2440 0.24411 0.2440

175,1,0 0.9408 0.9420 0.9960 0.9964 0.9974 0.9966 0.9968

prlen 0.2940 0.2951 0.3013 0.3015 0.3010 0.3020 0.3011

175,1,0 0.9428 0.9436 0.9960 0.9964 0.9974 0.9966 0.9968

brlen 0.2950 0.2963 0.3393 0.3420 0.3420 0.3414 0.3410

175,2,0 0.9458 0.9462 0.9446 0.9980 0.9974 0.9972 0.9986

shlen 0.3010 0.3020 0.3020 0.2444 0.2442 0.2450 0.2450

175,2,0 0.9450 0.9442 0.9400 0.9972 0.9958 0.9966 0.9970

prlen 0.2943 0.2953 0.2954 0.3013 0.3020 0.3020 0.3020

175,2,0 0.9452 0.9442 0.9424 0.9972 0.9956 0.9966 0.9970

brlen 0.2951 0.2963 0.2963 0.3410 0.3422 0.3420 0.3413
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Table 4.2. Bootstrap CIs with Cp, p = 7, N(0,1) errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

70,1,0.378 0.9340 0.9342 0.9970 0.9962 0.9954 0.9964 0.9988

shlen 0.4713 0.4775 0.3891 0.3910 0.3910 0.3891 0.3895

70,1,0.378 0.9314 0.9314 0.9958 0.9956 0.9950 0.9954 0.9978

prlen 0.4612 0.4673 0.4761 0.4764 0.4761 0.4766 0.4757

70,1,0.378 0.9346 0.9344 0.9960 0.9958 0.9950 0.9956 0.9978

brlen 0.4656 0.4720 0.5420 0.5430 0.5420 0.5462 0.5435

70,2,0.378 0.9370 0.9428 0.9450 0.9964 0.9954 0.9962 0.9972

shlen 0.4713 0.7044 0.7050 0.5751 0.5759 0.5780 0.5757

70,2,0.378 0.9324 0.9424 0.9492 0.9954 0.9946 0.9956 0.9958

prlen 0.4614 0.6920 0.6920 0.7011 0.6985 0.6997 0.7020

70,2,0.378 0.9348 0.9524 0.9562 0.9956 0.9950 0.9958 0.9964

brlen 0.4650 0.7194 0.7194 0.8051 0.7942 0.7991 0.8032

175,1,0.378 0.9436 0.9608 0.9982 0.9986 0.9976 0.9986 0.9978

shlen 0.3010 0.4472 0.3641 0.3631 0.3630 0.3634 0.3650

175,1,0.378 0.9408 0.9572 0.9976 0.9984 0.9974 0.9982 0.9976

prlen 0.2942 0.4377 0.4424 0.4423 0.4420 0.4422 0.4430

175,1,0.378 0.9426 0.9670 0.9980 0.9984 0.9976 0.9984 0.9976

brlen 0.2953 0.4634 0.5003 0.5020 0.5010 0.4995 0.5010

175,2,0,378 0.9430 0.9570 0.9540 0.9958 0.9976 0.9974 0.9968

shlen 0.3004 0.4459 0.4451 0.3612 0.3620 0.3620 0.3620

175,2,0.378 0.9408 0.9530 0.9504 0.9956 0.9974 0.9968 0.9962

prlen 0.2941 0.4365 0.4356 0.4424 0.4430 0.4423 0.4420

175,2,0.378 0.9414 0.9628 0.9548 0.9958 0.9974 0.9970 0.9962

brlen 0.2951 0.4510 0.4502 0.5013 0.5014 0.5004 0.4990
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Table 4.3. Bootstrap CIs with Cp, p = 7, N(0,1) errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

70,1,0.9 0.9368 0.9058 0.9980 0.9968 0.9974 0.9964 0.9960

shlen 0.4710 3.7221 3.6702 3.6656 3.6681 3.6768 3.6675

70,1,0.9 0.9330 0.9730 0.9968 0.9962 0.9966 0.9948 0.9956

prlen 0.4610 4.3752 4.3310 4.3321 4.3304 4.3297 4.3255

70,1,0.9 0.9342 0.9762 0.9972 0.9968 0.9972 0.9954 0.9958

brlen 0.4652 4.9420 4.9084 4.9120 4.8950 4.8901 4.9091

70,2,0.9 0.9384 0.8836 0.8848 0.9972 0.9962 0.9970 0.9972

shlen 0.4723 3.6969 3.6983 3.6158 3.6154 3.6033 3.6001

70,2,0.9 0.9354 0.9708 0.9718 0.9962 0.9954 0.9966 0.9958

prlen 0.4622 4.3903 4.3820 4.3451 4.3392 4.3289 4.3322

70,2,0.9 0.9386 0.9756 0.9752 0.9966 0.9958 0.9970 0.9966

brlen 0.4674 4.8973 4.8810 4.9087 4.9302 4.8977 4.8959

175,1,0.9 0.9464 0.9624 0.9980 0.9970 0.9972 0.9982 0.9986

shlen 0.3005 2.4174 2.2810 2.2771 2.2945 2.2814 2.2882

175,1,0.9 0.9434 0.9746 0.9968 0.9962 0.9964 0.9972 0.9976

prlen 0.2940 2.8401 2.7430 2.7420 2.7413 2.7468 2.7453

175,1,0.9 0.9434 0.9856 0.9970 0.9958 0.9966 0.9978 0.9978

brlen 0.2952 3.0882 3.0753 3.0759 3.0575 3.0710 3.0720

175,2,0.9 0.9480 0.9476 0.9480 0.9976 0.9986 0.9982 0.9980

shlen 0.3010 2.4131 2.4330 2.3050 2.3110 2.2997 2.2983

175,2,0.9 0.9414 0.9662 0.9680 0.9970 0.9978 0.9976 0.9976

prlen 0.2944 2.8410 2.8445 2.7901 2.7954 2.7894 2.7910

175,2,0.9 0.9432 0.9814 0.9842 0.9974 0.9978 0.9978 0.9976

brlen 0.2956 3.2140 3.2184 3.1469 3.1495 3.1460 3.1463
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ERROR TYPE 2 EXAMPLE

Table 5.1. Bootstrap CIs with Cp, p = 7, t3 errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

70,1,0 0.9320 0.9390 0.9970 0.9978 0.9964 0.9978 0.9958

shlen 0.7761 0.8013 0.6476 0.6460 0.6465 0.6431 0.6473

70,2,0 0.9322 0.9430 0.9966 0.9966 0.9960 0.9966 0.9950

prlen 0.7602 0.8030 0.7881 0.7892 0.7865 0.7868 0.7889

70,1,0 0.9370 0.9490 0.9966 0.9966 0.9958 0.9966 0.9950

brlen 0.7679 0.8150 0.8998 0.8996 0.8972 0.8969 0.8984

70,2,0 0.9384 0.9240 0.9288 0.9958 0.9978 0.9970 0.9980

shlen 0.7784 0.8021 0.8020 0.6489 0.6496 0.6499 0.6510

70,2,0 0.9390 0.9332 0.9350 0.9948 0.9974 0.9956 0.9972

prlen 0.7630 0.8066 0.8051 0.7924 0.7910 0.7910 0.7911

70,2,0 0.9394 0.9414 0.9426 0.9948 0.9976 0.9956 0.9970

brlen 0.7693 0.8198 0.8179 0.9025 0.9041 0.9034 0.9031

175,1,0 0.9434 0.9468 0.9982 0.9986 0.9990 0.9976 0.9966

shlen 0.5025 0.5102 0.4101 0.4095 0.4130 0.4097 0.4114

175,1,0 0.9446 0.9452 0.9974 0.9980 0.9984 0.9974 0.9954

prlen 0.4921 0.5004 0.5055 0.5050 0.5050 0.5053 0.5044

175,1,0 0.9440 0.9478 0.9972 0.9980 0.9984 0.9972 0.9954

brlen 0.4940 0.5030 0.5741 0.5730 0.5720 0.5731 0.5711
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Table 5.2. Bootstrap CIs with Cp, p = 7, t3 errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

175,2,0 0.9522 0.9460 0.9470 0.9974 0.9970 0.9970 0.9980

shlen 0.5030 0.5111 0.5114 0.4124 0.4125 0.4110 0.4110

175,2,0 0.9506 0.9442 0.9448 0.9966 0.9966 0.9964 0.9970

prlen 0.4924 0.5010 0.5015 0.5054 0.5052 0.5054 0.5061

175,2,0 0.9530 0.9456 0.9446 0.9966 0.9964 0.9964 0.9968

brlen 0.4940 0.5030 0.5034 0.5720 0.5710 0.5745 0.5723

70,1,0.378 0.9380 0.9458 0.9974 0.9970 0.9976 0.9976 0.9974

shlen 0.7798 1.1912 0.9715 0.9677 0.9772 0.9681 0.9689

70,1,0.378 0.9364 0.9446 0.9968 0.9966 0.9968 0.9968 0.9962

prlen 0.7640 1.2474 1.1656 1.1640 1.1678 1.1630 1.1640

70,1,0.378 0.9388 0.9508 0.9972 0.9966 0.9970 0.9974 0.9962

brlen 0.7721 1.3392 1.3340 1.3257 1.3340 1.3287 1.3278

70,2,0.378 0.9386 0.9286 0.9350 0.9978 0.9964 0.9968 0.9964

shlen 0.7778 1.1856 1.1859 0.9665 0.9710 0.9620 0.9677

70,2,0.378 0.9382 0.9310 0.9382 0.9966 0.9954 0.9956 0.9952

prlen 0.7620 1.2450 1.2450 1.1656 1.1686 1.1655 1.1661

70,2,0.378 0.9402 0.9414 0.9520 0.9964 0.9960 0.9964 0.9954

brlen 0.7686 1.3171 1.3157 1.3285 1.3356 1.3330 1.3244

175,1,0.378 0.9446 0.9546 0.9974 0.9994 0.9976 0.9988 0.9988

shlen 0.5013 0.7565 0.6104 0.6081 0.6073 0.6110 0.6086

175,1,0.378 0.9418 0.9562 0.9968 0.9986 0.9972 0.9984 0.9982

prlen 0.4910 0.7498 0.7396 0.7382 0.7375 0.7410 0.7391

175,1,0.378 0.9448 0.9652 0.9972 0.9986 0.9972 0.9984 0.9980

brlen 0.4930 0.7910 0.8398 0.8391 0.8386 0.8397 0.8402
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Table 5.3. Bootstrap CIs with Cp, p = 7, t3 errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

175,2,0.378 0.9466 0.9570 0.9622 0.9978 0.9982 0.9986 0.9986

shlen 0.5035 0.7585 0.7586 0.6094 0.6098 0.6110 0.6071

175,2,0.378 0.9442 0.9596 0.9616 0.9972 0.9978 0.9978 0.9984

prlen 0.4931 0.7520 0.7513 0.7450 0.7440 0.7450 0.7440

175,2,0.378 0.9438 0.9650 0.9708 0.9974 0.9978 0.9978 0.9986

brlen 0.4950 0.7774 0.7776 0.8430 0.8423 0.8450 0.8451

70,1,0.9 0.9386 0.8480 0.9972 0.9962 0.9978 0.9968 0.9958

shlen 0.7742 6.1574 6.1586 6.1540 6.1684 6.1564 6.1477

70,1,0.9 0.9378 0.9712 0.9956 0.9948 0.9968 0.9946 0.9942

prlen 0.7583 7.1210 7.1187 7.1194 7.1273 7.1230 7.1186

70,1,0.9 0.9386 0.9642 0.9960 0.9966 0.9974 0.9954 0.9948

brlen 0.7653 8.0063 7.9792 7.9768 8.0030 7.9698 7.9912

70,2,0.9 0.9330 0.8404 0.8516 0.9978 0.9958 0.9976 0.9964

shlen 0.7820 6.1610 6.1565 6.0897 6.1005 6.1166 6.1275

70,2,0.9 0.9344 0.9734 0.9770 0.9966 0.9944 0.9962 0.9958

prlen 0.7658 7.2430 7.2697 7.1910 7.2182 7.2230 7.2121

70,2,0.9 0.9370 0.9716 0.9740 0.9968 0.9948 0.9966 0.9962

brlen 0.7732 8.1010 8.1550 8.1289 8.1602 8.1750 8.1210

175,1,0.9 0.9430 0.9022 0.9984 0.9984 0.9980 0.9990 0.9994

shlen 0.5040 3.9591 3.9201 3.9230 3.9321 3.9111 3.9220

175,1,0.9 0.9396 0.9800 0.9982 0.9984 0.9976 0.9984 0.9992

prlen 0.4933 4.6521 4.6120 4.6202 4.6212 4.6073 4.6210

175,1,0.9 0.9408 0.9804 0.9982 0.9988 0.9978 0.9988 0.9988

brlen 0.4951 5.2411 5.1892 5.2004 5.1885 5.1823 5.1981
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Table 5.4. Bootstrap CIs with Cp, p = 7, t3 errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

175,2,0.9 0.9472 0.8950 0.8754 0.9984 0.9986 0.9986 0.9978

shlen 0.5020 3.8630 3.8533 3.7896 3.8078 3.7962 3.7964

175,2,0.9 0.9458 0.9808 0.9734 0.9976 0.9984 0.9978 0.9970

prlen 0.4915 4.6166 4.6261 4.5750 4.5801 4.5720 4.5814

175,2,0.9 0.9472 0.9800 0.9772 0.9984 0.9984 0.9980 0.9972

brlen 0.4940 5.1242 5.1322 5.1550 5.1495 5.1386 5.1534

350,1,0.9 0.9518 0.9306 0.9358 0.9992 0.9980 0.9984 0.9976

shlen 0.3604 2.8322 2.8358 2.7142 2.7304 2.7150 2.7240

350,1,0.9 0.9490 0.9736 0.9800 0.9988 0.9974 0.9982 0.9964

prlen 0.3530 3.3550 3.3541 3.3285 3.3250 3.3255 3.3277

350,1,0.9 0.9490 0.9802 0.9828 0.9990 0.9980 0.9982 0.9970

brlen 0.3540 3.8374 3.8530 3.7940 3.7943 3.7687 3.7756

350,2,0.9 0.9530 0.9430 0.9984 0.9984 0.9984 0.9988 0.9970

shlen 0.3613 2.8474 2.7710 2.7721 2.7650 2.7675 2.7640

350,2,0.9 0.9518 0.9742 0.9974 0.9976 0.9980 0.9984 0.9964

prlen 0.3540 3.3795 3.3083 3.3040 3.2991 3.3077 3.3054

350,2,0.9 0.9518 0.9850 0.9978 0.9978 0.9980 0.9988 0.9968

brlen 0.3545 3.7410 3.7052 3.6975 3.7010 3.7021 3.7166
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ERROR TYPE 3 EXAMPLE

Table 6.1. Bootstrap CIs with Cp, p = 7, EXP(1)-1 errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

70,1,0 0.9266 0.9354 0.9958 0.9960 0.9960 0.9970 0.9970

shlen 0.4666 0.4778 0.3868 0.3880 0.38811 0.3895 0.3888

70,1,0 0.9218 0.9302 0.9940 0.9956 0.9956 0.9958 0.9968

prlen 0.4571 0.4673 0.47345 0.4741 0.4740 0.4730 0.4730

70,1,0 0.9254 0.9328 0.9944 0.9956 0.9956 0.9956 0.9966

brlen 0.4620 0.4720 0.5420 0.5412 0.5397 0.5398 0.5382

70,2,0 0.9290 0.9454 0.9368 0.9966 0.9964 0.9972 0.9954

shlen 0.4641 0.4740 0.4750 0.3851 0.3850 0.3851 0.3862

70,2,0 0.9230 0.9416 0.9304 0.9952 0.9958 0.9964 0.9942

prlen 0.4544 0.4632 0.4641 0.4712 0.4720 0.4710 0.4711

70,2,0 0.9268 0.9422 0.9338 0.9952 0.9958 0.9964 0.9942

brlen 0.4582 0.4667 0.4676 0.5420 0.5389 0.5359 0.5378

175,1,0 0.9396 0.9426 0.9980 0.9966 0.9984 0.9974 0.9980

shlen 0.2982 0.3013 0.2434 0.2440 0.2440 0.2434 0.2440

175,1,0 0.9330 0.9386 0.9976 0.9960 0.9968 0.9970 0.9976

prlen 0.2930 0.2950 0.2995 0.2993 0.3002 0.2999 0.3001

175,1,0 0.9350 0.9398 0.9976 0.9960 0.9970 0.9970 0.9976

brlen 0.2930 0.2959 0.3391 0.3375 0.3403 0.3391 0.3410
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Table 6.2. Bootstrap CIs with Cp, p = 7, EXP(1)-1 errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

175,2,0 0.9430 0.9506 0.9456 0.9972 0.9978 0.9984 0.9980

shlen 0.2991 0.3020 0.3020 0.2452 0.2440 0.2440 0.2440

175,2,0 0.9374 0.9470 0.9418 0.9972 0.9970 0.9976 0.9964

prlen 0.2930 0.2954 0.2951 0.3010 0.3010 0.3012 0.3012

175,2,0 0.9384 0.94747 0.9432 0.9972 0.9970 0.9976 0.9962

brlen 0.2940 0.2964 0.2959 0.3395 0.3421 0.3410 0.3413

70,1,0.378 0.9290 0.9532 0.9964 0.9968 0.9980 0.9970 0.9960

shlen 0.4655 0.7089 0.5758 0.5727 0.5750 0.5768 0.5757

70,1,0.378 0.9246 0.9520 0.9954 0.9962 0.9970 0.9954 0.9948

prlen 0.4558 0.6979 0.6925 0.6930 0.6940 0.6933 0.6943

70,1,0.378 0.9276 0.9640 0.9956 0.9964 0.9972 0.9956 0.9958

brlen 0.4604 0.7420 0.7895 0.7950 0.7920 0.7914 0.7933

70,2,0.378 0.9362 0.9514 0.9452 0.9966 0.9970 0.9962 0.9968

shlen 0.4659 0.7057 0.7060 0.5699 0.5731 0.5731 0.5741

70,2,0.378 0.9304 0.9528 0.9484 0.9958 0.9954 0.9954 0.9964

prlen 0.4562 0.6950 0.6951 0.6930 0.6931 0.6930 0.6930

70,2,0.378 0.9328 0.9606 0.9602 0.9962 0.9954 0.9954 0.9964

brlen 0.4601 0.7214 0.7220 0.7924 0.7910 0.7868 0.7879

175,1,0.378 0.9396 0.9604 0.9984 0.9982 0.9994 0.9986 0.9996

shlen 0.2976 0.4444 0.3603 0.3620 0.3602 0.3599 0.3610

175,1,0.378 0.9356 0.9550 0.9972 0.9972 0.9986 0.9982 0.9992

prlen 0.2914 0.4350 0.4394 0.4386 0.4384 0.4392 0.4402

175,1,0.378 0.9370 0.9644 0.9976 0.9972 0.9988 0.9984 0.9992

brlen 0.2930 0.4602 0.5001 0.4973 0.4979 0.4973 0.4993
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Table 6.3. Bootstrap CIs with Cp, p = 7, EXP(1)-1 errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

175,2,0.378 0.9404 0.9554 0.9580 0.9980 0.9990 0.9970 0.9976

shlen 0.2985 0.4450 0.4440 0.3603 0.3614 0.3612 0.3602

175,2,0.378 0.9356 0.9524 0.9520 0.9978 0.9990 0.9956 0.9966

prlen 0.2923 0.4351 0.4343 0.4410 0.4411 0.4410 0.4410

175,2,0.378 0.9366 0.9608 0.9610 0.9978 0.9988 0.9956 0.9970

brlen 0.2932 0.4496 0.4487 0.5010 0.4996 0.5004 0.5010

70,1,0.9 0.9242 0.9056 0.9958 0.9974 0.9970 0.9968 0.9968

shlen 0.4640 3.6920 3.6457 3.6547 3.6468 3.6557 3.6460

70,1,0.9 0.9206 0.9726 0.9944 0.9962 0.9958 0.9952 0.9962

prlen 0.4544 4.3297 4.2974 4.2976 4.2830 4.2830 4.2858

70,1,0.9 0.9236 0.9766 0.9948 0.9966 0.9966 0.9956 0.9964

brlen 0.4585 4.9020 4.8685 4.8586 4.8367 4.8450 4.8631

70,2,0.9 0.9290 0.8866 0.8836 0.9974 0.9984 0.9978 0.9958

shlen 0.4677 3.6743 3.6673 3.5940 3.5892 3.6178 3.5840

70,2,0.9 0.9240 0.9694 0.9718 0.9966 0.9978 0.9968 0.9952

prlen 0.4581 4.3610 4.3625 4.3068 4.3140 4.3210 4.2984

70,2,0.9 0.9304 0.9792 0.9788 0.9970 0.9980 0.9976 0.9960

brlen 0.4634 4.8888 4.9030 4.9160 4.8786 4.8923 4.9030

175,1,0.9 0.9464 0.9608 0.9972 0.9976 0.9982 0.9982 0.9976

shlen 0.2981 2.4084 2.2731 2.2770 2.2859 2.2801 2.2830

175,1,0.9 0.9426 0.9728 0.9968 0.9970 0.9964 0.9976 0.9970

prlen 0.2920 2.8224 2.7275 2.7277 2.7250 2.7242 2.7275

175,1,0.9 0.9446 0.9850 0.9970 0.9970 0.9970 0.9976 0.9972

brlen 0.2931 3.0845 3.0594 3.0478 3.0357 3.0420 3.0571
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Table 6.4. Bootstrap CIs with Cp, p = 7, EXP(1)-1 errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

175,2,0.9 0.9396 0.9472 0.9482 0.9982 0.9988 0.9972 0.9982

shlen 0.2996 2.4191 2.4388 2.2910 2.2910 2.2922 2.2940

175,2,0.9 0.9370 0.9722 0.9666 0.9972 0.9976 0.9960 0.9974

prlen 0.2934 2.8510 2.8551 2.7903 2.7810 2.7797 2.7820

175,2,0.9 0.9364 0.9836 0.9810 0.9972 0.9982 0.9960 0.9972

brlen 0.2950 3.2230 3.2166 3.1634 3.1485 3.1480 3.1495
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ERROR TYPE 4 EXAMPLE

Table 7.1. Bootstrap CIs with Cp, p = 7, uniform(−1, 1)errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

70,1,0 0.9392 0.9384 0.9974 0.9974 0.9966 0.9980 0.9964

shlen 0.2725 0.2751 0.2241 0.2250 0.2241 0.2250 0.2252

70,1,0 0.9316 0.9340 0.9960 0.9964 0.9960 0.9974 0.9960

prlen 0.2667 0.2694 0.2750 0.2756 0.2750 0.2753 0.2757

70,1,0 0.9368 0.9362 0.9962 0.9966 0.9960 0.9970 0.9960

brlen 0.2694 0.2720 0.3150 0.3155 0.3130 0.3140 0.3150

70,2,0 0.9336 0.9378 0.9312 0.9968 0.9950 0.9944 0.9966

shlen 0.2722 0.2753 0.2750 0.2254 0.2244 0.2251 0.2255

70,2,0 0.9308 0.9338 0.9302 0.9958 0.9932 0.9944 0.9954

prlen 0.2665 0.2695 0.2689 0.2750 0.2745 0.2753 0.2755

70,2,0 0.9336 0.9372 0.9326 0.9958 0.9934 0.9944 0.9954

brlen 0.2685 0.2720 0.2711 0.3130 0.3130 0.3140 0.3150

175,1,0 0.9466 0.9528 0.9980 0.9982 0.9992 0.9974 0.9970

shlen 0.1734 0.1742 0.1414 0.1420 0.1412 0.1410 0.1410

175,1,0 0.9398 0.9502 0.9980 0.9974 0.9986 0.9970 0.9966

prlen 0.1697 0.1710 0.1740 0.1742 0.1740 0.1740 0.1741

175,1,0 0.9432 0.9506 0.9980 0.9974 0.9986 0.9970 0.9966

brlen 0.1704 0.1711 0.1964 0.1971 0.1971 0.1961 0.1968
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Table 7.2. Bootstrap CIs with Cp, p = 7, uniform(−1, 1)errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

175,2,0 0.9430 0.9440 0.9494 0.9972 0.9974 0.9974 0.9976

shlen 0.1735 0.1742 0.1741 0.1410 0.1412 0.1411 0.1410

175,2,0 0.9390 0.9394 0.9458 0.9960 0.9962 0.9960 0.9972

prlen 0.1697 0.1710 0.1705 0.1740 0.1740 0.1741 0.1740

175,2,0 0.9388 0.9388 0.9470 0.9960 0.9962 0.9960 0.9972

brlen 0.1703 0.1711 0.1710 0.1964 0.1968 0.1965 0.1971

70,1,0.378 0.9362 0.9514 0.9962 0.9962 0.9956 0.9976 0.9964

shlen 0.2730 0.4080 0.3340 0.3340 0.3340 0.3341 0.3333

70,1,0.378 0.9334 0.9464 0.9958 0.9952 0.9952 0.9970 0.9952

prlen 0.2668 0.3996 0.4041 0.4050 0.4040 0.4040 0.4031

70,1,0.378 0.9356 0.9534 0.9960 0.9960 0.9956 0.9974 0.9958

brlen 0.2694 0.4250 0.4611 0.4620 0.4620 0.4630 0.4594

70,2,0.378 0.9392 0.9396 0.9498 0.9946 0.9968 0.9968 0.9952

shlen 0.2730 0.4074 0.4075 0.3333 0.3322 0.3336 0.3330

70,2,0.378 0.9306 0.9344 0.9454 0.9940 0.9958 0.9962 0.9946

prlen 0.2672 0.3988 0.3989 0.4053 0.4054 0.4052 0.4054

70,2,0.378 0.9342 0.9448 0.9530 0.9940 0.9958 0.9960 0.9950

brlen 0.2693 0.4154 0.4150 0.4631 0.4631 0.4621 0.4641

175,1,0.378 0.9458 0.9586 0.9984 0.9978 0.9978 0.9978 0.9972

shlen 0.1735 0.2585 0.2105 0.2097 0.2098 0.2102 0.2101

175,1,0.378 0.9402 0.9540 0.9980 0.9970 0.9974 0.9976 0.9964

prlen 0.1698 0.2530 0.2557 0.2557 0.2558 0.2561 0.2556

175,1,0.378 0.9428 0.9624 0.9978 0.9972 0.9974 0.9976 0.9968

brlen 0.1705 0.2675 0.2890 0.2897 0.2910 0.2900 0.2891
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Table 7.3. Bootstrap CIs with Cp, p = 7, uniform(−1, 1)errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

175,2,0.378 0.9464 0.9506 0.9498 0.9980 0.9972 0.9980 0.9976

shlen 0.1740 0.2575 0.2570 0.2083 0.2089 0.2088 0.2096

175,2,0.378 0.9420 0.9472 0.9492 0.9974 0.9968 0.9972 0.9966

prlen 0.1699 0.2521 0.2520 0.2555 0.2558 0.2559 0.2556

175,2,0.378 0.9440 0.9546 0.9560 0.9974 0.9968 0.9974 0.9966

brlen 0.1710 0.2605 0.2599 0.2894 0.2903 0.2898 0.2885

70,1,0.9 0.9434 0.9548 0.9972 0.9966 0.9958 0.9966 0.9970

shlen 0.2727 2.2300 2.1010 2.1095 2.0961 2.0963 2.0950

70,1,0.9 0.9374 0.9592 0.9966 0.9958 0.9950 0.9958 0.9964

prlen 0.2670 2.5964 2.5105 2.5154 2.5140 2.5089 2.5030

70,1,0.9 0.9392 0.9804 0.9968 0.9962 0.9954 0.9964 0.9964

brlen 0.2695 2.8222 2.8266 2.8359 2.8272 2.8172 2.8123

70,2,0.9 0.9404 0.9462 0.9406 0.9960 0.9956 0.9968 0.9946

shlen 0.2740 2.2630 2.2750 2.1187 2.1221 2.1274 2.1297

70,2,0.9 0.9358 0.9600 0.9512 0.9944 0.9944 0.9960 0.9946

prlen 0.2678 2.6323 2.6368 2.5386 2.5510 2.5459 2.5476

70,2,0.9 0.9374 0.9792 0.9792 0.9950 0.9948 0.9966 0.9946

brlen 0.2710 2.9530 2.9585 2.8801 2.8920 2.8730 2.8772

175,1,0.9 0.9502 0.9764 0.9976 0.9984 0.9978 0.9966 0.9980

shlen 0.1740 1.5605 1.3130 1.3164 1.3140 1.3150 1.3140

175,1,0.9 0.9486 0.9516 0.9970 0.9976 0.9974 0.9958 0.9978

prlen 0.1698 1.7131 1.6052 1.6013 1.6010 1.6013 1.6023

175,1,0.9 0.9488 0.9502 0.9972 0.9982 0.9978 0.9964 0.9978

brlen 0.1710 1.8850 1.8366 1.8312 1.8240 1.8310 1.8250
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Table 7.4. Bootstrap CIs with Cp, p = 7, uniform(−1, 1)errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

175,2,0.9 0.9462 0.9558 0.9624 0.9978 0.9974 0.9972 0.9990

shlen 0.1740 1.5794 1.5735 1.3313 1.3297 1.3198 1.3250

175,2,0.9 0.9434 0.9392 0.9438 0.9974 0.9974 0.9964 0.9980

prlen 0.1702 1.7291 1.7233 1.6089 1.6075 1.6110 1.6065

175,2,0.9 0.9440 0.9276 0.9346 0.9976 0.9974 0.9964 0.9980

brlen 0.1710 1.8530 1.8430 1.8204 1.8150 1.8267 1.8163
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ERROR TYPE 5 EXAMPLE

Table 8.1. Bootstrap CIs with Cp, p = 7, 0.9 N(0,1) + 0.1 N(0,100) errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

70,1,0 0.9324 0.9320 0.9986 0.9986 0.9978 0.9982 0.9972

shlen 1.4891 1.4923 1.2534 1.2534 1.2578 1.2510 1.2559

70,1,0 0.9364 0.9204 0.9978 0.9980 0.9970 0.9974 0.9970

prlen 1.4585 1.6445 1.5140 1.5098 1.5173 1.5120 1.5153

70,1,0 0.9432 0.9226 0.9978 0.9982 0.9972 0.9974 0.9968

brlen 1.4740 1.7262 1.7203 1.7210 1.7240 1.7225 1.7250

70,2,0 0.9342 0.9352 0.9334 0.9972 0.9972 0.9982 0.9980

shlen 1.4950 1.4962 1.4956 1.2594 1.2530 1.2570 1.2555

70,2,0 0.9408 0.9248 0.9246 0.9964 0.9964 0.9964 0.9970

prlen 1.4640 1.6510 1.6530 1.5240 1.5184 1.5220 1.5173

70,2,0 0.9432 0.9282 0.9264 0.9966 0.9966 0.9964 0.9972

brlen 1.4784 1.7520 1.7577 1.7453 1.7359 1.7358 1.7268

175,1,0 0.9460 0.9352 0.9988 0.9984 0.9980 0.9978 0.9984

shlen 0.9820 1.0212 0.8044 0.8033 0.8054 0.8074 0.8010

175,1,0 0.9486 0.9384 0.9978 0.9982 0.9970 0.9974 0.9976

prlen 0.9603 1.0476 0.9822 0.9830 0.9864 0.9856 0.9830

175,1,0 0.9522 0.9482 0.9978 0.9980 0.9970 0.9974 0.9976

brlen 0.9641 1.0621 1.1112 1.1115 1.1184 1.1157 1.1158

—
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Table 8.2. Bootstrap CIs with Cp, p = 7, 0.9 N(0,1) + 0.1 N(0,100) errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

175,2,0 0.9440 0.9420 0.9352 0.9972 0.9988 0.9974 0.9984

shlen 0.9750 1.0120 1.0130 0.8033 0.7956 0.7957 0.7977

175,2,0 0.9474 0.9474 0.9394 0.9962 0.9980 0.9968 0.9980

prlen 0.9540 1.0369 1.0395 0.9820 0.9774 0.9764 0.9785

175,2,0 0.9486 0.9548 0.9454 0.9962 0.9980 0.9968 0.9980

brlen 0.9572 1.0514 1.0542 1.1114 1.1073 1.1088 1.1112

70,1,0.378 0.9344 0.9450 0.9976 0.9972 0.9986 0.9968 0.9986

shlen 1.4891 2.0492 1.8787 1.8704 1.8732 1.8844 1.8797

70,1,0.378 0.9418 0.9538 0.9964 0.9960 0.9976 0.9952 0.9968

prlen 1.4581 2.3291 2.2322 2.2268 2.2241 2.2240 2.2250

70,1,.378 0.9416 0.9638 0.9970 0.9964 0.9976 0.9956 0.9976

brlen 1.4731 2.5595 2.5420 2.5283 2.5330 2.5250 2.5342

70,2,0.378 0.9258 0.9408 0.9410 0.9980 0.9982 0.9976 0.9970

shlen 1.4930 2.0699 2.0643 1.8861 1.8776 1.8814 1.8810

70,2,0.378 0.9342 0.9502 0.9516 0.9974 0.9970 0.9970 0.9958

prlen 1.4620 2.3662 2.3651 2.2463 2.2441 2.2434 2.2464

70,2,0.378 0.9334 0.9586 0.9650 0.9980 0.9972 0.9970 0.9960

brlen 1.4779 2.6231 2.6261 2.5520 2.5574 2.5496 2.5581

175,1,0.378 0.9418 0.9558 0.9986 0.9978 0.9988 0.9982 0.9986

shlen 0.9820 1.4530 1.2094 1.1991 1.2021 1.2020 1.1986

175,1,0.378 0.9420 0.9428 0.9976 0.9972 0.9984 0.9978 0.9980

prlen 0.9610 1.5804 1.4572 1.4522 1.4552 1.4550 1.4512

175,1,0.378 0.9394 0.9430 0.9974 0.9976 0.9984 0.9978 0.9984

brlen 0.9650 1.6978 1.6482 1.6530 1.6521 1.6540 1.6501

—
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Table 8.3. Bootstrap CIs with Cp, p = 7, 0.9 N(0,1) + 0.1 N(0,100) errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

175,2,0.378 0.9526 0.9478 0.9534 0.9978 0.9976 0.9980 0.9986

shlen 0.9777 1.4622 1.4597 1.2062 1.1999 1.2015 1.2120

175,2,0.378 0.9546 0.9360 0.9400 0.9972 0.9972 0.9970 0.9972

prlen 0.9568 1.5940 1.5895 1.4563 1.4559 1.4568 1.4588

175,2,0.378 0.9530 0.9356 0.9384 0.9972 0.9972 0.9970 0.9972

brlen 0.9602 1.6840 1.6843 1.6483 1.6493 1.6533 1.6486

70,1,0.9 0.9408 0.8078 0.9968 0.9966 0.9970 0.9988 0.9972

shlen 1.4820 11.8250 11.8430 11.8389 11.8250 11.7840 11.8710

70,1,0.9 0.9458 0.9704 0.9948 0.9952 0.9958 0.9970 0.9954

prlen 1.4514 13.5793 13.5682 13.5721 13.5865 13.5287 13.6082

70,1,0.9 0.9470 0.9560 0.9960 0.9962 0.9964 0.9974 0.9956

brlen 1.4650 15.1172 15.0769 15.0679 15.1296 15.0888 15.1130

70,2,0.9 0.9266 0.7992 0.7936 0.9986 0.9978 0.9974 0.9974

shlen 1.4985 11.9465 11.8720 11.9282 11.9010 11.9520 11.9540

70,2,0.9 0.9350 0.9712 0.9714 0.9978 0.9964 0.9962 0.9954

prlen 1.4677 13.8140 13.7714 13.8102 13.7810 13.7920 13.8230

70,2,0.9 0.9408 0.9616 0.9640 0.9980 0.9972 0.9968 0.9958

brlen 1.4820 15.5060 15.5143 15.5434 15.4675 15.5084 15.5221

175,1,0.9 0.9456 0.8334 0.9990 0.9984 0.9984 0.9982 0.9974

shlen 0.9755 7.6320 7.6420 7.6596 7.6157 7.6387 7.6385

175,1,0.9 0.9430 0.9804 0.9986 0.9974 0.9976 0.9980 0.9966

prlen 0.9544 8.8677 8.8675 8.8640 8.8410 8.8410 8.8562

175,1,0.9 0.9468 0.9668 0.9990 0.9976 0.9978 0.9980 0.9972

brlen 0.9579 9.8520 9.8640 9.8456 9.8581 9.8242 9.8240

—
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Table 8.4. Bootstrap CIs with Cp, p = 7, 0.9 N(0,1) + 0.1 N(0,100) errors

n, k, ψ β1 β2 β3 β4 β5 β6 β7

175,2,0.9 0.9428 0.8340 0.8202 0.9984 0.9990 0.9980 0.9978

shlen 0.9775 7.5730 7.5750 7.5810 7.5605 7.5761 7.5650

175,2,0.9 0.9430 0.9798 0.9780 0.9972 0.9984 0.9976 0.9974

prlen 0.9564 8.9441 8.9520 8.9141 8.9073 8.9110 8.9112

175,2,0.9 0.9432 0.9704 0.9722 0.9978 0.9986 0.9978 0.9974

brlen 0.9597 10.0620 10.0730 10.0263 10.0167 10.0550 10.0459

1400,1,0.9 0.9550 0.9482 0.9988 0.9986 0.9988 0.9986 0.9978

shlen 0.3520 2.7584 2.6832 2.6803 2.6731 2.6776 2.6788

1400,1,0.9 0.9522 0.9790 0.9980 0.9980 0.9980 0.9982 0.9978

prlen 0.3442 3.2715 3.2113 3.2063 3.2076 3.2050 3.2010

1400,1,0.9 0.9532 0.9854 0.9984 0.9982 0.9986 0.9982 0.9978

brlen 0.3450 3.6059 3.5761 3.5776 3.5859 3.5783 3.5734

1400,2,0.9 0.9536 0.9366 0.9354 0.9986 0.9984 0.9982 0.9990

shlen 0.3520 2.7530 2.7443 2.6350 2.6284 2.6270 2.6313

1400,2,0.9 0.9504 0.9746 0.9778 0.9982 0.9980 0.9974 0.9988

prlen 0.3444 3.2713 3.2733 3.2524 3.2563 3.2578 3.2473

1400,2,0.9 0.9518 0.9810 0.9816 0.9980 0.9982 0.9978 0.9990

brlen 0.3450 3.7587 3.7655 3.7198 3.7190 3.7134 3.7014

—
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CONCLUSIONS

There is massive literature on variable selection and a fairly large literature for

inference after variable selection. See references in Pelawa Watagoda and Olive (2019).

Response plots of the fitted values Ŷ versus the response Y are useful for checking

linearity of the MLR model and for detecting outliers. Residual plots should also be

made.

For my simulations, the zero mean errors ei were from five distributions as stated

before. We chose to run the same schedule of parameters for all five error types. The

simulation used p = 7; n = 10p, 25p, n = Jp; ψ = 0, 1/
√
p, and 0.9; and k = 1 and 2.

We tried to choose J so that the shorth CIs gave coverages ≥ 0.93.

As we have seen, for the most part, we did not need J since the shorth CIs gave

coverages ≥ 0.93. The only case that we needed J was when ψ = 0.9 in types 2 and 5.

J was = 50 that means n=350 for type 2, and it was =200 which implied that n=1400

for type 5.

The 3 CIs used different correction factors. Hence, the shorth CI was not always

the shortest. The shorth CIs for slopes tended to be shortest when βi= 0. The other 2

CIs were often longest when βi= 0, and the increase was larger for the Bickel and Ren
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The simulations were done in R. See R Core Team (2016). We used several

R functions including forward selection as computed with the regsubsets function from

the leaps library. The collection of Olive (2019) R functions slpack, available from

(http://lagrange.math.siu.edu/Olive/slpack.txt), has some useful functions for

the inference. Tables were made with vscisim.
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