Southern Illinois University Carbondale OpenSIUC

Research Papers

Graduate School

2019

AN EXPLORATION OF THE PHYSICAL QUALITIES THAT MOST AFFECT THE NUMBER OF BIDS RECEIVED BY WILD HORSES PLACED IN BLM'S INTERNET AUCTIONS

Robert J. Summers rsummers2018@gmail.com

Follow this and additional works at: https://opensiuc.lib.siu.edu/gs_rp

Recommended Citation

Summers, Robert J. "AN EXPLORATION OF THE PHYSICAL QUALITIES THAT MOST AFFECT THE NUMBER OF BIDS RECEIVED BY WILD HORSES PLACED IN BLM'S INTERNET AUCTIONS." (Jan 2019).

This Article is brought to you for free and open access by the Graduate School at OpenSIUC. It has been accepted for inclusion in Research Papers by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

AN EXPLORATION OF THE PHYSICAL QUALITIES THAT MOST AFFECT THE NUMBER OF BIDS RECEIVED BY WILD HORSES PLACED IN BLM'S INTERNET AUCTIONS

by

Robert Summers

B.S., Southern Illinois University, 2018

A Research Paper

Submitted in Partial Fulfillment of the Requirements for the

Master of Science

Department of Agribusiness Economics

in the Graduate School

Southern Illinois University Carbondale

May 2019

Copyright by Robert Summers, 2019

All Rights Reserved

RESEARCH PAPER APPROVAL

AN EXPLORATION OF THE PHYSICAL QUALITIES THAT MOST AFFECT THE NUMBER OF BIDS RECEIVED BY WILD HORSES PLACED IN BLM'S INTERNET AUCTIONS

by

Robert Summers

A Research Paper Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Master of Science

in the field of Agribusiness Economics

Approved by:

Dr. Ira Altman, Chair

Graduate School

Southern Illinois University Carbondale

April 3, 2019

AN ABSTRACT OF THE RESEARCH PAPER OF

ROBERT SUMMERS, for the Master of Science degree in AGRIBUSINESS ECONOMICS, presented on April 3, 2019.

TITLE: AN EXPLORATION OF THE PHYSICAL QUALITIES THAT MOST AFFECT THE NUMBER OF BIDS RECEIVED BY WILD HORSES PLACED IN BLM'S INTERNET AUCTIONS

MAJOR PROFESSOR: Dr. Ira Altman

In 1971, the United States Congress passed the Wild Free-Roaming Horse and Burro Act (WFRHBA). Under the act, the Bureau of Land Management (BLM) was entrusted with the care and management of the nation's wild horse and burro population in the western portion of the United States. Current laws allow for 22,500 wild horses and burros to live on the range, however, estimates for the FY2014 showed at least 50,000 animals living on these Herd Management Areas (HMAs) with an additional 50,000 being managed in BLM holding facilities (Elizondo, Fitzgerald, and Rucker, 2016). Potential adopters and buyers have specific criteria they look for in horses. In 2018, BLM presented their annual report to Congress, laying out four options to reduce population size, including cash incentives for buyers of wild horses. This paper is an analysis of the criteria adopters and buyers find ideal when looking to purchase wild horses through the BLM's internet auctions. By identifying the variables that buyers find desirable in wild horses, the BLM could tailor their cash incentive program toward those animals less likely to find private homes thereby reducing the number of animals being held by the BLM. This study found that saddle training, halter training, and height in hands proved to be significant in determining the number of bids buyers placed on a horse.

ACKNOWLEDGMENTS

I would like to express my personal thanks of gratitude to Dr. Kim Harris for his tremendous guidance and assistance throughout the writing and editing of this paper. I am forever grateful for the guidance and encouragement Dr. Harris has given me throughout the process of completing this research.

TABLE OF CONTENTS

<u>CHAPTER</u>	PAGE
ABSTRACT	i
ACKNOWLEDGMENTS	ii
LIST OF TABLES	iv
CHAPTERS	
CHAPTER 1 – Introduction	1
CHAPTER 2 – Review of Literature	3
CHAPTER 3 – BLM's Options	11
CHAPTER 4 – Economics	15
CHAPTER 5 – Data and Methods	17
CHAPTER 6 – Results	20
CHAPTER 7 – Discussion	
BIBLIOGRAPHY	25
APPENDICES	
APPENDIX A – Economics	
APPENDIX B – NumberofBids Regression at 95% Confidence Level	
APPENDIX C – FinalPrices Regression at 95% Confidence Level	35
VITA	41

LIST OF TABLES

TABLE	PAGE
Table 1 - Wild Horse and Burro Program Budget	
Table 2 - Wild Horses and Burros Under BLM Care	29
Table 3 - NumberofBids Base Model	
Table 4 – NumberofBids Modified	
Table 5 – NumberofBids Modified – Color Expanded	
Table 6 – NumberofBids Best Fit Model	
Table 7 – FinalPrices Base Model Output	
Table 8 – FinalPrices Output – Modified	
Table 9 – FinalPrices Output – Two Variables	
Table 10 – FinalPrices – Best Fit Model – Colored Variable Expanded	
Table 11 – <i>FinalPrices</i> Color Expanded – Three Variables	

CHAPTER 1

INTRODUCTION

Motivation

Since the passing of the Wild Free-Roaming Horse and Burro Act of 1971, the Bureau of Land Management (BLM) has been responsible for the management of America's wild horses and burros living on Herd Management Areas (HMAs) in several western states. The act originally limited the number of these wild animals that could live upon the land. In the decades since the passing of the act, the number of wild horses that call these ranges home have grown in excess of 80,000 animals. This has led the BLM to conduct periodic roundups to capture excess horses and burros from the lands they manage.

These animals are transferred to several short-term holding facilities where they are kept while awaiting adoption, sale, or transfer to long-term facilities where the animals will live out the remainder of their natural lives. In addition to the roundups, the BLM and others have conducted experiments in fertility control with the aim of slowing the reproduction rate seen in the wild. These fertility options have proven to be ineffective at slowing the rapid growth of herd sizes because of difficulty in tracking wild animals that have received treatment and the need for additional treatments to ensure maximum effectiveness.

Objective

In 2018, the BLM submitted to congress a report outlining 4 options to bring populations under control and within mandated levels. These options rely greatly on adoption and sale of excess animals held in captivity and provide cash incentives for buyers. My research seeks to identify variables that buyers find desirable, possibly leading to higher number of bids and purchase prices. Identifying these variables will allow for targeted marketing campaigns to increase awareness of these animals. Additionally, by identifying the variables and traits of wild horses buyers see as less desirable would allow the BLM to direct the cash incentives toward buyers who are willing to adopt/purchase these animals. Furthermore, results may help the BLM identify which animals to target during roundups.

Methods

This paper utilizes data collected from the BLM's online adoption website for November through December 2018 and February 2019. An OLS regression analysis was performed to identify the variables most important to buyers in determining the number of bids an animal receives.

Likely Results and Implications

It is hypothesized that variables identified in the study by Adenkule et al. are still relevant. Variables that have the greatest impact on number of bids can be used to promote certain animals for adoption. Cash incentives included in the options presented to Congress by the BLM can be focused toward animals that are less likely to receive bids or be purchased/adopted. This would further reduce the number of animals kept in the care of the BLM allowing the BLM to better utilize its budget.

CHAPTER 2

REVIEW OF LITERATURE

In the article, "You Can't Drag Them Away: An Economic Analysis of the Wild Horse and Burro Program", issues regarding animal populations and economics expenditures, amongst other topics, are discussed (Elizondo, Fitzgerald, and Rucker, 2016). As of March 2014, the Bureau of Land Management (BLM) was holding 50,000 wild horses and burros that had gone unadopted with an additional 50,000 roaming freely on government land, which is more than legislation allows (2016). Ranchers lease government land upon which these wild horses live, however, the opportunity cost lost by these ranchers who have had to limit their herd sizes equals nearly \$2,000 per horse. From 2001 through 2014, the BLM has seen the number of horses kept in long-term holding facilities increase nearly five times to nearly 50,000 in 2014. Along with the increase in horses kept, the BLM saw costs rise from \$7 million in FY2000 to \$71.8 million in FY2013 (2016).

Using data gathered from several sources, including the American Horse Council (AHC), "The Unintended Consequence of a Ban on the Humane Slaughter (Processing) of Horses in the United States" identifies several side effects associated with banning the slaughter of horses for human consumption. These side effects include large numbers of abandoned horses, overcrowded rescues, and growing cost of care for unwanted horses (Ahern et al., 2006). In 2005, AHC estimated that 9.2 million horses lived in the United States (2005). Animal control facilities are called upon to take in many of these abandoned and neglected horses, despite lacking adequate facilities, funding, and personnel to care for these animals (Ahern et al., 2006). Maintenance costs are expected to be between \$152 and \$222 million dollars annually for unwanted horses (North et al., 2005). A ban on horse slaughter has had substantial economic impacts on owners, rescues, and government agencies as well as posing severe risks to the welfare of the animals.

"Wild Horse Demography: Implications for Sustainable Management Within Economic Constraints" addresses population growth, regulations, and management through a variety of methods including contraception and legal policies. In 2013, the National Research Council released long-term forecasts estimating population increases associated with 15% and 20% growth rates for years 2017 through 2026 with respect to the Herd Management Areas. These projections indicated that populations would grow from 60,000 in 2017 to 211,000 and 309,000 in 2026 for 15% and 20% growth rates respectively (Garrott, 2018). Natural controls exist, such as droughts that have occurred in Nevada the last 17 years (Garrott, 2018). According to Garrott, the most effective method for population control is the regulated gathering and removal of certain horses from HMAs (2018). Garrott (1991) and Hone (1992) concluded that contraception is highly successful at limiting population growth but does nothing to reduce population size. Garrott concluded that administrative and congressional limitations placed on the destruction of healthy wild horses shows the value society places on these animals and therefore it is unlikely that changes to policies related to slaughter are likely to occur (2018).

"An Economic Analysis of Alternative Fertility Control and Associated Management Techniques for Three BLM Wild Horse Herds" evaluated several strategies to control wild horse populations using cost projection models. The U.S. Geological Survey (USGS) identified several questions that arose from their analysis. "How often should horses be removed and/or treated with contraceptives? What sex and age horses are best to remove and/or treat with contraceptives? What other findings may be inferred from examination of simulation results (e.g., benefit:cost ratios for gather efficiency, general behavior of the HMA models)? Do the answers to the aforementioned questions depend strongly on the characteristics of individual herds or their locale?" (Bartholow, 2004). To answer these questions the authors used a baseline of the current policies concerning gathers, an alternative baseline that adjusts for new guidelines about horse ages and what category they fall into, an alternate gather period adjusted for the years between gathers, a scenario looking at length of time for contraception used, male-to-female gender ratio during gathers, gather efficiencies, and a combination of the previously listed factors (Bartholow, 2004). Bartholow used information from three HMAs in Idaho, Wyoming, and Colorado. To compile, analyze, and apply a dollar estimate to the cost projection model, the data for each HMA was entered into a Jenkins Model and estimated for each scenario. Bartholow's results showed that a gather cycle of 4 years without the use of contraception proved ideal while waiting longer to perform a gather resulted in higher annual costs (2004). Additionally, the use of contraception, whether of 2-year or 3-year duration, was shown to save an average of \$15,000 annually in management costs, likely declining to roughly 70% of the baseline.

The purpose of the paper, "Research and Field Applications of Contraceptives in White-Tailed Deer, Feral Horses, and Mountain Goats", was to review the uses and effectiveness of select forms of contraceptives used to control wildlife populations of white-tail deer, feral horses, and mountain goats. Several methods of delivery were tested for effectiveness, longevity, ease of application, economic and environmental impact, and practicality and feasibility. Warren et al. (1993) report that prior to the passing of the Wild Free-Roaming Horse and Burro Act in 1971, local citizens actively engaged in the capture of wild horses for use in rodeos, slaughter for pet food, and other physical work. The act required the federal government to control the wild horse population and at great cost, more than \$5 million in 1985 (Warren et al., 1993). The authors reviewed prior research using different applications of contraceptives, such as a microencapsulated form of testosterone propionate (MTP) used on stallions, estradiol, progesterone, ethinylestradiol, and norethisterone on wild mares, and other immunocontraceptives. Early tests of MTP saw a reduction in fertility rates by nearly 50% but required yearly treatments to remain effective and would have little impact on bands with multiple stallions (Warren et al., 1993).¹ Warren et al. (1993) reported that ethinylestradiol was the most effective contraceptive tested with fertility rates dropping 88% over a 3-year period.

"When, Where and for What Wildlife Species Will Contraception Be a Useful Management Approach", prepared for the USDA National Wildlife Research Center, further examines the various uses of contraception to control wildlife populations. Fagerstone et al. (2006) pointed out that techniques for population control have been slow to be implemented despite strong public demand. One method of contraception is the use of PZP to either block sperm from penetrating the zone pellucida (ZP) layer of a mammalian egg or prevent the egg from reaching maturation (Fagerstone et al. 2006). Porcine zona pellucida (PZP) vaccines have resulted in reductions in pregnancy among a variety of species, including wild horses, after an initial and second booster injection (Fagerstone et al. 2006). Gonadotrophin Releasing Hormones (GnRH) have shown similar results as PZP, however, where PZP is only effective in females while GnRH is equally effective in both sexes (Fagerstone et al., 2006). Fagerstone et al. (2006) note that GnRH lasts for 1 to 2 years without the need for a booster and saw a reversal in infertility over time. They concluded that fertility control of white-tail deer and wild horses through various contraceptive means is not a suitable method for population control based upon

¹ Feral, or wild, horse herds consist of several smaller bands.

the relatively long lifespans of these animals even though the public sees this as a more desirable management tool than other options such as slaughter (Fagerstone et al., 2006).

"Reimmunization Increases Contraceptive Effectiveness of Gonadotropin-Releasing Hormone Vaccine (GonaCon-Eguine) in Free-Ranging Horses (Equus caballus): Limitations and Side Effects" provides an updated report on the use of contraceptives as a method to control freeranging horse population levels. During a time frame from 2009 to 2017, Baker et al. (2018) determined the long-term effectiveness of GnRH vaccine (GonaCon-Equine). During an initial roundup in 2009, 57 mares were randomly selected from the horse population gathered on the South Unit of Theodore Roosevelt National Park in southwestern North Dakota (Baker et al., 2018). This random sample was broken into a treatment group of 29 mares and a control group of 28 mares that were involved in a second roundup in 2013 and received follow-up injections of the GnRH vaccine and a saline solution (Baker et al., 2018). To determine vaccine effectiveness (VE), researchers set vaccine effectiveness equal to relative risk reduction (RRR) in medical statistics and calculated the results from the risk ratio (RR=F Trt/F Con) where FTrt = the foaling population of treated mares and FCon = the foaling population of control mares where VE=1-RR (Baker et al., 2018). Researchers utilized mixed-effects linear regression to look at risk ratio analysis among reproduction rates and behavioral changes, as well as descriptive statistics to determine physiological differences, all conducted at a confidence interval of 95%. The research resulted in the development of two treatment groups with relatively homogenous groupings (Baker et al., 2018). Baker et al. (2018) concluded that GnRH vaccine was safe to be used on pregnant mares and neonates with no adverse side effects on behavior and reached full effectiveness with subsequent injections, further validating previous research.

Paul M. Jakus (2018) reviewed previous research to determine the benefits and costs of the BLM's Wild Horse and Burro Program. The review looked at a Benefit Cost Analysis to evaluate the economic aspects of different policies in terms of net benefits (Jakus, 2018). Jakus referred to a BCA model purposed by William F. Hyde in 1978 where Net Benefits (NB) is set equal to Total Benefits minus Total Costs where Total Benefits were use values (UV) of Appropriate Management Levels (AML) plus nonuse values (NUV) of AML plus adoption/sales values (ASV) of AML and Total Costs were program costs (PC) of AML plus opportunity costs (OC) of AML plus ecological costs (EC) of AML (2018). Hyde's (1978) analysis was used to determine optimal program scale for each HMA since costs associated with management of these areas would vary based upon geographic location (Jakus, 2018)

Jakus adjusted all monetary figures to 2017 dollars (2018). Adjusting figures to a 2017dollar value showed that for FY1998 the WHB program budget was \$21.5 million likely increasing to nearly \$80 million in FY2016, a compounded annual rate of growth of 7.5%. The growth rate of BLM's budget, however, has not increased at a rate needed to match increasing costs in order to maintain wild horse and burro populations at appropriate levels for their home ranges (2018). Gather costs averaged \$782.71 per animal gathered between FY2011 and FY2016, a total cost of just under \$28.1 million (Jakus, 2018). During this same period, total expenditures for off-range short-term and long-term holding areas averaged \$2.85 per day per animal, a total expense of \$291.5 million with higher averages for short-term facilities of between \$4.05 and \$7.02 per day while long-term facilities averaged from \$1.45 and \$1.62 per day (Jakus 2018). Jakus also notes that the adoption/sale costs per animal averaged \$2,153 (2018). Opportunity costs for FY2005 were estimated to be \$7.1 million, adjusted to 2017 dollars, measured as foregone value of hunting and lost profits from cattle ranching (Jakus, 2018). More wild horses and burros on the range resulted in decreased numbers of hunted animals and higher average and marginal opportunity costs (Jakus, 2018).

Data was also collected regarding animals adopted/sold by the BLM, determining what characteristics potential buyers/adopters sought in wild horses and burros (Jakus, 2018). Larger horses and younger horses were preferred over smaller and older horses, as were certain colors and markings and level of training before adoption/sale (Jakus, 2018). Average adoption fees collected were \$191.86 while average fees for those sold was only \$19.60; additional fees ranged from \$12 to \$112 depending on coloring and other premiums for different markings while defects reduced adoption fees by about \$26 (2018). Fees have dropped nearly \$20 since the horse slaughter ban went into effect in 2007 (Jakus, 2018).

Authors of "A Hedonic Price Analysis of Internet Auctions for the BLM's Wild Horses and Burros" performed three different Hedonic Regressions to identify the characteristics that were important to buyers of wild horses and burros through the BLM to determine which animals were more desirable to capture during BLM roundups from the range (Adenkule, Saghian, Stowe, and Markus, 2014). Adekunle et al. looked at BLM data from November 2012 through February 2013. They began with a sample size of 153 animals before adjusting their sample size to 93 animals to remove those that had missing data because of having no bids placed. This adjusted sample size also had missing data for height and age for some animals (2014, p.7). Variables used to determine desirability included: location of capture, sale locations, colors, gender, level and type of training, length of holding, winning bid prices, and number of bids; some of these variables were assigned dummy values of 1 or 0 to identify gender, buyers closeness to sale site, and color, amongst others (2014, p.7-9). After estimating three separate models, results showed that the variables for colored, halter training, mares, pinto, bidder

9

closeness, capture on the range, stallion, and length of time at the holding facility were highly significant variables at both the 5% and 1% levels and had the biggest impact on raising auction prices paid for wild horses and burros while saddle training lowered bid prices as did being born in holding facilities. Adenkule et al. (2014) recommended that the BLM promote these favorable characteristics through marketing directed toward buyers located in the states where the animals are being held. The authors also suggested that another model to use is a Tobit Model because it works well when dealing with missing data observations (2014, p.23).

In their Report to Congress, the Bureau of Land Management (BLM) proposed four separate options to reduce wild horse and burro populations on and off the range (2018). The options to achieve national Appropriate Management Levels (AML) in priority Herd Management Areas (HMAs) would utilize "an intensive gather and removal program" to lower on-range herd levels while those returned to the range would undergo methods to facilitate either permanent or semi-permanent infertility and sterilization (2018, p.13-14) with the exception that animals not adopted or sold would remain under BLM control until natural death (2018, p.15-16). Additionally, an incentive program would be established to encourage adoption or purchase of off-range animals (2018, p.16-17). All options would focus on intensive gathers and promote the adoption and/or sale of horses and burros in off-range facilities to private owners and international buyers for various uses, those "not placed in private care would be sold without limitation or euthanized" (2018, p.17-18). BLM concludes that each of these options would require "the help of all stakeholders…to solve the wild horse and burro overpopulation challenge" (2018, p.18).

CHAPTER 3

BLM's OPTIONS

Since the passing of the Wild Free-Roaming Horses and Burros Act of 1971, the Bureau of Land Management has been tasked with the care and maintenance of wild horses and burros that live upon roughly 27 million acres of public lands in the American West across a number of Herd Management Areas (HMAs) (Adenkule, Saghian, Stowe, and Markus, 2014; U.S. Department of the Interior, Bureau of Land Management, 2018). The BLM utilized rangeland management principles to determine an Appropriate Management Level (AML) of just under 27,000 wild horses and burros as being sustainable across 10 states, however, current estimates as of 2017, put the number of wild horses and burros at over 80,000 on public land (U.S. Department of the Interior, Bureau of Land Management, 2018).

Escalating numbers of wild horses and burros is putting pressure on the forage and water resources these animals rely upon; this in turn potentially leads to starvation and death of these animals (U.S. Department of the Interior, Bureau of Land Management 2018). The BLM points out that diminishing food and water sources leads wild horses and burros to move onto private lands or along public roadways which threatens not only the safety of the animals but also the public in general (U.S. Department of the Interior, Bureau of Land Management 2018). The increasing size of herds and overcrowding of public lands has also driven out native animal species such as deer, elk, and bighorn sheep (U.S. Department of the Interior, Bureau of Land Management 2018). To return herd sizes to AML, the Bureau of Land Management presented a report to congress in March 2018 detailing four options to reduce the size of herds on HMAs.

The report to congress contained the following: Option I is designed to reach AML in 8 years and decrease off-range holding costs; Option II would attain AML in 10 years and require

increased program funding; Option III would reach AML in 6 years and create an incentive program to adopt wild horses; and Option IV would see AML reached after 12 years while also utilizing an incentive program for adoption and increasing permanent sterilization treatments (U.S. Department of the Interior, Bureau of Land Management 2018). Each option would require an initial increase in the BLM's annual budget until AML is achieved. Once AML is achieved, BLM's budget would be reduced (U.S. Department of the Interior, Bureau of Land Management 2018).

For the purpose of this paper, the focus is on Options III and IV, specifically, the creation and utilization of cash incentives in order to encourage adoption. The reason for focusing on these two incentive programs is for directed marketing, focused gathers, and incentives to be used to find buyers for animals that are otherwise less likely to find homes during online auctions and sales events.

Option III states that "within priority HMAs (about 115 of the 177 HMAs, or about twothirds of the total)" would return to AML by 2021 with the remaining HMAs achieving AML by 2024 (U.S. Department of the Interior, Bureau of Land Management, 2018, p.16). However, achieving these results would be costly because more intensive roundups would have to be undertaken in order to significantly reduce the on-range animal population (U.S. Department of the Interior, Bureau of Land Management 2018). Maintaining AML would require the implementation of "permanent sterilization throughout the 6 years to help control population growth and maintain AML once achieved" (U.S. Department of the Interior, Bureau of Land Management 2018, p.16). Additionally, Option III would allow for international sale of gathered animals to foreign countries to be used for farming operations, police operations, and other potential uses (U.S. Department of the Interior, Bureau of Land Management 2018). Finally, the creation of a cash incentive program to entice potential buyers to purchase animals with additional funding to care for these animals could be beneficial, especially if the incentives were specifically geared toward certain animals. While a cash incentive itself could be enough to attract more bidders, focusing incentives toward the animals less likely to find homes could lead to more animals finding homes rather than just those that are already deemed desirable. Currently, the proposal would allocate "\$1,000 per animal" purchased (U.S. Department of the Interior, Bureau of Land Management 2018, p.16); however, a multitiered incentive program with higher payments going toward the animals considered less desirable and lower payments for animals that are most desirable would likely result in more animals finding homes outside of short-term holding facilities where cost for the care of one animal can reach "\$1,000 after only 200 days in captivity" and "cost the taxpayers nearly \$46,000" over the length of the same animal's lifespan (U.S. Department of the Interior, Bureau of Land Management, 2018, p.16).²

Option IV, taking 12 years to reach desired AML, relies on the same requirements to achieve AML as Option III with only one significant difference. Option IV would focus primarily on the use of permanent sterilization during the first half of the program, reducing the breeding population of herds to about 20 percent of animals currently living on the range (U.S. Department of the Interior, Bureau of Land Management, 2018, p.17). During the first half of Option IV, the BLM would actively pursue "fertility control treatment research" to identify "reliable options for long-lasting, easily administered vaccines" to reduce animal fertility rates (U.S. Department of the Interior, Bureau of Land Management, 2018, p.17). The goal of

 $^{^{2}}$ As of March 20, 2019, several news agencies have reported that the BLM has begun its \$1,000 per animal cash incentive program for buyers of wild horses.

researching effective fertility control vaccines is to limit the use of "permanent sterilization"

(U.S. Department of the Interior, Bureau of Land Management, 2018, p.17).

CHAPTER 4

ECONOMICS

Since the beginning of the Wild Free-Roaming Horse and Burro Act of 1971, the BLM has faced a variety of challenges maintaining AML. Many of these problems have severe economic consequences. For the time period FY12 thru FY17, the BLM saw their budget increase from just under \$75 billion in FY12 to over \$80.5 billion in FY17. However, in FY18, the BLM saw their budget decrease to \$75 billion. BLM's own figures show that during FY13, FY17, and FY18 total expenditures exceed total appropriations with off-range holding costs accounting for between 58 and 66% of spending each year (https://www.blm.gov/programs/wild-horse-and-burro/about-the-program/program-data).

According to Elizondo, Fitzgerald, and Rucker (2016), a 2008 GAO report "found that the average daily costs of short- and long-term holding per head were \$5.08 and \$1.27" respectively (p.1). This averages out to \$1,854.20 per animal per year in short-term holding facilities and \$463.55 per animal per year in long-term holding facilities. As of January 2018, the BLM estimates that 50,935 animals were being held in off-range facilities (https://www.blm.gov/programs/wild-horse-and-burro/about-the-program/program-data). Taking average per year holding costs and multiplying that number by the number of animals being held off-range equates to between \$23.61 million and \$94.45 million in FY08 dollars per year in holding costs alone.³ It should be noted that Jakus (2018) reported that average costs of off-range holding has fluctuated across reporting agencies and years (p.61).

³ Estimates figured by multiplying long-term holding cost per animal in FY08 dollars with number of animals held off-range as of January 2018 to determine lower boundary and multiplying short-term holding cost per animal in FY08 dollars with number of animals held off-range as of January 2018 to determine upper boundary.

These costs become problematic when considering the rate at which wild horse populations increase. Based upon fifteen and twenty percent population growth estimates, Garrott (2018) projected the number of animals living on HMAs would double in size between 2021 and 2022 based on a starting point of 60,000 horses in 2017 (p.47-48). Within a decade the number of wild animals would exceed 300,000 without human intervention as wild horses have no natural predators living on HMAs capable of killing full-grown horses, aside from mountain lions which can kill young horses separated from the herd (Garrott, 2018).

CHAPTER 5

DATA AND METHODS

This study evaluates the BLM's internet auctions for wild horses by examining physical characteristics of wild horses that buyers find desirable. Modelling was influenced by research conducted by Adenkule et al. in 2014. Ordinary Least Squares (OLS) is used to identify the variables buyers find desirable in order to determine the number of bids placed on an animal during a BLM internet auction. A horse with mostly desirable qualities attracts a greater number of bids and higher final sale prices. A second objective is to determine the relevance of cash incentives as a method of increasing the number of bids and purchase rates. This research utilizes data extracted from BLM's internet auctions for wild horses and burros over two time periods: November through December 2018 and February 2019. Beginning with a population size of 135 observations, data observations were reduced to include only those animals which received at least one bid. Removing unsold animals produced an adjusted population size of 64 and eliminated the color *Dun* as a possible variable under the umbrella variable for *Colored*. Data from all 64 animals sold was used to estimate both OLS models.

Adenkule et al. looked at the variables for month of sale, location of capture, holding facility born horses, sale location, buyer's location, age, height, color, accessories, month captured, gender, level and type of training, length of holding, winning bid prices, and number of bids (2014). Some of these variables were assigned dummy values of 1 or 0; for example, gender, buyer's closeness to sale site, color, saddle training, and halter training (Adenkule, Saghian, Stowe, and Markus, 2014). Since Adenkule et al. performed their original study in 2014, the Bureau of Land Management has made changes to their online auction platform. These changes have eliminated the ability to determine the buyers' locations and their relative

closeness to where the animals are located. This development necessitated removing these two variables from the models I estimated. The variable, "accessories", for example, blaze and stockings, was also removed from the models used for this research.

Dummy variables are used to classify *Gender, HalterTraining, SaddleTraining, Colored* (including expanded color base), and *BornOnRange*. For the variable *Gender*, 1 is used to signify *Gelding* and 0 for *Mare*.⁴ For both *HalterTraining* and *SaddleTraining*, 1 signifies *yes* and 0 indicates *no*. Horses that are born on HMAs (*BornOnRange*) receive a 1 and those born in captivity take a value of 0. Animals that are any color other than *Black or Gray* are assigned a value of 1 and those that are *Black or Gray* are given a value of 0. When the variable *Colored* is expanded to include each color individually, animals are given a value of 1 if they are the specific color and take a value of 0 if they are not that individual color. *Age, HeightinHands*, and *TimeinHolding(Days)* are treated as continuous variables. A linear relationship is assumed between the independent variables and the dependent variable, *NumberofBids*.

For the variables *Age* and *TimeinHolding(Days)* it is expected that these variables will have negative signs, indicating that younger horses and those who have spent less time in holding are preferred by bidders. It is further hypothesized that animals that have been halter or saddle trained will have positive signs on their coefficients and are therefore preferred by buyers. Positive signs related to variables *HeightinHands, BornOnRange,* and *Colored* would point to a positive preference for animals that are taller, born in the wild, and any color other than *Black or Gray.* I also expect to see a positive sign on *Gender* based on domestic horse owners' preferences for geldings. A negative sign on the coefficient for *Gender* would signify that mares

⁴ Geldings were given a value of 1 because of their desirability amongst buyers of domesticated horses.

are preferred over geldings. I do not expect *DateofSale* to have any significant affect on the number of bids.

The initial OLS regression run for the dependent variable *NumberofBids* an animal receives is: *NumberofBids* = $\beta_1 DateofSale + \beta_2 BornOnRange + \beta_3 Gender + \beta_4 Colored + \beta_5 HeightinHands + \beta_6 TimeinHolding(Days) + \beta_7 HalterTraining + \beta_8 SaddleTraining + \beta_9 Age + E (OLS Model 1). The Null Hypothesis for each independent variable is that each variable is not statistically significant from zero at the 5% significance level. For example, H₀:$ *DateofSale*is not significantly different from zero.

The empirical model for the second OLS regression with the variable *Colored* expanded is as follows: *NumberofBids* = $\beta_1 BornOnRange + \beta_2 Gender + \beta_3 HeightinHands +$ $\beta_4 TimeinHolding(Days) + \beta_5 HalterTraining + \beta_6 SaddleTraining + \beta_7 Sorrel +$ $\beta_8 RedRoan + \beta_9 Pinto + \beta_{10} Palomino + \beta_{11} BlueRoan + \beta_{12} Black + \beta_{13} Brown +$ $\beta_{14} Age + E$ (OLS Model 2). *DateofSale* was removed from this model to test if it was statistically. Both models are evaluated at a confidence level of 95% based on the value of R².

CHAPTER 6

RESULTS

Based on an R² value of .606 for model 1, the explanatory variables taken together explained slightly more than 60% of the variation in the dependent variable, *NumberofBids*. A T statistical test on the model shows that the variables *HeightinHands*, *HalterTraining*, and *SaddleTraining* are statistically significant at a 95% confidence level and I reject the null hypothesis that these three variables are not statistically significant.⁵ However, *DateofSale*, *BornonRange*, *Gender*, *Colored*, and *TimeinHolding(Days)* are not significant at an alpha value of .05, or a 95% confidence level, and I fail to reject the null hypotheses that these variables are not statistically significant.

Results of OLS regression model 1 showed positive signs assigned to all variables except for *BornonRange*, *Age*, and *TimeinHolding(Days)*. The coefficient of age, although not statistically significant, had a negative sign in accordance with my hypothesis that horse buyers prefer younger horses. The variable, *BornonRange*, which was also not statistically significant had a negative sign on its coefficient which means, on average, horses born in captivity receive a greater number of bids compared to those born on the range. This is not in accordance with my hypothesis that a horse born on the range is more preferred to a horse born in captivity due to its "wildness." With respect to the variable *TimeinHolding*, although not statistically significant, it did have a negative sign which is in accordance with my hypothesis that horse buyers, on average, prefer horses that have spent less time in holding facilities and would therefore receive a greater number of bids. The positive signs on the remaining estimates (*Gender, Colored*,

⁵ Appendix B: Table 3: NumberofBids Base Model

HeightinHands, HalterTraining, and *SaddleTraining*) means that, on average, horses with predominantly these qualities are more preferred by buyers than horses without these traits and would, theoretically, receive a greater number of bids compared to horses without these qualities or fewer of them.

Based on an R² value of .632 for model 2, the explanatory variables jointly explained slightly more than 63% of the variation in the dependent variable, *NumberofBids*. A T statistical test on model 2 shows the variables *HeightinHands*, *HalterTraining*, and *SaddleTraining* are once again statistically significant at a 95% confidence level and I reject the null hypothesis that these three variables are not statistically significant. However, like model 1, *DateofSale*, *BornonRange, Gender, Colored*, and *TimeinHolding(Days)* are not significant at an alpha value of .05 or a 95% confidence level, and I fail to reject the null hypothesis that these variables are not statistically significant.

Results of OLS regression model 2, like regression model 1, showed positive signs for all the variables except for *BornonRange*, *Age*, and *TimeinHolding(Days)*. Said differently, the variables *HalterTraining*, *SaddleTraining*, and *Gender* had positive signs indicating a preference for animals that are halter and/or saddle trained and are geldings (not mares or stallions).⁶ With respect to color, while not statistically significant, Blue Roan horses were most preferred based on the magnitude of the variables standardized beta coefficient and its p-value. The negative signs associated with *TimeinHolding(Days)* and *Age* indicate that buyers have a preference for younger animals and animals that have been in holding facilities for fewer days. The negative sign associated with the variable *BornonRange* was unexpected, indicating that buyers preferred

⁶ Appendix B: Error! Reference source not found.

horses born in holding facilities. The reasons for this could be because it is more likely that animals born in captivity likely received medical treatment and are less likely to be ill or injured and are more likely to be halter and saddle trained and use to interacting with people.

CHAPTER 7

CONCLUSION

This research had two specific goals. The first goal was to determine the desirable characteristics of wild horses that determine the number of bids placed on an animal put up for auction by the BLM. The second goal was to take those findings and apply them to improving the Bureau of Land Management's cash incentive program to increase the likelihood that animals removed from HMAs find homes in the private sector.

The number of bids an animal received were likely to be higher for geldings rather than mares or stallions. Results also suggest that bidders prefer a horse of color, primarily Blue Roan, over either Black or Gray. Saddle and halter trained horses were preferred by bidders rather than horses that have had no training and are basically "unbroke." This research also showed that buyers prefer younger, taller horses.

The validity of these OLS regression results come into question because of the low R^2 value on models 1 and 2, which indicate that other independent variables that weren't included in these models are needed to explain number of bids received by wild horses. A buyer's location and distance from where a horse is being held would likely lead to a higher R^2 value as would a variable for number of bidders. Additionally, it is highly probable that multicollinearity problems exist between age and the number of days an animal has been held in a facility and also between age and the height of an animal. I did not test or correct for the presence of multicollinearity. As a result of possible problems with multicollinearity, all the inferences made on all the estimates in models 1 and 2 may be statistically imprecise.

The second goal of this research was to address how the BLM can increase public adoption rates using cash incentives. To this end, the BLM needs to change certain policies as they relate to adoption and develop marketing campaigns that promote the adoption of wild horses. The BLM has begun to implement a cash incentive program to provide a nominal cash payment of \$1,000 to individuals that purchase wild horses. A cash incentive program would likely require an additional increase in BLM's annual budget if other interest groups are unable or unwilling to contribute to the program. Additionally, a cash incentive may do little or nothing to encourage the purchase of those animals that do not have the qualities buyers prefer. Instead of offering the same incentive payment across every animal available for sale, a graduated schedule based upon desirable traits might be more effective. Buyers who are interested in horses with a number of desirable traits would receive a smaller cash incentive or none at all compared to buyers interested in horses with fewer desirable characteristics. Graduated cash incentives targeted toward less desirable horses might increase the probability of these animals being purchased. Additionally, steps taken to market specific animals for sale above the base cash incentive with a bonus payment could be utilized to encourage the purchase of more animals in holding facilities. Future research that analyzes which physical characteristics of horses influence a buyer's decision to bid for a horse needs to include the impact BLM's cash incentive program has on number of bids and final prices. It may also be beneficial to hold a live auction once or twice a year where select animals can potentially attract higher bid prices.

BIBLIOGRAPHY

- Adenkule, O., S. Saghian, C. Stowe, and L. Markus. "A Hedonic Price Analysis of Internet Auctions for the BLM's Wild Horses and Burros." 2014. Annual Meeting of the Southern Agricultural Economics Association, February 1–4, Dallas, TX. Available online at http://purl.umn.edu/162469.
- Ahern, James J., David P. Anderson, DeeVon Bailey, Lance A. Baker, W. Arden Colette, J.
 Shannon Neibergs, Michael S. North, Gary D. Potter, Carolyn L. Stull. 2006. "The
 Unintended Consequence of a Ban on the Humane Slaughter (Processing) of Horses in
 the United States." *Animal Welfare Council, Inc.*
- Baker, Dan L., Powers, Jenny, G., Ransom, Jason I., McCann, Blake E., Oehler, Michael W.,
 Bruemmer, Jason E., et al. (2018) "Reimmunization Increases Contraceptive
 Effectiveness of Gonadotropin-Releasing Hormone Vaccine (GonaCon-Eguine) in FreeRanging Horses (Equus caballus): Limitations and Side Effects". *PloS ONE* 13(7).
- Bartholow, J.M., 2004. An economic analysis of alternative fertility control and associated management techniques for three BLM wild horse herds: U.S. Geological Survey,
 Biological Resources Discipline, Open File Report 2004-119, 33 p.
- Elizondo, Vanessa, Timothy Fitzgerald, and Randal R. Rucker. 2016. "You Can't Drag Them Away: An Economic Analysis of the Wild Horse and Burro Program." *Journal of Agricultural and Resource Economics* 41(1):1–24
- Fagerstone, Kathleen A.; Miller, Lowell A.; Bynum, Kimberly S.; Eisemann, John D.; Yoder, Christi., "When, Where and for What Wildlife Species Will Contraception Be a Useful

Management Approach" (2006). Proc. 22nd Vertebr. Pest Conf., Univ. of Calif., Davis. 45-54.

- Garrott, Robert A. 2018. "Wild Horse Demography: Implications for Sustainable Management Within Economic Constraints." *Human-Wildlife Interactions* 12(1):46–57.
- Jakus, Paul M. 2018. "A Review of Economic Studies Related to the Bureau of Land Management's Wild Horse and Burro Program". *Human-Wildlife Interactions* 12(1):58-74.
- U.S. Department of the Interior, Bureau of Land Management. 2018. *Report to Congress: Management Options for a Sustainable Wild Horse and Burro Program*. Washington D.C.
- U.S. Department of the Interior, Bureau of Land Management. 2018. Program data. U.S. Department of the Interior, Washington, D.C., USA,

https://www.blm.gov/programs/wildhorse-and-burro/about-the-program/programdata.

Warren, Robert J.; Fayrer-Hosken, Richard A.; Muller, Lisa I.; Willis, L. Paige.; and Goodloe,
Robin B., "Research and Field Applications of Contraceptives in White-Tailed Deer,
Feral Horses, and Mountain Goats" (1993). *Contraception in Wildlife Management*. 23.

APPENDICES

APPENDIX A

ECONOMICS

Table 1: Wild Horse and Burro Program Budget (https://www.blm.gov/programs/wild-horse-and-burro/about-the-program/program-data)

Wild Horse and Burro Program Budget							
FY2018							
Budget Category	Dollars (in millions)	% of Expenditures					
Appropriations	\$75	n/a					
Total Expenditures*	\$81.23	n/a					
Off-Range Holding Costs	\$49.81	61%					
Gathers and Removals	\$6.20	7%					
Adoptions	\$8.26	10%					
Other Activities (monitoring, etc.)	\$16.92	20%					
	FY2017						
Budget Category	Dollars (in millions)	% of Expenditures					
Appropriations	\$80.56	n/a					
Total Expenditures*	\$82.57	n/a					
Off-Range Holding Costs	\$48.63	58%					
Gathers and Removals	\$4.22	5%					
Adoptions	\$7.91	10%					
Other Activities (monitoring, etc.)	\$21.33	26%					
	FY2016						
Budget Category	Dollars (in millions)	% of Expenditures					
Appropriations	\$80.56	n/a					
Total Expenditures*	\$78.30	n/a					
Off-Range Holding Costs	\$49.43	63.10%					
Gathers and Removals	\$3.06	3.90%					
Adoptions	\$7.38	9.40%					
Other Activities (monitoring, etc.)	\$18.43	23.50%					
	FY2015						
Budget Category	Dollars (in millions)	% of Expenditures					
Appropriations	\$77.25	n/a					
Total Expenditures* \$75.17 n/a							
Off-Range Holding Costs \$49.38 65.70%							
Gathers and Removals	\$1.83	2.40%					
Adoptions	\$6.31	8.40%					
Other Activities (monitoring, etc.)	\$17.65	23.50%					
	FY2014						

Budget Category	Dollars (in millions)	% of Expenditures				
Appropriations	\$77.25	n/a				
Total Expenditures*	\$67.90	n/a				
Off-Range Holding Costs	\$43.24	63%				
Gathers and Removals	\$1.20	2%				
Adoptions	\$4.60	7%				
Other Activities (monitoring, etc.)	\$18.87	27%				
	FY2013					
Budget Category	Dollars (in millions)	% of Expenditures				
Appropriations	\$71.84	n/a				
Total Expenditures*	\$76.10	n/a				
Off-Range Holding Costs	\$46.17	61%				
Gathers and Removals	\$4.80	6%				
Adoptions	\$7.50	10%				
Other Activities (monitoring, etc.)	\$17.04	22%				
	FY2012					
Budget Category	Dollars (in millions)	% of Expenditures				
Appropriations	\$74.89	n/a				
Total Expenditures*	\$72.40	n/a				
Off-Range Holding Costs	\$42.96	59%				
Gathers and Removals	\$7.80	11%				
Adoptions	\$7.10	10%				
Other Activities (monitoring, etc.) \$14.55 20%						
* Expenditures include funding sources	from multiple program are	as related to wild horse and				
burro management.						

Table 2: Wild Horse and Burros Under BLM Care (https://www.blm.gov/programs/wild-horse-and-burro/about-the-program/program-data)

Wild Horses and Burros under BLM Care								
Facility Type	Horses	Burros	Total					
Off-Range Corrals	12,433	1,596	14,029					
Off-Range Pastures	36,205	0	36,205					
Public Off-Range Pastures7010701								
Total Off-Range Population	49,339	1,596	50,935					

APPENDIX B

NUMBEROFBIDS REGRESSION AT 95% CONFIDENCE LEVEL

Table 3: NumberofBids Base Model

	Model Summary										
						•	C	nange	Statis	stics	
Mo	del	R	\mathbb{R}^2	Adjusted	Std. Error	R		F	df1	df2	Sig. F
				R Square	of	Squa	are Ch	ange			Change
					Estimate	Chan	nge				
1		.779 ^a	.606	.541	11.668	.6	506 9	.237	9	54	.000
	a. F	Predictors: ((Constant)), Saddle Tra	aining, Colore	ed, Ha	lter Trai	ning, I	Born	on Rai	nge,
	(Jender, Dat	te of Sale,	Age, Time	in Holding (L	Days)					
			a	6.0	ANOVA ^a				-		a:
Mo	del		Sum of	t Squares	df		Mean		F		S1g.
1		•		11217.054		0 1	Square		007		oooh
1	K	egression		7251 656		9 I	1257.550	9	0.237		.000°
	K	lesidual		/351.656		54	136.142	_			
	<u> </u>]	otal		18669.609		63					
	a. L	Dependent	Variable:	Number of I	Bids	1 77 1	1. . .	• •		. • • • •	1
	D. F	redictors: (Constant), Saddle Ira	aining, Colore	ed, Ha	Iter Tran	ning, I	Heigh	t in H	ands,
	E	sorn on Rai	nge, Gend	ler, Date of S	Sale, Age, 11r	ne in I	Holding	(Days	5)		
			TT /	1 1' 1	Coefficients ^a	1					
			Unstar	idardized	Standardize	ed					
	1 1		Coer	ficients	Coefficient	S	4				. .
MO	lei		В	Sta.	Beta		l			L.	51g.
1	(Co	natant)	566	EII01				(000		1.000
1	(00	iistaiit)	300	0300.92				.(1.000
	Dot	a of Sala		000	0	01		()11		001
	Dat	e of Sale	- 5.062E	.000	0	01		(/11		.991
			5.005E-								
	Bor	n on	1 8/1	4 404	0	<u>/1</u>		/	10		677
	Bor		-1.044	4.404	04	41		4	19		.077
	Ger	nder	5 9/2	1 511	1'	70		1 3	207		107
			-1.076	770	.1	63		_1.5	807		168
		ored	1 298	3 170	1	37		-1	,), L10		68/
	Hei	oftu oftu	5 050	2 070	.0.	08		ייי. י ר	274		.004
	Har	5111 III nds	5.950	2.070		00		2.0	,,,,		.000
	Tim	ne in	- 002	003	- 0	95		_ 7	700		487
	Hol	ding	.002	.005	.0			. /	00		.107
	(Da	vs)									

Halter	13.508	6.225	.212	2.170	.034			
Training								
Saddle	59.896	9.224	.610	6.494	.000			
Training								
a. Dependent Variable: Number of bids								

Table 4: NumberofBids Modified

	Model Summary									
							Change	Statis	tics	
Mod	del R	R ²	Adjusted	Std.]	R	F	df1	df2	Sig. F
			R Square	Error of	Sq	uare	Change			Change
				Estimate	Cha	ange				
1	.7	.606 .606	.549	11.561		.606	10.584	8	55	.000
a.	Predicto	raining, Colo	ored,	Halte	er Trainin	g, Bor	n on l	Range,		
Gen	der, Date of	Sale, Age, T	ime in Hol	ding (Days)						
				ANOVA	۱					
Mod	del	Sum of	Squares	df		Me	an	F		Sig.
						Squ	are			
1	Regressi	on 1	1317.937		8	1414	.742	10.58	4	.000 ^b
	Residual		7351.672		55	133	8.667			
	Total	1	8669.609		63					
	a. Depende	ent Variable:	Number of	Bids						
	b. Predicto	rs: (Constant), Saddle T	raining, Colo	ored,	Halte	er Trainin	g, Hei	ght in	Hands,
	Born on	Range, Geno	ler, Age, Ti	me in Holdi	ng (I	Days)				
				Coefficient	S ^a					
		Unstanda	ardized	Standardize	ed					
		Coeffic	cients	Coefficients						
Moo	del	В	Std.	Beta		t			Sig.	
			Error							
1	(Constant)	-70.373	25.369				-	2.774		.008
	Born on	-1.850	4.327	0	41			427		.671
	Range									
	Gender	5.944	4.500	.1	70			1.321		.192
	Age	-1.007	.757	1	63		-	1.423		.160
	Colored	1.299	3.139	0.	37			.414		.681
	Height in	5.958	1.926	.3	08			3.094		.003
	Hands									
	Time in	002	.003	0	95			710		.481
	Holding									
	(Days)									
	Halter	13.493	6.030	.2	12			2.238		.029
	Training									

Sade	lle 59.868	8.773	.610	6.824	.000			
Trai	ning							
a. Dependent Variable: Number of Bids								

Table 5: NumberofBids Modified - Color Expanded

	Model Summary									
						Cha	nge Statis	stics		
Mode	el R	\mathbb{R}^2	Adjusted	Std.	R	F	df1	df2	Sig. F	
			R Square	Error of	Square	e Chan	ge		Change	
				Estimate	Chang	e				
1	.79	5 ^a .632	.496	12.223	.63	2 4.6	45 17	46	.000	
a	s: (Constant)	Roan, Pir	nto, Grull	a, Che	estnut,					
	Palomino	, Halter Tra	ining, Sadd	lle Training, I	Blue Ro	oan, Heig	ght in Hai	nds, B	ay, Brown,	
	Gender, I	Black, Age, '	Time in Ho	olding (Days)						
				ANOVA ^a						
Mode	el	Sum of	Squares	df	N	Mean	F		Sig.	
					S	quare				
1	Regressio	n 1	1797.548		17 6	93.973	4.64	.5	.000 ^b	
	Residual		6872.062		46 1	49.393				
	Total	1	8669.609		63					
a.	Depender	nt Variable:	Number of	Bids						
b	. Predictor	s: (Constant)), Sorrel, B	orn on Range	e, Red F	Roan, Pir	to, Grull	a, Che	estnut,	
	Palominc	, Halter Tra	ining, Sadd	lle Training, I	Blue Ro	oan, Heig	ght in Har	nds, B	ay, Brown,	
	Gender, I	Black, Age, '	Time in Ho	olding (Days)						
				Coefficient	s ^a					
		Unstanda	ardized	Standardize	ed					
		Coeffic	eients	Coefficient	S					
Mode	el	В	Std.	Beta		t			Sig.	
	(Error							
1	(Constant)	-75.801	29.223				-2.594		.013	
-	Born on	-1.886	4.750	04	42		397		.693	
	Range									
	Gender	6.522	5.015	.1	86		1.301		.200	
	Age	-1.038	.839	1:	57		-1.238		.222	
-	Height in	6.301	2.253	.3	26		2.797		.008	
	Hands	0.00	0.0.5		•		0.1-1			
	Time in	003	.003	13	30		846		.402	
	Holding									
	(Days)	10.110			0.6		4			
	Halter	13.140	6.726	.20	06		1.954		.057	
/	Iraining									

	Saddle	60.082	9.750	.61	2	6.163	.000		
	Training								
	Bay	1.116	5.646	.02	4	.198	.844		
	Black	2.441	5.252	.05	6	.465	.644		
	Brown	-1.199	6.530	02	2	184	.855		
	Blue	12.967	10.174	.13	2	1.275	.209		
	Roan								
	Chestnut	.803	12.742	.00	6	0.63	.950		
	Grulla	.115	13.668	.00	1	.008	.993		
	Palomino	5.055	7.235	.07	2	.699	.488		
	Pinto	11.395	12.837	.08	3	.888	.379		
	Red Roan	4.763	12.834	.03	5	.371	.712		
	Sorrel	2.718	5.354	.06	0	.508	.614		
	a. Depende	nt Variable: N	lumber of	f Bids					
			Ex	cluded Varia	bles ^a				
Mo	del	Beta In	, r	Г	Sig.	Partial	Collinearity		
						Correlation	Statistics		
							Tolerance		
1	Gray	b					.000		
	a. Depende	nt Variable: N	lumber of	f Bids					
	b. Predictors in the Model: (Constant), Sorrel, Born on Range, Red Roan, Pinto, Grulla,								
	Chestnut	, Palomino, H	alter Trai	ining, Saddle I	Training, l	Blue Roan, Heig	ht in Hands,		
	Bay, Bro	wn, Gender, H	Black, Ag	ge, Time in Ho	lding (Da	ys)			

Table 6: NumberofBids Best Fit Model

	Model Summary									
Change Statistics										
Model	R	\mathbb{R}^2	Adjusted	Std.	R	F	df1	df2	Sig. F	
			R Square	Error of	Squar	re Chang	ge		Change	
				Estimate	Chang	ge				
1	.795 ^a	.632	.632	11.848	.63	6.00	00 14	49	.000	
a.	Predictors: (Constant), Sorrel, B	orn on Rang	e, Red	Roan, Pin	to, Palor	nino,	Halter	
	Training, Sa	ddle Trai	ning, Blue	Roan, Heigł	nt in Ha	inds, Black	k, Gende	er, Bro	own, Age,	
	Time in Hol	lding (Da	ys)							
				ANOVA	a					
Model		Sum of	Squares	df		Mean	F		Sig.	
			-		S	Square				
1	Regression	1	1791.291		14	842.235	6.00	00	.000 ^b	
	Residual		6878.318		49	140.374				
	Total	1	8669.609		63					
a.	Dependent '	Variable:	Number of	Bids						

	Time in Holding (Days)											
	Coefficients ^a											
		Unstanda	rdized	Standardized								
		Coeffic	ients	Coefficients								
Mo	del	В	Std.	Beta	t	Sig.						
			Error									
1	(Constant)	-75.140	27.970		-2.594	.010						
	Born on	-1.925	4.586	043	420	.676						
	Range											
	Gender	6.680	4.800	.191	1.392	.170						
	Age	-1.070	.798	162	-1.341	.186						
	Height in	6.290	2.171	.325	2.897	.006						
	Hands	ands										
	Time in	003	.003	126	888	.379						
	Holding											
	(Days)											
	Halter	13.389	6.354	.210	2.107	.040						
	Training											
	Saddle	59.753	9.293	.609	6.430	.000						
	Training											
	Black	1.909	4.285	.044	.445	.658						
	Brown	-1.745	5.673	032	308	.760						
	Blue Roan	12.339	9.206	.126	1.340	.186						
	Palomino	4.627	6.644	.066	.696	.489						
	Pinto	10.948	12.242	.079	.894	.376						
	Red Roan	4.358	12.280	.032	.355	.724						
	Sorrel	2.206	4.409	.049	.500	.619						
	a. Dependen	t Variable: N	Number of	f Bids								

b.	Predictors: (Constant), Sorrel, Born on Range, Red Roan, Pinto, Palomino, Halter
	Training, Saddle Training, Blue Roan, Height in Hands, Black, Gender, Brown, Age,
	Time in Holding (Days)

APPENDIX C

FINALPRICES REGRESSION AT 95% CONFIDENCE LEVEL

Table 7: FinalPrices Base Model Output

]	Model Sumn	nary	y				
									Change	Statist	ics	
Mo	del F	2	\mathbb{R}^2	Ad	justed	Std. Error		R	F	df1	df2	Sig. F
				RS	Square	of	Sq	uare	Change			Change
					-	Estimate	Ch	ange	_			_
1	.9	18 ^a	.842		.813	\$88.31304		.842	28.345	10	53	.000
	a. Predi	ictor	s: (Consta	s: (Constant), Number of Bids, Born on Range, Time in Holding (Da								Days),
	Colo	red,	Date of S	ale, I	Halter T	raining, Heig	ht ir	n Hand	ls, Age, S	addle T	raini	ng, Gender
						ANOVA	a					
Mo	del		Sum o	of Squ	uares	df		N	Iean	F		Sig.
								Sc	luare			
1	Regressi	on	2	2106	78.735		10	221	067.873	28.345	i 📃	.000 ^b
	Residual			4133	57.203		53	7	799.193			
	Total		2	6240	35.938		63					
	a. Depe	ende	nt Variabl	le: Fi	nal Price	es						
	b. Predi	ictor	rs: (Consta	ant), İ	Number	of Bids, Bor	n on	Rang	e, Time ir	n Holdi	ng (D	Days),
	Colo	red,	Date of S	ale, I	Halter T	raining, Heig	ht ir	1 Hanc	ls, Age, S	addle T	raini	ng, Gender
			1			Coefficien	ts ^a	1				
			Unstai	ndarc	dized	Standardiz	ed					
			Coef	fficie	ents	Coefficien	ts					
Mo	del		В		Std.	Beta		t				Sig.
					Error							
1	(Consta	nt)	23534.8	98	48356.					.487		.628
	-		1 10 17		739					10.0		
	Date of		-1.696E	2-6	.000	0)31			483		.631
	Sale		41.0	1.4	22.204					1.000		221
	Born or	1	-41.3	14	33.384	0)///		-	1.238		.221
	Range		1 5 5	76	24.027		20			115		(7)
	Gender		-15.5	15	34.937	(138			446		.658
	Age	1	1.4	35	5.930		018			.242		.810
	Colorec	1 •	8.2	63	24.029		15			.344		.732
	Height	ın	-3.3	87	16.824	0	015			201		.841
	Hands			07	000		20			222		740
	Time in	l	.0	07	.022	.0	028			.322		.749
	Holding	5										
	(Days)											

Halter	-112.419	49.127	149	-2.288	.026				
Training									
Saddle	-80.591	93.165	069	865	.391				
Training									
Number	11.795	1.030	.995	11.451	.000				
of Bids									
b. Dependent Variable: Final Prices									

Table 8: FinalPrices Output - Modified

				Model Summ	ary				
						Chang	e Statis	stics	
Model R		\mathbb{R}^2	Adjusted	Std. Error	R	F	df	df2	Sig. F
			R Square	of	Square	Chang	e 1		Change
				Estimate	Change				
1	.918ª	.842	.819	\$86.75116	.842	36.70	9 8	55	.000
	b. Predicto	rs: (Consta	ant), Saddle	Fraining, Colo	ored, Halte	er Traini	ng, Boi	n on l	Range, Date
	of Sale,	Time in H	olding (Days	s), Number of	Bids, Ger	nder			
				ANOVA ^a					
Mo	del	Sum o	of Squares	df	Mea	n	F		Sig.
					Squa	re			
1	Regression	2	210118.918	8	276264	1.865	36.70)9	.000 ^b
	Residual		413917.020	55	7525	5.764			
	Total	2	624035.938	63					
	a. Depend	ent Variab	le: Final Pric	es					
	b. Predicto	rs: (Consta	ant), Saddle	Fraining, Colo	ored, Halte	er Traini	ng, Boı	n on l	Range, Date
	of Sale,	Time in H	olding (Days	s), Number of	Bids, Ger	nder			
				Coefficient	s ^a				
		Unsta	ndardized	Standardize					
		Coe	fficients	d					
				Coefficient					
				S					
Mo	del	В	Std.	Beta		t			Sig.
			Error						
1	(Constant)	20405.8	42 44941.				.454		.652
			274						
	Number	11.7	.941	.988			12.44		.000
	of Bids								
	Halter	-115.3	95 46.783	153			-2.467		.017
	Training								
	Date of	-1.472E	E-6 .000	027			451		.654
	Sale								

,	Time in	.008	.020	.030	.376	.708				
]	Holding									
	(Days)									
1	Born on	-39.776	31.071	074	-1.280	.206				
]	Range									
	Gender	-14.111	33.847	034	417	.678				
	Colored	8.245	23.513	.020	.351	.727				
	Saddle	-79.235	91.068	068	870	.388				
,	Training									
a	a. Dependent Variable: Final Prices									

Table 9: FinalPrices Output - Two Variables

				Μ	odel Summary						
							Ch	ange Stati	stics		
Mo	del	R	\mathbb{R}^2	Adjusted	Std. Error of	R	F	df1	df2		
				R Square	Estimate	Square	Change	e			
						Change					
1		.911 ^a	.830	.825	\$85.44503	.830	149.20	07 2	61		
	a. F	Predictors: (Constant), Halter Tra	ining, Number o	of Bids					
					ANOVA ^a						
Mo	del		Sum of	f Squares	df	Mean S	quare	F	Sig.		
1	R	egression	21	78683.904	2	10893	841.952	149.20	.000 ^b		
								7			
	R	esidual	4	45352.034	61	73	800.853				
	T	otal	26	24035.938	63						
	a. I	Dependent V	Variable:	Final Prices							
	b. F	Predictors: (Constant), Halter Tra	ining, Number o	of Bids					
					Coefficients ^a						
			Unstar	dardized	Standardized						
			Coef	ficients	Coefficients						
Mo	del		В	Std.	Beta		t		Sig.		
				Error							
1	(Co	nstant)	125.18	5 12.321			10.16	60	.000		
	Nui	nber of	11.10	.644	.936		17.22	.6	.000		
	Bid	S									
Halter -119.174 41.014158 -2.906 .005											
	Training										
	a. I	Dependent V	Variable:	Final Prices							

					Model Sumn	nary					
								Change S	Statis	tics	
Mo	del	R	\mathbb{R}^2	Adjusted	Std. Error	F	R	F	df	df2	Sig. F
				R Square	of	Squ	Jare	Change	1		Change
					Estimate	Cha	inge				
1		.945 ^a	.893	.846	\$80.03010	•	.893	19.247	19	44	.000
	b. P	redictor	s: (Constar	t), Saddle	Fraining, Red	Roa	n, Pin	to, Grulla,	Ches	stnut,	Blue Roan,
	Р	alomino	o, Halter Tr	aining, Bro	wn, Sorrel, B	orn o	on Rai	nge, Bay, I	Heigh	it in F	Hands,
	C	Bender, l	Date of Sal	e, Black, A	ge, Number o	f Bid	ls, Tir	ne in Hold	ling (Days))
					ANOVA	l					
Mo	del		Sum of	Squares	df		Me	an	F		Sig.
							Squ	are		_	h
1	R	egressic	on 23	42223.990	19	12	23274	.947]	19.24	7	.000
	R	esidual	2	81811.948	44		6404	.817			
		otal	26	24035.938	63						
	c. [Depende	nt Variable	: Final Pric	es	-		~ **	~		
	d. P	redictor	s: (Constar	t), Saddle	Fraining, Red	Roai	n, Pin	ito, Grulla,	Che	stnut,	Blue Roan,
	P	alomino	, Halter Tr	aining, Bro	wn, Sorrel, B	orn o	on Rai	nge, Bay, I	Heigh	it in F	lands,
	C	bender, I	Date of Sal	e, Black, A	ge, Number o	t Bid	ls, Th	ne in Hold	11ng (Days)
			TT /	1 1' 1	Coefficient	S ^a					
			Unstan	lardized	Standardize	ed					
N.C.	1.1		Coeff	Icients	Coefficient	S		4			C :-
MO	del		В	Std.	Beta			t			51g.
1	$(\mathbf{C}_{\mathbf{c}})$	natant)	1016 00	EII01 5 47926					050		052
1	(00)	nstant)	2820.88	4/820. 451					.039		.935
	Ago		<u></u>	4.51	0	11			150		971
	Age Loi	aht in	09	7 3.023 2 17.220	0	62			876		.074
	L Lon	gin in de	14.23	5 17.239	.0	02			.020		.413
	Dat	e of	_2 079E_	7 000	_ 0	04		_	060		952
	Sale		-2.07712-	.000	0	04		_	.000		.)52
	Tim	e in	- 00	3 022	- 0	10			. 118		907
	Hol	ding	.00	.022	.0	10			.110		.)07
	(Da	vs)									
	Nur	nber	11.10	4 .968	.9	37		11	.470		.000
	of E	Bids			.,						
	Bor	n on	-29.97	3 31.811	0	56		_	.942		.351
	Range					-			_		
	Gen	der	-26.90	7 33.604	0	65		_	.801		.428
	Bay	7	6.00	4 36.999	.0	11			.162		.872
	Blac	ck	-8.84	2 34.598	0	17		_	.256		.799
	Bro	wn	2.12	7 43.077	.0	03			.049		.961

Table 10: FinalPrices - Best Fit Model - Colored Variable Expanded

	Blue	270.785	68.450		.233	-	3.956	.000	
	Roan								
	Chestnut	-16.376	85.352	-	010		192	.849	
	Grulla	20.885	90.054		.013		.232	.818	
	Palomino -2		47.715	-	036		627	.534	
	Pinto	42.004	86.815		.026		.484	.631	
	Red Roan	-72.702	85.220	-	045		853	.398	
	Sorrel	9.240	35.208		.017		.262	.794	
	Halter	-111.613	46.588	-	148	-2	2.396	.021	
	Training								
	Saddle	-41.066	87.579	-	035		469	.641	
	Training								
	a. Depende	ent Variable:	Final Pric	es					
	Excluded Variables ^a								
Mo	Model Beta In t Sig.								
1	Gra	y	b						
	a. Depende	ent Variable:	Final Pric	es					
	b. Predicto	rs in the Mo	del: (Const	tant), Saddle	e Traii	ning, Red Roan,	Pinto,	Grulla,	
	Chestnut, Blue Roan, Palomino, Halter Training, Brown, Sorrel, Born on Range, Bay,								

Height in Hands, Gender, Date of Sale, Black, Age, Number of Bids, Time in Holding (Days)

Table 11:	FinalPrices	Color	Expanded	- Three	Variables
14010 111	I THUR TICCS	COIOI	Lapunaca	111100	v unuoico

				Model Sumn	nary				
						Change	Statis	tics	
Mode	1 R	\mathbb{R}^2	Adjusted	Std. Error	R	F	df1	df2	Sig. F
			R Square	of	Square	Change			Change
			_	Estimate	Change				_
1	.939	^a .881	.875	\$72.04610	.881	148.511	3	60	.000
a.	Predictors	: (Consta	nt), Halter T	raining, Blue	Roan, Nu	mber of E	Bids		·
				ANOVA	1				
Mode	Model Sum of Squares df Mean F							Sig.	
					Squ	uare			
1	Regression	n 23	312597.480		3 7708	65.827	148.5	l	.000 ^b
]	L 🛛	
	Residual		311438.457	60 5		90.641			
	Total	26	524035.938	63					
a.	Dependen	t Variabl	e: Final Pric	es					
b.	Predictors	: (Consta	nt), Halter T	raining, Blue	Roan, Nu	mber of B	Bids		
				Coefficient	ts ^a				
		Unsta	ndardized	Standardize	d				
		Coef	fficients	Coefficient	s				

Mo	del	В	Std.	Beta	t	Sig.				
			Error							
1	(Constant)	118.512	10.472		11.317	.000				
	Number of	10.822	.546	.913	19.814	.000				
	Bids									
	Blue Roan	264.606	52.095	.227	5.079	.000				
	Halter	-105.908	34.681	140	-3.054	.003				
	Training									
	c. Dependent Variable: Final Prices									

VITA

Graduate School Southern Illinois University

Robert Summers

rsummers2018@gmail.com

Southern Illinois University Carbondale Bachelor of Science, Agribusiness Economics, May 2018

Research Paper Title: An Exploration of the Physical Qualities that Most affect the Number of Bids Received by Wild Horses Placed in BLM's Internet Auctions

Major Professor: Dr. Ira Altman