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Reproductive studies in invasive plants are necessary for an understanding of
their potential to establish and spread in foreign environments. Elaeagnus umbellata
Thunb. (autumn olive) is an invasive woody shrub that flowers early in the spring and is
often noted for its abundant fruit set. This study examined the reproductive biology of E.
umbellata in Illinois, where it is highly invasive. Hand-pollination experiments were
performed to determine the breeding system of E. umbellata, and floral visitors were
collected to determine its pollinators. Experiments showed that E. umbellata is a
predominantly outcrossing species with a self-incompatible breeding system. However,
individual variation was detected in several reproductive characteristics. Pollen tube
analyses revealed that a small percentage of individuals allow successful self-pollen
tube growth, and self-fruit set resulting from automatic self-pollination (autogamy) was
relatively high in a few plants. Automatic self-pollination is possible because the male
and female parts of flowers mature sychronously, but the likelihood of autogamy may
vary among individuals due to variability in the spatial separation of male and female
parts (herkogamy). Variability in the incompatibility system and the level of herkogamy
may impact the outcrossing rates and reproductive success of individuals.

The majority of floral visitors to E. umbellata were generalist pollinators.
Frequently visiting bees included small and large species such as native Andrena spp.,

Augochlorella aurata, Bombus spp., Ceratina calcarata, Xylocopa virginica, and the



introduced Apis mellifera. Bombylius major (large bee fly) and the moth Mythimna
unipuncta (armyworm) were also frequent visitors. Most of the above insect taxa are
pollinators of E. umbellata based on analysis of pollen on insect bodies. E. umbellata is
likely to achieve its abundant fruit set where these common pollinators and other E.
umbellata are present. However, in my study sites, many individuals experienced low
fruit set on branches that were open to pollinator visitation, suggesting pollen limitation
may be common in some years and at certain sites. The discovery of autogamous
individuals demonstrates that some E. umbellata individuals may be able to establish

and spread even when mates or pollinators are limiting.
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CHAPTER 1

INTRODUCTION

Invasive plants are an issue of great concern as they continue to become
detrimental to the environment (Vitousek et al. 1996) and economically costly to
manage (Hobbs & Humphries 1995; Pimentel et al. 2000). Invasiveness is the degree
to which non-native species counteract the ecological stability or economic productivity
of a native landscape. Plant invasiveness has been correlated with various abiotic and
biotic factors (Thompson et al. 1995; Sutherland 2004; Lloret et al. 2005). In particular,
the presence or performance of certain plant traits has been investigated extensively in
invasive species and compiled in order to pinpoint which characters contribute to
invasive ability (Pysek & Richardson 2007; van Kleunen et al. 2010). Reproductive
traits are given frequent attention because of their influence on the persistence and
spread of plant populations. For example, it is assumed that the rapid spread rate of
some invasive plants is associated with a large production of seed. ldentifying the
reproductive traits influencing seed set and other invasive qualities may help predict
potential pervasiveness (Lloret et al. 2005; Richardson & Psyek 2006; Hayes & Barry

2008) as well as inform efforts to manage invaded environments.

Breeding Systems in Invasive Plants

Plants achieve reproduction either asexually or sexually. Asexual reproduction
occurs through the growth of vegetative parts or the setting of unfertilized seed
(apomixis). Sexual reproduction is achieved through the setting of self-fertilized seed or

cross-fertilized seed. Many flowering plants engage in more than one mode of



reproduction, and recent research has focused on deciphering the most prominent
modes of reproduction among invasive plant species. The impetus for such research
stemmed from Baker’s prediction that self-compatible plants (plants capable of self-
fertilization) are more successful weeds (Baker 1955). He based this prediction on
observations of a high proportion of self-compatible plants on islands, which suggested
that self-compatibility is advantageous to species colonizing a new environment. Unlike
obligate outcrossing plants, self-compatible individuals do not require conspecfics to
mate and generate offspring. Instead these species are able to establish a population
from just one individual. Baker’s prediction (known as Baker’'s Law) has been
supported by the verification of self-compatibility in many invasive plants (Cavers et al.
1979; Crompton et al. 1988; Hao et al. 2011; Ward et al. 2012) and the finding that the
advantages of self-compatibility go beyond just the colonization phase. For example,
van Kleunen and Johnson (2007a) found that self-compatible invasives in the U.S. have
a broader distribution range than self-incompatible invasive plants.

Self-compatible exotic plants that can set seed through automatic self-pollination
(autogamy) may be at a particular advantage. Autogamous plants do not require
external forces to transfer pollen from the anthers to the stigma, and hence can produce
seeds without acquiring pollinators or mates. This ability may increase the chances of
population establishment and subsequent spread. For example, when studying exotic
Iridaceae plants of South African origin, van Kleunen and Johnson (2007b) found that
those taxa that had become invasive outside of South Africa produced significantly
more autogamous fruit than plants that had not become invasive. In a separate study,

tests carried out by Rambuda and Johnson in South Africa (2004) found autogamy in all



13 of the woody invasive plants they analyzed. These results suggest that autogamy is
important for plant invasions. These studies are also in contrast with conventional
thought which has held that autogamy is not as important in colonizing perennial
species because they have multiple years to achieve mating success and are not
limited in mating opportunities by an annual or biennial lifespan (Lloyd & Schoen 1992;
Bond 1994). The benefits of autogamy in some perennial invasive plants must
outweigh any cost of selfing. One such cost of self-fertilization is increased
homozygosity among progeny that may cause inbreeding depression (Charlesworth and
Willis 2009). Although autogamy seems to be important among some invasive plants,
more work is needed to determine if perennial invasive species possess strategies that
lessen the chances of self-fertilization and its associated costs.

The chances of automatic self-fertilization in a self-compatible species can be
largely determined by floral morphology and phenology. The male and female organs
within a hermaphroditic flower can be close together or they can be separated spatially
(herkogamy) and/or temporally (dichogamy). The degree of separation between stigma
and pollen influences the ability to self-pollinate, the rate of outcrossing, and even
pollinator behavior, so their examination is essential in predicting breeding habits. Also,
adaptive changes in the floral morphology of hermaphroditic invasive populations may
happen relatively quickly because of selection pressures during colonization. For
example, the distance between stigma and anthers was significantly less in Nicotiana
glauca that had recently colonized islands as compared to mainland invasive
populations (Schueller 2004). Island populations self-pollinate more often as a result.

Overlapping times in stigma receptivity and pollen viability allow self-pollination as well.



Studies of invasive plants can reveal whether traits promoting self-fertilization are
favored by selection.

Depending upon the degree of herkogamy and dichogamy, plants that are self-
compatible may or may not require pollen vectors to deposit self-pollen on stigmas in
order to set fruit. For example, flowers of the invasive perennial Senna didymobotrya
are self-compatible, but require manipulation by specific pollinators (van Kleunen and
Johnson 2005). Wing vibrations from large insects cause the pollen from the anthers to
be released directly onto the stigma, which is efficient enough that small populations of
S. didymobortrya have just as great of fruit set as large populations (van Kleunen and
Johnson 2005). Another woody invasive plant in the tropics, Miconia calvescens, was
observed to set self seed despite the high degree of stigma and anther separation
within flowers (Meyer 1998). The authors conclude that external processes (i.e. wind,
rain, insects) could cause self-fertilization.

Plants that are obligate outcrossers cannot self-fertilize even with pollinator
assistance, due to incompatibility systems. Rejection of pollen is governed at the
genetic level where pollen having a similar genotype as the recipient carpel is prevented
from causing self-fertilization as well as crosses between genetically similar individuals
(Rea & Nasrallah 2008). Self-incompatible plants require both pollen vectors and mates
and therefore may be limited in mating opportunities, especially after introduction to a
foreign landscape.

Ecological theory predicts that obligate outcrossers are somewhat hindered as
colonizers because of their requirements for cross pollen from different individuals

(Barrett et al. 1986). Even if conspecifics are present in a founding population, the



transportation of cross pollen is dependent on the abundance and efficacy of pollen
vectors (Aizen & Harder 2007). Inadequate pollen movement can occur because of a
depressed amount of pollinators in less rewarding, small populations (Agren 1996).
Under these conditions, variation in the breeding system of obligate outcrossing species
may allow some individuals to still produce propagules. For example, some plant
species can show continuous variation in the strength of the self-incompatibility
response, from individuals that strongly inhibit self-pollen tube growth to a minority that
set occasional self-fertilized seed (Ferrer et al. 2009). Shifts from outcrossing to selfing
via the breakdown of incompatibility systems is considered to be a common transition in
plant evolution (Igic et al. 2008), but it has been rarely studied and found in few cases
after invasion (Petanidou et al. 2012; Ward et al. 2012).

Brennan et al. (2005) suggested that variability in the self-incompatibility
response could be retained and serve as an optimal situation for range expansion.
When mates and pollinators are plentiful, outcrossing would still contribute a great
majority to the propagule supply of partially self-compatible species. Outcrossing
populations of plants are more genetically variable than selfing populations (Barrett
2011) and are better able to adapt to different environments — thereby increasing the
possibility of invasive spread (Rice & Sax 2005). However, when opportunities for
outcrossing are limited, self-compatibility may ensure an alternate method for
reproduction. Indeed, the periphery of some species’ range is dotted with self-
compatible individuals that arose from primarily obligate outcrossing species (Levin
2012). This pattern is often due to more extreme environmental conditions at the edge

of species’ limits. Such environments may harbor few effective pollinators and mates.



Because these same challenges are faced by invasive species, genetic variations in
incompatibility systems, herkogamy, or dichogamy may play a role in invasive spread
(Prentis et al. 2008).

Despite the obstacles facing obligate outcrossers in a foreign landscape, there
are notable examples of successful invasive plants being obligate outcrossers (Sun and
Ritland 1998; Brennan et al. 2002; Hong et al. 2007; Lafuma & Maurice 2007). Hong et
al. (2007) note that the invasive Mikania micrantha has spread rapidly to become one of
the most invasive plants in the world despite being an obligate outcrosser that requires
insect pollination. Also, contrary to studies suggesting a link between invasiveness and
self-fertilization (van Kleunen and Johnson 2007a; Hao et al 2011; Ward et al 2012), an
analysis of the U.S. flora by Sutherland (2004) showed that invasive exotics were more
likely to be self-incompatible than non-invasive exotic plants and that woody perennial
species are the majority among invasives. In order to better understand patterns in
invasive plant breeding systems, it is necessary to examine their relationships with

pollinators.

Insect Pollination in Invasive Plants

Invasive plants face the challenge of establishing important mutualisms after
introduction into a foreign environment (Richardson et al. 2000). In instances where
pollinators are required, only those plants that can attract pollinators have a chance of
becoming invasive. Many successful invasive plants achieve widespread dominance
because they are able to attract generalist pollinators (Chittka & Schirkens 2001;

Brown & Mitchell 2002; Bjerknes et al. 2007; Bartomeus et al. 2008). For example,



Ward et al. (2012) found that pollinators are necessary for self-pollination in three
invasive self-compatible milkweeds (Asclepiadaceae) in Australia, and that generalist
lepidopteran and hymenopteran insects provide this service. An appeal to generalist
pollinators allows even small populations of obligate outcrossing species the possibility
of achieving colonization success (Lafuma & Maurice 2007). For example, successful
reproduction seems to be attained in small populations of the obligate outcrossing
Gomphocarpus physocarpus in its native range (Coombs et al. 2009). Efficient pollen
transfer by generalist insects translated into high rates of fruit set, while the typical Allee
effects associated with small populations (Agren 1996) were not apparent.

Although there are cases demonstrating successful acquisition of pollinators by
introduced plants (Lafuma and Maurice 2007; Coombs et al. 2009), there are still
guestions as to the degree to which dependency on pollinators is a hindrance to
invasive success. Exotic plants in the introduced range often have different insect
visitors from those in the native range, and the effectiveness of these visitors as
pollinators may differ between regions. If pollinators are abundant and consistently
carry invasive pollen, they contribute to invasiveness (Stout 2007). If not, invasive
plants may be pollen limited (Parker 1997; Larson et al. 2002).

The complexity of plant-pollinator interactions requires direct experimental
measures of pollinator efficacy or qualitative assessment of visitor behavior. Such
measures are especially important for invasive species that attract numerous floral
visitors, because the efficiency of pollination varies with each type of visitor (Inouye
1983; Stout 2000). For example, Stout et al. (2007) observed a wide range of bee and

fly taxa visiting the invasive Rhododendron ponticum, but only bumblebee species



(Bombus) were deemed pollinators because they frequently come in contact with the
stigma. In order to determine the pollinators of the invasive yellow star thistle
(Centaurea solstitialis), Mciver et al. (2009) used the percentage of C. solstitialis pollen
grains on insects collected from the plant’s flowers. It is often found that the pollinators
of invasive plants are also pollinators of native plants; therefore, invasive plants could
affect the pollination of native plants and possibly disrupt a major ecosystem service
(Traveset & Richardson 2006; Morales & Traveset 2009), so characterization of floral
visitors is needed for proper invasive plant management.

Studies have shown that invasive plants can integrate into native pollination
networks through interactions with generalist pollinators (Memmott & Waser 2002; Vila
et al. 2009). Their presence can increase (Nielsen et al. 2008; McKinney 2010) or
decrease (Chittka & Schurkens 2001; Brown et al. 2002) the number of floral visitors to
native plants. A meta-analysis by Morales and Traveset (2009) revealed that invasives
most frequently decrease visitation to native plants, but detriments to native plant
reproduction were not as obvious. Indeed, although overall visitation rates may be
higher to invasive plants, those insect taxa important to native plant pollination may still
remain frequent visitors to native plants (Larson et al. 2006), or they may carry small
amounts of invasive pollen (Bartomeus et al. 2008).

The amount of invasive plant pollen on flower-visiting insects can be used to
predict impacts on native plant pollination and assess the degree to which insects utilize
the floral resources of invasive plants. Invasive plants may be suitable sources of

nectar and pollen and could bolster native pollinator populations. This in turn could



facilitate native plant reproduction (Tepedino et al. 2008), but more research is needed
to support this idea.

An understanding of breeding systems and pollination within invasive plants
benefits efforts to manage current invasions and prevent future ones. Not only do these
studies help in predicting colonization success (Baker 1965) but they also inform
estimates of naturalization rates (Barrett et al. 2008). A plant’s mode of reproduction
can provide insight into evolutionary studies as well. The degree of phenotypic
plasticity, genetic recombination rates, and effective population size can more easily be
inferred given prior knowledge of reproductive qualities (Sakai et al. 2001). All of these

may factor into more effective management of a particular invasive plant species.

Study Species

This study investigates reproduction and pollination in the invasive plant
Elaeagnus umbellata Thunberg (Elaeagnaceae). E. umbellata is a dense deciduous
shrub that can grow 6-7 meters high (Church et al. 2004). It grows in moderately dry
conditions in sandy or well-drained loamy soils but also does well on gravel beds of
riparian zones. E. umbellata is invasive in 21 states in the eastern USA (USDA 2006)
and continues to be problematic as control measures are costly and labor intensive
(Byrd et al. 2012). It has the ability to spread rapidly and encroach into natural areas
because of its prodigious fruit set (Ebinger & Lehnen 1981; Stark 2000).

Elaeagnus umbellata was introduced to North America in 1830 by Lake County
Nursery, Ohio (Dirr 1998). Accounts vary as to the location from which seed was

obtained for North American introduction: Korea (Redher 1940), Japan, Himalayas



10

(Eastman 2003), and Nepal (Dirr 1998) have been mentioned. The purpose of its initial
introduction was for propagation as an ornamental (Rehder 1940), but it may have been
introduced for reclamation use as well (Eastman 2003). It was most extensively planted
throughout the eastern United States during the second half of the 20" century. E.
umbellata was used as natural fencing in pasture at least as early as the 1940s, was
popular in strip mine reclamation projects in the 1970s (Zarger 1980; Ashby et al. 1995),
and was used in agroforestry practices during the 1980s because of its ability to fix
nitrogen (Funk et al. 1979). Throughout the second half of the 20™ century, it was
planted as windbreaks along roads and was most ardently promoted for its benefits to
wildlife (Henry 1980). The demand for E. umbellata was highest in the 1970s when it
was the number one produced shrub among U.S. nurseries (Abbott and Fitch 1977). It
was used in the restoration of mine spoils and other denuded landscapes because of its
tolerance for poor soil conditions (Zarger 1980). These beneficial characteristics of E.
umbellata resulted in its vigorous promotion up into the 1990s. Stark (2000) reported
that E. umbellata was still being planted for wildlife cover by the Pennsylvania Game
Commission in 2000.

Since becoming naturalized, it has had an extensive impact on the environment.
The aggressive growth and spread rate of the species was documented by Ebinger and
Lehnen (1981) while determining naturalization rates in eastern lllinois. From a distant
patch planted in 1975, E. umbellata had rapidly spread a short distance away to weedy
proportions — 1,359 plants (20% were over half a meter) within a 20x20 m area in 1981.

Jones (1963) did not list E. umbellata as part of the Illinois flora and Mohlenbrock (1975)
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stated that it rarely escapes cultivation; therefore, E. umbellata achieved invasive status
in a very short period of time.

Elaeagnus umbellata easily forms dense monoculture stands that exclude native
plant growth. Besides the impact of shading on native vegetation, E. umbellata may
have a more widespread influence on ecosystem processes because of its ability to fix
nitrogen. E. umbellata forms a symbiotic relationship with the nitrogen-fixing
actinobacteria Frankia, allowing for the direct uptake of ammonia by the plant. Excess
nitrogen can leach into the soil as a result. At one site in southern lllinois, soil nitrate
levels were 16.7 times greater under E. umbellata than under grassland plots (Church
et al. 2004). It has been suggested that the increased availability of nitrogen near E.
umbellata may allow for the invasion of other weedy plants (Mostoller 2008). Also,
there is a positive relationship between E. umbellata presence and stream nitrate levels
(Goldstein et al. 2009), possibly decreasing stream biodiversity. The impact of this plant
on nitrogen cycling (Baer et al. 2006) could rival other nitrogen-fixing invasive plants
(e.g. Myrica faya in Hawaii) (Vitousek and Walker 1989) and may represent a more
severe invasion than most noxious weeds.

The reproductive characters are known to some extent in E. umbellata.
Vegetative reproduction is evident through the presence of root suckers (Kohri et al.
2002), but the extent to which E. umbellata spreads by this mode of reproduction is
unknown. E. umbellata seems to invest a great deal in reproduction through flowering.
Blooming occurs in early spring with the initiation of thousands of flowers. The
blooming period lasts approximately two weeks for most plants (personal observation).

The plant produces axillary inflorescences of 2-7 hermaphroditic flowers that span most
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of the branch. Flowers are white at first and transition to yellow as the flowers reach 6-
10 days old (personal observation). Their fragrant odor and significant nectar reserves
could play a part in the attraction of many insect taxa (Sather & Eckardt 1987). The
most pronounced chemical components of the floral scent are 4-methyl phenol, 4-
methyl anisole, eugenol, and methyl esters that all combine to emit a heavily fragrant,
dull vanilla odor (Potter 1995). The plant’s generous nectar supply has been noted by
bee keepers as ideal forage for honeybees (Hayes 1976). Approximately four months
after the flowering season, fruits ripen to a scarlet red color. One E. umbellata can
produce an abundant crop of up to 24,000 drupe-like fruits (Sather & Eckardt 1987).
Fruits contain a single seed. Birds play a significant role in providing long-distance
dispersal of the seed (Kohri et al. 2011). E. umbellata lacks prolonged seed dormancy
and does not form seed banks (Kohri 2008; Carter & Ungar 2002). Many of the
reproductive traits of E. umbellata are presumed to have a substantial influence on its
invasiveness, but more data are needed to determine the reproductive biology of this
species. Such data could be used to estimate the possible impact its current and future

invasion will have on communities.

Objectives and Hypotheses

This study examines the reproductive biology and pollination ecology of the
invasive plant Elaeagnus umbellata in lllinois, U.S.A. My first research objective was to
assess whether the morphology and phenology of E. umbellata flowers allow for self-
pollination. The morphology of E. umbellata flowers in relation to the position of stigma

and anthers has only been addressed in a cluster analysis of Elaeagnus in China (Sun
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and Lin 2010). That analysis categorized the stigma position of E. umbellata as “at or
below the stamen,” which indicated no spatial separation. Although stigma position can
change following introductions (Schueller 2004), my hypothesis was that E. umbellata
would not show any signs of separation between male and female functions and that
automatic self-pollination will be possible

My second research objective was to determine the breeding system of E.
umbellata. A breeding system study of Elaeagnus mollis in China revealed that it is
self-compatible but only 6.9% of flowers produced seed after self-pollinations (Wei et al.
2007). | predicted that E. umbellata would show some degree of self-compatiblity as
well. Reports of high fruit set in E. umbellata (Sather & Eckardt 1987) suggested that
fruit set is not limited by the presence of mates or pollinators. | hypothesized that E.
umbellata would have a mixed mating system.

My final research objective was to determine the floral visitors and pollinators of
E. umbellata. In the native range, native bees were mentioned as primary floral visitors
to E. umbellata (Wei et al. 2007). In the invasive range, the plant has been reported to
be visited by a “variety of insects” (Sather & Eckardt1987). The only specific floral
visitor that has been recorded on invasive E. umbellata was the honeybee (Apis
mellifera) (Hayes 1976). The floral traits of E. umbellata suggested the most probable
pollinators to be moths. Moths are the most likely group to be attracted to the white-
colored flowers and strong fragrance (Wyatt 1983). | hypothesized that E. umbellata
would have a generalized pollination system and would be pollinated by bees and

moths.
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CHAPTER 2

MATERIALS AND METHODS

Study Sites and Sampling

Field studies were conducted during the spring and summer of 2011 and 2012 at
multiple sites in central and southern lllinois, U.S.A. It is suspected that the lllinois
region is inhabited by E. umbellata ‘Cardinal’ and ‘Elsberry’ (Ebinger & Lehen 1981,
Allan Mickelson personal communication). Records from the Soil Conservation Service
(NCRS) report that E. umbellata ‘Cardinal’ was first introduced in 1961. E. umbellata
‘Elsberry’ was introduced in 1979. Both cultivars were seed-propagated and selected
for their abundant fruit production and fruit size.

The majority of data were collected at the following field sites (Table 1): Allenville,
IL (ALL); Buffalo Trace Prairie, IL (BTP); Crab Orchard National Wildlife Refuge, IL
(CONWR); Murphysboro, IL (MUR); Southern lllinois University Carbondale, IL (SIUC);
Touch of Nature Environmental Center, IL (TONEC); Williams Hill, IL (WH). All of the
sites had experienced past anthropogenic disturbance and many are closely adjacent to
disturbed areas.

The ALL site is in central lllinois and is characterized by large fields of mostly
Festuca species and some small herbaceous species with forested windbreaks
bordering these fields. E. umbellata formed a continuous presence along the edge of
forested patches.

The other central lllinois site (BTP) was purchased by the Champaign County

Forest Preserve District (CCFPD) in 1976. The CCFPD initiated prescribed burns to
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many parts in the 1990s and began officially restoring the site to prairie in 2000. Itis a
107 hectare site consisting of restored prairie, savanna, successional, shrubland, and
forested habitat. E. umbellata was common in the successional areas and sparsely
populated the prairie.

TONEC is a southern IL site located within the purchase unit for Shawnee
National Forest, approximately 13 kilometers south of Carbondale, IL, USA. Past
disturbance caused by agricultural practices are evidenced by the presence of
fragmented forest. Forest and prairie were opened to livestock pasture and crop
production before being purchased by Southern lllinois University in 1949. TONEC was
documented as being completely forested in land survey records from 1975. Ashman
(1962) did not document E. umbellata as a secondary successional tree species at
TONEC. The first records of E. umbellata within TONEC are in 1987 (Davis 1987).
Yates et al. (2004) reported densities of 0.5 and 0.9 stems m™ for interior and edge
patches of E. umbellata within TONEC. Experimental plants at TONEC were located in
a power line cut, along the edge of primary successional forest, and within
successional/shurbland sites containing patches that are mowed once a year.

CONWR is located approximately 26 kilometers east of Carbondale, IL. Itis
17,762 hectares, incorporating various landscape types including lakes, agricultural
land, successional old fields, restored prairie, and second-growth forest. The vegetation
types of CONWR include upland forest, bottomland hardwood forest, fallow herbaceous
old-fields, mixed upland shrubland, restored grassland, and forest regeneration sites

(Battaglia 2005). Experimental plants were located in the northern portion of the refuge
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in a successional/shrubland site dominated by other herbaceous vegetation, much of it
being other invasive species. E. umbellata was the dominant shrub present.

WH is the second highest point in lllinois and is located within the southeast
portion of the Shawnee National Forest. Communication towers occupy the summit, but
the site mostly consists of primary successional forest containing Cornus florida
(dogwood), Cercis canadensis (redbud), and a variety of hardwoods. E. umbellata is
not as densely present on WH as the other study sites. Experimental plants were

located near the communication towers and along a road leading to the top of WH.

Floral Morphology

Floral morphology was assessed at ALL and BTP in 2011 and TONEC and
CONWR in 2012. At each site, three flowers were randomly selected from each of 14
plants and placed in Carnoy'’s fixative (6 cc. ethyl alcohol: 3 cc. chloroform: 1 cc. glacial
acetic acid). Morphological measurements were made after approximately two months
in fixative. Corolla length was measured from the base of the corolla tube to the
opening of the corolla tube. Stigma and anther height was measured from the base of
the corolla in order to calculate any degree of herkogamy. A mean distance between
the stigma and anthers was obtained from measurements of the three flowers from

each plant.

Floral Phenology
The timing of stigma receptivity and proportion of viable pollen was recorded at

different flower stages. In 2011, flowers from 10 plants at BTP were sampled at the
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following visually-assessed stages: bud, anthers newly dehisced, anthers old, petals
yellow. An additional five plants were sampled exclusively for stigma receptivity at ALL.
In 2012, flowers from 10 plants at TONEC were bagged before anthesis and sampled at
1, 2, 3, or 4 days following anthesis.

Four flowers — one for each stage — from each of the 10 experimental plants at
BTP and 5 plants at ALL were sampled for stigma receptivity in 2011 (n = 60 flowers).
In 2012, four flowers — one for each stage — from each of the 10 experimental plants
were sampled for stigma receptivity (n = 40 flowers). Stigma receptivity was recorded
for each flower using Peroxtesmo paper. A positive Peroxtesmo test confirms the
presence of peroxidase and therefore is a good indicator that the stigma is receptive
(Dafni 1998). A positive or negative result was recorded for each flower.

Pollen viability was tested using methods described by Peterson et al. (2010).
From 10 experimental plants at BTP in 2011 and 10 experimental plants at TONEC in
2012, 12 flowers were sampled — three flowers for each stage — and placed in Carnoy’s
fixative (n = 120 flowers). After approximately two months in fixative, anthers from each
stage were then placed on a slide, dissected, stained using a modification of
Alexander’s stain (Peterson et al. 2010), and examined under a light microscope. The
stain differentially dyes viable pollen red and non-viable pollen blue. The percentage of
viable pollen per flower was scored by totaling the number of viable pollen grains out of
500 grains examined. The mean percent of viable pollen was calculated for each flower

stage.

Breeding System
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A breeding system study was conducted in 2011 at TONEC (n = 17), and in 2012
at TONEC (n = 14 plants) and CONWR (n = 20 plants). On each plant, five small
branches were randomly assigned to receive one of five treatments; therefore, plants
were used as blocks and branches were used as the unit of replication in the study.
The terminal 10 cm of the treatment branches were bagged with mesh bags before
anthesis to exclude pollinators, except for controls, which were left open to pollinators.
The 10 cm bagged sections of the branches generally had 100 or more flower buds. To
allow marking and manipulation of individual flowers, flower buds were trimmed off,
leaving only ~ 15 buds in the bagged section. To assess whether this trimming
impacted the fruit set in the remaining flowers, an untrimmed control was included as
one of the five treatments. The treatments administered were autogamy, self-
pollination, outcrossed, trimmed control, and untrimmed control (Table 2). The
treatment regime at TONEC in 2011 did not include untrimmed control, and so had only
four treatments. The self-pollination and outcrossed treatments were pollinated by
manually transferring either self or cross pollen from a recently collected donor flower to
the recipient stigma using a clean insect pin. Flowers were too small to emasculate
before anthesis without damage. Instead, self- and cross-pollination treatments were
emasculated soon after anthesis in order to minimize self-pollen transfer. Emasculation
was not performed on TONEC flowers during the 2012 flowering season. All hand
pollinations were performed within 24-48 hours of anthesis.

In order to further survey for inter-populational variation in selfing ability, several
additional abbreviated replicates of the breeding system study were conducted on 10

plants at BTP in 2011 and 9 plants at WH in 2012. These included only autogamy and
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control treatments. At BTP, the autogamy, trimmed control, and untrimmed control tests
were performed. At WH, the autogamy and untrimmed control tests were administered
on plants.

Destruction of some plants and treatment branches by unknown causes resulted
in a reduced sample size for breeding system studies. At 2011 TONEC, three
individuals were destroyed between 4 weeks and 7 weeks after pollination treatments,
which reduced the sample size to 14 plants. At WH, the destruction of some
experimental branches resulted in the number of control replicates being 6 while the
number of autogamy replicates remained at 9.

At the end of the flowering period bags were removed during the development of
fruits. The presence or absence of developing fruit was recorded for each flower within
a treatment at various times throughout the maturation process. Bags were placed
back on treatment branches approximately one month before fruit was ripe to minimize
frugivory. The mature fruit set per treatment branch was recorded when fruits were red.
Percent fruit set was calculated as the number of fruits per branch divided by the
number of treated flowers per branch.

Any fruits that matured on treatment branches were collected. Seeds were
washed, dried for 24 hours, and weighed. Mean seed mass was recorded for each
treatment within a plant. Seed viability was tested to determine if treatments differed in
the proportion of viable seed. Using a 1.0% solution of 2,3,5-triphenyl tetrazolium
chloride, viability was analyzed for all seeds gathered from each treatment. A
tetrazolium test developed for Elaeagnus umbellata by Olson and Barbour (2008) was

initially followed. This test gave ambiguous results; therefore, seeds from 2011 were
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soaked for 72 h. In 2012, the test was further optimized by soaking seeds in gibberellic
acid overnight, and then cut in half and immersed in 1.0% 2,3,5-tripheny! tetrazolium

chloride for 24h at 37°C in the dark (Jill Barbour, personal communication).

Pollen Tube Growth

In order to corroborate results from the breeding system study, flowers from six
plants at 2012 TONEC were used to assess pollen tube development in self- and cross-
pollinated flowers. Two branches on each plant were bagged prior to anthesis and
randomly assigned to be either self- or cross-pollinated. On each branch, 4-12 flowers
were hand-pollinated using an insect pin. Bags were placed back on the branches
following hand-pollinations. Flowers from each branch were then fixed in Formalin-
Aceto-Alcohol (FAA) (90 cc. 50% ethyl alcohol: 5 cc. glacial acetic acid: 5 cc. formalin)
24-72 hours after pollination in order to halt pollen tube growth. These flowers were
placed in 70% ethanol after a few weeks in FAA. Flowers were later dissected and
soaked in a 2.5 g chloral hydrate: 1 ml 30% glycerol clearing agent for 48 hours.
Carpels were then mounted in 0.1% decolorized aniline blue / 0.1 M K3PO, buffer
solution for 8-12 hours. Aniline blue contains a flourochrome that binds to the beta
portion of the callose that is deposited by pollen tubes (Johnson-Brousseau &
McCormick 2004), allowing the growth of pollen tubes to be viewed under a
fluorescence microscope. The extent of pollen tube growth was assessed for each
flower by recording whether pollen tubes reached the ovary or not. A similar procedure
was carried out for control flowers except these flowers were mounted solely in the 0.1

M K3PO, buffer solution.
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Diurnal vs. Nocturnal Pollination

To test whether branches exposed only to diurnal or nocturnal pollinators would
differ in fruit set, an experiment involving the bagging and unbagging of flowers at dawn
or dusk was carried out at MUR in 2011 (n = 5 plants) and at SIUC in 2012 (n = 12
plants). Two branches on each plant were randomly assigned to two bagging
treatments (diurnal and nocturnal pollination). Treatment branches testing for diurnal
pollination success were bagged at dusk to exclude visitation during the night and then
left open during the day starting at dawn. In the nocturnal pollination treatment, bags
were removed at dusk and reapplied at dawn. This method of bag removal and
reapplication contined until all treatment flowers had abscised (approximately two
weeks).

In 2011, the number of flowers on a treatment branch was not counted and so
percent fruit set could not be calculated; therefore, the total number of mature fruits
within a treatment was the dependent variable. Percent fruit set was recorded 7 weeks
after pollination at SIUC in 2012, but destruction of treatment branches on one plant

reduced the sample size to 11.

Floral Visitors

Insect visitors to Elaeagnus umbellata flowers were collected opportunistically at
all the field sites of 2011 and at all the field sites of 2012. Bombus spp. were not
collected because E. umbellata flowering coincides with the time that new Bombus

gueens are foraging, and their collection might negatively impact Bombus populations.
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All other floral visitors were collected with a mist net and placed in a cyanide Kkill jar.
The number of insects and taxa within one kill jar was kept at a minimum in order to
minimally disturb the pollen carried on each visitor's body. Insects were later identified,
and pollen on the bodies of frequent visitors was characterized in terms of the amount
of pollen present and the percentage that was E. umbellata.

Floral visitors were identified to the lowest taxonomic level possible using
published keys (Michener et al. 1994) and the online key “Discover Life” (Ascher &
Pickering 2011). Several difficult and diverse taxa were identified by systematists with
appropriate expertise. Lasioglussm and Andrena species were identified by J. Gibbs
(Cornell University) and J. Ascher (American Museum of Natural History), respectively.
Syrphidae were identified by M. Hauser (California Department of Food and
Agriculture). Noctuidae were identified by D. Lafontaine (Canadian National Collection
of Insects, Arachnids and Nematodes).

The amount of total pollen coverage on the body was visually estimated by
examining certain visitors under a stereomicroscope and recording a score of either 0 (0
pollen grains present), 1 (1-10 grains), 2 (10-50 grains), 3 (>100 grains, total pollen
cover), or 4 (multiple layers of grains) on different regions of the body (based on
methods by Beattie et al. 1973). The following regions of the body were given a score:
(1) proboscis, (2) bottom half of head, (3) top half of head, (4) bottom and (5) top of
thorax, (6) bottom and (7) top of abdomen, (8) front two legs, (9) upper back leg
(scopae of many bees), (10) lower back leg. Scores for each region were averaged for

each taxon for representation of the amount of pollen that each taxon carried in
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particular regions of the body. Bombylius major and Noctuidae were only examined in
the face region. The number of insects examined varied for each taxon.

Ten frequently collected floral visitor taxa were sampled for the percentage of E.
umbellata grains in their body pollen. Insects were swabbed with fuschin-stained jelly
on all ventral regions of the body (excluding the scopae of bees) and the entire head
(Kearns & Inouye 1993). Bombylius major and Noctuid moths were just swabbed in the
face region. These areas were thought to be most likely to come in contact with an E.
umbellata stigma. The scopae of bees was analyzed separately, as pollen carried in
scopae is not typically available for pollination, but does indicate what the bees are
using as pollen hosts. The jelly was then mounted on microscope slides and pollen
grains were identified under 100X and 400X magnification. A sample collection from
the BTP field site was used as a reference for pollen identification. The percentage of
E. umbellata grains in the body pollen of insects was calculated from counts of 500 total
pollen grains in each swabbing sample. Some insects did not have 500 grains within
their sample but were still included to calculate the percentage of E. umbellata grains in

their body pollen.

Statistical Analysis

Descriptive statistics were performed to examine the level of variation among
individuals and populations in floral morphology. A mixed model with plant nested
within population was used to test for population differences in the degree of stigma and
anther separation. Population was treated as a fixed effect and plant was treated as a

random effect.
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A chi-square test of independence was used to see if stigma receptivity differed
among flowers of different ages. A mixed model analysis was used to see if the
proportion of viable pollen differed among flower ages. Plants were treated as a
randomized block with flower stage as a fixed effect and plant as a random effect. A
post hoc Tukey'’s test was utilized to determine pair-wise differences between particular
flower stages.

For the breeding system tests, percent fruit set per branch was arcsine
transformed in order to better meet the assumption of normality of variance. Because
some treatment flowers appeared to initiate fruit set but later aborted at various stages,
a repeated measures analysis of variance was used to test for the effects of treatment
type and time after pollination on E. umbellata fruit set at 2011 TONEC and 2012
TONEC, CONWR, and WH. Treatment type, time after pollination, and a treatment x
time interaction were included as fixed effects. Time after pollination was the repeated
effect. Plants were not treated as a separate random effect but were incorporated
within the repeated statement as the subject measured. Independence was assumed
across subjects, and nesting plant within treatment further specified that data are
correlated on the same plant. The compound symmetry (CS) covariance structure or
spatial power law (SP(POW)) covariance structure was used in repeated measures
analysis of a population’s fruit set. Both can be considered for analyzing unequally
spaced measurements, but the SP(POW) covariance structure is often deemed more
suitable for such data (Little et al. 2006). The CS structure assumes that measures
have the same variance across all times. At first, each covariance structure was tested

for each population in order to gauge which structure was the most appropriate. The
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covariance structure that generated the lowest value according to the Akaike
information criterion (AIC) was the structure deemed proper for analysis. The CS
structure most accurately fit the data from the 2011 TNEC and 2012 COWR
populations, and so this covariance structure was utilized in repeated measures
analysis of fruit set. The SP(POW) structure was used in repeated measures analysis
of the 2012 TNEC and WH populations. If there was a significant interaction between
treatment and time, the interaction was included in repeated measures analysis and a
post hoc comparison of differences of least squares means was utilized to determine
pair-wise differences between treatment types at particular times.

Because the autogamy treatment fruit set was a measure of dependence on
pollinators, differences in mature fruit set for the autogamy treatment among the 2012
populations were compared using a mixed model analysis. Because the open-
pollinated controls were assessments of pollen limitation, differences in control mature
fruit set among the 2012 populations were compared using a mixed model analysis. In
both analyses, population was treated as a fixed effect and plant was treated as a
random effect. A post hoc Tukey’s test was performed to determine pair-wise
differences between populations.

Any effect of yearly differences on open-pollinated mature fruit set was tested
with a mixed model analysis comparing trimmed controls in 2011 to trimmed controls in
2012 at TONEC. Year was treated as a fixed effect and plant was treated as a random
effect.

A mixed model analysis was used to determine whether treatment affected the

seed mass or the proportion of viable seed among the fruits set. Treatment type was a
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fixed effect and plant was a random effect. Data were arcsine transformed. A post hoc
Tukey’s test was performed to determine pair-wise differences between particular
treatment types.

Results from the breeding system study at BTP and the diurnal vs. nocturnal
tests at SIUC were analyzed using mixed models. Treatment type was a fixed effect
and plant was a random effect. Data were arcsine transformed. A post hoc Tukey’s
test was performed to determine pair-wise differences between the three treatments at
BTP.

The ten frequently collected insect taxa that were analyzed for the percentage of
E. umbellata pollen carried on their bodies were the flies Bombylius major (n = 10) and
large Syrphidae — Eristalis dimidiata, Eristalis transversa, Helophilus fasciata, Syrphus
ribesii — (n = 10), Noctuid moths — Mythimna unipuncta and Periodroma saucia — (n
=10), and the following bees: small male Andrena spp. (n=10), female Andrena illini (n =
10), Apis mellifera workers (n = 10), female Augochlorella aurata (n = 10), male
Ceratina spp. (n = 10), female Lasioglossum spp. (n = 10), and male Xylocopa virginica
(n = 10). One-way ANOVA was used to test for differences among taxa with insect type
treated as a fixed effect. A post hoc Tukey’s test was utilized to determine pair-wise
distinctions between particular taxa. All procedures were performed using SAS

software (v.9.2; SAS Institute, Cary, NC, USA).
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CHAPTER 3

RESULTS

Floral Morphology

The mean corolla tube length was 6.27 mm (SE = + 0.06 mm, n = 160 flowers).
The mean length of the carpel from the base of the corolla tube to the stigma apex was
8.00 mm (SE = £ 0.08 mm, n = 163 flowers). The degree of herkogamy was variable
among Elaeagnus umbellata individuals (Figures 1, 2). There were individuals that
showed some extension of the stigma beyond the anthers but they were rarely
separated completely. Others showed no spatial separation within their flowers. The
mean distance separating the stigma from the anthers was 0.51 mm (SE = £ 0.08 mm,
n = 56). There was no difference between populations in the degree of stigma and

anther separation (F,s2)= 1.25, P = 0.30, n = 56).

Floral Phenology

The timing of stigma receptivity was independent of visually assessed flower
stage in 2011 at ALL and BTP (X? = 5.66, P = 0.19, n = 60); it was independent of
flower age in 2012 at TONEC (X? = 1.92, P = 1.0, n = 46). Stigmas are receptive just
prior to anthesis and remain receptive at least through the fourth day of flowering. In
2011, 27% of flowers that appeared yellow (approximate age of 6-10 days) were
unreceptive (n = 15). Most stigmas that were moist were receptive. Visible necrosis of
the stigmatic tissue often indicated that the flower was no longer receptive.

At BTP in 2011, pollen viability declined as the flowers aged (Fig. 3). Flowers at

early stages had a higher percentage of viable pollen than flowers at later stages (Fs, 27
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= 21.06, P <0.0001, n = 40). At TONEC in 2012, pollen viability remained high as the
flower progressed to 4 days old (Fig. 4), and there was no difference among 1, 2, 3, or 4

day-old flowers in the percentage of viable pollen (F327) = 2.51, P = 0.08, n = 40).

Breeding System

Among the breeding system treatments, outcrossed flowers had higher fruit set
than all other treatments (Table 3; Figs. 5, 6, 7). This effect was significant for all pair-
wise comparisons of mature fruit set at all three site/year replicates (differences of least
square means, P < 0.05) except for the comparison between untrimmed controls and
outcrossed treatments at CONWR (differences of least square means, P = 0.06). In
2011, there was no fruit set in the autogamy and self-pollination treatments. In 2012 at
CONWR and TONEC, most plants set no fruit in the autogamy or self-pollination
treatments (means = 2.07% and 1.08%, respectively) and among the few that did, most
only produced one or two fruits per treatment branch. In 2012 at WH autogamous
treatments resulted in significantly higher mature fruit set (mean = 21.3%, SE = +
11.6%, n = 9; Table 4; Fig. 8) than autogamous mature fruit set at TONEC (mean =
1.77%, SE = + 0.54%, n = 14; Table 4; Fig. 6) and CONWR (mean = 0.98%, SE = +
0.54%, n = 20; Table 4; Fig. 7).

Autogamous fruit set at WH was not significantly different than control fruit set at
WH (Table 3). At BTP in 2012, both control and autogamy treatments had low fruit set;
there was no significant difference among the treatments (F, 1s) = 1.46, P = 0.26, n =

10; Fig. 9).
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Control treatments (branches that were open to pollinator visitation) had low fruit
set in most populations (Figs. 5, 6, 7, 9). Control branches at WH had a significantly
greater mature fruit set than CONWR and TONEC (Table 4; Fig. 8). At TONEC, there
was no significant difference in mature fruit set between trimmed control branches in
2011 and trimmed control branches in 2012 (F(, 26y = 0.06, P = 0.81, n = 12). There
was no difference between trimmed and untrimmed control branches in mature fruit set
according to differences of least square means.

Seed viability tests revealed that most fruits contained a viable seed, even those
from the autogamy and self-pollination treatments (Fig. 10). In 2011, only outcrossed
treatments set a sufficient sample of seeds for viability testing. The mean percent
viability of these was 83% (SE = £ 14.1%, n = 7). In 2012, the autogamy and self-
pollination treatments were combined for seed viability analyses because of their
relatively low seed output. The trimmed and untrimmed control groups were also
combined. There was no significant difference between the selfed, outcrossed, and
control treatments in the percentage of fruits containing a viable seed in 2012 (means =
92.8%, 78.5%, 84.1%, respectively; F 29.4)= 1.07, P = 0.36, n = 29), nor was there a
difference among these treatments in seed mass (F, 21.4)= 1.92, P = 0.17, n = 29).

Some fruits aborted at various stages, and repeated measures analysis indicated
that this decline in fruit set over time was significant (Table 3). This influence of time is
evident in the decline of fruit set as fruits mature (Figs. 5, 6, 7, 8). There was a

significant time x treatment interaction in all site/year replicates except WH (Table 3).

Pollen Tube Growth
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An analysis of 6 plants at the 2012 TONEC population revealed that four were
strongly self-incompatible (Table 5; Figs. 11, 12) and two had a “leaky” self-
incompatibility response (Table 5). In the four strongly self-incompatible individuals, 16
of 17 carpels examined exhibited no self pollen tube growth into the style, and one grew
just to the top of the style. In the two “leaky” individuals, most carpels had self-pollen
grow at least into the style, and 20% of self-pollinated flowers showed self-pollen tubes
reaching the ovary (n = 15). 46% of cross-pollinated flowers showed cross-pollen tubes
reaching the ovary (n = 39). The percentage of pollen tubes reaching the ovary may

have been higher had more time been allowed for sufficient growth in some samples.

Diurnal vs. Nocturnal Pollination

At MUR in 2011, only the diurnal treatment resulted in fruit production. The total
number of fruits instead of percent fruit set was the dependent variable at MUR in 2011,
and two of five plants set 19 and 11 fruits within diurnal treatments. At SIUC in 2012,
fruit set within diurnal treatments (mean = 6.99%, SE = + 2.34%, n = 11) was slightly
more than fruit set within nocturnal treatments (mean = 2.40%, SE = + 0.84%, n = 11),

although this difference was not statistically significant (F, 20y = 3.30, P = 0.08, n = 11).

Floral Visitors

A total of 411 insect visitors were collected on Elaeagnus umbellata flowers
during the 2011 and 2012 flowering season from all study sites (Table 6; Figs. 13, 14).
Visitors included an abundant and diverse assemblage of bees (42% of visitors),

dipterans (20.7%), lepidopterans (14.4%), and coleopterans (5%). Some visitors
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collected in 2011 were not collected in 2012 and vice versa (Table 6). Most bees had
pollen on their bodies. Lepidopterans had pollen on their faces. Few flies except for
large syrphids and bombyliids carried pollen. Pollen was rarely seen on the bodies of
coleopterans.

Bee visitors ranged in size from small Ceratina to one of the largest bees in North
America, Xylocopa virginica. Long-tongued bees (Apidae and Megachilidae) accounted
for 63% of the bees captured. This percentage would have been much higher had
Bombus spp. been included in collections. Short-tongued bees accounted for 37% of
the bees captured. Andrena was a particularly diverse group of visitors to E. umbellata.

Frequently visiting bee taxa, fly taxa, and Noctuidae were scored for the general
amount of pollen carried in different regions of the insect body and/or face (Fig. 15).
The specific bee taxa that underwent analysis were male Andrena spp. (n = 10), female
Andrena illini (n = 10), Apis mellifera workers (n = 10), female Augochlorella aurata (n =
28), male Ceratina spp. (n = 14), female Lasioglossum spp. (n = 9), and male Xylocopa
virginica (n = 10). The specific fly taxa examined were large Syrphidae flies — Eristalis
dimidiata, Eristalis transversa, Helophilus fasciata, Syrphus ribesii — (n = 10), and
Bombylius major (n = 9). The specific Noctuidae examined were Mythimna unipuncta
and Peridroma saucia (n = 9). Many bee taxa carried pollen in regions important for the
potential pollination of E. umbellata. The larger bees (A. illini, A. mellifera, X. virginica)
had greater amounts of pollen than the smaller bees (A. aurata, Lasioglossum spp.,
Ceratina spp., male Andrena spp.). Ceratina spp. usually had only traces of pollen on
their body. Bombylius major and Noctuid moths carried enough pollen to affect

pollination.
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The frequently collected insect taxa that were analyzed for the percentage of E.
umbellata pollen carried on their bodies were the flies Bombylius major (n = 10) and
large Syrphidae (n = 10), Noctuidae moths (n =10), and the following bees: male
Andrena spp. (n = 10), female Andrena illini (n = 10), Apis mellifera workers (n = 10),
female Augochlorella aurata (n = 10), male Ceratina spp. (n = 10), female Lasioglossum
spp. (n = 10), and male Xylocopa virginica (n = 10). There were significant differences
between insect taxa in the percentage of E. umbellata within their body pollen (F =
11.35, P <0.0001, n = 100; Fig. 16). Noctuid moths carried almost exclusively E.
umbellata pollen on the proboscis. Another nectar-feeder, Bombylius major, had a
relatively high percentage of E. umbellata pollen on the proboscis. The introduced A.
mellifera carried a higher percentage of E. umbellata pollen than the native bees,
although this finding was significant only when compared to Andrena illini females and
male Andrena. Most native bees captured on E. umbellata carried a moderate
percentage of E. umbellata pollen.

The body pollen of the male Andrena, female Andrena illini, and large Syrphidae
flies contained a relatively low percentage of E. umbellata pollen. Ceratina spp. carried
a higher percentage of E. umbellata pollen relative to the other native bees examined,
but they carried very small amounts of pollen (Fig. 15).

Behavior of visitors was observed whenever possible. Apis mellifera, Bombus
gueens, and Xylocopa virginica visited many flowers per plant and often contacted the
stigma and anthers. Other bees were not seen as frequently or did not remain on plants

for very long and therefore it cannot be judged whether they foraged for nectar or
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pollen. The fly Bombylius major and noctuid moths were other insects that seemed to

forage for long bouts on one plant.
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CHAPTER 4

DISCUSSION

Breeding System of Elaeagnus umbellata

Elaeagnus umbellata is a predominantly outcrossing species with a self-
incompatible breeding system. Twenty percent of cross-pollinated flowers in 2012
developed a fruit, whereas self-pollinations resulted in significantly lower fruit set.
Automatic deposition of self-pollen occurs because the male and female floral parts are
not separated temporally and are usually in contact, but self-fertilization is prevented via
an incompatibility response. All but one population demonstrated very low fruit set
following autogamy and self-pollination treatments. Baker’s law (1955) suggests that
self-compatible plants have a distinct advantage during the invasion process because
the trait provides reproductive assurance. Nevertheless, E. umbellata is a plant that
successfully invades environments despite an inability to self-fertilize. Other studies
have shown that primarily outcrossing species can become highly invasive and
proliferate beyond source populations. One example is Mahonia auifolium, a shrub that
was introduced to Germany for ornamental purposes and is how “among the most
successful invasive shrubs in central and eastern Germany” despite being an obligate
outcrosser (Auge & Brandl 1997). An incompatibility system may be beneficial for
invasives for the same reason as other plants; it reduces the likelihood of inbreeding
depression and increases population-level genetic variability (Charlesworth &
Charlesworth 1995). Heightened genetic diversity within a population may allow for

plants to more rapidly adapt to certain environments and therefore may positively affect
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the rate of invasive spread (Barrett 2011). A diverse gene pool may sustain populations
in times of environmental stress as well.

It is not surprising that E. umbellata has become invasive despite a general
inability to self-fertilize. As a woody perennial, it has multiple years to achieve
reproductive success after colonization of a mate-limited or pollinator-limited habitat.
Also, seeds of E. umbellata from Japan have been shown to have a 99% germination
rate, which is very high for a woody plant (Kohri 2008). Therefore, a population can
establish quickly once seed production commences.

Although Elaeagnus umbellata has an incompatibility system that prevents self-
fertilization, the male and female functions of flowers overlap temporally, and many
individuals do not display complete separation of the stigma and anthers. Moreover, the
opportunity for pollinator-mediated self-pollen transfer is large due to the very large
number of flowers per plant. As a result, E. umbellata may suffer pre-zygotic costs
associated with self-pollination including pollen discounting and clogging of the stigma
with self-pollen (Galen et al. 1989; Harder & Barrett 1995).

An interesting observation | made was the variability among E. umbellata
individuals with respect to the spatial separation of stigma and anthers. In some plants,
the stigma surface is primarily beyond the anthers but not to an extent that it completely
precludes automatic self-pollination. However, a large degree of physical separation
was occasionally observed on plants in the field (> 2 mm), whereas other plants had
stigmas just below the anthers (Fig. 2).

The ecological and evolutionary implications of this variation are not completely

clear. Because E. umbellata has a strong pre-zygotic self-incompatibility response, the
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risks of self-fertilization are low and may not maintain or drive adaptation for the
separation of stigma and anthers. However, non-herkogamous E. umbellata may be
more likely to experience stigma clogging and/or pollen discounting, both of which have
been shown to negatively affect reproductive success (Harder & Barrett 1995). For
example, stigma clogging by self pollen was shown to reduce fruit set in the self-
incompatible Ipomea wolcottiana (Parra-Tabla & Bullock 2005), which has a relatively
small degree of stigma-anther separation similar to E. umbellata, and the authors
concluded that stigma position may be the product of a tradeoff between the risks of
stigma clogging and the potential damage to long styles by pollinating insects.

The pollinator relationships of E. umbellata may affect its ability to evolve an
optimal floral morphology for avoiding the detrimental effects of self-pollen deposition.
Although pollinators of E. umbellata have not been surveyed in the native range, the
diverse pollinator assemblage in the invasive range means it has a generalized
pollination system. Studies have shown that self-incompatible hermaphroditic plants
with generalized pollination systems receive optimal insect pollination when stigma and
anthers are not separate (Conner et al. 1995). However, a diverse pollinator
assemblage like that of E. umbellata probably does not exert much selection on floral
morphology (Conner et al. 1995; Johnson & Steiner 2000).

It is also possible that variation in stigma and anther separation may be a product
of environmental conditions during floral development rather than genetic variation. The
degree of abiotic stress has been shown to be correlated with the degree of stigma and
anther separation in Arabidopsis thaliana (Brock & Weinig 2007). Regardless of its

underlying cause, this variability of floral morphology in E. umbellata is easily measured,
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and future studies might examine whether such variability has any effect on
reproductive success.

The low fruit set in the outcrossed treatments is not an uncommon finding in
predominantly outcrossing plant species (Primack 1979; Jacobs et al. 2009), and has
been found in several relatives of E. umbellata. The obligate outcrossing Discaria
toumatou (Rhamnaceae), which is in a family phylogenetically close to Elaeagnaceae,
had only 15% fruit set after artificial cross-pollination treatments (Primack 1979). Cross
pollinations performed on Elaeagnus angustifolia (Pan et al. 2011) and Elaeagnus
mollis (Wei et al. 2007) in China resulted in 14% and 25% fruit set respectively. In my
study, the failure of some individuals to develop any fruit after supplemental outcrossing
may have been due to the pollen donor carrying an identical incompatibility allele as the
treatment plant. This could happen if the pollen donor happened to be a close relative
of the pollen recipient, or if the pollen donor was part of the same genet as the pollen
recipient. Such a scenario is possible given that E. umbellata is a clonal plant. The
extent of genet size and dispersal ability is not fully known in E. umbellata, but there
could have been relatedness among plants that caused low outcrossed fruit set, despite
our 20 m mating distance. Anderson and Beare (1983) made “intrapatch” and
“interpatch” (30-250m apart) crosses among individuals of the self-incompatible clonal
plant Trientalis borealis. Interpatch crosses resulted in significantly higher fruit set,
while some of the intrapatch crosses resulted in 0% fruit set.

Not all E. umbellata individuals set fruit exclusively through outcrossing. Some
plants developed a small percentage of autogamous and self-pollinated fruit in the BTP,

CONWR, and TONEC populations. This pattern of self fruit set was also evident in its
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Chinese congener Elaeagnus mollis (Wei et al. 2007). Autogamy treatments resulted in
4.8 % fruit set, and self-pollination treatments resulted in 6.9% fruit set in E. mollis. In
contrast, Elaeagnus angustifolia in its native range did not set any autogamous or self-
pollinated fruit (Pan et al. 2011).

At WH, three out of nine plants had greater than 25% fruit set within autogamy
treatments. Most of these seeds were viable and overall did not differ in percent
viability from outcrossed seeds at other populations. Therefore, some populations of E.
umbellata could be considered partially self-compatible (Brennan et al. 2005; Lafuma &
Marice 2007), whereas others, such as the CONWR and TONEC populations in my
study, are predominantly outcrossing. Recent studies have revealed that occasional
self-seed set is possible in plants previously described as self-incompatible (e.g.
Dipterocarps, Ghazoul & Satake 2009). In these partially self-compatible species,
selfed seed set is still lower than outcrossed seed set, and self-pollen tubes grow slower
than cross-pollen tubes (Levin 1996). Also, the strength of self-incompatibility varies
continuously among individuals and may be due to both genetic variation and
environmental circumstances. For example, in certain species, attenuation of the self-
incompatibility response is evident in older flowers or at elevated temperatures (Good-
Avila et al. 2008). For the E. umbellata in this study, temperature could have played a
role in autogamous seed set in 2012, when temperatures were much warmer than the
2011 flowering season. Even if the environment can affect a plant’s incompatibility
response, there is generally an underlying genetic basis. The mutation of a particular S-
allele could render the S-RNases responsible for self-pollen degradation dysfunctional

(Tao et al. 2007). For example, a total of three S-alleles are found among Prunus
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persicus (peach) cultivars that are homologous to S-alleles in self-incompatible plum
and almond cultivars, but mutations within the P. persicus alleles make it fully self-
compatible (Tao et al. 2007). The mechanisms for partial self-compatibility are often
less severe and sometimes involve changes to unlinked modifying genes impacting S-
locus products (Good-Avila et al. 2008). Numerous unlinked modifying genes contribute
to the proper function of S-RNases (McClure et al. 2011), and mutation of these genes
could compromise the efficacy of S-RNases. Modifying genes of the S-locus have been
guantified in Campanula ranunculoides and shown to segregate with varying degrees of
self-fertility (Good-Avila & Stephenson 2002). In their study, Good-Avila and
Stephenson found that a larger inheritance of these recessive modifying genes resulted
in a greater capacity to self-fertilize. Their findings provided a possible explanation for
continuous variation in C. ranunculoides self-seed set. The environmental and genetic
influences on self-seed set in Elaeagnaceae are unknown, but the above scenarios are
possible reasons for the “leaky” self-incompatible response recorded in two E.
umbellata individuals at TONEC. In these two plants, self-pollen tubes grew into the
ovary in 20% of carpels. One of these individuals formed autogamous and self-
pollinated seed, and these seeds were viable. Although pollen tube analyses were not
performed at WH, the discovery of autogamous individuals there suggests self-pollen
tube growth resulted in self-fertilization. Therefore, continuous variation in self-seed set
might exist across E. umbellata’s range, although this variation is highly skewed
towards self-incompatibility.

There is the possibility that selfing is a legitimate alternative to outcrossing if

inbreeding depression is weak in E. umbellata. My study’s one proxy for inbreeding
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depression (seed mass and viability) revealed no difference in the mass or viability of
selfed and outcrossed seeds. However, the costs of inbreeding may instead be
revealed in subsequent life stages of selfed offspring. Dudash and Fenster (2001)
found that selfed and outcrossed progeny of Silene virginica did not significantly differ in
mean seed mass or percent germination, but selfed progeny were inferior to outcrossed
progeny in juvenile leaf number, adult biomass, and flower production. More research

is needed to determine if similar costs are apparent in selfed E. umbellata offspring.

Decline of Developing Fruits in Elaesagnus umbellata

A notable outcome of all breeding system trials was the significant reduction in
fruit set as fruits matured. Elaeagnus umbellata plants developed a large amount of
fruits after pollination but did not sustain these fruits throughout the maturation stage.
Indeed, statistical analysis revealed a highly significant effect of time after pollination on
fruit set at 2011 TONEC and 2012 TONEC and CONWR. Fruit abscission occurred
gradually as outcrossed fruits matured but was especially pronounced between 4 and 7
weeks after most treatments. The timing of fruit abscission has not been examined
previously in Elaeagnaceae, but the period of fruit drop is similar to the phylogenetically
related Rhamnus alternus (Bas & Pere Pons 2004). Reductions in developing fruit can
be due to a number of factors including resource limitation (Stephenson 1981), weather
conditions, early seed predation (Ghazoul & Satake 2009), disease, late-acting self-
incompatibility (Seavey & Bawa 1986), inbreeding depression, genetic load (Wiens et al.

1987), and female choice (Korbecka et al. 2002).
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Resource limitation is regarded as a very important factor in early fruit abscission
(Stephenson 1981). Nutrient availability can vary within the plant body. Many E.
umbellata can produce up to 10 flowers per cm of a branch, and adjacent flowers may
compete for resources if they are pollinated. For example, Vaughton (1993) found that
partial trimming of inflorescences greatly increased fruit set in Banksia spinulosa, a
plant that, like E. umbellata, produces many flowers and one-seeded fruits. However,
E. umbellata did not show any differences between trimmed control branches and
untrimmed control branches in fruit set. Vaughton’s (1993) method of trimming differed
from this study in that more flowers were trimmed from a basal position on the stem. In
my study, | trimmed flowers from apical portions of E. umbellata stems and it did not
increase the proportion of fruit set of the remaining flowers. Trimming may increase fruit
size though (Quinlan & Preston 1968). Other aspects of my experimental design may
have implications for differential resource allocation. Flowers at the end of branches
were treated, and growing fruits could have been competing with elongating shoots for
resources (Quinlan & Preston 1971). Also, the bagging of branches could have
negatively impacted fruit set, although bags were present for a small portion of the
maturation stage. Company et al. (2005) found that bagging significantly reduces light
intensity within mesh bags, which probably influenced their finding of substantially lower
fruit set in bagged Prunus amygdalus. Mesh bags from treatment branches in this study
were removed 3-4 weeks after pollination and then reapplied shortly before fruits
showed signs of ripening. Therefore, only within the first four weeks following

pollination could fruits have been limited in nutrient receipt from the bagging of leaves.



42

Beyond within-plant effects, competition between neighboring plants may have
reduced net allocation to reproduction (Silander & Pacala 1985). No research has
examined intraspecific competition in Elaeagnaceae, but many of the plants in this study
grew in close proximity to other E. umbellata ramets. A recent study on tropical tree
populations discovered that soil nutrients and tree size were the biggest factors
influencing variability in the fruit set of self-incompatible trees (Jones & Comita 2008).
Exact shrub size was not recorded for any of the E. umbellata in this study, but many of
them did not approach the 6m height or 7m spread that they can achieve in southern
lllinois regions (Church et al. 2004). Therefore, the size of the plants in this study may
have limited reproductive output. Finally, the severe drought of 2012 could have
exacerbated any issue of resource limitation in some plants. For example, two plants
had lost all of their leaves 16 weeks after pollination, but one of these plants retained its
fruit.

It is possible, but unlikely that pre-dispersal seed predators may have eaten the
immature fruits after bags were removed. Developing green fruits were exposed to
possible predation 3-4 weeks after pollination. Such activity was rarely seen on E.
umbellata, and the closely related E. angustifolia has been recorded having low
densities of insect herbivores in invasive populations (Katz & Shafroth 2003), but a
study by Lind and Parker (2010) showed that secondary chemicals in invasive E.
umbellata incite feeding behaviors in native caterpillars. There were a few rare
instances in which seed predation was obvious because mesh bags contained frass,

and this was often accompanied by significant foliar damage as well. However, most of
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the treatment branches did not have any notable foliar damage or signs of insect
frugivores.

The statistically significant interaction between treatment and time after
pollination at 2011 TONEC and 2012 TONEC and CONWR was likely due to a
substantial decline of outcrossed fruit development. The failure of many outcrossed
fruits to fully develop is somewhat surprising and could be due to resource limitation,
genetic load, or a combination of both. E. umbellata is predominantly outcrossing, and
populations may be more likely to have a large genetic load if frequent outcrossing is
assumed. In order to test whether genetic load explained prominent fruit abortion in the
strongly self-incompatible perennial Epilobium angustifolium, Wiens et al. (1987)
examined embryogenesis and also compared mature fruit set to the autogamous
perennial Epilobium ciliatum. Most developing embryos survived in E. ciliatum, while E.
angustifolium had significantly less embryo survivorship. Examination of E.
angustifolium embryos revealed malfunctions occurring throughout embryogenesis,
allowing the authors to conclude that developmental lethals caused abortion of seed
across the seed development stage. Population genetic studies of E. umbellata in the
native range have revealed a large amount of diversity within a small area (Ahmad et al.
2008). Therefore, it is not out of the question that genetic load could have played a role
in the gradual abortion of outcrossed seeds in E. umbellata.

Autogamous and self-pollination treatments initiated some early fruit
development on a few plants from the TONEC and CONWR populations, but most of
these fruits were aborted between 4 and 7 weeks. Discaria americana (Rhamnaceae)

showed similar tendencies to initiate a low self fruit set and then abort the fruits (Medan
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1993). If self-pollination resulted in self-fertilization, as suggested by pollen tube
analyses in this study, then inbreeding depression may have caused fruit abortion after
four weeks of development. Another possibility is that a late-acting self-incompatibility
system caused the abortion of fruits. Even though E. umbellata has an early self-
incompatibility response, an early response can work in tandem with a late acting self-
incompatibility response within one species (Ghazoul & Satake 2009). Such late-acting
systems function either in the ovary, in the ovule before fertilization, or in the ovule after
fertilization (Seavey & Bawa 1986). In pollen tube analyses of E. umbellata, one self-
pollen tube was seen penetrating the ovule, which does not support late-acting self-
incompatibility acting in the ovary. Instead, selfed fruits developed at least four weeks
post-pollination, a time span that supports inbreeding depression as the more probable
cause of abortion (Seavey & Bawa 1986; Vaughton et al. 2010). However, the reasons
why a few plants aborted all of their high initial self fruit set, while other plants

developed a very low amount of viable selfed seed, remain equivocal.

Evidence of Pollen Limitation in Elaeagnus umbellata

The low fruit set on open-pollinated control branches suggests that E. umbellata
may be pollen limited in some populations. Outcrossing treatments resulted in at least
10% higher fruit set than control branches. In a review of pollen supplementation
studies in flowering plants, Burd (1994) found that 62% of species are pollen limited, so
pollen limitation is not a rarely recorded event. However, it is important that pollen
supplementation experiments be judged cautiously when interpreting pollen limitation

(Burd 2008). Pollen limitation may serve an adaptive purpose in perennials, whose
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lifetime fitness is influenced by yearly costs to reproduction and stochastic factors like
pollinator and frugivore abundance (Horvitz et al. 2010). This study did not test for any
such stochastic influences, but a rough estimate of pollen limitation across two
reproductive seasons was performed at TONEC. Although both seasons differed from
each other with respect to weather, E. umbellata showed no difference in the percent
fruit set on control branches, suggesting that pollen limitation may be a recurring
hindrance to reproductive potential at least at the TONEC population.

E. umbellata is mostly self-incompatible and depends on insects to transfer
genotypically distinct pollen to the stigma. Such a requirement is why many self-
incompatible plants are more pollen limited than self-compatible plants (Burd 1994). A
study by Larson et al. (2002) found that invasive populations of the mostly self-
incompatible Lonicera japonica had a much higher fruit set when supplemented with
cross-pollen (78.7%) than when exposed to pollinators (17.4%). The authors concluded
that a lack of quality pollinators played a key role in the lower fruit set of open branches.
Indeed, invasive plants leave behind mutualistic pollinators from the native range and
colonize areas where floral visitors, mates, or both may be limiting. In a study by Parker
(1997), hand-pollinations increased fruit set by 280-2620% in the invasive shrub Cytisus
scoparius. Tests of resource limitation proved to not greatly affect fruit set, and
measures of visitation rates allowed Parker to conclude that C. scoparius was pollinator
limited. Visitation rates were not measured in this study, but infrequent sightings of
pollinator abundance in the TONEC and CONWR populations suggest that lack of
pollinators may have been a reason for low fruit set. | initially suspected that reduced

pollinator activity associated with the cool and wet conditions of 2011 could have
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resulted in the low fruit set on control branches at TONEC. However, control fruit set in
2012 was no different from 2011 despite the flowering season being much warmer and
favorable to insect activity. 2011 weather conditions at BTP were optimal as well, but
percent fruit set in the open pollinated controls was comparable to CONWR and
TONEC populations.

In his study of pollinator limitation in C. scoparius, Parker (1997) also found that
pollinator limitation was more pronounced in prairie populations than urban populations.
He observed greater frequencies of Bombus spp. visits in urban populations, which
probably resulted in higher fruit set on the control branches of urban plants. In my
study, populations of E. umbellata differed in the amount of fruit set on control branches,
but it is unclear whether differences in visitation are the cause. Control fruit set at WH
was significantly greater than control fruit set at CONWR and TONEC in 2012. Also,
autogamous fruit set was higher at WH, which could have contributed to the control fruit
set. Visitation rates of insects to E. umbellata flowers were not recorded, but a diverse
and relatively abundant collection of floral visitors was made at WH. One interesting
aspect about the WH population is its location within the Shawnee National Forest,
which offers a continuous tract of potential undisturbed habitat for pollinators. Such
habitats have been shown to be correlated with pollinator diversity and abundance
(Steffan-Dewenter & Tscharntke 1999; Aizen et al. 2002), while pollinator prevalence in
disturbed habitat is more equivocal (Liu et al. 2006). For example, in central Florida the
self-incompatible invasive vine Paederia foetida has a low fruit set in hedgerow (“highly
disturbed”) and forested (“undisturbed”) sites (Liu et al. 2006). The species shows the

highest fruit set in successional (“intermediately disturbed”) sites. Liu et al. concluded
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that pollinator limitation likely caused the low fruit set at hedgerow and forested sites.
Other studies besides Liu et al. (2006) and Parker (1997) have shown that habitats
susceptible to plant invasion can differ in pollinator diversity and abundance (Morandin
& Kremen 2012). Akin to Parker’s finding of more frequent Bombus visitation in urban
environments, the more urban MUR population in my study harbored an abundance of
Andrena illini, Apis mellifera, and Xylocopa virginica (personal observation). Breeding
system trials were not carried out in that population, but the large E. umbellata there
were weighed down with fruit. Variation in fruit set and degree of pollen limitation in E.
umbellata might ultimately be a product of variable pollinator abundances across

different habitats.

Pollinators of Elaeagnus umbellata

Despite being pollen limited in some populations, Elaeagnus umbellata is
capable of attracting numerous kinds of generalist insects for pollination. Generalized
pollination is an ideal strategy for plants that leave behind pollinators from the native
range. The habitats of introduction may pose challenges to successful pollination, like
uncertain mate availability or pollinator activity. A predominantly outcrossing plant that
is able to maintain reproductive success across different environments, coping with the
presence or absence of particular pollinators, is one that is likely to persist on a large
scale (Waser et al. 1996; Coombs et al. 2009). Reproduction in E. umbellata is highly
dependent on local pollinators, and although some populations in lllinois reproduce at
low output, it is apparent that a mix of pollinators provides this service. The level of

diversity collected on E. umbellata is not surprising for a plant occurring in lllinois. A
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thorough survey of all flowering plant species around Carlinville, IL revealed the mean
number of effective pollinator species to be 33.5 per plant (Robertson 1929), although
Robertson recorded more pollinator species for native plants than introduced plants
(Robertson 1929; Memmott & Wasaer 2002). Some of the introduced plants may not
have been as pervasive as they are today, and therefore may not have been as
attractive to pollinators (Tepedino et al. 2008). E. umbellata must not have been
present in the Carlinville, IL area at that time because Robertson does not mention any
Elaeagnus species as a pollinator host. A more recent survey of insect visitation to the
invasive Alliaria petiolata showed that at least 19 insect species act as pollinators
(Cruden et al. 1996). Cruden et al. conclude that the commonality of the insect species
assures pollination is likely in most areas of its range. Many of the bee, fly, and
lepidopteran visitors to E. umbellata are common species as well, and my study
provides evidence that many of the frequently visiting insects are pollinators.

Bees represented a diverse group of visitors that consisted of many long-tongued
and short-tongued bees. The majority of bee taxa collected in this study are known to
forage on multiple pollen hosts (i.e. they are polylectic). Many of the long-tongued bees
seemed to be able to access nectar located at the bottom of the corolla tube. It is not
clear whether short-tongued bees can do the same. E. umbellata flowers restrict even
the smallest bee visitor (e.g. Ceratina spp.) from traveling into the corolla tube (personal
observation).

The super-generalist Apis mellifera (honeybee) was the most common bee
collected on E. umbellata. Apis mellifera is often associated with invasive

entomophilous plants (Jesse et al. 2006; Lopezaraiza-Mikel et al. 2007; Jakobsson et
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al. 2008; Bartomeus et al. 2008), and they enhance the spread of some invasive
species (Stout et al. 2002). Apis mellifera that were collected on E. umbellata carried
pollen on the proboscis and ventral regions, with a good amount of that pollen being E.
umbellata, and thereby served as a reliable pollinator. A. mellifera workers are known
for their tendency to forage consistently on one species over prolonged feeding bouts
(Wells and Wells 1986), and invasive plants seem to be no exception. The pollen of
Carprobrotus affine acinaciformis, an invasive plant in the Mediterranean, made up 90%
of pollen present on A. mellifera visitors to the plant (Bartomeus et al. 2008). Although
A. mellifera carried a relatively high percentage of E. umbellata pollen, it is slightly less
than is normally found in studies of A. mellifera-invasive plant interactions (Lopezaraiza-
Mikel et al. 2007; Bartomeus et al. 2008). This study represents a small sample, but the
fidelity of A. mellifera on E. umbellata may not be as pronounced as it is on other
invasive plants.

The only bees that consistently carried small amounts of pollen were small
carpenter bee males (Ceratina; Apidae). The body pollen of Ceratina males was on
average 50% E. umbellata, but this pollen was sparse, and therefore this bee may
infrequently affect pollination in E. umbellata. Ceratina has been assessed for pollinator
quality on Lavandula latifolia and was shown to deposit the least amount of pollen on
stigmas among many bees analyzed (Herrera 1987). Interestingly, the majority of
Ceratina specimens collected were male; it is likely that females had not yet emerged.
Male bees can be effective pollinators even though they forage only for themselves and
do not assist the females in nest provisioning. A survey of floral visitors to Lonicera

maackii (bush honeysuckle), an invasive shrub that flowers at the same time as E.
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umbellata, found that Ceratina accounted for 75% of visitation in Ohio (McKinney 2010).
Pollinator quality was not the focus of McKinney’s study, but perhaps the sheer number
of visitors makes Ceratina a pollinator of L. maackii. Ceratina was a common visitor to
E. umbellata and its frequent visitation may contribute to the pollination of E. umbellata
despite its apparent low quality as a pollinator.

Other native bee species that were examined for pollinator quality were the
sweat bees Augochlorella aurata and Lasioglossum (Halictidae), and the large
carpenter bee (Xylocopa viriginica, Apidae). The size, behavior, and placement of
pollen suggest all of these species are likely pollinators of E. umbellata. Bumblebee
(Bombus) queens are probable pollinators as well because they were frequently
observed contacting the stigma during foraging (Fig. 14). The head of a large long-
tongued bee like Bombus and Xylocopa virginica easily contact the stigma while they
probe for nectar. Like honeybees, Bombus spp. are super-generalists, and are known
to be major pollinators of invasive plants such as Impatiens glandulifera in Europe
(Chittka & Schurkens 2001) and Rhododendron ponticum in Ireland (Stout 2007).
Xylocopa is the primary pollinator of the invasive plants Senna didymobotrya in South
Africa (van Kleunen & Johnson 2005) and Opuntia stricta in Australia (Bartomeus & Vila
2009). The authors of these studies conclude that the size of Bombus and Xylocopa
species ensures pollination (Stout 2007; Bartomeus & Vila 2009). Because E.
umbellata flowers are small, it is probable that smaller native bees also contact the
stigma and anthers, though they may differ in pollination efficiency. The corolla tube
and narrow opening of E. umbellata flowers might restrict smaller short-tongued bees

like Augochlorella aurata, Lasioglossum, and some Andrena species from accessing
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nectar, so their visits may simply be for pollen collection. Lasioglossum may prefer the
co-flowering Lonciera maackii where both invasive plants co-exist. Goodell et al. (2010)
found that Lasioglossum made up 9.4% of the visitor assemblage to Lonciera maackii
along wooded edges in Ohio.

The only native bees that carried significantly lower percentages of E. umbellata
pollen than A. mellifera were Andrena spp. Of the large Andrena, only females were
examined. They tended to have a large amount of general pollen cover and so may
occasionally pollinate E. umbellata. Only males made up the small Andrena examined,
and they carried moderate amounts of pollen that was proportionally low in E. umbellata
pollen. Therefore, small Andrena males rarely pollinate E. umbellata.

Diptera visited E. umbellata flowers, with hoverflies (Syrphidae) and the large
bee fly (Bombylius major, Bombyliidae) being the most common. Syrphids and B. major
are often significant components of generalized pollination systems in plants and are
frequent visitors of invasives (Thompson 2001; Ghazoul 2006). Syrphids are the most
frequent visitor to the invasive Rosa multiflora in lowa (Jesse et al. 2006) and they
pollinate the invasive Lonicera japonica in Arkansas (Larson et al. 2002). One
generalist native plant in Elaeagnaceae, the dioecious Shepherdia canadensis, receives
a significant amount of pollination from syrphids (Borkent & Harder 2007). The flowers
of S. canadensis act as a “landing pad” for smaller insects on which nectar is exuded,
whereas E. umbellata contains nectar at the bottom of a corolla tube. Nectar is likely
inaccessible to syrphids in E. umbellata flowers, but pollen is available, and syrphids
consume pollen as a nutritional resource (Faegri & van der Pijl 1979). However, not a

great amount of E. umbellata pollen was deposited on the large Syrphidae sampled in
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this study. E. umbellata pollen was present to a greater degree on the proboscis of the
B. major sampled. These flies are able to reach nectar rewards through their long
proboscis and may pollinate E. umbellata in the process.

Many aspects of E. umbellata flowering suggest past selection for some degree
of moth pollination. The tubular flower shape, white coloration, and sweet scent are all
common components of moth pollination syndromes (Faegri & van der Pijl 1979).
Additionally, the floral volatiles found in E. umbellata flowers (Potter 1996) suggest moth
pollination. These floral traits likely influenced abundant visitation and foraging by
moths of Noctuidae at an invasive population (Fig. 14). All of the Noctuid moths were
collected at BTP during three hours of sampling and consisted of Mythimna unipuncta
(armyworm) and fewer Peridroma saucia (variegated cutworm). Given the high
percentage of E. umbellata pollen on the proboscis and the frequent visitation, M.
unipuncta and P. saucia are pollinators of E. umbellata. M. unipuncta has been known
to visit E. umbellata. Wynne (1989) discovered that its prevalence was greater on E.
umbellata than on 21 other co-flowering plants visited by the moth in northwest
Missouri. 17 of those 21 plants had significantly lower visitation by M. unipuncta. Thirty
M. unipuncta individuals were recorded on one E. umbellata plant at one time, and only
Tilia plants had higher numbers of moths. M. unipuncta is a migratory species that
travels from southern parts of North America to as far as Canada in the spring (Hendrix
& Showers 1992). More importantly, pollen deposited on M. unipuncta is carried for
great distances. For example, pollen from Pithecellobium and Calliandra plants in
southern Texas was recovered off M. unipuncta specimens caught in lowa (Hendrix &

Showers 1992). There are no estimations for how rapidly M. unipuncta migrates
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northward, but this species could be fulfilling relatively long-distance outcrossing in E.
umbellata. Pollen on newly opened E. umbellata flowers is receptive for at least four
days, making long distance transfers possible. However, a study by Richards et al.
(2005) revealed that the percent of viable pollen from Gossypium hirsutum (cotton) and
Brassica napus (canola) decreases rapidly when applied to a Noctuid proboscis. In B.
napus, 81.6% of pollen grains were viable 36h after removal from the anthers whereas
only 11-12% of pollen grains were viable just 8h after placement on a Noctuid
proboscis. The findings by Richards et al. suggest that cross-pollination of E. umbellata
over long-distances may be rare because pollen viability deteriorates rapidly on Noctuid
mouthparts. Pollen may not lose viability as drastically on the Noctuid visitors to E.
umbellata though, and pollen that happens to be placed on the face or legs may be
preserved longer (Richards et al. 2005).

Fruit set due to nocturnal pollination did not differ statistically from fruit set by
diurnal pollinators, although it seems diurnal pollination may account for a slightly higher
fruit set. A larger sample size at the study sites or additional trials in other populations
may have revealed significant differences between diurnal and nocturnal fruit set.
Although many of the floral traits of E. umbellata appeal to moth visitation, it is obvious
that diurnal pollinators are attracted to and maintain some degree of constancy on E.
umbellata flowers. The floral design of E. umbellata may be an adaptation for both
lepidopteran and long-tongued bee pollination. This “syndrome” has been suggested
for Elaeagnus rotundata (Abe 2006), which has a similar floral display except for its
slightly shorter corolla tubes. It cannot be concluded whether potential selection for

nocturnal or diurnal pollination exists in the invasive range, but studies of Lonicera
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japonica provide some insight. Lonicera japonica in its native Japan is pollinated by
native bees - including Lasioglossum — and hawkmoths, but hawkmoths are more
efficient pollinators, which may be the reason for the flower’s timely dehiscence at dusk
and sweet fragrance (Miyake & Yahara 1998). Invasive populations of L. japonica in
Arkansas experienced very low fruit set early in the season when Syrphidae, Vespidae
(wasps), and Xylocopinae (small and large carpenter bees) are visitors (Larson et al.
2002). Fruit set significantly increased as hawkmoths became more common later in
the flowering term, so selection for hawkmoth pollination may be maintained in L.
japonica. Unfortunately, | did not examine fruit set of E. umbellata at the BTP
population in 2012, when many Noctuid visitors were witnessed. Fruit set at BTP in
2011 was low, but no observations of nocturnal visitors were attempted then. For now,
it can only be concluded that diurnal and nocturnal visitors seem to contribute about
equally to E. umbellata fruit set in some areas of southern lllinois.

Patterns of fruit set in Elaeagnus umbellata may vary from year to year because
of differences in overall pollinator abundance. Collections in 2012 revealed a complete
absence of some visitors that were collected in 2011. One reason for this is
experimental. Time devoted to collections at each site was different between the 2011
and 2012 flowering season. Also, a couple of new sites were sampled for insects
during 2012. Another likely reason was the difference in flowering time between years.
Flowering occurred 3-4 weeks earlier in 2012 and some pollinators may not be common
in early spring. For example, Augochlorella aurata, Lasioglossum, and Toxomerus
marginatus were collected at BTP in 2011 but not in 2012. The butterfly Vanessa

atalanta was not collected at BTP in 2011 but was one of the most frequently collected
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visitors in 2012. The generalized pollination system of E. umbellata buffers against the
absence of one pollinator species in a given year, but pollen limitation may be
compounded by the absence of multiple pollinator species. E. umbellata flowers early
in the spring and its phenology may be a primary reason for suspected pollinator
limitation in this species. Parker (1997) speculated that early flowering in the invasive
Cytisus scoparius contributed to severe pollen limitation of populations in prairie habitat.
C. scoparius that flowered later received greater visitation and were not as severely
pollen limited. The phenology of E. umbellata may hamper pollination in some years,
and populations might experience selection for individuals that flower later in the season

or for a longer period of time.

Ecological Implications of Pollinator Interactions with Elaeagnus umbellata
Plants that flower at the same time as E. umbellata and share its pollinators
could be impacted in various ways. E. umbellata could have a competitive, facilitative,
or neutral effect on the visitation of pollinators to native plants. Although abundant
research has found evidence of invasive plants affecting native ones, relatively few
studies have specifically addressed pollination relationships and impacts on native plant
reproduction (see Chittka & Schirkens 2001; Brown & Mitchell 2002; Morales &
Traveset 2009). Brown and Mitchell (2002) found that the invasive Lythrum salicaria
(purple loosestrife) caused a 14-54% reduction in insect visitation rate to the co-
flowering native congener Lythrum alatum. The reduced visitation rate and negative
impacts of pollinator sharing (i.e. interspecific pollen transfer) likely caused the 22-34%

reduction in L. alatum seed set, and also decreased L. alatum pollen dispersal.
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Through meta-analysis, Morales and Traveset (2009) revealed that neighboring
introduced plants more negatively impact native plant visitation and reproduction than
native plant neighbors. Other studies show no effect of introduced plants on native
plant reproduction even though the introduced plant concurrently causes a decrease in
visitation to native plants (Totland et al. 2006; Bartomeus et al. 2010).

The degree to which native plant reproduction is affected by invasive presence
may be highly dependent on spatial scale. The density of or distance between invasive
and native plants likely determines whether native seed set is affected. Such factors
have been shown to differentially affect pollinator behavior and native plant reproduction
(Mufioz & Cavieres 2008; McKinney 2010). For example, Muiioz and Cavieres (2008)
found that the presence of one nearby individual of the invasive Taraxacum officinale
(dandelion) resulted in greater pollinator foraging times and seed set in native
Hypochaeris thrincioides, while the presence of five nearby T. officinale individuals
decreased visitation rates and seed set in H. thrincioides. For a large invasive plant like
E. umbellata, the degree of shading imposed on neighboring plants may be an
important factor in affecting pollinator visitation rates to neighboring plants (McKinney
and Goodell 2010).

Athough my study did not investigate interactions between invasive and native
plants, it does provide information needed to conduct such studies in the future by
identifying E. umbellata visitors from numerous sites in lllinois. Additionally, my analysis
of pollen on the bodies of E. umbellata visitors revealed the proportion of E. umbellata
pollen relative to that of other species. | found that some bee taxa collected in my study

carry a low amount of E. umbellata pollen compared to amounts reported on pollinators
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of other invasive plant pollinators (Lopezaraiza-Mikel et al. 2007; Bartomeus et al. 2008;
Jakobsson et al. 2008). For example, in a study by Bartomeus et al. (2008), Apis
mellifera and Andrena sp. that were captured on invasive Carprobrotus affine
acinaciformis carried pollen that was 90% and 60% Carprobrotus, respectively. Apis
mellifera and all Andrena examined in my study carried a comparatively lower
percentage of E. umbellata pollen. Apis mellifera, Bombylius major, and Mythimna
unipuncta were captured frequently on E. umbellata. Native plants might not receive as
many visits from these pollinators, especially if their floral traits are similar to E.
umbellata. For example, the meta-analysis by Morales and Traveset (2009) also
revealed that those native plants most similar to introduced plants in floral morphology
and color are most under threat of reduced visitation and reproduction. Any plant that
flowers early alongside E. umbellata and produces similar flowers may be most at risk
of reduced pollination, but a plant that has the same visitors could also be affected.

E. umbellata has the same visitors as other North American wildflowers so it is
likely involved in the pollination network of co-flowering species. Attracting
supergeneralists with long foraging seasons like Apis mellifera and Bombus increases
the likelihood of connectivity with other plant species (Aizen et al. 2008). Ceratina
calcarata, Ceratina dupla, and Ceratina strenua are also well-known generalist bees
that visit a variety of plant taxa (Krombein et al. 1979). C. calcarata visits Cornus florida
(flowering dogwood) and Cercis canadensis (redbud) (Krombein et al. 1979; Rhoades et
al. 2011), two plants that were often observed co-flowering with E. umbellata. Other E.
umbellata visitors previously recorded on C. florida include Andrena cressoni, A. illini, A.

imitatrix, A. sayi, and Lasioglossum mitchelli (Rhoades et al. 2011). Andrena carlini is a



58

primary pollinator of many Erythrium species (Liliaceae) (Banks 1980; Harder et al.
1985) and Sanguinari canadensis (bloodroot, Papaveraceae) (Lyon 1992).
Augochlorella aurata is a common generalist bee and is known to be important to some
flowering species in prairie environments (Wagenius & Lyon 2010). Many of the
aforementioned bee species are not only important to native plant pollination but also to
crop pollination. For example, almost all of the bee species collected in my study were
collected in an extensive survey of insect visitors to apple, blueberry, caneberry, and
cucurbit crops in Virginia (Adamson 2011). As part of that study, Adamson listed 35
plant species flowering at the same time as apple (Malus domestica) and found that
honeybees, bumblebees, “medium” bees, and “small” bees visited E. umbellata flowers.
The only other co-flowering plant that had more “bee groups” was another invasive,
Taraxacum officinale. Bees caught on apple flowers had small amounts of T. officinale
in pollen loads, and Adamson makes no mention of E. umbellata pollen in pollen loads.
Still, her results suggest apple and E. umbellata share some pollinators, so it is
important to survey the impacts of invasives on both crop visitation and native plant
visitation.

The possible level of pollinator sharing between native plants and E. umbellata is
further broadened by the diverse pollinator types on E. umbellata. Dipteran and
lepidopteran pollinators may also be shared with other plants. For example, Tilia co-
flowers with E. umbellata and both plants are preferred by the moth Mythimna
unipuncta, which has further been documented as a pollinator of Cleome (Cleomaceae)
(Zhu et al. 1993) and Tipularia discolor (Orchidaceae) (Whigham & McWethy 1980).

The syrphid fly Toxomerus marginatus, which was a frequent visitor to E. umbellata in
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2011, was recently recorded as a floral visitor to 114 plant species in central lllinois
(Tooker et al. 2006). Another fly, Bombylius major, is a frequent presence in woodland
wildflower communities, often visiting Claytonia virginica (Portulaceae), Stelleria pubera
(Caryophyllaceae), and Thalictrum thalictroides (Ranunculaceae) (Campbell 1985;
Motten 1986). B. major was common on the E. umbellata at the WH population, which
is surrounded by a large tract of deciduous forest. The prevalence of B. major on E.
umbellata in forested habitat demonstrates the potential for pollinator sharing between
invasive and native woodland plants.

Whether pollinator sharing with E. umbellata is a detriment or benefit to native
plant reproduction is likely dependent on scale. Obviously, dense stands of E.
umbellata directly impact native plant reproduction through shading and other possible
forms of direct competition. From observations at lllinois field sites, it can be concluded
that this cost to native plant reproduction is unlikely to be offset by facilitated pollination
to native plants that co-flower with E. umbellata.

The floral resources of E. umbellata could have lasting impacts on insects that
are economically and ecologically important. The abundant nectar and pollen rewards
of E. umbellata may increase the carrying capacity of some pollinator populations. The
pollen of some invasive plants has been observed being collected by female generalist
bees and possibly raises the carrying capacity of environments inhabited by native bees
(Tepedino et al. 2008). One native bee that was observed gathering E. umbellata
pollen and that had a substantial amount of E. umbellata pollen in scopal loads was the
sweat bee Augochlorella aurata. Augochlorella species are ground-nesting bees that

form primitively eusocial colonies (Mueller 1996). If E. umbellata pollen bolsters the
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available food for larvae of A. aurata and other generalist bees, then this invasive plant
may actually facilitate the pollination of other plants, even those that do not flower at the
same time. For example, A. aurata is a primary pollinator of the widespread prairie
plant Echinacea angustifolia, which blooms from late spring to mid-summer (Waginius &
Lyon 2010). It is very difficult to predict the relationship between floral resource
availability and bee abundance (Tepedino 1979; Kearns et al. 1998), and whether E.
umbellata facilitates visitation to a later-flowering plant like E. angustifolia would depend
on multiple factors. E. umbellata pollen would have to be nutritious, non-toxic, and
more abundant than pollen in a non-invaded plant community. Also, E. umbellata
presence could not significantly compromise nesting sites of pollinators; many ground-
nesting bees need a dry, compacted substrate for nesting.

Bombylius major may have an even more complicated relationship with E.
umbellata, which it frequently used as a nectar source in my study sites. B. major is a
parasitoid that deposits its eggs in the nests of ground-nesting bees and wasps (Stubbs
& Drake 2001). The B. major larvae then feed on the bee larvae. Increases in the
abundance of B. major have been shown to be correlated with decreases in the
abundance of the ground-nesting bee Andrena vaga in Germany (Bischoff 2003). If E.
umbellata is a plentiful and reliable food source for the parasitoid, then declines in
native bee abundance may result.

Interactions between E. umbellata and other notable insects like the syrphid fly
Toxomerus marginatus and the moth Mythimna unipuncta might have important
implications for the agricultural industry. The larvae of T. marginatus and some other

syrphid flies consume aphids, which are ubiquitous pests on numerous agricultural
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crops (Colley & Luna 2000). The presence of E. umbellata along agricultural
boundaries may be beneficial if they support a healthy population of aphidophagous
syrphid flies such as T. marginatus.

Unfortunately, E. umbellata may also foster insects that are agricultural pests.
For example, one of its nocturnal pollinators, the moth M. unipuncta, is a pest of grass
species in North America, including corn, rice, and wheat. They have also been
recorded causing damage to broad-leaved crops like alfalfa, clover, and tobacco
(Wynne 1989). Outbreaks of M. unipuncta have been known to occur every 5-20 years
and cause huge losses to the agricultural industry (Guppy 1961). Adult M. unipuncta
likely need ample nectar sources to enact such outbreaks and future work should
investigate whether the presence of E. umbellata is correlated with oviposition rates on
crops.

Finally, the direct removal of invasive plants has been shown to increase native
bee diversity and abundance (Hanula & Horn 2011; Fielder et al. 2012; Morandin &
Kremen 2012). Hanula and Horn removed the invasive Ligustrum sinense (Chinese
privet) from riparian forest habitat and found significant changes in the bee community a
year after removal. The authors attribute the reestablishment of native herbaceous
plants and increases in light intensity as possible reasons for a rapid increase in bees.
L. sinense removal had a significant effect on increasing the prevalence of some of the
insects collected in this study including Andrena imitatrix, Augochlorella aurata, Ceratina
calcarata, Ceratina dupla, and Lasioglossum mitchelli. Removal of E. umbellata from
areas heavily impacted by its invasion, especially dense stands, may have a similar

effect.
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CHAPTER 5

CONCLUSION

The establishment of E. umbellata across the eastern North American landscape
has been a rapid process. Its success has been aided in part by the intentional
propagation and planting of the species, but also because it is able to produce many
high-quality seeds that are dispersed over relatively long-distances. The result is
aggressive colonization of both disturbed and natural areas. This study revealed that E.
umbellata is self-incompatible; therefore, seed production is limited by the presence of
suitable mates and pollinators. These requirements may lessen the rate of spread, but
if habitats harbor generalist pollinators and are sufficiently populated with E. umbellata,
then the chances for seed production are high. Seed set was rarely absent on E.
umbellata even though it is pollen limited in some habitats. In the situation that self-
incompatible E. umbellata is isolated from conspecifics, their perennial nature affords
them the luxury of “waiting it out” until the arrival of mates or pollinators makes cross-
pollination possible. Successful reproduction among these predominantly outcrossing
plants indicates that outcrossing will likely remain a dominant reproductive strategy in
this species.

Predominant outcrossing is far from an optimal strategy according to Baker’s law
(1955), but it is important to note that this is not the only means of reproduction for E.
umbellata. Baker (1974) listed vegetative reproduction as an important trait of
successful perennial weeds. E. umbellata is capable of clonal growth (Kohri et al. 2002)

and this may contribute greatly to its invasiveness. Future work might examine the



63

extent of clonal growth in E. umbellata and whether it is the major reason for the
monospecific stands that prevent native plant growth over large areas.

Self-compatible individuals do exist among invasive populations of E. umbellata
and selective forces in certain environments could potentially favor this mating strategy
over obligate outcrossing. As long as self-compatibility is heritable, then it is possible
for populations of self-compatible E. umbellata to be established. In some species that
are otherwise obligate outcrossers, self-compatible populations or individuals exist on
the periphery of the species’ range where mates may be more limiting (Levin 2012).
This study found a few self-compatible individuals within a typical area of invasion, but it
is possible that more exist at the edge of the invasive range. Range expansion evokes
many colonization and local extinction events that could impose selection for self-
compatibility, but theory predicts that selection for self-compatibility, in general, would
be weak for a plant like E. umbellata (Pannell & Barrett 1998). As noted above, E.
umbellata is perennial and has multiple years to fulfill its reproductive goals; therefore,
there is less selective pressure for the quick and abundant seed output achieved
through self-compatibility. Also, E. umbellata is generalized in its pollination strategy so
that it has a good chance of being visited by pollinators once mate availability is
adequate for reproduction. Reproduction does not always lead to population
establishment though. Stochastic forces may cause local extinction and the lack of
seed dormancy in E. umbellata (Kohri 2008; Carter and Ungar 2002) means that
opportunities exist for self-compatible populations to establish. Partial self-compatibility
is already apparent in E. umbellata populations and may persist if pollen limitation is a

recurring hindrance to outcrossing and if inbreeding depression is weak.
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Future work may focus further on the variable reproductive characters | found in
E. umbellata and decipher whether particular characters promote invasiveness. For
example, my study showed that a few individuals can reproduce autogamously, but it is
unknown how common this trait is throughout the invasive range. My study also
indicated that the degree of herkogamy varies among individuals. Possibly, this
character may be correlated with self-compatiblity. Because my study focused only on
lllinois populations, it is still unknown whether there are geographic patterns in these
reproductive characters. If so, then this may indicate past selective pressures during
invasion and offers the unique opportunity for evolutionary studies on contemporary
timescales.

This study demonstrated that E. umbellata has the ability to attract a wide array
of floral visitors that are highly generalized in their choice of floral hosts. The major
pollinators of E. umbellata in southern and central Illinois are also common throughout
the invasive range. It is likely that most invasive populations will be assured at least
some pollination given the commonality of some pollinators, and it is certain that native
and introduced pollinators are significant players in the invasion of this plant. What is
uncertain is whether E. umbellata’s interactions with these pollinators impact native
plant pollination or affect other community processes.

In conclusion, this study demonstrates another case in which a
predominantlyoutcrossing plant has become a successful invasive species, although
self-compatibility is evident in a minority of E. umbellata. The rare findings of self-
compatible individuals may be an important factor in the plant’s invasiveness and future

studies should investigate if partial self-compatibility is ubiquitous across the invasive
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range. Despite there being instances of partially self-compatible individuals,
predominant outcrossing will likely remain a successful strategy for the invasion of this
species because many pollinator species in the invasive range fulfill cross-pollination.
However, this study showed that heavy fruit set is not as common as previously
thought, which can probably be attributed to pollinator limitation and post-zygotic
influences on seed growth. This finding, along with the apparent inability of E.
umbellata to establish a seed bank, offers some hope for future restoration of invaded
areas. The removal of E. umbellata infestations will need to be carried out soon given
the impact that E. umbellata may have on ecosystem-level processes like pollination
and nitrogen cycling. Proper management might focus on targeting large E. umbellata
individuals that are capable of high fruit production, so that the primary sources of
invasive spread can be slowed. Further research is needed to determine whether high
fruit production in some plants is due partly to autogamy or due strictly to insect
pollination. Such studies are needed to more fully understand the invasiveness of E.

umbellata and its impact on native pollination networks.



Table 1. Location of study sites and experiments performed within each site.

TABLES

Year Study Site Location Experiment N
2011 ALL 39.574N, 88.539W Floral Morphology 14
Moultrie Co., IL Phenology (Stigma) 5
BTP 40.203N, 88.398W Breeding system 10
Champaign Co., IL Floral Morphology 14
Phenology 10
MUR 37.754N, 89.346W D vs. N Pollination 5
Jackson Co., IL
TONEC 37.478N, 89.158W Breeding System 17
Jackson Co., IL
2012 CONWR 37.736N, 89.071W Breeding System 20
Williams Co., IL Floral Morphology
SIUC 37.713N, 89.235W D vs. N Pollination 12
Jackson Co, IL
TONEC 37.478N, 89.158W Breeding System 14
Jackson Co., IL Floral Morphology 14
Phenology 10
Pollen Tube 6
WH 37.575N, 88.454W Breeding System 9

Pope Co., IL

66



67

Table 2. Treatment regime employed in breeding system study of Elaeagnus

umbellata.

Treatment Methods

Autogamy
Bagged and unmanipulated
(tests for automatic self-pollination)

Self-pollination Bagged and hand pollinated with pollen from
(tests for self-compatibility) same plant.
Outcrossed Bagged and hand pollinated with pollen from

plant outside of genet (>20 m away)
Trimmed control Unbagged and unmanipulated
Unbagged and unmanipulated

Untrimmed control
(flowers not trimmed)
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Table 3. Repeated measures ANOVA of the effects of treatment, time following
pollination, and their interaction on Elaeagnus umbellata fruit set at one 2011 population

and two 2012 populations.

d.f. F P
2011 TONEC
Treatment 3,61.3 36.95 <0.0001
Time 2,112 19.09 <0.0001

Treatment x time 6, 112 3.46 0.004

2012 COWR
Treatment 4, 95 12.14 <0.0001
Time 3, 285 18.64 <0.0001

Treatment x time 12, 285 3.06 0.0005

2012 TONEC
Treatment 4.60.2 42.61 <0.0001
Time 3,174 15.37 <0.0001

Treatment x time 12,179 5.63 <0.0001

2012 WH
Treatment 1, 15.1 0.42 0.53
Time 2,27.1 3.64 0.04

Treatment x time 2,27.1 0.72 0.49
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Table 4. Mixed model analysis of the effects of population on autogamous and
control fruit set in Elaeagnus umbellata, with mean mature fruit set displayed for each
population. Different lettering indicates significant differences between populations in
mature fruit set (Tukey’s HSD, P < 0.05). *The autogamy treatment was replicated

among 9 plants and the control treatment was replicated among 6 plants at WH.

Population mature fruit set % (xSE)

Treatment F d.f. P CONWR TONEC WH (n=%)
(n=20) (n=14)
Autogamy 0.98 (+0.54)* 1.77 (+0.54)* 21.3 (+11.6)°

Population 4.63 2,40 0.016
Control 3.16 (+1.15)% 1.75(+0.80)* 11.1 (+4.74)°

Population 5.03 2,34 0.012
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Table 5. Extent of the furthest growing self-pollen tube (S) within a self-pollinated flower (n = 32) or cross-pollen

tube (C) within a cross-pollinated flower (n = 39) from six Elaeagnus umbellata plants at 24, 48, and 72 hours after

pollination. The number of letters within a plant column represents the number of flowers treated on the same plant. Out

of six plants examined at TONEC in 2012, four plants (Plant 1, 2, 3, 4) showed strong inhibition of self-pollen tubes at the

stigma, while two plants (Plant 5, Plant 6) showed significant self-pollen tube growth beyond the stigma.

Carpel Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6
Site 24h | 48h | 72h | 24h | 48h | 72h | 24h | 48h | 72h | 24h | 48h | 72h | 24h | 48h | 72h | 24h | 48h | 72h
SS |S SSS | SS S SS | SS SSS S
Stigma
Top- S S S S
style CCC | CccC | ccce C
Mid- SS SS S SS
style C C C C
End- S
style | C C C C C C C
S S S
Ovary
C cCc | C C C C C CccCc | C CCC | ccC
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Table 6. Insect visitors collected on Elaeagnus umbellata flowers during 2011 and 2012. Bombus spp. were not

collected and no attempts were made to collect nocturnal visitors in 2011.

Amount Collected

Insect Order Family Taxon 2011 2012 Total
Coleoptera 21 0 21
Diptera Bombyliidae Bombylius major (Linnaeus) 1 15 16
Syrphidae Allograpta obliqua (Say) 29 0 2
Eristalis dimidiata (Wiedemann) 0 19,34 4
Eristalis transversa (Wiedemann) 0 148 1
Eupeodes americanus (Wiedemann) 39 24 5
Helophilus fasciata (Walker) 0 49 4
Syrphus ribesii (Linnaeus) 0 29 2
Syrphus vitripennis (Meigen) 0 148 1
Toxomerus geminatus (Say) 24 0 2
Toxomerus marginatus (Say) 89 0 8
Other 39
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Table 6. Insect visitors collected on Elaeagnus umbellata flowers during 2011 and 2012, continued.

Amount Collected

Insect Order Family Taxon 2011 2012 Total
Hymenoptera Apidae Apis mellifera (Linnaeus) 309 459 75
(long-tongued) Bombus spp. - - N/A

Megachilidae

(long-tongued)

Ceratina calcarata (Robertson)
Ceratina dupla (Say)

Ceratina strenua (Smith)
Nomada sp. 1

Nomada sp. 2

Habropoda sp.

Xylocopa virginica (Linnaeus)
Other

Osmia sp. 1

Osmia sp. 2

158 39,114 29

14 18 2
19, 44 13 6
1 5 6
0 3 3
0 33 3

49,94 29,1748 32

0 30 3
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Table 6. Insect visitors collected on Elaeagnus umbellata flowers during 2011 and 2012, continued

Amount Collected

Insect Order Family Taxon 2011 2012 Total
Hymenoptera Andrenidae Andrena carlini (Cockerell) 29 39 5
(short-tongued)  Andrena c. cressonii (Robertson) 29 12, 348 6
Andrena dunning (Cockerell) 0 19 1
Andrena forbesii (Robertson) 19 14 2
Andrena hippotes (Robertson) 0 29,14 3
Andrena illini (Bouseman & LaBerge) 19 92,14 11
Andrena illini/sayi 18 0 1
Andrena imitatrix (Cresson) 0 19,348 4
Andrena macra (Mitchell) 0 148 1
Andrena perplexa (Smith) 0 148 1
Andrena sayi (Robertson) 0 29 2
Colletidae Colletes banksi (Swenk) 0 29 2
(short-tongued) Colletes inaequalis (Say) 0 29 2
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Table 6. Insect visitors collected on Elaeagnus umbellata flowers during 2011 and 2012, continued.

Amount Collected

Insect Order Family Taxon 2011 2012 Total
Hymenoptera Halictidae Augochlorella auarata (Smith) 309 0 30
(short-tongued)  Augochlorella sp. 0 19 1
Augochloropsis metallica (Fabricius) 29 0 2
Augochloropsis sp. 0 29 2
Halictus ligatus (Say) 19 0 1
Halictus rubicundus (Christ) 19 0 1
Lasioglossum anomalum (Robertson) 39 0 3
Lasioglossum coeruleum (Robertson) 19 0 1
Lasioglossum mitchelli Gibbs 59 0 5
Lasioglossum viridatum (Lovell) 19 0 1

Other

16
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Table 6. Insect visitors collected on Elaeagnus umbellata flowers during 2011 and 2012, continued.

Amount Collected

Insect Order Family Taxon 2011 2012 Total

Lepidoptera Geometridae - 1 1
Hesperiidae Erynnis spp. 1 4 5
Nymphalidae Vanessa atalanta (Linnaeus) 0 14 14
Papilionidae 1 5 6
Sphingidae Hemaris thysbe (Fabricius) 1 2 3
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Figure 1. Frequency of Elaeagnus umbellata individuals with varying degrees of
herkogamy. Measurements are the distance that the stigma apex was below (< 0 mm)
or exerted beyond (> 0 mm) the anther apex (mean = 0.51 mm, SE =+ 0.08 mm, n = 56

plants).
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Figure 2. Elaeagnus umbellata flowers from a herkogamous individual (top) and

a non-herkogamous individual (bottom) (mm scaling).
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Figure 3. Percent pollen viability of Elaeagnus umbellata flowers of visually
assessed ages (mean + 1 SE) at the BTP population in 2011. A higher percentage of
viable pollen was present in flowers that appear to younger compared to flowers at later
stages (F 3 27y= 19.00, P < 0.0001, n = 40). Different letters indicate significant

differences according to Tukey's HSD test (P < 0.05).
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Figure 4. Percent pollen viability of Elaeagnus umbellata flowers (mean + 1 SE)
at the TONEC population in 2012. A mixed model analysis indicated no significant
differences in the percentage of viable pollen among different floral ages (F s, 27) = 2.51,

P = 0.08, n = 40).
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Figure 5. Mean (x1 SE) percent fruit development of Elaeagnus umbellata at

80

progressive stages of fruit development following four different pollination treatments at

TONEC in 2011. Repeated measures ANOVA indicated a significant effect of treatment

(F, 61.3= 36.95, P < 0.0001) and time after pollination (F, 112)= 19.09, P < 0.0001) on

fruit set. There was a significant interaction between treatment and time after pollination

(Fe, 112 = 3.46, P < 0.01). Different lettering indicates significant differences according

to differences of least squares means (P < 0.05).
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Figure 6. Mean (x1 SE) percent fruit development of Elaeagnus umbellata at
progressive stages of fruit development following five different pollination treatments at
TONEC in 2012. Repeated measures ANOVA indicated a significant effect of treatment
(Fe, 6020 = 42.61, P < 0.0001) and time after pollination (F3, 174y= 15.37, P < 0.0001) on
fruit set. There was a significant interaction between treatment and time after pollination
(Fa2,179)= 5.63, P < 0.0001). Different lettering indicates significant differences

according to differences of least squares means (P < 0.01).
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Figure 7. Mean (x1 SE) percent fruit development of Elaeagnus umbellata at
progressive stages of fruit development following five different pollination treatments at
CONWR in 2012. Different lettering indicates significant differences according to
differences of least squares means (P < 0.05). Repeated measures ANOVA indicated a
significant effect of treatment (F, 95y = 12.14, P < 0.0001) and time after pollination (Fs,
285)= 18.64, P < 0.0001) on fruit set. There was a significant interaction between

treatment and time after pollination (F2, 285y = 3.06, P < 0.01).
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Figure 8. Mean percent fruit development (x1 SE) of Elaeagnus umbellata at
progressive stages of fruit development following two pollination treatments at WH in
2012. Repeated measures ANOVA indicated a significant effect of time after pollination
on fruit set (F, 27.1)= 3.64, P < 0.05, n = 9) but no significant effect of treatment on fruit

set (F, 151)= 0.42, P =0.53,n = 9).
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Figure 9. Mean (x1 SE) mature fruit set of Elaeagnus umbellata at BTP in 2011.

A mixed model analysis indicated no significant differences among treatments (F, 15 =

1.46, P = 0.26, n = 10).
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Figure 10. The number of viable and non-viable Elaeagnus umbellata seeds
from selfed (autogamy and self-pollination), outcrossed, and control (trimmed and
untrimmed) treatments in 2012. Mixed model analysis revealed no significant
differences between treatments in the percent of fruits that contained a viable seed (F,

29.49=1.07, P =0.36, n = 29).
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Figure 11. Pollen tube growth within the upper portion of a self-pollinated carpel
from a strongly self-incompatible Elaeagnus umbellata plant. Fluorescing pollen tubes
are concentrated on the stigma surface with no significant growth into the style.

Compare to cross-pollinated flower from same plant (Fig. 12).
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Figure 12. Pollen tube growth within the upper portion of a cross-pollinated
carpel from a strongly self-incompatible Elaeagnus umbellata plant. Fluorescing pollen

tubes grow down the style. Compare to self-pollinated flower from same plant (Fig. 11).



Figure 13. Insects collected on Elaeagnus umbellata flowers (mm scaling).
Clockwise from top left: Andrena illini female, Syrphus ribesii female, Augochlorellata
aurata female, Lasioglossum mitchelli female, large bee fly (Bombylius major), small

carpenter bee (Ceratina calcarata) male, Andrena immitatrix male.

88
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Figure 14. Insects foraging on Elaeagnus umbellata flowers. Clockwise from top

left: Large bee fly (Bombylius major), Noctuid moth, honeybee (Apis mellifera),

bumblebee (Bombus sp.).
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Figure 15. Average amount of pollen on different regions of the bodies of larger
(A-F) and smaller (E-H) insect taxa and on different regions of the face of other insect
taxa (I-J) that frequently visited Elaeagnus umbellata flowers. Different patterning

indicates differences in the amount of pollen: [_] = 0-10 grains, ] = 10-50 grains, E& =
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Figure 15. Continued

total pollen cover (>100 grains), Il = > 1 pollen layer. The following insects were
examined: (A) Andrena illini females (n = 10), (B) Apis mellifera workers (n = 10), (C)
Xylocopa virginica males (n = 10), (D) Large Syrphidae flies (n = 10), (E) Andrena
males (n = 10), (F) Augochlorella aurata females (n = 28), (G) Ceratina spp. males (n =
14), (H) Lasioglossum spp. females (n = 8), (I) Noctuidae moths (n = 9), (J) Bombylius

major (n = 9).
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Figure 16. Percentage (mean +1 SE) of Elaeagnus umbellata pollen on the
bodies of ten frequently visiting insect taxa. Scopae of bees was not included. There
was a significant difference among taxa in the percentage of E. umbellata carried (F =
11.35, P <0.0001, n = 100). Different letters indicate significant differences between

visitor taxa in the percentage of E. umbellata carried (Tukey’s HSD, P < 0.05).
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Appendix A. SAS output from least squares means analysis of the effect “Time

after pollination x treatment” at TONEC in 2011. Treatment abbreviations: Auto,

autogamy; ConTrim, trimmed control; Crossed, outcrossed; Self-poll, self-pollination.

Arcsine-transformed least squares means (LS mean) are displayed. P-values from

differences of least squares means and Tukey’s HSD test are displayed.

. . Comparison

T|m_e after Treatment LS SE Comparison timgafter d.f. Pr > |t| Tuk_ey

pollination mean treatment oo Adjp

pollination

4 weeks Auto 0.139 0.083 Auto 7 weeks 114 | 0.0971 0.8765
4 weeks Auto 0.144 0.083 Auto Mature 114 0.0863 0.8503
4 weeks Auto -0.041 0.091 ConTrim 4 weeks 148 | 0.6509 1
4 weeks Auto 0.086 0.096 ConTrim 7 weeks 152 0.367 0.999
4 weeks Auto 0.126 0.096 ConTrim Mature 152 0.1876 0.9743
4 weeks Auto -0.766 0.091 Crossed 4 weeks 148 | <.0001 <.0001
4 weeks Auto -0.574 0.096 Crossed 7 weeks 152 | <.0001 <.0001
4 weeks Auto -0.194 0.097 Crossed Mature 154 | 0.0479 0.6964
4 weeks Auto -0.001 0.091 Self-poll 4 weeks 148 | 0.9911 1
4 weeks Auto 0.126 0.096 Self-poll 7 weeks 152 | 0.1883 | 0.9746
4 weeks Auto 0.142 0.096 Self-poll Mature 152 | 0.1385 | 0.9406
4 weeks ConTrim 0.180 0.096 Auto 7 weeks 152 | 0.0608 0.7636
4 weeks ConTrim 0.185 0.096 Auto Mature 152 0.0544 0.7326
4 weeks ConTrim 0.128 0.083 ConTrim 7 weeks 114 | 0.1275 0.9273
4 weeks ConTrim 0.168 0.083 ConTrim Mature 114 | 0.0461 0.6813
4 weeks ConTrim -0.724 0.091 Crossed 4 weeks 148 | <.0001 <.0001
4 weeks ConTrim -0.533 0.096 Crossed 7 weeks 152 | <.0001 <.0001
4 weeks ConTrim -0.153 0.097 Crossed Mature 154 | 0.1185 0.9161
4 weeks ConTrim 0.040 0.091 Self-poll 4 weeks 148 0.659 1
4 weeks ConTrim 0.168 0.096 Self-poll 7 weeks 152 | 0.0815 | 0.8388
4 weeks ConTrim 0.184 0.096 Self-poll Mature 152 | 0.0566 | 0.7435
4 weeks Crossed 0.905 0.096 Auto 7 weeks 152 | <.0001 <.0001
4 weeks Crossed 0.909 0.096 Auto Mature 152 | <.0001 <.0001
4 weeks Crossed 0.852 0.096 ConTrim 7 weeks 152 | <.0001 <.0001
4 weeks Crossed 0.892 0.096 ConTrim Mature 152 | <.0001 <.0001
4 weeks Crossed 0.192 0.083 Crossed 7 weeks 114 0.023 0.4802
4 weeks Crossed 0.571 0.085 Crossed Mature 116 | <.0001 <.0001
4 weeks Crossed 0.764 0.091 Self-poll 4 weeks 148 | <.0001 | <.0001
4 weeks Crossed 0.892 0.096 Self-poll 7 weeks 152 | <.0001 | <.0001
4 weeks Crossed 0.908 0.096 Self-poll Mature 152 | <.0001 | <.0001
4 weeks Self-poll 0.140 0.096 Auto 7 weeks 152 | 0.1444 | 0.9463
4 weeks Self-poll 0.145 0.096 Auto Mature 152 | 0.1313 | 0.9328
4 weeks Self-poll 0.087 0.096 ConTrim 7 weeks 152 | 0.3614 | 0.9988
4 weeks Self-poll 0.127 0.096 ConTrim Mature 152 | 0.1841 | 0.9727
4 weeks Self-poll -0.573 0.096 Crossed 7 weeks 152 | <.0001 | <.0001
4 weeks Self-poll -0.193 0.097 Crossed Mature 154 | 0.0491 | 0.7034
4 weeks Self-poll 0.127 0.083 Self-poll 7 weeks 114 | 0.1288 | 0.9289
4 weeks Self-poll 0.143 0.083 Self-poll Mature 114 | 0.0877 0.854
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7 weeks Auto 0.005 0.086 Auto Mature 106 0.9559 1
7 weeks Auto -0.053 0.100 ConTrim 7 weeks 155 | 0.5982 1
7 weeks Auto -0.013 0.100 ConTrim Mature 155 | 0.8989 1
7 weeks Auto -0.713 0.100 Crossed 7 weeks 155 | <.0001 <.0001
7 weeks Auto -0.333 0.102 Crossed Mature 156 | 0.0013 0.0587
7 weeks Auto -0.013 0.100 Self-poll 7 weeks 155 | 0.8973 1
7 weeks Auto 0.003 0.100 Self-poll Mature 155 | 0.9752 1
7 weeks ConTrim 0.057 0.100 Auto Mature 155 | 0.5655 1
7 weeks ConTrim 0.040 0.086 ConTrim Mature 106 | 0.6423 1
7 weeks ConTrim -0.660 0.100 Crossed 7 weeks 155 | <.0001 <.0001
7 weeks ConTrim -0.281 0.102 Crossed Mature 156 | 0.0064 0.211
7 weeks ConTrim 0.040 0.100 Self-poll 7 weeks 155 | 0.6906 1
7 weeks ConTrim 0.056 0.100 Self-poll Mature 155 | 0.5768 1
7 weeks Crossed 0.718 0.100 Auto Mature 155 | <.0001 <.0001
7 weeks Crossed 0.700 0.100 ConTrim Mature 155 | <.0001 <.0001
7 weeks Crossed 0.380 0.088 Crossed Mature 108 | <.0001 0.0019
7 weeks Crossed 0.700 0.100 Self-poll 7 weeks 155 | <.0001 | <.0001
7 weeks Crossed 0.716 0.100 Self-poll Mature 155 | <.0001 | <.0001
7 weeks Self-poll 0.018 0.100 Auto Mature 155 | 0.8597 1
7 weeks Self-poll 0.000 0.100 ConTrim Mature 155 | 0.9983 1
7 weeks Self-poll -0.320 0.102 Crossed Mature 156 | 0.0019 | 0.0828
7 weeks Self-poll 0.016 0.086 Self-poll Mature 106 | 0.8525 1
Mature Auto -0.017 0.100 ConTrim Mature 155 0.8613 1
Mature Auto -0.338 0.102 Crossed Mature 156 0.0011 0.0515
Mature Auto -0.002 0.100 Self-poll Mature 155 | 0.9867 1
Mature ConTrim -0.321 0.102 Crossed Mature 156 0.0019 0.0823
Mature ConTrim 0.016 0.100 Self-poll Mature 155 | 0.8744 1
Mature Crossed 0.336 0.102 Self-poll Mature 156 | 0.0012 | 0.0539
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Appendix B. SAS output from least squares means analysis of the effect “Time

after pollination x treatment” at TONEC in 2012. Treatment abbreviations: Auto,

autogamy; ConTrim, trimmed control; ConUntr, untrimmed control; Crossed,

outcrossed; Self-poll, self-pollination. Arcsine-transformed least squares means (LS

mean) are displayed. P-values from differences of least squares means and Tukey’s

HSD test are displayed.

Measurement | Treatment | Mean SE Comparison | Comparison | d.f. LSD Tukey
time treatment time

4 weeks Auto 0.014 0.028 Auto 8 weeks 151 | 0.6139 1
4 weeks Auto 0.014 0.042 Auto 16 weeks 231 | 0.7383 1
4 weeks Auto 0.014 0.046 Auto Mature 250 | 0.7614 1
4 weeks Auto -0.051 0.054 ConTrim 4 weeks 127 | 0.3397 1
4 weeks Auto 0.004 0.054 ConTrim 8 weeks 127 | 0.9466 1
4 weeks Auto 0.013 0.054 ConTrim 16 weeks 127 | 0.8102 1
4 weeks Auto 0.016 0.054 ConTrim Mature 131 | 0.7716 1
4 weeks Auto -0.016 | 0.054 ConUntr 4 weeks 127 | 0.7666 1
4 weeks Auto -0.005 | 0.054 ConUntr 8 weeks 127 | 0.9255 1
4 weeks Auto 0.013 0.054 ConUntr 16 weeks 127 | 0.8037 1
4 weeks Auto 0.014 0.054 ConUntr Mature 127 | 0.7934 1
4 weeks Auto -0.716 | 0.055 Crossed 4 weeks 127 | <.0001 | <.0001
4 weeks Auto -0.573 | 0.055 Crossed 8 weeks 131 | <.0001 | <.0001
4 weeks Auto -0.288 | 0.057 Crossed 16 weeks 135 | <.0001 | 0.0002
4 weeks Auto -0.261 | 0.057 Crossed Mature 133 | <.0001 | 0.0014
4 weeks Auto -0.058 | 0.054 Self-poll 4 weeks 127 | 0.285 | 0.9999
4 weeks Auto 0.009 0.054 Self-poll 8 weeks 127 | 0.8738 1
4 weeks Auto 0.014 0.054 Self-poll 16 weeks 127 | 0.7996 1
4 weeks Auto 0.014 0.054 Self-poll Mature 127 | 0.7996 1
4 weeks ConTrim 0.065 0.054 Auto 8 weeks 127 | 0.2249 | 0.9996
4 weeks ConTrim 0.065 0.054 Auto 16 weeks 127 | 0.2248 | 0.9996
4 weeks ConTrim 0.065 0.054 Auto Mature 127 | 0.2248 | 0.9996
4 weeks ConTrim 0.055 0.028 ConTrim 8 weeks 151 | 0.0491 | 0.9047
4 weeks ConTrim 0.064 0.042 ConTrim 16 weeks 231 | 0.1263 | 0.9926
4 weeks ConTrim 0.067 0.047 ConTrim Mature 250 | 0.1522 | 0.9966
4 weeks ConTrim 0.035 0.054 ConUntr 4 weeks 127 | 0.5099 1
4 weeks ConTrim 0.046 0.054 ConUntr 8 weeks 127 | 0.3888 1
4 weeks ConTrim 0.065 0.054 ConUntr 16 weeks 127 | 0.2295 | 0.9997
4 weeks ConTrim 0.065 0.054 ConUntr Mature 127 | 0.2244 | 0.9996
4 weeks ConTrim -0.664 0.055 Crossed 4 weeks 127 | <.0001 | <.0001
4 weeks ConTrim -0.521 0.055 Crossed 8 weeks 131 | <.0001 | <.0001
4 weeks ConTrim -0.237 0.057 Crossed 16 weeks 135 | <.0001 | 0.0069




Appendix B. SAS output from 2012 TONEC, continued

116

4 weeks ConTrim | -0.210 | 0.057 Crossed Mature 133 | 0.0003 | 0.039
4 weeks ConTrim | -0.006 | 0.054 Self-poll 4 weeks 127 | 0.9083 1
4 weeks ConTrim 0.060 0.054 Self-poll 8 weeks 127 | 0.2659 | 0.9999
4 weeks ConTrim 0.065 0.054 Self-poll 16 weeks 127 | 0.2275 | 0.9996
4 weeks ConTrim 0.065 0.054 Self-poll Mature 127 | 0.2275 | 0.9996
4 weeks ConUntr 0.030 0.054 Auto 8 weeks 127 | 0.5773 1
4 weeks ConUntr 0.030 0.054 Auto 16 weeks 127 | 0.5772 1
4 weeks ConUntr 0.030 0.054 Auto Mature 127 | 0.5772 1
4 weeks ConUntr 0.020 0.054 ConTrim 8 weeks 127 | 0.716 1
4 weeks ConUntr 0.029 0.054 ConTrim 16 weeks 127 | 0.5914 1
4 weeks ConUntr 0.032 0.054 ConTrim Mature 131 | 0.5593 1
4 weeks ConUntr 0.011 0.028 ConUntr 8 weeks 151 | 0.6938 1
4 weeks ConUntr 0.029 0.042 ConUntr 16 weeks 231 | 0.4848 1
4 weeks ConUntr 0.030 0.046 ConUntr Mature 250 | 0.5155 1
4 weeks ConUntr -0.700 0.055 Crossed 4 weeks 127 | <.0001 | <.0001
4 weeks ConUntr -0.557 0.055 Crossed 8 weeks 131 | <.0001 | <.0001
4 weeks ConUntr -0.272 0.057 Crossed 16 weeks 135 | <.0001 | 0.0006
4 weeks ConUntr -0.245 0.057 Crossed Mature 133 | <.0001 | 0.0044
4 weeks ConUntr -0.042 | 0.054 Self-poll 4 weeks 127 | 0.439 1
4 weeks ConUntr 0.025 0.054 Self-poll 8 weeks 127 | 0.6487 1
4 weeks ConUntr 0.030 0.054 Self-poll 16 weeks 127 | 0.582 1
4 weeks ConUntr 0.030 0.054 Self-poll Mature 127 | 0.582 1
4 weeks Crossed 0.730 0.055 Auto 8 weeks 127 | <.0001 | <.0001
4 weeks Crossed 0.730 0.055 Auto 16 weeks 127 | <.0001 | <.0001
4 weeks Crossed 0.730 0.055 Auto Mature 127 | <.0001 | <.0001
4 weeks Crossed 0.720 0.055 ConTrim 8 weeks 127 | <.0001 | <.0001
4 weeks Crossed 0.729 0.055 ConTrim 16 weeks 127 | <.0001 | <.0001
4 weeks Crossed 0.732 0.055 ConTrim Mature 131 | <.0001 | <.0001
4 weeks Crossed 0.711 0.055 ConUntr 8 weeks 127 | <.0001 | <.0001
4 weeks Crossed 0.729 0.055 ConUntr 16 weeks 127 | <.0001 | <.0001
4 weeks Crossed 0.730 0.055 ConUntr Mature 127 | <.0001 | <.0001
4 weeks Crossed 0.143 0.030 Crossed 8 weeks 154 | <.0001 | 0.0006
4 weeks Crossed 0.428 0.046 Crossed 16 weeks 236 | <0001 | <.0001
4 weeks Crossed 0.455 0.050 Crossed Mature 250 | <.0001 | <.0001
4 weeks Crossed 0.658 0.055 Self-poll 4 weeks 127 | <.0001 | <.0001
4 weeks Crossed 0.724 0.055 Self-poll 8 weeks 127 | <.0001 | <.0001
4 weeks Crossed 0.730 0.055 Self-poll 16 weeks 127 | <.0001 | <.0001
4 weeks Crossed 0.730 0.055 Self-poll Mature 127 | <.0001 | <.0001
4 weeks Self-poll 0.072 0.054 Auto 8 weeks 127 | 0.1842 | 0.9987
4 weeks Self-poll 0.072 0.054 Auto 16 weeks 127 | 0.1842 | 0.9987
4 weeks Self-poll 0.072 0.054 Auto Mature 127 | 0.1842 | 0.9987
4 weeks Self-poll 0.061 0.054 ConTrim 8 weeks 127 | 0.2561 | 0.9998
4 weeks Self-poll 0.071 0.054 ConTrim 16 weeks 127 | 0.1911 | 0.9989
4 weeks Self-poll 0.073 0.054 ConTrim Mature 131 | 0.1782 | 0.9984
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4 weeks Self-poll 0.053 0.054 ConUntr 8 weeks 127 | 0.3289 1
4 weeks Self-poll 0.071 0.054 ConUntr 16 weeks 127 | 0.1882 | 0.9988
4 weeks Self-poll 0.072 0.054 ConUntr Mature 127 | 0.1839 | 0.9987
4 weeks Self-poll -0.515 | 0.055 Crossed 8 weeks 131 | <.0001 | <.0001
4 weeks Self-poll -0.231 | 0.057 Crossed 16 weeks 135 | <.0001 | 0.0102
4 weeks Self-poll -0.203 | 0.057 Crossed Mature 133 | 0.0005 | 0.0546
4 weeks Self-poll 0.066 0.028 Self-poll 8 weeks 151 | 0.0183 | 0.6713
4 weeks Self-poll 0.071 0.042 Self-poll 16 weeks 231 | 0.0905 | 0.9772
4 weeks Self-poll 0.071 0.046 Self-poll Mature 250 | 0.1237 | 0.992
8 weeks Auto 0.000 0.037 Auto 16 weeks 195 | 0.9999 1
8 weeks Auto 0.000 0.043 Auto Mature 237 | 0.9999 1
8 weeks Auto -0.010 | 0.054 ConTrim 8 weeks 127 | 0.8464 1
8 weeks Auto -0.001 0.054 ConTrim 16 weeks 127 | 0.9835 1
8 weeks Auto 0.002 0.054 ConTrim Mature 131 | 0.9742 1
8 weeks Auto -0.019 0.054 ConUntr 8 weeks 127 | 0.7232 1
8 weeks Auto -0.001 0.054 ConUntr 16 weeks 127 | 0.9903 1
8 weeks Auto 0.000 0.054 ConUntr Mature 127 | 0.9991 1
8 weeks Auto -0.587 0.055 Crossed 8 weeks 131 | <.0001 | <.0001
8 weeks Auto -0.302 0.057 Crossed 16 weeks 135 | <.0001 | <.0001
8 weeks Auto -0.275 0.057 Crossed Mature 133 | <.0001 | 0.0005
8 weeks Auto -0.005 | 0.054 Self-poll 8 weeks 127 | 0.9188 1
8 weeks Auto 0.000 0.054 Self-poll 16 weeks 127 | 0.9945 1
8 weeks Auto 0.000 0.054 Self-poll Mature 127 | 0.9945 1
8 weeks ConTrim 0.010 0.054 Auto 16 weeks 127 | 0.8463 1
8 weeks ConTrim 0.010 0.054 Auto Mature 127 | 0.8463 1
8 weeks ConTrim 0.009 0.037 ConTrim 16 weeks 195 | 0.7994 1
8 weeks ConTrim 0.012 0.044 ConTrim Mature 237 | 0.7805 1
8 weeks ConTrim | -0.009 | 0.054 ConUntr 8 weeks 127 | 0.8725 1
8 weeks ConTrim 0.010 0.054 ConUntr 16 weeks 127 | 0.8559 1
8 weeks ConTrim 0.010 0.054 ConUntr Mature 127 | 0.8454 1
8 weeks ConTrim | -0.576 | 0.055 Crossed 8 weeks 131 | <.0001 | <.0001
8 weeks ConTrim | -0.292 | 0.057 Crossed 16 weeks 135 | <.0001 | 0.0001
8 weeks ConTrim | -0.265 | 0.057 Crossed Mature 133 | <.0001 | 0.0011
8 weeks ConTrim 0.005 0.054 Self-poll 8 weeks 127 | 0.9268 1
8 weeks ConTrim 0.010 0.054 Self-poll 16 weeks 127 | 0.8518 1
8 weeks ConTrim 0.010 0.054 Self-poll Mature 127 | 0.8518 1
8 weeks ConUntr 0.019 0.054 Auto 16 weeks 127 | 0.7232 1
8 weeks ConUntr 0.019 0.054 Auto Mature 127 | 0.7232 1
8 weeks ConUntr 0.018 0.054 ConTrim 16 weeks 127 | 0.7387 1
8 weeks ConUntr 0.021 0.054 ConTrim Mature 131 | 0.7019 1
8 weeks ConUntr 0.018 0.037 ConUntr 16 weeks 195 | 0.6157 1
8 weeks ConUntr 0.019 0.043 ConUntr Mature 237 | 0.6567 1
8 weeks ConUntr -0.568 0.055 Crossed 8 weeks 131 | <.0001 | <.0001
8 weeks ConUntr -0.283 0.057 Crossed 16 weeks 135 | <.0001 | 0.0002
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8 weeks ConUntr | -0.256 | 0.057 Crossed Mature 133 | <.0001 | 0.002
8 weeks ConUntr 0.014 0.054 Self-poll 8 weeks 127 | 0.8008 1
8 weeks ConUntr 0.019 0.054 Self-poll 16 weeks 127 | 0.7284 1
8 weeks ConUntr 0.019 0.054 Self-poll Mature 127 | 0.7284 1
8 weeks Crossed 0.587 0.055 Auto 16 weeks 131 | <.0001 | <.0001
8 weeks Crossed 0.587 0.055 Auto Mature 131 | <.0001 | <.0001
8 weeks Crossed 0.586 0.055 ConTrim 16 weeks 131 | <.0001 | <.0001
8 weeks Crossed 0.588 0.056 ConTrim Mature 135 | <.0001 | <.0001
8 weeks Crossed 0.586 0.055 ConUntr 16 weeks 131 | <.0001 | <.0001
8 weeks Crossed 0.587 0.055 ConUntr Mature 131 | <.0001 | <.0001
8 weeks Crossed 0.284 0.041 Crossed 16 weeks 200 | <.0001 | <.0001
8 weeks Crossed 0.312 0.048 Crossed Mature 241 | <0001 | <.0001
8 weeks Crossed 0.581 0.055 Self-poll 8 weeks 131 | <.0001 | <.0001
8 weeks Crossed 0.586 0.055 Self-poll 16 weeks 131 | <.0001 | <.0001
8 weeks Crossed 0.586 0.055 Self-poll Mature 131 | <.0001 | <.0001
8 weeks Self-poll 0.005 0.054 Auto 16 weeks 127 | 0.9188 1
8 weeks Self-poll 0.005 0.054 Auto Mature 127 | 0.9188 1
8 weeks Self-poll 0.004 0.054 ConTrim 16 weeks 127 | 0.9352 1
8 weeks Self-poll 0.007 0.054 ConTrim Mature 131 | 0.8941 1
8 weeks Self-poll 0.005 0.054 ConUntr 16 weeks 127 | 0.9285 1
8 weeks Self-poll 0.006 0.054 ConUntr Mature 127 | 0.9179 1
8 weeks Self-poll -0.297 | 0.057 Crossed 16 weeks 135 | <.0001 | <.0001
8 weeks Self-poll -0.269 | 0.057 Crossed Mature 133 | <.0001 | 0.0008
8 weeks Self-poll 0.005 0.037 Self-poll 16 weeks 195 | 0.8891 1
8 weeks Self-poll 0.005 0.043 Self-poll Mature 237 | 0.9055 1
16 weeks Auto 0.000 0.030 Auto Mature 162 1 1
16 weeks Auto -0.001 0.054 ConTrim 16 weeks 127 | 0.9835 1
16 weeks Auto 0.002 0.054 ConTrim Mature 131 | 0.9743 1
16 weeks Auto -0.001 | 0.054 ConUntr 16 weeks 127 | 0.9902 1
16 weeks Auto 0.000 0.054 ConUntr Mature 127 | 0.9991 1
16 weeks Auto -0.302 | 0.057 Crossed 16 weeks 135 | <.0001 | <.0001
16 weeks Auto -0.275 | 0.057 Crossed Mature 133 | <.0001 | 0.0005
16 weeks Auto 0.000 0.054 Self-poll 16 weeks 127 | 0.9944 1
16 weeks Auto 0.000 0.054 Self-poll Mature 127 | 0.9944 1
16 weeks ConTrim 0.001 0.054 Auto Mature 127 | 0.9835 1
16 weeks ConTrim 0.003 0.031 ConTrim Mature 165 | 0.9275 1
16 weeks ConTrim 0.000 0.054 ConUntr 16 weeks 127 | 0.9932 1
16 weeks ConTrim 0.001 0.054 ConUntr Mature 127 | 0.9826 1
16 weeks ConTrim | -0.301 | 0.057 Crossed 16 weeks 135 | <.0001 | <.0001
16 weeks ConTrim | -0.274 | 0.057 Crossed Mature 133 | <.0001 | 0.0006
16 weeks ConTrim 0.001 0.054 Self-poll 16 weeks 127 | 0.9891 1
16 weeks ConTrim 0.001 0.054 Self-poll Mature 127 | 0.9891 1
16 weeks ConUntr 0.001 0.054 Auto Mature 127 | 0.9902 1
16 weeks ConUntr 0.002 0.054 ConTrim Mature 131 | 0.9647 1
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16 weeks ConUntr 0.001 0.030 ConUntr Mature 162 | 0.9813 1
16 weeks ConUntr | -0.302 | 0.057 Crossed 16 weeks 135 | <.0001 | <.0001
16 weeks ConUntr | -0.274 | 0.057 Crossed Mature 133 | <.0001 | 0.0005
16 weeks ConUntr 0.000 0.054 Self-poll 16 weeks 127 | 0.9959 1
16 weeks ConUntr 0.000 0.054 Self-poll Mature 127 | 0.9959 1
16 weeks Crossed 0.302 0.057 Auto Mature 135 | <.0001 | <.0001
16 weeks Crossed 0.304 0.057 ConTrim Mature 139 | <.0001 | <.0001
16 weeks Crossed 0.302 0.057 ConUntr Mature 135 | <.0001 | <.0001
16 weeks Crossed 0.027 0.034 Crossed Mature 161 | 0.4261 1
16 weeks Crossed 0.302 0.057 Self-poll 16 weeks 135 | <.0001 | <.0001
16 weeks Crossed 0.302 0.057 Self-poll Mature 135 | <.0001 | <.0001
16 weeks Self-poll 0.000 0.054 Auto Mature 127 | 0.9944 1
16 weeks Self-poll 0.002 0.054 ConTrim Mature 131 | 0.9688 1
16 weeks Self-poll 0.000 0.054 ConUntr Mature 127 | 0.9935 1
16 weeks Self-poll -0.275 | 0.057 Crossed Mature 133 | <.0001 | 0.0005
16 weeks Self-poll 0.000 0.030 Self-poll Mature 162 1 1
Mature Auto 0.002 0.054 ConTrim Mature 131 | 0.9743 1
Mature Auto 0.000 0.054 ConUntr Mature 127 | 0.9991 1
Mature Auto -0.275 0.057 Crossed Mature 133 | <.0001 | 0.0005
Mature Auto 0.000 0.054 Self-poll Mature 127 | 0.9944 1
Mature ConTrim -0.002 0.054 ConUntr Mature 131 | 0.9752 1
Mature ConTrim -0.277 0.057 Crossed Mature 136 | <.0001 | 0.0005
Mature ConTrim -0.002 | 0.054 Self-poll Mature 131 | 0.9688 1
Mature ConUntr -0.275 0.057 Crossed Mature 133 | <.0001 | 0.0005
Mature ConUntr 0.000 0.054 Self-poll Mature 127 | 0.9935 1
Mature Crossed 0.275 0.057 Self-poll Mature 133 | <.0001 | 0.0005
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Appendix C. SAS output from least squares means analysis of the effect “Time

after pollination x treatment” at CONWR. Treatment abbreviations: Auto, autogamy;

ConTrim, trimmed control; ConUntr, untrimmed control; Crossed, outcrossed; Self-poll,

self-pollination. Arcsine-transformed least squares means (LS mean) are displayed. P-

values from differences of least squares means and Tukey’s HSD test are displayed.

Tim_e after Treatment LS SE Comparison Ct(i)rr:ep?l:‘ltse?n df. | Pr>|t Tuk_ey
pollination mean treatment oo Adj p
pollination

4 weeks Auto 0.160 | 0.049 Auto 8 weeks 285 | 0.0011 | 0.1148
4 weeks Auto 0.163 | 0.049 Auto 16 weeks 285 | 0.0009 0.096
4 weeks Auto 0.167 | 0.049 Auto Mature 285 | 0.0007 | 0.0798
4 weeks Auto 0.082 | 0.058 ConTrim 4 weeks 302 | 0.1584 | 0.9974
4 weeks Auto 0.128 | 0.058 ConTrim 8 weeks 302 | 0.0283 0.796
4 weeks Auto 0.147 | 0.058 ConTrim 16 weeks 302 | 0.0117 | 0.5558
4 weeks Auto 0.154 | 0.058 ConUntr Mature 302 | 0.0084 | 0.4673
4 weeks Auto 0.098 | 0.058 ConUntr 4 weeks 302 | 0.0899 | 0.9778
4 weeks Auto 0.128 | 0.058 ConUntr 8 weeks 302 | 0.0281 | 0.7938
4 weeks Auto 0.141 | 0.058 ConUntr 16 weeks | 302 | 0.0156 | 0.6375
4 weeks Auto 0.145 | 0.058 ConUntr Mature 302 | 0.0129 | 0.5844
4 weeks Auto -0.319 | 0.058 Crossed 4 weeks 302 | <.0001 | <.0001
4 weeks Auto -0.076 | 0.058 Crossed 8 weeks 302 | 0.1887 0.999
4 weeks Auto 0.023 | 0.058 Crossed 16 weeks | 302 | 0.6963 1
4 weeks Auto 0.037 | 0.058 Crossed Mature 302 | 0.5233 1
4 weeks Auto 0.100 | 0.058 Self-poll 4 weeks 302 | 0.084 0.973
4 weeks Auto 0.169 | 0.058 Self-poll 8 weeks 302 | 0.0037 | 0.2795
4 weeks Auto 0.173 | 0.058 Self-poll 16 weeks | 302 | 0.0031 | 0.2467
4 weeks Auto 0.173 | 0.058 Self-poll Mature 302 | 0.0031 | 0.2467
4 weeks ConTrim 0.078 | 0.058 Auto 8 weeks 302 | 0.1762 | 0.9985
4 weeks ConTrim 0.082 | 0.058 Auto 16 weeks | 302 | 0.1596 | 0.9975
4 weeks ConTrim 0.085 | 0.058 Auto Mature 302 | 0.1443 0.996
4 weeks ConTrim 0.046 | 0.049 ConTrim 8 weeks 285 | 0.3486 1
4 weeks ConTrim 0.065 | 0.049 ConTrim 16 weeks 285 | 0.1825 | 0.9987
4 weeks ConTrim 0.072 | 0.049 ConTrim Mature 285 | 0.1416 | 0.9956
4 weeks ConTrim 0.046 | 0.058 ConUntr 8 weeks 302 | 0.4284 1
4 weeks ConTrim 0.059 | 0.058 ConUntr 16 weeks 302 | 0.3099 1
4 weeks ConTrim 0.063 | 0.058 ConUntr Mature 302 | 0.2781 | 0.9999
4 weeks ConTrim -0.401 | 0.058 Crossed 4 weeks 302 | <.0001 | <.0001
4 weeks ConTrim -0.158 | 0.058 Crossed 8 weeks 302 | 0.0067 | 0.4096
4 weeks ConTrim -0.059 | 0.058 Crossed 16 weeks 302 | 0.3069 1
4 weeks ConTrim -0.045 | 0.058 Crossed Mature 302 | 0.4388 1
4 weeks ConTrim 0.019 | 0.058 Self-poll 4 weeks 302 | 0.7494 1
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4 weeks ConTrim 0.088 | 0.058 Self-poll 8 weeks 302 | 0.131 0.994
4 weeks ConTrim 0.091 | 0.058 Self-poll 16 weeks | 302 | 0.117 0.9907
4 weeks ConTrim 0.091 | 0.058 Self-poll Mature 302 | 0.117 0.9907
4 weeks ConUntr 0.062 | 0.058 Auto 8 weeks 302 | 0.2861 | 0.9999
4 weeks ConUntr 0.065 | 0.058 Auto 16 weeks | 302 | 0.2625 | 0.9999
4 weeks ConuUntr 0.068 | 0.058 Auto Mature 302 | 0.2402 | 0.9998
4 weeks ConUntr -0.017 | 0.058 ConTrim 4 weeks 302 | 0.7742 1
4 weeks ConUntr 0.029 | 0.058 ConTrim 8 weeks 302 | 0.616 1
4 weeks ConUntr 0.048 | 0.058 ConTrim 16 weeks | 302 | 0.4036 1
4 weeks ConUntr 0.055 | 0.058 ConTrim Mature 302 | 0.3418 1
4 weeks ConUntr 0.029 | 0.049 ConUntr 8 weeks 285 | 0.5479 1
4 weeks ConUntr 0.042 | 0.049 ConUntr 16 weeks | 285 | 0.386 1
4 weeks ConUntr 0.046 | 0.049 ConUntr Mature 285 | 0.3425 1
4 weeks ConUntr -0.417 | 0.058 Crossed 4 weeks 302 | <.0001 | <.0001
4 weeks ConUntr -0.175 | 0.058 Crossed 8 weeks 302 | 0.0028 | 0.2292
4 weeks ConUntr -0.076 | 0.058 Crossed 16 weeks 302 0.191 0.999
4 weeks ConUntr -0.061 | 0.058 Crossed Mature 302 | 0.2889 1
4 weeks ConUntr 0.002 | 0.058 Self-poll 4 weeks 302 | 0.974 1
4 weeks ConUntr 0.071 | 0.058 Self-poll 8 weeks 302 | 0.2207 | 0.9996
4 weeks ConUntr 0.074 | 0.058 Self-poll 16 weeks | 302 | 0.1998 | 0.9993
4 weeks ConUntr 0.074 | 0.058 Self-poll Mature 302 | 0.1998 | 0.9993
4 weeks Cross 0.479 | 0.058 Auto 8 weeks 302 | <.0001 | <.0001
4 weeks Cross 0.482 | 0.058 Auto 16 weeks 302 | <.0001 | <.0001
4 weeks Cross 0.485 | 0.058 Auto Mature 302 | <.0001 | <.0001
4 weeks Cross 0.446 | 0.058 ConTrim 8 weeks 302 | <.0001 | <.0001
4 weeks Cross 0.466 | 0.058 ConTrim 16 weeks 302 | <.0001 | <.0001
4 weeks Cross 0.472 | 0.058 ConTrim Mature 302 | <.0001 | <.0001
4 weeks Cross 0.446 | 0.058 ConUntr 8 weeks 302 | <.0001 | <.0001
4 weeks Cross 0.459 | 0.058 ConUntr 16 weeks | 302 | <.0001 | <.0001
4 weeks Cross 0.463 | 0.058 ConUntr Mature 302 | <.0001 | <.0001
4 weeks Cross 0.243 | 0.049 Crossed 8 weeks 285 | <.0001 | 0.0002
4 weeks Cross 0.341 | 0.049 Crossed 16 weeks | 285 | <.0001 | <.0001
4 weeks Cross 0.356 | 0.049 Crossed Mature 285 | <.0001 | <.0001
4 weeks Cross 0.488 | 0.058 Self-poll 8 weeks 302 | <.0001 | <.0001
4 weeks Cross 0.492 | 0.058 Self-poll 16 weeks | 302 | <.0001 | <.0001
4 weeks Cross 0.492 | 0.058 Self-poll Mature 302 | <.0001 | <.0001
4 weeks Self-poll 0.060 | 0.058 Auto 8 weeks 302 | 0.301 1
4 weeks Self-poll 0.063 | 0.058 Auto 16 weeks | 302 | 0.2766 | 0.9999
4 weeks Self-poll 0.066 | 0.058 Auto Mature 302 | 0.2535 | 0.9999
4 weeks Self-poll 0.027 | 0.058 ConTrim 8 weeks 302 | 0.6391 1
4 weeks Self-poll 0.047 | 0.058 ConTrim 16 weeks | 302 | 0.4221 1
4 weeks Self-poll 0.053 | 0.058 ConTrim Mature 302 | 0.3586 1
4 weeks Self-poll 0.027 | 0.058 ConUntr 8 weeks 302 | 0.6364 1
4 weeks Self-poll 0.040 | 0.058 ConUntr 16 weeks | 302 | 0.4861 1
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4 weeks Self-poll 0.044 | 0.058 ConUntr Mature 302 | 0.4439 1
4 weeks Self-poll -0.419 | 0.058 Crossed 4 weeks 302 | <.0001 | <.0001
4 weeks Self-poll -0.177 | 0.058 Crossed 8 weeks 302 | 0.0025 | 0.2127
4 weeks Self-poll -0.078 | 0.058 Crossed 16 weeks | 302 | 0.1802 | 0.9987
4 weeks Self-poll -0.063 | 0.058 Crossed Mature 302 | 0.2744 | 0.9999
4 weeks Self-poll 0.069 | 0.049 Self-poll 8 weeks 285 | 0.1564 | 0.9972
4 weeks Self-poll 0.072 | 0.049 Self-poll 16 weeks | 285 | 0.1375 0.995
4 weeks Self-poll 0.072 | 0.049 Self-poll Mature 285 | 0.1375 0.995
8 weeks Auto 0.003 | 0.049 Auto 16 weeks | 285 | 0.9488 1
8 weeks Auto 0.006 | 0.049 Auto Mature 285 | 0.8978 1
8 weeks Auto -0.033 | 0.058 ConTrim 8 weeks 302 | 0.5715 1
8 weeks Auto -0.013 | 0.058 ConTrim 16 weeks | 302 | 0.8166 1
8 weeks Auto -0.007 | 0.058 ConTrim Mature 302 | 0.9073 1
8 weeks Auto -0.033 | 0.058 ConUntr 8 weeks 302 0.574 1
8 weeks Auto -0.020 | 0.058 ConUntr 16 weeks 302 | 0.7351 1
8 weeks Auto -0.016 | 0.058 ConUntr Mature 302 | 0.7879 1
8 weeks Auto -0.236 | 0.058 Crossed 8 weeks 302 | <.0001 | 0.0085
8 weeks Auto -0.138 | 0.058 Crossed 16 weeks 302 0.018 0.6764
8 weeks Auto -0.123 | 0.058 Crossed Mature 302 | 0.0339 | 0.8379
8 weeks Auto 0.009 | 0.058 Self-poll 8 weeks 302 | 0.8741 1
8 weeks Auto 0.013 | 0.058 Self-poll 16 weeks | 302 | 0.829 1
8 weeks Auto 0.013 | 0.058 Self-poll Mature 302 | 0.829 1
8 weeks ConTrim 0.036 | 0.058 Auto 16 weeks 302 | 0.5354 1
8 weeks ConTrim 0.039 | 0.058 Auto Mature 302 | 0.5004 1
8 weeks ConTrim 0.019 | 0.049 ConTrim 16 weeks 285 | 0.6912 1
8 weeks ConTrim 0.026 | 0.049 ConTrim Mature 285 | 0.5929 1
8 weeks ConTrim 0.013 | 0.058 ConUntr 16 weeks 302 | 0.8199 1
8 weeks ConTrim 0.017 | 0.058 ConUntr Mature 302 | 0.7665 1
8 weeks ConTrim -0.204 | 0.058 Crossed 8 weeks 302 | 0.0005 | 0.0597
8 weeks ConTrim -0.105 | 0.058 Crossed 16 weeks | 302 | 0.0709 | 0.9582
8 weeks ConTrim -0.090 | 0.058 Crossed Mature 302 | 0.1188 | 0.9912
8 weeks ConTrim 0.042 | 0.058 Self-poll 8 weeks 302 | 0.469 1
8 weeks ConTrim 0.045 | 0.058 Self-poll 16 weeks | 302 | 0.4344 1
8 weeks ConTrim 0.045 | 0.058 Self-poll Mature 302 | 0.4344 1
8 weeks ConUntr 0.036 | 0.058 Auto 16 weeks | 302 | 0.5378 1
8 weeks ConuUntr 0.039 | 0.058 Auto Mature 302 | 0.5028 1
8 weeks ConUntr 0.000 | 0.058 ConTrim 8 weeks 302 | 0.9971 1
8 weeks ConUntr 0.019 | 0.058 ConTrim 16 weeks | 302 | 0.7411 1
8 weeks ConUntr 0.026 | 0.058 ConTrim Mature 302 | 0.6557 1
8 weeks ConUntr 0.013 | 0.049 ConUntr 16 weeks | 285 | 0.7899 1
8 weeks ConuUntr 0.017 | 0.049 ConUntr Mature 285 | 0.7272 1
8 weeks ConUntr -0.204 | 0.058 Crossed 8 weeks 302 | 0.0005 0.059
8 weeks ConUntr -0.105 | 0.058 Crossed 16 weeks | 302 | 0.0703 | 0.9573
8 weeks ConUntr -0.091 | 0.058 Crossed Mature 302 | 0.1179 | 0.9909
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8 weeks ConUntr 0.042 | 0.058 Self-poll 8 weeks 302 | 0.4712 1
8 weeks ConUntr 0.045 | 0.058 Self-poll 16 weeks | 302 | 0.4365 1
8 weeks ConUntr 0.045 | 0.058 Self-poll Mature 302 | 0.4365 1
8 weeks Cross 0.240 | 0.058 Auto 16 weeks | 302 | <.0001 0.007
8 weeks Cross 0.243 | 0.058 Auto Mature 302 | <.0001 | 0.0056
8 weeks Cross 0.223 | 0.058 ConTrim 16 weeks | 302 | 0.0001 | 0.0199
8 weeks Cross 0.230 | 0.058 ConTrim Mature 302 | <.0001 | 0.0132
8 weeks Cross 0.217 | 0.058 ConUntr 16 weeks | 302 | 0.0002 | 0.0287
8 weeks Cross 0.221 | 0.058 ConUntr Mature 302 | 0.0002 | 0.0226
8 weeks Cross 0.099 | 0.049 Crossed 16 weeks | 285 | 0.0431 | 0.8867
8 weeks Cross 0.113 | 0.049 Crossed Mature 285 | 0.0207 | 0.7141
8 weeks Cross 0.249 | 0.058 Self-poll 16 weeks | 302 | <.0001 | 0.0037
8 weeks Cross 0.249 | 0.058 Self-poll Mature 302 | <.0001 | 0.0037
8 weeks Self-poll -0.006 | 0.058 Auto 16 weeks | 302 | 0.9168 1
8 weeks Self-poll -0.003 | 0.058 Auto Mature 302 | 0.9598 1
8 weeks Self-poll -0.023 | 0.058 ConTrim 16 weeks | 302 | 0.6963 1
8 weeks Self-poll -0.016 | 0.058 ConTrim Mature 302 | 0.7834 1
8 weeks Self-poll -0.029 | 0.058 ConUntr 16 weeks | 302 | 0.6194 1
8 weeks Self-poll -0.025 | 0.058 ConUntr Mature 302 | 0.6691 1
8 weeks Self-poll -0.246 | 0.058 Crossed 8 weeks 302 | <.0001 | 0.0046
8 weeks Self-poll -0.147 | 0.058 Crossed 16 weeks | 302 | 0.0117 | 0.5558
8 weeks Self-poll -0.132 | 0.058 Crossed Mature 302 | 0.0227 | 0.7401
8 weeks Self-poll 0.003 | 0.049 Self-poll 16 weeks | 285 | 0.9454 1
8 weeks Self-poll 0.003 | 0.049 Self-poll Mature 285 | 0.9454 1
16 weeks Auto 0.003 | 0.049 Auto Mature 285 | 0.9488 1
16 weeks Auto -0.017 | 0.058 ConTrim 16 weeks 302 | 0.7749 1
16 weeks Auto -0.010 | 0.058 ConTrim Mature 302 | 0.8646 1
16 weeks Auto -0.023 | 0.058 ConUntr 16 weeks | 302 | 0.6948 1
16 weeks Auto -0.019 | 0.058 ConUntr Mature 302 | 0.7467 1
16 weeks Auto -0.141 | 0.058 Crossed 16 weeks | 302 | 0.0155 0.636
16 weeks Auto -0.126 | 0.058 Crossed Mature 302 | 0.0297 | 0.8072
16 weeks Auto 0.009 | 0.058 Self-poll 16 weeks | 302 | 0.8713 1
16 weeks Auto 0.009 | 0.058 Self-poll Mature 302 | 0.8713 1
16 weeks ConTrim 0.020 | 0.058 Auto Mature 302 | 0.7339 1
16 weeks ConTrim 0.007 | 0.049 ConTrim Mature 285 | 0.8907 1
16 weeks ConTrim -0.002 | 0.058 ConUntr Mature 302 | 0.9704 1
16 weeks ConTrim -0.124 | 0.058 Crossed 16 weeks | 302 | 0.0326 | 0.8291
16 weeks ConTrim -0.110 | 0.058 Crossed Mature 302 | 0.0585 | 0.9358
16 weeks ConTrim 0.026 | 0.058 Self-poll 16 weeks | 302 | 0.6542 1
16 weeks ConTrim 0.026 | 0.058 Self-poll Mature 302 | 0.6542 1
16 weeks ConuUntr 0.026 | 0.058 Auto Mature 302 | 0.6554 1
16 weeks ConUntr 0.006 | 0.058 ConTrim 16 weeks | 302 | 0.9152 1
16 weeks ConUntr 0.013 | 0.058 ConTrim Mature 302 | 0.8244 1
16 weeks ConUntr 0.004 | 0.049 ConUntr Mature 285 | 0.9343 1
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16 weeks ConUntr -0.118 | 0.058 Crossed 16 weeks | 302 | 0.0422 | 0.8828
16 weeks ConUntr -0.104 | 0.058 Crossed Mature 302 | 0.0741 | 0.9625
16 weeks ConUntr 0.032 | 0.058 Self-poll 16 weeks | 302 | 0.5794 1
16 weeks ConUntr 0.032 | 0.058 Self-poll Mature 302 | 0.5794 1
16 weeks Cross 0.144 | 0.058 Auto Mature 302 | 0.0134 | 0.5947
16 weeks Cross 0.131 | 0.058 ConTrim Mature 302 | 0.0244 | 0.7582
16 weeks Cross 0.122 | 0.058 ConUntr Mature 302 | 0.0357 | 0.8492
16 weeks Cross 0.014 | 0.049 Crossed Mature 285 | 0.768 1
16 weeks Cross 0.150 | 0.058 Self-poll Mature 302 | 0.0099 | 0.5113
16 weeks Self-poll -0.006 | 0.058 Auto Mature 302 | 0.914 1
16 weeks Self-poll -0.019 | 0.058 ConTrim Mature 302 | 0.7395 1
16 weeks Self-poll -0.028 | 0.058 ConUntr Mature 302 | 0.6277 1
16 weeks Self-poll -0.150 | 0.058 Crossed 16 weeks | 302 | 0.0099 | 0.5113
16 weeks Self-poll -0.136 | 0.058 Crossed Mature 302 | 0.0196 | 0.6997
16 weeks Self-poll 0.000 | 0.049 Self-poll Mature 285 1 1
Mature Auto -0.013 | 0.058 ConTrim Mature 302 | 0.8224 1
Mature Auto -0.022 | 0.058 ConUntr Mature 302 | 0.7061 1
Mature Auto -0.130 | 0.058 Crossed Mature 302 | 0.0259 | 0.7736
Mature Auto 0.006 | 0.058 Self-poll Mature 302 | 0.914 1
Mature ConTrim -0.117 | 0.058 Crossed Mature 302 | 0.0449 | 0.8942
Mature ConTrim 0.019 | 0.058 Self-poll Mature 302 | 0.7395 1
Mature ConUntr 0.009 | 0.058 ConTrim Mature 302 | 0.8787 1
Mature ConUntr -0.108 | 0.058 Crossed Mature 302 | 0.0636 | 0.9463
Mature ConUntr 0.028 | 0.058 Self-poll Mature 302 | 0.6277 1
Mature Self-poll -0.136 | 0.058 Crossed Mature 302 | 0.0196 | 0.6997
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