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AN ABSTRACT OF THE DISSERTATION OF 

 

MEADOW LEA CAMPBELL, for the Doctor of Philosophy degree in ANTHROPOLOGY, 

presented on November 20, 2015, at Southern Illinois University Carbondale.  

 

TITLE: BIOLOGICAL DISTANCE IN MIDDLE AND LATE ARCHAIC POPULATIONS  

OF THE MID-SOUTH UNITED STATES 

 

MAJOR PROFESSOR:   Dr. Robert Corruccini, Co-Chair 

         Dr. Susan Ford, Co-Chair 

 

This dissertation used osteometrics to assess the level of congruence between biological 

distance and long-distance material exchange in three Middle and Late Archaic groups living in 

the mid-South United States. Dental and cranial data support greater biological affinity between 

groups in southern Illinois (represented by individuals from the Black Earth site) and central 

Tennessee (individuals from Eva and surrounding sites) while groups in the Green River region 

of western Kentucky (Shell Mound Archaic) were somewhat more removed or perhaps more 

isolated. Females were more biologically variable than males for the majority of metrics used. 

This finding is suggestive of a patrilocal residence pattern, if only loosely followed.  
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CHAPTER 1 

 

INTRODUCTION AND THEORETICAL CONSIDERATIONS 

This dissertation was borne out of an interest in what life was like for people living in 

North America circa 4,000 years ago.  Compared to later populations in the mid-South, we know 

much less about these early groups’ lived experience beyond that they were 

hunter/gatherer/collectors who traded and used designated cemeteries to bury their dead.  While 

that is reductionist in scope, the literature on Archaic Period peoples of the North American 

Southeast is not much better (notable exceptions being Emerson et al., 2009; Sassaman, 2010).  

Who were these people? What were their lives like? What could we learn about human social 

structure(s) from the way they negotiated kin relations?    

Issues of kinship, reproduction, and mate selection are among some of the principal 

concerns of human life and anthropological inquiry.  Navigation of these issues, guided by 

culture at the macro level and idiosyncrasies and personal agency at the individual level, directly 

influence one of the most basal of all human behaviors – bringing new life into the social group 

by reproduction.  Given that framework I test the following hypotheses:  

 Hypothesis 1: Biological distance and archaeological patterns of cultural exchange are 

congruent. 

Briefly, patterns of cultural exchange in the archaeological record support interactions 
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between all groups used in the present analysis, though at varying levels. The Green River 

groups of the Shell Mound Archaic in western Kentucky appear to have remained insulated, 

though they could have been trading more with groups to their south in the Middle Tennessee 

River Valley rather than with groups more proximal to them across the Ohio River in southern 

Illinois. These patterns will be discussed in detail below. 

 Hypothesis 2: Females will show higher levels of biological variation reflective of 

patrilocal residence patterns. 

The patterned exchange of mates can be an effective strategy to build alliances and provide 

a buffer in times of stress (Levi-Strauss, 1969; Kelly, 1992; Fix, 1999; Hill, 2009; Kidder and 

Sassaman, 2009).  Prior work in the region suggests that the groups under analysis here practiced 

patrilocal residence patterns (Lewis and Lewis, 1961; Herrmann, 2002). Specific evidence for 

male versus female movements in regards to post-marital residence patterns is discussed in detail 

below.  

Given that group composition is constructed by the combined interaction between 

residence patterns, alliances, feuds, and wars; is shaped by climate patterns, fluctuations, and 

seasonality; and influenced by trade carrying goods and stories of other people in faraway places 

– who, then, was in a group? Did women marry and leave their home groups, presumably to live 

with related males? Or did men systematically go to live with related women in another group? 

Was this a strictly-held practice or a rather fluid one, negotiated by each individual throughout 

their lifetime?  

Anthropological questions, like humans themselves, are complex.  The introductory 

sections of this work lay the background needed to interpret the patterns of biological relatedness 

resultant from the analysis of skeletal remains.  With an aim to explore what life may have been 
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like for Archaic peoples in the mid-South, we (the author and the reader) will explore the messy 

stuff of who, what, when, where, and why.  Of the “what” we will discuss the material goods that 

evidence exchange and interaction, as well as skeletons, each manifesting an individual lived 

experience to the extent that it is recorded in bones.  Of the “when and where” we will focus on 

the Middle and Late Archaic periods (ca 8,900 to 3,200 cal yrBP) as we visit the riverine 

bottomlands and the dissected uplands of the lower Ohio and lower Mississippi Rivers, the bends 

of the Green River further southeast in what is now western Kentucky, to the Cypress Creek, a 

tributary of the Tennessee River.  That leaves the “who and the why” – the most fundamental of 

anthropological questions, in my opinion.  Minimally, the “who” are the men and women who 

came to be buried and found again in the cemeteries used in this analysis.  They lived, foraged, 

ate, birthed, traded, created, warred, celebrated, mourned, and loved during their lives.  They 

were actors operating within their specific cultural contexts; their skeletons are records of 

habitual behavior, shared ancestry, relative health and trauma(s), biological sex, and age at death.  

Their material effects reflect their status, role, gender, cultural affiliations, and interaction with 

other groups.  Collectively, these biological and material remains are the tangible evidence of 

their culture.  Some of my questions cannot be answered fully.  However, a better understanding 

of Archaic-period hunter/gatherer/collector lifeways in the mid-South United States will situate 

these groups in the broader flow of human expansion and adaptation in the region. Their 

ancestors migrated to and settled the Americas.  Their progeny independently developed 

horticulture and then agriculture; constructed hamlets, villages, and then cities; they built 

monumental architecture of a new scale and participated in continent-wide trade networks – all 

of which have roots in Archaic period populations.  
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Provided both of the hypotheses above are supported it will show a pattern of greater 

female residential and post-marital mobility along emerging or established trade routes in the 

Archaic mid-South.  If, however, the pattern of preferential female mate exchange along 

exchange routes does not in fact follow the same pattern as biological distances, then a few 

explanations may be the cause.  It is possible that the data are not fine-grained enough to pick up 

subtle aspects of population structure within the region of the mid-South during the Archaic. 

Similarly, it is also possible that these populations did not adhere strictly or allowed considerable 

flux in the rules regarding male versus female philopatry and with which specific neighboring 

groups they exchanged mates.  Chapter 6, Discussion, will review these possibilities in detail. 

Organization of the Dissertation 

The remainder of Chapter One will provide the theoretical construct from which I will 

interpret the pattern seen in skeletal remains.  The body of theory takes references from cultural, 

archaeological, and biological anthropological efforts to understand the lived experience of past 

populations using skeletal and material remains.  Chapter Two will provide the “when” and the 

“where” in terms of climate and environment 6,000 to 2,000 years ago in the mid-South region 

of the United States, as well as the “what” in terms of material goods and patterns of exchange 

seen in the archaeological record.  The chapter will introduce the three main geographical areas 

of interest and review what is known about the people who inhabited the archaeological sites 

from which the skeletal remains were excavated.  Here the focus is on mortuary styles, patterns 

of post-marital residence, mobility and sedentism, and anything that would have moved goods 

and/or people across the landscape.  Chapter Three reviews how biological relationships are 

estimated using skeletal remains.  The chapter reviews methods using cranial morphology, 

aspects of the dentition, and post-cranial dimensions pursuant to the examination of group 
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interaction and biological exchange.  Chapter Four presents the results of several statistical 

analyses including univariate and multivariate methods designed to recognize patterns in the 

more strongly-inherited skeletal morphology presented in the previous chapter. Chapter Five 

returns to the original question of which groups were composed of unrelated females and related 

males (or vice versa) and how these societal dimensions may have been effected by the networks 

of exchange evidenced in the archaeological record.  

Anthropological Approaches to Exchange  

The section that follows includes details regarding theories of exchange as related to 

material goods and draws parallels to the exchange of people when appropriate. The middle 

section reviews theories of kinship, migration, residency patterns, and mobility – all of which 

have bearing on the movement/exchange of people as well as goods. The last section delves into 

the efforts of biological anthropologists to study exchange, migration, and other sociocultural 

structures that influence group composition through biological distance analyses. The discussion 

below is not meaning to treat or portray people as goods or commodities.  

Since our way of being, our ethnicity, our tribe, and our cultural affiliations by any other 

name, contribute to or even structure the interactions we have with one another on a daily basis 

and over a lifetime, these interactions reflect and are the root source for many processes of 

interest to anthropologists such as interactions between groups.  We must infer prehistoric 

interactions based on the archaeological record of artifactual and contextual materials that 

demonstrate similarities of style and symbolism, construction and manufacture, or source 

materials. We can also do this by comparing biological variation and population structure.  

In this work the concept of exchange is used to refer to the transfer of goods or people in 

relation to the social interactions they evidence.  Anthropologists study exchange, or reciprocity 
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and redistribution of cultural materials, to understand how prehistoric groups maintained 

relationships of power and social ties (Earle, 2010; Hill, 2009, 2012), meaning that 

anthropologists have fostered a rich engagement with systems of exchange.  The act of 

exchanging goods is symbolic of bonds being solidified, of relationships being fostered and 

maintained, of shared ideology, and is a way for group members to differentially wield status and 

therefore better position their own family in their group (Hill, 2009).  Similarly, a lack of 

exchange – of interaction – is symbolic of different ideology and worldview or of different 

economic values.  

Levi-Strauss (1969) focused on the function of exchanged items to form bonds and 

alliances. Food, manufactured items, and especially women were the ultimate gift in building 

relationships between disparate groups (Levi-Strauss, 1969: 52-68).  He illustrates the primacy of 

women in the exchange process by presenting the case of two nomadic bands in Brazil that fear 

and avoid one another yet must exchange goods and women to meet their subsistence and other 

needs. Over time, a reciprocal arrangement develops out of which Levi-Strauss (1969: 68) sees: 

…a continuous transition…from war to exchange, and from exchange to 

intermarriage, [whereby] the exchange of brides is merely the conclusion to an 

uninterrupted process of reciprocal gifts, which effects the transition from 

hostility to alliance, from anxiety to confidence, and from fear to friendship.  

Differential exchange of males versus females produces differing levels of variation for 

biological traits as novel alleles appear from neighboring groups (gene flow). High 

heterozygosity and variation within a particular sex is indicative of sustained dispersion of that 

sex from their natal group(s) (Lane and Sublett, 1972).  Thus, if women are the preferred object 
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of exchange then they will be more biologically variable within the group to which they move.  

The reverse would be true for males – they would be more similar and with less biological 

variation than females.  Such a scenario describes a patrilocal society where related males live 

together in the group of their birth along with (largely) unrelated females who moved in from 

neighboring groups or beyond.  Rules about who is or is not a suitable partner get to the crux of 

how kinship, or the “interpersonal relationships based upon a recognized biological connection 

arising out of common ancestry or marriage” is defined and maintained within a group (Matras, 

1973).  Sahlins (2011: 2) conceptualizes kinship as:  

…the mutuality of being: persons who are members of one another, who 

participate intrinsically in each other’s existence” whether by birth or cultural 

construction, meaning that kin “live each other’s lives and die each other’s 

deaths.  

Archaeologists, too, have historically had a long engagement with the study of exchange.  

Archaeologists investigate exchange by analyzing the spatial distribution of common and exotic 

source materials and manufactured goods (Earle, 1982).  Post-processual archaeologists have 

placed their foci more locally, seeing exchange as part of (and not separate from) the cultural 

structure out of which meaning is created by actions (Earle, 2010; Hodder, 1992).  Contextual 

analysis of exchanged items contributes to anthropological understanding of individual and 

group identity, as well as the ways the very presence of exchange is embedded within a given 

society and within the various spheres of action in any human group (political, economic, ritual, 

etc.) (Earle, 2010).  These spheres are “dynamic, integrated systems of flows, connections, 
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dependencies, and power” (Earle, 2010: 209), even amongst the temporally distant Archaic-

period groups.   

A formalist approach to exchange analyzes the outcome of individual and small group 

decisions in reference to subsistence and settlement location (Earle, 1982).  These theories can be 

used to investigate the evolution and organization of exchange systems by utilizing cost-benefit 

analyses (Earle, 1982; Hodder, 1982).  A substantivist approach, one more in line with the 

present study, has a different focus in that it seeks to understand broader social and political 

institutions within which exchange occurs (Earle, 1982; Hodder, 1982).  These theories can be 

used to explain social organization and the development of prehistoric cultures because they 

assume the broad similarity between the patterning of materials exchanged and the cultural 

contexts in which they were exchanged (Earle, 1982; Hodder, 1982).  A substantivist approach 

can investigate culture change by tracking the “social, political, economic, and ecological 

variables that interrelate to form a system that changes in response either to exogenous factors or 

to the internal interaction among the variables” (Earle, 1982: 3) to maintain a balance with the 

environment (making substantivism a functionalist approach) (Hodder, 1982).   

The hypotheses of the present work employ a substantivist approach in that they examine 

mate exchange and the movement of males relative to females (and vice versa) within Middle 

(8,900 to 5,800 cal yr BP) and Late (5,800 to 3,200 cal yrBP) Archaic period peoples of the mid-

South United States. The hypotheses proceed from the notion that biological exchange (and 

therefore kinship rules) more or less mirrors the exchange of cultural materials because the two 

operate within the same, or similar, structural contexts.   

The above discussion is predicated on the notion that a group recognized differences 

between male and female roles (gender) and that those differences were meaningful (Claassen, 
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2001). One way gender roles are made meaningful in any society is to serve as the organizing 

principle for rules regarding sexuality (Claassen, 2001). Rules regarding sexuality also stem from 

prescribed access to mate(s), usually in the form of culturally recognized marriage and post-

marital residence. 

Post-marital residence patterns are reflected in the relative biological variation of males 

versus females within a particular site and/or time. Greater variation of one sex over the other 

indicates that the more variable sex was the one migrating into the site, whereas less variation 

means the individuals were likely sampled from the established local gene pool for that sex 

(Lane and Sublett, 1972). Similarly, the exchange of mates (and therefore alleles) leads to 

increased phenotypic similarity between the groups participating in the exchange; groups outside 

of the sphere of exchange look less phenotypically similar to other groups over time 

(Stojanowski and Schillaci, 2006).  

The formalist and substantivist schools of thought are not mutually exclusive though, as 

each seeks to understand exchange as relationships between individuals, between social groups, 

and between individuals and social groups and their broader cultural framework and 

environmental circumstances.  Of particular interest to the present study, Hodder (1982) sees all 

social relations as forms of social exchange.  For instance, the “flow of transactions between 

interdependent individuals produces apparent structures such as the ‘family’” (Hodder, 1982: 

204).  Through a Marxist and historical particularlist lens Bender acknowledges ecological 

and/or biological advantages to exchange but contends that exchange is largely about social 

relations and social reproduction (1985).  Here the exchange of goods or people comes down to 

the labor involved in production.  The family is maintained daily by members’ allocation of time 

and effort pursuant to its continued functioning (Hodder, 1982).  In this way, it becomes obvious 
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that it matters who is in a family or even a member of the larger social group.  "...[O]ne might 

reasonably suggest that what distinguishes hominid [sic] development is the importance of the 

social strategies of exchange built into the adaptive repertoire" (Bender, 1985: 55).  Though 

Claassen (2001) reminds us that there are more ways to organize labor in a society than by 

gender (she lists class, age, and craft specialty), it remains that the exchange of mates – of kin, 

family, or group members – between clans within a social group, as well as those in neighboring 

or even distant groups, matters greatly.   

Humans embody culture through the ways we use our bodies in the pursuit of culturally 

constructed behaviors, and through the unique biological profile carried in our genomes (Sofaer, 

2006).  Just as specific patterns in DNA segments reflect shared genetic ancestry and previous 

affiliation between people or groups, similar patterns of morphology in the skeleton reflect long-

term adaptations, a degree of ancestral relationships, and habitual and/or patterned behaviors that 

occur in one’s lifetime.  Both biological patterns (genetic and environmental) are culturally 

constructed, though.  Cultural values regarding who is or is not a suitable partner for the 

purposes of reproduction structure how kinship is reckoned in that group and therefore too, the 

genetic exchanges out of which the next generation is born.  Shared ancestry may reflect shared 

histories, shared interactions, and common cultural mores.  Culturally appropriate ideas 

regarding specific roles individuals might play based on their gender, age, clan, or status also 

leave their mark on their actors’ skeletons as bones remodel in response to mechanical strains 

and metabolic processes through one’s lifetime (Sofaer, 2006).  Ancient culture then, can indeed 

be studied by the use of bodies – skeletons, teeth, and genomes – in an effort to understand the 

contexts and social structure in which people operated in the past (Goodman and Leatherman, 
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1998; Sofaer, 2006). The section below details ways in which mobility and settlement systems 

can impact biological (allelic) variation among human populations. 

The Articulation of Exchange Patterns with Other Spheres of Hunter-Gatherer Lifeways 

Issues of hunter-gatherer lifeways have a long interest within anthropology.  Traditional 

thinking envisioned primitive, small, nomadic groups hunting big game in marginal 

environments (Lee, 1968; Netting, 1986).  A seminal piece on hunter-gatherers is Lee’s (1968) 

work with the !Kung San, who depend entirely on hunting and gathering for subsistence.  They 

do not have a need for cultivation because their needs are easily met by gathering and hunting.  

Their diet consists mostly of nuts and vegetables collected by women, supplemented by game 

hunted by men.  With the exception of their dry season, food is secured relatively consistently.   

The !Kung San enjoy an ease of life without agriculture.  Men, and even women, have ample 

time for resting, visiting other camps, dancing, and entertaining.  Their children enjoy good 

health in comparison to children in neighboring agricultural groups (Lee, 1968).   

In many ways, the Middle and Late Archaic peoples of the mid-South resemble the !Kung 

San of Lee’s ethnographies.  The southeastern United States was and remains a biologically rich 

host to a variety of subsistence resources such as oak, hickory, and walnut trees; deer and small 

game; water and terrestrial fowl; freshwater mussels; many species of fish; and plants like 

goosefoot, knotweed, maygrass, sunflower, and marsh-elder (Schroeder, 2004).  Through a 

combination of gathered nuts and later seeds, along with hunted deer, fish, and other small game, 

the peoples of the Archaic mid-South were able to provide suitably for their group.  Even during 

the warm and dry Hypsithermal (~8,500 to 5,000 BP), when prairies spread east of the 

Mississippi River, the accompanying increase in hickory nuts and white-tailed deer provided 
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ample fat, protein, hides, and bone/antler resources for Middle Archaic groups in the Eastern 

Woodlands (Wolverton, 2005; Hollenbach and Carmody, 2010).   

Social change that accompanies fluctuations in settlement are far-reaching and extend into 

shifting gender and age roles, time spent together and with children, kin, and other groups, 

changes in birth spacing and population densities, increasingly non-egalitarian social structure, 

more leisure time (at least until agriculture begins in earnest), the development of persistent 

places on the landscape for ritual and burial use, increased attention to mortuary style and 

differentiation, and non-subsistence related exchange of non-functional items (Kelly, 1992, 1995; 

Hollenbach and Carmody, 2010; Thompson, 2010).  Clearly, mobility and sedentism are more 

than just mapping onto available subsistence resources.  Human groups may need to move for 

non-food resources such as firewood, ceremonial items, raw material for tools, to avoid insects, 

for political reasons, to find a mate, to seek allies, or to see a shaman (Kelly, 1992).  Over time, 

changes in settlement patterns become enculturated in peer-group interactions (Kelly, 1992).   

Other processes can function to move people and their genomes across a landscape. 

Migration studies are quite old in the field of anthropology, though they have taken various 

iterations and interpretations.  Cabana (2011) reviews anthropological studies of migration and 

identifies several key themes.  Historically, anthropologists have been overly concerned about 

the role of migration in cultural change, particularly abrupt change.  This may be due to the 

nature of archaeological data (especially older archaeological data with less temporal resolution 

than we can achieve today). In this context, seemingly abrupt changes evidenced in the 

archaeological data were equated with migration.  However, archaeologists now operate under 

the notion that material cultural change may have appeared abrupt, but may not have actually 

been so.  Novel elements of material culture do not necessarily mean a new culture and new 
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people were responsible via migration.  Processual archaeologists challenged the pervasive use 

of migration to explain culture change, but they did not study migration themselves, as they were 

more interested in universals and general trends that could explain cultural change and evolution 

due to internal mechanisms (Cabana, 2011). From a neo-evolutionary, Processual, systems-based 

approach, migrations are historical events external to a culture and are therefore not useful or 

predictive towards explaining culture change and evolution (Cabana, 2011).  Post-processualists 

criticized their predecessors’ use of universal explanations and the neo-evolutionary approach 

(Cabana, 2011).  Instead, migrations can be studied as situational events not necessarily 

indicative or part of a universal mechanism of cultural change.  Today, migrations are viewed as 

population mixing rather than wholesale population replacement (Cabana, 2011).  We recognize 

that culture change and culture continuity are part of the same process and that migrations are 

more than historical events.  As Fix reminds us, “Genes, like potsherds, do not travel by 

themselves: migrating/colonizing organisms are required. The environmental and/or cultural 

(including kinship) mechanisms promoting and structuring migration need to be taken into 

account to evaluate these stories” (here, Fix uses “stories” in reference to explanations of the 

global distribution of human genomes that are not informed by the cultural history or 

circumstances of the groups involved) (2012: 88).  

The discussion of migration is offered as additional context for thinking about the 

movement of hunter-gatherer-collectors during the Archaic period in the mid-South. While there 

may be evidence for migrations out of the area during the late Pleistocene and early Holocene 

(Sassaman, 2010), there is no archaeological evidence for wholesale migration during the Middle 

or Late Archaic. What there is evidence for, though, is long-distance trade and exchange routes 
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(Jefferies, 1997, 2004; Kidder and Sassaman, 2009). The biological component to this evidence 

is missing and the present analysis attempts to address that. 

Embedded in the prior discussion of settlement system theory is the issue of social 

complexity which is an emerging, dissolving, and dynamic phenomenon (Thompson, 2010).  

Reduced mobility typically occurs in tandem with a non-egalitarian structure, as seen in some 

foraging groups who have political structure, unequal wealth distribution, and social or gender 

inequalities (Kelly, 1992).  The opportunity for unequal relationships is always present, but the 

scale and duration, as well as concentration and frequency of interactions, must also be 

considered (Thompson, 2010).  Kelly (1992) thinks that sedentism replaces the constraints of 

looking for resources with new constraints of increasing social complexity, placing new 

emphasis on increasing production rates, restricting sharing networks, controlling labor, 

investing more time in alliance-building, arranged marriages, and territory defense.   

Even a generation ago many archaeologists denied, due to a lack of evidence, that Archaic 

people were even somewhat sedentary.  This facet of social complexity was thought to appear in 

the subsequent Woodland period.  Social “complexity” was already present by the Middle 

Archaic, though not with an institutionalized hierarchy (Kidder and Sassaman, 2009; Thompson, 

2010).  Early Archaic hunter-gatherers lived in mobile, dispersed familial groups.  High 

residential mobility and low population density persisted until the late Middle Archaic/Late 

Archaic when groups that had been hunter-gatherer-cultivators for thousands of years became 

more sedentary (Charles and Buikstra, 1983).  The Hypsithermal climate change had some 

impact on human settlement and subsistence patterns.  High availability of deer and hickory nuts 

allowed for more efficient foraging over smaller areas.  The overall effect was reduced 

residential mobility accompanied by increased population size and density (Stafford, 1994; 
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Hollenbach and Carmody, 2010), particularly after 7,000 BP which was the maximum expression 

of the Hypsithermal (Nolan and Fishel, 2009).  Domesticated crop complexes including squash, 

sunflowers, chenopodium, and marshelder at sites like Riverton, Hayes, Phillips Spring, and 

Napoleon Hollow have been radiocarbon dated to at least 3,800 BP (Smith and Yarnell, 2009).  

Three of those sites lie squarely within the geographic boundaries of interest in the present study 

(Phillips Spring is in southwest Missouri, outside of the area of interest).  Cooler and wetter 

conditions following the Hypsithermal brought an expansion of deciduous forests back into 

upland areas, and presumably Late Archaic peoples could have also returned to these areas.  

However, cultural adaptations that developed over the course of the Hypsithermal remained 

ingrained as these increasingly sedentary people remained in the lowlands and near major rivers 

where they had moved during the Hypsithermal (O’Brien, 2001 in Wolverton, 2005) and 

established ties to the land in the form of corporate cemeteries and villages (Charles and 

Buikstra, 1983).  

The shift to greater sedentism accompanied by steady population growth across the region 

brought about cultural change in the Middle and Late Archaic.  Enhanced exchange networks 

carried goods of high prestige along major river valleys (Moore, 2010a; Shields, 2010).  These 

goods are found in mortuary contexts that provide evidence of non-egalitarian social status 

among group members.  Gender roles shifted as logistical mobility increased for men who spent 

more time away from home on hunting, fishing, ritual, or trade excursions while women’s 

decreased residential mobility meant their foraging and processing activities remained close to 

home.  “Coupled with increased evidence of sedentism, long-distance trade appears to have 

supplanted group mobility as a mechanism for the movement of ideas and, possibly, as a medium 

for exchanging mates and cementing alliances” (Kidder and Sassaman, 2009: 675).  By the Late 
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Archaic trade networks in the mid-South collapsed, leading to increasingly localized patterns of 

interaction (Anderson, 2008; Gibson, 2010).   

Social anthropologists and archaeologists are not the only anthropologists to theorize about 

issues related to exchange – especially when that exchange involves bodies and genes rather 

than, or instead of, manufactured goods or ritual objects. Biological anthropologists have 

historically been interested in biological kin – those individuals with whom one shares alleles as 

the result of having a common ancestor (Fix, 2012). Conscious or not, human behavior is 

motivated to nurture these relationships as a means to increase one’s inclusive fitness (Hamilton, 

1964). Similarly, humans have elaborate cultural systems to avoid inbreeding and potential 

negative fitness outcomes (Fix, 2012). These systems can be far-reaching in both distance and 

time, creating the framework by which human mobility and mate exchange occurs (Fix, 2012). 

As discussed above, females are or were the nearly universal gold standard for exchange (Levi-

Strauss, 1969) because they represent the labor (Bender, 1985) and progeny that will result from 

a marriage exchange.  

Biological Distance Studies 

Measures of biological distance between and among human groups are useful to 

anthropologists for many reasons.  Biological distance studies investigate the patterns of 

microevolution and inheritance (Stojanowski and Schillaci, 2006).  These studies answer 

fundamental anthropological questions regarding the evolutionary history of human groups 

including post-marital residence patterns and the movement of men versus women within and 

between groups, the large-scale movement of entire populations, the biological continuity of a 

given human group, and as a framework within which paleodemography and paleopathology 

analyses can be interpreted (Buikstra et al., 1990; Konigsberg, 2006; Stojanowski and Schillaci, 
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2006; Pietrusewsky, 2008).  Simply, biological distance is a measure of relatedness within a 

sample or between samples.  

The primary evolutionary mechanisms that drive the likeness or separation between groups 

are gene flow and genetic drift (Relethford and Lees, 1982; Fix, 1999; Stojanowski and Schillaci, 

2006). Given the small population sizes and likely short temporal window commonly 

encountered in archaeological samples, microevolutionary processes like genetic drift and gene 

flow become even more relevant (Stojanowski and Schillaci, 2006).   

Quantifying biological distance involves several statistical tests using either qualitative 

(non-metric, ‘discrete’) traits or quantitative (linear, continuous) measures which are analyzed 

statistically with MMD (mean measure of divergence) and Mahalanobis D analyses respectively 

(Mahalanobis analyses will be discussed in detail below).  Bioarchaeologists use phenotypic data 

from the skeleton – morphometrics and qualitative traits – to compare means and frequencies of 

traits between two groups (Stojanowski and Schillaci, 2006). Analyses using such data have the 

advantage of being non-destructive while also allowing comparisons between living and ancient 

(skeletal) populations (Buikstra et al., 1990; Stojanowski and Schillaci, 2006). Gene 

flow/migration and therefore mate exchange increases the phenotypic similarity between the 

participating groups, allowing for measures of biological distance to be calculated based on these 

traits (Stojanowski and Schillaci, 2006). 

Ideally, data used in biological distance studies should be as little influenced by ontogenetic 

and environmental processes as possible (in cases where DNA sequencing is not feasible or 

utilized).  An assumption of biological distance studies based on such data is that any 

environmental effects are distributed randomly and are minimal within the populations under 

study (Stojanowski and Schillaci, 2006). Similarly, measures with the greatest influence from 
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genetics as opposed to environment should be used (i.e. those that are less plastic, or with a 

narrower range of inherent variation). Stature, for instance, would not make for the best (or most 

accurate) estimate of biological distance if used on its own because it is highly influenced by 

relative levels of nutrition and/or stress during childhood (Stinson, 1990).  When combined with 

measures of body breadth and intralimb indices, variation in stature can be useful to identify 

patterns in the data (Auerbach, 2010).  

The study of biological distance has naturally undergone quite a revolution in the last 

century, mirroring paradigm shifts that accompanied changing conceptions of race, populations, 

and “varieties” of man. By the 1970s and certainly into the 1980s, anthropologists were shifting 

their foci from racial groups, “types,” or “varieties,” to the “population” and the structure of 

variation therein. Biological distance studies are not interested in “types” per se, or in necessarily 

classifying skeleton X into group X (Stojanowski and Schillaci, 2006).  They are instead 

interested in the biological structure within sites and between sites within a region (Buikstra et 

al., 1990).  

The term population structure refers to the frequency of genes or genotypes in a population 

or subpopulation (Relethford and Lees, 1982) or similarly, the sizes of local demes and the 

amount and pattern of migration among them (Fix, 1999). Studies of population structure have 

historically taken a regional focus (Fix, 2012).  In their review of biodistance studies from mid-

1950 to 1985, Buikstra et al (1990) finds that intrasite studies of human genetic variation took 

second place to research into paleodemography and paleopathology.  The authors see biodistance 

as important for interpreting changes in demography and pathology.  Stress and disease 

processes, as well, vary between groups and populations (Wood et al, 1992), so biodistance 

analyses can provide a framework for evaluating levels within sites.  Additionally, Buikstra et al 
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(1990) argue that biodistance can be used to help interpret archaeological patterns of material 

remains (like Konigsberg, 1990, for the central and lower Illinois River valleys where there was 

little evidence for biological exchange amongst sites that were separated by considerable space 

and did not share mortuary patterns from the Middle Woodland to Mississippian periods) and 

post-marital residence patterns (Corruccini, 1998; Lane and Sublett, 1972; Stojanowski and 

Schillaci, 2006). 

Wright (1943) developed the isolation by distance model whereby individuals and groups 

that live(d) closer to one another tend to be more genetically similar.  While seemingly straight-

forward, this model distributes individuals across infinite subpopulations evenly (with random 

exchange, and no spatial structure – only temporal) – something that never happens in real 

human groups.  Stepping stone models incorporate spatial structure and assume that all 

populations are arranged linearly with migration happening more frequently with closer 

nodes/groups than with others (Bodmer and Cavalli-Sforza, 1968; Konigsberg, 1990). Some of 

the more sophisticated statistical procedures for ascertaining biological distance would have to 

wait for advanced multivariate statistical procedures and computers that became widely available 

in the mid-1970s.  

Defining population structure takes either a model-free or model-bound approach, or 

perhaps a combination of the two.  Model-free approaches measure the pattern of population 

differentiation within a group overall, regardless of the forces that created that differentiation 

(Pietrusewsky, 2008; Relethford and Lees, 1982) with gene flow, genetic drift, or localized 

selection acting as the primary forces that drive population structure and change (Fix, 1999).   

Model-bound approaches try to estimate genetic parameters (like admixture and isolation 

by distance) using theoretical models of population structure (Relethford and Lees, 1982).  One 
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method for doing this is the migration matrix method which targets genetic drift and isolation by 

distance specifically (Harpending and Ward, 1982; Konigsberg, 1990; Fix, 1999).  The migration 

matrix method assumes “a matrix M, representing the probability that an individual in 

subpopulation j came from subpopulation i, is used in conjunction with a diagonal matrix of 

deviations resulting from drift to predict a variance-covariance matrix (R) of standardized gene 

frequencies between groups” (Konigsberg, 1990:55).  In other words, observed rates of migration 

between subpopulations can be used to predict what the pattern of genetic variation at 

equilibrium would look like (Fix, 1999). The matrix migration model method is a model-bound 

approach to understanding population structure specifically good for genetic drift and isolation 

by distance (Konigsberg, 1990).  The method does not carry some of the rather linear and 

restrictive parameters that earlier methods like isolation by distance (Wright, 1943) or the 

stepping-stone model (Kimura and Weiss, 1964) required. These earlier models were aimed at a 

more general application across genera and species (Fix, 1999) whereas the migration matrix 

method was more malleable to and incorporated observational data on actual human populations. 

To develop the migration matrix though, one needs detailed information regarding past 

migrations and kin relationships (Fix, 1999). These data are simply not readily available for 

Archaic groups of antiquity.  

Many researchers today use a migration matrix model (Bodmer and Cavalli-Sforza, 1968; 

Konigsberg, 1988, 1990) incorporating matrices for biological distance, temporal distance, and 

geographic distance. Konigsberg (1990) used the migration matrix method to look at isolation by 

geographic and temporal distance.  This work is important because it was among the first 

(perhaps the first) to analytically tackle the issue of biological distance within a site over time – 

diachronic, or temporal distance using a more realistic statistical approach like migration matrix 
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method.  The method is good for use within a region among a finite set of subpopulations (like 

the type of regional analyses undertaken here). His data set included nonmetric dental traits 

among central and lower Illinois River valley populations from the Middle and Late Woodland 

periods, as well as Emergent Mississippian and Mississippian periods – all populations that came 

after the Archaic period samples used in the present work.  Konigsberg ran several matrices of 

partial correlations of biodistance on temporal distance (controlling for spatial distance) and 

biodistance on spatial distance (controlling temporal distance).  His results confirmed the 

expectation that in a region that has subdivisions of populations linked by migration, space and 

biodistance will be positively correlated (isolation by distance) while biodistance and temporal 

distance will be negatively correlated within the region when controlling for space (1990).  The 

results of his study support archaeological data for the central and lower Illinois River valleys 

with their variable mortuary practices during this time (Charles and Buikstra, 1983), as well as 

considerable spatial distance between the sites in his sample.  Konigsberg’s conclusion is that 

there was likely little biological exchange happening among the people in his Woodland and 

Mississippian samples (1990). 

Since the exchange of goods, services, ideas, and genes is something that happens person to 

person within the context of broader social and cultural mores, it is of utmost importance to 

understanding how the Archaic peoples of the mid-South understood each other and themselves.  

What was the nature of interactions between groups at the Black Earth site and those living along 

tributaries of the Green River in western Kentucky, for instance?  Did their goods and/or a few 

brave persons from amongst them make it to that region or even further into central Tennessee?  

In what ways may the structure of mate exchange have shaped lived experience and the history 

of the region – who was considered kin and who was not? The pattern of how this exchange was 



22 

 

systematized, if at all, among the hunters, gatherers, and collectors of the Archaic period mid-

South is what the present work tries to illuminate.  



23 

23 
 

CHAPTER 2 

 

ARCHAEOLOGICAL BACKGROUND 

Physiography and Environment 

Archaeologists define the southeastern United States as the area encompassing roughly all 

the landmass east and south of the Mississippi and Ohio rivers respectively, allowing some 

westward expansion across what is now Missouri, Arkansas, and Louisiana (an area south of 

~38º N, 95º W) (Anderson and Sassaman, 2012).  The region encompasses several distinct 

physiographic regions including the hills of the eastern Ozark Mountains, Central Lowlands 

prairie land, portions of the southern Appalachian Mountains and Piedmont, the Interior Low 

Plateau of what is now Kentucky and Tennessee, and the broad swath of the South known as the 

Coastal Plain (Gremillion, 2004; Anderson and Sassaman, 2012). In the heart of the interior 

Southeast, oak-hickory forests dominated the landscape where southern regions held evergreen 

and mixed deciduous forests of oak, hickory, and pine (Gremillion, 2004). Many portions of the 

Southeast contain large rivers such as the Mississippi, Ohio, and Tennessee – all of which drain 

tributaries from waterways between bluffs and mountains.  

Archaeology in and of the Southeast 

The archaeological record for the Southeast is extensive.  The area benefited greatly from 

an expanded workforce during the WPA (Works Progress Administration) and TVA (Tennessee 
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Valley Authority) projects of the 1930s and 1940s.  A good portion of that work went into 

excavations that resulted in rich archaeological samples and many subsequent researchers have 

made the Southeast their home.  Work in the region has long taken a culture-historical approach 

(Sassaman, 2010; Anderson and Sassaman, 2012), pinning down ceramic and lithic sequences 

and defining their parent archaeological culture(s). Archaeological field method protocols were 

developed at the Mississippian site of Kincaid Mounds, where strict horizontal control methods 

came to be known as the “Chicago style” after the University of Chicago field school that trained 

many of the region’s prominent archaeologists (Muller, 2002). A bit of functionalism also came 

out of the Southeast among some University of Chicago graduates (an example being Bennett, 

1943, though the work nor functionalism played a large role in archeological theories of the 

Southeast) (Muller, 2002). It was in the Southeast that the challenge to the predominant culture-

historical approach – processualism or New Archaeology – was developed at large, deeply 

stratified sites like Koster (located along the lower Illinois River Valley, with occupations from 

Early Archaic through Woodland periods) (Struever and Holton, 1979). The archaeology of the 

Southeast now encompasses several theoretical approaches that incorporate interests of gender 

identities, adaptation to past climate change, local creation of history and tradition, and the 

creation of space through modifications to the landscape (Muller, 2002). The approach has been 

described as “ecumenical and tolerant, even Catholic…” (Anderson and Sassaman, 2012: 31). 

A brief overview of the archaeological record will situate Archaic period groups 

contextually and provide the archaeological framework of patterned cultural and material 

exchange out of which the hypotheses regarding mate exchange were developed. 

Human occupation of the southeastern United States is evident in the archaeological record 

around 11,500 to 10,900 BP.  Geologically speaking the Paleoindian time period begins at the 
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end of the last glacial maximum, coincident with the initial colonization of the New World 

(Anderson, 2001).  Like much of the rest of North America, the archaeological record in the 

Southeast begins with Clovis fluted lanceolate projectiles (Anderson, 2001).  The points were 

left by small groups of hunter-gatherers who favored resource-rich areas along the region’s major 

rivers – the Ohio, Mississippi, Illinois, Cumberland, and Tennessee (Anderson, 2001).  Clovis 

points are traditionally tied to a fairly mobile lifestyle hunting megafauna and other big game for 

subsistence.  Once people reached the bountiful river areas of the Southeast their lifeways 

changed.  They preferred the riverine environments and used them as staging areas from which 

to further explore and settle the region (Anderson, 1995).  The once-ubiquitous Clovis points 

disappear from the archaeological record of the area by 10,800 BP.  Lithic style in the subsequent 

Middle Paleoindian (10,900 to 10,500 BP) is somewhat variable across southeastern portions of 

North America.  In the South the fluted points become smaller, or broad unfluted points 

(Anderson, 1995).  The subsequent Late Paleoindian period (10,500 to 10,000 BP) lithic 

materials consist of Dalton, Hardaway, and later side-notched Taylor, Big Sandy, or Bolen styles 

(Anderson, 1995).  

The Archaic period in the Southeast spanned nearly 9,000 years of human history in North 

America (Emerson et al., 2009) from 11,500 calBP to 3,200 calBP (Anderson and Sassaman, 

2012).  Early Archaic human adaptations in the Southeast included widely scattered groups of 

hunter-gatherers in uplands and riverine bottomlands (Wolverton, 2005).  Archaeological 

evidence of abandonment across many portions of the Southeast from 9,500-8,500 calBP is 

coincident with the transition from late Early Archaic to early Middle Archaic (Sassaman, 2010).   

Those that remained in the region continued a generalized hunter-gatherer subsistence and 

settlement system throughout most of the Middle Archaic period.  By 6,000 BP, the late Middle 
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Archaic period, human focus turned to resource-rich areas near major rivers and wetlands 

(Wolverton, 2005), where the effects of the warm and dry Hypsithermal climate episode were 

moderated.  Sedentism and population growth increased and long-distance trade networks picked 

up in earnest (Charles and Buikstra, 1983).  Adaptations in the Late Archaic saw much variation 

between sites and regions as tribal identity, ethnicity, and social hierarchy are evidenced by trade 

and differential mortuary patterns (Charles and Buikstra, 1983; Jefferies, 2004; Moore, 2010).   

The beginning of the Woodland period is variable across the Southeast.  Many 

archaeologists agree that the transition from Late Archaic to Early Woodland happened between 

3,200 and 2,400 calendar yrBP (Kidder, 2006).  The following period included many changes in 

lifeways, perhaps accompanied by population replacements (Sassaman, 2010).  Early Woodland 

groups were more restricted in their subsistence and settlement ranges, participated less in long-

distance trade networks, decreased their architectural, burial, and artifact diversity, and exhibited 

less complex societies in general than their Archaic predecessors (Kidder, 2006).  One 

archaeological interpretation for this difference points to climate change which increased the 

frequency and magnitude of flooding events (Fiedel, 2001; Kidder, 2006).  Other interpretations 

invoke gradual in situ change or diffusion of ceramic technology from points along the Atlantic 

coast.  In some areas of the Southeast, namely the American Bottom region in west-central 

Illinois, archaeological assemblages change so much from the Late Archaic to Early Woodland 

periods that some have argued population replacement must have been at work (Emerson and 

McElrath, 2001; Kidder, 2006).   

The influence of what came to be known as the Hopewell tradition was far reaching across 

portions of Ohio, Illinois, and Indiana during the Middle Woodland.  The period and people are 

known for interregional exchange networks that carried raw materials into the area; obsidian 
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from Yellowstone, copper and silver from the Great Lakes, shell from the Atlantic and Gulf 

coasts, galena stone from the Mississippi River Valley, and animal parts, steatite, and mica from 

Appalachia (Bolnick and Smith, 2007).  The Hopewell burial pattern was complex and consisted 

of grave goods made from these imported materials as well as more locally-available resources.  

Site plans include burial mounds surrounded by large earthworks.  Considerable cultural 

variation existed across the Hopewell landscape (Carr and Case, 2006; Bolnick and Smith, 

2007), but functionally these groups cooperated enough to buffer themselves in times of resource 

stress, to build alliances, and to mark corporate identity or territory.   

Beginning around 800 AD Mississippian maize farmers began building fortified villages 

with wall-trench houses, produced shell-tempered pottery, and had stratified societies (Yerkes, 

1988). Mississippian populations in the Southeast are now known for their these villages and 

platform mound centers such as Kincaid or Cahokia.   

Exchange in the Archaic Period 

Exchange is an integral part of every human culture.  Ancient exchange patterns are 

frequently measured by material culture.  Exchange and interactions leave a mark in the biology 

of individuals as well, if cultural exchange is accompanied by exchange of mates or at least 

mating.  As reviewed above, systematic patterns of mate exchange result in a pattern of gene 

movement or migration, reflected in differential degrees of genetic variation between men and 

women at individual sites.  Growing archaeological evidence suggests greater cultural 

complexity among Archaic peoples of the mid-South than was previously recognized (Emerson 

et al., 2009), including periods of long-distance material and cultural exchange.  The movement 

of goods in such a way is predicated on human action.  This study hypothesizes that Middle and 

Late Archaic groups in the mid-South exhibit patterns of mate exchange that served to reinforce 
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their existing cultural and material exchange of ideas, goods, behavior, and other aspects of 

social life.   

Following Ritchie’s (1932) description of the archetypical Archaic site of Lamoka Lake, 

researchers working in the eastern United States viewed the Archaic period as a boring middle-

ground between the grand feat of Paleoindian colonization(s) and the Woodland period when 

agriculture, ceramics, and sedentism were believed to emerge (Sassaman, 2010; though as 

Sassaman points out, see Prufer, 2001: 195 for a persistent and truly archaic view of the Archaic 

Southeast).  Early to mid-Twentieth Century archaeologists, reflecting the mores of their time, 

were quick to plug the newly-minted Archaic period into established cultural evolutionary 

sequences whereby hunter-gatherers were either unable, or unwilling, to adopt the supposedly 

advanced hallmarks of complex society – pottery, agriculture, and sedentism (Sassaman, 2010).   

Neo-evolutionary views of Archaic peoples persisted until the 1960s and 1970s when 

processualism, a paradigm that embraced scientific methodologies, empirically-based data, and 

deductive logic to understand human cultural variation and change, became the main school of 

archaeological thought (the New Archaeologists) (Sassaman, 2010).  Through empirically-

minded fieldwork a new picture of hunter-gatherers emerged in which hunter-gatherers can live 

long lives of relative leisure accompanied by adequate and reliable food (Netting, 1986).  As 

comprehensive datasets emerged in the 1960s, the picture of the Archaic period as a long North 

American “Dark Ages” began to dissolve.  It was replaced, and is still being replaced in the 

minds of some, with notions of local and regional distinctiveness based on cultural or ethnic 

distinctions embodied in place-making through the construction of burial mounds and 

settlements.  Rather than hopeless wanderers barely subsisting without pottery and agriculture, 
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Archaic peoples are now understood to be more adept and socially complex than previously 

thought.   

Several examples of exchange within the mid-South United States are pertinent to the 

present discussion.  Archaic exchange networks detectable in the archaeological record appeared 

in the Middle Archaic period when seasonal population aggregations allowed for exchange of 

materials less abundant than those in the immediate surroundings (Brown, 2004).  The most 

common exchange items found in archaeological assemblages include marine shell and artifacts 

moving north from the Gulf Coast while copper artifacts flowed south from the Great Lakes 

(Brown, 2004).  Indian Knoll, a large site that was part of the Green River Shell Mound Archaic 

tradition in western Kentucky, received both shell and copper goods (Brown, 2004).   

Jefferies (1997, 2004) makes an argument for patterned regional interaction and exchange 

through material culture as an adaptation to reduced mobility (see Kidder and Sassaman, 2009 

for support of this hypothesis).  Middle and particularly Late Archaic bone pin artifacts from a 

broad swath of the Southeast demonstrate preferential interaction partners and patterned habits of 

exchange.  Early bone pins dating to the late Middle Archaic from the Green River region of 

western Kentucky are stylistically simple with little effort made to decorate the pins with 

engravings or other details (Jefferies, 2004).  Assemblages of Late Archaic bone pins from this 

region are still likely to include rather simple designs but may also hold an occasional crutch-top 

head style common to much of the Southeast, or painted rather than incised decorations on the 

pin shafts (Jefferies, 2004).  Based on technological and stylistic similarities the Middle and Late 

Archaic people of the Green River region were participating in regional exchange with peoples 

south of them but not across the Ohio River, though it was geographically more proximate 

(Jefferies, 2004; Moore, 2010b).  Societies along the Mississippi River and into southern Illinois, 
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however, share much similarity in bone pin styles indicating regular exchange of information, 

goods, and perhaps people throughout that region (Jefferies, 2004).   

Moore’s (2010b) examination of fishhooks from the Green River region supports Jefferies’ 

(1997, 2004) assertions that interactions were patterned.  Fishhooks of the typical Green River 

style are found in high numbers at the Archaic sites of Eva and Anderson in Tennessee (both 

included in the present analysis), into Indiana (McCain site), and even into Oklahoma (Moore, 

2010b).  Green River fishhooks were found in fewer numbers at other Archaic sites in Illinois 

(Black Earth site), Indiana (Crib Mound and Firehouse sites), other parts of Kentucky 

(Rosenberger site), and at Russell Cave in Alabama (Moore, 2010b).  The presence of Green 

River fishhooks throughout the region suggests that people of the Middle and Late Archaic 

periods experienced regional diversification in material culture.  

In addition to bone pins and fishhooks, Late Archaic lithic material from southern Indiana 

bears similarity to Middle Archaic points from southern and western Illinois, though the pieces 

are quite different from lithics recovered from along the Green River in western Kentucky 

(Jefferies and Butler, 1982).   

The Benton Interaction Sphere in the middle Tennessee Valley demonstrates regional 

exchange of material goods as a mechanism to reduce intergroup conflicts (Johnson and 

Brookes, 1989; Kidder and Sassaman, 2009).  The interaction network was in operation from 

3,600 to 3,000 BC (Johnson and Brookes, 1989) or 5,600 to 5,000 BP (Jefferies, 1996).  

Collections of large Middle Archaic Benton, Cache, and Turkey-tail points cluster in the middle 

Tennessee and Tombigbee River drainages, but are also found in an expanded area of the central 

Southeast region (Kidder and Sassaman, 2009).   Source analysis of the Benton points showed 

that the raw material, blue-gray Fort Payne chert, came from areas south of the drainage 
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(Johnson and Brookes, 1989).  Interpretations of the exchange patterns are similar to those 

discussed above for the Green River region of Kentucky.  Increasing population sizes in the late 

Middle and Late Archaic, in conjunction with increased sedentism, meant that material goods 

were used to mediate intergroup conflicts, define identity, facilitate the exchange of mates, and 

build alliances (Johnson and Brookes, 1989; Jefferies, 1996). 

Sassaman (2010) refers to groups living in the middle Tennessee River Valley in the Middle 

and Late Archaic as “middlemen” between the Benton sphere to the south and the core of the 

Shell Mound Archaic communities along the Green River to their north.  

In summary, considerable temporal and geographic variation in settlement systems, social 

complexity, subsistence, mortuary styles, and even skeletal morphology existed in the Archaic 

period of the Southeast (Jefferies, 1996; Kidder and Sassaman, 2009; Milner et al., 2009).  

Archaeologists working within a regional framework are in fact recognizing more cultural and 

biological diversity in even the most remote time depths of human occupation of the continent.   

These examples of Archaic period material culture exchange within the geographic bounds 

of the present study (Figure 2) serve to highlight just how much interaction Archaic groups had 

with one another, particularly during the Middle Archaic.  The examples also show that the 

exchange was patterned – Green River groups in western Kentucky traded items mostly south, 

avoiding groups north and west of them across the Mississippi and Ohio Rivers – while the 

groups in southern Illinois and Indiana exchanged materials with one another.  At least three 

spheres of exchange (or absence of exchange) were operating in southern Illinois, western 

Kentucky, and central Tennessee.  It is still unclear whether similar distinctions were made in 

regards to the biological composition of these Middle and Late Archaic groups.  Preferential 

exchange of goods with one group, but not another, should reflect the social and political climate 
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of the Archaic groups participating in the exchange.  This study will speak to whether the same 

pattern of exchange is seen in markers of biological affinity or relatedness. 

Cultural manifestations such as mortuary style also show variation in regional and temporal 

patterns, particularly in the Middle to Late Archaic.  Reflecting a less sedentary lifestyle, Early 

Archaic peoples were buried where needed (except at more permanent habitations like Koster’s 

Horizon 11) (Streuver and Holton, 1979).  Late Middle Archaic customs, reflective of residential 

sedentism, included repeated-use burial sites located outside of the living spaces or burial 

mounds on top of nearby bluffs (Charles and Buikstra, 1983).  While mortuary customs varied in 

the Late Archaic, by this time individuals were typically buried in planned cemeteries with local 

and exotic grave goods (Milner et al., 2009).  Beyond the choice of location, some variation in 

body position is seen in the Middle and Late Archaic sites of Black Earth in southern Illinois and 

the Shell Mound Archaic sites in western Kentucky.  Unlike their Shell Mound Archaic 

neighbors, individuals at the Black Earth site were likely to be found in the extended rather than 

flexed position (46% of the sample at Black Earth versus 2.6% at Green River sites) (Milner et 

al., 2009).  This is yet another example of the separation between groups in southern Illinois, 

Indiana, and Ohio with those just across the river in western Kentucky and northern Tennessee 

who were trading with each other or with groups south of the Mississippi and Ohio Rivers.  

The above discussion of bone pins, fishhooks, lithics, and mortuary practices demonstrate 

patterned, preferential exchange among Archaic peoples in the western Southeast.  Given these 

archaeological patterns – that the Mississippi and Ohio Rivers were major barriers to cultural and 

material exchange – the present analysis will assess the degree to which markers of biological 

exchange (mating) match the patterns produced by the exchange of cultural and material goods.   
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Figure 1. Prominent sites in the mid-South overlain by simplified pattern of material culture exchange. 

1: Koster; 2: Elizabeth Mounds; 3: Modoc Rock Shelter; 4: Tree Row; 5: all Green River sites;  

6: Big Sandy, Eva, Kay’s Landing; 7: Anderson; 8: Cherry, Ledbetter Landing;  

9: Oak View Landing; 10: Guntersville Basin; 11: Black Earth 

 



34 

 

Pre-Archaic Biological Variation in the New World 

While most scholars agree that modern Homo sapiens colonized the New World from parts 

of Asia, little agreement exists beyond these details due to incommensurable data sets which 

demonstrate linguistic, cultural/material, and biological homogeneity as well as heterogeneity 

within Native American samples.  Questions remain regarding the size and number of founding 

populations, the exact timing of migration(s), where founding groups originated (especially 

earlier versus later migrations), and whether biological continuity exists through time.  

Additional problems inherent in these studies include issues common to anthropological 

endeavors such as small sample size (particularly for the earliest material from North America), 

massive population movements, epidemic disease outbreaks, genetic bottlenecks within the 

recent Historical period (Merriwether, 2006), and legal issues in North America that potentially 

limit analyses of human remains (NAGPRA, for a review see Buikstra, 2006). 

For decades anthropologists have envisioned the peopling of the New World as multiple 

waves of small groups of nomadic big-game hunters moving swiftly across the Bering Land 

Bridge from Asia to North America through an ice-free corridor between 14,000 and 18,000 

years ago.  They hunted Pleistocene megafauna such as mammoth, bears, sabre cats, giant 

beavers, and many other now-extinct animals using large, sophisticated projectile points of the 

Clovis tradition.  They moved south and east quickly, reaching southern Chile by 12,500 years 

ago (Meltzer, 2013).  Initially, many purported pre-Clovis sites suffered complications with 

dating, as well as whether lithics recovered at these sites were anthropogenic or taphonomic in 

origin.  Claims of pre-Clovis occupations from California to Pennsylvania were met with 

skepticism.  Thus, the land-bridge/big-game Clovis-first model persisted.  Recently, evidence for 

pre-Clovis occupations in the Americas suggests that later Archaic-period populations, having 
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undergone evolutionary processes such as genetic drift, likely harbored considerable biological 

and genetic variation within regions of North and South America.   

The special circumstance surrounding the peopling of the New World offers a unique 

setting in which to think about human adaptation and microevolution.  Small, mobile groups 

carried with them considerable genetic diversity as they migrated down the coast and/or through 

the interior towards the Southeast.  Each successive generation negotiated their place on the 

landscape – whether by forming alliances with neighbors or fighting with enemies, participating 

in long-distance trade networks or remaining relatively isolated, engaging in ritual ceremonies 

both near and far, exchanging mates between groups, diversifying their language, changing their 

subsistence and residential lifeways, and in some cases building earthworks that still remain.   

The search for ancestral Native Americans as well as the specific details regarding the 

peopling of the New World have long-interested the anthropological community.  The topic has 

attracted considerable and ongoing anthropological efforts from human morphologists (Jantz and 

Owsley, 2001; Auerbach, 2012), archaeologists (Meltzer, 2013), linguists (Greenberg et al., 

1986), and especially geneticists (Malhi et al., 2002; Kemp et al., 2007; Fagundes et al., 2008a; 

Fagundes et al., 2008b; Kitchen et al., 2008; Mulligan et al., 2008; Kemp and Schurr, 2010) in an 

effort to test models of human occupation on the continent, but also to study human adaptations, 

both cultural and biological, that occurred along the way.   

Models that seek to explain phenotypic heterogeneity in the New World generally are 

limited to two explanations: multiple waves of migration (and replacement) or in situ change due 

to genetic drift and local adaptations (Powell, 2005).  The three-wave migration model for the 

peopling of the New World relied heavily on linguistic and dental morphological groupings 

(Aleut-Eskimo, Na-Dene, and Amerindian), and to a lesser extent employed genetic evidence 
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(Greenberg et al., 1986).   More dental variation was observed in the north rather than in the 

south and Mean Measure of Divergence analysis based on 28 dental traits showed that all New 

World native samples were found to resemble each other more than Old World samples.  

However, the samples were from late prehistoric or historic samples, most from the last 3,000 

years, meaning they may not adequately reflect the earliest entrants into the continent (Powell, 

1995).  The Greenberg et al. (1986) “three wave” paper was, and remains, controversial. Yet, the 

deliciousness of a straight-forward, three-wave model backed by three different lines of evidence 

was snatched up and widely reprinted by popular media.  Jantz and Owsley (2001) also 

employed models of dispersion including waves, citing more cranial diversity in Paleoindian 

samples as evidence for two waves of migration along a coastal route.  The earliest entrants into 

the New World exhibited distinct cranial morphology with long, narrow cranial vaults, greater 

facial forwardness, and lower facial height in comparison to later individuals. When compared to 

samples outside the New World, the early individuals look more similar to Circumpacific 

populations (Jantz and Owsley, 2001).  The situation in South America is comparable in that 

early crania from Sumidouro Cave, Brazil (8,500 yBP) look more like Africans and Australo-

Melanesians with long, narrow crania, low projecting faces, and low, wide orbits and noses 

(Neves et al., 2007).  The level of heterogeneity in South America implies two waves of 

migration with replacement (Neves et al., 2007).  Lastly, in situ genetic drift is frequently used to 

explain heterogeneity of New World samples.  Genetic drift, as a contributor to increased 

heterogeneity between samples, has a disproportionate effect on small groups. The first entrants 

into the New World likely migrated in small groups (Powell, 1995; Merriwether, 2006). Whether 

they spent long periods of time in Beringia waiting for an ice-free corridor to expand (Tamm et 

al., 2007), or they followed a route along the coast (Jantz and Owsley 2001; Jantz, 2006), the 
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small size of founding populations would yield a pattern of homogeneity in markers closely 

determined by genetics. However, as population sizes grew and subsequent generations moved 

throughout the New World, biological variables that exhibit less genetic influence and higher 

rates of plasticity would cause phenotypic heterogeneity as an adaptation to many different 

environments in the Americas. These tenets are a question of scale and level of analysis.  No 

matter the cause, the earliest entrants in the New World are morphologically distinct from later 

colonizers (González-José et al., 2001; Jantz and Owsley, 2001; Neves et al., 2007). 

The situation surrounding the peopling of the New World and the subsequent dispersal 

across continents is immensely complex.  Archaeologists working within a regional framework 

are recognizing more cultural and biological diversity in even the most remote time depths of 

human occupation of the continent (e.g. the Topper and Cactus Hill sites on the Eastern seaboard, 

the Channel Islands off California).  Given the level of morphological diversity seemingly 

present in the early entrants to the New World, it is common at this point to turn to genetic data 

for solid answers.  However, genetic analyses are still only one avenue towards understanding 

New World migrations.  Genetic markers specific to Native Americans have not been found 

outside western continents.  Unlike the phenotypic data, mitochondrial (Merriwether, 2006) and 

Y-chromosome (Karafet et al., 2006) data have been used as evidence of relative biological 

homogeneity within Native Americans as explained by a single migration wave with rapid 

expansion after the last glacial maximum (Karafet et al., 2006; Merriwether, 2006).  However, 

the Y-chromosome (and the mtDNA molecule) is a small segment that acts as a single locus 

(Merriwether, 2006); it therefore may be more affected by genetic drift and mutation rather than 

selection (Karafet et al., 2006).  Diversity does exist within the continent however, and as 
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previously stated these differences have been attributed largely to genetic drift which occurred 

after colonization. 

Genetic studies of Native American genomes have garnered much attention and contention 

over the past 30 years.  Though homogenous when compared with the levels of diversity found 

on other continents, Native American genomes reveal considerable diversity within their larger 

population.  Extensive genomic sampling across the Americas demonstrates a single origin of 

Native Americans from populations in northeast Asia (Smith et al., 2005; Tamm et al., 2007; 

Wang et al., 2007; Fagundes et al., 2008b).  Unlike morphological or phenotypic data, both 

mitochondrial and Y-chromosome DNA variation show evidence of relative biological 

homogeneity within the Americas as explained by a single source population or migration wave 

with rapid expansion after the Last Glacial Maximum ~ 18 kyBP (Merriwether, 2006; Tamm et 

al., 2007; Fagundes et al., 2008b; Kemp and Schurr, 2010).  With a comprehensive sample of 

autosomal microsatellite markers Wang et al. (2007) found low genetic diversity within 

populations and a high degree of differentiation compared to what is seen on other continents.   

A growing consensus of geneticists think migrants to the New World stayed in Beringia for 

quite some time (the ‘Beringian Incubation Model’ or ‘Out of Beringia’ model) (Tamm et al., 

2007; Achilli et al., 2008; Fagundes et al., 2008b; Kemp and Schurr, 2010).  Five-thousand years 

before the Last Glacial Maximum an ancestral population moved into Beringia (Fagundes et al., 

2008b).  Over the subsequent 5,000 years small groups were affected by genetic drift and 

underwent a reduction in population size, further contributing to a loss of genetic diversity while 

in Beringia (Fagundes et al., 2008b).  As the glacial stage came to a close around 18,000 ya the 

population expanded and began migrating quickly south (Fagundes et al., 2008b).  This model 

has received criticism from archaeologists due to a lack of material evidence for the purported 
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5,000-plus years of habitation on the Beringian Land Bridge (Meltzer, 2013).  It is likely that 

these sites have been lost to taphonomic processes related to the harsh tundra and coastal 

environment (nearly all would be under water), hampering reconciliation between genetic and 

material sets of data. 

Genetic diversity of autosomal microsatellite markers decreases in a clinal fashion, 

indicating a north to south migration (Wang et al., 2007) whether along the coast or through the 

interior.  In fact, the distribution and frequency pattern of mtDNA led Torroni et al. (1993) to 

conclude that tribalization of groups moving south began early.  No matter their route, the first 

entrants into the New World likely migrated in small groups (Powell, 1995). Therefore, genetic 

drift and population bottlenecks (Fagundes et al., 2008b) contributed to the pattern of genomic 

variation we see today.   

Though a single genetic origin is favored by most geneticists today, interpretations vary 

regarding the specific route(s) colonizers took southward.  Ice-free zones along the Pacific coast 

west of the Cordilleran ice sheet may have been in place by 14 kya (Wang et al., 2007), allowing 

for a coastal migration.  The ice-free corridor of the interior land mass opened around 14 kya and 

would not have been suitable habitat for human populations prior to then (Fagundes et al., 2008).  

Wang et al. (2007) favor a coastal route based on autosomal markers and language.   Perego et al. 

(2009) favor two routes of colonization following time spent in Beringia – one that carried 

haplogroup D4h3 down the Pacific coast, and another that carried X2a through an ice-free 

corridor.  Kemp et al. (2007) found a variant of mtDNA haplogroup D and Y-chromosome 

haplogroup Q-M3* in a 10,300 yrBP male from On Your Knees Cave on Prince of Wales Island, 

Alaska.  This same mtDNA variation is shared with the Cayapa of modern Ecuador (Rickards et 
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al., 1994; Perego et al., 2009; Kemp and Schurr, 2010) and this distribution has been used to 

support a swift, coastal migration route south.   

Many studies over the past two decades have identified four and then five mtDNA 

haplogroups present in indigenous peoples of the New World: A, B, C, D, and X (Schurr et al., 

1990; Torroni et al., 1993; Achilli et al., 2008; Fagundes et al., 2008b; Kemp and Schurr, 2010).  

The structure of mtDNA haplogroups indicates they coalesced 18,000 to 21,000 yrBP, coincident 

with receding glaciers at the end of the Last Glacial Maximum and the colonization of the 

Americas (Achilli et al., 2008).  More than 95% of Native American mtDNA haplogroups fall 

into haplogroups A-D (Jobling et al., 2004).  Many groups share some frequency of at least three 

of the five main mtDNA haplogroups (A-D, X) (Kemp and Schurr, 2010), though there are some 

interesting exceptions.  Na-Dene speakers are nearly fixed for haplogroup A and 27% of them 

have a specific type of A with a base substitution of A to G at locus 16331 (Torroni et al., 1993; 

Kemp and Schurr, 2010).  Parr and colleagues (1996) analyzed haplotype diversity in the 

Fremont culture (250-1300 AD) of the Great Basin (northern Utah in this case).  None of the 

individuals carried haplogroup A, the most common haplogroup among indigenous Americans 

(Parr et al., 1996).  The majority of the Fremont sample had haplotype B with low frequencies of 

C and D (Parr et al., 1996).  The authors attribute the irregular distribution of haplotypes in their 

Fremont sample to genetic drift.  Haplogroup D3 is found exclusively in Eskimo populations, 

whereas D2a is found among a broader swath of indigenous peoples including Aleuts, Eskimos, 

and Na-Dene speakers (Achilli et al., 2008; Perego et al., 2009).  X2a haplogroup is found in 

high frequency (25%) amongst Ojibwas of northern Ontario but is also found in other North 

American groups such as the Sioux and Yakima, though at low frequencies (Malhi et al., 2002; 

Perego et al., 2009).   
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In a survey of 21 Native American samples and 54 world-wide samples, Schroeder et al. 

(2009) finds that a 9-repeat allele located at microsatellite D9S1120 on the Y chromosome is 

shared by all sampled native genomes – a private marker, so to speak.  The findings support a 

shared genetic Asian origin for Native Americans and that founding populations could have been 

isolated from other Asian groups prior to colonizing the New World. 

Relative levels of Y-chromosome and mtDNA variation for males and females respectively 

are indicative of the rate and pattern of gene flow, genetic drift, and the impact of sex-specific 

differences in population size on genetic variation (Bolnick et al., 2006).  Male and female 

movements across much of the North American landscape differ.  Many comparative studies 

have found that females are more variable in their mtDNA than males, indicative of more 

movement of females relative to males (Bolnick et al., 2006).  The pattern is not the same across 

the Americas, however.  In some North and Central American populations the pattern is reversed 

where in some South American populations there are no differences between male and female 

patterns of genetic variation (Bolnick et al., 2006).  The patterns reflect the population and 

cultural histories of individual groups.   

Using autosomal genetic markers, Schroeder et al (2009) found a correlation between 

geographic and genetic distances in their sample of Native American genomes, but that models 

of geographically-structured population fissions were a better fit for the data than was an 

explanation for population structure based solely on isolation by distance. 

While native populations are more homogenous when compared to levels of diversity on 

other continents, evolutionary forces made these small groups of mobile hunter-gatherers rather 

heterogeneous between groups (Wang et al., 2007).  Following the end of the Last Glacial 

Maximum when these groups quickly moved south either via a coastal or inland route (or some 



42 

 

of both) they carried their group-specific genomic variation with them as they populated the rest 

of the Continent.  The preceding review serves to situate groups in the Southeast within the 

broader context of Native American genomes.  We will now turn to genomic diversity within the 

Southeast specifically. 

Many DNA samples from the Middle Woodland Hopewell people are available and reveal 

some interesting interactions and migrations in the Southeast during this time.  Bolnick and 

Smith (2007) analyzed mtDNA haplogroups from Middle Woodland individuals buried at Pete 

Klunk mound group, located on the Illinois River near Kampsville, IL, and Mound 25 from Ross 

County, OH.  The frequency of haplogroups was not significantly different between males and 

females, between burial mounds, or different mortuary styles defined in the literature.  Males 

showed greater haplogroup, haplotype, and nucleotide diversity in their mtDNA supporting 

matrilocal postmarital residence patterns.  Matrilineal descent did not influence the placement of 

individuals during Hopewell times, though.  Status in these groups was not inherited maternally 

and likely was not ascribed (Bolnick and Smith, 2007).  Morphologically speaking, females from 

these sites are more variable than males, supporting contentions that females migrated into the 

area from outside the group (perhaps a patrilocal residence pattern) (Bolnick and Smith, 2007).  

However, males inherit the mtDNA of only their mother.  Presumably, if mate exchange 

networks were stable then patterns of variation in mtDNA would even out between males and 

females (Bolnick and Smith, 2007).  These Hopewell peoples likely practiced matrilocal 

residence and experienced environmental stress that disproportionately affected females (Bolnick 

and Smith, 2007).  Alternatively, mate exchange networks and patterns of residence may not 

have been stable or consistent due to demographic instability in the region during this time (see 

Charles, 1992; Bolnick and Smith, 2007).  Surprisingly little gene flow is required to counteract 
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drift (more than one migrant per generation is needed to prevent differences that could result 

from drift) (Bolnick and Smith, 2007).  Two computer programs that estimate gene flow 

(MIGRATE and IM) estimated between three and 141 migrants per generation among Middle 

Woodland Hopewell groups living in the Illinois and Ohio River Valleys (Bolnick and Smith, 

2007).  It seems from the mtDNA data that gene flow amongst the Middle Woodland Hopewell 

was westward from Ohio to Illinois (Bolnick and Smith, 2007).   

Mississippian and modern groups in the Southeast have also been sampled to assess their 

genomic variation.  The Mississippians were maize agriculturalists now known by their 

construction of massive earthen mound centers and smaller villages throughout much of the 

Southeast after ~900 AD.  The largest center is Cahokia, located near the Mississippi River in 

what is now East St. Louis, IL.  Samples from Mound 72 at Cahokia revealed three mtDNA 

haplogroups: B (62.5%), A (25%), and C (12%) (Napier, 2000; Pritchett, 2012).  The Schild site 

(IL) revealed more haplogroups present amongst Mississippians living there: 38.3% A, 23.4% C, 

12.8% B, 8.5% D, 17% X (Raff, 2008; Pritchett, 2012).  Marshall's (2011) analysis of mtDNA 

from the Mississippian site of Angel Mounds found 52% haplogroup A2, 20% C1, 12% D1, 8% 

C4c, and 4% B2.  While haplogroup C1 is found in many Native American samples, the C4c 

form is very rare (Marshall, 2011; Pritchett, 2012).  These studies show a range of genomes in 

Mississippian groups, including X and a rare variant C4c.   

Bolnick and Smith (2003) found that mtDNA variation in the Southeast was significantly 

impacted following European contact.  Using markers from across the genome, Wang et al. 

(2007) also found evidence for a recent bottleneck in Choctaw peoples of the Southeast.  Other 

studies have found that European contact did not significantly impact native genomic variation 

among late pre-historic Oneota groups (Stone and Stoneking, 1998).  Modern-day Cherokee 
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mtDNA variation differs from other populations in the Southeast (Bolnick and Smith, 2003; 

Bolnick et al., 2006) however, their Y-chromosomes share broad similarities with Muskogean 

speakers.  Both sets of aDNA show differences between the Cherokee and northeastern 

populations.  Bolnick et al. (2006) postulate that the Cherokee originated or lived in the 

Southeast for long enough to share similarities with those neighbors via gene flow; but later 

Iroquoians migrated to the northeast, retaining their matrilocal residence system and restricting 

gene flow with neighboring patrilocal groups in the northeast.   

Bolnick et al. (2006) divided their sample of modern Native American genomes into north 

and south culture groups based on language, lineage, and residence patterns.  Analyzing the 

effect of culture on haplogroup variation, they found that groups from the same culture area 

share similar patterns of Y-chromosome variation and that this difference accounted for a 

significant portion of the total genetic variance they found in the eastern Woodlands as a whole 

(Bolnick et al., 2006).  Southeastern groups, as opposed to those from the northeastern portion of 

the Eastern Woodlands, exhibit similar frequencies of Y-chromosome haplogroups, exhibit nearly 

the same haplotypes, and cluster together in a multi-dimensional scaling analysis of genetic 

relationships among populations (Bolnick et al., 2006).  The same pattern is not shown in 

samples of groups from the northeast (Bolnick et al., 2006).   

In review, Southeast Native American groups harbor all four major mtDNA haplogroups in 

decreasing frequency from A to D (Bolnick and Smith, 2003; Smith et al., 2005).  Small effective 

population sizes means that genetic drift likely played a role in structuring genetic diversity once 

these groups were on the American continent (Wang et al., 2007).  Though largely limited for 

now to later Holocene samples, the pattern of genomic diversity within the region demonstrates 

gene flow often enough that later Mississippian samples still harbor all haplogroups identified in 
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the founding samples.  The pattern for the Southeast also differs from the Northeast in that males 

from the Southeast participated in considerable gene flow between groups (Bolnick et al., 2006). 

The genomic research reviewed above was performed largely on populations that came 

after the ones used in the present study. It also reviews mtDNA and Y-chromosomal data which 

are not the same as studying the morphology of long bones, teeth, or crania. What the genetic 

structure of later groups reveals is considerable variation within a relatively homogenous group.  

The composition of human groups embodies issues paramount to human concern – 

ancestral relationships, reproduction, mate selection, residence patterns, and bio-cultural 

interactions.  The picture emerging from recent anthropological data on Archaic-period peoples 

of the mid-South suggests considerable genetic and cultural differentiation may already have 

been in place by the Early Archaic period (Sassaman, 2010).  Subsequent population 

replacement(s) and/or migrations, combined with Middle and Late Archaic-period networks of 

interaction and exchange based on alliances and kinship, produced a mosaic of cultural 

expressions across the Southeast by the close of the Archaic period.      
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CHAPTER 3 

 

MATERIALS 

Archaic Populations in the Mid-South Sampled Here 

The present study comprises data from individuals excavated from Archaic period sites in 

the mid-South United States.  Key archaeological sites in the Green River region of western 

Kentucky, the Carrier Mills Archaeological District in southern Illinois, and the middle 

Tennessee Valley are included to provide an expansive, though bounded geographic region 

(Figure 2 and Table 1). 

Green River Region of Western Kentucky 

Situated in western Kentucky, the Green River is a small tributary of the Ohio River and 

home to a cluster of many Archaic period archaeological sites (Figure 3).  Collectively, the sites 

are known for thick shell midden deposits and numerous human burials that span 6,500 to 4,500 

cal yrBP, the late Middle Archaic to Late Archaic periods (Crothers and Bernbeck, 2004).  The 

Green River group includes many sites: Barrett (15McL4), Butterfield (15MCL7), Carlston 

Annis (15BT5), Chiggerville (15OH1), Parrish (15HK45), Read (15BT10), Ward (15McL11), 

and perhaps the most famous of Archaic period sites, Indian Knoll (15OH2).   
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Table 1. Archaeological sites included in this study 

Geographic area Site Period 

Green River, KY Indian Knoll (15OH2) 

 

Middle to Late Archaic 

(8,900 to 3,200 cal yrBP) 

 

Middle TN Valley  

 

Big Sandy (25HY18) 

Cherry (84BN74) 

Eva (6BN12) 

Ledbetter Landing (9BN25) 

Oak View Landing (1DR1) 

 

Late Early Archaic to Late Archaic  

(9,500 to 3,200 cal yrBP) 

Southern Illinois Black Earth (Sa-87) Middle to Late Archaic 

(8,900 to 3,200 cal yrBP) 
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Figure 2. Locations of Archaic period sites. Modified from Anderson and Sassaman, 2012 (p. 68 Figure 3-1).  

Sites used in the present analysis are denoted with SOIL for the Black Earth site in the Carrier Mills Archaeological 

District in southern Illinois, CTN for sites long the Middle Tennessee River Valley (Eva, Cherry, Ledbetter Landing, 

Big Sandy, and Cherry), and WKY for Indian Knoll along the Green River in western Kentucky. 
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The history of archaeology at the Green River sites deserves review. The shell mounds 

were known to interested laymen and professional archaeologists going back to Clarence B. 

Moore who surveyed the area from 1913 through 1917, traversing the interior waterways in the 

Gopher of Philadelphia (or, the Gopher), his steamboat (Polhemus, 2002). Moore recorded and 

later published his meticulous field notes in which he described the geography, mounds, and 

burials of many sites now inundated by damming along the Tennessee River during the middle of 

the last century (Polhemus, 2002).  

Moore’s investigations along the Green River in the Gopher lasted from November 8, 1915 

to February 27, 1916. His time at Indian Knoll lasted just under a month, during which time he 

identified 298 burials and many disturbed remains (Polhemus, 2002). Moore’s work along the 

Green River drew the attention of later archaeologists such as William S. Webb who directed 

Works Progress Administration labor in the excavation of mounds and shell middens in this area 

from the late 1930s into the 1940s. C.B. Moore’s legacy lies both in his meticulous and copious 

notes, journals, and published reports, and in creating awareness of ancient Indian sites for 

preservation and protection. 

William S. Webb picked up in the Green River where Moore’s investigations left off. The 

resulting WPA projects in the region are well known. Webb visited Indian Knoll in 1937 and 

recorded 880 burials in addition to what Moore identified 20 years earlier (Polhemus, 2002). 

Additionally, where Moore saw fishing nets and netting needle artifacts, Webb realized that the 

grave goods unearthed at Indian Knoll were atlatl weights (Polhemus, 2002).  
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Figure 3. Green River region of western Kentucky. From: Moore (2010, Figure 1). 
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The Green River sites have been used to demonstrate increased sedentism in the lower 

Ohio River Valley with the assumption that the thick, dark shell middens are indicative of 

sustained occupation in those areas (Crothers and Bernbeck, 2004; Milner et al., 2009).  

Mortuary treatment at Green River sites consisted of placing human remains in the shell middens 

without planning or structure (Crothers and Bernbeck, 2004; Milner et al., 2009).  Most skeletons 

were found flexed, in shallow pits, and were usually placed in single internments with shell and 

middens overlaying them (Milner et al., 2009).  Unlike their neighbors in southern Illinois, some 

Green River burials included strings of marine shell-disk beads in high quantity and most were 

unlikely to be covered in red ocher (Milner et al., 2009).   The mounds of shell were not 

constructed for the express purpose of holding burials but were instead an opportune place to 

dispose of both the human remains and the remains of ceremonial feasting (Crothers and 

Bernbeck, 2004).   

Comparisons of skeletal morphology within the Green River area are numerous and 

represent some of the most intensive and pioneering in all of bioarchaeology.  The Indian Knoll 

site (4508 ± 365 to 6100 ± 315 BP) is a Late Archaic shell-midden (Rothschild, 1979).  Given 

the alkaline soil due to high quantities of shell in the burial middens, many of the remains 

recovered from Indian Knoll are of good preservation (including the youngest members of the 

sample).  Clyde Snow (1948) provided analysis of more than 1,200 individuals recovered from 

the large site.  Snow’s analysis shows the residents interred at Indian Knoll are of slender, 

medium body size and build with adult stature around 65” for males and 61” for females.  They 

had long arms when compared to modern Europeans, with specifically longer forearms and 

lower legs.  Though variants were found, the vast similarity of skull morphology within the 

Indian Knoll sample led Snow (1948) to describe them as inbred or isolated.  Their basic head 
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morphology is a roof-shaped, high cranial vault with slight to medium slope to the forehead, 

medium expression at the glabellar region, large faces with prominent zygomatic bones, 

square/everted angular mandibles with moderate chins, medium proportions of nasal aperature 

breadth and height, sharp nasal sills, and an high apex to the occipital bone (Snow, 1948).  Their 

teeth are larger and less complex than Woodland period samples from the Ohio Valley (Sciulli, 

1979) and Mesolithic and Australoid groups (Perzigian, 1976). 

More recent work on the Green River skeletal material shows geography played a large role 

in keeping the Green River peoples rather cohesive as a group (Sciulli, 1979; Herrmann, 2002).  

Females were found to have greater variation in cranial non-metric traits, indicative of patrilineal 

or patrilocal post-marital residence patterns (Herrmann, 2002).   

Archaic peoples living along the Green River and its tributaries participated in networks of 

exchange that moved goods and people across the landscape of the mid-South and Southeast. 

Copper artifacts and fragments of artifacts were recovered from Indian Knoll, Barrett, and 

Carlston Annis burial contexts (Marquardt and Watson, 1983; Brown, 2004). Marine shell from 

the Carolinas and Florida also turned up in Green River shell midden burials (Marquardt and 

Watson, 1983; Brown, 2004).  

Of note to the present study, Winters postulated that the Green River region was a little too 

far removed from the mainstream of exchange routes along the Mississippi River (in Marquardt 

and Watson, 1983: 334).  Marquardt and Watson (1983) agree that significant engagement by the 

Green River peoples in overland or river trade routes remains to be demonstrated, despite the 

presence of non-local grave goods.  This study will investigate the degree to which humans, too, 

may have moved between the Green River groups and neighbors to their north in southern 

Illinois and south in central Tennessee.   
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Carrier Mills Archaeological District in Southern Illinois 

Intensive excavations in 1978 and 1979 at the Carrier Mills Archaeological District 

(Figures 4-5) in central southern Illinois revealed over 500 human skeletal remains in a 

multicomponent site along the north side of the South Fork of the Saline River (Jefferies and 

Butler, 1982; Jefferies and Lynch, 1983).  The work is detailed in a large monograph, The Carrier 

Mills Archaeological Project: Human adaptation in the Saline Valley, Illinois by Richard Jefferies 

and Brian Butler (1982). The following details come from that monograph unless noted.  

The District is located on low uplands (380-400 m above sea level) overlooking large 

lowland areas and the Saline River.  The District is bisected by a small stream which separates it 

into east and west sections.  Sitting in the western half of the Carrier Mills site, Sa-87 consists of 

three areas (A, B, and C).  This portion of the site is known as the “Black Earth site” due to 52% 

of the total 52,000 m2 area (27,000 m2) being marked black by middens. The westernmost 

portion of Sa-87, covering 17,000 m2, is known as Area A and yielded the oldest and deepest 

deposits.  The earliest radiocarbon date from Carrier Mills site 11Sa87 is 3,955 BC (Middle 

Archaic) (Miller, 1981), meaning that the site was occupied by humans beginning in the Middle 

Archaic and lasting 5,500 years to the historic African American settlement known as Lakeview.  

Area A dates to the late Middle Archaic and was composed of a concentration of midden debris 

as well as human remains (Jefferies and Butler, 1982; Jefferies and Lynch, 1983).   
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Figure 4. Carrier Mills Archaeological District location. Jefferies and Lynch (1983, Figure 14.1). 

 

 

 

Figure 5. Three areas within the Carrier Mills Archaeological District. Jefferies and Lynch (1983, Figure 14.2). 
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Other Middle Archaic to Late Woodland components of the Carrier Mills site are found in 

Area B of Sa-87 which covers 26,000 m2 and also includes middens.  Skeletal materials dating to 

the Middle Archaic from Area B are poorly preserved (whereas skeletons from Area A are 

relatively well preserved).  Given the state of bone preservation, Area B is better known for its 

Late Woodland component which survived somewhat better than the earlier skeletal materials.  

Area C is the smallest unit within Sa-87.  Occupation in this portion was less intense than in 

Areas A or B, representing Middle Archaic through Late Woodland components.  The midden in 

this area was heavily disturbed prior to archaeological investigation.   

Sa-88, covering 30,000 m2 along the ridge line just south of Sa-87, contained two middens 

and multiple sets of human remains from the Middle Archaic to Late Woodland time periods.  

The preservation and stratigraphic context of these remains is less than that seen in Area A of Sa-

87, and is a closer match to Area B of Sa-87.  The other area is Sa-86, in the eastern half of the 

project district, contains Middle Archaic through Mississippian materials.   

Lithics from southern Indiana dated to the Late Archaic bear similarity to Middle Archaic 

points from southern and western Illinois. However, exchange networks did not pick up in 

earnest until the Middle Woodland, and not all that marked in the lower Ohio Valley (Jefferies 

and Butler, 1982). Middle Archaic lithic complexes at Carrier Mills are very similar to what was 

recovered from nearby sites along the lower Illinois River Valley (Helton phase) and American 

Bottom (Jefferies and Butler, 1982). Jefferies and Butler (1982) call for more research on the 

Carrier Mills skeletal collection to better understand the “physical, demographic, and health 

characteristics of the local population” (Jefferies and Butler, 1982: xii) and add that “the Saline 

River drainage basin in southeastern Illinois is an area very poorly understood in terms of its 

prehistory” (Jefferies and Butler, 1982: 9).   
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Middle Tennessee River Valley 

Sites near Cypress Creek, a tributary of the Tennessee River as it runs north-south through 

western Tennessee, provide a geographical outlier to some of the more proximate sites like 

Carrier Mills and Green River, KY.  Many excavated sites yielded human remains, including: 

Anderson (40WM9), Big Sandy (25HY18), Cherry (84BN74), Eva (6BN12), Kay’s Landing 

(15HY13), Ledbetter Landing (9BN25), and Oak View Landing (1DR1).  Of these, the Eva site 

is the best-known (Figure 6).  Human occupation at the Eva site began during the early Middle 

Archaic period (Eva phase), around 7,500 BC with a core of Middle Archaic habitation from 

6,000 to 4,000 BC.  Two other phases are also present: Three Mile (late Middle Archaic, circa 

4,000 to 2,000 BC) and Big Sandy (Late Archaic, circa 2,000 to 1,000 BC).  These were 

sedentary hunter-gatherers who favored deer meat and utilized the nearby river to supplement 

their diet with available plant, fish, and animal remains.   

Excavations at Eva revealed 180 flexed human burials (Lewis and Lewis, 1961).  Many 

remains were of poor preservation and fragmentary.  Early craniometric analyses show patterns 

of similarities and dissimilarities between the early Eva individuals and those from the Indian 

Knoll site in the Green River region of Kentucky (at the time of Lewis and Lewis’s 1961 

monograph, Indian Knoll individuals were used as the archetype for Archaic human 

morphology).  Very broadly speaking, both populations exhibit an overall pattern of 

mesocephalic crania with high cranial vaults, bifrontal flattening, protruding occipitals, square or 

oblong orbits, relatively short and broad faces, and medium-sized mandibles with typical sex-

marked characteristics in morphology.  Differences between the early Eva material and that 

excavated at Indian Knoll include an absence of auditory exostoses in the Eva series, medium-

sized zygomatic bones at Eva (in contrast to the comparatively larger morphology seen at Indian 
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Figure 6. Eva site. From Lewis and Lewis (1961, Figure 1).  
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Knoll and later sites in Tennessee), narrow nasal bones in many Eva males whereas Indian Knoll 

people are considered to have moderately wide nasal bones, less facial prognathism in the Eva 

material than seen at Indian Knoll, maxillary palate shape is elliptical or U-shaped in the Eva 

series where at Indian Knoll it is parabolic or hyperbolic, and an overall lessening in the 

occurrence and expression of shovel shaped incisors at Eva contrasts with Indian Knoll and the 

vast majority of other Native American groups (Lewis and Lewis, 1961).   

As related to the present question of biological continuity in the Southeast Archaic period, 

Lewis and Lewis (1961) see the Eva individuals as representative of a long, continual habitation 

that likely began prior to 8,000 years ago.  The peculiar pattern seen at Eva in terms of maxillary 

shape and relative lack of shoveled incisors could be due to abnormally large and long canines 

noted in the Eva sample.  Displacement of other teeth in the maxilla was fairly common at Eva, 

with a marked occurrence among Eva males.  The abnormal morphology is present across strata 

and given the strong genetic inheritance of dental traits is supportive of a hypothesis of long-term 

habitation by genetically related populations at Eva.  Additionally, males exhibit the trait twice as 

often as females and is therefore indicative of male philopatry and patrilocal organization of 

Archaic groups in general (Lewis and Lewis, 1961).   

With a better understanding of what is known about Archaic peoples living in the mid-

South, let us now turn to the skeletal material.  
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CHAPTER 4 

 

METHODS 

Undertaking a study as such this one required the collection of a large body of dental, 

cranial, and skeletal metric data in addition to information regarding patterns of exchange seen in 

the remains of material culture.  The present study is not an archaeological one in that the 

skeletal remains used here were excavated decades ago.  No further excavation was necessary.  

The patterns of cultural exchange evidenced in the archaeological record were mined from 

relevant archaeological literature (cited and discussed above).  Additionally, geographic distances 

between all sites were recorded.  The archaeological and geographic data sets were used to 

represent a framework of interactions.  For example, it is clear from the archaeological record 

that the Ohio and Mississippi Rivers were somewhat of a geographical boundary between groups 

living in southern Illinois and Indiana and those living across the rivers to the south in western 

Kentucky and northern Tennessee.  The statistical tests described below will test if the same 

pattern holds true for human genetic swaps, or biological exchange.  

The remaining portions of this chapter include a discussion of the three subsets of 

morphometrics used here and information on how missing data were treated in each subset. 

Principal Components Analysis and Mahalanobis D to Estimate Biological Distance 

Here, univariate and multivariate analyses will test levels of biological homogeneity within 

and between the samples using morphometric methods that target biologically stable (canalized) 
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skeletal traits as proxies for destructive, molecular genetic analyses.  Hypothesis 1 compares 

estimates of biological distance with patterns of cultural exchange evidenced in the 

archaeological record.  Hypothesis 2 compares male versus female biological variation reflective 

of relative levels of male versus female post-marital residence and mobility.  Several statistical 

methods were employed to evaluate these hypotheses. Patterns of variation in the sample were 

first identified using principal components analysis (PCA). With that basis, measures of 

biological distance were estimated using Mahalanobis Distance (D). Both procedures and their 

applications to the present sample are discussed below. 

James et al (2013) describe the type of statistical analyses used in applications such as this 

one as “unsupervised” (as opposed to “supervised” statistical procedures where predictions can 

be made and cross-validated – such as in the migration matrix methods discussed above).  

Unsupervised statistical procedures are data exploration tools (James et al, 2013).  Validating the 

results of such procedures is not as straight-forward as in more traditional, supervised, methods.  

The true answer is, in fact, unknown – “the problem is unsupervised” (James et al, 2013: 374).  

As the authors point out though, data exploration and pattern recognition aid us in understanding 

all manner of problems from targeted advertising based on habits of internet usage to genomic 

similarities between individuals with cancer (James et al, 2013).  It is useful to look for patterns 

in the data.  

Biological data often include correlated variables – in fact, this characteristic is used to 

make accurate predictions (estimating stature based on femur length, for example).  Principal 

components analysis (PCA) summarizes the set of correlated variables and identifies which ones 

contribute to the observed variation and to what degree (James et al, 2013).  Visualizing the 

variation, either between observations/individuals or among the variables, is also possible with 
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PCA (James et al, 2013).  The way PCA works is described beautifully by “each of the n 

observations lives in p-dimensional space, but not all of these dimensions are equally interesting. 

PCA seeks a small number of dimensions that are as interesting as possible, where the concept of 

interesting is measured by the amount that the observations vary along each dimension” (James 

et al, 2013: 375, emphasis in original).  PCA thus looks for shared variation between the 

variables.  

Given the high likelihood that many of the variables included in this study are correlated, 

Mahalanobis generalized distance matrices (D) were calculated to assess the isolation by distance 

between region-wide sub-samples (e.g. Konigsberg, 1990).  The square root of Mahalanobis 

generalized distance (D) (1936) is a linear estimate of morphometric distance using the 

covariance of individual measurements to adjust the sample means (unlike the Penrose, 1954 

“size and shape” distance statistic) to estimate biological relationships between subpopulations 

(Scott and Turner, 1997).  This specific method allows for the differing contributions of 

absolutely “smaller” versus “larger” measures and allows for correlated variables (Scott and 

Turner, 1997).  A small D value between two groups means those groups share a recent common 

ancestry and a closer biological relationship than with groups with whom their D  value was high 

(Scott and Turner, 1997). Scott and Turner (1997) give several points to keep in mind when 

utilizing distance statistics.  Divergence between groups (higher D scores) are primarily driven 

by genetic drift and founder effect.  Similarly, gene flow can mask phylogenetic patterns. More 

variables used in the analysis will yield more reliable results (Livingstone, 1991), but these will 

be used to estimate distance with equal weight (Scott and Turner, 1997). 
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Quantitative Methods 

Independent variables include biological sex, age, and geographic location of each sample.  

Only skeletally mature adults were included in the analysis. To qualify for observation an 

individual skeleton needed to exhibit fusion of long bone epiphyseal plates and morphological 

changes in the pubic symphyses and auricular surfaces consistent with adult morphology (Todd, 

1921 phases 2-10, or Suchey-Brooks, 1990 phases 2-5 as seen in Buikstra and Ubelaker, 1994). 

If available, estimates of adult age were cross-checked with analyses made by previous 

researchers of the respective skeletal collections.  Sex estimation was estimated from pelvic 

(Buikstra and Ubelaker, 1994; Phenice, 1969) and cranial morphology (Buikstra and Ubelaker, 

1994) and referenced to original reports made by prior analysts.  Each sample was coded with an 

identifier unique to geographic origin and sex.  Age and sex tables are given in the next chapter: 

Results.  

All variables were chosen because they are relatively slower to respond to the effects of 

gene flow than genetic drift, making them more useful for studying long-term patterns of 

migration (Hanna, 1962 in Relethford and Lees, 1982).  Metrics utilized in the present study are 

reflective of continuous, polygenic variation (as opposed to discrete, monogenic variation).  

Dependent variables include dental, cranial, and post-cranial linear dimensions.  Metrics of the 

cranium, dentition, and post-cranial skeleton were recorded by individual on skeletal remains 

with sufficient preservation to allow for the maximum number of dimensions per individual to be 

recorded.   

Missing data points are a common concern for skeletal biologists using data sets from 

ancient remains.  Measures of biological distance, such as Mahalanobis, require complete data 

sets (i.e. no missing values).  This issue was addressed in several ways.  First, the data were 
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subdivided into cranial, dental, and post-cranial data sets.  Parsing of the data this way allows for 

larger data sets and avoids having to exclude individuals who only had a measureable skull, for 

instance.  Second, individuals who were missing more than half of the variables within each 

subset were excluded from observation and measurement.  The third method for dealing further 

with missing data is different for each subset of data and those specific methods will be outlined 

individually below. Additional clarification can be found in Appendices I and II.  

The Cranial Subset 

Researchers investigating broad-scale population movements have long turned to cranial  

variation as a means to assess residence patterns (Tomczak and Powell, 2003) and population 

affinities (biological distance) (Howells, 1973; Guglielmino-Matessi et al., 1979; Falk and 

Corruccini, 1982; Relethford, 1994). Cranial measurements sort populations slightly better than 

dental metrics (Falk and Corruccini, 1982).  Some regions of the skull are better than others for 

this purpose.  For instance, the cranial vault is more plastic than the basicranium in response to 

temperature and humidity (Guglielmino-Matessi et al., 1979).  The splanchnocranium (face) has 

been shown to remodel faster than the basal cranium and temporal bones (Harvati and Weaver, 

2006) and to be more responsive to environmental and masticatory pressures (Powell and Neves, 

1999).  Craniometrics used here include standard measures that would be measured in the vast 

majority of comparative studies (cranial breadth and length, for example) but otherwise the 

measures targeted the basicranium (Table 2).  
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Table 2. Craniometric variables used in the present study 

Measure Description 

XCL Maximum cranial length (g-op) (1) 

 A chord from glabella to opisthocranion 

XCB Maximum cranial breadth (eu-eu) (2) 

 The maximum width of the skull perpendicular to the midsagittal plane, 

 excepting inferior temporal lines and immediate surrounding area 

BAB Biasterionic breadth 

 The breadth across the cranium between right and left asterion 

 landmarks – the junction of the lambdoidal and parieto-mastoid sutures 

FB Frontal breadth 

 The width of the frontal bone taken at the intersection of the coronal 

 suture and the superior temporal line. 

BAUR Biauricular breadth (au-au) (9) 

 The least exterior breadth across the roots of the zygomatic processes at 

 auriculare 

OC Occipital chord (l-o) (21) 

 The distance from lambda to opisthion in the midsagittal plane 

NB Nasal breadth (al-al) (14) 

 The transverse breadth across the nasal aperture 

MXAB Maxillo-alveolar breadth (ecm-ecm) (7) 

 The width of the maxilla taken on the alveolar bone above M1 

FMB Foramen magnum length 

 The distance between basion and opisthion 

CBL Cranial base length (ba-n) (5) 

 A chord from nasion to basion 

BZB Bizygomatic breadth (zy-zy) (3) 

 The breadth across the face between the most lateral points on the left 

 and right zygomatic arches 

FML Foramen magnum breadth 

 The distance between the lateral margins of the foramen magnum at the 

 points of greatest curvature 

BPL Basion-prosthion length (ba-pr) (6) 

 The distance from basion to prosthion 

Notations in parentheses refer to craniometric landmarks referenced in the table text. 

Numbers in parentheses refer to the numbers used by Buikstra and Ubelaker, 1994 and 

Moore-Jansen et al., 1994.  
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All measures in the cranial subset were either taken in the midline or transversely between 

matched landmarks on the skull. Side-substitution was not appropriate or possible here. 

Imputation was used to fill in the missing cranial data. The imputation process is described in 

detail in Appendix I. The average of five imputations were used in the final analysis (Table 10, 

Chapter 5: Results). Finally, to mitigate the effects of size, all cranial measures were standardized 

by the area of the foramen magnum (approximated by multiplying the foramen magnum width 

by the foramen magnum breadth).  

The Dental Subset 

Nearly all skeletal biology that incorporates biological distance does so using either the 

cranium (discussed above) or the dentition (Corruccini, 1972; Sofaer et al., 1972; Berry, 1976; 

Falk and Corruccini, 1982; Haydenblit, 1996; Hillson, 1996; Scott and Turner, 1997; Coppa et 

al., 1998; Corruccini and Shimada, 2002; Hanihara, 2008; Turner 1987, 1990).  Teeth in 

particular are useful because enamel is the hardest substance in the body, is laid down in a highly 

regular and genetically regulated pattern, and other than attrition due to diet or cultural 

modification, are relatively unaffected by environment (Scott and Turner, 1997).  Teeth are 

durable and often survive where other skeletal tissues may not, they can be directly compared 

between the living and the dead (Buikstra et al., 1990), they are under tight genetic control, and 

they vary consistently across human populations (Hillson, 1996).  Heritability of dental 

morphology is moderate to high, and sufficient for separating groups (Sofaer et al., 1972). 

 Dental size reflects dietary factors, while dental shape is useful for phylogenetic and intraspecies 

comparisons (Bernal et al., 2009), Townsend and Brown (1978) found ~64% of the variation in 

tooth size was due to genetic influence.  Both size and shape contain genetic and environmental 
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components and both track reasonably well with genetic and craniometric data (Hanihara and 

Ishida, 2005).  

Metric data collected from the dentition include buccal-lingual dimensions of maxillary and 

mandibular premolars (P3 and P4) and molars (M1 and M2), as well as the mesio-distal measure 

across both maxillary and mandibular canines. Buccal-lingual dimensions are much less resistant 

to interproximal attrition than the mesio-distal dimension. The buccal-lingual breadth of a tooth 

is measured at its widest diameter from the buccal (cheek) side to the lingual (tongue) side.  

Side-substitutions were made in cases where one side was observed but the anti-mere was 

not. That still left missing data points for some individuals (perhaps both maxillary P3’s were 

missing, for example, leaving no option for side substitution). The side-substituted data were 

then passed through the imputation process five times and the average of those passes was used 

(Table 14, Chapter 5: Results).  

If an individual had all teeth of interest in the present analysis, twenty dental measures 

were collected (four posterior teeth from each quadrant plus maxillary and mandibular canines 

on both sides), meaning that for further analyses there were too many variables relative to cases 

for some of the samples. The dental data was then split into maxillary, mandibular, and 

alternating anti-mere subsets. All the maxillary teeth were analyzed together, as were the 

mandibular teeth, and a third subset of data consisted of a mix of maxillary, mandibular, canines 

and posterior teeth – specifically this subset included maxillary and mandibular mesio-distal 

measures of the left canines, and the buccal-lingual dimensions of the left maxillary P3 and M1, 

and left mandibular P4 and M2 – “alternating anti-meres” (Table 3). Each subset of dental data 

was treated, and is presented, separately in the Results and Discussion chapters.
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Table 3. Odontometric variables used in the present study 

Abbreviation Dental metric 

XCMD Maxillary canine mesio-distal breadth 

XP3BL Maxillary 3rd pre-molar buccal-lingual breadth 

XP4BL Maxillary 4th pre-molar buccal-lingual breadth 

XM1BL Maxillary 1st molar buccal-lingual breadth 

XM2BL Maxillary 2nd molar buccal-lingual breadth 

NCMD Mandibular canine mesio-distal breadth 

NP3BL Mandibular 3rd pre-molar buccal-lingual breadth 

NP4BL Mandibular 4th pre-molar buccal-lingual breadth 

NM1BL Mandibular 1st molar buccal-lingual breadth 

NM2BL Mandibular 2nd molar buccal-lingual breadth 

Both left and right teeth were measured for all variables when present 
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Lastly, the dental data (consisting now of the side-subbed then imputed measures) were 

standardized with C-scores to remove size. The data were transposed in Excel (flipped so that 

cases were columns and variables were rows) and the mean and standard deviation of each 

column (really an individual since the data were transposed) were calculated. The mean was 

subtracted from each value in a column. Those values were divided by the standard deviation, 

resulting in z-scores. The data were then transposed back into the appropriate format (cases as 

rows, variables as columns) and the z-score process was repeated – resulting in C-Scores. 

The Post-Cranial Subset 

Human limb development commences during the fourth week of fetal development.  

Controlled by homeobox-containing (HOX) genes, limb buds develop from mesenchyme and 

ectoderm and continue to grow under HOX regulation.  Being part of a system, though, growth 

and maturation of the skeleton is influenced also by epigenetic factors such as uterine 

environment, metabolic stress during any pre- or post-natal period, activity levels, and nutritional 

supplies (Mielke et al., 2006; Stinson, 1990).   

While the use of dental and cranial variables for the purpose of biological distance studies 

is well-supported and has a long history in bioanthropology, the post-cranial skeleton has been 

used to a far less degree; however, recent studies indicate that these bones too, may be useful for 

biological distance analyses (Auerbach, 2010). Studies of body proportions are informative 

regarding processes of gene flow and phylogenetic signatures (Stinson, 1990; Weinstein, 2005), 

climatological influence (Ruff, 1994, 2002; Holliday, 1995, 1999; Holliday and Ruff, 2001), and 

activity patterns or biomechanical adaptations (Trinkaus, 1981; Porter, 1999).  Patterns of human 

long-bone metric variation for the purpose of estimating biological affinity, however, have 

largely been ignored (Stojanowski and Schillaci, 2006; see notable recent exceptions in Case, 
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2003; Auerbach, 2010).  Specifically, intra-limb proportions/indices, established early in 

ontogeny (Holliday, 1995; Holliday and Ruff, 2001) hold promise for the purpose of separating 

groups.   

Osteometric data of the post-cranial skeleton consists of maximum long bone lengths 

(Table 4).  These measures were used to calculate brachial, crural, and total inter-membral 

indices of post-cranial morphology.  Brachial indices were computed by dividing the maximum 

length of the radius by the maximum length of the humerus and multiplying the result by 100 

(Holliday, 1995; Porter, 1999). Crural indices were similarly computed by dividing the maximum 

length of the tibia (note method of measurement in Table 4) by the bi-condylar length of the 

femur and multiplying the result by 100 (Holliday, 1995; Porter, 1999). Total limb lengths are 

computed by adding the maximum lengths of the humerus and radius in the arm, and the femur 

and tibia in the leg.  For the purposes of this work only, the maximum length of the femur rather 

than the bi-condylar length of the femur was used for calculating the crural index and also in 

calculating the total limb length for intermembral indices. These results are not directly 

comparable to other works who use these indices calculated from the bi-condylar length of the 

femur.     

While they are typically spoken of together, brachial and crural indices (the relative length 

of the bones within the arm and leg, respectively) tell us something different than total limb 

length (Auerbach, 2010). Indices are set early in ontogeny (Holliday, 1995; Holliday and Ruff, 

2001) and are therefore more reflective of phylogenetic changes rather than developmental 

plasticity or climatological influence (Holliday, 1999).  Based on Allen’s rule (1877) for 

thermoregulation it might seem that both types of data would be reflective of climate as shorter 

limbs should be found in cold climates and longer limbs in warm climates. However, 
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Table 4. Post-cranial metrics used in the present study (measured and calculated) 

HXL Humerus maximum length (40) 

 The maximum length of the humerus as measured with this 

 proximal end against the fixed upright of an osteometric board and a 

 moveable end placed gently against the distal end of the bone. The 

 bone is rotated to achieve the maximum length of the bone. 

RXL Radius maximum length 

 The maximum length of the radius as measured with the proximal 

 end placed against the fixed upright of an osteometric board while a 

 moveable upright is placed gently against the distal end (the tip of 

 the styloid process). The bone is rotated to find the maximum length. 

FXL 

 

Femur maximum length (60)  

 The maximum length of the femur from the most superior point on 

 the head to the most inferior projection of the distal condyles.  

FBCL Femur bicondylar length (61) 

 The condyles are placed flat against the fixed end of an osteometric 

 board while the moveable end is adjusted to the tip of the femur 

 head. The bone will be at an angle to the plane of the osteometric 

 board. 

TXL Tibia maximum length (69) 

 I measured this bone as the length of the diaphysis, excepting the 

 lateral malleolus and the intercondylar eminence. This is slightly 

 different from traditional measures of tibial maximum length in that 

 it excludes the malleolus.  

BRACHIAL 

INDEX 

The ratio of the length of the radius to the length of the humerus 

 (Radius max length / Humerus max length) x 100 

CRURAL 

INDEX 

The ratio of the length of the tibia to the length of the femur 

 (Tibia max length / Femur bicondylar length*) x 100 

 *the maximum length of the femur was used here instead 

INTERMEMB 

INDEX 

The ratio of the total length of the upper limb to the total length of the 

lower limb 

 ((Radius max length + Humerus max length) / (Tibia max length + 

 Femur length)) x 100 
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Allen’s rule only applies to total limb length and not to intra-limb proportions of long 

bones.  Even though studies have shown high correlations of brachial and crural indices with 

mean annual temperature (r=0.86 and r=0.81 respectively) (Trinkaus, 1981; Holliday, 1995) we 

should not automatically assume that brachial and crural indices are affected by climate (Stinson, 

1990).  Mean annual temperature is not likely the best measure of climate which includes other 

variables such as precipitation and humidity.  It is more likely that temperature extremes drive 

selective processes acting on limb morphology (Jantz, 2006).   

It is therefore not surprising that changes in limb proportions are not highly correlated with 

overall change in limb lengths (Holliday, 1999; Auerbach and Sylvester, 2011).  Reasons for this 

may include biomechanical adaptation to differing patterns of mobility or different 

thermoregulatory response of distal versus proximal segments due to their higher surface area 

relative to mass (Holliday, 1999).  Recent work on the evolution of human limb proportions 

shows that the distal elements within each limb are affected by environmental stress to a greater 

degree than more functionally critical body elements such as the head, hands, and feet (Pomeroy 

et al., 2012).  In a sample of over 400 Peruvian children aged six to 14 years, Pomeroy et al. 

(2012) found that children raised in highland, more environmentally stressful environments, had 

significantly shorter distal limb segments (the tibia and ulna) while effects on other areas of the 

body such as the head, hands, and feet, were minimized.  The authors suggest that limb 

proportions follow a “thrifty phenotype” model of developmental plasticity that conserves more 

critical resources at the expense of other less critical components of the body system. 

When considered together, these data show that it is necessary to speak of proportions 

within each limb separately from total limb length, as absolutely long limbs may still hold low 

indices within them and vice versa (Trinkaus, 1981; Holliday, 1999; Auerbach, 2010; Auerbach 
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and Sylvester, 2011).  Unlike within-limb proportions, total limb length (and therefore adult 

stature) is heavily influenced by sexual dimorphism and nutrition (Holliday, 1999).  Additional 

considerations for the retention of high indices within shorter limbs may be given to 

biomechanical advantages (Porter, 1999) and a high level of genetic influence (Holliday, 1999). 

Given the above review, post-cranial data were collected with a more exploratory approach 

in mind.  Where possible, long bone lengths were measured for the humerus, radius, femur, and 

tibia, from which inter-membral indices and intra-limb proportions were calculated.   

The post-cranial subset of data is composed of measures from both the right and left sides. 

Side-substitution in this case, though, would mask any asymmetry. Missing data in the post-

cranial subset (lengths of longs bones) was estimated by using sex-specific regression formulae 

developed from individuals in which all bones of interest were observed (discussed below) 

(Tables 17-18, Chapter 5: Results).  For a detailed comparison of regression versus imputation 

for calculating long bone lengths in missing cases, see Appendix A.  
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CHAPTER 5 

 

RESULTS 

Summary Statistics Results 

 

Summary descriptive statistics were run on each sub-set of data (cranial, dental, post-

cranial) using R, a programming language and software environment for statistical analyses 

(Venables and Smith, 2014).  

All data were collected by the author to eliminate inter-observer error.  To estimate intra-

observer error a subsample from the Carrier Mills Black Earth site in southern Illinois was 

measured twice approximately one year apart.  Non-directional t-tests found no significant intra-

observer error for any of the subsets of data and the measurements are highly correlated (Tables 

5-7). 

Cranial Results 

The table below (Table 8) presents summary statistics for all cranial measures. In this table, 

individuals with missing data have been removed. No imputations or standardizations were 

performed on these data. Variables are listed in order from lowest to highest sample size (least to 

most “missingness”). 
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Table 5. Intra-observer error (t-test for cranial variables) 

 Observation 1 Observation 2 

Mean 96.477 95.889 

Variance 2247.20 2206.00 

Difference between means 0.58764 

t 0.074721 

p (same mean) 0.94054 

Correlation (Pearson’s r) 0.94313 

 

Table 6. Intra-observer error (t-test for dental variables) 

 Observation 1 Observation 2 

Mean 9.7846 9.7864 

Variance 3.0271 2.9583 

Difference between means 0.0018889 

t -0.0073246 

p (same mean) 0.99416 

Correlation (Pearson’s r) 0.98657 

 

Table 7. Intra-observer error (t-test for post-cranial maximum long bone 

lengths) 

 Observation 1 Observation 2 

Mean 337.78 338.53 

Variance 5283.90 5317.80 

Difference between means 0.75 

t -0.046068 

p (same mean) 0.96337 

Correlation (Pearson’s r) 0.99989 
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Table 8. Summary statistics for cranial measures  

  n Mean 

Std. 

Dev. 

Std. 

Error Min Max 

Geo. 

Mean 

Coeff. 

Var. 

XCL All sites 

     Males 

     Females 

 

134 

135 

 

176.78 

171.76 

 

6.10 

5.46 

 

0.53 

0.47 

 

162.00 

151.00 

 

190.00 

187.00 

 

176.68 

171.68 

 

3.45 

3.18 

Central TN 

     Males 

     Females 

 

56 

65 

 

177.20 

173.03 

 

6.46 

5.96 

 

0.86 

0.74 

 

162.00 

151.00 

 

189.00 

187.00 

 

177.08 

172.93 

 

3.64 

3.44 

Southern IL 

     Males 

     Females 

 

20 

5 

 

176.65 

170.00 

 

5.68 

6.08 

 

1.27 

2.72 

 

165.00 

177.00 

 

184.00 

177.00 

 

176.56 

169.91 

 

3.21 

3.58 

Western KY 

     Males 

     Females 

 

58 

65 

 

176.43 

170.63 

 

5.97 

4.64 

 

0.78 

0.58 

 

165.00 

160.00 

 

190.00 

180.00 

 

176.33 

170.57 

 

3.39 

2.72 

FB All sites 

     Males 

     Females 

 

128 

141 

 

106.94 

105.24 

 

5.66 

5.27 

 

0.50 

0.44 

 

91.00 

92.00 

 

121.00 

120.00 

 

106.79 

105.11 

 

5.29 

5.01 

Central TN 

     Males 

     Females 

 

64 

73 

 

108.89 

106.55 

 

5.42 

5.39 

 

0.68 

0.63 

 

99.00 

97.00 

 

121.00 

120.00 

 

108.76 

106.41 

 

4.97 

5.06 

Southern IL 

     Males 

     Females 

 

0 

1 

 

0 

107 

 

0 

0 

 

0 

0 

 

0 

107.00 

 

0 

107.00 

 

0 

107.00 

 

0 

1.83 

Western KY 

     Males 

     Females 

 

61 

67 

 

104.77 

103.78 

 

5.16 

4.81 

 

0.66 

0.59 

 

91.00 

92.00 

 

116.00 

114.00 

 

104.64 

103.67 

 

4.92 

4.63 

XCB All sites 

     Males 

     Females 

 

129 

139 

 

136.98 

132.53 

 

4.94 

4.62 

 

0.43 

0.39 

 

126.00 

123.00 

 

156.00 

146.00 

 

136.89 

132.45 

 

3.60 

3.48 

Central TN 

     Males 

     Females 

 

56 

67 

 

137.39 

134.18 

 

4.58 

4.93 

 

0.61 

0.60 

 

129.00 

124.00 

 

148.00 

146.00 

 

137.32 

134.09 

 

3.33 

3.67 

Southern IL 

     Males 

     Females 

 

18 

5 

 

138.47 

131.60 

 

7.05 

2.41 

 

1.66 

1.08 

 

127.00 

129.00 

 

156.00 

135.00 

 

138.31 

131.58 

 

5.09 

1.83 

Western KY 

     Males 

     Females 

 

55 

67 

 

136.07 

130.94 

 

4.67 

3.81 

 

0.59 

0.47 

 

126.00 

123.00 

 

145.00 

140.00 

 

136.00 

130.89 

 

3.21 

2.91 

BAB All sites 

     Males 

     Females 

 

116 

121 

 

121.64 

117.80 

 

7.94 

7.44 

 

0.74 

0.68 

 

105.00 

104.00 

 

140.00 

136.00 

 

121.38 

117.56 

 

6.53 

6.32 

Central TN 

     Males 

     Females 

 

47 

52 

 

125.62 

123.40 

 

4.98 

5.54 

 

0.73 

0.77 

 

115.00 

106.00 

 

134.00 

136.00 

 

125.52 

123.28 

 

3.97 

4.49 

Southern IL 

     Males 

     Females 

 

14 

3 

 

128.00 

122.33 

 

9.36 

2.89 

 

2.50 

1.67 

 

106.00 

119.00 

 

140.00 

124.00 

 

127.66 

122.31 

 

7.32 

2.36 

Western KY 

     Males 

     Females 

 

55 

66 

 

116.62 

113.18 

 

6.49 

5.49 

 

0.87 

0.68 

 

105.00 

104.00 

 

133.00 

126.00 

 

116.44 

113.05 

 

5.56 

4.85 
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Table 8. Summary statistics for cranial measures (continued) 

  n Mean 

Std. 

Dev. 

Std. 

Error Min Max 

Geo. 

Mean 

Coeff. 

Var. 

BAUR All sites 

     Males 

     Females 

 

112 

117 

 

125.43 

119.42 

 

4.89 

5.00 

 

0.46 

0.46 

 

113.00 

109.00 

 

139.00 

132.00 

 

125.34 

119.32 

 

3.90 

4.19 

Central TN 

     Males 

     Females 

 

43 

51 

 

126.07 

121.69 

 

4.80 

4.66 

 

0.73 

0.65 

 

114.00 

110.00 

 

135.00 

132.00 

 

125.98 

121.60 

 

3.81 

3.83 

Southern IL 

     Males 

     Females 

 

15 

3 

 

127.77 

119.00 

 

6.28 

5.57 

 

1.62 

3.21 

 

115.00 

114.00 

 

139.00 

125.00 

 

127.62 

118.91 

 

4.91 

4.68 

Western KY 

     Males 

     Females 

 

54 

63 

 

124.28 

117.61 

 

4.26 

4.55 

 

0.58 

0.57 

 

113.00 

109.00 

 

136.00 

131.00 

 

124.21 

117.53 

 

3.43 

3.87 

OC All sites 

     Males 

     Females 

 

101 

100 

 

99.43 

96.93 

 

5.37 

4.58 

 

0.53 

0.46 

 

89.00 

86.00 

 

118.00 

112.00 

 

99.29 

96.83 

 

5.40 

4.73 

Central TN 

     Males 

     Females 

 

30 

41 

 

98.70 

96.95 

 

4.14 

5.12 

 

0.76 

0.80 

 

92.00 

89.00 

 

108.00 

112.00 

 

98.62 

96.82 

 

4.19 

5.28 

Southern IL 

     Males 

     Females 

 

14 

2 

 

101.20 

94.20 

 

6.15 

1.13 

 

1.64 

0.80 

 

91.75 

93.40 

 

116.00 

95.00 

 

101.03 

94.20 

 

6.07 

1.20 

Western KY 

     Males 

     Females 

 

57 

57 

 

99.38 

97.02 

 

5.73 

4.25 

 

0.76 

0.56 

 

89.00 

86.00 

 

118.00 

105.00 

 

99.22 

96.93 

 

5.77 

4.38 

NB All sites 

     Males 

     Females 

 

95 

93 

 

23.84 

23.15 

 

1.71 

2.07 

 

0.18 

0.21 

 

19.93 

18.25 

 

27.86 

32.12 

 

23.78 

23.06 

 

7.16 

8.92 

Central TN 

     Males 

     Females 

 

29 

34 

 

24.18 

23.64 

 

1.50 

2.28 

 

0.28 

0.39 

 

20.50 

19.55 

 

26.77 

32.12 

 

24.13 

23.54 

 

6.22 

9.63 

Southern IL 

     Males 

     Females 

 

17 

7 

 

24.40 

24.44 

 

1.69 

1.31 

 

0.41 

0.50 

 

21.65 

22.28 

 

27.36 

26.36 

 

24.34 

24.41 

 

6.94 

5.37 

Western KY 

     Males 

     Females 

 

49 

52 

 

23.45 

22.65 

 

0.25 

0.26 

 

0.25 

0.26 

 

19.93 

18.25 

 

27.86 

27.20 

 

23.39 

22.57 

 

7.51 

8.25 

MXAB All sites 

     Males 

     Females 

 

91 

84 

 

64.24 

61.51 

 

3.15 

2.70 

 

0.33 

0.29 

 

57.76 

56.17 

 

72.07 

67.66 

 

64.16 

61.45 

 

4.90 

4.39 

Central TN 

     Males 

     Females 

 

30 

29 

 

64.37 

61.84 

 

2.96 

2.61 

 

0.54 

0.48 

 

57.76 

58.18 

 

70.48 

67.21 

 

64.30 

61.79 

 

4.60 

4.22 

Southern IL 

     Males 

     Females 

 

18 

6 

 

65.86 

63.12 

 

3.30 

3.07 

 

0.78 

1.25 

 

60.09 

59.18 

 

70.89 

67.13 

 

65.78 

63.05 

 

5.01 

4.86 

Western KY 

     Males 

     Females 

 

43 

49 

 

63.47 

61.12 

 

3.01 

2.66 

 

0.46 

0.38 

 

58.21 

56.17 

 

72.07 

67.66 

 

63.40 

61.06 

 

4.74 

4.36 
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Table 8. Summary statistics for cranial measures (continued) 

  n Mean 

Std. 

Dev. 

Std. 

Error Min Max 

Geo. 

Mean 

Coeff. 

Var. 

FMB All sites 

     Males 

     Females 

 

85 

79 

 

29.65 

28.11 

 

2.08 

1.74 

 

0.23 

0.20 

 

24.01 

23.98 

 

36.77 

33.29 

 

29.58 

28.05 

 

7.02 

6.18 

Central TN 

     Males 

     Females 

 

27 

23 

 

29.48 

28.08 

 

2.38 

1.28 

 

0.46 

0.27 

 

26.57 

26.02 

 

36.77 

30.84 

 

29.39 

28.05 

 

8.07 

4.56 

Southern IL 

     Males 

     Females 

 

10 

1 

 

30.34 

23.98 

 

1.84 

0 

 

0.58 

0 

 

27.40 

23.98 

 

33.30 

23.98 

 

37.01 

32.09 

 

9.04 

0 

Western KY 

     Males 

     Females 

 

48 

55 

 

29.61 

28.19 

 

1.96 

1.83 

 

0.28 

0.25 

 

24.01 

24.30 

 

34.64 

33.29 

 

29.54 

28.13 

 

6.62 

6.51 

CBL All sites 

     Males 

     Females 

 

83 

79 

 

102.45 

97.57 

 

3.96 

4.46 

 

0.43 

0.50 

 

93.00 

89.00 

 

113.00 

119.00 

 

102.37 

97.47 

 

3.86 

4.57 

Central TN 

     Males 

     Females 

 

26 

23 

 

103.58 

99.65 

 

4.54 

6.06 

 

0.89 

1.26 

 

96.00 

90.00 

 

113.00 

119.00 

 

103.48 

99.49 

 

4.38 

6.09 

Southern IL 

     Males 

     Females 

 

10 

0 

 

103.3 

0 

 

4.42 

0 

 

1.40 

0 

 

95.00 

0 

 

109.00 

0 

 

103.21 

0 

 

4.28 

0 

Western KY 

     Males 

     Females 

 

47 

56 

 

101.64 

96.71 

 

3.37 

3.31 

 

0.49 

0.52 

 

93.00 

89.00 

 

109.00 

104.00 

 

101.58 

96.66 

 

3.32 

3.42 

BZB All sites 

     Males 

     Females 

 

82 

79 

 

137.12 

127.99 

 

4.61 

5.98 

 

0.51 

0.67 

 

126.00 

118.00 

 

150.00 

148.00 

 

137.04 

127.85 

 

3.36 

4.67 

Central TN 

     Males 

     Females 

 

30 

32 

 

138.53 

130.59 

 

4.72 

6.39 

 

0.86 

1.13 

 

126.00 

121.00 

 

150.00 

148.00 

 

138.46 

130.45 

 

3.41 

4.90 

Southern IL 

     Males 

     Females 

 

11 

1 

 

136.95 

121.00 

 

6.11 

0 

 

1.84 

0 

 

128.00 

121.00 

 

146.00 

121.00 

 

136.83 

121.00 

 

4.46 

0 

Western KY 

     Males 

     Females 

 

41 

46 

 

136.12 

126.33 

 

3.89 

5.00 

 

0.61 

0.74 

 

127.00 

118.00 

 

146.00 

143.00 

 

136.07 

126.23 

 

2.86 

3.96 

FML 

 

All sites 

     Males 

     Females 

 

81 

71 

 

35.76 

33.80 

 

2.92 

2.42 

 

0.32 

0.29 

 

29.63 

28.24 

 

44.31 

40.40 

 

35.64 

33.71 

 

8.18 

7.17 

Central TN 

     Males 

     Females 

 

25 

20 

 

35.99 

34.68 

 

2.49 

2.22 

 

0.50 

0.50 

 

31.27 

30.64 

 

41.46 

39.50 

 

35.91 

34.61 

 

6.91 

6.41 

Southern IL 

     Males 

     Females 

 

10 

1 

 

37.45 

32.09 

 

3.36 

0 

 

1.06 

0 

 

33.41 

32.09 

 

44.31 

32.09 

 

37.01 

32.09 

 

9.04 

0 

Western KY 

     Males 

     Females 

 

46 

50 

 

35.33 

33.48 

 

3.00 

2.45 

 

0.44 

0.35 

 

29.63 

28.24 

 

41.60 

40.40 

 

35.21 

33.39 

 

8.50 

7.32 
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Table 8. Summary statistics for cranial measures (continued) 

  n Mean 

Std. 

Dev. 

Std. 

Error Min Max 

Geo. 

Mean 

Coeff. 

Var. 

BPL All sites 

     Males 

     Females 

 

71 

60 

 

98.30 

93.88 

 

4.63 

3.74 

 

0.55 

0.48 

 

88.00 

84.00 

 

109.00 

105.00 

 

98.19 

93.81 

 

4.71 

3.98 

Central TN 

     Males 

     Females 

 

22 

16 

 

99.86 

94.13 

 

4.41 

4.57 

 

0.94 

1.14 

 

93.00 

86.00 

 

107.00 

105.00 

 

99.77 

94.02 

 

4.42 

4.86 

Southern IL 

     Males 

     Females 

 

10 

0 

 

97.90 

0 

 

5.61 

0 

 

1.77 

0 

 

92.00 

0 

 

107.00 

0 

 

97.76 

0 

 

5.73 

0 

Western KY 

     Males 

     Females 

 

39 

44 

 

97.51 

93.80 

 

4.38 

3.44 

 

0.70 

0.52 

 

88.00 

84.00 

 

109.00 

102.00 

 

97.42 

93.73 

 

4.49 

3.67 



79 

 

The cranial data for both males and females were put through the imputation process to 

bolster sample sizes and estimate missing data. Table 9 provides information as to the number of 

imputations per each subsample and variable.  

Table 10 provides summary statistics for cranial measures after averaging five imputations. 

Variables are still listed in order from lowest to highest sample size (least to most 

“missingness”).  

For descriptive purposes the coefficient of variation (CV) was isolated from the above data 

(averaged imputed data set) (Table 11).  Coefficients of variation are a normalized measure of 

dispersion calculated as the ratio of the standard deviation to the mean. They provide a measure 

of relative variation.  

The CV results for males and females from all sites show a slight trend for males to be 

more variable overall for Maximum Cranial Length (XCL), Frontal Breadth (FB), Maximum 

Cranial Breadth (XCB), Bi-asterionic breadth (BAB), Occipital Chord (OC), the Maximum 

Breadth across the Maxilla (at M1) (MXAB), the Foramen Magnum Breadth (FMB), the 

Foramen Magnum Length (FML), and the distance from Basion to Prosthion (BPL) (9 of 13 

variables). Pooled females from all sites have greater Coefficients of Variation for only Bi-

auricular Breadth (BAUR), Nasal Breadth (NB), Cranial Base Length (CBL), Bi-zygomatic 

Breadth (BZB), and Frontal Height (FH) (4 of 13 variables). 

Within the central TN sample itself, males have higher CV values only for Maximum 

Cranial Length (XCL), Maximum Breadth across the Maxilla (at M1) (MXAB), and the Breadth 

of the Foramen Magnum (FMB) (3 of 13 variables). Across the rest of the cranial variables in 

this study, central TN females are consistently more variable (higher CV values) than males (10 

of 13 variables). 
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Table 9. Cranial data number of observed and percent of sample imputed 

 All sites Central TN Southern IL Western KY 

 Males Females Males Females Males Females Males Females 

XCL (Total) 

 Observed 

 NA 

 % Imputed 

163 

134 

29 

18% 

163 

135 

28 

17% 

73 

56 

17 

23% 

81 

65 

16 

20% 

27 

20 

7 

26% 

11 

5 

6 

55% 

63 

58 

5 

8% 

71 

65 

6 

8% 

FB (Total) 

 Observed 

 NA 

 % Imputed 

163 

128 

35 

21% 

163 

141 

22 

13% 

73 

64 

9 

12% 

81 

73 

8 

10% 

27 

3 

24 

89% 

11 

1 

10 

91% 

63 

61 

2 

3% 

71 

67 

4 

6% 

XCB (Total) 

 Observed 

 NA 

 % Imputed 

162 

129 

34 

21% 

163 

139 

24 

15% 

73 

56 

17 

23% 

81 

67 

14 

17% 

27 

18 

9 

33% 

11 

5 

6 

55% 

63 

55 

8 

13% 

71 

67 

4 

6% 

BAB (Total) 

 Observed 

 NA 

 % Imputed 

163 

116 

47 

29% 

163 

121 

42 

26% 

73 

47 

26 

36% 

81 

52 

29 

36% 

27 

14 

13 

48% 

11 

3 

8 

73% 

63 

55 

8 

13% 

71 

66 

5 

7% 

BAUR (Total) 

 Observed 

 NA 

 % Imputed 

163 

112 

51 

31% 

163 

117 

46 

28% 

73 

43 

30 

41% 

81 

51 

30 

37% 

27 

15 

12 

44% 

11 

3 

8 

73% 

63 

54 

9 

14% 

71 

63 

8 

11% 

OC (Total) 

 Observed 

 NA 

 % Imputed 

163 

101 

62 

38% 

163 

100 

63 

39% 

73 

30 

43 

59% 

81 

41 

40 

49% 

27 

14 

13 

48% 

11 

2 

9 

82% 

63 

57 

6 

10% 

71 

57 

14 

20% 

NB (Total) 

 Observed 

 NA 

 % Imputed 

163 

95 

68 

42% 

163 

93 

70 

43% 

73 

29 

44 

60% 

81 

34 

47 

58% 

27 

17 

10 

37% 

11 

7 

4 

36% 

63 

49 

14 

22% 

71 

52 

19 

27% 

MXAB (Total) 

 Observed 

 NA 

 % Imputed 

163 

91 

72 

44% 

163 

84 

79 

48% 

73 

30 

43 

59% 

81 

29 

52 

64% 

27 

18 

9 

33% 

11 

6 

5 

45% 

63 

43 

20 

32% 

71 

49 

22 

31% 

FMB (Total) 

 Observed 

 NA 

 % Imputed 

163 

85 

78 

48% 

163 

79 

84 

52% 

73 

27 

46 

63% 

81 

23 

58 

72% 

27 

10 

17 

63% 

11 

1 

10 

91% 

63 

48 

15 

24% 

71 

55 

16 

23% 

CBL (Total) 

 Observed 

 NA 

 % Imputed 

163 

83 

80 

49% 

163 

79 

84 

52% 

73 

26 

47 

64% 

81 

23 

58 

72% 

27 

10 

17 

63% 

11 

0 

11 

100% 

63 

47 

16 

25% 

71 

56 

15 

21% 

BZB (Total) 

 Observed 

 NA 

 % Imputed 

163 

82 

81 

50% 

163 

79 

84 

52% 

73 

30 

43 

59% 

81 

32 

49 

60% 

27 

11 

16 

59% 

11 

1 

10 

91% 

63 

41 

22 

35% 

71 

46 

25 

35% 

FML (Total) 

 Observed 

 NA 

 % Imputed 

163 

81 

82 

50% 

163 

71 

92 

56% 

73 

25 

48 

66% 

81 

20 

61 

75% 

27 

10 

17 

63% 

11 

1 

10 

91% 

63 

46 

17 

27% 

71 

50 

21 

30% 

BPL (Total) 

 Observed 

 NA 

 % Imputed 

163 

71 

92 

56% 

163 

60 

103 

63% 

73 

22 

51 

70% 

81 

16 

65 

80% 

27 

10 

17 

63% 

11 

0 

11 

100% 

63 

39 

24 

38% 

71 

44 

27 

38% 
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Table 10. Summary statistics for cranial measures (average of five imputations)  

  n Mean 

Std. 

Dev. 

Std. 

Error Min Max 

Geo. 

Mean 

Coeff. 

Var. 

XCL All sites 

     Males 

     Females 

 

163 

163 

 

176.56 

172.16 

 

5.77 

5.25 

 

0.45 

0.41 

 

162.00 

151.00 

 

190.00 

187.00 

 

176.46 

172.08 

 

3.27 

3.05 

Central TN 

     Males 

     Females 

 

73 

81 

 

176.56 

173.29 

 

6.03 

5.61 

 

0.71 

0.62 

 

162.00 

151.00 

 

189.00 

187.00 

 

176.46 

173.19 

 

3.42 

3.24 

Southern IL 

     Males 

     Females 

 

27 

11 

 

176.99 

172.88 

 

5.09 

5.24 

 

0.98 

1.58 

 

165.00 

161.00 

 

184.00 

179.70 

 

176.91 

172.80 

 

2.87 

3.03 

Western KY 

     Males 

     Females 

 

63 

71 

 

176.37 

170.77 

 

5.81 

4.51 

 

0.73 

0.54 

 

165.00 

160.00 

 

190.00 

180.00 

 

176.28 

170.72 

 

3.30 

2.64 

FB All sites 

     Males 

     Females 

 

163 

163 

 

107.29 

105.47 

 

5.45 

5.09 

 

0.43 

0.40 

 

91.00 

92.00 

 

121.25 

120.00 

 

107.16 

105.35 

 

5.08 

4.83 

Central TN 

     Males 

     Females 

 

73 

81 

 

108.88 

106.73 

 

5.20 

5.30 

 

0.61 

0.59 

 

99.00 

97.00 

 

121.00 

120.00 

 

108.75 

106.61 

 

4.78 

4.96 

Southern IL 

     Males 

     Females 

 

27 

11 

 

108.75 

106.85 

 

4.93 

2.72 

 

0.95 

0.82 

 

97.83 

100.67 

 

121.25 

110.22 

 

108.64 

106.82 

 

4.54 

2.54 

Western KY 

     Males 

     Females 

 

63 

71 

 

104.84 

103.81 

 

5.10 

4.69 

 

0.64 

0.56 

 

91.00 

92.00 

 

116.00 

114.00 

 

104.71 

103.71 

 

4.86 

4.52 

XCB All sites 

     Males 

     Females 

 

163 

163 

 

136.75 

132.70 

 

4.66 

4.49 

 

0.36 

0.35 

 

126.00 

123.00 

 

156.00 

146.00 

 

136.68 

132.62 

 

3.41 

3.39 

Central TN 

     Males 

     Females 

 

73 

81 

 

137.04 

134.23 

 

4.28 

4.67 

 

0.50 

0.52 

 

129.00 

124.00 

 

148.00 

146.00 

 

136.98 

134.15 

 

3.12 

3.48 

Southern IL 

     Males 

     Females 

 

27 

11 

 

138.15 

133.06 

 

6.08 

3.34 

 

1.17 

1.01 

 

127.00 

129.00 

 

156.00 

139.20 

 

138.02 

133.02 

 

4.40 

2.51 

Western KY 

     Males 

     Females 

 

63 

71 

 

135.83 

130.89 

 

4.27 

3.77 

 

0.54 

0.45 

 

126.00 

123.00 

 

145.00 

140.00 

 

135.76 

130.84 

 

3.14 

2.88 

BAB All sites 

     Males 

     Females 

 

163 

163 

 

121.62 

117.95 

 

7.19 

6.74 

 

0.56 

0.53 

 

105.00 

104.00 

 

140.00 

136.00 

 

121.41 

117.76 

 

5.91 

5.71 

Central TN 

     Males 

     Females 

 

73 

81 

 

123.94 

121.83 

 

5.05 

5.49 

 

0.59 

0.61 

 

114.32 

106.00 

 

134.00 

136.00 

 

123.84 

121.71 

 

4.08 

4.50 

Southern IL 

     Males 

     Females 

 

27 

11 

 

125.22 

119.22 

 

8.42 

4.46 

 

1.62 

1.34 

 

106.00 

111.65 

 

140.00 

124.63 

 

124.95 

119.14 

 

6.73 

3.74 

Western KY 

     Males 

     Females 

 

63 

71 

 

117.38 

113.32 

 

6.73 

5.32 

 

0.85 

0.63 

 

105.00 

104.00 

 

136.09 

126.00 

 

117.19 

113.19 

 

5.73 

4.70 
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Table 10. Summary statistics for cranial measures (average of five imputations) (continued) 

  n Mean 

Std. 

Dev. 

Std. 

Error Min Max 

Geo. 

Mean 

Coeff. 

Var. 

BAUR All sites 

     Males 

     Females 

 

163 

163 

 

125.07 

120.15 

 

4.51 

4.87 

 

0.35 

0.38 

 

113.00 

109.00 

 

139.00 

132.17 

 

124.99 

120.05 

 

3.60 

4.06 

Central TN 

     Males 

     Females 

 

73 

81 

 

125.44 

122.17 

 

4.28 

4.37 

 

0.50 

0.49 

 

114.00 

110.00 

 

135.00 

132.17 

 

125.37 

122.09 

 

3.41 

3.58 

Southern IL 

     Males 

     Females 

 

27 

11 

 

126.63 

121.05 

 

5.25 

4.46 

 

1.01 

1.34 

 

115.00 

114.00 

 

139.00 

128.88 

 

126.53 

120.98 

 

4.15 

3.68 

Western KY 

     Males 

     Females 

 

63 

71 

 

123.96 

117.71 

 

4.21 

4.41 

 

0.53 

0.52 

 

113.00 

109.00 

 

136.00 

131.00 

 

123.89 

117.63 

 

3.40 

3.74 

OC All sites 

     Males 

     Females 

 

163 

163 

 

99.03 

97.27 

 

4.43 

3.94 

 

0.35 

0.31 

 

89.00 

86.00 

 

118.00 

112.00 

 

98.94 

97.19 

 

4.47 

4.05 

Central TN 

     Males 

     Females 

 

73 

81 

 

98.67 

97.52 

 

3.11 

4.13 

 

0.36 

0.46 

 

92.00 

89.00 

 

108.00 

112.00 

 

98.62 

97.44 

 

3.16 

4.23 

Southern IL 

     Males 

     Females 

 

27 

11 

 

99.65 

97.51 

 

4.77 

2.74 

 

0.92 

0.83 

 

91.75 

93.40 

 

116.00 

101.98 

 

99.54 

97.47 

 

4.79 

2.81 

Western KY 

     Males 

     Females 

 

63 

71 

 

99.19 

96.95 

 

5.49 

3.89 

 

0.69 

0.46 

 

89.00 

86.00 

 

118.00 

105.00 

 

99.05 

96.87 

 

5.54 

4.01 

NB All sites 

     Males 

     Females 

 

163 

163 

 

23.75 

23.15 

 

1.45 

1.70 

 

0.11 

0.13 

 

19.93 

18.25 

 

27.86 

32.12 

 

23.71 

23.09 

 

6.10 

7.34 

Central TN 

     Males 

     Females 

 

73 

81 

 

23.81 

23.45 

 

1.28 

1.65 

 

0.15 

0.18 

 

20.50 

19.55 

 

26.77 

32.12 

 

23.77 

23.40 

 

5.40 

7.03 

Southern IL 

     Males 

     Females 

 

27 

11 

 

23.97 

23.73 

 

1.53 

1.65 

 

0.29 

0.50 

 

21.65 

20.34 

 

27.36 

26.36 

 

23.93 

23.68 

 

6.39 

6.94 

Western KY 

     Males 

     Females 

 

63 

71 

 

23.60 

22.72 

 

1.59 

1.68 

 

0.20 

0.20 

 

19.93 

18.25 

 

27.86 

27.20 

 

23.55 

22.65 

 

6.76 

7.41 

MXAB All sites 

     Males 

     Females 

 

163 

163 

 

64.10 

61.94 

 

2.65 

2.41 

 

0.21 

0.19 

 

57.76 

56.17 

 

72.07 

67.66 

 

64.05 

61.89 

 

4.14 

3.89 

Central TN 

     Males 

     Females 

 

73 

81 

 

64.18 

62.36 

 

2.35 

2.24 

 

0.27 

0.25 

 

57.76 

57.20 

 

70.48 

67.21 

 

64.14 

62.32 

 

3.66 

3.59 

Southern IL 

     Males 

     Females 

 

27 

11 

 

65.28 

62.65 

 

3.11 

2.34 

 

0.60 

0.71 

 

60.09 

59.18 

 

70.89 

67.13 

 

65.21 

62.61 

 

4.76 

3.73 

Western KY 

     Males 

     Females 

 

63 

71 

 

63.50 

61.35 

 

2.64 

2.51 

 

0.33 

0.30 

 

58.21 

56.17 

 

72.07 

67.66 

 

63.45 

61.30 

 

4.16 

4.10 
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Table 10. Summary statistics for cranial measures (average of five imputations) (continued) 

  n Mean 

Std. 

Dev. 

Std. 

Error Min Max 

Geo. 

Mean 

Coeff. 

Var. 

FMB All sites 

     Males 

     Females 

 

163 

163 

 

29.56 

28.50 

 

1.68 

1.54 

 

0.13 

0.12 

 

24.01 

23.98 

 

36.77 

33.29 

 

29.51 

28.46 

 

5.67 

5.41 

Central TN 

     Males 

     Females 

 

73 

81 

 

29.51 

28.72 

 

1.69 

1.34 

 

0.20 

0.15 

 

26.57 

26.02 

 

36.77 

33.27 

 

29.46 

28.69 

 

5.72 

4.66 

Southern IL 

     Males 

     Females 

 

27 

11 

 

29.64 

28.70 

 

1.46 

2.03 

 

0.28 

0.61 

 

27.39 

23.98 

 

33.30 

31.47 

 

29.60 

28.63 

 

4.94 

7.06 

Western KY 

     Males 

     Females 

 

63 

71 

 

29.58 

28.22 

 

1.77 

1.65 

 

0.22 

0.20 

 

24.01 

24.30 

 

34.64 

33.29 

 

29.53 

28.17 

 

5.97 

5.84 

CBL All sites 

     Males 

     Females 

 

163 

163 

 

102.30 

99.00 

 

3.77 

4.48 

 

0.29 

0.35 

 

93.00 

87.20 

 

113.00 

119.00 

 

102.23 

98.90 

 

3.68 

4.52 

Central TN 

     Males 

     Females 

 

73 

81 

 

102.86 

100.59 

 

3.71 

4.70 

 

0.43 

0.52 

 

95.28 

87.20 

 

113.00 

119.00 

 

102.79 

100.49 

 

3.61 

4.67 

Southern IL 

     Males 

     Females 

 

27 

11 

 

102.75 

98.89 

 

4.10 

5.51 

 

0.79 

1.66 

 

95.00 

90.93 

 

109.24 

109.62 

 

102.67 

98.76 

 

3.99 

5.57 

Western KY 

     Males 

     Females 

 

63 

71 

 

101.47 

97.19 

 

3.58 

3.25 

 

0.45 

0.39 

 

93.00 

89.00 

 

111.67 

104.00 

 

101.41 

97.13 

 

3.53 

3.34 

BZB All sites 

     Males 

     Females 

 

163 

163 

 

136.19 

129.17 

 

4.95 

5.72 

 

0.39 

0.45 

 

125.27 

115.89 

 

151.13 

148.00 

 

136.10 

129.04 

 

3.64 

4.43 

Central TN 

     Males 

     Females 

 

73 

81 

 

136.10 

131.15 

 

5.10 

5.66 

 

0.60 

0.63 

 

125.57 

115.89 

 

150.00 

148.00 

 

136.00 

131.03 

 

3.75 

4.31 

Southern IL 

     Males 

     Females 

 

27 

11 

 

137.39 

129.95 

 

5.65 

5.55 

 

1.09 

1.67 

 

128.00 

121.00 

 

151.13 

140.35 

 

137.28 

129.84 

 

4.11 

4.27 

Western KY 

     Males 

     Females 

 

63 

71 

 

135.78 

126.79 

 

4.44 

4.94 

 

0.56 

0.59 

 

125.27 

118.00 

 

146.00 

143.00 

 

135.71 

126.69 

 

3.27 

3.90 

FML All sites 

     Males 

     Females 

 

163 

163 

 

35.91 

34.55 

 

2.34 

2.15 

 

0.18 

0.17 

 

29.63 

28.24 

 

44.31 

40.40 

 

35.84 

34.48 

 

6.52 

6.22 

Central TN 

     Males 

     Females 

 

73 

81 

 

36.20 

35.18 

 

1.88 

1.89 

 

0.22 

0.21 

 

31.27 

30.33 

 

41.46 

39.50 

 

36.16 

35.13 

 

5.20 

5.38 

Southern IL 

     Males 

     Females 

 

27 

11 

 

36.21 

34.95 

 

2.43 

1.45 

 

0.47 

0.44 

 

32.33 

32.09 

 

44.31 

36.85 

 

36.14 

34.92 

 

6.71 

4.14 

Western KY 

     Males 

     Females 

 

63 

71 

 

35.45 

33.77 

 

2.72 

2.28 

 

0.34 

0.27 

 

29.63 

28.24 

 

41.60 

40.40 

 

35.35 

33.69 

 

7.67 

6.75 
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Table 10. Summary statistics for cranial measures (average of five imputations) (continued) 

  n Mean 

Std. 

Dev. 

Std. 

Error Min Max 

Geo. 

Mean 

Coeff. 

Var. 

BPL All sites 

     Males 

     Females 

 

163 

163 

 

97.74 

94.64 

 

3.74 

3.49 

 

0.29 

0.27 

 

88.00 

84.00 

 

109.00 

105.16 

 

97.67 

94.58 

 

3.83 

3.69 

Central TN 

     Males 

     Females 

 

73 

81 

 

98.30 

95.28 

 

3.50 

3.69 

 

0.41 

0.41 

 

90.96 

86.00 

 

107.00 

105.16 

 

98.25 

95.21 

 

3.56 

3.87 

Southern IL 

     Males 

     Females 

 

27 

11 

 

97.70 

95.04 

 

3.93 

2.98 

 

0.76 

0.90 

 

92.00 

90.15 

 

107.00 

98.63 

 

97.62 

95.00 

 

4.03 

3.14 

Western KY 

     Males 

     Females 

 

63 

71 

 

97.11 

93.85 

 

3.89 

3.21 

 

0.49 

0.38 

 

88.00 

84.00 

 

109.00 

102.00 

 

97.04 

93.80 

 

4.01 

3.42 
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Table 11. Coefficient of Variation for imputed cranial data set  

 
All sites Central TN Southern IL Western KY 

 
Males Females Males Females Males Females Males Females 

XCL 3.27 3.05 3.42 3.24 2.87 3.03 3.3 2.64 

FB 5.08 4.83 4.78 4.96 4.54 2.54 4.86 4.52 

XCB 3.41 3.39 3.12 3.48 4.4 2.51 3.14 2.88 

BAB 5.91 5.71 4.08 4.5 6.73 3.74 5.73 4.7 

BAUR 3.6 4.06 3.41 3.58 4.15 3.68 3.4 3.74 

OC 4.47 4.05 3.16 4.23 4.79 2.81 5.54 4.01 

NB 6.1 7.34 5.4 7.03 6.39 6.94 6.76 7.41 

MXAB 4.14 3.89 3.66 3.59 4.76 3.73 4.16 4.1 

FMB 5.67 5.41 5.72 4.66 4.94 7.06 5.97 5.84 

CBL 3.68 4.52 3.61 4.67 3.99 5.57 3.53 3.34 

BZB 3.64 4.43 3.75 4.31 4.11 4.27 3.27 3.9 

FML 6.52 6.22 5.2 5.38 6.71 4.14 7.67 6.75 

BPL 3.83 3.69 3.56 3.87 4.03 3.14 4.01 3.42 

Number of variables for which each sex is greater 

 9 4 3 10 8 5 10 3 

Variables in order of least to most imputations made in that variable. 

Bolded values represent the higher value between males and females. 
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For the sample from the Black Earth site in southern Illinois, males are more variable for 

Frontal Breadth (FB), Maximum Cranial Breadth (XCB), Bi-aseterionic Breadth (BAB), Bi-

auricular Breadth (BAUR), the Occipital Chord (OC), the Maximum Breadth across the Maxilla 

(at M1) (MXAB), the Length of the Foramen Magnum (FML), and the distance from Basion to 

Prosthion (BPL) (8 of 13 variables total). Females have higher CV values only for Maximum 

Cranial Length (XCL), Nasal Breadth (NB), Foramen Magnum Breadth (FMB), Cranial Base 

Length (CBL), and Bi-zygomatic Breadth (BZB) (5 of 13 variables). 

In the sample from Indian Knoll males are more variable than females for measures of 

Maximum Cranial Length (XCL), Frontal Breadth (FB), Maximum Cranial Breadth (XCB), Bi-

Aseterionic Breadth (BAB), Occipital Chord (OC), Maximum Breadth across the Maxilla (at 

M1) (MXAB), the Foramen Magnum Breadth (FMB), Cranial Base Length (CBL), Foramen 

Magnum Length (FML), Frontal Height (FH), and the distance from Basion to Prosthion (BPL) 

(10 of 13 variables). Only for Bi-Auricular Breadth (BAUR), Nasal Breadth (NB), and Bi-

zygomatic Breadth (BZB) are females more variable than males (3 of 13 variables).  

Simply counting the number of variables in which a particular sex has higher CV values 

gives a crude view of the relative variation in these measures between males and females within 

each sub-region (central Tennessee, southern Illinois, and western Kentucky). Across all sites 

(pooled samples), males have higher CV values for 9 of 13 cranial variables. When the samples 

are parsed into geographic origins, central Tennessee and western Kentucky have exactly the 

opposite pattern of male versus female CV values. Central Tennessee males are more variable 

across these specific thirteen cranial variables in only three cases. The reverse is true for males 

from western Kentucky. These males showed higher CV values for ten of the thirteen variables. 

The Black Earth sample from southern Illinois show a more balanced pattern in terms of 
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variation at these thirteen cranial variables. Males have higher CV values for only eight of the 

thirteen observations leaving five in which females had higher CV values. 

Dental Results 

Only buccal-lingual measures of the dentition were used (except for the canines, which 

necessitate a mesio-distal measurement).  Table 12 provides the summary statistics for side-

substituted dental metrics. No imputations were performed on the data below. 

Since the aim was to use the dental data for purposes of biological relationships and not 

asymmetry in the dentition, only teeth from the left side were used (after substituting observed 

rights for missing lefts). Table 13 presents the state of the dental data set after imputations. 

Table 14 gives summary statistics for left dental data only (after side substitutions as 

discussed in methods and above).  Imputations were performed on the data in Table 22 and the 

average of five imputations was used (see Methods). 

Following the same simple comparison of CV values between males and females 

performed above for cranial and post-cranial variables, Table 15 above summarizes just CV for 

dental variables.  

Females are more variable (higher CV values) than males in nine of the ten (9 of 10) 

maxillary and mandibular dental dimensions in the sample pooled sites.  Following this pattern, 

females from western Kentucky were more variable (higher CV values) for all ten observed 

variables. The pattern seen in central Tennessee and southern Illinois shows a more even 

distribution of variation across the ten dental variables observed here, though their patterns are 

reversed. Males have higher CV values for six of the ten variables (6 of 10) in the central 

Tennessee sample whereas it was the females from southern Illinois who had higher CV values 

in six of the ten (6 of 10) observations.  
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Table 12. Summary statistics for dental measures  

 n 

L R 

Mean 

L  R 

Stand. Dev. 

L R 

Stand. Error 

L R 

Min 

L R 

Max 

L R 

Geo. Mean 

L R 

Coeff. Var. 

L R 

XCMD All sites 

     Males 

     Females 

     

89 92 

82 96 

 

8.13 8.17 

7.93 7.98 

 

0.42 0.42 

0.51 0.48 

 

0.04 0.04 

0.06 0.05 

 

6.51 7.13 

6.43 6.5 

 

9.18 9.56 

8.83 9.03 

 

8.12 8.15 

7.92 7.96 

 

5.11 5.16 

6.43 5.96 

Central TN 

     Males 

     Females 

 

36 35 

28 34 

 

8.10 8.17 

8.02 8.01 

 

0.43 0.41 

0.54 0.46 

 

0.07 0.07 

0.10 0.08 

 

6.51 7.13 

6.43 6.70 

 

8.74 8.89 

8.83 9.03 

 

8.09 8.16 

8.00 7.99 

 

5.34 5.05 

6.75 5.80 

Southern IL 

     Males 

     Females 

 

14 17 

12 13 

 

8.11 8.13 

7.74 8.24 

 

0.32 0.46 

0.54 0.38 

 

0.09 0.11 

0.16 0.10 

 

7.48 7.19 

6.72 7.71 

 

8.61 8.88 

8.49 8.77 

 

8.10 8.11 

7.72 8.23 

 

4.00 5.64 

7.00 4.59 

Western KY 

     Males 

     Females 

 

39 40 

41 49 

 

8.18 8.17 

7.94 7.89 

 

0.43 0.42 

0.47 0.49 

 

0.07 0.07 

0.07 0.07 

 

7.31 7.25 

6.88 6.50 

 

9.18 9.56 

8.74 8.75 

 

8.16 8.16 

7.92 7.87 

 

5.32 5.17 

5.98 6.15 

XP3BL All sites 

     Males 

     Females 

 

92 95 

85 91 

 

9.75 9.87 

9.62 9.66 

 

0.61 0.56 

0.63 0.56 

 

0.06 0.06 

0.07 0.06 

 

7.91 7.89 

7.72 8.18 

 

11.38 11.39 

10.89 10.91 

 

9.74 9.86 

9.60 9.65 

 

6.21 5.62 

6.53 5.77 

Central TN 

     Males 

     Females 

 

38 40 

30 35 

 

9.70 9.97 

9.69 9.71 

 

0.68 0.54 

0.73 0.60 

 

0.11 0.09 

0.13 0.10 

 

7.98 8.95 

7.72 8.18 

 

11.38 11.39 

10.89 10.64 

 

9.67 9.95 

9.67 9.69 

 

7.03 5.47 

7.49 6.21 

Southern IL 

     Males 

     Females 

 

14 16 

15 11 

 

9.93 9.85 

9.67 9.69 

 

0.61 0.57 

0.57 0.61 

 

0.16 0.14 

0.15 0.18 

 

8.75 8.63 

8.75 9.04 

 

10.67 10.65 

10.66 10.91 

 

9.91 9.83 

9.65 9.68 

 

6.16 5.83 

5.92 6.30 

Western KY 

     Males 

     Females 

 

40 39 

40 45 

 

9.75 9.79 

9.55 9.61 

 

0.53 0.56 

0.57 0.51 

 

0.08 0.09 

0.09 0.08 

 

7.91 7.89 

8.46 8.75 

 

11.00 10.90 

10.79 10.80 

 

9.73 9.77 

9.53 9.60 

 

5.39 5.70 

6.01 5.35 

XP4BL All sites 

     Males 

     Females 

 

94 86 

94 87 

 

9.65 9.62 

9.26 9.34 

 

0.60 0.58 

0.60 0.58 

 

0.06 0.06 

0.06 0.06 

 

8.09 8.14 

6.80 7.80 

 

11.28 10.98 

10.29 10.54 

 

9.63 9.60 

9.24 9.32 

 

6.20 6.00 

6.50 6.20 

Central TN 

     Males 

     Females 

 

35 35 

33 32 

 

9.80 9.80 

9.30 9.32 

 

0.68 0.57 

0.59 0.66 

 

0.12 0.10 

0.10 0.12 

 

8.09 8.64 

7.59 7.80 

 

11.28 10.98 

10.26 10.54 

 

9.77 9.78 

9.29 9.30 

 

6.95 5.83 

6.36 7.12 

Southern IL 

     Males 

     Females 

 

18 15 

14 10 

 

9.60 9.53 

9.35 9.50 

 

0.65 0.65 

0.66 0.55 

 

0.15 0.17 

0.18 0.17 

 

8.30 8.14 

8.13 8.61 

 

10.42 10.35 

10.29 10.30 

 

9.58 9.51 

9.32 9.48 

 

6.73 6.86 

7.07 5.78 

Western KY 

     Males 

     Females 

 

41 36 

47 45 

 

9.54 9.49 

9.20 9.32 

 

0.48 0.52 

0.60 0.53 

 

0.07 0.09 

0.09 0.08 

 

8.20 8.15 

6.80 8.23 

 

10.70 10.57 

10.26 10.53 

 

9.54 9.48 

9.18 9.30 

 

5.03 5.50 

6.50 5.65 
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Table 12. Summary statistics for dental measures (continued) 

 n 

L R 

Mean 

L  R 

Stand. Dev. 

L R 

Stand. Error 

L R 

Min 

L R 

Max 

L R 

Geo. Mean 

L R 

Coeff. Var. 

L R 

XM1BL All sites 

     Males 

     Females 

 

95 88 

101 95 

 

12.04 11.92 

11.81 11.75 

 

0.59 0.57 

0.53 0.55 

 

0.06 0.06 

0.05 0.06 

 

10.78 10.29 

10.47 9.92 

 

14.02 13.36 

13.20 13.05 

 

12.03 11.91 

11.80 11.73 

 

4.87 4.77 

4.51 4.69 

Central TN 

     Males 

     Females 

 

35 34 

35 38 

 

12.00 11.97 

11.85 11.84 

 

0.73 0.67 

0.60 0.58 

 

0.12 0.11 

0.10 0.09 

 

10.78 10.29 

10.73 10.77 

 

14.02 13.34 

13.16 13.05 

 

11.98 11.95 

11.84 11.82 

 

6.12 5.56 

5.06 4.92 

Southern IL 

     Males 

     Females 

 

17 15 

18 13 

 

11.96 11.85 

11.90 11.88 

 

0.54 0.61 

0.32 0.48 

 

0.13 0.16 

0.08 0.13 

 

10.86 10.55 

11.36 10.99 

 

12.73 12.67 

12.67 12.70 

 

11.95 11.83 

11.90 11.87 

 

4.54 5.18 

2.71 4.02 

Western KY 

     Males 

     Females 

 

43 39 

48 44 

 

12.10 11.91 

11.75 11.63 

 

0.46 0.46 

0.55 0.53 

 

0.07 0.07 

0.08 0.08 

 

11.23 10.81 

10.47 9.92 

 

13.23 13.36 

13.20 12.81 

 

12.09 11.91 

11.74 11.62 

 

3.81 3.87 

4.65 4.56 

XM2BL All sites 

     Males 

     Females 

 

100 103 

111 103 

 

12.01 11.92 

11.65 11.38 

 

0.69 0.68 

0.64 0.62 

 

0.07 0.07 

0.06 0.06 

 

10.07 10.03 

9.50 9.45 

 

14.12 14.03 

13.16 13.04 

 

11.99 11.90 

11.64 11.36 

 

5.77 5.68 

5.46 5.46 

Central TN 

     Males 

     Females 

 

37 41 

35 36 

 

11.99 12.01 

11.60 11.39 

 

0.82 0.76 

0.78 0.75 

 

0.14 0.12 

0.13 0.12 

 

10.07 10.30 

9.50 9.45 

 

14.12 14.03 

13.13 13.04 

 

11.96 11.99 

11.58 11.36 

 

6.86 6.36 

6.76 6.55 

Southern IL 

     Males 

     Females 

 

18 17 

18 17 

 

12.06 12.01 

11.82 11.48 

 

0.75 0.71 

0.63 0.49 

 

0.18 0.17 

0.15 0.12 

 

10.18 10.03 

10.60 10.55 

 

13.10 12.78 

13.16 12.33 

 

12.04 11.99 

11.81 11.47 

 

6.23 5.91 

5.37 4.30 

Western KY 

     Males 

     Females 

 

45 45 

58 50 

 

12.02 11.80 

11.63 11.33 

 

0.56 0.57 

0.53 0.57 

 

0.08 0.08 

0.07 0.08 

 

10.81 10.48 

10.55 9.75 

 

13.25 13.02 

12.79 12.55 

 

12.00 11.79 

11.62 11.32 

 

4.64 4.83 

4.58 4.99 

NCMD All sites 

     Males 

     Females 

 

98 95 

86 97 

 

7.22 7.19 

6.96 6.92 

 

0.47 0.46 

0.43 0.49 

 

0.05 0.05 

0.05 0.05 

 

6.15 5.80 

5.87 5.60 

 

8.54 8.53 

8.34 8.33 

 

7.20 7.18 

6.95 6.91 

 

6.51 6.38 

6.16 7.02 

Central TN 

     Males 

     Females 

 

32 29 

21 26 

 

7.28 7.15 

7.02 6.85 

 

0.58 0.56 

0.37 0.51 

 

0.10 0.10 

0.08 0.10 

 

6.15 6.17 

6.34 5.60 

 

8.54 8.53 

7.72 8.07 

 

7.26 7.13 

7.01 6.83 

 

7.98 7.86 

5.21 7.39 

Southern IL 

     Males 

     Females 

 

20 19 

15 16 

 

7.20 7.28 

7.14 7.10 

 

0.40 0.47 

0.60 0.60 

 

0.09 0.11 

0.15 0.15 

 

6.32 6.24 

6.23 6.04 

 

7.83 8.00 

8.34 8.33 

 

7.18 7.27 

7.12 7.07 

 

5.59 6.46 

8.40 8.51 

Western KY 

     Males 

     Females 

 

46 47 

50 55 

 

7.19 7.18 

6.88 6.91 

 

0.41 0.38 

0.38 0.43 

 

0.06 0.06 

0.05 0.06 

 

6.24 5.80 

5.87 5.61 

 

8.29 7.81 

7.66 7.90 

 

7.18 7.17 

6.87 6.90 

 

5.75 5.32 

5.52 6.27 
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Table 12. Summary statistics for dental measures (continued) 

 n 

L R 

Mean 

L  R 

Stand. Dev. 

L R 

Stand. Error 

L R 

Min 

L R 

Max 

L R 

Geo. Mean 

L R 

Coeff. Var. 

L R 

NP3BL All sites 

     Males 

     Females 

 

115 105 

107 109 

 

8.28 8.29 

7.95 8.01 

 

0.44 0.44 

0.54 0.49 

 

0.04 0.04 

0.05 0.05 

 

7.05 7.18 

6.79 6.66 

 

9.38 9.19 

9.15 9.22 

 

8.27 8.28 

7.93 7.99 

 

5.34 5.29 

6.74 6.12 

Central TN 

     Males 

     Females 

 

40 37 

33 36 

 

8.38 8.31 

7.95 8.13 

 

0.50 0.48 

0.57 0.54 

 

0.08 0.08 

0.10 0.09 

 

7.06 7.30 

6.83 6.87 

 

9.38 9.19 

8.83 9.22 

 

8.36 8.30 

7.93 8.11 

 

5.97 5.78 

7.16 6.63 

Southern IL 

     Males 

     Females 

 

23 23 

18 21 

 

8.23 8.17 

7.95 8.05 

 

0.46 0.47 

0.47 0.42 

 

0.10 0.10 

0.11 0.09 

 

7.05 7.18 

6.99 7.27 

 

8.96 9.18 

8.73 8.84 

 

8.22 8.16 

7.94 8.04 

 

5.54 5.79 

5.97 5.20 

Western KY 

     Males 

     Females 

 

52 45 

56 52 

 

8.24 8.33 

7.94 7.91 

 

0.38 0.38 

0.54 0.47 

 

0.05 0.06 

0.07 0.07 

 

7.42 7.55 

6.79 6.66 

 

9.05 9.06 

9.15 8.82 

 

8.23 8.32 

7.93 7.90 

 

4.66 4.56 

6.83 5.93 

NP4BL All sites 

     Males 

     Females 

 

116 111 

118 127 

 

8.46 8.53 

8.18 8.26 

 

0.55 0.47 

0.50 0.57 

 

0.05 0.04 

0.05 0.05 

 

6.75 7.41 

5.98 6.94 

 

10.47 9.87 

9.33 11.90 

 

8.44 8.52 

8.17 8.24 

 

6.56 5.46 

6.11 6.87 

Central TN 

     Males 

     Females 

 

40 41 

41 47 

 

8.59 8.62 

8.19 8.25 

 

0.62 .049 

0.39 0.42 

 

0.10 0.08 

0.06 0.06 

 

6.75 7.49 

7.34 7.00 

 

9.89 9.87 

8.88 9.05 

 

8.57 8.61 

8.18 8.24 

 

7.18 5.63 

4.81 5.09 

Southern IL 

     Males 

     Females 

 

22 22 

20 22 

 

8.51 8.62 

8.24 8.31 

 

0.50 0.49 

0.57 0.47 

 

0.11 0.11 

0.13 0.10 

 

7.14 7.41 

7.37 7.52 

 

9.51 9.41 

9.33 9.46 

 

8.50 8.61 

8.22 8.30 

 

5.84 5.72 

6.90 5.62 

Western KY 

     Males 

     Females 

 

54 48 

56 58 

 

8.34 8.41 

8.20 8.25 

 

0.51 0.42 

0.47 0.70 

 

0.07 0.06 

0.06 0.09 

 

7.28 7.54 

7.31 6.94 

 

10.47 9.60 

9.29 11.90 

 

8.32 8.40 

8.19 8.22 

 

6.13 4.94 

5.69 8.46 

NM1BL All sites 

     Males 

     Females 

 

101 111 

109 112 

 

11.26 11.33 

11.07 11.08 

 

0.50 0.52 

0.52 0.55 

 

0.05 0.05 

0.05 0.05 

 

10.21 10.09 

9.79 9.66 

 

12.95 12.59 

12.73 12.51 

 

11.25 11.32 

11.05 11.07 

 

4.46 4.60 

4.66 4.92 

Central TN 

     Males 

     Females 

 

38 40 

44 40 

 

11.31 11.42 

11.09 11.11 

 

0.60 0.54 

0.53 0.60 

 

0.10 0.09 

0.08 0.09 

 

10.21 10.42 

9.79 9.88 

 

12.95 12.59 

12.39 12.45 

 

11.29 11.40 

11.08 11.10 

 

5.33 4.76 

4.78 5.39 

Southern IL 

     Males 

     Females 

 

19 23 

19 18 

 

11.29 11.36 

11.06 11.11 

 

0.53 0.60 

0.44 0.45 

 

0.12 0.13 

0.10 0.11 

 

10.30 10.29 

10.13 10.31 

 

12.16 12.48 

12.07 12.25 

 

11.28 11.34 

11.05 11.10 

 

4.73 5.29 

3.94 4.05 

Western KY 

     Males 

     Females 

 

44 48 

46 54 

 

11.21 11.26 

11.05 11.05 

 

0.39 0.46 

0.54 0.54 

 

0.06 0.07 

0.08 0.07 

 

10.36 10.09 

10.00 9.66 

 

11.95 12.15 

12.73 12.51 

 

11.20 11.25 

11.04 11.04 

 

3.44 4.08 

4.90 4.89 
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Table 12. Summary statistics for dental measures (continued) 

 n 

L R 

Mean 

L  R 

Stand. Dev. 

L R 

Stand. Error 

L R 

Min 

L R 

Max 

L R 

Geo. Mean 

L R 

Coeff. Var. 

L R 

NM2BL All sites 

     Males 

     Females 

 

96 105 

116 120 

 

10.91 11.00 

10.72 10.80 

 

0.55 0.61 

0.62 0.55 

 

0.06 0.06 

0.06 0.05 

 

9.58 9.47 

9.13 9.00 

 

12.40 12.53 

12.31 11.94 

 

10.90 10.99 

10.71 10.79 

 

5.04 5.54 

5.76 5.09 

Central TN 

     Males 

     Females 

 

36 38 

39 44 

 

10.92 11.07 

10.72 10.80 

 

0.58 0.66 

0.65 0.60 

 

0.10 0.11 

0.10 0.09 

 

9.61 9.47 

9.13 9.00 

 

12.40 12.20 

12.31 11.94 

 

10.90 11.05 

10.70 10.79 

 

5.34 5.98 

6.07 5.51 

Southern IL 

     Males 

     Females 

 

16 20 

20 21 

 

11.07 11.10 

10.91 11.07 

 

0.65 0.67 

0.71 0.50 

 

0.16 0.15 

0.16 0.11 

 

9.85 9.77 

9.65 10.29 

 

12.05 12.06 

12.01 11.90 

 

11.05 11.08 

10.89 11.06 

 

5.86 6.02 

6.51 4.52 

Western KY 

     Males 

     Females 

 

44 47 

57 55 

 

10.85 10.91 

10.66 10.70 

 

0.48 0.54 

0.55 0.50 

 

0.07 0.08 

0.07 0.07 

 

9.79 9.79 

9.16 9.47 

 

11.80 12.53 

11.91 11.85 

 

10.84 10.90 

10.65 10.69 

 

4.44 4.92 

5.20 4.70 
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Table 13. Dental data number of observed and percent of sample imputed (left side only, after side substitutions) 

 
All sites Central TN Southern IL Western KY 

 
Males Females Males Females Males Females Males Females 

XCMD (Total) 

 Observed 

 NA 

 % Imputed 

149 

89 

60 

40% 

150 

82 

68 

45% 

61 

36 

25 

41% 

60 

28 

32 

53% 

28 

14 

14 

50% 

23 

12 

11 

48% 

60 

39 

21 

35% 

67 

42 

25 

37% 

XP3BL (Total) 

 Observed 

 NA 

 % Imputed 

149 

92 

57 

38% 

150 

85 

65 

43% 

61 

38 

23 

38% 

60 

30 

30 

50% 

28 

14 

14 

50% 

23 

15 

8 

35% 

60 

40 

20 

33% 

67 

40 

27 

40% 

XP4BL (Total) 

 Observed 

 NA 

 % Imputed 

149 

94 

55 

37% 

150 

94 

56 

37% 

61 

35 

26 

43% 

60 

33 

27 

45% 

28 

18 

10 

36% 

23 

14 

9 

39% 

60 

41 

19 

32% 

67 

47 

20 

30% 

XM1BL (Total) 

 Observed 

 NA 

 % Imputed 

149 

95 

54 

36% 

150 

101 

49 

33% 

61 

35 

26 

43% 

60 

35 

25 

42% 

28 

17 

11 

39% 

23 

18 

5 

22% 

60 

43 

17 

28% 

67 

48 

19 

28% 

XM2BL (Total) 

 Observed 

 NA 

 % Imputed 

149 

100 

49 

33% 

150 

111 

39 

26% 

61 

37 

24 

39% 

60 

35 

25 

42% 

28 

18 

10 

36% 

23 

18 

5 

22% 

60 

45 

15 

25% 

67 

58 

9 

13% 

NCMD (Total) 

 Observed 

 NA 

 % Imputed 

149 

98 

51 

34% 

150 

86 

64 

43% 

61 

32 

29 

48% 

60 

21 

39 

65% 

28 

20 

8 

29% 

23 

15 

8 

35% 

60 

46 

14 

23% 

67 

50 

17 

25% 

NP3BL (Total) 

 Observed 

 NA 

 % Imputed 

149 

115 

34 

23% 

150 

107 

43 

29% 

61 

40 

21 

34% 

60 

33 

27 

45% 

28 

23 

5 

18% 

23 

18 

5 

22% 

60 

52 

8 

13% 

67 

56 

11 

16% 

NP4BL (Total) 

 Observed 

 NA 

 % Imputed 

149 

116 

33 

22% 

150 

118 

32 

21% 

61 

40 

21 

34% 

60 

41 

19 

32% 

28 

22 

6 

21% 

23 

20 

3 

13% 

60 

54 

6 

10% 

67 

57 

10 

15% 

NM1BL (Total) 

 Observed 

 NA 

 % Imputed 

149 

101 

489 

32% 

150 

109 

41 

27% 

61 

38 

23 

38% 

60 

44 

16 

27% 

28 

19 

9 

32% 

23 

19 

4 

17% 

60 

44 

16 

27% 

67 

46 

21 

31% 

NM2BL (Total) 

 Observed 

 NA 

 % Imputed 

149 

96 

53 

36% 

150 

116 

34 

23% 

61 

36 

25 

41% 

60 

39 

21 

35% 

28 

16 

12 

43% 

23 

20 

3 

13% 

60 

44 

16 

27% 

67 

57 

10 

15% 
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Table 14. Summary statistics for dental measures after imputation 

  n 

 

Mean 

 

Stand. 

Dev. 

 

Stand. 

Error 

 

Min Max Geo. 

Mean 

 

Coeff. 

Var. 

 

XCMD All sites 

Males 

Females 

 

159 

154 

 

8.12 

7.89 

 

0.39 

0.48 

 

0.03 

0.04 

 

6.51 

6.43 

 

9.18 

8.83 

 

8.11 

7.88 

 

4.80 

6.05 

Central TN 

Males 

Females 

 

69 

63 

 

8.13 

7.94 

 

0.39 

0.45 

 

0.05 

0.06 

 

6.51 

6.43 

 

8.89 

8.83 

 

8.12 

7.93 

 

4.84 

5.70 

Southern IL 

Males 

Females 

 

29 

25 

 

8.15 

7.85 

 

0.37 

0.51 

 

0.07 

0.10 

 

7.19 

6.72 

 

8.89 

8.77 

 

8.14 

7.83 

 

4.50 

6.51 

Western KY 

Males 

Females 

 

61 

66 

 

8.10 

7.87 

 

0.40 

0.49 

 

0.05 

0.06 

 

7.31 

6.50 

 

9.18 

8.74 

 

8.09 

7.85 

 

4.96 

6.26 

XP3BL All sites 

Males 

Females 

 

159 

154 

 

9.77 

9.56 

 

0.54 

0.56 

 

0.04 

0.05 

 

7.91 

7.72 

 

11.38 

10.89 

 

9.75 

9.55 

 

5.53 

5.88 

Central TN 

Males 

Females 

 

69 

63 

 

9.75 

9.61 

 

0.60 

0.60 

 

0.07 

0.08 

 

7.98 

7.72 

 

11.38 

10.89 

 

9.73 

9.59 

 

6.19 

6.21 

Southern IL 

Males 

Females 

 

29 

25 

 

9.86 

9.52 

 

0.54 

0.59 

 

0.10 

0.12 

 

8.75 

8.49 

 

10.67 

10.66 

 

9.84 

9.50 

 

5.51 

6.23 

Western KY 

Males 

Females 

 

61 

66 

 

9.75 

9.54 

 

0.46 

0.52 

 

0.06 

0.06 

 

7.91 

8.46 

 

11.00 

10.79 

 

9.74 

9.52 

 

4.76 

5.45 

XP4BL All sites 

Males 

Females 

 

159 

154 

 

9.61 

9.28 

 

0.52 

0.55 

 

0.04 

0.04 

 

8.09 

6.80 

 

11.28 

10.29 

 

9.59 

9.27 

 

5.46 

5.88 

Central TN 

Males 

Females 

 

69 

63 

 

9.69 

9.34 

 

0.58 

0.52 

 

0.07 

0.07 

 

8.09 

7.59 

 

11.28 

10.26 

 

9.67 

9.33 

 

5.98 

5.54 

Southern IL 

Males 

Females 

 

29 

25 

 

9.59 

9.24 

 

0.58 

0.60 

 

0.11 

0.12 

 

8.30 

8.13 

 

10.42 

10.29 

 

9.58 

9.22 

 

6.01 

6.53 

Western KY 

Males 

Females 

 

61 

66 

 

9.52 

9.24 

 

0.42 

0.55 

 

0.05 

0.07 

 

8.20 

6.80 

 

10.70 

10.26 

 

9.51 

9.322 

 

4.36 

5.99 

XM1BL All sites 

Males 

Females 

 

159 

154 

 

12.00 

11.78 

 

0.53 

0.52 

 

0.04 

0.04 

 

10.29 

10.47 

 

14.02 

13.20 

 

11.99 

11.77 

 

4.38 

4.42 

Central TN 

Males 

Females 

 

69 

63 

 

11.99 

11.83 

 

0.60 

0.56 

 

0.07 

0.07 

 

10.29 

10.73 

 

14.02 

13.16 

 

11.98 

11.82 

 

4.96 

4.77 

Southern IL 

Males 

Females 

 

29 

25 

 

11.97 

11.81 

 

0.55 

0.39 

 

0.10 

0.08 

 

10.86 

10.87 

 

13.16 

12.67 

 

11.96 

11.80 

 

4.61 

3.31 

Western KY 

Males 

Females 

 

61 

66 

 

12.02 

11.72 

 

0.43 

0.52 

 

0.05 

0.06 

 

11.23 

10.47 

 

13.23 

13.20 

 

12.01 

11.71 

 

3.54 

4.46 
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Table 14. Summary statistics for dental measures after imputation (continued) 

  n 

 

Mean 

 

Stand. 

Dev. 

 

Stand. 

Error 

 

Min Max Geo. 

Mean 

 

Coeff. 

Var. 

 

XM2BL All sites 

Males 

Females 

 

159 

154 

 

11.98 

11.64 

 

0.62 

0.62 

 

0.05 

0.05 

 

10.07 

9.50 

 

14.12 

13.16 

 

11.96 

11.62 

 

5.19 

5.29 

Central TN 

Males 

Females 

 

69 

63 

 

12.02 

11.66 

 

0.68 

0.69 

 

0.08 

0.09 

 

10.07 

9.50 

 

14.12 

13.13 

 

12.00 

11.64 

 

5.63 

5.92 

Southern IL 

Males 

Females 

 

29 

25 

 

12.00 

11.66 

 

0.68 

0.65 

 

0.13 

0.13 

 

10.18 

10.34 

 

13.10 

13.16 

 

11.98 

11.65 

 

5.69 

5.56 

Western KY 

Males 

Females 

 

61 

66 

 

11.93 

11.62 

 

0.53 

0.53 

 

0.07 

0.07 

 

10.81 

10.55 

 

13.25 

12.79 

 

11.92 

11.60 

 

4.42 

4.57 

NCMD All sites 

Males 

Females 

 

159 

154 

 

7.18 

6.93 

 

0.44 

0.45 

 

0.03 

0.04 

 

6.15 

5.60 

 

8.54 

8.34 

 

7.16 

6.92 

 

6.09 

6.44 

Central TN 

Males 

Females 

 

69 

63 

 

7.20 

6.95 

 

0.49 

0.45 

 

0.06 

0.06 

 

6.15 

5.60 

 

8.54 

7.91 

 

7.19 

6.93 

 

6.84 

6.46 

Southern IL 

Males 

Females 

 

29 

25 

 

7.19 

7.03 

 

0.38 

0.50 

 

0.07 

0.10 

 

6.32 

6.23 

 

8.00 

8.34 

 

7.18 

7.02 

 

5.24 

7.10 

Western KY 

Males 

Females 

 

61 

66 

 

7.14 

6.89 

 

0.40 

0.42 

 

0.05 

0.05 

 

6.24 

5.61 

 

8.29 

7.89 

 

7.13 

6.87 

 

5.59 

6.14 

NP3BL All sites 

Males 

Females 

 

159 

154 

 

8.24 

8.01 

 

0.45 

0.51 

 

0.04 

0.04 

 

6.90 

6.79 

 

9.38 

9.22 

 

8.23 

7.99 

 

5.50 

6.37 

Central TN 

Males 

Females 

 

69 

63 

 

8.28 

8.06 

 

0.50 

0.52 

 

0.06 

0.07 

 

6.90 

6.83 

 

9.38 

9.22 

 

8.26 

8.05 

 

6.08 

6.47 

Southern IL 

Males 

Females 

 

29 

25 

 

8.16 

7.96 

 

0.47 

0.45 

 

0.09 

0.09 

 

7.05 

6.99 

 

8.96 

8.73 

 

8.15 

7.95 

 

5.76 

5.67 

Western KY 

Males 

Females 

 

61 

66 

 

8.23 

7.98 

 

0.38 

0.52 

 

0.05 

0.06 

 

7.42 

6.79 

 

9.05 

9.15 

 

8.22 

7.96 

 

4.63 

6.55 

NP4BL All sites 

Males 

Females 

 

159 

154 

 

8.42 

8.22 

 

0.53 

0.48 

 

0.04 

0.04 

 

6.75 

5.98 

 

10.47 

9.33 

 

8.40 

8.21 

 

6.30 

5.86 

Central TN 

Males 

Females 

 

69 

63 

 

8.48 

8.25 

 

0.57 

0.38 

 

0.07 

0.05 

 

6.75 

7.34 

 

9.89 

8.92 

 

8.46 

8.24 

 

6.71 

4.63 

Southern IL 

Males 

Females 

 

29 

25 

 

8.46 

8.26 

 

0.49 

0.54 

 

0.09 

0.11 

 

7.14 

7.37 

 

9.51 

9.33 

 

8.45 

8.24 

 

5.81 

6.59 

Western KY 

Males 

Females 

 

61 

66 

 

8.34 

8.18 

 

0.50 

0.54 

 

0.06 

0.07 

 

7.28 

5.98 

 

10.47 

9.29 

 

8.32 

8.16 

 

5.97 

6.63 
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Table 14. Summary statistics for dental measures after imputation (continued) 

  n 

 

Mean 

 

Stand. 

Dev. 

 

Stand. 

Error 

 

Min Max Geo. 

Mean 

 

Coeff. 

Var. 

 

NM1BL All sites 

Males 

Females 

 

159 

154 

 

11.26 

11.07 

 

0.47 

0.49 

 

0.04 

0.04 

 

10.21 

9.79 

 

12.95 

12.73 

 

11.25 

11.06 

 

4.19 

4.44 

Central TN 

Males 

Females 

 

69 

63 

 

11.30 

11.11 

 

0.52 

0.50 

 

0.06 

0.06 

 

10.21 

9.79 

 

12.95 

12.39 

 

11.29 

11.10 

 

4.59 

4.54 

Southern IL 

Males 

Females 

 

29 

25 

 

11.28 

11.04 

 

0.55 

0.41 

 

0.10 

0.08 

 

10.29 

10.13 

 

12.48 

12.07 

 

11.27 

11.04 

 

4.90 

3.73 

Western KY 

Males 

Females 

 

61 

66 

 

11.20 

11.04 

 

0.36 

0.51 

 

0.05 

0.06 

 

10.36 

10.00 

 

11.95 

12.73 

 

11.19 

11.02 

 

3.24 

4.62 

NM2BL All sites 

Males 

Females 

 

159 

154 

 

10.97 

10.73 

 

0.54 

0.58 

 

0.04 

0.05 

 

9.35 

9.13 

 

12.53 

12.31 

 

10.96 

10.72 

 

4.95 

5.41 

Central TN 

Males 

Females 

 

69 

63 

 

10.98 

10.75 

 

0.56 

0.59 

 

0.07 

0.07 

 

9.35 

9.13 

 

12.40 

12.31 

 

10.97 

10.73 

 

5.11 

5.45 

Southern IL 

Males 

Females 

 

29 

25 

 

11.05 

10.85 

 

0.59 

0.67 

 

0.11 

0.13 

 

9.58 

6.65 

 

12.05 

12.01 

 

11.04 

10.83 

 

5.31 

6.18 

Western KY 

Males 

Females 

 

61 

66 

 

10.93 

10.67 

 

0.50 

0.54 

 

0.06 

0.07 

 

9.79 

9.16 

 

12.53 

11.91 

 

10.92 

10.66 

 

4.61 

5.04 
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Table 15. Coefficient of Variation for dental data set (observed and imputed) 

 
All sites Central TN Southern IL Western KY 

 
Males Females Males Females Males Females Males Females 

XCMD 4.80 6.05 4.84 5.70 4.50 6.51 4.96 6.26 

XP3BL 5.53 5.88 6.19 5.21 5.51 6.23 4.76 5.45 

XP4BL 5.46 5.88 5.98 5.54 6.01 6.53 4.36 5.99 

XM1BL 4.38 4.42 4.96 4.77 4.61 3.31 3.54 4.46 

XM2BL 5.19 5.29 5.63 5.92 5.69 5.56 4.42 4.57 

NCMD 6.09 6.44 6.84 6.46 5.24 7.10 5.59 6.14 

NP3BL 5.50 6.37 6.08 6.47 5.76 5.67 4.63 6.55 

NP4BL 6.30 5.86 6.71 4.63 5.81 6.59 5.97 6.63 

NM1BL 4.19 4.44 4.59 4.54 4.90 3.73 3.24 4.62 

NM2BL 4.95 5.41 5.11 5.45 5.31 6.18 4.61 5.04 

Number of variables for which each sex has greater CV values 

 1 9 6 4 4 6 0 10 

Variables in order of least to most imputations made in that variable. 

Bolded values represent the higher value between males and females. 
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Post-Cranial Results 

The first table below (Table 16) provides summary statistics of post-cranial measures.  For 

this table, individuals with missing data were removed for each variable. The table represents the 

number of observed values (a minimum number of individuals, then) for each variable.  

Fifty-three females had a complete set of observations from the humerus, radius, femur, 

and tibia (left side only). Thirty-five females were excluded because they had no post-cranial 

remains. After the regression process (described above in Methods) there were 173 females for 

which all four bones were either observed or estimated (39 from the Black Earth site, 62 from the 

central Tennessee sites, and 72 from Indian Knoll). The same linear regression equation 

procedures were followed for males. 58 males had all four long bones of interest and they were 

used to generate the regression equations below. Thirty-eight males were excluded because they 

had no post-cranial skeleton observed. After estimating long bone lengths using the regression 

equations, 191 males had data for all four long bones (48 from Black Earth, 72 from central 

Tennessee sites, and 71 from Indian Knoll). 

Table 19 provides summary statistics for long bone lengths after having completed side 

substitutions and regressions as required and outlined above. Table 20 provides the same for 

brachial, crural, and intermembral indices.  
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Table 16. Summary statistics for post-cranial measures (individuals with missing data points removed for each variable) 

 n 

Left Right 

Mean 

Left  Right 

Stand. Dev. 

Left Right 

Stand. Error 

Left Right 

Minimum 

Left Right 

Maximum 

Left Right 

Geo. Mean 

Left Right 

Coeff. Var. 

Left Right 

HXL All sites 

     Males 

     Females 

 

128 142 

115 133 

 

319.70 318.45 

294.07 298.21 

 

13.91 14.87 

12.64 13.46 

 

1.23 1.25 

1.18 1.17 

 

285.00 283.00 

265.00 254.00 

 

359.00 367.00 

327.00 347.00 

 

319.40 318.10 

293.80 297.91 

 

4.35 4.67 

4.30 4.51 

Central TN 

     Males 

     Females 

 

39 42 

30 41 

 

317.47 314.74 

293.37 298.62 

 

13.75 13.78 

11.60 14.61 

  

2.20 2.13 

2.12 2.28 

 

291.00 291.00 

272.00 254.00 

 

345.00 350.00 

320.00 333.00 

 

317.18 314.45 

293.15 298.27 

 

4.33 4.38 

3.95 4.89 

Southern IL 

     Males 

     Females 

 

30 36 

29 27 

 

319.18 318.51 

294.90 298.82 

 

15.06 16.52 

13.16 12.70 

 

2.75 2.75 

2.44 2.44 

 

285.00 283.00 

269.00 271.00 

 

359.00 367.00 

327.00 331.00 

 

318.84 318.10 

294.61 298.56 

 

4.72 5.19 

4.46 4.25 

Western KY 

     Males 

     Females 

 

59 64 

56 65 

 

321.42 320.84 

294.02 297.69 

 

13.40 14.30 

13.09 13.20 

 

1.74 1.79 

1.75 1.64 

 

291.00 290.00 

265.00 271.00 

 

351.00 346.00 

327.00 347.00 

 

321.15 320.53 

293.73 297.41 

 

4.17 4.46 

4.45 4.43 

RXL All sites 

     Males 

     Females 

 

113 116 

110 112 

 

246.76 246.60 

223.50 225.88 

 

11.99 11.23 

13.20 12.16 

 

1.13 1.04 

1.26 1.15 

 

216.00 212.00 

196.00 197.00 

 

282.00 281.00 

261.00 263.00 

 

246.47 246.34 

223.11 225.56 

 

4.86 4.55 

5.91 5.38 

Central TN 

     Males 

     Females 

 

39 28 

31 30 

 

247.29 246.30 

223.60 224.32 

 

13.15 11.90 

15.62 13.55 

 

2.11 2.25 

2.81 2.47 

 

223.00 221.50 

196.00 197.00 

 

282.00 281.00 

261.00 261.00 

 

246.96 246.03 

223.08 223.93 

 

5.32 4.83 

6.99 6.04 

Southern IL 

     Males 

     Females 

 

30 38 

25 22 

 

246.10 246.50 

223.64 228.27 

 

12.14 11.59 

12.28 10.34 

 

2.22 1.88 

2.46 2.20 

 

216.00 212.00 

205.00 209.00 

 

272.00 274.00 

245.00 247.00 

 

245.81 246.23 

223.32 228.05 

 

4.93 4.70 

5.49 4.53 

Western KY 

     Males 

     Females 

 

44 50 

54 60 

 

246.73 246.84 

223.37 225.78 

 

11.04 10.79 

12.32 12.10 

 

1.66 1.53 

1.68 1.56 

 

218.00 217.00 

198.00 199.00 

 

269.00 266.00 

254.00 263.00 

 

246.48 246.61 

223.04 225.47 

 

4.47 4.37 

5.52 5.36 

FXL All sites 

     Males 

     Females 

 

148 152 

130 126 

 

443.10 440.88 

414.12 413.31 

 

20.36 20.49 

19.36 19.22 

 

1.67 1.66 

1.70 1.71 

 

400.00 401.00 

360.00 360.00 

 

494.00 494.00 

478.00 475.00 

 

442.64 440.40 

413.68 412.87 

 

4.60 4.65 

4.67 4.65 

Central TN 

     Males 

     Females 

 

50 47 

37 37 

 

442.22 441.66 

412.38 409.27 

 

20.02 21.76 

22.76 20.90 

 

2.83 3.17 

3.74 3.44 

 

400.00 402.00 

360.00 360.00 

 

494.00 494.00 

460.00 457.00 

 

441.78 441.14 

411.76 408.75 

 

4.53 4.93 

5.52 5.11 

Southern IL 

     Males 

     Females 

 

33 35 

23 21 

 

443.61 440.64 

420.22 422.71 

 

18.32 18.92 

14.82 15.01 

 

3.19 3.20 

3.09 3.28 

 

405.00 403.00 

390.00 385.00 

 

490.00 489.00 

458.00 455.00 

 

443.24 440.25 

419.97 422.46 

 

4.13 4.29 

3.53 3.55 

Western KY 

     Males 

     Females 

 

65 70 

70 68 

 

443.52 440.47 

413.04 412.60 

 

21.84 20.64 

18.58 18.72 

 

2.71 2.47 

2.22 2.27 

 

402.00 401.00 

379.00 381.00 

 

490.00 484.00 

478.00 475.00 

 

442.99 439.99 

412.64 412.19 

 

4.92 4.69 

4.50 4.54 
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Table 16. Summary statistics for post-cranial measures (individuals with missing data points removed for each variable) (continued) 

 n 

Left Right 

Mean 

Left  Right 

Stand. Dev. 

Left Right 

Stand. Error 

Left Right 

Minimum 

Left Right 

Maximum 

Left Right 

Geo. Mean 

Left Right 

Coeff. Var. 

Left Right 

TXL All sites 

     Males 

     Females 

 

138 129 

103 111 

 

369.24 367.40 

339.68 340.14 

 

17.35 18.03 

17.33 17.13 

 

1.48 1.59 

1.71 1.63 

 

324.00 326.00 

306.00 305.00 

 

413.00 415.00 

403.00 404.00 

 

368.84 366.96 

339.26 339.72 

 

4.70 4.91 

5.10 5.04 

Central TN 

     Males 

     Females 

 

48 41 

27 31 

 

368.89 366.29 

337.31 339.02 

 

18.09 18.61 

17.22 15.73 

 

2.61 2.91 

3.31 2.83 

 

324.00 326.00 

306.00 305.00 

 

413.00 415.00 

378.00 373.00 

 

368.45 365.83 

336.90 338.66 

 

4.90 5.08 

5.10 4.64 

Southern IL 

     Males 

     Females 

 

30 32 

15 17 

 

372.30 370.97 

348.53 345.65 

 

16.85 16.31 

13.38 15.70 

 

3.08 2.88 

3.45 3.81 

 

337.00 339.00 

320.00 320.00 

 

403.00 404.00 

375.00 370.00 

 

371.93 370.62 

348.29 345.31 

 

4.53 4.40 

3.84 4.54 

Western KY 

     Males 

     Females 

 

60 56 

61 63 

 

368.00 366.16 

338.56 339.21 

 

17.09 18.57 

17.81 18.09 

 

2.21 2.48 

2.28 2.28 

 

328.00 326.00 

307.00 311.00 

 

407.00 406.00 

403.00 404.00 

 

367.61 365.70 

338.11 338.75 

 

4.64 5.07 

5.26 5.33 
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Table 17. Linear regression formulae (left females only, pooled sites)  
Long bone Regression formulae R Square 

Humerus HXL = 78.021 + 0.639(TXL) 

HXL = 72.014 + 0.996(RXL) 

HXL = 67.897 + 0.868(RXL) + 0.096(TXL) 

HXL = 21.456 + 0.663(FXL) 

HXL = 21.921 + 0.073(TXL) + 0.602(FXL) 

HXL = 21.002 + 0.409(FXL) + 0.471(RXL) 

HXL = 18.584 + 0.745(RXL) + 0.545(FXL) – 0.339(TXL) 

0.61 

0.70 

0.70 

0.73 

0.74 

0.78 

0.80 

Radius RXL = 0.965 + 0.540(FXL) 

RXL = 17.300 + 0.700(HXL) 

RXL = -7.212 + 0.381(HXL) + 0.287(FXL) 

RXL = 11.767 + 0.624(TXL) 

RXL = 4.479 + 0.553(TXL) + 0.077(FXL) 

RXL = -9.197 + 0.267(HXL) + 0.454(TXL) 

RXL = -2.868 + -0.125(FXL) + 0.528(TXL) + 0.335(HXL) 

0.69 

0.70 

0.75 

0.78 

0.83 

0.87 

0.87 

Femur FXL = 124.637 + 1.284(RXL) 

FXL = 85.327 + 1.107(HXL) 

FXL = 74.993 + 0.597(RXL) + 0.689(HXL) 

FXL = 93.183 + 0.940(TXL) 

FXL = 90.547 + 0.226(RXL) + 0.799(TXL) 

FXL = 50.762 + 0.593(TXL) + 0.544(HXL) 

FXL = 47.815 + 0.738(TXL) + 0.629(HXL) - 0.320(RXL) 

0.70 

0.73 

0.78 

0.79 

0.79 

0.86 

0.86 

Tibia TXL = 58.329 + 0.951(HXL) 

TXL = 59.310 + 1.252(RXL) 

TXL = -6.357 + 0.838(FXL) 

TXL = -8.226 + 0.087(HXL) + 0.780(FXL) 

TXL = 36.820 + 0.081(HXL) + 1.243(RXL) 

TXL = -7.140 + 0.400(FXL) + 0.811(RXL) 

TXL = -1.458 - 0.271(HXL) + 0.938(RXL) + 0.510(FXL) 

0.61 

0.78 

0.79 

0.79 

0.83 

0.88 

0.89 
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Table 18. Linear regression formulae (left males only, pooled sites)  
Long bone Regression formulae R Square 

Humerus HXL = 64.235 + 1.032(RXL) 

HXL = 63.357 + 0.696(TXL) 

HXL = 42.044 + 0.623(FXL) 

HXL = 37.498 + 0.435(RXL) + 0.474(TXL) 

HXL = 38.359 + 0.329(TXL) + 0.359(FXL) 

HXL = 18.697 + 0.441(RXL) + 0.430(FXL) 

HXL = 20.689 + 0.361(RXL) + 0.304(FXL) + 0.200(TXL) 

0.67 

0.75 

0.76 

0.79 

0.79 

0.81 

0.82 

Radius RXL = 52.962 + 0.437(FXL) 

RXL = 59.502 + 0.512(TXL) 

RXL = 48.966 + 0.357(TXL) + 0.151(FXL) 

RXL = 41.529 + 0.646(HXL) 

RXL = 33.435 + 0.464(HXL) + 0.148(FXL) 

RXL = 35.273 + 0.382(HXL) + 0.245(TXL) 

RXL = 34.630 + 0.374(HXL) + 0.234(TXL) + 0.017(FXL) 

0.60 

0.64 

0.66 

0.67 

0.68 

0.70 

0.70 

Femur FXL = 105.875 + 1.373(RXL) 

FXL = 54.653 + 1.225(HXL) 

FXL = 40.929 + 1.011(HXL) + 0.330(RXL) 

FXL = 69.620 + 1.022(TXL) 

FXL = 55.208 + 0.242(RXL) + 0.898(TXL) 

FXL = 37.581 + 0.506(HXL) + 0.670(TXL) 

FXL = 36.631 + 0.495(HXL) + 0.027(RXL) + 0.663(TXL) 

0.60 

0.76 

0.77 

0.82 

0.83 

0.85 

0.85 

Tibia TXL = 56.417 + 1.260(RXL) 

TXL = 25.485 + 1.073(HXL) 

TXL = 6.479 + 0.777(HXL) + 0.458(RXL) 

TXL = 11.188 + 0.801(FXL) 

TXL = -5.107 + 0.560(FXL) + 0.388(HXL) 

TXL = -9.936 + 0.627(FXL) + 0.399(RXL) 

TXL = -14.693 + 0.517(FXL) + 0.254(HXL) + 0.287(RXL) 

0.64 

0.75 

0.78 

0.82 

0.84 

0.84 

0.85 



102 

 

Table 19. Summary statistics for maximum long bone lengths  

(left side only, observed and estimated individuals) 

  n Mean Std. 

Dev. 

Std. 

Error 

Min Max Geo. 

Mean 

Coeff. 

Var. 

HXL All sites 

     Males 

     Females 

 

191 

173 

 

318.76 

295.10 

 

13.22 

13.86 

 

0.96 

1.05 

 

285.00 

260.14 

 

359.00 

338.37 

 

318.49 

294.77 

 

4.15 

4.70 

Central TN 

     Males 

     Females 

 

72 

62 

 

317.39 

293.99 

 

12.28 

14.61 

 

1.45 

1.86 

 

291.00 

260.14 

 

351.92 

326.44 

 

317.16 

293.63 

 

3.87 

4.97 

Southern IL 

     Males 

     Females 

 

48 

39 

 

319.40 

296.09 

 

13.90 

12.90 

 

2.01 

2.06 

 

285.00 

269.00 

 

359.00 

327.00 

 

319.11 

295.81 

 

4.35 

4.36 

Western KY 

     Males 

     Females 

 

71 

72 

 

319.73 

295.51 

 

13.74 

13.83 

 

1.63 

1.63 

 

289.13 

265.00 

 

351.00 

338.37 

 

319.43 

295.20 

 

4.30 

4.68 

RXL All sites 

     Males 

     Females 

 

191 

173 

 

247.10 

223.82 

 

10.57 

12.65 

 

0.76 

0.96 

 

216.00 

183.12 

 

282.00 

263.24 

 

246.87 

223.47 

 

4.28 

5.65 

Central TN 

     Males 

     Females 

 

72 

62 

 

246.74 

222.99 

 

10.58 

14.32 

 

1.25 

1.82 

 

223.00 

183.12 

 

282.00 

261.00 

 

246.52 

222.54 

 

4.29 

6.42 

Southern IL 

     Males 

     Females 

 

48 

39 

 

246.74 

225.01 

 

11.00 

10.52 

 

1.59 

1.68 

 

216.00 

205.00 

 

272.00 

245.00 

 

246.50 

224.77 

 

4.46 

4.67 

Western KY 

     Males 

     Females 

 

71 

72 

 

247.70 

223.89 

 

10.37 

12.29 

 

1.23 

1.45 

 

218.00 

198.00 

 

269.00 

263.24 

 

247.49 

223.57 

 

4.19 

5.49 

FXL All sites 

     Males 

     Females 

 

191 

173 

 

443.38 

413.13 

 

18.79 

18.50 

 

1.36 

1.41 

 

400.00 

360.00 

 

494.00 

478.00 

 

442.98 

412.72 

 

4.24 

4.48 

Central TN 

     Males 

     Females 

 

72 

62 

 

443.15 

410.98 

 

17.37 

20.42 

 

2.05 

2.59 

 

400.00 

360.00 

 

494.00 

460.00 

 

442.82 

410.48 

 

3.92 

4.97 

Southern IL 

     Males 

     Females 

 

48 

39 

 

443.69 

416.53 

 

17.51 

15.04 

 

2.53 

2.41 

 

405.00 

383.11 

 

490.00 

458.00 

 

443.36 

416.27 

 

3.95 

3.61 

Western KY 

     Males 

     Females 

 

71 

72 

 

443.39 

413.14 

 

21.13 

18.42 

 

2.51 

2.17 

 

402.00 

379.00 

 

490.00 

478.00 

 

442.89 

412.75 

 

4.77 

4.46 

TXL All sites 

     Males 

     Females 

 

191 

173 

 

367.84 

339.93 

 

16.24 

17.26 

 

1.17 

1.31 

 

324.00 

299.51 

 

413.00 

403.00 

 

367.48 

339.50 

 

4.41 

5.08 

Central TN 

     Males 

     Females 

 

72 

62 

 

367.28 

338.70 

 

16.12 

18.62 

 

1.90 

2.36 

 

324.00 

299.51 

 

413.00 

386.08 

 

366.93 

338.20 

 

4.39 

5.50 

Southern IL 

     Males 

     Females 

 

48 

39 

 

368.36 

343.11 

 

15.72 

14.58 

 

2.27 

2.34 

 

337.00 

315.97 

 

403.00 

375.00 

 

368.03 

342.80 

 

4.27 

4.25 

Western KY 

     Males 

     Females 

 

71 

72 

 

368.05 

339.27 

 

16.90 

17.41 

 

2.01 

2.05 

 

328.00 

307.00 

 

407.00 

403.00 

 

367.67 

338.84 

 

4.59 

5.13 
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Table 20. Summary statistics for post-cranial computed measures of brachial, crural, and intermembral 

indices (left sides, observed and estimated individuals) 

  n Mean Std. 

Dev. 

Std. 

Error 

Min Max Geo. 

Mean 

Coeff. 

Var. 

BRIND All sites 

     Males 

     Females 

 

191 

173 

 

77.53 

75.84 

 

1.71 

2.13 

 

0.12 

0.16 

 

71.43 

65.87 

 

82.35 

82.18 

 

77.51 

75.81 

 

2.21 

2.81 

Central TN 

     Males 

     Females 

 

72 

62 

 

77.74 

75.82 

 

1.43 

2.13 

 

0.17 

0.27 

 

73.62 

65.87 

 

81.27 

81.56 

 

77.73 

75.79 

 

1.85 

2.81 

Southern IL 

     Males 

     Females 

 

48 

39 

 

77.27 

76.01 

 

1.80 

1.82 

 

0.26 

0.29 

 

72.93 

69.38 

 

82.35 

79.03 

 

77.25 

75.98 

 

2.32 

2.39 

Western KY 

     Males 

     Females 

 

71 

72 

 

77.50 

75.77 

 

1.90 

2.31 

 

0.23 

0.27 

 

71.43 

70.69 

 

82.32 

82.18 

 

77.48 

75.73 

 

2.46 

3.05 

CRIND All sites 

     Males 

     Females 

 

191 

173 

 

82.97 

82.28 

 

1.64 

1.77 

 

0.12 

0.13 

 

78.72 

77.95 

 

87.65 

88.02 

 

82.96 

82.26 

 

1.97 

2.15 

Central TN 

     Males 

     Females 

 

72 

62 

 

82.88 

82.41 

 

1.57 

1.69 

 

0.19 

0.21 

 

79.66 

78.75 

 

87.47 

87.27 

 

82.86 

82.39 

 

1.90 

2.05 

Southern IL 

     Males 

     Females 

 

48 

39 

 

83.03 

82.37 

 

1.57 

1.54 

 

0.23 

0.25 

 

79.52 

77.98 

 

86.88 

86.17 

 

83.01 

82.35 

 

1.89 

1.87 

Western KY 

     Males 

     Females 

 

71 

72 

 

83.03 

82.12 

 

1.76 

1.96 

 

0.21 

0.23 

 

78.72 

77.95 

 

87.65 

88.02 

 

83.01 

82.09 

 

2.12 

2.38 

INTERM

EM 

INDEX 

All sites 

     Males 

     Females 

 

191 

173 

 

69.77 

68.91 

 

1.19 

1.04 

 

0.09 

0.08 

 

66.06 

64.39 

 

73.37 

72.24 

 

69.76 

68.90 

 

1.71 

1.50 

Central TN 

     Males 

     Females 

 

72 

62 

 

69.62 

68.95 

 

0.96 

1.00 

 

0.11 

0.13 

 

67.32 

64.39 

 

71.61 

71.59 

 

69.61 

68.95 

 

1.37 

1.45 

Southern IL 

     Males 

     Females 

 

48 

39 

 

69.72 

68.58 

 

1.31 

0.99 

 

0.19 

0.16 

 

66.06 

65.85 

 

73.37 

70.38 

 

69.71 

68.58 

 

1.88 

1.44 

Western KY 

     Males 

     Females 

 

71 

72 

 

69.96 

69.03 

 

1.32 

1.07 

 

0.16 

0.13 

 

66.75 

67.25 

 

72.84 

72.24 

 

69.94 

69.03 

 

1.89 

1.55 
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As for the cranial and dental data, the coefficient of variation from the observed and 

estimated (complete) post-cranial data set were isolated below to get a crude estimate of the 

relative variation in each of the measures, in each subsample. Below are only the coefficient of 

variations (CV) for the maximum long bone lengths and computed indices (Table 21).  

For the pooled data set of males and females from all sites, females have higher coefficients 

of variation (CV) for all measured and computed variables except the intermembral index. 

Breaking down the samples into geographic regions shows a different pattern between male and 

female CV values. No variables showed higher male CV in the central TN sample. Females had 

higher CV values for all seven post-cranial observed and calculated variables. The pattern was 

similar for the western KY sample. Females had higher CV values in five of the seven variables. 

The sample from southern IL showed a more balanced distribution of CV values across the post-

cranial variables. Four of the seven variables had higher CV values for males rather than females.  

Table 22 provides a very crude summary of the overall variation across the cranial, dental, 

and post-cranial data sets as measured by CV values. This summarized view of variation shows 

females have higher CV values than males in the majority of instances. The pattern seen in the 

sample from southern Illinois is the opposite, though – males are more variable than females but 

the balance is much closer than what is observed at the other sites. 
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Table 21. Coefficient of Variation for full post-cranial data set (observed and estimated) 

 
All sites Central TN Southern IL Western KY 

 
Males Females Males Females Males Females Males Females 

HXL 4.15 4.70 3.87 4.97 4.35 4.36 4.30 4.68 

RXL 4.28 5.65 4.29 6.42 4.46 4.67 4.19 5.49 

FXL 4.24 4.48 3.92 4.97 3.95 3.61 4.77 4.46 

TXL 4.41 5.08 4.39 5.50 4.27 4.25 4.59 5.13 

BRACHIAL 

INDEX 
2.21 2.81 1.85 2.81 2.32 2.39 2.46 3.05 

CRURAL  

INDEX 
1.97 2.15 1.90 2.05 1.89 1.87 2.12 2.38 

INTERMEMB 

INDEX 
1.71 1.50 1.37 1.45 1.88 1.44 1.89 1.55 

Number of variables for which each sex has greater CV values 

 1 6 0 7 4 3 2 5 

Bold values represent the higher value between males and females 

 

Table 22. Summary of number of variables for which each sex had higher CV values 

 All sites Central TN Southern IL Western KY 

 
Males Females Males Females Males Females Males Females 

Cranial 9 4 3 10 8 5 10 3 

P-C 1 6 0 7 4 3 2 5 

Dental 1 9 6 4 4 6 0 10 

Sum 11 19 9 21 16 14 12 18 
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Multivariate Results 

 

Principal Component Analysis 

Principal component analyses were performed using the var-covar matrix rather than the 

correlation matrix because the chosen variables are all measured on the same scale. The color 

key for the PCA graphs is given in Table 23 below. 

Cranial Principal Component Analyses 

Principal Component Analysis of cranial variables consists of all sites, pooled sexes, and 

raw data (including imputations made for missing data) (Tables 24-25). The first principal 

component (PC1) accounts for just over 52% of the variance. All variables are positively loaded 

on the first axis. The greatest three loadings on PC1 are from Bi-zygomatic Breadth (0.4568), Bi-

asterionic Breadth (0.4456), Bi-auricular Breadth (0.3849). The pattern of 95% confidence 

ellipses are interesting for the first two components. There is good separation between males and 

females along PC1, indicative that females are smaller than males as a group (Figure 7). The 

angle of the ellipses are different between the sexes, though. Southern Illinois and central 

Tennessee females have a positive “slope” through their ellipses while the western Kentucky 

sample is nearly flat. The situation is somewhat reversed in the males. Western Kentucky and 

central Tennessee males have a nearly flat orientations paralleling PC1 while southern Illinois 

males would have a negative “slope.” Southern Illinois males and females occupy opposite ends 

of PC1, as well. Both ellipses for those subgroups are also larger than the other two subgroups. 
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Table 23. Color codes for Principal Components Analyses 

Group Color in PCAs 

Black Earth Males Purple 

Black Earth Females Pink 

Central TN Males Dark green 

Central TN Females Light green  

Western KY Males Dark blue  

Western KY Females Light blue  

 

Table 24. Cranial raw data eigenvalues and contribution to 

variance for pooled sexes and all sites 

PC Eigenvalue % variance 

1 155.196 52.073 

2 42.2428 14.174 

3 22.8762 7.6757 

4 19.1754 6.434 

5 16.3153 5.4743 

6 11.4305 3.8353 

7 8.2723 2.7756 

8 6.74314 2.2625 

9 4.18533 1.4043 

10 3.8601 1.2952 

11 2.97052 0.9967 

12 2.01295 0.67541 

13 1.58816 0.53288 

14 1.16615 0.39128 

 

Table 25. Cranial raw data loadings on the first three PC axes for pooled 

sexes and all sites 

 Axis 1 Axis 2 Axis 3 

BZB 0.4568 0.1788 -0.4051 

BAB 0.4456 -0.5159 0.146 

BAUR 0.3849 -0.06894 -0.3296 

XCB 0.3151 -0.2221 -0.02934 

XCL 0.2999 0.5855 0.4381 

FB 0.2440 -0.3807 0.4033 

CBL 0.2353 0.2425 -0.09632 

FH 0.2292 0.172 0.1631 

BPL 0.1880 0.2372 -0.1642 

MXAB 0.1436 0.005633 -0.1668 

OC 0.1252 0.09472 0.5069 

FML 0.09732 0.07897 0.03908 

FMB 0.06059 0.01103 -0.03044 

NB 0.05614 -0.0006145 0.01836 

 



 

 

1
0
8
 

 

 

Figure 7. Cranial raw data. PC1 x PC2
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Graphing PC2 on PC3 produces another interesting graph of the variation in these cranial 

data (Figure 8). Southern Illinois males encompass all of the variation seen in all other groups 

within their 95% confidence ellipse. The angle of their ellipse is also markedly shifted while the 

others are rather flat along PC2. The greatest loadings contributing to this pattern along PC2 and 

PC3 are the Maximum cranial length (0.5855 on PC2) and Bi-asterionic Breadth (-0.5159 on 

PC2). PC3 is driven mostly by the Occipital chord (0.5069 on PC3). Females form somewhat of 

a cluster towards the negative end of PC2 while the males occupy the other end. All groups 

(except for southern Illinois males) are nearly the same shape and distribution across PC3 

especially. 

To remove size from the cranial variables, the data set was standardized by the area of the 

foramen magnum (FML x FMB) and the PCA’s were run again (Tables 26-27). This time PC1 

accounts for almost 69% of the variance, loaded mostly by Maximum cranial length (0.5968). 

Graphing PC1 on PC2 shows clusters by geographic sub-group (Figure 9). The western 

Kentucky males and females have nearly identical 95% confidence ellipses (with the females 

occupying an area smaller than the males). The central Tennessee samples look similar with the 

females being subsumed within the male ellipse completely. The southern Illinois sample is 

again an outlier. Females from southern Illinois have a skewed orientation to their ellipse (what 

would be a negative “slope”), while the males encompass all the variation along PC2. The 

pattern of male versus female ellipses for the southern Illinois subgroup is not at all congruent 

like the other two geographic groups.  

PC2 on PC3 gives fairly good separation between groups (Figure 10). These two axes 

account for just over 18% of the variance when combined.  Southern Illinois males lay across 

PC2 again but do not have much variation along PC3. Females tend to cluster towards the 
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negative half of PC3 axis more so than males. The greatest loading to PC3 is from Bi-zygomatic 

Breadth (0.6794). 



 

 

1
1
1
 

 

Figure 8. Cranial raw data. PC2 x PC3 
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Table 26. Cranial standardized data for pooled sexes 

and all sites 

PC Eigenvalue % variance 

1 18.1694 68.946 

2 3.31594 12.583 

3 1.52077 5.7707 

4 1.11732 4.2398 

5 0.677587 2.5712 

6 0.499542 1.8956 

7 0.378609 1.4367 

8 0.312147 1.1845 

9 0.194356 0.7375 

10 0.100682 0.38205 

11 0.0626884 0.23788 

12 0.00422812 0.016044 

 

Table 27. Cranial standardized data loadings on the first three PC axes for 

pooled sexes and all sites  

 Axis 1 Axis 2 Axis 3 

XCL 0.5968 -0.6628 -0.1231 

FB 0.2121 0.2429 -0.4899 

XCB 0.408 0.3028 -0.09526 

BAB 0.2876 0.5263 -0.2931 

BAUR 0.2681 0.2756 0.3246 

OC 0.2019 -0.09853 -0.233 

NB 0.01174 0.0024 -0.003252 

MXAB 0.07853 0.03101 0.06084 

CBL 0.1739 -0.05253 0.1112 

BZB 0.3248 0.1749 0.6794 

FH 0.2444 -0.08406 -0.0197 

BPL 0.1874 -0.07703 0.1101 
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Figure 9. Cranial standardized data. PC1 x PC2 
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Figure 10. Cranial standardized data. PC2 x PC3.  
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Dental Principal Component Analyses  

The following principal components analys3s (Tables 28-29) were performed on 

untransformed (raw) dental maxillary and mandibular dimensions from all individuals from all 

sites (and this set includes observed and imputed data).  

The first component accounts for 62.43% of the variance with good separation on the first 

axis between males and females. Females are smaller on PC1 and have a greater dispersion on 

the second axis than do males (Figure 11). Components 2 and 3 account for 16.33% of the 

variation (Figure 12). Female 95% ellipses encompass the three male ellipses nearly completely. 

Southern Illinois females have the greatest variation in dental metrics.  

Tables 30-31 below report the results of principal component analyses on size-standardized 

dental data (see Methods).  PC1 (28.70% of the variance) and PC2 (19.03% of the variance) 

show little separation of males, females, or sites (Figure 13). Tooth types still group together 

based on loadings (maxillary and mandibular premolars cluster together, canines cluster together, 

and the molars each constitute their own groups). Southern Illinois females encompass nearly all 

of the variation in their 95% ellipses on both PC1 and PC2. This could be a sample size issue, 

though they do follow the general trend of females being more variable than males for each 

geographic area. 

PC2 vs PC3 also shows little separation of groups or sexes (Figure 14). The graph of these 

two principal component axes also shows clusters of loadings on both the second and third axes. 

The premolars, molars, and canines each group together (as would be expected since these are 

raw, untransformed data). There is a great deal of overlap in the 95% ellipses plotted on PC 2 and 

3. Females seem to have slightly greater variation (they occupy more of PC2 in both directions – 

driven most directly by premolar size). Southern Illinois females have the largest 95% 



116 

 

confidence ellipse, and therefore the greatest relative variance, but this could be influenced by 

the sample size of this subset of the data. 
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Table 28. Odonotometric raw data eigenvalues and 

contribution to variance for pooled sexes and all sites 

PC Eigenvalue % variance 

1 1.75512 62.43 

2 0.264717 9.416 

3 0.194299 6.9113 

4 0.149822 5.3292 

5 0.107109 3.8099 

6 0.100519 3.5755 

7 0.0765268 2.7221 

8 0.0669423 2.3812 

9 0.0560638 1.9942 

10 0.040225 1.4308 

 

Table 29. Odontometric raw data loadings on the first three PC axes for 

pooled sexes and all sites 

 Axis 1 Axis 2 Axis 3 

XCMDL 0.2006 0.1861 0.6722 

XP3BLL 0.3466 -0.4027 0.144 

XP4BLL 0.3393 -0.4414 -0.05368 

XM1BLL 0.3266 0.3327 -0.1661 

XM2BLL 0.4374 0.1554 -0.2628 

NCMDL 0.2306 0.2916 0.5464 

NP3BLL 0.2806 -0.2891 0.02603 

NP4BLL 0.3049 -0.3213 0.06918 

NM1BLL 0.2757 0.3879 -0.1293 

NM2BLL 0.3546 0.2263 -0.3274 
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Figure 11. Odontometric raw data. PC1 x PC2 
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Figure 12. Odontometric raw data. PC2 x PC3.
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Table 30. Odontometric standardized data eigenvalues and 

contribution to variance for pooled sexes and all sites 

PC Eigenvalue % variance 

1 2.87015 28.702 

2 1.90333 19.033 

3 1.26056 12.606 

4 1.15222 11.522 

5 0.823965 8.2397 

6 0.723141 7.2314 

7 0.68225 6.8225 

8 0.523891 5.2389 

9 0.0604889 0.60489 

10 7.68278E-20 7.6828E-19 

 

Table 31. Odontometric standardized data loadings on the first three PC axes for 

pooled sexes and all sites 

 Axis 1 Axis 2 Axis 3 

% variance 28.702% 19.033% 12.606% 

XCMDLC 0.3668 0.2247 0.04127 

XP3BLLC -0.3274 -0.2192 0.3009 

XP4BLLC -0.3948 -0.01349 0.1268 

XM1BLLC 0.3285 -0.4197 0.3255 

XM2BLLC -0.1414 0.5088 0.3954 

NCMDLC 0.4534 0.1665 0.1993 

NP3BLLC -0.2232 -0.2434 0.03111 

NP4BLLC -0.2982 -0.1615 -0.4497 

NM1BLLC 0.3600 -0.3199 -0.4079 

NM2BLLC -0.02499 0.5008 -0.4692 
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Figure 13. Odontometric standardized data. PC1 x PC2. 
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Figure 14. Odontometric standardized data. PC2 x PC3.
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Post-Cranial Principal Component Analyses 

Female Long Bones.  The following principal components analyses (Tables 32-33) were 

preformed on untransformed (raw) left female humerii, radii, femora, and tibiae maximum 

lengths from all sites. The first principal component accounts for 92.64% of the variance. Size is 

typically the biggest driver of PC1 and that is certainly the case for these raw measures. All long 

bones have positive loadings on the first principal component, in order of their relative lengths 

(femur, tibia, humerus, radius) (Figure 15). The proximal and distal elements contribute in 

opposite ways on the second PC axis (just only 4% of the variance) (HXL and FXL are negative 

while RXL and TXL are positive). Comparing PC2 and PC3 removes size that is loading so 

heavily on PC1 (Figure 16). These two components only account for 6.36% of the variance 

together. Each long bone occupies a quadrant of the graph and western Kentucky (females, in 

this case) encompass the other two groups (and are therefore more variable). 

 



124 

 

Table 32. Post-cranial raw data eigenvalues and contribution 

to variance for females from all sites 

PC Eigenvalue % variance 

1 914.219292 92.63696 

2 42.304864 4.286711 

3 20.562750 2.083604 

4 9.797031 0.9927237 

 

Table 33. Post-cranial raw data loadings on the first four PC axes for females from all sites 

 Axis 1 Axis 2 Axis 3 Axis 4 

HXLL 0.4338 -0.4021 0.7334 -0.3351 

RXLL 0.3945 0.4749 0.3491 0.705 

FXLL 0.5929 -0.5449 -0.5165 0.291 

TXLL 0.5519 0.562 -0.2711 -0.5532 
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Figure 15. Post-cranial raw data for females only. PC1 x PC2. 
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Figure 16. Post-cranial raw data for females only. PC2 x PC3
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Male Long Bones.  The following principal component analyses (Tables 34-35) were run on 

male left maximum lengths of the humerus, radius, femur, and tibia. Like the females, PC1 

accounts for just over 91% of the variance, which is interpreted as reflecting size. All four long 

bones have positive loadings, then, on PC1, and again in the order of their lengths (femur, tibia, 

humerus, radius) (Figure 17). PC2 vs PC3 shows all four bones contributing in opposite ways for 

their loadings but these two axes account for only 7% of the variance combined (Figure 18). 

Pooled Sexes Long Bone Lengths.  The PCAs below (Tables 36-37) were performed on raw 

(untransformed) from all sites and males and females combined (left sides only). These results 

are highly skewed by size with over 95% of the variance being accounted for on the first 

principal component. Males and females clearly separate on this axis and females are smaller 

than males (Figure 19). Given the large contribution of the first principal component in these 

data, and that patterns of PC2 vs PC3 and PC1 vs PC3 look similar to those presented above for 

females and males separately, they are not presented here for these pooled data. 

Female Indices.  Below are the PCA results (Tables 38-39) for female brachial, crural, and 

intermembral indices. The first principal component accounts for just over 79% of the variance. 

All loadings on the first PC axis are positive. Brachial index has a loading of 0.80 and the crural 

index has a loading of 0.59. A graph of PC1 and PC2 shows all three groups of females with 

similar shaped 95% ellipses (western Kentucky again encompasses the other three) (Figure 20). 

PC2 vs PC3 accounts for nearly 21% of the variance (Figure 21). Here the orientation of central 

Tennessee females is different from the southern Illinois and western Kentucky samples.  
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Male Indices.  Like females above, these data are from male computed indices for the arm, leg, 

and limbs (Tables 40-41). PC1 accounts for just over 50% of the variance. The brachial index has 

a loading of 0.77 on this axis while the crural index loading on PC1 was 0.62. Ellipses 

representing 95% confidence intervals show close congruity between western Kentucky and 

central Tennessee males while southern Illinois males have a different orientation (Figure 22). 

PC2 accounts for just over 30% of the variance while PC3 accounts for 19%. Plotting the two 

against one another shows central Tennessee males with a more constricted 95% confidence 

ellipse that is oriented differently from the other two (Figure 23). 

Pooled Sexes Indices.  Males and females from all sites were pooled together in a Principal 

Components Analysis of their computed indices (Tables 42-43). Like the PCAs above, the first 

principal component axis accounts for a significant portion of the variance (64.28%). There is 

good separation between females and males along this axis (Figure 24). Brachial and crural 

indices are the largest and second largest loadings on the first PC axis (0.82 and 0.55 

respectively). Plotting PC2 against PC3 ignores the influence of size that is driving the first PC 

axis (Figure 25). PC2 accounts for 20.79% of the variance while PC3 accounts for 14.94%. In 

this graph, females are wholly within the 95% ellipses generated for the males. 
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Table 34. Post-cranial raw data eigenvalues and 

contribution to variance for males from all sites 

PC Eigenvalue % variance 

1 822.89 91.107 

2 35.0346 3.8789 

3 28.9647 3.2069 

4 16.3223 1.8071 

 

Table 35. Post-cranial raw data loadings on the first four PC axes for males from all sites 

 Axis 1 Axis 2 Axis 3 Axis 4 

HXLL 0.4349 0.1982 0.6443 -0.5971 

RXLL 0.3313 0.5627 0.262 0.7107 

FXLL 0.6367 -0.7239 0.03657 0.2629 

TXLL 0.5438 0.3465 -0.7176 -0.2632 
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Figure 17. Post-cranial raw data for males only. PC1 x PC2. 
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Figure 18. Post-cranial raw data for males only. PC2 x PC3.  
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Table 36. Post-cranial raw data eigenvalues and 

contribution to variance for pooled sexes and all sites 

PC Eigenvalue % variance 

1 1561.09 95.062 

2 39.2512 2.3902 

3 27.2955 1.6621 

4 14.5463 0.88579 

 

Table 37. Post-cranial raw data loadings on the first four PC axes for pooled sexes and all sites 

 Axis 1 Axis 2 Axis 3 Axis 4 

HXLL 0.4412 -0.1643 0.7112 -0.5221 

RXLL 0.3987 0.5624 0.3488 0.6349 

FXLL 0.596 -0.6689 -0.2594 0.3607 

TXLL 0.5397 0.4575 -0.5525 -0.4406 
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Figure 19. Post-cranial raw data for pooled sexes and all sites. PC1 x PC2.
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Table 38. Post-cranial indices eigenvalues and 

contribution to variance for females from all sites 

PC Eigenvalue % variance 

1 9.38671 79.211 

2 1.41488 11.94 

3 1.04865 8.8492 

 

Table 39. Post-cranial indices loadings on the first three PC axes for females from all sites 

 Axis 1 Axis 2 Axis 3 

Brachial Index 0.8032 -0.5876 0.09794 

Crural Index 0.5942 0.7789 -0.2006 

Intermembral Index 0.0416 0.2193 0.9748 
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Figure 20. Post-cranial indices for females only. PC1 x PC2. 
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Figure 21. Post-cranial indices for females only. PC2 x PC3.
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Table 40. Post-cranial indices eigenvalues and 

contribution to variance for males from all sites 

PC Eigenvalue % variance 

1 3.54172 50.297 

2 2.14364 30.443 

3 1.35623 19.260 

 

Table 41. Post-cranial indices loadings on the first three PC axes for males from all sites 

 Axis 1 Axis 2 Axis 3 

Brachial Index 0.7726 0.5922 -0.2288 

Crural Index 0.6196 -0.7819 0.06878 

Intermembral Index 0.1382 0.1949 0.971 
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Figure 22. Post-cranial indices for males only. PC1 x PC2.  
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Figure 23. Post-cranial indices for males only. PC2 x PC3. 
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Table 42. Post-cranial indices eigenvalues and 

contribution to variance for pooled sexes and all sites 

PC Eigenvalue % variance 

1 5.69497 64.276 

2 1.84159 20.785 

3 1.32363 14.939 

 

Table 43. Post-cranial indices loadings on the first three PC axes for pooled sexes and 

all sites 

 Axis 1 Axis 2 Axis 3 

Brachial Index 0.8212 -0.5206 -0.2336 

Crural Index 0.5503 0.8308 0.08324 

Intermembral Index 0.1507 -0.1969 0.9688 
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Figure 24. Post-cranial indices for pooled sexes. PC1 x PC2. 
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Figure 25. Post-cranial indices for pooled sexes. PC2 x PC3.
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Mahalanobis Distance 

 

Biological Distance Based on Craniometrics 

The following results are from cranial data (average of five imputation runs) from all 

individuals from all sites. Six groups went into the analysis: males and females from each of the 

three geographic sub-regions. All observations were divided by the area of the foramen magnum 

(FMB x FML) to minimize the influence of size (see Methods above). The table below is the 

pairwise Mahalanobis distance between group means (Table 44).  

Comparing sexes within each sub-region shows southern Illinois males and females have a 

distance of 1.96, central Tennessee males and females are 1.48 apart, and western Kentucky 

males and females have a distance score of 2.45. Western Kentucky has the greatest distances 

between sexes while central Tennessee has the least. 

Looking at distances between males from different sub-regions, southern Illinois males 

have a distance of 1.06 to males in central Tennessee and 1.93 with males in western Kentucky. 

Central Tennessee males and western Kentucky males have a D score of 2.39. Females from 

southern Illinois have a distance of 0.69 to females in central Tennessee and 2.09 to females in 

western Kentucky. Central Tennessee females and western Kentucky females have a D score of 

2.14. For both sexes, southern Illinois and central Tennessee groups are closest to one another. 

Western Kentucky and central Tennessee have the highest distances for both sexes. 

For descriptive and graphical purposes only, the Mahalanobis D distance scores presented 

above for the cranial data set were plotted as first as linear distances between sexes within each 
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Table 44. Mahalanobis distance (D) between group means for standardized cranial data including pooled sexes 

from all sites 

 SOILM SOILF CTNM CTNF WKYM WKYF 

SOILM  1.9624284 1.055185 1.7454018 1.931221 2.303490 

SOILF   1.469998 0.6945097 3.240275 2.092338 

CTNM    1.4772643 2.389636 2.491458 

CTNF     3.213198 2.143082 

WKYM      2.449214 

WKYF       
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site (Figure 26), then as triangles – one for males and one for females – with the points of the 

triangles as the archaeological sites (Figure 27). For the distances between sexes within sites the 

D scores were converted to millimeters then inches (because that is what Microsoft Word uses 

for measurements). The D scores for distances between sites (males and females separate) were 

just converted to millimeters (i.e. a distance/D score of 2.14 between Central Tennessee and 

Western Kentucky females, for instance, is represented as 214 mm in the triangle below). Those 

triangles were drawn by hand then scanned as images for importation to Word. For all such 

triangles presented here, central Tennessee is always in the bottom left, western Kentucky is 

always in the bottom right, and southern Illinois always occupies the top spot (this approximates 

actual geographic orientations as best as can be portrayed).  The images have not been scaled, 

stretched, or reduced in this document in any way so they should be comparable on a one-to-one 

basis.  
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Figure 26. Graphical representations of Mahalanobis D for cranial data between sexes at each site. 
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Figure 27. Graphical representations of Mahalanobis D for cranial data from males (top) and females (bottom). 
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Biological Distance Based on Odontometrics 

The Mahalanobis distances given in Tables 45-47 below were calculated on the C-score 

transformed odontometrics. Table 45 is for maxillary teeth only, Table 46 is for mandibular teeth 

only, and the last one, Table 47 is for alternating antagonists including both canines (XCMDLC, 

XP3BLLC, XM1BLLC, XCMDLC, NP4BLLC, NM2BLLC). 

The first thing to notice about the Mahalanobis D scores for the C-Score transformed dental 

data, is that all distances are rather small. The distances given above for post-cranial indices and 

for the cranial data are also rather small, but the D scores for the dental data are the smallest. The 

size and morphology of human dentition is biologically conservative so perhaps it is not 

surprising these D scores are small.  

The pattern across the three distance matrices (maxillary, mandibular, and alternating 

antagonists) are not the same.  

Let us begin by looking at distances between the sexes within each sub-region. Southern 

Illinois males and females have distances of 0.67 for maxillary teeth, 0.27 for mandibular teeth, 

and 0.58 for the alternating antagonists. In the central Tennessee sub-region, males and females 

have distances of 0.62 for the maxillary teeth, 0.66 for mandibular teeth, and 0.64 for the 

antagonists. The western Kentucky males and females have distances of 0.40 for the maxillary 

teeth, 0.42 for the mandibular teeth, and 0.30 for the alternating antagonist teeth. At least the 

central Tennessee and western Kentucky distances between sexes are somewhat similar.  

In a general trend, males and females are closer (smaller D) in the western Kentucky 

sample than the other two sub-regions. Central Tennessee males and females D ranges from 0.62 

to 0.66 and have consistently higher D than the other two. The dental data from southern Illinois 
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Table 45. Mahalanobis distance (D) between group means for standardized odontometrics data (maxillary 

dentition only) including pooled sexes from all sites 

 SOILM SOILF CTNM CTNF WKYM WKYF 

SOILM  0.6725698 0.436699 0.4541854 0.2018739 0.4174741 

SOILF   0.7418874 0.5634967 0.645938 0.5342596 

CTNM    0.6188646 0.3823741 0.5645409 

CTNF     0.3064737 0.4456446 

WKYM      0.3980173 

WKYF       

 

 
Table 46. Mahalanobis distance (D) between group means for standardized odontometrics data (mandibular 

dentition only) including pooled sexes from all sites 

 SOILM SOILF CTNM CTNF WKYM WKYF 

SOILM  0.2725326 0.7929868 0.450617 0.1239808 0.4376649 

SOILF   0.623522 0.4062691 0.1848681 0.294454 

CTNM    0.6599404 0.6894304 0.793767 

CTNF     0.4329126 0.5347319 

WKYM      0.4174305 

WKYF       

 

 
Table 47. Mahalanobis distance (D) between group means for standardized odontometrics data (alternating 

antagonists only) including pooled sexes from all sites 

 SOILM SOILF CTNM CTNF WKYM WKYF 

SOILM  0.5770178 0.5464177 0.376085 0.1611264 0.2417213 

SOILF   0.9106938 0.5415353 0.4531271 0.5751027 

CTNM    0.6365508 0.6323619 0.6480467 

CTNF     0.2956034 0.4227101 

WKYM      0.302699 

WKYF       
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males and females varies whether we consider the maxillary, mandibular, or antagonist teeth. The 

set for maxillary teeth (0.67) and alternating antagonists (0.58) are on par or slightly smaller than 

the central Tennessee males and females. The mandibular teeth from southern Illinois males and 

females have a D of only 0.27. They are extremely close. 

Let us turn now to the distances between males at each sub-region, and then to females in 

each sub-region. Southern Illinois males have a D of 0.44 with central Tennessee males, and a D 

of 0.20 with western Kentucky males for maxillary teeth. For mandibular teeth southern Illinois 

males have a D of 0.79 with central Tennessee males and 0.12 with western Kentucky males. For 

the alternating antagonists southern Illinois males have a D of 0.55 with central Tennessee males 

and 0.16 with western Kentucky males. Central Tennessee and western Kentucky males have D 

of 0.38 for maxillary teeth, 0.69 for mandibular teeth, and 0.63 for alternating antagonists.  

Southern Illinois males have dental D scores ranging from 0.44 to 0.79 with central 

Tennessee males. The D scores from southern Illinois to western Kentucky males range from 

0.12 to 0.20, quite low. The western Kentucky and central Tennessee males have D scores that 

range from 0.38 to 0.69. The general trend in the male dental data is that southern Illinois and 

western Kentucky are more similar (lower D scores) and that the distances between southern 

Illinois and central Tennessee, as well as between western Kentucky and central Tennessee males 

are similar.  

Southern Illinois females have a D score of 0.56 with central Tennessee females, and 0.53 

with western Kentucky females for maxillary teeth. For the mandibular dentition southern 

Illinois females have a D score of 0.41 with central Tennessee females, and 0.29 with females 

from western Kentucky. For the data set of alternating antagonists, southern Illinois females have 

D scores of 0.54 with central Tennessee females, and 0.58 for western Kentucky females. 
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Females from central Tennessee and western Kentucky have D scores of 0.45 for maxillary teeth, 

0.53 for mandibular teeth, and 0.42 for the alternating antagonist data.  

Distances between southern Illinois females and females from central Tennessee range 

from 0.41 to 0.56, while the range when they are compared with females from western Kentucky 

is 0.29 to 0.58, depending upon which set of dental data are used. As given above, central 

Tennessee females and western Kentucky females range from 0.42 to 0.53 depending upon the 

dental data set used. Females are quite similar to one another for dental data.  

As for the cranial data presented above, the Mahalanobis D scores are represented 

graphically below for odontometric data (Figure 28 distances between sexes within sites, Figure 

29 for male distances between sites, Figure 30 for female distances between sites, Figure 31 

combines the male and female triangles but is scaled to fit onto one page). 
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Figure 28. Graphical representations of Mahalanobis D for maxillary (left), mandibular (middle),  

and alternating antagonists (right) between sexes at each site. 
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Figure 29. Graphical representations of Mahalnobis D for maxillary (top), mandibular (middle), and  

alternating antagonists (bottom) for males only. 
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Figure 30. Graphical representations of Mahalnobis D for maxillary (top), mandibular (middle), and  

alternating antagonists (bottom) for females only. 
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Figure 31. Graphical representations of Mahalanobis D for odontometrics data for males (left) and females (right). Triangles are identical to those  

presented in Figures 30 and 31 except now they are side by side allowing for ease of comparison between male and females patterns of distance.  

The image was scaled to fit on one page but the numbers (D) are the same as those above. 
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Biological Distance Based on Post-Cranial Indices 

The data below (Table 48) presents Mahalanobis distance (D) from post-cranial indices for 

all sites and pooled sexes.  

Of particular interest are the relationships between males and females at each geographic 

sub-region. The Mahalanobis Distance measure between males and females in southern Illinois is 

2.00, between the same at central Tennessee is 1.53, and at western Kentucky the distance 

between males and females is 1.81. The distance between sexes within each sub-region is 

therefore greatest in the southern Illinois sample and the least at the central Tennessee sites.  

Also of interest is how each sex compares to the others in different sub-regions. Males from 

southern Illinois are 0.48 from central Tennessee males, and 0.32 from western Kentucky males. 

Central Tennessee males and western Kentucky males have a D score of 0.59. Females from 

southern Illinois are 0.67 from central Tennessee females and 0.56 from western Kentucky 

females. Central Tennessee females and western Kentucky females have a D score of 0.32.  

As for the cranial and dental data sets presented above, the D scores are represented 

graphically below as linear distances between sexes within each site (Figure 32), and as triangles 

between sites (each geographic location occupies a point of the triangle) (Figure 33). No scaling 

of the image was performed in this document.  
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Table 48. Mahalanobis distance (D) between group means for post-cranial indices including pooled sexes 

from all sites. 

 SOILM SOILF CTNM CTNF WKYM WKYF 

SOILM  2.0020348 0.4792013 1.5152716 0.3238512 1.8059473 

SOILF   1.8865332 0.6731495 1.9864652 0.5596247 

CTNM    1.5256938 0.5889149 1.8238381 

CTNF     1.5502629 0.3221457 

WKYM      1.8115642 

WKYF       
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Figure 32. Graphical representations of Mahalanobis D between sexes for post-cranial indices within each site 

 

 

 

 

Figure 33. Graphical representations of Mahalanobis D for post-cranial indices for males (top) and females (bottom) 
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Distance Triangle Based on Geographic Distance 

As a comparison to the biological distances represented in the three data sets above, a 

similar triangle representing straight-line geographical distances is presented below (Figure 34). 

Since the triangles above used millimeters to represent the D scores, the geographic distances 

shown below are also represented in millimeters, though the actual distances were measured in 

kilometers. The scale of the triangle below (geographic distance) would then be 1,000,000 times 

the size of the biological distances represented above in millimeters. 
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Figure 34. Straight-line geographical distances for comparison with biological Mahalanobis D triangles. 
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Mantel Tests 

 

With an overall pattern of biological distance established via Mahalanobis D matrices, a 

Mantel test was performed to test the correlation between various data matrices (Hammer, 2015) 

including geographic distance. Five-thousand permutations were run for each Mantel 

comparison. The resultant p-values are one-tailed. Table 49 summarizes the correlation and 

statistical significance for the Mantel tests between geographic distance and the biological 

distance matrices. None of the Mahalanobis distance matrices are significantly correlated with 

geographic distance.  
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Table 49. Mantel test for correlation between Mahalanobis distance matrices and geographic distance 

 Males Females 

R p R p 

Geographic distance x craniometrics -0.9091 0.8282 -0.9933 0.841 

Geographic distance x maxillary odontometrics 0.118 0.5059 0.6281 0.3213 

Geographic distance x mandibular odontometrics 0.6837 0.1674 0.04498 0.4929 

Geographic distance x alternating antagonists odontometrics 0.4228 0.4881 0.2255 0.6677 

Geographic distance x post-cranial indices 0.183 0.5029 0.6897 0.3365 
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CHAPTER 6 

 

DISCUSSION 

The final chapter is a discussion of the results presented along with interpretations as to 

how these data fit the hypotheses regarding mate exchange and patterns of post-marital 

residence. First I review the results of the current research. Next I will provide context for the 

groups represented by the samples used here by discussing who their predecessors were and how 

they may have arrived in the mid-South. Lastly, I will summarize the present findings and 

discuss areas for future work. 

 

Results from the Present Work 

 

The results discussed below describe the general pattern of biological variation seen in the 

present data. What follows is a distillation and reduction of the myriad of details presented 

previously – a fact which cannot be overstated. The three sets of data used in this study (post-

cranial indices, craniometrics, and odontometrics) also do not carry equal weight in the 

consideration and interpretation of results. Cranial and dental results are more useful for 

purposes of estimating biological distance. Therefore, they are given more weight in 

interpretation.  
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Biological Distance Based on Cranial Remains 

Looking only at the univariate measure of Coefficient of Variation for the craniometric data 

set, males have higher CV values for more variables than females do in a pooled sample of all 

sites. Within sub-regions, though, interesting patterns of CV developed. Females have higher CV 

values for the vast majority of cranial variables in the sample from central Tennessee. The exact 

opposite pattern is seen in western Kentucky, where males had higher CV values for the majority 

of variables. Southern Illinois is intermediate (males had higher CV values in a few more 

variables but the split is more even between the sexes).  

Like the dentition, cranial remains should provide a strong signal of biological distance. 

The pattern of biological distance based on cranial morphology is the same for males and 

females. Males at central Tennessee sites are the furthest (have the greatest D scores) from 

western Kentucky males. The same pattern is true for females – central Tennessee and western 

Kentucky females are the most distant. The greatest degree of similarity (the lowest D score) is 

between southern Illinois males and males from central Tennessee. The same pattern is also true 

here for females – southern Illinois females are closest to central Tennessee females. Within each 

sub-region the greatest distance between the sexes is found in the western Kentucky sample (the 

opposite is true for the dental data presented below). The closest distance between the sexes was 

found in the central Tennessee sample. These data suggest that both sexes have greater biological 

affinity between southern Illinois and central Tennessee, while the Green River region of western 

Kentucky is most different from the other two. 

As discussed in Chapter 2 above, the morphological similarity of his Indian Knoll cranial 

series led Snow to describe them as inbred or isolated (Snow, 1948). The data for both males and 

females in the present study would support at least that the western Kentucky sample (Indian 
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Knoll individuals only) are most distant from groups in southern Illinois and central Tennessee 

based on cranial morphology. Herrmann (2002) found females had greater variation in cranial 

non-metric traits, which he interpreted as patrilineal or patrilocal post-marital residence pattern. 

Geography (Sciulli, 1979; Herrmann, 2002) and cultural differences due to different ancestry 

(Sassaman, 2010) may have played a large role in keeping these groups rather cohesive.   

Biological Distance Based on Dental Remains 

The pattern of female versus male variation in odontometric data is interesting. When all 

sites in the current analysis are pooled, females are more variable (have higher CV values) for all 

but one dental metric. Within each sub-region, though, the pattern of male versus female 

variation breaks down quite differently. Western Kentucky females are more variable than males 

for all dental metrics. The sexes are more evenly distributed though, in the central Tennessee 

sites and in southern Illinois (males have higher CV scores for slightly more variables than 

females in central Tennessee while the exact opposite is true in southern Illinois).  

Patterns of biological distance based on odontometric data vary depending upon which 

dental data set used (maxillary, mandibular, or alternating antagonists) and all sets resulted in low 

biological distance scores in general. To summarize, the general pattern is that males and females 

are closest to one another in the western Kentucky sample while the within-sex distances 

between central Tennessee and southern Illinois males and females are about the same within 

each sub-region. Looking only at males, southern Illinois males are closest to western Kentucky 

(the same as is shown by the post-cranial indices reviewed below). They are in fact very close 

(the lowest D scores produced in the present data set). The distances between southern Illinois 

and central Tennessee males, as well as between western Kentucky and central Tennessee males, 

are similar to one another. Among females, the distances between the three sub-regions are 
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relatively the same. Females of one site are not necessarily closer or further away from females 

at the two other sites. These data suggest again, that females were perhaps the ones moving more 

so than males in the mid-South Archaic.  

Lewis and Lewis (1961) noted interesting patterns in dental and maxillary bone 

morphology among the Eva site (the principal site in the central Tennessee sample used here). 

They mention a high frequency of displacement of teeth in the maxilla and particularly large 

canines, principally among males. Compared to parabolic or hyperbolic maxillary arch shapes 

seen in Indian Knoll, they noted elliptical or U-shaped maxillae at Eva. Shovel shaped incisors 

were also less common at Eva than at Indian Knoll (Lewis and Lewis, 1961). These differences 

in morphology were found across strata at Eva, which led the team to theorize that the Eva 

population were long-term residents of the area, having moved into the area prior to 8,000 years 

ago (Lewis and Lewis, 1961). Further, males exhibited the dental peculiarities twice as often as 

females, which is perhaps indicative of male philopatry and patrilocal organization. 

Indian Knoll teeth are larger and less complex than Woodland period samples from the 

Ohio Valley (Sciulli, 1979) and Mesolithic and Australoid groups (Perzigian, 1976; Ward, 2005). 

The biological distance analysis presented here for dental metrics was performed on size-

standardized data.  

Biological Distance Based on Post-Cranial Indices 

Coefficients of variation for brachial, crural, and intermembral indices for both sexes 

showed that in general, females were more variable for these computed measures than males 

were.  Only in southern Illinois were males more variable than females for crural and 

intermembral indices (both of which contributed less to the pattern of variation than the brachial 

index). If these indices are indeed established early in the ontological process of long bone 
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growth and development, these results indicate that males share more biological affinity than 

females.  

The biological distance matrices between groups based on their post-cranial indices of long 

bone lengths is the least reliable of the three data sets included in the present analysis. Let us 

briefly review the pattern of variation seen in these data for sexes within each sub-region, and 

then between sexes in each sub-region.  

Comparing sexes within each sub-region showed males and females were the most 

different (highest D score) for post-cranial indices in central Tennessee. The sample from 

southern Illinois was the closest (lowest D score) between males and females for these measures. 

Comparing sexes between each sub-region, the greatest distance between males was found 

between central Tennessee and western Kentucky. The closest groups amongst the females, 

though, were these same two – central Tennessee and western Kentucky. For females the greatest 

distance was found between southern Illinois and central Tennessee. The closest relationship 

(least biological distance score) for males was found between southern Illinois and western 

Kentucky. So, while males in western Kentucky and southern Illinois had greater biological 

affinity, females were closer between western Kentucky and central Tennessee.  

Clyde Snow noted that Indian Knoll individuals (the western Kentucky sample used here) 

had long arms compared to modern Europeans and that their forearms and lower legs in 

particular were longer (1948). He did not compare them in any formal way, so this was an 

anecdotal observation. If the distal elements in their arms and legs really were rather long, the 

western Kentucky sample should have the highest indices in the pooled sample. Their indices fall 

right in line with the other samples used in the present study.  
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Evaluating Hypotheses 

With an idea of the pattern of biological relatedness outlined above, we now return to the 

two hypotheses defined in Chapter 1.  

 Hypothesis 1: Biological distance and archaeological patterns of cultural exchange are 

congruent. 

Relying more heavily on the cranial and dental data sets presented above, it appears that 

groups in western Kentucky, here represented by individual skeletons from Indian Knoll, were 

somewhat different from other groups in the mid-South. Both the dental and cranial data support 

greater biological affinity (lower biological distance) between southern Illinois and central 

Tennessee groups, though the lowest D scores of all came from a comparison between southern 

Illinois males and western Kentucky male dentitions.  

The groups along the Green River (here represented by Indian Knoll) were definitely 

exchanging goods with other areas. Their burials included copper artifacts and fragments from 

the Great Lakes region as well as marine shell sourced from Florida and the Carolinas 

(Marquardt and Watson, 1983; Brown, 2004). The pattern of archaeological exchange presented 

in Chapter 2 above would suggest that groups along the Green River were trading bone pins 

(Jefferies, 2004), fishhooks (Moore, 2010b), and lithic materials (Jefferies and Butler, 1982; 

Johnson and Brookes, 1989) across the region but preferentially south. Winters postulated that 

the Green River region was a little too far removed from the mainstream of exchange routes 

along the Mississippi River (in Marquardt and Watson, 1983: 334).  Marquardt and Watson 

(1983) agree that significant engagement by the Green River peoples in overland or river trade 

routes remains to be demonstrated, despite the presence of non-local grave goods. Cultural 

connections via exchange suggests that groups in central Tennessee and western Kentucky would 
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perhaps be closest for measures of biological distance if the two were also trading mates. That 

does not seem to be the case. The Indian Knoll peoples represented in the western Kentucky 

sample were perhaps keeping to themselves more so than other groups.  

Another possibility exists to explain the relative place of the western Kentucky sample 

compared to the other two regions. Of the southeastern United States specifically, Sassaman 

(2010: 26) asks: “What if the various societies of the Eastern Archaic descended from more than 

one founding population?”  He hypothesizes two ancestral lines in the Southeast. “The most 

unorthodox feature of this model is its assertion of at least two separate ancestral roots, one 

traceable to the Paleoindian populations of eastern North America (what I’ve termed Ancestry I), 

the other to the later influxes of populations whose affinity to Paleoindians is uncertain: Ancestry 

II” (Sassaman, 2010: 38).  He goes on to specify that Ancestry II “…immigrated into eastern 

North America long after the Clovis era, begetting what is arguable the definitive cultural milieu 

of the Archaic era, the so-called Shell Mound Archaic” (Sassaman, 2010: 32). These are the very 

people that went into the western Kentucky sample, here. Their cranial morphology suggests 

they are the most different from the other two groups analyzed here. Dentally though, western 

Kentucky males were extremely close to southern Illinois males. The results of the present 

analysis do support Sassaman’s hypothesis that the Green River groups (the Shell Mound 

Archaic peoples) were somewhat different – either due to cultural isolation (they were not 

isolated completely, but perhaps participated less in networks of exchange) and/or a different 

biological history in the period Paleoindian and Early Archaic periods that immediately 

proceeded the era of the samples used here.  

Sassaman’s question is an intriguing one for anthropologists working in the American 

Southeast.  The accompanying material record is for archaeologists to debate.  The present study, 
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though, was designed to speak to biological variation in Middle and Late Archaic groups in three 

sub-regions of the mid-South. The data here suggest that the Green River peoples in western 

Kentucky may indeed be a different lineage. Alternatively, they were not exchanging males or 

females as readily across the region.  

 Hypothesis 2: Females will show higher levels of biological variation reflective of 

patrilocality. 

The three sets of morphological data used here also support a pattern of much similarity 

between groups and between sexes, but the pattern of similarities and differences is not the same 

between sub-regions. Females were more biologically variable than males for the majority of 

variables used, and there is some suggestion that the western Kentucky groups kept to 

themselves. The general pattern of post-marital residence evidenced in these data would be 

patrilocality, though adherence to such a system may not have been consistent. 

Future Directions 

Small sample sizes are an ever-present problem in any research that utilizes ancient human 

remains. The samples are often small to begin with and likely to be rather fragmentary. In the 

future, it would be useful to obtain larger sample sizes of the groups used here; though, the 

author’s review of the available skeletal material was quite thorough and it is unlikely that more 

individuals would be found to add to the present sample using standard metric analyses. More 

importantly, these groups need a larger context in which to evaluate their biological relatedness. 

This work purposefully focused on biological variation at the regional scale. An outlier group (or 

groups) would aid in understanding how the pattern of biological variation seen here relates to 

patterns seen across the Southeast United States and the rest of the Americas. Lastly, DNA 

analyses would also be useful towards understanding the relationships of Archaic groups. 
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Summary and Conclusions 

Inter-disciplinary research that marries archaeological, ecological, biological, and genetic 

data is changing our perceptions of group composition in the Southeast during the Archaic 

period.  Multiple examples of patterned exchange habits and shifting lifeways over the long 

Archaic period in the Southeast (reviewed above but also see Jefferies, 1996 for additional 

review) highlights the importance of the present study in better defining the biological 

component to these exchange patterns. 

Challenges to the traditional, macroevolutionary view of the peopling of the New World 

and subsequently the Southeast are mounting (Sassaman, 2010, 2011).  At the time of the Last 

Glacial Maximum (approximately 18,000 kya) Asian migrants that had been living in Beringia 

for quite some time began moving south to populate the rest of the Americas (Fagundes et al., 

2008b).  From a single genetic source they carried considerable morphological and haplogroup 

variation.  The processes of gene flow and genetic drift affected these small groups as they 

moved across North America towards the Southeast region.  Groups in the Southeast further 

differentiated as they populated the region, though they maintained a considerable amount of 

genetic diversity via gene flow.   

As the present analysis consists of Archaic period individuals from watersheds in western 

Kentucky, central Tennessee, and southern Illinois, the individuals used in this study had 

biological antecedents that migrated to the New World from parts of Asia.  As discussed above, 

while certain parts of the process of the peopling of the New World are generally agreed upon 

within the anthropological community, others remain quite contentious (see Auerbach, 2010 for 

recent bioarchaeological and biocultural perspectives on the peopling of the New World).  

Regardless of observed homogeneity at the genetic level and heterogeneity in the phenotype, 
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regardless of the number of waves, and regardless of whether variation is explained by 

replacement or genetic drift, the conclusions end up the same (Powell and Neves, 1999): 

macroscopically, peoples of the New World appear as a cohesive group while smaller-scale 

analyses reveal considerable genetic and morphological variation.  Part of this variation is due to 

cultural mores regarding who is “us” versus “them.”  Constructing that “otherness” is “among 

the qualities of humanness that bridge the ‘prehistoric’ with the historic and, with it, the theories 

of modernity with the study of ancient people.” (Sassaman, 2010: xvi). Historical relationships 

matter; cross-cultural comparisons and interpretation of social and cultural variation are mere 

conjecture without historical context (Sassaman, 2010).  

In speaking of this resurgence and reformulation of long-held notions about Archaic 

peoples, Sassaman (2008: 8) suggests that “…the time is ripe for a paradigmatic shift.”  

Researchers of the Archaic mid-South are pushing into a middle-range area by asking how 

people relate to the environment and how they relate to each other (Kidder, 2010).  The challenge 

facing future scientists interested in these problems is to put people back into their interpretations 

and to see variation in interactions between individuals and groups (Kidder, 2010).  With a 

clearer picture of the variation that existed during the long Archaic period, new questions emerge 

regarding specific levels of interaction, the contexts and manner of interactions, how group 

membership and identity was formed and maintained, the role of ritual in reflecting group 

identity, what choices were available and employed as distant groups began to come into 

repeated contact, and how group interactions effected the pace, course, structure, and rhythm of 

life (Sassaman, 2010).  These are areas where archaeologists and biological anthropologists will 

find fruitful collaboration.   
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In asking and seeking answers to these questions we are able to insert humanity into 

modern conceptions of past archaeological populations making Archaic groups of the Southeast 

into more than trait lists, point styles, ratomorphic automatons (Robarchek, 1989), and 

evolutionary stations on a progressive trajectory.  Anthropology has traditionally placed itself as 

a bridge between the 'other' and 'self,' between 'us' and 'them,' between the past and present.  

“Anthropologists and archaeologists have come to realize that the functions of culture are (1) to 

relate man to his environment – his terrestrial habitat and the circumambient cosmos – on one 

hand, and (2) to relate man to man, on the other” (White, 1959: 8 in Paulsen, 1981).  An 

alternative to the old determinism is to: “take people seriously, not only as biological beings in 

ecological contexts, but also as human beings in sociocultural contexts, deriving their humanity 

from the systems of meanings, of values and beliefs, of symbols and significations, that many 

anthropologists call ‘culture’” (Robarchek, 1989: 903). 

Archaeologists and bioarchaeologists working in the Southeast have long grappled with 

many aspects of Archaic lifeways – diet and subsistence, settlement patterns, mobility, ritual and 

mortuary practices, and ecogeographic settings.  Much work, however, still remains to be done 

towards an understanding of ancient Native American dispersal and subsequent movement across 

the North American continent as a backdrop to understand human cultural interactions in the 

Archaic and subsequent periods.  As comprehensive datasets emerged in the 1960s the picture of 

the Archaic period as a long North American “Dark Ages” began to dissolve.  It was replaced, 

and is still being replaced in the minds of some, with notions of local and regional distinctiveness 

based on cultural or ethnic distinctions embodied in place-making through the construction of 

burial mounds and settlements.  Rather than hopeless wanderers barely subsisting without 
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pottery and agriculture Archaic peoples are now understood to be more adept and socially 

complex than previously thought.   
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APPENDIX I: IMPUTATION 

Amelia II uses a process called multiple imputation (Honaker et al, 2013; also: 

http://gking.harvard.edu/amelia).  The name is fitting as it harkens back to the famed 

aeronautical pioneer and long-lost pilot Amelia Earhart. The imputation process involves a 

bootstrap-based algorithm that can handle many variables and works quite efficiently (i.e. 

quickly) compared to older methods.  Users can input trends and priors into the imputation 

algorithm, as well as receive diagnostic reports regarding the fit of the multiple imputation 

models.  The imputation process avoids biases in variance and co-variance data matrices that can 

result from means-based imputations and certainly retains more observed data points than a list-

wise deletion procedure.  Amelia II assumes the data set is multivariate normal and that the 

missing data points are missing at random.  For each missing observation, Amelia II imputes m 

values reflective of the uncertainty of the missing data points.  The resulting data set includes the 

observed values (left untouched) and the imputed data points.  The default number of m values 

that Amelia calculates for each missing element is five.  Five imputations (five “passes” over the 

data) are sufficient unless the data set has unusually high rates of missing values.  Any one of the 

five imputed data set files could be used for further statistical analyses.  The program can run 

either as a stand-alone interface and program, AmeliaView, or can also be utilized from within R 

via various packages (http://gking.harvard.edu/amelia).   

Each subset of raw data were saved as a CSV (comma-separated value) file, necessary for 

Amelia II’s imputation process.  Once in Amelia II, each CSV file was opened and prepared for 
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imputation.  The variables GEOG and SEX were labeled (“transformed”) as identifiers so they 

would not be used in the imputation process.  An example of how the imputation process 

transformed the current data set is provided below using female long bones.   

Following the linear regression methods described in Chapter 3: Methods, I needed to 

decide whether to use linear regression to estimate all missing long bone lengths, or to use an 

Imputation procedure. To evaluate how each method performed, I took the left female long bones 

used to make the linear regression formulae and ran them through the imputation process in 

Amelia.  I averaged the five imputations that Amelia calculated. I then had a data set that 

consisted of observed, regressed, and imputed measures for all females (from all sites) for the 

maximum length of the humerus, radius, femur, and tibia (Table 51). The coding for these is 

given in Table 50 (for all four bones, even though only humerus is listed).  
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Table 50. Codes for dealing with missing data 

HXLL Humerus Maximum Length Left Side (observed) 

HXLL REG Humerus Maximum Length Left Side (regressed) 

HXLL AM AVG Humerus Maximum Length Left Side (average of 5 Amelia imputations) 

RXLL Radius Maximum Length Left Side (observed) 

RXLL REG Radius Maximum Length Left Side (regressed) 

RXLL AM AVG Radius Maximum Length Left Side (average of 5 Amelia imputations) 

FXLL Femur Maximum Length Left Side (observed) 

FXLL REG Femur Maximum Length Left Side (regressed) 

FXLL AM AVG Femur Maximum Length Left Side (average of 5 Amelia imputations) 

TXLL Tibia Maximum Length Left Side (observed) 

TXLL REG Tibia Maximum Length Left Side (regressed) 

TXLL AM AVG Tibia Maximum Length Left Side (average of 5 Amelia imputations) 
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Table 51. Observed, regressed, and imputed data for female left long bones 

Individual HXLL 
HXLL 

REG 

HXLL 

AM 

AVG 

RXLL 
RXLL 

REG 

RXLL 

AM 

AVG 

FXLL 
FXLL 

REG 

FXLL 

AM 

AVG 

TXLL 
TXLL 

REG 

TXLL 

AM 

AVG 

IKF117 265.000 277.597 297.562 211.000 201.343 230.833 384.000 380.222 420.096 317.000 307.207 344.087 

IKF291 269.000 271.302 307.000 198.000 206.180 245.000 384.000 385.573 433.000 307.000 313.584 360.950 

CMF83A 269.000 279.105 301.000 210.000 210.977 219.961 390.000 397.095 406.000 320.000 314.712 341.000 

IKF328 270.000 273.811 309.901 204.000 203.988 242.000 386.000 382.919 432.288 316.000 318.916 363.252 

IKF545 272.000 280.672 296.592 207.000 208.938 224.978 392.000 393.528 416.000 312.000 321.545 340.233 

IKF107 278.000 290.185 281.913 223.000 217.937 210.201 405.000 406.256 393.863 340.000 321.285 327.477 

IKF470 282.000 282.830 301.914 215.000 213.249 231.248 390.000 398.222 421.815 320.000 312.519 348.153 

IKF191 283.000 284.972 280.347 207.000 207.457 208.000 403.000 385.976 398.000 317.000 321.523 328.000 

EVF182 283.000 276.575 299.000 214.000 205.283 228.000 383.000 380.926 407.000 325.000 320.485 336.535 

IKF518 283.000 285.986 324.991 214.000 212.039 248.791 404.000 394.662 460.000 331.000 320.083 373.000 

IKF570 283.000 289.446 314.745 221.000 215.662 243.919 407.000 397.192 449.459 341.000 317.911 378.000 

EVF158 283.500 292.824 272.000 223.000 216.205 201.000 403.000 401.620 387.183 329.000 328.621 314.219 

EVF153 284.000 283.157 271.869 217.000 214.825 204.991 386.000 401.704 380.616 317.000 330.055 306.000 

IKF411 285.000 282.024 311.000 212.000 211.812 248.000 392.000 392.553 439.605 319.000 322.690 374.472 

IKF13 286.000 286.291 303.920 224.000 213.402 225.850 394.000 397.040 430.000 336.000 319.677 350.000 

CHF61 288.000 281.189 298.359 216.000 213.919 228.666 385.000 395.269 411.000 319.000 319.452 343.000 

IKF608 288.000 287.603 300.000 217.000 219.646 227.000 401.000 406.230 417.000 328.000 327.341 340.168 

IKF440 289.000 281.510 318.795 209.000 211.398 245.000 402.000 390.957 451.832 330.000 321.984 375.681 

IKF590 289.000 290.951 288.000 214.000 216.671 216.000 410.000 401.591 385.000 326.000 328.550 319.000 

CMF188A 289.000 285.163 300.772 216.000 220.706 232.000 401.000 410.218 409.307 333.000 338.793 341.308 

CMF145 289.000 293.929 290.504 227.000 220.729 224.178 412.000 411.040 405.059 349.000 336.657 338.616 

IKF140 290.000 280.890 300.000 205.000 221.110 230.054 397.000 406.760 427.487 315.000 336.717 347.748 

CMF190 290.000 290.114 319.000 227.000 220.644 242.000 405.000 409.771 435.000 349.000 337.784 360.000 

EVF92 291.000 295.513 289.099 219.000 225.685 221.845 419.000 417.049 408.660 338.000 341.814 340.753 

IKF588 292.000 294.660 293.936 226.000 219.157 227.099 406.000 402.237 414.124 335.000 338.928 340.097 

EVF164 294.000 296.126 274.819 222.000 215.442 213.690 421.000 397.579 393.278 346.000 336.418 320.000 
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Table 51. Observed, regressed, and imputed data for female left long bones (continued) 

Individual HXLL 
HXLL 

REG 

HXLL 

AM 

AVG 

RXLL 
RXLL 

REG 

RXLL 

AM 

AVG 

FXLL 
FXLL 

REG 

FXLL 

AM 

AVG 

TXLL 
TXLL 

REG 

TXLL 

AM 

AVG 

IKF72 294.000 291.276 279.000 225.000 220.968 223.497 408.000 409.542 381.000 346.000 337.317 332.500 

IKF261 294.000 290.393 288.024 227.000 223.868 214.946 408.000 417.006 402.095 353.000 342.831 328.569 

CMF185 294.000 302.584 305.594 230.000 221.100 228.500 430.000 403.997 416.000 359.000 332.088 336.000 

IKF205 295.000 279.304 290.000 209.000 230.329 217.002 388.000 423.571 415.000 314.000 344.168 337.317 

IKF17 295.000 285.070 290.000 215.000 227.310 220.672 391.000 416.089 399.532 315.000 337.998 332.799 

IKF183 295.000 301.891 291.000 226.000 226.975 227.000 423.000 417.431 401.924 341.000 337.360 336.000 

IKF464 296.000 296.724 312.182 221.000 221.082 237.509 416.000 406.393 435.535 334.000 338.458 356.192 

CMF99 296.000 295.994 299.000 224.000 223.130 224.594 423.000 412.708 414.675 354.000 346.315 336.018 

IKF220 297.000 296.324 300.732 219.000 226.731 225.533 418.000 417.413 423.000 334.000 337.214 352.331 

IKF90 299.000 297.257 320.000 223.000 226.719 261.000 413.000 414.518 453.000 332.000 343.269 388.915 

IKF366 300.000 302.946 297.529 234.000 227.929 229.668 414.000 415.147 416.063 341.000 339.428 342.260 

IKF75 300.000 300.998 287.500 234.000 231.006 218.460 421.000 420.615 404.000 358.000 339.874 325.000 

CMF20B 301.000 298.344 290.000 230.000 233.815 223.480 416.000 428.479 409.722 349.000 347.710 342.652 

IKF52 302.000 294.606 284.000 225.000 230.232 217.000 411.000 424.680 386.000 341.000 350.499 317.000 

CMF201 304.000 300.131 287.929 229.000 230.221 213.934 425.000 424.462 400.832 356.000 348.427 330.300 

IKF586 304.000 311.377 283.500 240.000 231.424 223.000 425.000 424.083 403.000 347.000 353.908 329.000 

LFF10 305.000 303.192 290.000 223.000 230.239 211.447 427.000 421.106 405.637 337.000 344.871 323.914 

IKF168 305.000 305.435 263.793 229.000 234.519 196.000 431.000 432.108 360.000 350.000 348.071 302.920 

IKF233 306.000 296.368 294.000 226.000 225.930 222.000 411.000 413.293 421.000 338.000 347.874 346.000 

CMF27 307.000 304.478 278.000 229.000 234.031 213.250 428.000 425.839 395.009 348.000 351.444 327.750 

IKF520 307.000 308.223 290.777 235.000 237.141 223.412 436.000 433.612 409.118 363.000 358.135 335.699 

IKF391 308.000 314.192 270.566 235.000 228.903 199.000 437.000 422.433 384.536 347.000 358.374 310.159 

IKF634 319.000 306.719 283.000 231.000 229.063 210.879 430.000 418.317 401.000 349.000 358.028 328.703 

CHF71 319.000 313.910 285.009 242.000 239.702 213.568 435.000 436.706 383.000 360.000 360.939 319.000 

IKF638 319.000 318.102 283.000 250.000 247.427 214.000 433.000 452.488 383.000 362.000 371.439 325.000 

IKF269 323.000 322.743 298.716 254.000 241.008 226.663 446.000 435.622 418.557 378.000 367.423 343.868 
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Table 51. Observed, regressed, and imputed data for female left long bones (continued) 

Individual HXLL 
HXLL 

REG 

HXLL 

AM 

AVG 

RXLL 
RXLL 

REG 

RXLL 

AM 

AVG 

FXLL 
FXLL 

REG 

FXLL 

AM 

AVG 

TXLL 
TXLL 

REG 

TXLL 

AM 

AVG 

CMF86 327.000 322.105 300.000 243.000 249.171 220.789 458.000 448.666 411.339 375.000 376.721 333.000 
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Having these three sets of data I ran some ANOVAs. The three data sets were not 

statistically significantly different from one another for the left female humerii, F (2, df error) = 

0.007726, MSE (mean-square error) = 173.223, p = 0.9923. For the left female radii the results 

were the same: F (2, df error) = 0.2714, MSE = 139.453, p = 0.7627. Left femora showed the 

same non-significant results: F (2, df error) = 0.0004707, MSE = 334.509, p = 0.9995. The three 

data sets were likewise not statistically significantly different for left tibiae: F (2, df error) = 

0.1652, MSE = 286.44, p = 0.7892.  

Since the methods are statistically the same (as in not statistically different from the known 

and observed variables) (Table 52) I needed to decide which method for dealing with missing 

data would best represent the observed sample. From a cursory glance at the imputed and 

regressed data it appeared that Amelia’s imputation was consistently overestimating long bone 

length (despite again, this not being statistically different from what the regression analysis gave 

me). I wanted to see how big the effect was. I subtracted the observed value from each estimated 

value and summed that column. Values approaching zero are closest to the observed values 

(Table 53). 
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Table 52. One-way ANOVA for differences between means for observed, regressed, and imputed long 

bone lengths for left females 

 F (df effect, df error) F-value MSE (mean-square 

error) w/in groups 

p(same) 

Humerus 

 

 

 

2, df error 0.007726 173.223 0.9923 

Levene’s test for homogeneity of variance, based on means: p(same) = 0.8371 

Welch F test in the case of unequal variances: F = 0.00755, df = 103.7, p = 0.9925 

Radius 

 

 

 

2, df error 0.2714 139.453 0.7627 

Levene’s test for homogeneity of variance, based on means: p(same) = 0.7124 

Welch F test in the case of unequal variances: F = 0.2455, df = 103.3, p = 0.7828 

Femur 

 

 

 

2, df error 0.0004707 334.509 0.9995 

Levene’s test for homogeneity of variance, based on means: p(same) = 0.5059 

Welch F test in the case of unequal variances: F = 0.0004766, df = 103.2, p = 0.9995 

Tibia 

 

 

2, df error 0.1652 286.44 0.8479 

Levene’s test for homogeneity of variance, based on means: p(same) = 0.7892 

Welch F test in the case of unequal variances: F = 0.1555, df = 103.7, p = 0.8562 
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Table 53. Differences between observed, regressed, and imputed/averaged datasets 

Individual HXLL REG-

HXLL 

HXLL AM 

AVG-HXLL 

RXLL REG-

RXLL 

RXLL AM 

AVG-RXLL 

FXLL REG-

FXLL 

FXLL AM 

AVG-FXLL 

TXLL REG-

TXLL 

TXLL AM 

AVG-TXLL 

IKF117 12.597 32.562 -9.657 19.833 -3.778 36.096 -9.793 27.087 

IKF291 2.302 38.000 8.180 47.000 1.573 49.000 6.584 53.950 

CMF83A 10.105 32.000 0.977 9.961 7.095 16.000 -5.288 21.000 

IKF328 3.811 39.901 -0.012 38.000 -3.081 46.288 2.916 47.252 

IKF545 8.672 24.592 1.938 17.978 1.528 24.000 9.545 28.233 

IKF107 12.185 3.913 -5.063 -12.799 1.256 -11.137 -18.715 -12.523 

IKF470 0.830 19.914 -1.751 16.248 8.222 31.815 -7.481 28.153 

IKF191 1.972 -2.653 0.457 1.000 -17.024 -5.000 4.523 11.000 

EVF182 -6.425 16.000 -8.717 14.000 -2.074 24.000 -4.515 11.535 

IKF518 2.986 41.991 -1.961 34.791 -9.338 56.000 -10.917 42.000 

IKF570 6.446 31.745 -5.338 22.919 -9.808 42.459 -23.089 37.000 

EVF158 9.324 -11.500 -6.795 -22.000 -1.380 -15.817 -0.379 -14.781 

EVF153 -0.843 -12.131 -2.175 -12.009 15.704 -5.384 13.055 -11.000 

IKF411 -2.976 26.000 -0.188 36.000 0.553 47.605 3.690 55.472 

IKF13 0.291 17.920 -10.598 1.850 3.040 36.000 -16.323 14.000 

CHF61 -6.811 10.359 -2.081 12.666 10.269 26.000 0.452 24.000 

IKF608 -0.397 12.000 2.646 10.000 5.230 16.000 -0.659 12.168 

IKF440 -7.490 29.795 2.398 36.000 -11.043 49.832 -8.016 45.681 

IKF590 1.951 -1.000 2.671 2.000 -8.409 -25.000 2.550 -7.000 

CMF188A -3.837 11.772 4.706 16.000 9.218 8.307 5.793 8.308 

CMF145 4.929 1.504 -6.271 -2.822 -0.960 -6.941 -12.343 -10.384 

IKF140 -9.110 10.000 16.110 25.054 9.760 30.487 21.717 32.748 

CMF190 0.114 29.000 -6.356 15.000 4.771 30.000 -11.216 11.000 

EVF92 4.513 -1.901 6.685 2.845 -1.951 -10.340 3.814 2.753 

IKF588 2.660 1.936 -6.843 1.099 -3.763 8.124 3.928 5.097 

EVF164 2.126 -19.181 -6.558 -8.310 -23.422 -27.722 -9.582 -26.000 

IKF72 -2.724 -15.000 -4.032 -1.503 1.542 -27.000 -8.683 -13.500 
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Table 53. Differences between observed, regressed, and imputed/averaged datasets (continued) 

Individual HXLL REG-

HXLL 

HXLL AM 

AVG-HXLL 

RXLL REG-

RXLL 

RXLL AM 

AVG-RXLL 

FXLL REG-

FXLL 

FXLL AM 

AVG-FXLL 

TXLL REG-

TXLL 

TXLL AM 

AVG-TXLL 

IKF261 -3.607 -5.976 -3.132 -12.054 9.006 -5.905 -10.169 -24.431 

CMF185 8.584 11.594 -8.900 -1.500 -26.003 -14.000 -26.912 -23.000 

IKF205 -15.696 -5.000 21.329 8.002 35.571 27.000 30.168 23.317 

IKF17 -9.930 -5.000 12.310 5.672 25.089 8.532 22.998 17.799 

IKF183 6.891 -4.000 0.975 1.000 -5.569 -21.076 -3.640 -5.000 

IKF464 0.724 16.182 0.082 16.509 -9.607 19.535 4.458 22.192 

CMF99 -0.006 3.000 -0.870 0.594 -10.292 -8.325 -7.685 -17.982 

IKF220 -0.676 3.732 7.731 6.533 -0.587 5.000 3.214 18.331 

IKF90 -1.743 21.000 3.719 38.000 1.518 40.000 11.269 56.915 

IKF366 2.946 -2.471 -6.071 -4.332 1.147 2.063 -1.572 1.260 

IKF75 0.998 -12.500 -2.994 -15.540 -0.385 -17.000 -18.126 -33.000 

CMF20B -2.656 -11.000 3.815 -6.520 12.479 -6.278 -1.290 -6.348 

IKF52 -7.394 -18.000 5.232 -8.000 13.680 -25.000 9.499 -24.000 

CMF201 -3.869 -16.071 1.221 -15.066 -0.538 -24.168 -7.573 -25.700 

IKF586 7.377 -20.500 -8.576 -17.000 -0.917 -22.000 6.908 -18.000 

LFF10 -1.808 -15.000 7.239 -11.553 -5.894 -21.363 7.871 -13.086 

IKF168 0.435 -41.207 5.519 -33.000 1.108 -71.000 -1.929 -47.080 

IKF233 -9.632 -12.000 -0.070 -4.000 2.293 10.000 9.874 8.000 

CMF27 -2.522 -29.000 5.031 -15.750 -2.161 -32.991 3.444 -20.250 

IKF520 1.223 -16.223 2.141 -11.588 -2.388 -26.882 -4.865 -27.301 

IKF391 6.192 -37.434 -6.097 -36.000 -14.567 -52.464 11.374 -36.841 

IKF634 -12.281 -36.000 -1.937 -20.121 -11.683 -29.000 9.028 -20.297 

CHF71 -5.090 -33.991 -2.298 -28.432 1.706 -52.000 0.939 -41.000 

IKF638 -0.898 -36.000 -2.573 -36.000 19.488 -50.000 9.439 -37.000 

IKF269 -0.257 -24.284 -12.992 -27.337 -10.378 -27.443 -10.577 -34.132 

CMF86 -4.895 -27.000 6.171 -22.211 -9.334 -46.661 1.721 -42.000 

Sum diff. -0.389 14.39 -11.623 71.106 -3.488 2.249 -20.567 74.617 
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The estimated values from the regression analysis are closer to the observed. The difference 

is greatest in the tibia and radius (which is not surprising given that distal elements are slightly 

more variable than the proximal elements).  

However, since indices will be calculated from this data, one further step away from the 

original data anyway, I ran similar analyses above with calculated brachial, crural, and 

intermembral indices to see how the apparent systematic bias of the imputation process to 

overestimate length (again, to a non-significantly different degree, but it is there nonetheless) 

may affect missing data points (Table 54).  
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Table 54. Computed measures (brachial, crural, and intermembral indices) for observed, regressed, and imputed data from all females with all four long bones 

present (left) 

Indiv. BR 

OBSV 

BR 

REG 

BR 

AM 

AVG 

BR 

REG-

BR 

OBSV 

BR 

AM 

AVG-

BR 

OBSV 

CR 

OBSV 

CR 

REG 

CR 

AM 

AVG 

CR 

REG-

CR 

OBSV 

CR 

AM 

AVG-

CR 

OBSV 

IM 

OBSV 

IM 

REG 

IM 

AM 

AVG 

IM 

REG-

IM 

OBSV 

IM 

AM 

AVG-

IM 

OBSV 

IKF117 79.623 72.531 77.575 -7.092 -2.048 82.552 80.797 81.907 -1.755 -0.645 67.903 69.671 69.145 1.768 1.242 

IKF291 73.606 75.996 79.805 2.391 6.199 79.948 81.329 83.360 1.381 3.412 67.583 68.294 69.526 0.711 1.943 

CMF83A 78.067 75.591 73.077 -2.476 -4.990 82.051 79.254 83.990 -2.798 1.939 67.465 68.850 69.740 1.386 2.276 

IKF328 75.556 74.500 78.089 -1.056 2.534 81.865 83.285 84.030 1.420 2.165 67.521 68.079 69.374 0.557 1.853 

IKF545 76.103 74.442 75.854 -1.661 -0.249 79.592 81.708 81.787 2.116 2.195 68.040 68.470 68.970 0.430 0.930 

IKF107 80.216 75.103 74.562 -5.113 -5.654 83.951 79.084 83.145 -4.866 -0.806 67.248 69.841 68.222 2.593 0.974 

IKF470 76.241 75.398 76.594 -0.843 0.353 82.051 78.479 82.537 -3.573 0.486 70.000 69.797 69.245 -0.203 -0.755 

IKF191 73.145 72.799 74.194 -0.346 1.049 78.660 83.301 82.412 4.641 3.752 68.056 69.601 67.265 1.546 -0.790 

EVF182 75.618 74.223 76.254 -1.395 0.636 84.856 84.133 82.687 -0.723 -2.170 70.198 68.698 70.878 -1.499 0.680 

IKF518 75.618 74.143 76.553 -1.475 0.935 81.931 81.103 81.087 -0.828 -0.844 67.619 69.679 68.881 2.060 1.262 

IKF570 78.092 74.509 77.497 -3.583 -0.594 83.784 80.040 84.101 -3.744 0.317 67.380 70.634 67.516 3.255 0.136 

EVF158 78.660 73.834 73.897 -4.825 -4.763 81.638 81.824 81.155 0.186 -0.483 69.194 69.707 67.436 0.513 -1.758 

EVF153 76.408 75.868 75.401 -0.541 -1.008 82.124 82.164 80.396 0.039 -1.728 71.266 68.053 69.451 -3.213 -1.815 

IKF411 74.386 75.104 79.743 0.718 5.357 81.378 82.203 85.184 0.825 3.806 69.902 69.045 68.667 -0.857 -1.235 

IKF13 78.322 74.540 74.312 -3.781 -4.009 85.279 80.515 81.395 -4.764 -3.884 69.863 69.720 67.919 -0.143 -1.944 

CHF61 75.000 76.077 76.641 1.077 1.641 82.857 80.819 83.455 -2.038 0.598 71.591 69.273 69.897 -2.318 -1.694 

IKF608 75.347 76.371 75.667 1.024 0.319 81.796 80.580 81.575 -1.215 -0.221 69.273 69.148 69.601 -0.125 0.329 

IKF440 72.318 75.094 76.852 2.776 4.534 82.090 82.358 83.146 0.268 1.057 68.033 69.137 68.131 1.104 0.098 

IKF590 74.048 74.470 75.000 0.421 0.952 79.512 81.812 82.857 2.300 3.345 68.342 69.524 71.591 1.181 3.249 

CMF188A 74.740 77.396 77.135 2.656 2.394 83.042 82.589 83.387 -0.454 0.344 68.801 67.538 70.978 -1.263 2.177 

CMF145 78.547 75.096 77.169 -3.451 -1.378 84.709 81.904 83.597 -2.805 -1.112 67.806 68.832 69.208 1.027 1.402 

IKF140 70.690 78.718 76.685 8.028 5.995 79.345 82.780 81.347 3.435 2.002 69.522 67.521 68.373 -2.002 -1.149 

CMF190 78.276 76.054 75.862 -2.222 -2.414 86.173 82.432 82.759 -3.740 -3.414 68.568 68.324 70.566 -0.244 1.998 

EVF92 75.258 76.371 76.737 1.113 1.479 80.668 81.960 83.383 1.292 2.715 67.371 68.681 68.179 1.310 0.808 
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Table 54. Computed measures (brachial, crural, and intermembral indices) for observed, regressed, and imputed data from all females who had all four long 

bones present (left) (continued) 

Indiv. BR 

OBSV 

BR 

REG 

BR 

AM 

AVG 

BR 

REG-

BR 

OBSV 

BR 

AM 

AVG-

BR 

OBSV 

CR 

OBSV 

CR 

REG 

CR 

AM 

AVG 

CR 

REG-

CR 

OBSV 

CR 

AM 

AVG-

CR 

OBSV 

IM 

OBSV 

IM 

REG 

IM 

AM 

AVG 

IM 

REG-

IM 

OBSV 

IM 

AM 

AVG-

IM 

OBSV 

IKF588 77.397 74.376 77.261 -3.021 -0.136 82.512 84.261 82.125 1.748 -0.388 69.906 69.326 69.083 -0.580 -0.823 

EVF164 75.510 72.753 77.756 -2.757 2.246 82.185 84.617 81.367 2.431 -0.818 67.275 69.696 68.488 2.421 1.213 

IKF72 76.531 75.862 80.107 -0.669 3.576 84.804 82.364 87.270 -2.439 2.466 68.833 68.586 70.427 -0.246 1.594 

IKF261 77.211 77.091 74.628 -0.119 -2.583 86.520 82.212 81.714 -4.307 -4.805 68.463 67.680 68.837 -0.782 0.375 

CMF185 78.231 73.071 74.772 -5.161 -3.459 83.488 82.201 80.769 -1.288 -2.719 66.413 71.145 71.023 4.731 4.610 

IKF205 70.847 82.465 74.828 11.618 3.981 80.928 81.254 81.281 0.326 0.353 71.795 66.381 67.392 -5.414 -4.403 

IKF17 72.881 79.738 76.094 6.857 3.212 80.563 81.232 83.297 0.669 2.734 72.238 67.947 69.732 -4.291 -2.506 

IKF183 76.610 75.184 78.007 -1.426 1.397 80.615 80.818 83.598 0.203 2.983 68.194 70.068 70.197 1.874 2.003 

IKF464 74.662 74.508 76.081 -0.155 1.418 80.288 83.283 81.783 2.995 1.494 68.933 69.518 69.429 0.585 0.496 

CMF99 75.676 75.383 75.115 -0.292 -0.561 83.688 83.913 81.032 0.225 -2.656 66.924 68.394 69.748 1.470 2.824 

IKF220 73.737 76.515 74.995 2.777 1.257 79.904 80.787 83.293 0.882 3.389 68.617 69.313 67.876 0.696 -0.741 

IKF90 74.582 76.270 81.563 1.688 6.981 80.387 82.812 85.853 2.424 5.466 70.067 69.146 69.009 -0.922 -1.058 

IKF366 78.000 75.238 77.192 -2.762 -0.808 82.367 81.761 82.262 -0.606 -0.105 70.728 70.354 69.521 -0.374 -1.207 

IKF75 78.000 76.747 75.986 -1.253 -2.014 85.036 80.804 80.446 -4.232 -4.590 68.549 69.956 69.405 1.406 0.855 

CMF20B 76.412 78.371 77.062 1.959 0.650 83.894 81.150 83.630 -2.744 -0.264 69.412 68.560 68.248 -0.851 -1.164 

IKF52 74.503 78.149 76.408 3.646 1.905 82.968 82.532 82.124 -0.436 -0.844 70.080 67.705 71.266 -2.374 1.186 

CMF201 75.329 76.707 74.301 1.378 -1.028 83.765 82.087 82.404 -1.678 -1.361 68.246 68.619 68.642 0.374 0.396 

IKF586 78.947 74.323 78.660 -4.625 -0.288 81.647 83.453 81.638 1.805 -0.009 70.466 69.770 69.194 -0.697 -1.272 

LFF10 73.115 75.938 72.913 2.824 -0.202 78.923 81.896 79.853 2.974 0.930 69.110 69.641 68.734 0.531 -0.376 

IKF168 75.082 76.782 74.301 1.700 -0.781 81.206 80.552 84.144 -0.655 2.938 68.374 69.209 69.359 0.835 0.985 

IKF233 73.856 76.233 75.510 2.377 1.654 82.238 84.171 82.185 1.933 -0.053 71.028 68.618 67.275 -2.410 -3.753 

CMF27 74.593 76.863 76.709 2.270 2.116 81.308 82.530 82.973 1.221 1.664 69.072 69.281 67.969 0.209 -1.103 

IKF520 76.547 76.938 76.833 0.391 0.285 83.257 82.593 82.054 -0.663 -1.203 67.835 68.881 69.036 1.046 1.201 

IKF391 76.299 72.854 73.549 -3.444 -2.749 79.405 84.836 80.658 5.431 1.253 69.260 69.556 67.593 0.295 -1.667 
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Table 54. Computed measures (brachial, crural, and intermembral indices) for observed, regressed, and imputed data from all females who had all four long 

bones present (left) (continued) 

Indiv. BR 

OBSV 

BR 

REG 

BR 

AM 

AVG 

BR 

REG-

BR 

OBSV 

BR 

AM 

AVG-

BR 

OBSV 

CR 

OBSV 

CR 

REG 

CR 

AM 

AVG 

CR 

REG-

CR 

OBSV 

CR 

AM 

AVG-

CR 

OBSV 

IM 

OBSV 

IM 

REG 

IM 

AM 

AVG 

IM 

REG-

IM 

OBSV 

IM 

AM 

AVG-

IM 

OBSV 

IKF634 72.414 74.682 74.516 2.268 2.102 81.163 85.588 81.971 4.425 0.808 70.603 69.013 67.682 -1.590 -2.921 

CHF71 75.862 76.360 74.934 0.498 -0.928 82.759 82.650 83.290 -0.108 0.531 70.566 69.406 71.022 -1.160 0.456 

IKF638 78.370 77.782 75.618 -0.588 -2.752 83.603 82.088 84.856 -1.515 1.254 71.572 68.638 70.198 -2.934 -1.375 

IKF269 78.638 74.675 75.879 -3.963 -2.759 84.753 84.344 82.156 -0.409 -2.598 70.024 70.202 68.909 0.177 -1.115 

CMF86 74.312 77.357 73.596 3.045 -0.716 81.878 83.965 80.955 2.087 -0.923 68.427 69.213 69.967 0.786 1.539 

Summed 

differenc

es 

   

-4.595 18.287 

   

-4.698 17.755 

   

0.384 4.466 
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The absolute difference between observed, regressed, and imputed data sets for calculated 

values like indices are again consistently higher in the imputed data set (following the pattern 

seen in total limb bone length, since those data went into the indices).  

I ran some ANOVAs on the indices to see if the three data sets are different from one 

another.  Those are given in Tables 55-57.  Again, while there were not any statistically 

significantly different ANOVAs for calculated indices, I used the regression values as they are 

somewhat closer to the observed. 
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Table 55. Anova for brachial indices (observed, regressed, and imputed data sets) 

Groups Count Sum Average Variance 
  

BR OBSV 53 4018.0398 75.812071 4.7445205 
  

BR REG 53 4013.4446 75.725369 3.3123599 
  

BR AM AVG 53 4036.3264 76.157102 3.2564975 
  

  

Source of Variation SS df MS F P-value F crit 

Between Groups 5.5288994 2 2.7644497 0.7330568 0.48208560 3.05400417 

Within Groups 588.29565 156 3.771126 
   

Total 593.82455 158         

 

Table 56. Anova for crural indices (observed, regressed, and imputed data sets) 

Groups Count Sum Average Variance 
  

CR OBSV 53 4357.9049 82.224621 3.5211527 
  

CR REG 53 4353.2073 82.135987 2.1912326 
  

CR AM AVG 53 4375.6601 82.559626 2.0544077 
  

  

Source of Variation SS df MS F P-value F crit 

Between Groups 5.2921213 2 2.6460606 1.0220668 0.36224716 3.05400417 

Within Groups 403.87324 156 2.5889310 
   

Total 409.16536 158         

 

Table 57. Anova for intermembral indices (observed, regressed, and imputed data sets) 

Groups Count Sum Average Variance   

IM OBSV 53 3659.5553 69.048214 1.9327544   

IM REG 53 3659.9392 69.055456 0.7536485   

IM AM AVG 53 3664.0213 69.132478 1.2157794   

 

Source of Variation SS df MS F P-value F crit 

Between Groups 0.2311762 2 0.1155881 0.0888642 0.91501609 3.05400417 

Within Groups 202.91348 156 1.3007274    

Total 203.14466 158         
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APPENDIX II: POST-CRANIAL BI-VARIATE ANALYSES 

To visualize interactions between post-cranial variables, or changes in one long bone 

relative to another, I graphed the linear regression models developed from individuals with all 

four long bones observed, along with their slopes.  

Below are the models for Maximum Length of the Radius on the Humerus given by sex 

and by group (Table 58). Among females, the southern Illinois sample has the highest slope line 

(meaning greater growth in the humerus relative to the radius). Central Tennessee and western 

Kentucky samples are closely aligned for these variables. Among the males it is the central 

Tennessee sample that has a slight deviation of slope but not much. In the pooled sex sample the 

central Tennessee sample has the lowest slope. 

The models for Maximum Length of the Tibia on the Femur, again given by sex and by 

group (Table 59). The slopes that stand out among these figures are the central Tennessee 

females and the southern Illinois males. Each group deviates from the other two in their 

respective slopes. The pooled sexes samples have nearly the same slope. 

The models for Femur Maximum Length on Humerus Maximum Length (as both are 

proximal elements within their respective limbs) (Table 60). The southern Illinois females have a 

steeper slope line than the other groups of females. Among the males it is the western Kentucky 

line that stands out with a flatter slope line. Pooled sexes shows the central Tennessee and 

western Kentucky sample nearly aligned while the southern Illinois sample has a higher line of 

slope but a lower intercept. 



206 

 

The models for Radius Maximum Length on Tibia Maximum Length (as both are proximal 

elements within their respective limbs) are given in Table 61. The slope line for central 

Tennessee females rises more steeply than in the other samples. The pattern is the same among 

central Tennessee males with the other two groups being rather aligned for both males and 

females. The slope lines are nearly the same between all three groups in the pooled sexes sample. 

The models for Crural Index on Brachial Index are given in Table 62.  These computed 

indices compare the length of the radius to humerus within the arm, and the length of the tibia 

relative to the femur in the leg. Plotting them against one another is not all that informative (see 

R-square values in the table below) but the results are presented here for thoroughness. In the 

sample of female indices the three samples are rather similar. The males, however, have very 

different slope lines given that the southern Illinois males have a negative slope. The situation is 

then similar for the pooled sexes sample.
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Table 58. Linear Regression Model for HXL ~ RXL 

 Grouping Subgroup Linear Model R-square 

By sex Females SOILF HXL = 58.108 + RXL (1.058) 0.74 

CTNF HXL = 86.741 + RXL (0.929) 0.83 

WKYF HXL = 86.774 + RXL (0.932) 0.69 

Males SOILM  HXL = 50.611 + RXL (1.089) 0.74 

CTNM HXL = 59.243 + RXL (1.046) 0.81 

WKYM HXL = 46.740 + RXL (1.102) 0.69 

Pooled 

sexes 

SOILPOOL HXL = 54.324 + RXL (1.074) 0.85 

CTNPOOL HXL = 75.524 + RXL (0.980) 0.90 

WKYPOOL HXL = 69.467 + RXL (1.010) 0.82 

By 

group 

SoIL SOILF HXL = 58.108 + RXL (1.058) 0.74 

SOILM HXL = 50.611 + RXL (1.089) 0.74 

CTN CTNF HXL = 86.741 + RXL (0.929) 0.83 

CTNM HXL = 59.243 + RXL (1.046) 0.81 

WKY WKYF HXL = 86.774 + RXL (0.932) 0.69 

WKYM HXL = 46.740 + RXL (1.102) 0.69 
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Figure 35. Linear regression for females HXL ~ RXL 
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Figure 36. Linear regression for males HXL ~ RXL 



210 

 

2
1
0
  

Figure 37. Linear regression for pooled sexes HXL ~RXL 
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Table 59. Linear Regression Model for FXL ~ TXL 

 Grouping Subgroup Linear Model R-square 

By sex Females SOILF FXL = 97.417 + TXL (0.930) 0.81 

CTNF FXL = 66.066 + TXL (1.018) 0.86 

WKYF FXL = 96.193 + TXL (0.934) 0.78 

Males SOILM  FXL = 74.455 + TXL (1.002) 0.81 

CTNM FXL = 86.733 + TXL (0.970) 0.81 

WKYM FXL = 28.100 + TXL (1.128) 0.81 

Pooled 

sexes 

SOILPOOL FXL = 69.162 + TXL (1.015) 0.89 

CTNPOOL FXL = 56.957 + TXL (1.049) 0.90 

WKYPOOL FXL = 61.397 + TXL (1.037) 0.87 

By 

group 

SoIL SOILF FXL = 97.417 + TXL (0.930) 0.81 

SOILM  FXL = 74.455 + TXL (1.002) 0.81 

CTN CTNF FXL = 66.066 + TXL (1.018) 0.86 

CTNM FXL = 86.733 + TXL (0.970) 0.81 

WKY WKYF FXL = 96.193 + TXL (0.934) 0.78 

WKYM FXL = 28.100 + TXL (1.128) 0.81 
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Figure 38. Linear regression for females FXL ~ TXL 
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Figure 39. Linear regression for males FXL ~ TXL 
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Figure 40. Linear regression for pooled sexes FXL ~ TXL 
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Table 60. Linear Regression Model for HXL ~ FXL 

 Grouping Subgroup Linear Model R-square 

By sex Females SOILF HXL = -31.125 + FXL (0.786) 0.84 

CTNF HXL = 12.240 + FXL (0.686) 0.92 

WKYF HXL = 16.025 + FXL (0.676) 0.81 

Males SOILM  HXL = 16.420 + FXL (0.683) 0.74 

CTNM HXL = 22.679 + FXL (0.665) 0.89 

WKYM HXL = 66.409 + FXL (0.571) 0.77 

Pooled 

sexes 

SOILPOOL HXL = -26.425 + FXL (0.777) 0.87 

CTNPOOL HXL = 7.673 + FXL (0.698) 0.94 

WKYPOOL HXL = 14.150 + FXL (0.685) 0.87 

By 

group 

SoIL SOILF HXL = -31.125 + FXL (0.786) 0.84 

SOILM  HXL = 16.420 + FXL (0.683) 0.74 

CTN CTNF HXL = 12.240 + FXL (0.686) 0.92 

CTNM HXL = 22.679 + FXL (0.665) 0.89 

WKY WKYF HXL = 16.025 + FXL (0.676) 0.81 

WKYM HXL = 66.409 + FXL (0.571) 0.77 
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Figure 41. Linear regression for females HXL ~ FXL 
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Figure 42. Linear regression for males HXL ~ FXL 
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Figure 43. Linear regression for pooled sexes HXL ~ FXL 
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Table 61. Linear Regression Model for RXL ~ TXL 

 Grouping Subgroup Linear Model R-square 

By sex Females SOILF RXL = -4.987 + 0.670 (TXL) 0.86 

CTNF RXL = -22.144 + 0.724 (TXL) 0.89 

WKYF RXL = -4.118 + 0.672 (TXL) 0.91 

Males SOILM  RXL = 38.457 + 0.565 (TXL) 0.65 

CTNM RXL = 30.390 + 0.589 (TXL) 0.81 

WKYM RXL = 56.174 + 0.520 (TXL) 0.72 

Pooled 

sexes 

SOILPOOL RXL = -17.182 + 0.712 (TXL) 0.84 

CTNPOOL RXL = -22.734 + 0.730 (TXL) 0.91 

WKYPOOL RXL = -9.680 + 0.694 (TXL) 0.89 

By 

group 

SoIL SOILF RXL = -4.987 + 0.670 (TXL) 0.86 

SOILM  RXL = 38.457 + 0.565 (TXL) 0.65 

CTN CTNF RXL = -22.144 + 0.724 (TXL) 0.89 

CTNM RXL = 30.390 + 0.589 (TXL) 0.81 

WKY WKYF RXL = -4.118 + 0.672 (TXL) 0.91 

WKYM RXL = 56.174 + 0.520 (TXL) 0.72 
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Figure 44. Linear regression for females RXL ~ TXL 
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Figure 45. Linear regression for males RXL ~ TXL 
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Figure 46. Linear regression for pooled sexes RXL ~ TXL 
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Table 62. Linear Regression Model for Brachial Index ~ Crural Index (BR ~ CR) 

 Grouping Subgroup Linear Model R-square 

By sex Females SOILF BR = 21.593 + 0.661 (CR) 0.31 

CTNF BR = 17.984 + 0.702 (CR) 0.31 

WKYF BR = 10.148 + 0.799 (CR) 0.46 

Males SOILM  BR = 89.657 – 0.149 (CR) 0.02 

CTNM BR = 38.072 + 0.479 (CR) 0.28 

WKYM BR = 52.621 + 0.300 (CR) 0.08 

Pooled 

sexes 

SOILPOOL BR = 53.582 + 0.280 (CR) 0.05 

CTNPOOL BR = 22.159 + 0.662 (CR) 0.29 

WKYPOOL BR = 22.641 + 0.654 (CR) 0.30 

By 

group 

SoIL SOILF BR = 21.593 + 0.661 (CR) 0.31 

SOILM  BR = 89.657 – 0.149 (CR) 0.02 

CTN CTNF BR = 17.984 + 0.702 (CR) 0.31 

CTNM BR = 38.072 + 0.479 (CR) 0.28 

WKY WKYF BR = 10.148 + 0.799 (CR) 0.46 

WKYM BR = 52.621 + 0.300 (CR) 0.08 
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Figure 47. Linear regression for females Brachial ~ Crural Indices 
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Figure 48. Linear regression for males Brachial ~ Crural Indices 
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Figure 49. Linear regression for pooled sexes Brachial ~ Crural Indices 
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