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CHAPTER 1 

INTRODUCTION

Suppose that the response variable Yi and at least one predictor variable xi,j are quan-

titative with xi,1 ≡ 1. Let xT
i = (xi,1, ..., xi,p) and β = (β1, ..., βp)

T where β1 corresponds to

the intercept. Then the multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (1.1)

for i = 1, ..., n. This model is also called the full model. Here n is the sample size, and

assume that the random variables ei are independent and identically distributed (iid) with

variance V (ei) = σ2. In matrix notation, these n equations become

Y = Xβ + e, (1.2)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors, β

is a p× 1 vector of unknown coefficients, and e is an n × 1 vector of unknown errors. The

ith fitted value Ŷi = xT
i β̂ and the ith residual ri = Yi − Ŷi where β̂ is an estimator of β.

Ordinary least squares (OLS) is often used for inference if n/p is large.

Variable selection is the search for a subset of predictor variables that can be deleted

without important loss of information. Following Olive and Hawkins (2005), a model for

variable selection can be described by

xTβ = xT
SβS + xT

EβE = xT
SβS (1.3)

where x = (xT
S ,x

T
E)T , xS is an aS × 1 vector, and xE is a (p− aS) × 1 vector. Given that

xS is in the model, βE = 0 and E denotes the subset of terms that can be eliminated given

that the subset S is in the model. Let xI be the vector of a terms from a candidate subset

indexed by I , and let xO be the vector of the remaining predictors (out of the candidate

submodel). Suppose that S is a subset of I and that model (1.3) holds. Then

xT β = xT
SβS = xT

SβS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI (1.4)
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where xI/S denotes the predictors in I that are not in S. Since this is true regardless of the

values of the predictors, βO = 0 if S ⊆ I .

Forward selection forms a sequence of submodels I1, ..., IM where Ij uses j predictors

including the constant. Let I1 use x∗1 = x1 ≡ 1: the model has a constant but no nontrivial

predictors. To form I2, consider all models I with two predictors including x∗1. Compute

Q2(I) = SSE(I) = RSS(I) = rT (I)r(I) =
∑n

i=1 r
2
i (I) =

∑n
i=1(Yi− Ŷi(I))

2. Let I2 minimize

Q2(I) for the p− 1 models I that contain x∗1 and one other predictor. Denote the predictors

in I2 by x∗1, x
∗

2. In general, to form Ij consider all models I with j predictors including

variables x∗1, ..., x
∗

j−1. Compute Qj(I) = rT (I)r(I) =
∑n

i=1 r
2
i (I) =

∑n
i=1(Yi − Ŷi(I))

2. Let Ij

minimize Qj(I) for the p− j + 1 models I that contain x∗1, ..., x
∗

j−1 and one other predictor

not already selected. Denote the predictors in Ij by x∗1, ..., x
∗

j. Continue in this manner for

j = 2, ..., p where n ≥ 10p and p is fixed.

When there is a sequence of p submodels, the final submodel Id needs to be selected.

Let the candidate model I contains a terms, including a constant. For example, let xI and

β̂I be a× 1 vectors. Then there are many criteria used to select the final submodel Id. For

a given data set, p, n, and σ̂2 act as constants, and a criterion below may add a constant

or be divided by a positive constant without changing the subset Imin that minimizes the

criterion.

Let criteria CS(I) have the form

CS(I) = SSE(I) + aKnσ̂
2.

These criteria need a good estimator of σ2. The criterion Cp(I) = AICS(I) uses Kn = 2

while the BICS(I) criterion uses Kn = log(n). Typically σ̂2 is the OLS full model

MSE =
n

∑

i=1

r2
i

n− p

when n/p is large. Then σ̂2 = MSE is a
√
n consistent estimator of σ2 under mild conditions

by Su and Cook (2012).
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The following criterion are described in Burnham and Anderson (2004), but still need

n/p large. AIC is due to Akaike (1973) and BIC to Schwarz (1978).

AIC(I) = n log

(

SSE(I)

n

)

+ 2a, and

BIC(I) = n log

(

SSE(I)

n

)

+ a log(n).

Let Imin be the submodel that minimizes the criterion using variable selection with

OLS. Following Nishi (1984), the probability that model Imin from Cp or AIC underfits

goes to zero as n → ∞. If β̂I is a × 1, form the p × 1 vector β̂I,0 from β̂I by adding 0s

corresponding to the omitted variables. Since fewer than 2p regression models I contain the

true model, and each such model gives a
√
n consistent estimator β̂I,0 of β, the probability

that Imin picks one of these models goes to one as n→ ∞. Hence β̂Imin,0 is a
√
n consistent

estimator of β under model (1.3). See Pelawa Watagoda and Olive (2018) and Olive (2017a:

p. 123, 2017b: p. 176).

Section 2 considers mixture distributions. Section 3 shows that a bootstrap confidence

region can be formed by applying a prediction region to the bootstrap sample, and Section

4 gives a simulation.



CHAPTER 2

MIXTURE DISTRIBUTIONS

Mixture distributions are useful for variable selection since asymptotically β̂Imin,0 is a

mixture distribution of β̂Ij ,0 where S ⊆ Ij. See Equation (1.3). A random vector u has a

mixture distribution if u equals a random vector uj with probability πj for j = 1, ..., J .

Definition 1. The distribution of a g × 1 random vector u is a mixture distribution if

the cumulative distribution function (cdf) of u is

Fu(t) =

J
∑

j=1

πjFuj
(t) (2.1)

where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2, and Fuj
(t) is the cdf

of a g× 1 random vector uj. Then u has a mixture distribution of the uj with probabilities

πj.

Theorem 1. Suppose E(h(u)) and the E(h(uj)) exist. Then

E(h(u)) =
J

∑

j=1

πjE[h(uj)]. (2.2)

Hence

E(u) =

J
∑

j=1

πjE[uj], (2.3)

and Cov(u) = E(uuT ) − E(u)E(uT ) = E(uuT ) − E(u)[E(u)]T =
∑J

j=1 πjE[uju
T
j ] − E(u)[E(u)]T =

J
∑

j=1

πjCov(uj) +
J

∑

j=1

πjE(uj)[E(uj)]
T − E(u)[E(u)]T . (2.4)

If E(uj) = θ for j = 1, ..., J , then E(u) = θ and

Cov(u) =
J

∑

j=1

πjCov(uj).

4
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This theorem is easy to prove if the uj are continuous random vectors with (joint)

probability density functions (pdfs) fuj
(t). Then u is a continuous random vector with pdf

fu(t) =
J

∑

j=1

πjfuj
(t), and

E(h(u)) =

∫

∞

−∞

· · ·
∫

∞

−∞

h(t)fu(t)dt =
J

∑

j=1

πj

∫

∞

−∞

· · ·
∫

∞

−∞

h(t)fuj
(t)dt =

J
∑

j=1

πjE[h(uj)]

where E[h(uj)] is the expectation with respect to the random vector uj. Note that

E(u)[E(u)]T =
J

∑

j=1

J
∑

k=1

πjπkE(uj)[E(uk)]
T . (2.5)

Definition 2. The population mean of a random p× 1 vector X = (X1, ..., Xp)
T is

E(X) = (E(X1), ..., E(Xp))
T

and the p× p population covariance matrix

Cov(X) = E(X − E(X))(X − E(X))T = (σij).

That is, the ij entry of Cov(X) is Cov(Xi, Xj) = σij.

Note that Cov(X) is a symmetric positive semidefinite matrix. The following results

are useful. If X and Y are p× 1 random vectors, a a conformable constant vector, and A

and B are conformable constant matrices, then

E(a + X) = a + E(X) and E(X + Y ) = E(X) + E(Y ) (2.6)

and

E(AX) = AE(X) and E(AXB) = AE(X)B. (2.7)

Thus

Cov(a + AX) = Cov(AX) = ACov(X)AT . (2.8)

For the multivariate normal (MVN) distribution X ∼ Np(µ,Σ). Then E(X) = µ and

Cov(X) = Σ.



CHAPTER 3

BOOTSTRAPPING CONFIDENCE REGIONS

Inference will consider bootstrap confidence intervals and bootstrap confidence regions

for bootstrap hypothesis testing. Applying the shorth prediction interval and the Olive

(2013) prediction region to the bootstrap sample will give the bootstrap confidence intervals

and regions.

Consider predicting a future test random variable Zf given iid training data Z1, ..., Zn.

A large sample 100(1 − δ)% prediction interval (PI) for Zf has the form [L̂n, Ûn] where

P (L̂n ≤ Zf ≤ Ûn) → 1 − δ as the sample size n → ∞. The shorth(c) estimator is useful for

making prediction intervals. Let Z(1), ..., Z(n) be the order statistics of Z1, ..., Zn. Then let

the shortest closed interval containing at least c of the Zi be

shorth(c) = [Z(s),Z(s+c−1)]. (3.1)

Let dxe be the smallest integer ≥ x, e.g., d7.7e = 8. Let

kn = dn(1 − δ)e. (3.2)

Frey (2013) showed that for large nδ and iid data, the shorth(kn) PI has maximum under-

coverage ≈ 1.12
√

δ/n, and used the shorth(c) estimator as the large sample 100(1 − δ)% PI

where

c = min(n, dn[1 − δ + 1.12
√

δ/n ] e). (3.3)

Example 1. Given below were votes for preseason 1A basketball poll from Nov. 22, 2011

WSIL News where the 778 was a typo: the actual value was 78. As shown below, finding

shorth(3) from the ordered data is simple. If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

6
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13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]

We also want to use bootstrap tests. Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0

where θ0 is a known g× 1 vector. Given training data z1, ..., zn, a large sample 100(1− δ)%

confidence region for θ is a set An such that P (θ ∈ An) → 1− δ as n→ ∞. Then reject H0

if θ0 is not in the confidence region An. For model (1.1), let θ = Aβ where A is a known

full rank g × p matrix with 1 ≤ g ≤ p.

To bootstrap a confidence region, Mahalanobis distances and prediction regions will be

useful. Consider predicting a future test value zf , given past training data z1, ..., zn where

the zi are g × 1 random vectors. A large sample 100(1 − δ)% prediction region is a set An

such that P (zf ∈ An) → 1 − δ as n→ ∞. Let the g × 1 column vector T be a multivariate

location estimator, and let the g × g symmetric positive definite matrix C be a dispersion

estimator. Then the ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T,C) = D2
zi

(T,C) = (zi − T )TC−1(zi − T ) (3.4)

for each observation zi. Notice that the Euclidean distance of zi from the estimate of center

T is Di(T, Ig) where Ig is the g × g identity matrix. The classical Mahalanobis distance Di

uses (T,C) = (z,S), the sample mean and sample covariance matrix where

z =
1

n

n
∑

i=1

zi and S =
1

n − 1

n
∑

i=1

(zi − z)(zi − z)T. (3.5)

Let qn = min(1 − δ + 0.05, 1 − δ + g/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δg/n), otherwise. (3.6)
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If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Let

c = dnqne. (3.7)

Let (T,C) = (z,S), and let D(Un) be the 100qnth sample quantile of the Di. Then the Olive

(2013) large sample 100(1− δ)% nonparametric prediction region for a future value zf given

iid data z1, ..., , zn is

{z : D2
z(z,S) ≤ D2

(Un)}, (3.8)

while the classical large sample 100(1 − δ)% prediction region is

{z : D2
z(z,S) ≤ χ2

g,1−δ}. (3.9)

Definition 3. Suppose that data x1, ...,xn has been collected and observed. Often the

data is a random sample (iid) from a distribution with cdf F . The empirical distribution is

a discrete distribution where the xi are the possible values, and each value is equally likely.

If w is a random variable having the empirical distribution, then pi = P (w = xi) = 1/n for

i = 1, ..., n. The cdf of the empirical distribution is denoted by Fn.

Example 2. Let w be a random variable having the empirical distribution given by

Definition 3. Show that E(w) = x ≡ xn and Cov(w) =
n− 1

n
S ≡ n− 1

n
Sn.

Solution: Recall that for a discrete random vector, the population expected value

E(w) =
∑

xipi where xi are the values that w takes with positive probability pi. Sim-

ilarly, the population covariance matrix

Cov(w) = E[(w − E(w))(w − E(w))T ] =
∑

(xi − E(w))(xi − E(w))Tpi.

Hence

E(w) =
n

∑

i=1

xi
1

n
= x,

and

Cov(w) =
n

∑

i=1

(xi − x)(xi − x)T 1

n
=
n− 1

n
S. �
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Example 3. If W1, ...,Wn are iid from a distribution with cdf FW , then the empirical

cdf Fn corresponding to FW is given by

Fn(y) =
1

n

n
∑

i=1

I(Wi ≤ y)

where the indicator I(Wi ≤ y) = 1 ifWi ≤ y and I(Wi ≤ y) = 0 ifWi > y. Fix n and y. Then

nFn(y) ∼ binomial (n, FW (y)). ThusE[Fn(y)] = FW (y) and V [Fn(y)] = FW (y)[1−FW (y)]/n.

By the central limit theorem,

√
n(Fn(y)− FW (y))

D→ N(0, FW (y)[1 − FW (y)]).

Thus Fn(y)−FW (y) = OP (n−1/2), and Fn is a reasonable estimator of FW if the sample size

n is large.

Suppose there is data w1, ...,wn collected into an n × p matrix W . Let the statistic

Tn = t(W ) = T (Fn) be computed from the data. Suppose the statistic estimates θ = T (F ),

and let t(W ∗) = t(F ∗

n) = T ∗

n indicate that t was computed from an iid sample from the

empirical distribution Fn: a sample w∗

1, ...,w
∗

n of size n was drawn with replacement from

the observed sample w1, ...,wn. This notation is used for von Mises differentiable statistical

functions in large sample theory. See Serfling (1980, ch. 6). The empirical bootstrap or

nonparametric bootstrap or naive bootstrap draws B samples of size n from the rows of W ,

e.g. from the empirical distribution of w1, ...,wn. Then T ∗

jn is computed from the jth

bootstrap sample for j = 1, ..., B.

Example 4. Suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and the sample median Tn

is 4. Using R, we drew B = 2 bootstrap samples (samples of size n drawn with replacement

from the original data) and computed the sample median T ∗

1,n = 3 and T ∗

2,n = 4.

b1 <- sample(1:7,replace=T)

b1

[1] 3 2 3 2 5 2 6

median(b1)
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[1] 3

b2 <- sample(1:7,replace=T)

b2

[1] 3 5 3 4 3 5 7

median(b2)

[1] 4

The bootstrap has been widely used to estimate the population covariance matrix of

the statistic Cov(Tn), for testing hypotheses, and for obtaining confidence regions (often

confidence intervals). An iid sample T1n, ..., TBn of size B of the statistic would be very

useful for inference, but typically we only have one sample of data and one value Tn = T1n

of the statistic. Often Tn = t(w1, ...,wn), and the bootstrap sample T ∗

1n, ..., T
∗

Bn is formed

where T ∗

jn = t(w∗

j1, ...,w
∗

jn).

The residual bootstrap is often useful for additive error regression models of the form

Yi = m(xi)+ ei = m̂(xi)+ ri = Ŷi + ri for i = 1, ..., n where the ith residual ri = Yi − Ŷi. Let

Y = (Y1, ..., Yn)
T , r = (r1, ..., rn)

T , and let X be an n × p matrix with ith row xT
i . Then

the fitted values Ŷi = m̂(xi), and the residuals are obtained by regressing Y on X. Here

the errors ei are iid, and it would be useful to be able to generate B iid samples e1j, ..., enj

from the distribution of ei where j = 1, ..., B. If the m(xi) were known, then we could form

a vector Y j where the ith element Yij = m(xi) + eij for i = 1, ..., n. Then regress Y j on X.

Instead, draw samples r∗1j, ..., r
∗

nj with replacement from the residuals, then form a vector

Y ∗

j where the ith element Y ∗

ij = m̂(xi) + r∗ij for i = 1, ..., n. Then regress Y ∗

j on X.

The Olive (2017ab, 2018ab) prediction region method obtains a confidence region for

θ by applying the nonparametric prediction region (3.8) to the bootstrap sample T ∗

1 , ..., T
∗

B,

and the theory for the method is sketched below. Let T
∗

and S∗

T be the sample mean and

sample covariance matrix of the bootstrap sample. Assume nS∗

T
P→ ΣA. See Machado and

Parente (2005) for regularity conditions for this assumption.

Following Bickel and Ren (2001), let the vector of parameters θ = T (F ), the statistic
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Tn = T (Fn), and T ∗ = T (F ∗

n) where F is the cdf of iid x1, ...,xn, Fn is the empirical cdf, and

F ∗

n is the empirical cdf of x∗

1, ...,x
∗

n, a sample from Fn using the nonparametric bootstrap.

If
√
n(Fn − F )

D→ zF , a Gaussian random process, and if T is sufficiently smooth (has a

Hadamard derivative Ṫ (F )), then
√
n(Tn−θ)

D→ u and
√
n(T ∗

i −Tn)
D→ u with u = Ṫ (F )zF .

Olive (2017b) used these results to show that if u ∼ Ng(0,ΣA), then
√
n(T

∗ − Tn)
D→ 0,

√
n(T ∗

i − T
∗

)
D→ u,

√
n(T

∗ − θ)
D→ u, and that the prediction region method large sample

100(1 − δ)% confidence region for θ is

{w : (w − T
∗

)T [S∗

T ]−1(w − T
∗

) ≤ D2
(UB)} = {w : D2

w(T
∗

,S∗

T ) ≤ D2
(UB)} (3.10)

where D2
(UB) is computed from D2

i = (T ∗

i − T
∗

)T [S∗

T ]−1(T ∗

i − T
∗

) for i = 1, ..., B. Note that

the corresponding test for H0 : θ = θ0 rejects H0 if (T
∗ − θ0)

T [S∗

T ]−1(T
∗ − θ0) > D2

(UB).

The prediction region method for testing H0 : θ = θ0 versus H1 : θ 6= θ0 is simple. Let

θ̂ be a consistent estimator of θ and make a bootstrap sample wi = θ̂
∗

i − θ0 for i = 1, ..., B.

Make the nonparametric prediction region (3.10) for the wi and fail to reject H0 if 0 is in

the prediction region (if D0 ≤ D(UB)), reject H0 otherwise.

The modified Bickel and Ren (2001) large sample 100(1 − δ)% confidence region is

{w : (w − T )T [S∗

T ]−1(w − Tn) ≤ D2
(UB ,T )} = {w : D2

w(Tn,S
∗

T ) ≤ D2
(UB ,T )} (3.11)

where D2
(UB,T ) is computed from D2

i = (T ∗

i − Tn)
T [S∗

T ]−1(T ∗

i − Tn).

The Pelawa Watagoda and Olive (2018) hybrid large sample 100(1 − δ)% confidence

region shifts the hyperellipsoid (3.10) to be centered at T instead of T
∗

:

{w : (w − Tn)
T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} = {w : D2

w(Tn,S
∗

T ) ≤ D2
(UB)}. (3.12)

Hyperellipsoids (3.10) and (3.12) have the same volume since they are the same region

shifted to have a different center. The ratio of the volumes of regions (3.10) and (3.11) is
(

D(UB)

D(UB ,T )

)g

. (3.13)

Consider testing H0 : θ = θ0 versus H0 : θ 6= θ0 where θ is g×1. For example, let A be

a g×p matrix with full rank g, θ = Aβ, θ0 = 0, and Tn = Aβ̂Imin,0. This section gives some
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theory for the bagging estimator T
∗

, also called the smoothed bootstrap estimator. The

theory may be useful for hypothesis testing after model selection if n/p is large. Empirically,

bootstrapping with the bagging estimator often outperforms bootstrapping with Tn. See

Efron (2014). See Büchlmann and Yu (2002) and Friedman and Hall (2007) for theory and

references for the bagging estimator.

If i)
√
n(Tn − θ)

D→ u, then under regularity conditions, ii)
√
n(T ∗

i − Tn)
D→ u, iii)

√
n(T

∗ − θ)
D→ u, iv)

√
n(T ∗

i − T
∗

)
D→ u, and v) nS∗

T
P→ Cov(u).

Suppose i) and ii) hold with E(u) = 0 and Cov(u) = Σu. With respect to the

bootstrap sample, Tn is a constant and the
√
n(T ∗

i − Tn) are iid for i = 1, ..., B. Let

√
n(T ∗

i − Tn)
D→ vi ∼ u where the vi are iid with the same distribution as u. Fix B. Then

the average of the
√
n(T ∗

i − Tn) is

√
n(T

∗ − Tn)
D→ 1

B

B
∑

i=1

vi ∼ ANg

(

0,
Σu

B

)

where z ∼ ANg(0,Σ) is an asymptotic multivariate normal approximation. Hence as B →

∞,
√
n(T

∗ − Tn)
P→ 0, and iii) and iv) hold. If B is fixed and u ∼ Ng(0,Σu), then

1

B

B
∑

i=1

vi ∼ Ng

(

0,
Σu

B

)

and
√

B
√

n(T
∗ − Tn)

D→ Ng(0,Σu).

Hence the prediction region method gives a large sample confidence region for θ provided

that the sample percentile D̂2
1−δ of the D2

T ∗

i
(T

∗

,S∗

T ) =
√
n(T ∗

i − T
∗

)T (nS∗

T )−1
√
n(T ∗

i − T
∗

)

is a consistent estimator of the percentile D2
n,1−δ of the random variable D2

θ
(T

∗

,S∗

T ) =

√
n(θ−T ∗

)T (nS∗

T )−1
√
n(θ−T ∗

) in that D̂2
1−δ−D2

n,1−δ
P→ 0. Since iii) and iv) hold, the sample

percentile will be consistent under much weaker conditions than v) if Σu is nonsingular. For

example, if (nS∗

T )−1 = Σ
−1
u + C + op(1) for some g × g constant matrix C . Olive (2017b

∮

5.3.3) proved that the prediction region method gives a large sample confidence region under

the much stronger conditions of v) and u ∼ Ng(0,Σu), but the above proof is simpler.

Now suppose that Tn is equal to the estimator Tjn with probability πjn for j = 1, ..., J

where
∑

j πjn = 1, πjn → πj as n → ∞, and
√
n(Tjn − θ)

D→ uj with E(uj) = 0



13

and Cov(uj) = Σj. Then the cumulative distribution function (cdf) of Tn is FTn(z) =
∑

j πjnFTjn
(z) where FTjn

(z) is the cdf of Tjn. Hence

√
n(Tn − θ)

D→ u (3.14)

where the cdf of u is Fu(z) =
∑

j πjFuj
(z) and Fuj

(z) is the cdf of uj . Thus u is a mixture

distribution of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjΣj.

For the bootstrap, suppose that T ∗

i is equal to T ∗

ij with probability ρjn for j = 1, ..., J

where
∑

j ρjn = 1, and ρjn → πj as n→ ∞. Let Bjn count the number of times T ∗

i = T ∗

ij in

the bootstrap sample. Then the bootstrap sample T ∗

1 , ..., T
∗

B can be written as

T ∗

1,1, ..., T
∗

B1n,1, ..., T
∗

1,J, ..., T
∗

BJn,J

where the Bjn follow a multinomial distribution and Bjn/B
P→ ρjn as B → ∞. Conditionally

on the Bjn and with respect to the bootstrap sample, the T ∗

ij are independent. Denote

T ∗

1j, ..., T
∗

Bjn,j as the jth bootstrap component of the bootstrap sample with sample mean T
∗

j

and sample covariance matrix S∗

T,j. Then

T
∗

=
1

B

B
∑

i=1

T ∗

i =
∑

j

Bjn

B

1

Bjn

Bjn
∑

i=1

T ∗

ij =
∑

j

ρ̂jnT
∗

j .

Suppose
√
n(T ∗

i − E(T ∗))
D→ vi ∼ v where E(v) = 0, Cov(v) = Σv, and E(T ∗) =

∑

j ρjnE(T ∗

ij) where often E(T ∗

ij) = Tjn. With respect to the data distribution, suppose

√
n(E(T ∗)−θ)

D→ w. Then by an argument similar to the one given for when Tn is not from

a mixture distribution,
√
n(T

∗ −E(T ∗))
P→ 0,

√
n(T ∗

i − T
∗

)
D→ v, and

√
n(T

∗ − θ)
D→ w.

Assume T1, ..., TB are iid with nonsingular covariance matrix ΣTn. Then the large sample

100(1 − δ)% prediction region Rp = {w : D2
w(T ,ST ) ≤ D̂2

(UB)} centered at T contains a

future value of the statistic Tf with probability 1 − δB → 1 − δ as B → ∞. Hence the

region Rc = {w : D2
w(Tn,ST ) ≤ D̂2

(UB)} centered at a randomly selected Tn contains T with

probability 1 − δB. If i) holds with E(u) = 0 and Cov(u) = Σu, then for fixed B,

√
n(T − θ)

D→ 1

B

B
∑

i=1

vi ∼ ANg

(

0,
Σu

B

)

.
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Hence (T −θ) = OP ((nB)−1/2), and T gets arbitrarily close to θ compared to Tn as B → ∞.

Hence Rc is a large sample 100(1 − δ)% confidence region for θ as n,B → ∞. We also need

(nST )−1 to be “not too ill conditioned.”

With a mixture distribution, the bootstrap sample shifts the data cloud to be centered

at T
∗

where
√
n(T

∗ − ∑

j ρjnTjn)
P→ 0. The Tjn are computed from the same data set and

hence correlated. Suppose
√
n(Tn − θ)

D→ u,
√
n(T

∗ − θ)
D→ w, and (nS∗

T )−1 is “not too ill

conditioned.” Then

D2
1 = D2

T ∗

i
(T

∗

,S∗

T ) =
√
n(T ∗

i − T
∗

)T (nS∗

T )−1
√
n(T ∗

i − T
∗

),

D2
2 = D2

θ(Tn,S
∗

T ) =
√
n(Tn − θ)T (nS∗

T )−1
√
n(Tn − θ), and

D2
3 = D2

θ(T
∗

,S∗

T ) =
√
n(T

∗ − θ)T (nS∗

T )−1
√
n(T

∗ − θ)

are well behaved in that there exist cutoffs D̂2
i,1−δ that would result in good confidence regions

for i = 2 and 3. Heuristically, for a mixture distribution, the deviation T
∗ − θ tends to be

smaller on average than the deviations Tn−θ ≈ T ∗

i −T
∗

, while the deviation T ∗

i −Tn tends to

be larger than the other three deviations, on average. Hence D̂2
2,1−δ = D2

(UB) gives coverage

close to the nominal coverage for prediction region (3.12), but cutoffs D̂2
3,1−δ = D2

(UB) and

D̂2
2,1−δ = D2

(UB,T ) are slightly too large, and prediction regions (3.10) and (3.11) tend to have

coverage slightly higher than the nominal coverage 1− δ if n and B are large. In simulations

for n ≥ 20p, the coverage tends to get close to 1 − δ for B ≥ max(400, 50p) so that S∗

T is a

good estimator of Cov(T ∗).

To examine the bagging estimator, assume that each bootstrap component satisfies vi)

√
n(Tjn − θ)

D→ uj ∼ Ng(0,Σj), vii)
√
n(T ∗

ij − Tjn)
D→ uj , viii)

√
n(T

∗

j − θ)
D→ uj, ix)

√
n(T ∗

ij − T
∗

j)
D→ uj, x) nS∗

T,j
P→ Σj, and xi)

√
n(Tjn − T

∗

j )
P→ 0 as Bjn → ∞ and n→ ∞.

Consider the random vectors

Zn =
∑

j

Bjn

B
Tjn and Wn =

∑

j

ρjnTjn.
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By xi)
√
n(Zn − T

∗

) =
√
n(

∑

j

Bjn

B
Tjn − T

∗

) =
∑

j

Bjn

B

√
n(Tjn − T

∗

j )
P→ 0.

Also,
√
n(Zn − θ) −√

n(Wn − θ) =

∑

j

(

Bjn

B
− ρjn

)√
n(Tjn − θ) =

∑

j

OP (1)OP (n−1/2)
P→ 0.

Assume the unj =
√
n(Tjn − θ)

D→ uj are such that

√
n(Wn − θ) =

∑

j

ρjn

√
n(Tjn − θ)

D→ w =
∑

j

πjuj .

Note that E(w) = 0 and Cov(w) = Σw =
∑

j

∑

k πjπkCov(uj,uk). Hence

√
n(T

∗ − θ)
D→ w. (3.15)

Since w is a weighted mean of the uj ∼ Ng(0,Σj), a normal approximation is w ≈

Ng(0,Σw). The approximation is exact if the uj with positive πj have a joint multivariate

normal distribution.

Now consider variable selection for model (1.1) with θ = Aβ where A is a known full

rank g × p matrix with 1 ≤ g ≤ p. Olive (2017a: p. 128, 2018a) showed that the prediction

region method can simulate well for the p × 1 vector β̂Imin,0. Assume p is fixed, n ≥ 20p,

and that the error distribution is unimodal and not highly skewed. The response plot and

residual plot are plots with Ŷ = xT β̂ on the horizontal axis and Y or r on the vertical axis,

respectively. Then the plotted points in these plots should scatter in roughly even bands

about the identity line (with unit slope and zero intercept) and the r = 0 line, respectively.

If the error distribution is skewed or multimodal, then much larger sample sizes may be

needed.

For the nonparametric bootstrap, cases are sampled with replacement, and the above

conditions hold since each component bootstraps correctly. For the residual bootstrap, we

use the fitted values and residuals from the OLS full model, but fit β̂ for a method such as

forward selection, lasso, et cetera. Consider forward selection where each component uses
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a β̂Ij
. Let Ŷ = Ŷ OLS = Xβ̂OLS = HY be the fitted values from the OLS full model

where H = X(XTX)−1XT . Let rW denote an n × 1 random vector of elements selected

with replacement from the OLS full model residuals. Following Freedman (1981) and Efron

(1982, p. 36), Y ∗ = Xβ̂OLS + rW follows a standard linear model where the elements rW
i

of rW are iid from the empirical distribution of the OLS full model residuals ri. Hence

E(rW
i ) =

1

n

n
∑

i=1

ri = 0, V (rW
i ) = σ2

n =
1

n

n
∑

i=1

r2
i =

n− p

n
MSE,

E(rW ) = 0, and Cov(Y ∗) = Cov(rW) = σ2
nIn.

Then β̂
∗

Ij
= (XT

Ij
XIj

)−1XT
Ij

Y ∗ = DjY
∗ with Cov(β̂

∗

Ij
) = σ2

n(X
T
Ij
X Ij

)−1 and E(β̂
∗

Ij
) =

(XT
Ij

XIj
)−1XT

Ij
E(Y ∗) = (XT

Ij
X Ij

)−1XT
Ij

HY = β̂Ij
since HXIj

= XIj
. The expectations

are with respect to the bootstrap distribution where Ŷ acts as a constant.

For the above residual bootstrap with forward selection and Cp, let Tn = Aβ̂Imin,0 and

Tjn = Aβ̂Ij ,0 = ADj,0Y where Dj,0 adds rows of zeroes to Dj corresponding to the xi not in

Ij. If S ⊆ Ij, then
√
n(β̂Ij

− βIj
)

D→ Naj
(0, σ2V j) and

√
n(β̂Ij ,0 −β)

D→ uj ∼ Np(0, σ
2V j,0)

where V j,0 adds columns and rows of zeroes corresponding to the xi not in Ij. Then under

regularity conditions, (3.14) and (3.15) hold where
√
n(

∑

j ρjnTjn − θ)
D→ w, and the sum

is over j : S ⊆ Ij. Thus E(T ∗) =
∑

j ρjnAβ̂Ij ,0 and S∗

T is a consistent estimator of Cov(T ∗)

=
∑

j

ρjnCov(T
∗

jn) +
∑

j

ρjnAβ̂Ij ,0β̂
T

Ij ,0A
T − E(T ∗)[E(T ∗)]T

where asymptotically the sum is over j : S ⊆ Ij. If θ0 = 0, then nS∗

T = ΣA +OP (1) where

nCov(Tn)
P→ ΣA =

∑

j

σ2πjAV j,0A
T .

Then (nS∗

T )−1 tends to be “well behaved” if ΣA is nonsingular. The prediction region (3.10)

bootstraps Tn, but uses T
∗

to increase the coverage for moderate samples.

Some special cases are also interesting. Suppose πd = 1 so u ∼ ud ∼ Np(0,Σd). This

occurs for Cp if aS = p so S is the full model, and for methods like BIC that choose IS with

probability going to one. Knight and Fu (2000) had similar bootstrap results for this case.

Next, if for each πj > 0, Auj ∼ Ng(0,AΣjA
T ) = Ng(0,AΣAT ), then Au ∼ Ng(0,AΣAT ).
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In the simulations where S is not the full model, inference with forward selection with

Imin using Cp appears to be more precise than inference with the OLS full model if n ≥ 20p

and B ≥ 50p. Higher than nominal coverage can occur because of the zero padding. It is

possible that S∗

T is singular if a column of the bootstrap sample is equal to 0.

Examining β̂S and β̂E is informative for Imin. See Equation (1.3). First assume that

the nontrivial predictors are orthogonal or uncorrelated with zero mean so XTX/n →

diag(d1, ..., dp) as n → ∞ where each di > 0. Then β̂S has the same multivariate normal

limiting distribution for Imin and for the OLS full model. The bootstrap distribution for β̂E

is a mixture of zeros and a distribution that would produce a confidence region for AβE = 0

that has asymptotic coverage of 0 equal to 100(1 − δ)%. Hence the asymptotic coverage is

greater than the nominal coverage provided that S∗

T in nonsingular with probability going

to one (e.g., p − aS is small), where T = Aβ̂E,Imin,0. For uncorrelated predictors with zero

mean, the number of bootstrap samples B ≥ 50p may work well for the shorth confidence

intervals and for testing AβS = 0.

In the simulations for forward selection, coverages did not change much as the ρ was

increased from zero to near one, where ρ was the correlation between any two nontrivial

predictors. Under model (1.3), we still have that β̂Ij ,0 is a
√
n consistent asymptotically

normal estimator of β = (βT
S ,β

T
E)T where βE = 0. Hence the limiting distribution of

√
n(β̂Imin,0 − β) is a mixture of Np(0, σ

2V j,0) distributions, and the limiting distribution of

√
n(β̂i,Imin,0 − βi) is a mixture of N(0, σ2

ij) distributions. For a βi that is a component of

βS, the symmetric mixture distribution has a pdf. Then the simulated shorth confidence

intervals have coverage near the nominal coverage if n and B are large enough.

Note that there are several important variable selection models, including the model

given by Equation (1.3). Another model is xTβ = xT
Si

βSi
for i = 1, ..., J . Then there are

J ≥ 2 competing “true” nonnested submodels where βSi
is aSi

× 1. For example, suppose

the J = 2 models have predictors x1, x2, x3 for S1 and x1, x2, x4 for S2. Then x3 and x4 are

likely to be selected and omitted often by forward selection for the B bootstrap samples.
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Hence omitting all predictors xi that have a β∗

ij = 0 for at least one of the bootstrap samples

j = 1, ..., B could result in underfitting, e.g. using just x1 and x2 in the above J = 2 example.

If n and B are large enough, the singleton set {0} could still be the “100%” confidence region

for a vector βO.

Suppose the predictors xi have been standardized. Then another important regression

model has the βi taper off rapidly, but no coefficients are equal to zero. For example, βi = e−i

for i = 1, ..., p.

Bootstrap Confidence Intervals

For g = 1, the percentile method uses an interval that contains UB ≈ kB = dB(1 − δ)e

of the T ∗

i from a bootstrap sample T ∗

1 , ..., T
∗

B where the statistic Tn is an estimator of θ based

on a sample of size n. Note that the squared Mahalanobis distance D2
θ = (θ − T ∗)2/S2∗

T ≤

D2
(UB) is equivalent to θ ∈ [T ∗ − S∗

TD(UB), T ∗ + S∗

TD(UB)], which is an interval centered

at T ∗ just long enough to cover UB of the T ∗

i . Hence the prediction region method is a

special case of the percentile method if g = 1. Efron (2014) used a similar large sample

100(1−δ)% confidence interval assuming that T
∗

is asymptotically normal. The Frey (2013)

shorth(c) interval (3.1) (with c given by (3.3)) applied to the T ∗

i is recommended since

the shorth confidence interval can be much shorter than the Efron (2014) or prediction

region method confidence intervals if g = 1. The shorth confidence interval is a practical

implementation of the Hall (1988) shortest bootstrap interval based on all possible bootstrap

samples. Note that if
√
n(Tn − θ)

D→ u and
√
n(T ∗

i − θ)
D→ u where u has a symmetric

probability density function, then the shorth confidence interval is asymptotically equivalent

to the usual percentile method confidence interval that uses the central proportion of the

bootstrap sample.

Note that correction factors bn → 1 are used in large sample confidence intervals

and tests if the limiting distribution is N(0,1) or χ2
p, but a tdn or pFp,dn cutoff is used:

tdn,1−δ/z1−δ → 1 and pFp,dn,1−δ/χ
2
p,1−δ → 1 if dn → ∞ as n→ 1. Using correction factors for

prediction intervals and bootstrap confidence regions improves the performance for moderate
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sample size n.



CHAPTER 4

EXAMPLE AND SIMULATIONS

Figure 1 shows 10%, 30%, 50%, 70%, 90% and 98% prediction regions for a future value

of Tf for two multivariate normal distributions. The plotted points are iid T1, ..., TB with

B = 100.

Example. The Hebbler (1847) data was collected from n = 26 districts in Prussia in

1843. We will study the relationship between Y = the number of women married to civilians

in the district with the predictors x1 = constant, x2 = pop = the population of the district

in 1843, x3 = mmen = the number of married civilian men in the district, x4 = mmilmen

= number of married men in the military in the district, and x5 = milwmn = the number of

women married to husbands in the military in the district. Sometimes the person conducting

the survey would not count a spouse if the spouse was not at home. Hence Y and X3 are

highly correlated but not equal. Similarly, x4 and x5 are highly correlated but not equal.

We expect that Y = x3 + e is a good model. Forward selection with Cp selected the model

a constant and mmen.

Let x = (1 uT )T where u is the (p − 1) × 1 vector of nontrivial predictors. In the

simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the m = p− 1 elements of

the vector wi are iid N(0,1). Let the m×m matrix A = (aij) with aii = 1 and aij = ψ where

0 ≤ ψ < 1 for i 6= j. Then the vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where

the diagonal entries σii = [1+(m−1)ψ2] and the off diagonal entries σij = [2ψ+(m−2)ψ2].

Hence the correlations are cor(xi, xj) = ρ = (2ψ + (m − 2)ψ2)/(1 + (m − 1)ψ2) for i 6= j

where xi and xj are nontrivial predictors. If ψ = 1/
√
cp, then ρ→ 1/(c+1) as p→ ∞ where

c > 0. As ψ gets close to 1, the predictor vectors cluster about the line in the direction of

(1, ..., 1)T . Let Yi = 1 + 1xi,2 + · · · + 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T

with k+1 ones and p− k− 1 zeros. The zero mean errors ei were iid from five distributions:

i) N(0,1), ii) t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100). Only

20
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Figure 4.1. Prediction Regions
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distribution iii) is not symmetric.

A small simulation was done using B = max(1000, n, 20p) and 5000 runs. So an observed

coverage in [0.94, 0.96] gives no reason to doubt that the CI or confidence region has the

nominal coverage of 0.95. The simulation used p = 4, 6, 7, 8, and 10; n = 25p, n=50p, ψ =

0, 1/
√
p, and 0.9; and k = 1 and p− 2.

When ψ = 0, the full model least squares confidence intervals for βi should have length

near 2t96,0.975σ/
√
n ≈ 2(1.96)σ/10 = 0.392σ when the iid zero mean errors have variance

σ2. The simulation computed the Frey shorth(c) interval for each βi and used bootstrap

confidence regions to test whether first k + 1 βi = 1 and the last p − k − 1 βi = 0. The

nominal coverage was 0.95 with δ = 0.05. Observed coverage between 0.94 and 0.96 would

suggest coverage is close to the nominal value.

The regression models used the residual bootstrap on the forward selection estimator

β̂Imin,0. Table 1 gives results for when the iid errors ei ∼ N(0, 1). Two rows for each

model giving the observed confidence interval coverages and average lengths of the confidence

intervals. The last six columns give results for the tests. The length and coverage = P(fail

to reject H0) for the interval [0, D(UB)] or [0, D(UB),T ] where D(UB) or D(UB),T is the cutoff for

the confidence region. Volumes of the confidence regions can be compared using (3.13). The

first two lines of the table correspond to the R output shown below, with g = 2.

library(leaps);Y <- marry[,3]; X <- marry[,-3]

temp<-regsubsets(X,Y,method="forward")

out<-summary(temp)

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000

Selection Algorithm: forward

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "

2 ( 1 ) " " "*" "*" " "
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3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

record coverages and ‘‘lengths" for

b1, b2, bp-1, bp, pm0, hyb0, BR0, pm1, hyb1, BR1,

library(leaps)

vsbootsim4(n=100,p=4,k=1,nruns=5000,type=1,psi=0)

$cicov

[1] 0.9480 0.9496 0.9972 0.9958 0.9910 0.9786 0.9914 0.9384 0.9394 1.0000

$avelen

[1] 0.3954381 0.3987018 0.3232973 0.3231127 2.6987198 2.6987198 3.0020469

[8] 2.6987198 2.6987198 3.0020469

$beta

[1] 1 1 0 0

$k

[1] 1
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Table 4.1. Bootstrapping OLS Forward Selection with Cp, ei ∼ N(0, 1)

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

100,4,1,0 0.9440 0.9410 0.9978 0.9978 0.9936 0.9808 0.9944 0.9326 0.9342 0.9344

len 0.3960 0.3990 0.3245 0.3239 2.6898 2.6898 2.9960 2.4499 2.4499 2.4568

100,4,1,0.5 0.9456 0.9696 0.9982 0.9974 0.9924 0.9842 0.9936 0.9532 0.9548 0.9602

len 0.3958 0.65801 0.5359 0.5390 2.6968 2.6968 2.9878 2.4584 2.4584 2.5763

100,4,1,0.9 0.9436 0.9674 0.9962 0.9976 0.9926 0.9836 0.9950 0.9608 0.9570 0.9656

len 0.3966 2.7667 2.7378 2.7336 2.7175 2.7175 2.9711 2.4990 2.4990 2.6012

100,4,2,0 0.9492 0.9430 0.9410 0.9982 0.9976 0.9342 0.9970 0.9364 0.9366 0.9364

len 0.3958 0.3989 0.3986 0.3240 2.1371 2.1371 2.3933 2.7999 2.7999 2.8044

100,4,2,0.5 0.9424 0.9542 0.9510 0.9974 0.9962 0.9326 0.9958 0.9570 0.9572 0.9640

len 0.3963 0.6595 0.6591 0.5366 2.1393 2.1393 2.3990 2.8477 2.8477 2.9635

100,4,2,0.9 0.9454 0.9224 0.9262 0.9978 0.9970 0.8770 0.9980 0.9800 0.9704 0.9836

len 0.3965 2.70245 2.7045 2.6508 2.0815 2.0815 2.4272 2.9110 2.9110 3.1614

300,6,1,0 0.9496 0.9460 0.9972 0.9974 0.9938 0.9938 0.9966 0.9428 0.9424 0.9428

len 0.2230 0.23055 0.1864 0.1873 3.3731 3.3731 3.7299 2.4503 2.4503 2.4550

300,6,1,0.4082 0.9486 0.9634 0.9990 0.9992 0.9946 0.9916 0.9960 0.9540 0.9560 0.9608

len 0.2301 0.3524 0.2848 0.2856 3.3786 3.3786 3.7162 2.4481 2.4481 2.5314

300,6,1,0.9 0.9470 0.9796 0.9992 0.9980 0.9934 0.9902 0.9962 0.9464 0.9320 0.9558

len 0.2299 1.8921 1.6855 1.6924 3.3400 3.3400 3.7184 2.4309 2.4309 2.5538

300,6,4,0 0.9466 0.9534 0.9480 0.9978 0.9970 0.9386 0.9962 0.9440 0.9430 0.9436

len 0.2298 0.2305 0.2305 0.1856 2.1381 2.1381 2.3944 3.3383 3.3383 3.3412

300,6,4,0.4082 0.9506 0.9516 0.9480 0.9982 0.9974 0.9398 0.9970 0.9564 0.9568 0.9630

len 0.2302 0.3502 0.3502 0.2841 2.1473 2.1473 2.3981 3.3687 3.3687 3.4470

300,6,4,0.9 0.9504 0.9488 0.9538 0.9980 0.9966 0.9336 0.9972 0.9548 0.9038 0.9546

len 0.2304 1.9736 1.9746 1.7547 2.1201 2.1201 2.3596 3.4077 3.4077 3.6859
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Table 4.2. Bootstrapping OLS Forward Selection with Cp, ei ∼ N(0, 1)

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

175,7,1,0 0.9464 0.9518 0.9978 0.9970 0.9926 0.9916 0.9956 0.9412 0.9420 0.9444

len 0.3005 0.3018 0.2447 0.2450 3.6259 3.6259 4.0158 2.4503 2.4503 2.4599

175,7,1,0.3780 0.9424 0.9584 0.9966 0.9984 0.9916 0.9904 0.9950 0.9462 0.9438 0.9500

len 0.3007 0.4475 0.3638 0.3645 3.6256 3.6256 3.9925 2.4486 2.4486 2.5243

175,7,1,0.9 0.9480 0.9608 0.9982 0.9966 0.9940 0.9932 0.9974 0.9602 0.9558 0.9670

len 0.3003 2.4054 2.2929 2.2798 3.6600 3.6600 4.0338 2.4661 2.4661 2.6104

175,7,5,0 0.9428 0.9510 0.9448 0.9962 0.9950 0.9334 0.9946 0.9322 0.9322 0.9332

len 0.3004 0.3014 0.3018 0.2441 2.1347 2.1347 2.3930 3.5631 3.5631 3.5675

175,7,5,0.3780 0.9478 0.9440 0.9462 0.9980 0.9972 0.9344 0.9972 0.9466 0.9478 0.9536

len 0.3010 0.4453 0.4453 0.3595 2.1313 2.1313 2.3917 3.5851 3.5851 3.6558

175,7,5,0.9 0.9448 0.9374 0.9334 0.9964 0.9942 0.9170 0.9940 0.9634 0.9176 0.9686

len 0.3017 2.4924 2.4812 2.3226 2.1185 2.1185 2.3659 3.6605 3.6605 4.0084

400,8,1,0 0.9538 0.9480 0.9988 0.9982 0.9974 0.9976 0.9984 0.9464 0.9478 0.9496

len 0.1992 0.1998 0.1604 0.1614 3.8692 3.8692 4.2738 2.4494 2.4494 2.4552

400,8,1,0.3536 0.9500 0.9598 0.9990 0.9986 0.9958 0.9950 0.9982 0.9544 0.9550 0.9616

len 0.1992 0.2887 0.2337 0.2342 3.8698 3.8698 4.2517 2.4484 2.4484 2.5167

400,8,1,0.9 0.9562 0.9796 0.9990 0.9986 0.9966 0.9946 0.9986 0.9474 0.9214 0.9582

len 0.1993 1.7524 1.5142 1.5175 3.8375 3.8375 4.2488 2.4350 2.4350 2.5507

400,8,6,0 0.9442 0.9486 0.9494 0.9978 0.9974 0.9392 0.9970 0.9364 0.9362 0.9366

len 0.1994 0.1999 0.1996 0.1613 2.1324 2.1324 2.3891 3.7691 3.7691 3.7717

400,8,6,0.3536 0.9422 0.9500 0.9546 0.9976 0.9972 0.9356 0.9968 0.9508 0.9524 0.9568

len 0.1991 0.2864 0.2869 0.2319 2.1475 2.1475 2.3978 3.7904 3.7904 3.8504

400,8,6,0.9 0.9492 0.9504 0.9484 0.9966 0.9952 0.9282 0.9950 0.9312 0.8432 0.9180

len 0.1999 1.7977 1.8116 1.5520 2.1298 2.1298 2.3708 3.8348 3.8348 4.1058
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Table 4.3. Bootstrapping OLS Forward Selection with Cp, ei ∼ N(0, 1)

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

250,10,1,0 0.9500 0.9456 0.9976 0.9980 0.9968 0.9974 0.9988 0.9430 0.9428 0.9450

len 0.2521 0.2527 0.2048 0.2049 4.2704 4.2704 4.7180 2.4502 2.4502 2.4606

250,10,1,0.3162 0.9416 0.9550 0.9986 0.9980 0.9966 0.9968 0.9988 0.9460 0.9482 0.9530

len 0.2517 0.3504 0.2843 0.2848 4.2645 4.2645 4.6965 2.4492 2.4492 2.5113

250,10,1,0.9 0.9476 0.9582 0.9982 0.9976 0.9960 0.9962 0.9990 0.9506 0.9440 0.9622

len 0.2514 2.1333 1.9590 1.9532 4.2714 4.2714 4.7180 2.4516 2.4516 2.5983

250,10,8,0.9 0.9478 0.9462 0.9426 0.9978 0.9970 0.9304 0.9958 0.9486 0.8430 0.9354

len 0.2529 2.1942 2.1965 1.9906 2.1259 2.1259 2.3694 4.2105 4.2105 4.5796
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Table 4.4. Bootstrapping OLS Forward Selection with Cp, ei ∼ t3

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

100,4,1,0 0.9436 0.9510 0.9966 0.9978 0.9932 0.9804 0.9924 0.9470 0.9506 0.9516

len 0.6558 0.6706 0.5388 0.5415 2.7146 2.7146 3.0198 2.4747 2.4747 2.4821

100,4,1,0.5 0.9510 0.9542 0.9978 0.9974 0.9916 0.9736 0.9932 0.9612 0.9538 0.9648

len 0.6591 1.1189 0.9315 0.9336 2.7331 2.7331 3.0244 2.4953 2.4953 2.6200

100,4,1,0.9 0.9392 0.9468 0.9952 0.9950 0.9892 0.9796 0.9938 0.9660 0.9646 0.9712

len 0.6579 4.6420 4.6574 4.6365 2.7875 2.7875 3.0313 2.5666 2.5666 2.6915

100,4,2,0 0.9426 0.9450 0.9434 0.9970 0.9950 0.9304 0.9952 0.9450 0.9446 0.9460

len 0.6561 0.6739 0.6730 0.5419 2.1364 2.1364 2.3967 2.8554 2.8554 2.8624

100,4,2,0.5 0.9442 0.9428 0.9422 0.9984 0.9966 0.9314 0.9960 0.9638 0.9502 0.9628

len 0.6611 1.1456 1.1469 0.9434 2.1269 2.1269 2.3821 2.9254 2.9254 3.0497

100,4,2,0.9 0.9432 0.9024 0.9066 0.9976 0.9972 0.9328 0.9966 0.9836 0.9776 0.9870

len 0.6576 4.4685 4.4695 4.4649 1.9951 1.9951 2.1941 2.9722 2.9722 3.1843

300,6,1,0 0.9520 0.9510 0.9982 0.9984 0.9962 0.9944 0.9974 0.9488 0.9476 0.9474

len 0.3867 0.3904 0.3156 0.3143 3.4111 3.4111 3.7595 2.4657 2.4657 2.4703

300,6,1,0.4082 0.9484 0.9612 0.9986 0.9984 0.9954 0.9930 0.9972 0.9536 0.9558 0.9608

len 0.3878 0.5998 0.4836 0.4837 3.4170 3.4170 3.7510 2.4639 2.4639 2.5441

300,6,1,0.9 0.9456 0.9496 0.9984 0.9988 0.9970 0.9958 0.9982 0.9684 0.9668 0.9738

len 0.3885 3.0089 2.9342 2.9292 3.4516 3.4516 3.7801 2.5109 2.51092 2.6502

300,6,4,0 0.9424 0.9540 0.9496 0.9984 0.9980 0.9390 0.9978 0.9450 0.9446 0.9450

len 0.3884 0.3926 0.3929 0.3148 2.1431 2.1431 2.3983 3.4017 3.4017 3.4053

300,6,4,0.4082 0.9454 0.9508 0.9496 0.9984 0.9972 0.9304 0.9964 0.9638 0.9632 0.9694

len 0.3901 0.6014 0.6010 0.4847 2.1429 2.1429 2.4019 3.4343 3.4343 3.5109

300,6,4,0.9 0.9550 0.9248 0.9246 0.9978 0.9962 0.9230 0.9962 0.9836 0.9722 0.9888

len 0.3876 3.0558 3.0582 2.9237 2.1195 2.1195 2.3626 3.5045 3.5045 3.8389
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Table 4.5. Bootstrapping OLS Forward Selection with Cp, ei ∼ t3

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

175,7,1,0 0.9510 0.9494 0.9974 0.9974 0.9966 0.9946 0.9974 0.9452 0.9478 0.9486

len 0.5039 0.5116 0.4114 0.4140 3.6891 3.6891 4.0617 2.4698 2.4698 2.4787

175,7,1,0.3780 0.9486 0.9582 0.9982 0.9992 0.9962 0.9946 0.9974 0.9586 0.9566 0.9614

len 0.5057 0.7627 0.6149 0.6109 3.6875 3.6875 4.0464 2.4704 2.470 2.5471

175,7,1,0.9 0.9454 0.9018 0.9980 0.9982 0.9946 0.9942 0.9976 0.9700 0.9656 0.9756

len 0.5027 3.9474 3.9135 3.9183 3.6972 3.6972 4.0379 2.5339 2.5339 2.6911

175,7,5,0 0.9452 0.9492 0.9464 0.9984 0.9972 0.9350 0.9968 0.9442 0.9446 0.9450

len 0.5043 0.5130 0.5116 0.4112 2.1404 2.1404 2.4023 3.6584 3.6584 3.6634

175,7,5,0.3780 0.9506 0.9470 0.9470 0.9986 0.9976 0.9338 0.9974 0.9646 0.9652 0.9708

len 0.5051 0.7612 0.7618 0.6125 2.1466 2.1466 2.4086 3.7057 3.7057 3.7750

175,7,5,0.9 0.9464 0.8958 0.8904 0.9984 0.9978 0.9250 0.9956 0.9900 0.9816 0.9930

len 0.5067 3.9892 3.9786 3.8957 2.1262 2.1262 2.3700 3.8004 3.8004 4.158

400,8,1,0 0.9494 0.9538 0.9976 0.9988 0.9956 0.9954 0.9974 0.9482 0.9484 0.9482

len 0.3359 0.3393 0.2725 0.2742 3.9153 3.9153 4.3088 2.4649 2.4649 2.4703

400,8,1,0.3536 0.9540 0.9598 0.9986 0.9978 0.9964 0.9958 0.9982 0.9542 0.9552 0.9590

len 0.3384 0.4938 0.3971 0.4006 3.9177 3.9177 4.2890 2.4638 2.4638 2.5276

400,8,1,0.9 0.9516 0.9440 0.9984 0.9986 0.9966 0.9954 0.9988 0.9682 0.9632 0.9750

len 0.3383 2.7223 2.6108 2.6050 3.9369 3.9369 4.3109 2.4971 2.4971 2.6486

400,8,6,0 0.9494 0.9488 0.9546 0.9976 0.9972 0.9332 0.9974 0.9454 0.9466 0.9468

len 0.3384 0.3417 0.3421 0.2738 2.1403 2.1403 2.3931 3.8510 3.8510 3.8544

400,8,6,0.3536 0.9494 0.9512 0.9500 0.9980 0.9970 0.9342 0.9972 0.9588 0.9590 0.9636

len 0.3382 0.4906 0.4902 0.3947 2.1440 2.1440 2.3963 3.8711 3.8711 3.9292

400,8,6,0.9 0.9482 0.9256 0.9254 0.9982 0.9968 0.9258 0.9970 0.9796 0.9484 0.9826

len 0.3388 2.7974 2.7759 2.6302 2.1323 2.1323 2.3705 3.9454 3.9454 4.3042
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Table 4.6. Bootstrapping OLS Forward Selection with Cp, ei ∼ t3

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

250,10,1,0 0.9426 0.9444 0.9984 0.9988 0.9980 0.9976 0.9994 0.9406 0.9376 0.9396

len 0.4211 0.4260 0.3455 0.3409 4.3450 4.3450 4.7780 2.4676 2.4676 2.4778

250,10,1,0.3162 0.9456 0.9574 0.9986 0.9982 0.9972 0.9976 0.9988 0.9512 0.9542 0.9598

len 0.4230 0.5950 0.4779 0.4784 4.3421 4.3421 4.7582 2.4664 2.4664 2.5242

250,10,1,0.9 0.9484 0.8972 0.9990 0.9974 0.9970 0.9974 0.9992 0.9660 0.9650 0.9718

len 0.4265 3.4347 3.3476 3.3511 4.3515 4.3515 4.7672 2.5210 2.5210 2.6866

250,10,8,0.9 0.9416 0.9042 0.9062 0.9982 0.9962 0.9220 0.9964 0.9836 0.9614 0.9874

len 0.4243 3.4498 3.4512 3.3359 2.1203 2.1203 2.3622 4.3710 4.3710 4.7840
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Table 4.7. Bootstrapping OLS Forward Selection with Cp, ei ∼ EXP (1) − 1

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

100,4,1,0 0.9370 0.9454 0.9984 0.9982 0.9956 0.9820 0.9950 0.9294 0.9278 0.9284

len 0.3915 0.3971 0.3234 0.3217 2.7116 2.7116 3.0153 2.4542 2.4542 2.4618

100,4,1,0.5 0.9450 0.9712 0.9978 0.9976 0.9920 0.9852 0.9948 0.9532 0.9542 0.9634

len 0.3917 0.6584 0.5340 0.5331 2.7141 2.7141 3.0081 2.4616 2.4616 2.5801

100,4,1,0.9 0.9400 0.9668 0.9960 0.9962 0.9922 0.9830 0.9940 0.9530 0.9486 0.9592

len 0.3917 2.7537 2.7166 2.7131 2.7099 2.7099 2.9546 2.4934 2.4934 2.6020

100,4,2,0 0.9376 0.9464 0.9506 0.9978 0.9974 0.9346 0.9966 0.9290 0.9286 0.9298

len 0.3941 0.4004 0.4002 0.3243 2.1434 2.1434 2.4011 2.8194 2.8194 2.8241

100,4,2,0.5 0.9386 0.9530 0.9580 0.9984 0.9976 0.9326 0.9976 0.9570 0.9572 0.9634

len 0.3923 0.6608 0.6596 0.5368 2.1325 2.1325 2.3941 2.8622 2.8622 2.9767

100,4,2,0.9 0.9318 0.9318 0.9252 0.9984 0.9978 0.8894 0.9982 0.9698 0.9600 0.9760

len 0.3930 2.7059 2.7001 2.6587 2.0913 2.0913 2.4156 2.9165 2.9165 3.1686

300,6,1,0 0.9484 0.9456 0.9978 0.9984 0.9958 0.9956 0.9978 0.9416 0.9440 0.9442

len 0.2290 0.2301 0.1863 0.1856 3.3927 3.3927 3.7456 2.4521 2.4521 2.4568

300,6,1,0.4082 0.9428 0.9642 0.9996 0.9984 0.9950 0.9940 0.9974 0.9512 0.9504 0.9606

len 0.2289 0.3518 0.2849 0.2841 3.3915 3.3915 3.7303 2.4496 2.4496 2.5330

300,6,1,0.9 0.9488 0.9820 0.9986 0.9990 0.9962 0.9922 0.9974 0.9556 0.9416 0.9588

len 0.2294 1.8832 1.6949 1.6951 3.3534 3.3534 3.7269 2.4318 2.4318 2.5545

300,6,4,0 0.9468 0.9500 0.9494 0.9974 0.9970 0.9350 0.9958 0.9426 0.9444 0.9444

len 0.2292 0.2306 0.2308 0.1865 2.1448 2.1448 2.3964 3.3597 3.3597 3.3631

300,6,4,0.4082 0.9460 0.9492 0.9498 0.9974 0.9962 0.9366 0.9954 0.9550 0.9540 0.9620

len 0.2293 0.3502 0.3500 0.2837 2.1425 2.1425 2.3992 3.3865 3.3865 3.4647

300,6,4,0.9 0.9536 0.9466 0.9508 0.9974 0.9962 0.9280 0.9956 0.9550 0.8984 0.9488

len 0.2298 1.9734 1.9803 1.7535 2.1208 2.1208 2.3638 3.4309 3.4309 3.7048
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Table 4.8. Bootstrapping OLS Forward Selection with Cp, ei ∼ EXP (1) − 1

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

175,7,1,0 0.9426 0.9528 0.9972 0.9980 0.9956 0.9948 0.9970 0.9376 0.9354 0.9374

len 0.2988 0.3017 0.2445 0.2449 3.6585 3.6585 4.0358 2.4531 2.4531 2.4628

175,7,1,0.3780 0.9492 0.9614 0.9970 0.9980 0.9942 0.9920 0.9978 0.9468 0.9474 0.9546

len 0.2989 0.4465 0.3646 0.3628 3.6610 3.6610 4.0213 2.4513 2.4513 2.5268

175,7,1,0.9 0.9498 0.9588 0.9978 0.9980 0.9952 0.9948 0.9974 0.9552 0.9506 0.9616

len 0.2989 2.4006 2.2848 2.2729 3.6830 3.6830 4.0532 2.4683 2.4683 2.6119

175,7,5,0 0.9432 0.9444 0.9432 0.9988 0.9974 0.9334 0.9970 0.9328 0.9324 0.9328

len 0.2987 0.3011 0.3008 0.2426 2.1328 2.1328 2.3991 3.6039 3.6039 3.6080

175,7,5,0.3780 0.9464 0.9562 0.9536 0.9980 0.9972 0.9388 0.9968 0.9490 0.9488 0.9554

len 0.2997 0.4454 0.4445 0.3599 2.1422 2.1422 2.4011 3.6274 3.6274 3.6960

175,7,5,0.9 0.9480 0.9372 0.9414 0.9972 0.9964 0.9188 0.9956 0.9674 0.9306 0.9712

len 0.2999 2.5035 2.4907 2.3207 2.1209 2.1209 2.3672 3.6911 3.6911 4.0296

400,8,1,0 0.9470 0.9466 0.9982 0.9986 0.9960 0.9954 0.9980 0.9420 0.9408 0.9414

len 0.1988 0.1997 0.1601 0.1616 3.8815 3.8815 4.2847 2.4518 2.4518 2.4575

400,8,1,0.3536 0.9500 0.9558 0.9988 0.9990 0.9982 0.9972 0.9990 0.9510 0.9530 0.9576

len 0.1987 0.2886 0.2325 0.2337 3.8767 3.8767 4.2648 2.4500 2.4500 2.5145

400,8,1,0.9 0.9486 0.9786 0.9980 0.9988 0.9962 0.9938 0.9984 0.9396 0.9136 0.9480

len 0.1992 1.7559 1.5115 1.5105 3.8606 3.8606 4.2689 2.4416 2.4416 2.5540

400,8,6,0 0.9462 0.9554 0.9470 0.9972 0.9964 0.9414 0.9962 0.9454 0.9470 0.9472

len 0.1987 0.1996 0.1997 0.1608 2.1416 2.1416 2.3904 3.7942 3.7942 3.7969

400,8,6,0.3536 0.9506 0.9496 0.9494 0.9978 0.9974 0.9378 0.9976 0.9544 0.9572 0.9626

len 0.1987 0.2868 0.2866 0.2315 2.1460 2.1460 2.4041 3.8150 3.8150 3.8757

400,8,6,0.9 0.9504 0.9516 0.9534 0.9980 0.9970 0.9398 0.9964 0.9392 0.8652 0.9326

len 0.1994 1.8010 1.7988 1.5368 2.1182 2.1182 2.3653 3.8600 3.8600 4.1234
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Table 4.9. Bootstrapping OLS Forward Selection with Cp, ei ∼ EXP (1) − 1

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

250,10,1,0 0.9440 0.9480 0.9992 0.9974 0.9970 0.9970 0.9992 0.9434 0.9438 0.9452

len 0.2511 0.2531 0.2045 0.2047 4.3012 4.3012 4.7407 2.4539 2.4539 2.4646

250,10,1,0.3162 0.9486 0.9550 0.9980 0.9968 0.9960 0.9960 0.9988 0.9456 0.9466 0.9524

len 0.2510 0.3508 0.2837 0.2850 4.2982 4.2982 4.7229 2.4520 2.4520 2.5130

250,10,1,0.9 0.9510 0.9662 0.9980 0.9980 0.9980 0.9952 0.9986 0.9548 0.9478 0.9646

len 0.2511 2.1312 1.9553 1.9525 4.3034 4.3034 4.7428 2.4514 2.4514 2.5978

250,10,8,0.9 0.9420 0.9454 0.9426 0.9978 0.9972 0.9312 0.9968 0.9466 0.8528 0.9374

len 0.2519 2.2039 2.2068 1.9800 2.1253 2.1253 2.3707 4.2581 4.2581 4.6138
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Table 4.10. Bootstrapping OLS Forward Selection with Cp, ei ∼ uniform(-1,1)

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

100,4,1,0 0.9434 0.9422 0.9970 0.9976 0.9926 0.9794 0.9932 0.9350 0.9366 0.9378

len 0.2287 0.2305 0.1881 0.1869 2.6915 2.6915 2.9950 2.4451 2.4451 2.4521

100,4,1,0.5 0.9476 0.9716 0.9972 0.9982 0.9920 0.9828 0.9954 0.9564 0.9542 0.9608

len 0.2287 0.3806 0.3108 0.3103 2.6869 2.6869 2.9817 2.4530 2.4530 2.5700

100,4,1,0.9 0.9386 0.9836 0.9980 0.9978 0.9924 0.9430 0.9954 0.9466 0.9272 0.9546

len 0.2287 1.6899 1.5346 1.5403 2.5654 2.5654 2.8198 2.4204 2.4204 2.5411

100,4,2,0 0.9446 0.9490 0.9402 0.9976 0.9966 0.9322 0.9962 0.9344 0.9346 0.9348

len 0.2291 0.2306 0.2308 0.1864 2.1338 2.1338 2.3996 2.7908 2.7908 2.7957

100,4,2,0.5 0.9484 0.9552 0.9500 0.9964 0.9952 0.9298 0.9948 0.9562 0.9560 0.9652

len 0.2293 0.3803 0.3801 0.3108 2.1394 2.1394 2.3961 2.8385 2.8385 2.9541

100,4,2,0.9 0.9462 0.9574 0.9612 0.9974 0.9962 0.9340 0.9960 0.9506 0.9288 0.9600

len 0.2298 1.8403 1.8426 1.6604 2.0891 2.0891 2.2997 2.8623 2.8623 3.0610

300,6,1,0 0.9524 0.9520 0.9980 0.9978 0.9938 0.9912 0.9956 0.9458 0.9460 0.9466

len 0.1328 0.1332 0.1073 0.1076 3.3713 3.3713 3.7321 2.4486 2.4486 2.4538

300,6,1,0.4082 0.9474 0.9634 0.9978 0.9978 0.9954 0.9928 0.9976 0.9530 0.9528 0.9606

len 0.1328 0.2034 0.1651 0.1644 3.3757 3.3757 3.7156 2.4459 2.4459 2.5311

300,6,1,0.9 0.9518 0.9668 0.9992 0.9986 0.9932 0.9854 0.9962 0.9470 0.9516 0.9562

len 0.1328 1.2101 0.9844 0.9873 3.3965 3.3965 3.7372 2.4642 2.4642 2.5940

300,6,4,0 0.9484 0.9482 0.9504 0.9988 0.9972 0.9370 0.9980 0.9456 0.9470 0.9468

len 0.1330 0.1331 0.1332 0.1074 2.1397 2.1397 2.3944 3.3324 3.3324 3.3348

300,6,4,0.4082 0.9512 0.9520 0.9478 0.9984 0.9976 0.9378 0.9976 0.9590 0.9600 0.9670

len 0.1330 0.2023 0.2024 0.1641 2.1351 2.1351 2.3891 3.3628 3.3628 3.4424

300,6,4,0.9 0.9492 0.9348 0.9316 0.9962 0.9958 0.9382 0.9952 0.9580 0.9214 0.9476

len 0.1330 1.2383 1.2381 0.9968 2.1263 2.1263 2.3744 3.4591 3.4591 3.5872
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Table 4.11. Bootstrapping OLS Forward Selection with Cp, ei ∼ uniform(-1,1)

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

175,7,1,0 0.9510 0.9458 0.9976 0.9978 0.9942 0.9936 0.9970 0.9404 0.9410 0.9422

len 0.1737 0.1742 0.1410 0.1410 3.6229 3.6229 4.0099 2.4465 2.4465 2.4560

175,7,1,0.3780 0.9466 0.9594 0.9982 0.9974 0.9922 0.9908 0.9960 0.9496 0.9478 0.9540

len 0.1735 0.2581 0.2101 0.2104 3.6232 3.6232 3.9908 2.4456 2.4456 2.5217

175,7,1,0.9 0.9462 0.9790 0.9984 0.9982 0.9908 0.9852 0.996 0.9372 0.8882 0.9364

len 0.1737 1.5558 1.3132 1.3099 3.6126 3.6126 3.9794 2.4412 2.4412 2.5470

175,7,5,0 0.9468 0.9448 0.9462 0.9984 0.9974 0.9400 0.9974 0.9368 0.9388 0.9388

len 0.1738 0.1746 0.1745 0.1409 2.1341 2.1341 2.3927 3.5503 3.5503 3.5543

175,7,5,0.3780 0.9518 0.9446 0.9410 0.9974 0.9960 0.9282 0.9956 0.9446 0.9452 0.9516

len 0.1736 0.2569 0.2567 0.2079 2.1299 2.1299 2.3853 3.5746 3.5746 3.6444

175,7,5,0.9 0.9510 0.9514 0.9464 0.9972 0.9962 0.9350 0.9956 0.9210 0.8716 0.9186

len 0.1745 1.6019 1.6030 1.3428 2.1150 2.1150 2.3705 3.6267 3.6267 3.8422

400,8,1,0 0.9468 0.9474 0.9982 0.9980 0.9976 0.9980 0.9992 0.9398 0.9396 0.9418

len 0.1151 0.1153 0.0932 0.0931 3.8667 3.8667 4.2677 2.4481 2.4481 2.4538

400,8,1,0.3536 0.9504 0.9624 0.9982 0.9988 0.9962 0.9954 0.9976 0.9508 0.9514 0.9560

len 0.1151 0.1665 0.1347 0.1346 3.8608 3.8608 4.2459 2.4467 2.4467 2.5105

400,8,1,0.9 0.9554 0.9566 0.9988 0.9986 0.9974 0.9950 0.9978 0.9586 0.9654 0.9682

len 0.1151 1.0934 0.8772 0.8733 3.8731 3.8731 4.2550 2.4653 2.4653 2.5422

400,8,6,0 0.9566 0.9486 0.9532 0.9978 0.9976 0.9394 0.9968 0.9442 0.9442 0.9440

len 0.1151 0.1152 0.1153 0.0932 2.1303 2.1303 2.3849 3.7618 3.7618 3.7646

400,8,6,0.3536 0.9434 0.9500 0.9512 0.9988 0.9982 0.9332 0.9980 0.9550 0.9544 0.9614

len 0.1151 0.1654 0.1657 0.1338 2.1423 2.1423 2.3935 3.7822 3.7822 3.8434

400,8,6,0.9 0.9510 0.9334 0.9250 0.9990 0.9976 0.9390 0.9972 0.9646 0.9424 0.9614

len 0.1152 1.1023 1.0997 0.8773 2.1285 2.1285 2.3764 3.8963 3.8963 3.9966
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Table 4.12. Bootstrapping OLS Forward Selection with Cp, ei ∼ uniform(-1,1)

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

250,10,1,0 0.9498 0.9544 0.9976 0.9982 0.9958 0.9964 0.9996 0.9472 0.9480 0.9498

len 0.1455 0.1459 0.1190 0.1171 4.2680 4.2680 4.7117 2.4484 2.4484 2.4586

250,10,1,0.3162 0.9468 0.9556 0.9974 0.9974 0.9950 0.9952 0.9980 0.9490 0.9472 0.9522

len 0.1452 0.2020 0.1637 0.1647 4.2553 4.2553 4.6901 2.4474 2.4474 2.5071

250,10,1,0.9 0.9520 0.9598 0.9988 0.9986 0.9964 0.9924 0.9980 0.9390 0.9156 0.9384

len 0.1455 1.3920 1.1266 1.1317 4.2650 4.2650 4.6935 2.4598 2.4598 2.5564

250,10,8,0.9 0.9480 0.9344 0.9366 0.9988 0.9970 0.9376 0.9968 0.9170 0.8658 0.9076

len 0.1462 1.4146 1.4169 1.1037 2.1692 2.1692 2.4177 4.2472 4.2472 4.4169
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Table 4.13. Bootstrapping OLS Forward Selection with Cp, ei ∼ 0.9N(0, 1) + 0.1N(0, 100)

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

100,4,1,0 0.9430 0.9426 0.9988 0.9984 0.9950 0.9816 0.9954 0.9488 0.9354 0.9486

len 1.2753 1.3079 1.0849 1.0807 2.7354 2.7354 3.0313 2.5185 2.5185 2.5453

100,4,1,0.5 0.9372 0.9626 0.9976 0.9978 0.9906 0.9706 0.9930 0.9590 0.9452 0.9632

len 1.2795 1.9701 1.8551 1.8475 2.7040 2.7040 2.9829 2.4952 2.4952 2.6173

100,4,1,0.9 0.9430 0.9258 0.9966 0.9966 0.9870 0.9842 0.9938 0.9698 0.9690 0.9738

len 1.2615 9.0221 9.0443 8.9747 2.7744 2.7744 3.0145 2.5924 2.5924 2.7313

100,4,2,0 0.9358 0.9380 0.9396 0.9974 0.9964 0.9278 0.9960 0.9412 0.9128 0.9362

len 1.2762 1.3133 1.3141 1.0669 2.1429 2.1429 2.4031 2.9546 2.9546 3.0108

100,4,2,0.5 0.9376 0.9518 0.9526 0.9980 0.9972 0.9244 0.9962 0.9636 0.9456 0.9692

len 1.2772 2.0428 2.0525 1.8828 2.1431 2.1431 2.3914 2.9581 2.9581 3.1646

100,4,2,0.9 0.9418 0.9036 0.9030 0.9960 0.9942 0.9556 0.9942 0.9860 0.9850 0.9904

len 1.2705 8.8549 8.8536 8.8718 2.1365 2.1365 2.3406 3.1181 3.1181 3.3162

300,6,1,0 0.9502 0.9502 0.9988 0.9988 0.9956 0.9942 0.9972 0.9538 0.9562 0.9562

len 0.7541 0.7676 0.6125 0.6163 3.4313 3.4313 3.7789 2.4803 2.4803 2.4857

300,6,1,0.4082 0.9536 0.9528 0.9994 0.9990 0.9954 0.9918 0.9978 0.9590 0.9516 0.9610

len 0.7518 1.1835 0.9440 0.9431 3.4470 3.4470 3.7793 2.4964 2.4964 2.5875

300,6,1,0.9 0.9408 0.8938 0.9994 0.9988 0.9968 0.9964 0.9992 0.9734 0.9724 0.9772

len 0.7572 5.7952 5.8075 5.8075 3.4117 3.4117 3.7150 2.5554 2.5554 2.7015

300,6,4,0 0.9426 0.9438 0.9440 0.9986 0.9976 0.9340 0.9972 0.9694 0.9708 0.9714

len 0.7535 0.7655 0.7662 0.6117 2.1399 2.1399 2.3965 3.4677 3.4677 3.4741

300,6,4,0.4082 0.9474 0.9416 0.9408 0.9980 0.9972 0.9376 0.9974 0.9708 0.9490 0.9682

len 0.7540 1.2049 1.2032 0.9567 2.1352 2.1352 2.3887 3.5393 3.5393 3.6342

300,6,4,0.9 0.9470 0.8442 0.8516 0.9990 0.9976 0.9204 0.9972 0.9950 0.9942 0.9976

len 0.7566 5.5209 5.4942 5.4929 2.1338 2.1338 2.4184 3.5959 3.5959 3.9241
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Table 4.14. Bootstrapping OLS Forward Selection with Cp, ei ∼ 0.9N(0, 1) + 0.1N(0, 100)

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

175,7,1,0 0.9436 0.9334 0.9976 0.9988 0.9960 0.9954 0.9984 0.9502 0.9486 0.9530

len 0.9782 1.0132 0.8002 0.8041 3.7347 3.7347 4.0999 2.5087 2.5087 2.5264

175,7,1,0.3780 0.9448 0.9548 0.9986 0.9988 0.9946 0.9906 0.9964 0.9468 0.9236 0.9472

len 0.9760 1.4558 1.1879 1.1995 3.7414 3.7414 4.0960 2.5019 2.5019 2.5990

175,7,1,0.9 0.9460 0.8386 0.9998 0.9974 0.9974 0.9974 0.9982 0.9754 0.9754 0.9806

len 0.9739 7.6005 7.6388 7.6030 3.6890 3.6890 4.0249 2.5665 2.5665 2.7239

175,7,5,0 0.9438 0.9360 0.9306 0.9982 0.9978 0.9332 0.9974 0.9616 0.9498 0.9576

len 0.9824 1.0211 1.0213 0.8030 2.1507 2.1507 2.4162 3.8365 3.8365 3.8635

175,7,5,0.3780 0.9420 0.9492 0.9444 0.9982 0.9972 0.9352 0.9962 0.9550 0.9156 0.9472

len 0.9838 1.4940 1.4923 1.2229 2.1325 2.1325 2.3886 3.8182 3.8182 3.9628

175,7,5,0.9 0.9426 0.8104 0.8104 0.9976 0.9968 0.9246 0.9966 0.9950 0.9934 0.9974

len 0.9796 7.3776 7.4012 7.3634 2.1353 2.1353 2.4001 3.9222 3.9222 4.2738

400,8,1,0 0.9546 0.9506 0.9982 0.9984 0.9962 0.9966 0.9982 0.9582 0.9600 0.9598

len 0.6547 0.6600 0.5316 0.5269 3.9272 3.9272 4.3193 2.4727 2.4727 2.4778

400,8,1,0.3536 0.9526 0.9484 0.9986 0.9992 0.9972 0.9968 0.9992 0.9632 0.9648 0.9688

len 0.6550 0.9705 0.7660 0.7696 3.9382 3.9382 4.3146 2.4872 2.4872 2.5529

400,8,1,0.9 0.9488 0.8574 0.9986 0.9992 0.9992 0.9988 0.9994 0.9724 0.9716 0.9776

len 0.6539 5.1142 5.1091 5.0954 3.9079 3.9079 4.2759 2.5505 2.5505 2.7119

400,8,6,0 0.9494 0.9516 0.9474 0.9982 0.9978 0.9322 0.9972 0.9612 0.9616 0.9620

len 0.6525 0.6579 0.6585 0.5302 2.1374 2.1374 2.3880 3.8894 3.8894 3.8929

400,8,6,0.3536 0.9528 0.9368 0.9394 0.9986 0.9978 0.9354 0.9980 0.9750 0.9676 0.9752

len 0.6546 0.9710 0.9723 0.7721 2.1371 2.1371 2.3909 3.9903 3.9903 4.0548

400,8,6,0.9 0.9446 0.8708 0.8668 0.9998 0.9988 0.9408 0.9980 0.9940 0.9908 0.9962

len 0.6569 5.1147 5.1245 5.0298 2.1306 2.1306 2.3661 4.0631 4.0631 4.4286



38

Table 4.15. Bootstrapping OLS Forward Selection with Cp, ei ∼ 0.9N(0, 1) + 0.1N(0, 100)

n,p,k,ψ β1 β2 βp−1 βp pm0 hyb0 br0 pm1 hyb1 br1

250,10,1,0 0.9416 0.9372 0.9982 0.9986 0.9988 0.9988 0.9994 0.9484 0.9512 0.9526

len 0.8268 0.8477 0.6728 0.6716 4.3928 4.3928 4.8144 2.4911 2.4911 2.5040

250,10,1,0.3162 0.9478 0.9404 0.9982 0.9984 0.9982 0.9978 0.9990 0.9528 0.9448 0.9538

len 0.8197 1.1727 0.9306 0.9261 4.4017 4.4017 4.8054 2.5024 2.5024 2.5688

250,10,1,0.9 0.9464 0.8054 0.9990 0.9970 0.9982 0.9988 0.9996 0.9688 0.9660 0.9736

len 0.8216 6.4908 6.4570 6.4595 4.3751 4.3751 4.7827 2.5690 2.5690 2.7350

250,10,8,0.9 0.9504 0.8224 0.8338 0.9992 0.9984 0.9406 0.9976 0.9968 0.9962 0.9992

len 0.8243 6.4905 6.4930 6.4301 2.1402 2.1402 2.3876 4.5258 4.5258 4.9284

Suppose ψ = 0. Then from Section 3, β̂S has the same limiting distribution for Imin

and the full model. Note that the average lengths and coverages for forward selection Imin

CIs for β1 and β2 were close to the expected full model lengths 3.92/
√
n. The lengths were

shorter for βp−1 and βp. For ψ ≥ 0, the Imin coverages were higher than 0.95 for the inactive

predictors (and for the tests pm0, hyb0 and br0) since zeros often occurred for inactive β̂∗

j .



CHAPTER 5 

CONCLUSIONS

There is massive literature on variable selection and a fairly large literature for inference

after variable selection. See references in Pelawa Watagoda and Olive (2018).

Response plots of the fitted values Ŷ versus the response Y are useful for checking

linearity of the MLR model and for detecting outliers. Residual plots should also be made.

The simulations were done in R. See R Core Team (2016). We used several R functions

including forward selection as computed with the regsubsets function from the leaps li-

brary. The collection of Olive (2018b) R functions slpack, available from (http://lagrange.

math.siu.edu/Olive/slpack.txt), has some useful functions for the inference. Table 1 was

made with vsbootsim4. There was occasional undercoverage for the shorth and hybrid

region, especially when ψ = 0.9.
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