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1CHAPTER 1

INTRODUCTION

Suppose the data set is x1, ..., xn where xi is p × 1. Outliers are cases that lie far

away from the bulk of the data, and outliers can ruin a statistical analysis. This paper

discusses a technique for outlier detection that works well for certain outlier configu-

rations provided the bulk of the data consists of more than n/2 cases. The technique

could fail if there are g > 2 groups of about n/g cases per group. First we need to de-

fine Mahalanobis distances and the coordinatewise median. Some univariate estimators

will be defined first.

The location model is

Yi = µ + ei, i = 1, . . . , n (1.1)

where e1, ..., en are error random variables, often independent and identically dis-

tributed (iid) with zero mean. The location model is used when there is one variable

Y , such as height, of interest. The location model is a special case of the multivariate

location and dispersion model, where there are p variables x1, ..., xp of interest, such as

height and weight if p = 2.

The location model is often summarized by obtaining point estimates and con-

fidence intervals for a location parameter and a scale parameter. Assume that there

is a sample Y1, . . . , Yn of size n where the Yi are iid from a distribution with median

MED(Y ), mean E(Y ), and variance V (Y ) if they exist. The location parameter µ is

often the population mean or median while the scale parameter is often the population

standard deviation
√

V (Y ). The ith case is Yi.

Point estimation is one of the oldest problems in statistics and four important

statistics for the location model are the sample mean, median, variance, and the me-

dian absolute deviation (MAD). Let Y1, . . . , Yn be the random sample; i.e., assume that

Y1, ..., Yn are iid. The sample mean is a measure of location and estimates the popula-



2tion mean (expected value) µ = E(Y ).

The sample mean

Y =

∑n
i=1 Yi

n
. (1.2)

The sample median

MED(n) = Y((n+1)/2) if n is odd, (1.3)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used.

The sample variance

S2
n =

∑n
i=1(Yi − Y )2

n − 1
=

∑n
i=1 Y 2

i − n(Y )2

n − 1
, (1.4)

and the sample standard deviation Sn =
√

S2
n.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest and

written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic and the Y(i)’s are called

the order statistics. If the data Y1 = 1, Y2 = 4, Y3 = 2, Y4 = 5, and Y5 = 3, then Y = 3,

Y(i) = i for i = 1, ..., 5 and MED(n) = 3 where the sample size n = 5. The sample

median is a measure of location while the sample standard deviation is a measure of

scale. The sample mean and standard deviation are vulnerable to outliers, while the

sample median and MAD, defined below, are outlier resistant.

The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (1.5)

Since MAD(n) is the median of n distances, at least half of the observations are

within a distance MAD(n) of MED(n) and at least half of the observations are a dis-

tance of MAD(n) or more away from MED(n).

Example 1. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5 and

MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.



3CHAPTER 2

OUTLIER DETECTION WITH MAHALANOBIS DISTANCE

Now suppose the multivariate data has been collected into an n × p matrix

W = X =

















xT
1

...

xT
n

















=

























x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p

























=

[

v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W corresponds

to n measurements of the jth random variable Xj for j = 1, ..., p. Hence the n rows of

the data matrix W correspond to the n cases, while the p columns correspond to mea-

surements on the p random variables X1, ..., Xp. For example, the data may consist of

n visitors to a hospital where the p = 2 variables height and weight of each individual

were measured.

The coordinatewise median MED(W ) = (MED(X1), ..., MED(Xp))
T where

MED(Xi) is the sample median of the data in column i corresponding to variable Xi

and vi.

Example 2. Let the data for X1 be 1, 2, 3, 4, 5, 6, 7, 8, 9 while the data for X2 is

7, 17, 3, 8, 6, 13, 4, 2, 1. Then MED(W ) = (MED(X1), MED(X2))
T = (5, 6)T .

For multivariate data, sample Mahalanobis distances play a role similar to that

of residuals in multiple linear regression. Let the observed training data be collected

in an n × p matrix W . Let the p × 1 column vector T = T (W ) be a multivariate

location estimator, and let the p × p symmetric positive definite matrix C = C(W ) be

a dispersion estimator.

Let x1j, ..., xnj be measurements on the ith random variable Xj corresponding to
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the jth column of the data matrix W . The jth sample mean is xj =

1

n

n
∑

k=1

xkj. The

sample covariance Sij estimates Cov(Xi, Xj) = σij, and

Sij =
1

n − 1

n
∑

k=1

(xki − xi)(xkj − xj).

Sii = S2
i is the sample variance that estimates the population variance σii = σ2

i . The

sample correlation rij estimates the population correlation Cor(Xi, Xj) = ρij , and

rij =
Sij

SiSj
=

Sij
√

SiiSjj

=

∑n
k=1(xki − xi)(xkj − xj)

√

∑n
k=1(xki − xi)2

√

∑n
k=1(xkj − xj)2

.

The sample mean or sample mean vector

x =
1

n

n
∑

i=1

xi = (x1, ..., xp)
T =

1

n
W T

1

where 1 is the n × 1 vector of ones. The sample covariance matrix

S =
1

n − 1

n
∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij . The classical estimator of mul-

tivariate location and dispersion is (T, C) = (x, S).

Rule of Thumb. Multivariate procedures start to give good results for n ≥ 10p,

especially if the distribution is close to multivariate normal. In particular, we want n ≥

10p for the sample covariance and matrix. For procedures with large sample theory on

a large class of distributions, for any value of n, there are always distributions where

the results will be poor, but will eventually be good for larger sample sizes. This rule

of thumb is much like the rule of thumb that says the central limit theorem normal

approximation for Y starts to be good for many distributions for n ≥ 30.

The ith Mahalanobis distance Di =
√

D2
i where the ith squared Mahalanobis dis-

tance is

D2
i = D2

i (T (W ), C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (2.1)

for each point xi. Notice that D2
i is a random variable (scalar valued).



5Let (T, C) = (T (W ), C(W )). Then

D2
x(T, C) = (x − T )TC−1(x − T ).

Hence D2
i uses x = xi.

Notice that if x is a random vector, then the population squared Mahalanobis dis-

tance is

D2
x(µ,Σ) = (x − µ)T

Σ
−1(x − µ) (2.2)

and that the term Σ
−1/2(x − µ) is the p−dimensional analog to the z-score used to

transform a univariate N(µ, σ2) random variable into a N(0, 1) random variable. Hence

the sample Mahalanobis distance Di =
√

D2
i is an analog of the absolute value |Zi| of

the sample Z-score Zi = (Xi−X)/σ̂. Also notice that the Euclidean distance of xi from

the estimate of center T (W ) is Di(T (W ), Ip) where Ip is the p × p identity matrix.

Most outlier detection methods work best if n ≥ 20p, and often robust estimators

(T, C) are used with Mahalanobis distances. Olive (2017a) is a good reference. The

FCH and RMVN estimators are fairly fast and have some large sample theory.

Often data sets have p > n, and outliers are a major problem. The Olive (2017a,
∮

4.7) covmb2 estimator is useful and defined below. Also see Olive (2017b,
∮

1.3).

One of the simplest outlier detection methods uses the squared Euclidean distances

of the xi from the coordinatewise median D2
i = D2

i (MED(W ), Ip). Concentration type

steps compute the weighted median MEDj , the coordinatewise median computed from

the cases xi with D2
i ≤ MED(D2

i (MEDj−1, Ip)) where MED0 = MED(W ). We of-

ten used j = 0 (no concentration type steps) or j = 9. Let Di = Di(MEDj , Ip). Let

Wi = 1 if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn) where k ≥ 0 and k = 5 is the

default choice. Let Wi = 0, otherwise. Using k ≥ 1 insures that at least half of the

cases get weight 1. This weighting corresponds to the weighting that would be used in

a one sided metrically trimmed mean (Huber type skipped mean) of the distances.

Application 1. This outlier resistant regression method uses terms from the follow-



6ing definition.

Let the ith case wi = (Yi, xi)
T where the continuous predictors from xi are de-

noted by ui for i = 1, ..., n. Apply the covmb2 estimator to the ui, and then run the re-

gression method on the m cases wi corresponding to the covmb2 set B indices i1, ...im,

where m ≥ n/2.

Definition 1. Let the covmb2 set B of at least n/2 cases correspond to the cases

with weight Wi = 1. Then the covmb2 estimator (T, C) is the sample mean and sample

covariance matrix applied to the cases in set B. Hence

T =

∑n
i=1 Wixi

∑n
i=1 Wi

and C =

∑n
i=1 Wi(xi − T )(xi − T )T

∑n
i=1 Wi − 1

.

Example 3. Let the clean data (nonoutliers) be i 1 for i = 1, 2, 3, 4, and 5

while the outliers are j 1 for j = 16, 17, 18, and 19. Here n = 9 and 1 is p × 1.

Making a plot of the data for p = 2 may be useful. Then the coordinatewise me-

dian MED0 = MED(W ) = 5 1. The median Euclidean distance of the data is the

Euclidean distance of 5 1 from 1 1 = the Euclidean distance of 5 1 from 9 1. The

median ball is the hypersphere centered at the coordinatewise median with radius

r = MED(Di(MED(W ), Ip)) that tends to contain (n + 1)/2 of the cases if n is odd.

Hence the clean data are in the median ball and the outliers are outside of the median

ball. The coordinatewise median of the cases with the 5 smallest distances is the co-

ordinatewise median of the clean data: MED1 = 3 1. Then the median Euclidean

distance of the data from MED1 is the Euclidean distance of 3 1 from 1 1 = the Eu-

clidean distance of 3 1 from 5 1. Again the clean cases are the cases with the 5 small-

est Euclidean distances. Hence MEDj = 3 1 for j ≥ 1. For j ≥ 1, if xi = j 1, then

Di = |j − 3|√p. Thus D(1) = 0, D(2) = D(3) =
√

p, and D(4) = D(5) = 2
√

p. Hence

MED(D1, ..., Dn) = D(5) = 2
√

p = MAD(D1, ..., Dn) since the median distance of the

Di from D(5) is 2
√

p − 0 = 2
√

p. Note that the 5 smallest absolute distances |Di − D(5)|

are 0, 0,
√

p,
√

p, and 2
√

p. Hence Wi = 1 if Di ≤ 2
√

p + 10
√

p = 12
√

p. The clean



7data get weight 1 while the outliers get weight 0 since the smallest distance Di for the

outliers is the Euclidean distance of 3 1 from 16 1 with a Di = ‖16 1 − 3 1‖ = 13
√

p.

Hence the covmb2 estimator (T, C) is the sample mean and sample covariance ma-

trix of the clean data. Note that the distance for the outliers to get zero weight is pro-

portional to the square root of the dimension
√

p.

The covmb2 estimator attempts to give a robust dispersion estimator that reduces

the bias by using a big ball about the MEDj that will often contain more than half of

the cases, instead of a ball that contains “half” of the cases ((n + 1)/2 of the cases).

The weighting is the default method, but you can also plot the squared Euclidean dis-

tances and estimate the number m ≥ n/2 of cases with the smallest distances to be

used. Olive (2017b) uses a collection of R functions slpack. The slpack function medout

makes the plot, and the slpack function getB gives the set B of cases that got weight

1 along with the index indx of the case numbers that got weight 1. The function vecw

stacks the columns of the dispersion matrix C into a vector. Then the elements of the

matrix can be plotted.

The function ddplot5 plots the Euclidean distances from the coordinatewise me-

dian versus the Euclidean distances from the covmb2 location estimator. Typically the

plotted points in this DD plot cluster about the identity line, and outliers appear in

the upper right corner of the plot with a gap between the bulk of the data and the out-

liers. An alternative for outlier detection is to replace C by Cd = diag(σ̂11, ..., σ̂pp).

For example, use σ̂ii = C ii. See Olive (2017a, ch. 4), Ro et al. (2015) and Tarr et al.

(2016) for references.



8CHAPTER 3

EXAMPLES AND SIMULATIONS

0 2000 4000 6000 8000 10000
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e
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z

Figure 3.1. Elements of C for outlier data.

Example 4. This example helps illustrate the effect of outliers on classical meth-

ods. The artificial data set had n = 50, p = 100, and the clean data was iid Np(0, Ip).

Hence the diagonal elements of the population covariance matrix are 0 and the diag-

onal elements are 1. Plots of the elements of the sample covariance matrix S and the

covmb2 estimator C are not shown, but were similar to Figure 1. Then the first ten

cases were contaminated: xi ∼ Np(µ, 100Ip) where µ = (10, 0, ..., 0)T . Figure 3.1 shows

that the covmb2 dispersion matrix C was not much effected by the outliers. The diago-

nal elements are near 1 and the off diagonal elements are near 0. Figure 3.2 shows that

the sample covariance matrix S was greatly effected by the outliers. Several sample

covariances are less than −20 and several sample variances are over 40.

R code to used to produce Figures 3.1 and 3.2 is shown below.

#n = 50, p = 100
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Figure 3.2. Elements of the classical covariance matrix S for outlier data.

x<-matrix(rnorm(5000),nrow=50,ncol=100)

out<-medout(x) #no outliers, try ddplot5(x)

out <- covmb2(x,msteps=0)

z<-out$cov

plot(diag(z)) #plot the diagonal elements of C

plot(out$center) #plot the elements of T

vecz <- vecw(z)$vecz

plot(vecz)

out<-covmb2(x,m=45)

plot(out$center)

plot(diag(out$cov))

#outliers

x[1:10,] <- 10*x[1:10,]



10x[1:10,1] <- x[1:10]+10

medout(x) #The 10 outliers are easily detected in

#the plot of the distances from the MED(X).

ddplot5(x) #two widely separated clusters of data

tem <- getB(x,msteps=0)

tem$indx #all 40 clean cases were used

dim(tem$B) #40 by 100

out<-covmb2(x,msteps=0)

z<-out$cov

plot(diag(z))

plot(out$center)

vecz <- vecw(z)$vecz

plot(vecz) #plot the elements of C

#Figure 1

#examine the sample covariance matrix and mean

plot(diag(var(x)))

plot(apply(x,2,mean)) #plot elements of xbar

zc <- var(x)

vecz <- vecw(zc)$vecz

plot(vecz) #plot the elements of S

#Figure 2

out<-medout(x) #10 outliers

out<-covmb2(x,m=40)

plot(out$center)

plot(diag(out$cov))



11The covmb2 estimator can also be used for n > p. The slpack function mldsim6

compares 7 estimators: FCH, RFCH, CMVE, RCMVE, RMVN, covmb2, and MB de-

scribed in Olive (2017a, ch. 4). Most of these estimators need a nonsingular disper-

sion matrix, and work best with n > 10p. The function generates data sets and counts

how many times the minimum Mahalanobis distance Di(T, C) of the outliers is larger

than the maximum distance of the clean data. The simulation suggests that for 40%

outliers, the outliers need to be further away from the bulk of the data (covmb2(k=5)

needs a larger value of pm) than for the other six estimators. As the value pm in-

creases, the distance of the outliers from the clean data increases. The value of γ < 0.5

gives the proportion of outliers.

For data sets with p > n possible, the function mldsim7 used the Euclidean dis-

tances Di(T, Ip) and the Mahalanobis distances Di(T, Cd) where Cd is the diagonal

matrix with the same diagonal entries as C where (T, C) is the covmb2 estimator using

j concentration type steps. Dispersion matrices are effected more by outliers than good

robust location estimators, so when the outlier proportion is high, it is expected that

the Euclidean distances Di(T, Ip) will outperform the Mahalanobis distance Di(T, Cd).

Again the function counts the number of times the minimum outlier distance is larger

than the maximum distance of the clean data.

Both functions used several outlier types. The simulations generated 100 data

sets. The clean data had xi ∼ Np(0, diag(1, ..., p)). Type 1 had outliers in a tight

cluster (near point mass) at the major axis (0, ..., 0, pm)T . Type 2 had outliers in a

tight cluster at the minor axis (pm, 0, ..., 0)T . Type 3 had mean shift outliers xi ∼

Np((pm, ..., pm)T , diag(1, ..., p)). Type 4 changed the pth coordinate of the outliers

to pm. Type 5 changed the 1st coordinate of the outliers to pm. (If the outlier xi =

(x1i, ..., xpi)
T , then xi1 = pm.)



12CHAPTER 4

OUTLIER TYPE 1 EXAMPLES

Table 4.1. Number of Times All Outlier Distances > Clean Dis-
tances, otype=1 (runs = 100)

n p γ steps pm FCH RFCH CMVE RCMVE RMVN covmb2 MB

100 10 0.25 0 20 79 82 79 82 81 68 87

100 10 0.25 0 19 60 63 60 63 62 38 86

100 45 0.25 0 119.5 80 80 80 80 80 100 80

100 45 0.25 0 80 41 41 42 42 42 100 42

100 10 0.25 1 20 76 83 77 84 82 86 85

100 10 0.25 1 19 62 65 62 65 61 56 86

100 45 0.25 1 115 80 80 80 80 80 100 80

100 45 0.25 1 60 0 0 17 17 0 93 17

100 10 0.25 9 20 75 82 75 82 81 88 83

100 10 0.25 9 18 31 35 32 36 34 47 80

100 45 0.25 9 120 80 80 80 80 80 100 80

100 45 0.25 9 60 0 0 17 17 0 91 17

100 10 0.4 0 35 100 100 100 100 100 74 100

100 10 0.4 0 18 84 72 84 72 72 0 85

100 45 0.4 0 110 81 81 81 81 81 100 81

100 45 0.4 0 90 68 68 68 68 68 91 68

100 10 0.4 1 20 92 96 92 96 96 0 92
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Table 4.2. Number of Times All Outlier Distances > Clean Dis-
tances, otype=1 (runs = 100)

n p γ steps pm covmb2 diag

100 10 0.25 0 20 86 66

100 50 0.25 0 65 84 65

100 100 0.25 0 113 84 43

100 500 0.25 0 447 92 6

100 10 0.25 1 19 81 67

100 50 0.25 1 65 90 68

100 100 0.25 1 113 91 44

100 500 0.25 1 454 86 2

100 10 0.25 9 19 82 74

100 50 0.25 9 64 81 58

100 100 0.25 9 113 85 36

100 500 0.25 9 455 83 3

100 10 0.4 0 35 81 79

100 50 0.4 0 92.2 80 79

100 100 0.4 0 150.2 81 79

100 500 0.4 0 550 96 66
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OUTLIER TYPE 2 EXAMPLES

Table 5.1. Number of Times All Outlier Distances > Clean Dis-
tances, otype=2 (runs = 100)

n p γ steps pm FCH RFCH CMVE RCMVE RMVN covmb2 MB

100 10 0.25 0 18 100 100 100 100 100 50 100

100 10 0.25 0 15 0 0 35 35 0 1 100

100 45 0.25 0 63.5 0 0 100 100 0 100 100

100 45 0.25 0 35.5 0 0 99 99 0 0 99

100 10 0.25 1 18 99 99 99 99 99 40 100

100 10 0.25 1 15 1 1 36 36 1 3 100

100 45 0.25 1 68 64 64 100 100 64 100 100

100 45 0.25 1 35 0 0 93 93 0 0 93

100 10 0.25 9 18 98 98 99 99 98 45 100

100 10 0.25 9 9 0 0 11 12 0 0 99

100 45 0.25 9 65 1 1 100 100 1 100 100

100 45 0.25 9 35 0 0 95 95 0 0 95

100 10 0.4 0 25 100 100 100 100 100 16 100

100 10 0.4 0 10 0 0 2 2 0 0 85

100 45 0.4 0 50 100 100 100 100 100 0 100

100 45 0.4 0 37 0 0 80 80 0 0 80

100 10 0.4 1 13 82 82 82 82 82 0 100
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Table 5.2. Number of Times All Outlier Distances > Clean Dis-
tances, otype=2 (runs = 100)

n p γ steps pm covmb2 diag

100 10 0.25 0 18 90 52

100 50 0.25 0 62 82 79

100 100 0.25 0 107.5 81 79

100 500 0.25 0 435.5 82 78

100 10 0.25 1 18 84 51

100 50 0.25 1 63 88 79

100 100 0.25 1 101.5 81 79

100 500 0.25 1 452.5 83 78

100 10 0.25 9 18 88 46

100 50 0.25 9 63 82 79

100 100 0.25 9 110.4 83 78

100 500 0.25 9 452.5 82 79

100 10 0.4 0 29 91 76

100 50 0.4 0 84.3 81 79

100 100 0.4 0 140.1 81 77

100 500 0.4 0 506.5 81 78
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OUTLIER TYPE 3 EXAMPLES

Table 6.1. Number of Times All Outlier Distances > Clean Dis-
tances, otype=3 (runs = 100)

n p γ steps pm FCH RFCH CMVE RCMVE RMVN covmb2 MB

100 10 0.25 0 7 100 100 93 93 100 21 100

100 10 0.25 0 4.5 74 84 60 69 84 0 73

100 45 0.25 0 32 86 86 68 68 86 100 100

100 45 0.25 0 11 28 28 44 44 28 96 77

100 10 0.25 1 5.5 97 100 85 88 99 7 97

100 10 0.25 1 5 90 97 80 86 96 1 92

100 45 0.25 1 32 84 84 75 75 84 100 100

100 45 0.25 1 9 16 16 33 33 16 91 53

100 10 0.25 9 6 99 100 87 88 100 37 99

100 10 0.25 9 4.3 66 84 54 67 79 0 67

100 45 0.25 9 33 90 90 78 78 90 100 100

100 45 0.25 9 9 6 6 29 29 6 95 51

100 10 0.4 0 14 100 100 91 91 100 67 100

100 10 0.4 0 5.5 66 67 13 13 67 0 83

100 45 0.4 0 32 84 84 79 79 84 100 100

100 45 0.4 0 15 16 16 26 26 16 0 97

100 10 0.4 1 13 100 100 75 75 100 100 100
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Table 6.2. Number of Times All Outlier Distances > Clean Dis-
tances, otype=3 (runs = 100)

n p γ steps pm covmb2 diag

100 10 0.25 0 6 55 82

100 50 0.25 0 8 63 98

100 100 0.25 0 8 5 86

100 500 0.25 0 10 0 87

100 10 0.25 1 5.5 50 86

100 50 0.25 1 7 50 95

100 100 0.25 1 8 49 96

100 500 0.25 1 10 0 90

100 10 0.25 9 5.5 60 81

100 50 0.25 9 7 49 96

100 100 0.25 9 8 61 94

100 500 0.25 9 10 1 92

100 10 0.4 0 12.7 79 80

100 50 0.4 0 17 74 89

100 100 0.4 0 18 54 86

100 500 0.4 0 20 5 80
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OUTLIER TYPE 4 EXAMPLES

Table 7.1. Number of Times All Outlier Distances > Clean Dis-
tances, otype=4 (runs = 100)

n p γ steps pm FCH RFCH CMVE RCMVE RMVN covmb2 MB

100 10 0.25 0 25 99 99 71 71 99 100 100

100 10 0.25 0 20 70 87 44 53 88 78 74

100 45 0.25 0 185 81 81 79 79 81 100 92

100 45 0.25 0 80 3 3 9 9 3 100 14

100 10 0.25 1 21 80 94 58 68 92 95 83

100 10 0.25 1 19 67 80 38 41 77 69 73

100 45 0.25 1 180 81 81 76 76 81 100 93

100 45 0.25 1 54 0 0 0 0 0 80 0

100 10 0.25 9 21 85 92 61 63 93 98 91

100 10 0.25 9 19 63 75 44 53 75 80 69

100 45 0.25 9 180 80 80 78 78 80 100 93

100 45 0.25 9 55 0 0 2 2 0 88 2

100 10 0.4 0 35 98 98 64 64 98 82 100

100 10 0.4 0 20 9 9 0 0 9 0 86

100 45 0.4 0 141 79 79 81 81 81 100 84

100 45 0.4 0 85 0 0 6 6 0 91 24

100 10 0.4 1 35 97 97 63 63 97 100 100
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Table 7.2. Number of Times All Outlier Distances > Clean Dis-
tances, otype=4 (runs = 100)

n p γ steps pm covmb2 diag

100 10 0.25 0 19 89 54

100 50 0.25 0 53 93 24

100 100 0.25 0 93 82 11

100 500 0.25 0 260 89 10

100 10 0.25 1 19 97 73

100 50 0.25 1 52 87 16

100 100 0.25 1 84 88 11

100 500 0.25 1 270 86 8

100 10 0.25 9 18 86 52

100 50 0.25 9 52 88 16

100 100 0.25 9 84 84 9

100 500 0.25 9 270 80 3

100 10 0.4 0 35 85 76

100 50 0.4 0 85 84 64

100 100 0.4 0 130 82 52

100 500 0.4 0 380 85 35
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OUTLIER TYPE 5 EXAMPLES

Table 8.1. Number of Times All Outlier Distances > Clean Dis-
tances, otype=5 (runs = 100)

n p γ steps pm FCH RFCH CMVE RCMVE RMVN covmb2 MB

100 10 0.25 0 15 100 100 99 99 100 4 100

100 10 0.25 0 7 77 93 62 73 93 0 78

100 45 0.25 0 150 96 96 76 76 96 100 100

100 45 0.25 0 27 44 44 43 43 44 0 90

100 10 0.25 1 15 100 100 99 99 100 3 100

100 10 0.25 1 7 68 90 38 52 91 0 70

100 45 0.25 1 77 80 80 54 54 80 100 100

100 45 0.25 1 26 27 27 44 44 27 0 81

100 10 0.25 9 9 100 100 84 84 100 0 100

100 10 0.25 9 7 76 95 61 73 100 100 100

100 45 0.25 9 85 85 85 61 61 85 100 100

100 45 0.25 9 30 38 38 45 45 38 0 92

100 10 0.4 0 25 100 100 86 86 100 19 100

100 10 0.4 0 9 71 71 14 14 71 0 85

100 45 0.4 0 90 81 81 61 61 81 100 100

100 45 0.4 0 30 22 22 16 16 22 0 90

100 10 0.4 1 25 100 100 85 85 100 20 100
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Table 8.2. Number of Times All Outlier Distances > Clean Dis-
tances, otype=5 (runs = 100)

n p γ steps pm covmb2 diag

100 10 0.25 0 17 92 32

100 50 0.25 0 49 89 25

100 100 0.25 0 80 88 29

100 500 0.25 0 251 89 4

100 10 0.25 1 17 91 29

100 50 0.25 1 50 88 21

100 100 0.25 1 82 91 15

100 500 0.25 1 269 85 4

100 10 0.25 9 17 92 45

100 50 0.25 9 50 87 17

100 100 0.25 9 85 91 13

100 500 0.25 9 270 80 2

100 10 0.4 0 27 92 50

100 50 0.4 0 75 90 51

100 100 0.4 0 119 89 52

100 500 0.4 0 360 89 37
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CONCLUSION

For my simulations, the number of generated outlier datasets was one hundred.

For the mldsim6 function, we want to have two kinds of output: first, we want just one

or few counts over 80. To obtain this output, want to make the value of pm smaller.

Second, we want just one or few results under 80. To obtain this output, we want to

make the value of pm larger. Based on the results, as the the value of p is changing,

the value of pm is also changing. The value of gamma does affect the output. For the

mldsim7 function, we want to have one or few counts greater than 80. Based on the

output, as the value of p is increasing, the value of pm is also increasing. The value

of gamma does not effect the whole outputs. For these two functions, they have same

specific pattern that we can track. We can detect the outliers by using these two func-

tions.

The simulations were done in R. See R Core Team (2016). The collection of R

functions slpack, available from (http://lagrange.math.siu.edu/Olive/slpack.txt), has

some useful functions. The functions mldsim6 and mldsim7 were used to do the simu-

lation.



23REFERENCES

[1] Olive, D.J. (2017a), Robust Multivariate Analysis, Springer, New York, NY, to

appear.

[2] Olive, D.J. (2017b), Prediction and Statistical Learning, online course notes, see

(http://lagrange.math.siu.edu/Olive/slearnbk.htm).

[3] R Core Team (2016), “R: a Language and Environment for Statistical Com-

puting,” R Foundation for Statistical Computing, Vienna, Austria, (www.R-

project.org).

[4] Ro, K., Zou, C., Wang, W., and Yin, G. (2015), “Outlier Detection for High–

Dimensional Data,” Biometrika, 102, 589-599.

[5] Tarr, G., Müller, S., and Weber, N.C. (2016), “Robust Estimation of Precision

Matrices Under Cellwise Contamination,” Computational Statistics & Data Analy-

sis, 93, 404-420.



VITA

Graduate School
Southern Illinois University

Handong Wang

wanghandong1992@gmail.com

Southern Illinois University Carbondale
Bachelor of Arts, Mathematics, May 2015

Research Paper Title:
Outlier Detection for High Dimensional Data

Major Professor: Dr. David J. Olive

24


	Southern Illinois University Carbondale
	OpenSIUC
	5-11-2018

	Outlier Dectection For High Dimensional Data
	Handong Wang
	Recommended Citation


	Thesis.DVI

