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CHAPTER 1

INTRODUCTION

This chapter follows Christensen (1991, ch. 6) closely. Spatial data are modeled as

a realization of a stochastic process: Y (u) with u ∈ D ⊆ R
k where u is a location in

space and k is usually 1, 2, or 3. Here D is a study region such as a tract of land divided

into plots with locations ui. Then Y (ui) might be the yield from plot ui where the plots

were given different treatments in an experimental design. Given the same treatment,

responses from neighboring locations tend to be similar, and thus dependent rather than

independent. Assume that for any u ∈ D, E(Y (u)) = m(u) and V ar(Y (u)) exist. Then

Y (u) = m(u) + e(u) (1.1)

where e(u) is a zero mean stochastic error process. The nonparametric regression model

for spatial data has

Yi = Y (ui) = m(ui) + ei (1.2)

for i = 1, ..., n where often the ei are assumed to be independent and identically dis-

tributed (iid).

The universal kriging model assumes a linear structure for m(u): xi(u) are known

functions of u for i = 1, ..., p and

m(u) =

p
∑

i=1

βixi(u). (1.3)

A special case of this model is the ordinary kriging model where m(u) = µ = β1. For

model (1.1), the covariance function is

C(u, w) = σ(u, w) = Cov(e(u), e(w)) = Cov(Y (u), Y (w)). (1.4)

The nonparametric regression model (1.2) using cubic smoothing splines is often used

as a competitor for the ordinary kriging model. See, for example, Laslett (1994) and

Yakowitz and Szidarovszky (1985).
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For the universal kriging model, observations are taken at u1, ..., un. Let Yi =

Y (ui), xij = xj(ui), xi = (xi1, ..., xip)
T , ei = e(ui), e = (e1, ..., en)

T , the n × p ma-

trix X = (xij), β = (β1, ..., βp)
T , and the n × n covariance matrix Cov(e) = Σ = (σij)

where σij = C(ui, uj) = σ(ui, uj) = Cov(e(ui), e(uj)) = Cov(Y (ui), Y (uj)).

Then in matrix form, the universal kriging model is Y = Xβ + e, which is a gener-

alized least squares (GLS) model if Σ is known. This model is a feasible generalized least

squares (FGLS) model if Σ = σ2V (θ) where θ needs to be estimated. See the definitions

in chapter 2.

The covariance function is important. Let the mean function µ(ui) = E[Y (ui)] and

the covariance function C(ui, uj) = E[(Y (ui) − µ(ui))(Y (uj) − µ(uj))] for all ui, uj ∈ D.

Then the variance function is the variance of Y (ui) given by V (ui) = V (Y (ui)) =

C(ui, ui). Then the variogram = γ(ui − uj) = 0.5V [Y (ui) − Y (uj)]. Then the ran-

dom function or stochastic process {Y (u), u ∈ D} is weakly stationary or second or-

der stationary if the mean function is constant µ(Y (u)) = E[Y (u)] ≡ µ, and the co-

variance function C(Y (u), Y (u + h)) = C(h) only depends on h for u, u + h ∈ D.

For a weakly stationary stochastic process, V (u) = σ2 = C(0) and the variogram

γ(h) = 0.5V [Y (u+h)−Y (u)] = C(0)−C(h). Some authors call 2γ(h) the variogram. A

stochastic process is intrinsically stationary if the differences Wu(h) = Y (u + h) − Y (u)

are second order stationary. Hence the drift µ(u) = E[Y (u + h) − Y (u)] is constant with

respect to h and C(Wu(h), Wu(h + b)) = C(h, h + b) = C(b) which is equivalent to

γ(h) = 0.5V [Y (u+h)−Y (u)] only depending on h. See Montero, Fernández-Avilés, and

Mateau (2015, pp. 12-17).

Often the covariance function only depends on the distance d = ‖h‖. For kriging,

the three common covariance functions are given below.

1) The spherical model

C(d) = m

(

1 −
(

3d

2a
− d3

2a3

))

I(0 ≤ d ≤ a).
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Note that m = C(0). As d increases from 0 to a, the covariance function drops almost

linearly from m to 0.

2) The exponential model

C(d) = m exp(−d/a)

for a > 0 decays exponentially with distance d and is close to 0.05m for d = 3a. Note

that the correlation Cor(Y (u), Y (u + h)) is near 0 for d ≥ 3a.

3) The Gaussian model

C(d) = m exp(−d2/a2)

for a > 0 decays exponentially with squared distance d2, and is close to 0.05m for d =

a
√

3. This model is unusual in practical implications.

Chapter 2 defines GLS and FGLS, chapter 3 defines the kriging estimator, Chap-

ter 4 considers variogram estimation,chapter 5 discusses simulating correlated regression

data in the statistical software package R. chapter 6 gives splire prediction intervals and

chapter 7 presents simulation results.
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CHAPTER 2

GLS AND FGLS

This chapter considers feasible generalized least squares and follows Olive (2017a,

ch. 4) closely.

Definition 1. Suppose that the response variable and at least one of the predictor

variables is quantitative. Then the generalized least squares (GLS) model is

Y = Xβ + e, (2.1)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors, β

is a p×1 vector of unknown coefficients, and e is an n×1 vector of unknown errors. Also

E(e) = 0 and Cov(e) = σ2V where V is a known n × n positive definite matrix.

Definition 2. The GLS estimator

β̂GLS = (XT V −1X)−1XTV −1Y . (2.2)

The fitted values are Ŷ GLS = Xβ̂GLS .

Definition 3. Suppose that the response variable and at least one of the predictor

variables is quantitative. Then the weighted least squares (WLS) model with weights

w1, ..., wn is the special case of the GLS model where V is diagonal: V = diag(v1, ..., vn)

and wi = 1/vi. Hence

Y = Xβ + e, (2.3)

E(e) = 0, and Cov(e) = σ2diag(v1, ..., vn) = σ2diag(1/w1, ..., 1/wn).

Definition 4. The WLS estimator

β̂WLS = (XTV −1X)−1XT V −1Y . (2.4)

The fitted values are Ŷ WLS = Xβ̂WLS .
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Definition 5. The feasible generalized least squares (FGLS) model is the same as

the GLS estimator except that V = V (θ) is a function of an unknown q × 1 vector of

parameters θ. Let the estimator of V be V̂ = V (θ̂). Then the FGLS estimator

β̂FGLS = (XT V̂
−1

X)−1XT V̂
−1

Y . (2.5)

The fitted values are Ŷ FGLS = Xβ̂FGLS . The feasible weighted least squares (FWLS)

estimator is the special case of the FGLS estimator where V = V (θ) is diagonal. Hence

the estimated weights ŵi = 1/v̂i = 1/vi(θ̂). The FWLS estimator and fitted values will be

denoted by β̂FWLS and Ŷ FWLS , respectively.

Notice that the ordinary least squares (OLS) model is a special case of GLS with

V = In, the n × n identity matrix. It can be shown that the GLS estimator minimizes

the GLS criterion

QGLS(η) = (Y − Xη)T V −1(Y −Xη).

Notice that the FGLS and FWLS estimators have p + q + 1 unknown parameters. These

estimators can perform very poorly if n < 10(p + q + 1).

The GLS and WLS estimators can be found from the OLS regression (without an

intercept) of a transformed model. Typically there will be a constant in the model: the

first column of X is a vector of ones. Following Seber and Lee (2003, pp. 66-68), there is

a nonsingular n × n matrix K such that V = KKT . Let Z = K−1Y , U = K−1X , and

ε = K−1e. This method uses the fast, but rather unstable, Cholesky decomposition.

Proposition 1. a)

Z = Uβ + ε (2.6)

follows the OLS model since E(ε) = 0 and Cov(ε) = σ2In.

b) The GLS estimator β̂GLS can be obtained from the OLS regression (without an

intercept) of Z on U .

c) For WLS, Yi = xT
i β+ei. The corresponding OLS model Z = Uβ+ε is equivalent

to Zi = uT
i β + εi for i = 1, ..., n where uT

i is the ith row of U . Then Zi =
√

wi Yi
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and ui =
√

wi xi. Hence β̂WLS can be obtained from the OLS regression (without an

intercept) of Zi =
√

wi Yi on ui =
√

wi xi.

Proof. a) E(ε) = K−1E(e) = 0 and

Cov(ε) = K−1Cov(e)(K−1)T = σ2K−1V (K−1)T

= σ2K−1KKT (K−1)T = σ2In.

Notice that OLS without an intercept needs to be used since U does not contain a vector

of ones. The first column of U is K−1
1 6= 1.

b) Let β̂ZU denote the OLS estimator obtained by regressing Z on U . Then

β̂ZU = (UT U)−1UTZ = (XT (K−1)T K−1X)−1XT (K−1)TK−1Y

and the result follows since V −1 = (KKT )−1 = (KT )−1K−1 = (K−1)TK−1.

c) The result follows from b) if Zi =
√

wi Yi and ui =
√

wi xi. But for WLS, V =

diag(v1, ..., vn) and hence K = KT = diag(
√

v1, ...,
√

vn). Hence

K−1 = diag(1/
√

v1, ..., 1/
√

vn) = diag(
√

w1, ...,
√

wn)

and Z = K−1Y has ith element Zi =
√

wi Yi. Similarly, U = K−1X has ith row

uT
i =

√
wi xT

i . �

Following Johnson and Wichern (1988, p. 51) and Freedman (2005, p. 54), there is

a symmetric, nonsingular n × n square root matrix R = V 1/2 such that V = RR. Let

Z = R−1Y , U = R−1X and ε = R−1e. This method uses the spectral theorem (singular

value decomposition) and has better computational properties than transformation based

on the Cholesky decomposition.

Proposition 2. a)

Z = Uβ + ε (2.7)

follows the OLS model since E(ε) = 0 and Cov(ε) = σ2In.
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b) The GLS estimator β̂GLS can be obtained from the OLS regression (without an

intercept) of Z on U .

c) For WLS, Yi = xT
i β+ei. The corresponding OLS model Z = Uβ+ε is equivalent

to Zi = uT
i β + εi for i = 1, ..., n where uT

i is the ith row of U . Then Zi =
√

wi Yi

and ui =
√

wi xi. Hence β̂WLS can be obtained from the OLS regression (without an

intercept) of Zi =
√

wi Yi on ui =
√

wi xi.

Proof. a) E(ε) = R−1E(e) = 0 and

Cov(ε) = R−1Cov(e)(R−1)T = σ2R−1V (R−1)T

= σ2R−1RR(R−1) = σ2In.

Notice that OLS without an intercept needs to be used since U does not contain a vector

of ones. The first column of U is R−1
1 6= 1.

b) Let β̂ZU denote the OLS estimator obtained by regressing Z on U . Then

β̂ZU = (UT U)−1UT Z = (XT (R−1)TR−1X)−1XT (R−1)T R−1Y

and the result follows since V −1 = (RR)−1 = R−1R−1 = (R−1)TR−1.

c) The result follows from b) if Zi =
√

wi Yi and ui =
√

wi xi. But for WLS, V =

diag(v1, ..., vn) and hence R = diag(
√

v1, ...,
√

vn). Hence

R−1 = diag(1/
√

v1, ..., 1/
√

vn) = diag(
√

w1, ...,
√

wn)

and Z = R−1Y has ith element Zi =
√

wi Yi. Similarly, U = R−1X has ith row uT
i =

√
wi xT

i . �

Remark 1. Standard software produces WLS output and the ANOVA F test and

Wald t tests are performed using this output.

Remark 2. The FGLS estimator can also be found from the OLS regression (with-

out an intercept) of Z on U where V (θ̂) = RR. Similarly the FWLS estimator can be
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found from the OLS regression (without an intercept) of Zi =
√

ŵiYi on ui =
√

ŵixi.

But now U is a random matrix instead of a constant matrix. Hence these estimators are

highly nonlinear. OLS output can be used for exploratory purposes, but the p–values for

hypothesis testing are generally not correct. The Olive (2017ab) nonparametric bootstrap

tests may be useful for FGLS and FWLS. The nonparametric bootstrap could also be

applied to the OLS estimator.

Under regularity conditions, the OLS estimator β̂OLS is a consistent estimator of

β when the GLS model holds, but β̂GLS should be used because it generally has higher

efficiency.

Definition 8. Let β̂ZU be the OLS estimator from regressing Z on U . The vector of

fitted values is Ẑ = Uβ̂ZU and the vector of residuals is rZU = Z − Ẑ. Then β̂ZU =

β̂GLS for GLS, β̂ZU = β̂FGLS for FGLS, β̂ZU = β̂WLS for WLS, and β̂ZU = β̂FWLS for

FWLS. For GLS, FGLS, WLS, and FWLS, a residual plot is a plot of Ẑi versus rZU,i and

a response plot is a plot of Ẑi versus Zi.

Notice that the residual and response plots are based on the OLS output from the

OLS regression without intercept of Z on U . If the model is good, then the plotted

points in the response plot should follow the identity line in an evenly populated band

while the plotted points in the residual plot should follow the line rZU,i = 0 in an evenly

populated band (at least if the distribution of ε is not highly skewed).

Plots based on ŶGLS = Xβ̂ZU and on ri,GLS = Yi − Ŷi,GLS should be similar to

those based on β̂OLS. Although the plot of Ŷi,GLS versus Yi should be linear, the plotted

points will not scatter about the identity line in an evenly populated band. Hence this

plot can not be used to check whether the GLS model with V is a good approximation

to the data. Moreover, the ri,GLS and Ŷi,GLS may be correlated and usually do not scat-

ter about the r = 0 line in an evenly populated band. The plots in Definition 8 are both

a check on linearity and on whether the model using V (or V̂ ) gives a good approxima-
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tion of the data, provided that n > k(p + q + 1) where k ≥ 5 and preferably k ≥ 10.

For GLS and WLS (and for exploratory purposes for FGLS and FWLS), plots and

model building and variable selection should be based on Z and U . Form Z and U and

then use OLS software for model selection and variable selection. If the columns of X

are v1, ..., vp, then the columns of U are U1, ..., Up where Uj = R−1vj corresponds to the

jth predictor Xj . For example, the analog of the OLS residual plot of jth predictor ver-

sus the residuals is the plot of the jth predictor Uj versus rZU . The notation is confusing

but the idea is simple: form Z and U , then use OLS software and the OLS techniques to

build the model.



10

CHAPTER 3

THE UNIVERSAL KRIGING ESTIMATOR

This chapter follows Christensen (1987: pp. 226-227, 1991: ch. 6) closely. A predic-

tor Ŷ0 of Y0 is unbiased if E[Ŷ0] = Y0, and b0 + bTY is the best linear unbiased predictor

of Y0 if b0 + bT Y is unbiased, and for any other unbiased linear predictor a0 + aTY ,

E[(Y0 − b0 − bTY )2] ≤ E[(Y0 − a0 − aT Y )2].

Then finding the best linear unbiased predictor for spatial data is called kriging.

Suppose we want to predict Y0 = Y (u0) given x0 and Y1, ..., Yn where the Yi satisfy

(1.1) and (1.3). Assume Σ = σ2V and σ(u, w) are known. Let

ΣY 0 =

























σ(u1, u0)

σ(u2, u0)

...

σ(un, u0)

























.

Under these extremely strong assumptions, Christensen (1991, p. 268) shows that the

best unbiased linear predictor bTY of Y0 is

Ŷ0 = xT
0 β̂GLS + Σ

T
Y 0Σ

−1(Y −Xβ̂GLS) = bT Y (3.1)

where

b = xT
0 (XT

Σ
−1X)−1XT

Σ
−1 + Σ

T
Y 0Σ

−1(I − X(XT
Σ

−1X)−1XT
Σ

−1)

with V ar(Y0 − Ŷ0) = σ(u0, u0) − 2bT
Σ

T
Y 0 + bT

Σ
−1b.

Then bT Y is the universal kriging estimator of Y0, and is used to create a 2 or 3

dimensional map of the variable Y (u) over the region D by using a large number of loca-

tions u0,i.



11

Note: often Yi is an observation on a neighborhood (block) Bi of ui. Let |Bi| be the

volume (area) of the ith bolck Bi. Then

Yi =
1

|Bi|

∫

Bi

Y (u)du,

for i = 0, 1, ..., n, and

xij =
1

|Bi|

∫

Bi

xj(u)du.

Then E(Yi) =
∑p

k=1 βkxik = xT
i β, but

Cov(Yi, Yj) = σij =
1

|Bi|
1

|Bj |

∫

Bi

∫

Bj

σ(u, w)dudw.

Then the predictor (3.1) is used with Σ = (σij) and σ(ui, u0) replaced by Cov(Yi, Y0).
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CHAPTER 4

METHODS OF VARIOGRAM ESTIMATION

Consider ordinary kriging. (For the nonstationary kriging data such as the universal

kriging model, detrend the data then use the variogram of the approximately stationary

residuals.) Assume that the locations are from a uniform grid so that the nh defined be-

low are fairly large.

The classical empirical estimator of the variogram based on the data {Y (ui)}n
i=1 is

2γ̂(h) =
1

nh

∑

N(h)

[Y (ui) − Y (uj)]
2 (3.1)

where N(h) = {(ui, uj) : ui − uj = h} and nh is the number of distinct ordered pairs in

N(h).

Now let 2γ(h|θ) be a parametric variogram model that depends on unknown pa-

rameters θ. For the spherical, exponential, and Gaussian models given in chapter 1,

θ = (a, d, m)T . Consider discrete lags h1, ..., hk where ‖h1‖ < · · · < ‖hk‖. The least

squares method for estimating θ chooses θ̂ to minimize

k
∑

j=1

[2γ̂(hj) − 2γ(hj |θ)]2

where 2γ̂(h) is given by (4.1). There are also WLS and GLS methods for estimating θ.
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CHAPTER 5

GENERATING DATA WITH A COVARIANCE MATRIX

There is a simple method for generating regression data with Cov(e) = Σ. First

generate iid data w with Cov(w) = σ2In. Then e = Aw has Cov(e) = Σ = σ2AAT

where AAT = A2 if A is symmetric. The method is to specify the positive definite

covariance matrix Σ, take σ2 = 1 and A = Σ
1/2, the symmetric square root matrix:

Σ = Σ
1/2

Σ
1/2. As an example of the this method, see the R code below. The mvrnorm

function generates n × 1 vectors ei ∼ Nn(0,Σ) for i = 1, ..., m and for a specified n × n

covariance matrix Σ.

library(MASS)

n <- 100 # number of errors e_1, ..., e_n

m <- 1 # number of n by 1 error vectors to generate, for regression 1

Sigma <- outer(1:n, 1:n, function(x,y) {.7^abs(x-y)})

e <- mvrnorm(m, rep(0,n), Sigma) #from MASS

#diagonals of the correlation matrix should be 0, 0.7, 0.7^2 0.7^3 etc

> n<-7 #take n small so it is easy to see the covariance matrix

> outer(1:n, 1:n, function(x,y) {.7^abs(x-y)}) #theta = 0.7

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.000000 0.70000 0.4900 0.343 0.2401 0.16807 0.117649

[2,] 0.700000 1.00000 0.7000 0.490 0.3430 0.24010 0.168070

[3,] 0.490000 0.70000 1.0000 0.700 0.4900 0.34300 0.240100

[4,] 0.343000 0.49000 0.7000 1.000 0.7000 0.49000 0.343000

[5,] 0.240100 0.34300 0.4900 0.700 1.0000 0.70000 0.490000

[6,] 0.168070 0.24010 0.3430 0.490 0.7000 1.00000 0.700000

[7,] 0.117649 0.16807 0.2401 0.343 0.4900 0.70000 1.000000

> .7^6
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[1] 0.117649
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CHAPTER 6

SPLINE PREDICTION INTERVALS

This chapter describes the Olive (2013) asymptotically optimal prediction intervals

for a regression model of the form Yi = m(xi) + ei for i = 1, ..., n where m is a function of

xi and the errors ei are iid from a continuous unimodal distribution. If m̂ is an estimator

of m, then the ith residual is ri = Yi − m̂(xi) = Yi − Ŷi. The prediction intervals have

coverage near or higher than the nominal coverage for many techniques even for moder-

ate sample size n, say n > 10(model degrees of freedom). The prediction intervals are for

a future response Yf given a p × 1 vector xf of predictors.

A large sample 100(1 − δ)% prediction interval (PI) has the form (L̂n, Ûn) where

P (L̂n < Yf < Ûn)
P→ 1 − δ as the sample size n → ∞. Let ξδ be the δ percentile of the

error e, i.e., P (e ≤ ξδ) = δ. Let ξ̂δ be the sample δ percentile of the residuals. Consider

predicting a future observation Yf given a vector of predictors xf where (Yf , xf ) comes

from the same population as the past data (Yi, xi) for i = 1, ..., n. Let 1 − δ2 − δ1 = 1 − δ

with 0 < δ < 1 and δ1 < 1 − δ2 where 0 < δi < 1. Then P [Yf ∈ (m(xf ) + ξδ1
, m(xf ) +

ξ1−δ2
)] = 1 − δ.

Assume that m̂ is consistent: m̂(x)
P→ m(x) as n → ∞. Then ri = Yi − m̂(xi)

P→

Yi − m(xi) = ei and, under “mild” regularity conditions, ξ̂δ
P→ ξδ. If an

P→ 1 and bn
P→ 1,

then

(L̂n, Ûn) = (m̂(xf ) + anξ̂δ1
, m̂(xf) + bnξ̂1−δ2

) (6.1)

is a large sample 100(1 − δ)% PI for Yf .

The shorth(c) estimator is useful for making prediction intervals. Let Z(1), ..., Z(n) be

the order statistics of Z1, ..., Zn. Then let the shortest closed interval containing at least c

of the Zi be

shorth(c) = [Z(s), Z(s+c−1)]. (6.2)
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Let

kn = dn(1 − δ)e. (6.3)

Frey (2013) showed that for large nδ and iid data, the shorth(kn) PI has maximum

undercoverage ≈ 1.12
√

δ/n, and used the shorth(c) estimator as the large sample

100(1 − δ)% PI where

c = min(n, dn[1 − δ + 1.12
√

δ/n ] e). (6.4)

A problem with the prediction intervals that cover ≈ 100(1 − δ)% of the training

data cases Yi (such as the shorth(kn) PI), is that they have coverage lower than the nom-

inal coverage of 1 − δ for moderate n. This result is not surprising since empirically sta-

tistical methods perform worse on test data. Increasing c will improve the coverage for

moderate samples.

Example 1. (Example 5.3 from Olive (2017b).) Given below were votes for presea-

son 1A basketball poll from Nov. 22, 2011 WSIL News where the 778 was a typo: the

actual value was 78. As shown below, finding shorth(3) from the ordered data is simple.

If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]
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Find the target population 100(1 − δ)% covering interval. For small n, the coverage

of the training data will be higher than that for the future case to be predicted. In sim-

ulations for a large group of models and distributions and n = 20p, the undercoverage

could be as high as min(0.05, δ/2). Let qn = min(1− δ + 0.05, 1− δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δp/n), otherwise. (6.5)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Then use the prediction interval

or region that covers 100qn% of the training data. The coverage of the training data is

100qn% and converges to 100(1 − δ)% as n → ∞, even if the model assumptions fail to

hold.

The technique used to produce asymptotically optimal PIs that perform well for

moderate samples is simple. Find Ŷf and the residuals from the regression model. Let

bn =

(

1 +
15

n

)
√

n + 2p

n − p
. (6.6)

Let δn = 1 − qn where qn is given by (6.5). Then

(L̂n, Ûn) = (m̂(xf ) + bnξ̂δn/2, m̂(xf ) + bnξ̂1−δn/2) (6.7)

is a large sample 100(1 − δ)% PI for Yf . This semiparametric PI is only asymptotically

optimal if the unimodal error distribution is symmetric about 0. The following PI does

not need the symmetry assumption.

Let c = dnqne. Compute r(c) − r(1), r(c+1) − r(2), ..., r(n)− r(n−c+1). Let (r(d), r(d+c−1)) =

(ξ̃δ1
, ξ̃1−δ2

) correspond to the interval with the smallest length. Then the asymptotically

optimal 100 (1 − δ)% large sample PI for Yf is

(m̂(xf) + bnξ̃δ1
, m̂(xf ) + bnξ̃1−δ2

). (6.8)

Olive (2013) shows that PI (6.8) is asymptotically optimal under mild regular-

ity conditions if the sample percentiles of the residuals converge to the population per-

centiles of the iid unimodal errors: ξ̂δ
P→ ξδ. Even if these assumptions do not hold, the
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PI covers 100qn% of the training data, and often the coverage of the future case will be

close to 100(1 − δ) if the future case Yf is similar to the training data.

For asymptotic optimality, we can not have extrapolation. Also, even if the coverage

converges to the nominal coverage, the length of the PI need not be asymptotically short-

est unless the highest 1 − δ density region of the probability density function of the iid

errors is an interval. The highest density region is an interval for unimodal distributions,

but need not be an interval for multimodal distributions for all δ.

Let d be an estimator of the model degrees of freedom. Since the smoothing spline

d is typically much larger than p = 1, the Olive (2017c) and Pelawa Watagoda and Olive

(2017) PI may be useful. This PI is similar to the Olive (2013) PI (6.8) with p replaced

by d. Let qn = min(1 − δ + 0.05, 1 − δ + d/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δd/n), otherwise. (6.9)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Let

c = dnqne, (6.10)

and let

bn =

(

1 +
15

n

)

√

n + 2d

n − d
(6.11)

if d ≤ 8n/9, and

bn = 5

(

1 +
15

n

)

,

otherwise. Compute the shorth(c) of the residuals = [r(s), r(s+c−1)] = [ξ̃δ1
, ξ̃1−δ2

]. Then a

100 (1 − δ)% large sample PI for Yf is

[m̂(xf) + bnξ̃δ1
, m̂(xf ) + bnξ̃1−δ2

]. (6.12)

For the R function smooth.spline, p = 1 and the function m is unknown but m̂

is estimated using cubic splines and the GCV criterion. As described in Laslett (1994),

Wahba and Cressie discussed the merits of kriging and smoothing splines with iid errors.
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CHAPTER 7

EXAMPLES AND SIMULATIONS

Laslett (1994) gives a roller height data set that consists of 1150 heights measured

at 1 micron intervals along the drum of a roller. The data set is divided into training

data consisting of the odd numbered sites and test data consisting of the even number

sites except cite 1150 to avoid extrapolation. For this data set ordinary kriging with the

spherical covariance model yields better predictions than the GCV cubic spline. Figure

1 attempts to reproduce Figure 7.1 of Lastlett (1994), which used sites 900-1150, and

shows the smoothing spline fit. The kriging fit, not shown, is saw toothed and looks like

a time series except the unit of measurement is distance rather than time. See the R

code below.

roller<-matrix(scan(),byrow=T,ncol=1) #copy and paste data

roller <- as.vector(roller)

x<-seq(1,1150)

y <- roller

a<-seq(1,1149,2)

b <- seq(2,1150,2)

xa <- x[a] #xa is the training data in Fig. 1

xb <- x[b] #xb is the test data

ya <- y[a]

yb <- y[b]

outa <- smooth.spline(xa,ya) #fit training data

pxb <- xb[-150]

pyb <- yb[-150]

fitatob <- predict(outa,pxb)

xashort <- xa[451:575]
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yashort <- ya[451:575]

xpashort <- fitatob$x[450:573]

ypashort <- fitatob$y[450:573]

xbshort<-pxb[450:573]

ybshort<-pyb[450:573]

plot(xashort,yashort)

points(xbshort,ybshort,pch=4)#x = test data, 0 = training data

lines(xpashort,ypashort) #about Laslett Fig. 1 fitted GCV cubic spline

\caption{"Fitted GCV Cubic Spline for Roller Height Data"}

900 950 1000 1050 1100 1150

2
.0

2
.5

3
.0

3
.5

4
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4
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xashort

y
a
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o
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Figure 7.1. Fitted GCV Cubic Spline for Roller Height Data.

The smoothing spline simulation compares the PI lengths and coverages for sample

sizes n = 75, 100 and 1000 for PIs (6.7), (6.8), and (6.12). Values for PI (6.7) were de-

noted by scov and slen, values for PI (6.8) were denoted by ocov and olen, and values for
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PI (6.12) by dcov and dlen. The five error distributions in the simulation were 1) N(0,1),

2) t3, 3) exponential(1) −1, 4) uniform(−1, 1) and 5) 0.9N(0, 1)+0.1N(0, 100). The value

n = ∞ gives the asymptotic coverages and lengths and does not depend on the model m

if m̂ is a consistent estimator of m. Three model types were used 1) m(x) = x + x2, 2)

m(x) = sin(x) + cos(x) + log(|x|), and 3) m(x) = 3
√

|x|. Tables 1, 2, and 3 show some

results for these three models, and some R code is shown below.

pisimspline(n=100,nruns=5000,type=1,modt=1)

$adf

[1] 6.216255

$pimenlen

[1] 4.709470 4.694943 5.058490

$spicov

[1] 0.966

$opicov

[1] 0.9604

$dpicov

[1] 0.9736



22

Table 7.1. PIs for model type = 1

error 95% PI 95% PI 95% PI

type n slen olen dlen scov ocov dcov adf

1 75 4.7789 4.9436 5.4529 0.9612 0.9634 0.978 6.33

1 100 4.7095 4.6949 5.0585 0.9660 0.9604 0.9736 6.27

1 1000 4.0295 3.9867 4.0349 0.9508 0.9474 0.9502 9.03

1 ∞ 3.920 3.920 3.92 0.95 0.95 0.95

2 75 8.4209 8.9654 10.0322 0.9464 0.9518 0.9696 7.45

2 100 8.3450 8.2741 8.9250 0.9567 0.9566 0.9668 6.69

2 1000 6.6341 6.5213 6.5898 0.9468 0.9458 0.9458 7.98

2 ∞ 6.365 6.365 6.365 0.95 0.95 0.95

3 75 4.6873 4.7001 5.2655 0.9636 0.9638 0.9788 7.24

3 100 4.6234 4.3214 4.6873 0.97 0.9656 0.976 6.69

3 1000 3.8037 3.2392 3.2789 0.9578 0.9552 0.9572 9.08

3 ∞ 3.664 2.996 2.996 0.95 0.95 0.95

4 75 2.3186 2.3525 2.6218 0.973 0.9742 0.9878 6.69

4 100 2.2395 2.2325 2.4330 0.9778 0.9754 0.9868 6.95

4 1000 1.9328 1.9246 1.9523 0.958 0.9534 0.9636 10.52

4 ∞ 1.900 1.900 1.900 0.95 0.95 0.95

5 75 17.576 18.8094 21.1494 0.914 0.9158 0.9472 11.20

5 100 17.989 17.0503 18.4221 0.942 0.9368 0.9486 8.54

5 1000 14.248 13.4499 13.5612 0.949 0.9432 0.945 6.77

5 ∞ 13.490 13.490 13.490 0.95 0.95 0.95
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Table 7.2. PIs for model type = 2

error 95% PI 95% PI 95% PI

type n slen olen dlen scov ocov dcov adf

1 75 4.8071 4.9904 6.1904 0.94 0.9434 0.9766 12.88

1 100 4.7095 4.6949 5.0585 0.9660 0.9604 0.9736 6.27

1 1000 4.3765 4.3236 4.6204 0.963 0.959 0.9704 46.12

1 ∞ 3.920 3.920 3.92 0.95 0.95 0.95

2 75 8.3747 8.2412 9.4625 0.9482 0.9456 0.9644 11.26

2 100 8.3039 8.7679 10.3497 0.9404 0.945 0.9728 10.89

2 1000 7.3369 7.1970 7.4934 0.959 0.959 0.9634 28.97

2 ∞ 6.365 6.365 6.365 0.95 0.95 0.95

3 75 4.9677 5.2980 6.6525 0.9284 0.935 0.9672 14.13

3 100 4.9332 4.8722 5.9253 0.9446 0.9464 0.971 15.46

3 1000 4.3719 4.0909 4.3665 0.9612 0.9592 0.9692 46.26

3 ∞ 3.664 2.996 2.996 0.95 0.95 0.95

4 75 2.4752 2.5300 3.4960 0.917 0.9216 0.976 18.62

4 100 2.3623 2.3270 3.1236 0.9196 0.919 0.977 22.15

4 1000 2.0690 2.0539 2.2859 0.9514 0.9464 0.9816 74.60

4 ∞ 1.900 1.900 1.900 0.95 0.95 0.95

5 75 16.978 18.1773 20.5476 0.9112 0.9154 0.9432 11.37

5 100 18.065 17.8100 19.5232 0.9468 0.9464 0.9582 9.42

5 1000 15.706 14.9372 15.2679 0.953 0.9494 0.9512 15.97

5 ∞ 13.490 13.490 13.490 0.95 0.95 0.95
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Table 7.3. PIs for model type = 3

error 95% PI 95% PI 95% PI

type n slen olen dlen scov ocov dcov adf

1 75 4.7712 4.9373 5.6490 0.9582 0.963 0.9802 8.28

1 100 4.7095 4.6949 5.0585 0.9660 0.9604 0.9736 6.27

1 1000 4.1032 4.0609 4.1661 0.9644 0.961 0.966 18.26

1 ∞ 3.920 3.920 3.92 0.95 0.95 0.95

2 75 8.3486 8.8706 10.0616 0.943 0.948 0.9658 8.57

2 100 8.3805 8.2387 9.0712 0.9586 0.96 0.9716 8.08

2 1000 6.7662 6.649 6.7732 0.9546 0.9526 0.957 13.49

2 ∞ 6.365 6.365 6.365 0.95 0.95 0.95

3 75 4.7964 4.9050 5.7060 0.949 0.9528 0.9722 9.56

3 100 4.7997 4.5859 5.1645 0.9624 0.9592 0.9744 9.57

3 1000 3.9561 3.5351 3.6259 0.959 0.9566 0.96 18.27

3 ∞ 3.664 2.996 2.996 0.95 0.95 0.95

4 75 2.4028 2.4515 2.9349 0.9572 0.9592 0.9868 10.66

4 100 2.3235 2.3068 2.6842 0.9594 0.9558 0.9872 11.70

4 1000 1.9703 1.9618 2.0340 0.9572 0.954 0.9748 25.26

4 ∞ 1.900 1.900 1.900 0.95 0.95 0.95

5 75 17.321 18.3157 20.5934 0.9282 0.929 0.9538 11.06

5 100 18.0382 17.3865 18.8773 0.9432 0.9432 0.953 9.005

5 1000 14.6055 13.7890 13.9609 0.9558 0.9518 0.9516 9.19

5 ∞ 13.490 13.490 13.490 0.95 0.95 0.95
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CHAPTER 8

CONCLUSIONS

Simulations were done in R. See R Core Team (2016). The collection of R functions

slpack, available from (http://lagrange.math.siu.edu/Olive/slpack.txt), has some useful

functions for the inference. The function pisimspline was used to do the simulation.

The spatial package is due to Venables and Ripley (2002).

Some references for kriging, spatial statistics, and geostatistics include Atkinson, Ri-

ani, and Cerioli (2004, ch. 8), Banerjee, Carlin, and Gelfand (2015), Bivand, Pebesma,

and Gómez-Rubio (2013), Brunsdon and Comber (2015), Chilès (2012), Christensen

(1991: ch. 6, 2001), Chun and Griffith (2013), Crawley (2013, ch. 26), Cressie (1986,

1993), Cressie and Wilke (2011), Diggle (2014), Isaaks and Srivistava (1989), Kalkhan

(2011), Montero, Fernández-Avilés, and Mateau (2015), Oliver and Webster (2015), Rip-

ley (1981), Stein (1999), and Venables and Ripley (2003, ch. 15).

For model type 2 and 3, PIs (6.7) and (6.8) sometimes had undercoverage for n=75

and error type 5. PI (6.12) was sometimes rather long, especially for n=75.
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