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This study focused on the ecotypic variation in forage quality of Andropogon gerardii 

Vitman, a dominant C4 grass in North American grasslands and an important forage grass 

for native and introduced grazers. Ecotypes are genetic variations of a plant species 

adapted to local environmental conditions. Andropogon gerardii is represented by many 

local ecotypes across its range. Forage quality analyses quantify digestibility and 

nutrition of a plant sample and allow an assessment of nutritional value for grazers. The 

variability in forage quality among A. gerardii ecotypes is unknown. This study aimed to 

quantify variation in forage quality of A. gerardii collected across a precipitation gradient 

from eastern Colorado to southern Illinois in the North American grassland.  Samples of 

A. gerardii plants in four distinct precipitation regions and three-remnant grassland 

populations within each region were sampled in July 2010 to assess differences in forage 

quality.  In the field study, forage quality increased along an east to west gradient 

corresponding with a decrease in annual precipitation levels. A greenhouse study, 

conducted in April to September 2010, was used to test effect of varied precipitation on 

three A. gerardii ecotypes from distinct precipitation regions grown under controlled 

conditions.   In the greenhouse experiment, plant maturity had significant effects on all 
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forage measurements except lignin (ADF%).  Forage quality was most directly connected 

to environmental conditions and forage maturity, with smaller differences among 

population sources.  Of those tested here, southern IL ecotypes were the most adaptable 

to variations in precipitation, and will likely maintain high levels of forage quality under 

projected changes in precipitation resulting from climate change.  
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CHAPTER 1: INTRODUCTION 

 

Global Environmental Change 

Global environmental change is the most significant research and policy issue facing 

humankind (Burton et al. 1993).  Evidence of global changes are “certain—certain they 

are happening, and certain they are human-caused (Vitousek 1994).”  Human 

development has altered biogeochemical cycles around the globe.  Dramatic increases in 

greenhouse gases due to continuing rise in industrial emissions are causing rising 

temperature, greater tropical storm intensities, shifts in global rainfall patterns, melting of 

polar ice caps and rising sea levels (IPCC 2007).  As a result, climate change has 

energized a vast array of scientific research to better understand ecosystem responses to 

these environmental changes. For instance, recent statistical models have aimed to project 

future climate scenarios (IPCC et al. 2000, Botkin et al. 2007), but due to the complexity 

of ecosystem interactions—from the molecular level to the system level and from abiotic 

and biotic factors—it is difficult to accurately predict outcomes of such changes.  

Nevertheless, more research is needed to bridge the gap between basic and applied 

science to better-forecast future consequences of global change. 

 

The Grassland Ecosystem and Land Use Change 

Grasslands occur on every continent, except Antarctica, encompassing an estimated 31-

43% of the Earth’s surface (Gibson 2009).  Human development has reduced distribution 

of global grasslands to 16% of the land surface (WorldResources 2000), and references 
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therein). The grassland ecosystem is a major terrestrial carbon (C) sink containing one 

third of the world’s terrestrial carbon due to its extensive root and soil microbial systems 

(Scurlock and Hall 2002).  Accordingly, preservation and restoration of the grassland 

ecosystem is important to mitigate the effects of global change (Lal 2004, Harris et al. 

2006).  

 The North American Great Plains was the largest biome in North America 

stretching 4.1 x 10
8
 ha, from east of the Rocky Mountains to Ohio, and from the southern 

Canadian border into Texas (Samson et al. 2003).  This system formed as upwelling of 

the Rocky Mountains, about 55 million years ago, created a rain shadow effect east of 

their range. Grassland distribution and composition are driven primarily by temperature 

and rainfall (Epstein et al. 1997) and water availability is a principle limiting abiotic 

factor through their distribution (Knapp et al. 2001).  

 The expanse of the North American grassland is categorized into three 

community-types: tallgrass prairies, mixed prairie, and shortgrass prairies (Samson and 

Knopf 1994).  These community-types range along a west to east gradient—from short to 

tallgrass prairies—as a direct result of an increase in precipitation. Moist air from the 

Gulf of Mexico aids in the formation of the tallgrass prairie in the southeast reaches of its 

range.  Tallgrass prairie has undergone the greatest habitat destruction as compared to 

mixed and shortgrass prairies (Table 2) due to their nutrient rich soils and lack of rocky 

outcrops.  

 Once covering 162 million hectares of the United States (Samson and Knopf 

1994, Christopher 1999), an estimated 70% of the original extent of the Great Plains has 

been destroyed since European settlement (Samson et al. 2004). The Homestead Act of 
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1862, which encouraged settlement of the Plains, offered free land to individuals willing 

to farm. European farming practices could be applied to the mid-western United States 

because the John Deere steel plow (patented in 1837) made it easy to cultivate once 

unworkable soil.  A total of 1.5 million people colonized on to 800,000 km
2
 of land 

(Samson et al. 2004).  This settlement coincided with the eradication of native grazers 

from the prairie, particularly American Bison (Bison bison), which were hunted for their 

skins.   By the late 1800s, the American Bison was nearly extinct. 

 An estimated 85-90% of the tallgrass prairie in the United States has been 

eliminated (Samson et al. 2004), largely due to industrial agriculture, specifically the 

production of corn and soybeans.  Today, North American tallgrass prairies are classified 

as an endangered ecosystem. The state of Illinois, for example, has an estimated <0.01% 

of intact remnant prairies intact.   

 

Biology of Andropogon gerardii  

Andropogon gerardii Vitman is a dominant, perennial C4 grass native to the North 

American tallgrass prairies, compromising up to 80% of biomass in tallgrass prairie 

(Weaver and Fitzpatrick 1932, Kakani and Raja Reddy 2007).  Andropogon gerardii, a 

warm season grass has a six month growing period and flowers in July through early 

October. In late July, when the plant is beginning to flower, A. gerardii grows at a 

maximum rate of 2 cm/day, reaching a height of 1.8 to 3 m (Weaver et al. 1935).  At 

maturity, A. gerardii grows to 2-3 m tall, with characteristic spikelets resembling a 

“turkey foot,” which is where this plant received its nickname. A. gerardii’s roots can 

descend over 2.4 meters belowground (Weaver et al. 1935), and because of this is widely 
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used in restoration for erosion control.  Andropogon gerardii’s leafy forage is highly 

palatable to all classes of livestock, and makes good quality hay if harvested before seed 

heads emerge (Schwendiman and Hawk 1973).  Cultivars of A. gerardii have been bred 

for improved forage yield and digestibility, i.e., ‘Bonanza’ and ‘Goldmine’ (Mitchell et 

al. 2005). 

Ranging throughout the North American Great Plains, A. gerardii’s extensive 

geographic coverage has made it a model species in grassland research and restoration.   

A better understanding of variation throughout population sources in dominant species is 

crucial to adequately restore and ensure the continuity of restored systems. Dominant 

species drive ecosystem function and community structure (Smith and Knapp 2003); 

therefore, understanding their responses to change can be a window into the responses of 

an entire community. 

 

Ecotypes 

An ecotype is a genetic variation of a species adapted to local environmental conditions.  

Ecotypes can express a wide variety of ecophysiological and functional diversity in order 

for a species to compete for resources in an area.  Some of these variations include traits 

of growth rate, flowering time, productivity, population dynamics and differences in 

overall ecosystem function (Ackerly et al. 2000).  

 Local environmental conditions result in intraspecific variation.  Environmental 

differences, i.e. temperature, altitude, precipitation and soil type, all play a role in local 

adaption among ecotypes across landscapes. Physiological responses can determine 
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ecotypic differences because these may be a plants first response to altered environmental 

conditions (Gibson 2002).  

 For over half a century, studies have focused on ecotypic variation within a 

species across latitudinal gradients, to include the effect of temperature and length of 

growing season on plants (Vaartaja 1959, McMillian 1960, McNaughton 1966, 

McMillian 1969, Heide 1994, Sawada et al. 1994, Li et al. 1998).  A milestone study 

conducted on grassland ecotypes used a common garden in Lincoln, Nebraska 

(McMillian 1959) to document ecotypic variation of dominant grass species from 43 sites 

throughout the North American central grasslands.  Among one of the dominant species 

used in the experiment was Andropogon gerardii.  McMillian concluded that the southern 

and eastern ecotypes flowered earlier and grew taller than ecotypes from northern and 

western populations (McMillian 1959). A more recent study by Gustafson et al. (1999), 

examined the genetic variation within and among populations of A. gerardii from 

Arkansas and Illinois remnant prairies.  This study showed greater differences within 

populations of A. gerardii than among populations. Genetic variation between 

populations showed high levels (83-99%) of variability, while low levels (11%) of 

population divergence throughout (Gustafson et al. 1999). 

  

Restoration Ecology 

Restoration Ecology is a science that uses ecological theory to guide the practice of 

ecological restoration. In an era faced with rapid global change, ensuring restored 

populations have ecological integrity and adaptive ability to withstand rapid change is 

critical to the persistence of communities.  Restoration ecology often incorporates 
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population genetics to ensure healthy adaptive variation within restorations. Accordingly, 

the importance of the origin of seed source used in restorations is under examination.   

 Aldo Leopold initiated the first ecosystem restoration effort in 1935, a tallgrass 

prairie restoration at the University of Wisconsin Arboretum, now known as the Curtis 

Prairie, laying the foundation for ecological restoration efforts (Kindscher and Tieszen 

2004).  Today there are thousands of restoration initiatives worldwide fostered by both 

government agencies and non-profit organizations. 

 Currently, ecological restoration involves planting local population sources to 

mirror region specific environmental conditions, therefore, maintaining a local gene pool 

(Schramm 1970, 1992, Gustafson et al. 2005).   A growing body of practice is emerging 

which has caused restorationists to rethink the optimal origin of seed sources for 

restoration (Lesica and Allendorf 1999) and  whether locally adapted sources are too 

genetically narrow in light of future environmental change (Lesica and Allendorf 1999, 

Hufford and Mazer 2003, Rice and Emery 2003, O'Neill et al. 2008). Referencing past 

ecological models is proving to be limited in the face of rapid climate change (Harris et 

al. 2006). Shifts in climactic conditions may require reestablishing greater genetic 

heterogeneity within species to preserve biodiversity (Botkin et al. 2007).  Current theory 

indicates the importance of rebuilding for future scenarios by representing genetically 

diverse populations in restoration projects (Pfadenhauer and Grootjans 1999, Hobbs and 

Harris 2001, Hufford and Mazer 2003, Harris et al. 2006, Lawler 2009).  
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Role of Forage Quality 

Forage quality is the physical and chemical nutritive value of a plant, which benefits an 

animal’s diet (Owensby et al. 1996, Balasko and Nealson 2003), and refers to how well 

animals consume a forage and how efficiently the nutrients in the forage are converted 

into animal products (Linn and Martin 1999).  No one measure adequately accounts for a 

ruminants response to feeds (Van Soest 1973).   Therefore, forage quality cannot be 

directly categorized on the basis of a single measure due to the complexity of the subject.  

Separate forage analyses (i.e., 1. cell components: protein, sugar, starch and organic 

acids; and, 2. fibrous or cell wall components: cellulose, hemicellulose and lignin) must 

be cohesively examined to comprehensively assess forage grade for a ruminant.   

 Key factors influencing forage quality are species, stage of maturity and storage 

techniques.  Higher quality forage often comes from legumes, rather than grasses, and 

cool-season rather than warm-season grasses (Ball et al. 2001).  Optimal ruminant health 

and maximizing profit are some of the significant advantages to the production of high-

quality forage.  Rangelands provide 95% of food for wild ruminants (Semple 1970), 

accordingly, selecting high quality forage in grassland restoration is of paramount 

importance.  High quality forage is often also very palatable to grazers. Within the 

grassland ecosystem an integral component to its function is the relationship between 

ungulates and grasses.  

 Ungulates are important for ecosystem structure and function in the grassland 

ecosystem creating spatial heterogeneity, controlling successional processes and 

regulating the ecosystem between alternative stable states (Hobbs 1996).  Restoration 

managers can benefit greatly from integrating grazers such as bison or cattle into 
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restoration efforts.  Sophisticated restoration efforts use grazers and a balance of native 

grasses, forbs and legumes, as well as fire, to rebuild the function of the North American 

grasslands.  For example, the Flint Hills of Kansas is the largest, unplowed tallgrass 

remnant prairie in North America, encompassing a total of 3500 ha (Knapp et al. 1999). 

Land is regularly burned, and in 1987, Konza Prairie reintroduced bison.  Accordingly, 

Konza Prairie is a site for extensive ongoing ecological research dating back as early as 

1972, with hundreds of concurrent research projects occurring on the land.  Konza Prairie 

stands as a key area for prairie research and is used as a model for grassland restoration 

efforts around the world. 

 Bison are known to increase plant species richness and spatial heterogeneity in 

tallgrass prairie (Towne et al 2005).  Yet, using cattle to store degraded systems might be 

more practical due to their current vast majority on grasslands (Allred et al 2011).  

Studies comparing bison and cattle grazing have shown overall similarities in grazing 

trends (Towne et al. 2005).  Bison and cattle exhibit seasonal differences in their 

selection for grasses and forbs (Plumb and Dodd 1993). Bison and cattle effects on 

landscape heterogeneity can be similar if properly managed (Fuhlendorf et al. 2008).  

Studies evaluating vegetation trends in tallgrass prairies from bison and cattle have 

shown that plant communities are 85% similar after ten years of grazing (Towne et al. 

2005). Overtime, Andropogon gerardii increased in cattle-grazed pastures and did not 

significantly change in bison-grazed pastures over time (Towne et al. 2005).  Both 

species are known to prefer recently burned areas and avoid grazing on steep slopes 

(Allred et al. 2011). As time since the last burn increased, bison grazed less (Coppedge 

and Shaw 1998).  This dynamic relationship known as pyric herbivory is crucial to 
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ecosystem structure and function (Fuhlendorf et al. 2008).  Bison choose areas based on 

forage quality rather than quantity (Coppedge and Shaw 1998).  Cattle decrease their 

distance from water whereas bison seem to increase their distance (Allred et al. 2011).  It 

is known that bison reduce their intake during rut, allocating their time towards 

reproduction rather than resource intake, whereas cattle generally do not show this trend 

during mating season (Plumb and Dodd 1993).   

 An increase in atmospheric CO2 will favor C3 over C4 photosynthesis (Bond 

2008).  It is essential to understand how changes in CO2, and the subsequent changes in 

photosynthetic pathway preferences will affect the grassland ecosystem and grazing 

systems (Chammaillé-Jammes and Bond 2010).  Recent studies show it is likely that 

forage quality of rangeland plants will decrease under elevated CO2, leading to reduced 

growth and reproduction of ruminants (Owensby et al. 1996).  

Past studies have shown slight differences in mineral content among cultivars of 

switchgrass (Panicum virgatum) (Lemus et al. 2002). This indicates that differences in 

mineral content of A. gerardii ecotypes are highly likely.  Moreover, a study evaluating 

effects of increased CO2 on tall fescue (Schedonorus phoenix) showed elevated CO2 

affected several variables associated with digestibility.  Some changes noted in the study 

were lower neutral detergent fiber levels, higher nitrogen levels and a 21% reduction in 

crude protein under elevated CO2 (Newman et al. 2003).  These changes in CO2 level, 

and subsequently changes in nutrient levels of plants, have the ability to decrease a 

ruminant’s growth and reproduction.   

A number of studies have tested variation in forage quality as a result of changes 

in temperature. Yet, little research has been done on Andropogon gerardii ecotypes 
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across a precipitation gradient, examining a response to varied precipitation levels. 

Forage quality studies of A. gerardii have shown overall high quality performance, and 

suggest optimal forage quality occurs between late June and early August (Griffin and 

Jung 1983).   Thus, samples for this study were collected in the month of July, at peak 

forage quality for A. gerardii.!

!

Research Questions 

What is the degree of intraspecific variation in Andropogon gerardii collected from 

remnant tallgrass prairies along a precipitation gradient in the North American 

grasslands?  What is the effect of ecotypic variation on forage quality measurements? 

 

Research Objectives 

The main objective of this study was to quantify the degree of intraspecific variation 

within Andropogon gerardii Vitman ecotypes collected across a precipitation gradient in 

the North American grasslands testing the effect of ecotypic variation on forage quality 

measurements, thus allowing an assessment of suitability for grazers.  Experimental 

inquiry was conducted both in the field and the greenhouse. 

The specific objectives were to: 

%/ Quantify intraspecific morphological variation among ecotypes of Andropogon 

gerardii through a greenhouse experiment.!

2. Quantify ecotypic variation on forage quality of Andropogon gerardii. 
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Hypotheses 

H1: Ecotypes of Andropogon gerardii will exhibit greater levels of forage quality 

(i.e., high IVDMD, low ADF, high CP) in eastern sites as a result of greater 

precipitation, and decrease along a precipitation gradient as sites move further 

west along the gradient. 

H2: Eastern ecotypes of Andropogon gerardii will exhibit higher biomass (i.e., above- 

and belowground biomass) than western ecotypes when grown in a controlled 

environment/!!!
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CHAPTER 2: METHODS 

!

!

Greenhouse Experiment 

A greenhouse experiment was conducted in the summer of 2010 to test for intraspecific 

variation in forage quality and net primary productivity within wild sources of A. gerardii 

grown under controlled conditions. 

 

Experimental Design  

The experiment consisted of three population treatments (Twelve Mile Prairie, Konza 

Prairie, and Relic Prairie) and two soil moisture treatments (factorial design = 3 x 2).  

Each population treatment consisted of three source origins from different precipitation 

regions (Table 2.1).  Each treatment combination (population source by soil moisture 

treatment) was replicated 4 times (n=4). 

 All population sources were collected from seed by hand in October and 

November of 2008 from their native population source. Seeds were stored in dry 

conditions.  The central Kansas population source was collected from Relic prairie 

(38°51’ N, 99°22’ W), near Hays, KS (hereafter referred to as central KS, CKS).  The 

eastern Kansas population source was collected from Konza Prairie Biological Research 

Station (39°05’ N, 96°32’ W), south of Manhattan, Kansas (herein referred to as eastern 

KS, EKS).  The southern Illinois source was collected from the Twelve Mile Prairie 

(38°44’ N, 88°53’ W), a remnant railroad prairie near Farina, Illinois (hereafter referred 

to as southern IL, SIL).   
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 Plants were grown from seed in a greenhouse at Southern Illinois University 

Carbondale, Carbondale, IL, USA (37°43’N 89°13’W) over a 6-month period from April 

2010 to September 2010. Number of seeds sown was chosen based on a preliminary 

germination test.   Seeds were started in Supercell Cone-tainers (21 cm in height by 3.8 

cm in diameter) (Stuewe & Sons, Inc. Tangent, Oregon, USA).  A generic soil mixture of 

peat moss, vermiculite and pine bark was used to standardize plant growth (Fafard 3B 

Mix, Hummert International, Earth City, MO, USA).  Cone-tainers were organized in a 

completely randomized design.  At this stage plants were watered 4-6 times a week 

depending on humidity and temperature. 

 Ten weeks after emergence of A. gerardii, seedlings were transplanted into 

TPOT4R pots (39.6 cm in height by 20.3 cm in diameter) (Stuewe & Sons, Inc. Tangent, 

Oregon, USA) and moved to the SIUC Agricultural Research Center Greenhouse. Pots 

were organized in a completely randomized design, and re-randomized once a week 

during application of the watering treatment.  At this stage seedlings were watered 4-6 

times a week depending on humidity and temperature. 

 Six weeks following transplant of seedlings into the SIUC Agricultural Research 

Center Greenhouse, A. gerardii plants were clipped 5 cm from soil surface (i.e., all plant 

tissue above 5 cm, including leaves and stems) to assess baseline forage quality of each 

individual plant.  Samples were dried (at 50°C for 7 days), and ground using a Thomas-

Wiley Laboratory Mill, Model 4 (Arthur H. Thomas Company, Philadelphia, PA, USA) 

through a 1 mm screen.   

 Immediately following baseline forage quality sampling, the experimental 

watering treatment was initiated. Watering levels were chosen based on field capacity of 
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soil (Table 2.2).  Plants were watered Monday, Wednesday, and Friday and once on 

Saturday or Sunday for six weeks, totaling 24 watering applications (n=24).  Pots were 

weighed and watering application was calculated for desired watering treatment levels to 

be achieved. Pots were organized as a completely randomized block and re-randomized 

prior to each watering treatment to minimize the effects of potential light and temperature 

gradients.  Average day temperatures were 29° C during the day and 23° C at night.   

 

Forage Quality Measurements 

Forage quality was measured two times throughout the growing season (18 August 2010 

prior to establishment of the watering treatment, and 15 September 2010 at final harvest).  

Each time individual plants were harvested at >5 cm above the soil surface.  Samples 

were dried (at 50° C for 7 days) and ground, through a 1 mm screen, using a Thomas-

Wiley Laboratory Mill, Model 4 (Arthur H. Thomas Company, Philadelphia, PA, USA).  

Analyses were run dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber 

(ADF), In-vitro dry matter digestion (IVDMD), crude fat (CF), crude protein, (CP), ash 

content and nitrogen (N). 

 

Plant Height and Number of Tillers 

Plant height and number of tillers was measured prior to baseline forage quality 

sampling, and once each week during watering treatment (18 August 2010, 25 August 

2010, 1 September 2010, 7 September 2010, 14 September 2010). Plant height was 

determined from the soil surface to the tip of the longest leaf.   
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Biomass 

At the end of the growing season (15 September 2010), aboveground biomass (AB) and 

belowground biomass (BB) was determined for each individual plant.  To quantify AB, 

plants were clipped, dried (at 50° C for 7 days), and weighed.  To quantify BB, pots were 

disassembled, roots were separated from soil, washed with water, dried (at 55°C for 7 

days), and weighed.  AB and BB were combined to determine total biomass (TB). 

 

Forage Analyses 

Dry matter and ash content  

One gram of dried sample, with two replicates, was placed in a crucible and oven dried 

55°C for 24 hours.  Prior to oven drying, samples were placed in desiccator for 20 

minutes to cool, before being reweighed.  The loss of weight due to oven drying is the 

measure of dry matter (DM). 

 Ash content measurements were conducted in a Tempco Model No. 293C 

(Barber-Colman, Ashburn, VA, USA).  One gram of sample, with two replicates, was 

placed in crucibles and ash burn was conducted at 500°C for 24 hours.  Crucibles were 

placed in desiccator for two hours to cool before being weighed.  The loss of weight due 

to burn is the measure of ash content.  

 

Neutral detergent fiber 

Samples were weighed to a known quantity of 0.5 g (±0.05 g), with three replicates, into 

F57 Filter Bags (ANKOM Technology, Macedon NY, USA).  Bags were sealed using a 
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1915/1920 Heat Sealer (ANKOM Technology, Macedon NY, USA).  Neutral detergent 

fiber (NDF) analysis measurements were conducted using an Ankom
200

 Fiber Analyzer 

(ANKOM Technology, Macedon NY, USA) which ran for 60 minutes at 100°C.  After 

extraction, samples were rinsed with hot water (90-100°C) and alpha-amylase enzyme 

(ANKOM Technology, Macedon NY, USA), and once more using only hot water.   

Samples were then soaked in acetone for three minutes, air-dried, and finally oven dried 

at 55°C for 24 hours. After oven drying, samples were removed from oven, placed in 

desiccator for 20 minutes to cool and reweighed.  The loss of weight due to extraction is 

the measure of NDF.  Neutral detergent fiber represents the total cell wall components 

(lignin, cellulose and hemicellulose, plus some damaged proteins).   

 

Acid detergent fiber 

Samples were weighed to 0.5 g (±0.05 g), with three replicates, placed in F57 Filter Bags 

(ANKOM Technology, Macedon NY, USA).  Bags were sealed using a 1915/1920 Heat 

Sealer (ANKOM Technology, Macedon NY, USA).  Acid detergent fiber (ADF) analysis 

measurements were conducted using an Ankom
200

 Fiber Analyzer (ANKOM 

Technology, Macedon NY, USA) which ran for 75 minutes at 100°C.  After extraction, 

samples were rinsed with hot water (90-100°C) three times, soaked in acetone for three 

minutes, air-dried, and finally oven dried at 55°C for 24 hours.  After final oven drying, 

samples were removed from oven, placed in a desiccator for twenty minutes to cool and 

reweighed.  The loss of weight due to extraction is the measure of ADF. 
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 Acid detergent fiber tests lignin and cellulose content.  Lignin is not digestible in 

the rumen.  Therefore, ADF content represents low digestibility; the higher the ADF 

content, the less the forage is consumed by the ruminant. 

 

In-vitro dry matter digestibility 

Two grams (±0.5 g) of sample, with three replicates of each was measured into Screen 

Bags (Foss North America, Eden Prairie, MN, USA). Ruminal fluid inoculum were 

collected 2-4 hours after morning feeding from a ruminally fistulated Holstein heifer fed 

a total mixed ration composed of 35% concentrate mix, 20% corn silage, and 45% alfalfa 

hay (DM basis). The concentrate mix consisted of ground corn, soybean meal, dried corn 

distillers plus a vitamins-minerals mix. The rumen contents were brought to the 

laboratory in a plastic bag under anaerobic conditions, strained through 2 layers of 

cheesecloth, and used within fifteen minutes.  Ruminal contents were mixed with pre-

warmed (39°C) buffer solution and in-vitro dry matter digestibility (IVDMD) 

measurements were conducted using a Daisy
II
 Incubator (ANKOM Technology, 

Macedon, NY, USA).  Four samples were run at a time in each container and underwent 

a 24 hour digestion.  After 24 hours, samples were rinsed in deionized (D.I.) water, oven 

dried for 24 hours at 55°C and reweighed.  The loss of weight due to the extraction is a 

primary measure of sample digestibility.   

 

Crude protein 

Samples were weighed to 0.05 grams (±0.005 g) with three replicates in Tin Foil Cups 

(Leco Corporation, St. Joseph, MI, USA).  Crude protein (CP) measurements were taken 
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using a Leco FP-528 Protein/Nitrogen Determinator (Leco Corporation, St. Joseph, MI, 

USA). 

 

Crude fat 

One gram of each sample, with two replicates, were weighed into XT4 Fat Extraction 

Filer Bags (ANKOM Technology, Macedon NY, USA) and oven dried at 100°C for three 

hours to ensure samples were completely dry and free from any water.  Samples were 

removed from oven and placed in a desiccator to cool, then were reweighed and placed 

back in the desiccator until all bags were weighed and ready for extraction.  Crude fat 

(CF) measurements were conducted using an Ankom
XT10

 (ANKOM Technology, 

Macedon NY, USA).  After extraction, samples were dried at 100°C for one hour and 

weighed.  The loss of weight due to the extraction was the measure of CF content.   

 

Post digestion 

Prior to IVDMD, samples were composited and rerun for NDF, CP, Ash and DM. 

 

Statistical Analysis 

Data were analyzed with SAS Ver. 9.2 to test for variation in forage quality 

measurements (DM, Ash, NDF, ADF, IVDMD, CP, CF, N).   Repeated measures mixed 

models were run testing the effects of population sources (n=3, Table 2.1), watering 

treatment (low, high) and time harvested, and their effect on each forage quality 
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measurement.  Post-hoc Tukey tests were run on significant effects to test for differences 

among treatment levels.  Significance was set to !=0.05. 

 A principal component analysis (PCA) was run in Primer-E 6 (Clarke 1993b) on 

forage quality variables (DM, Ash, NDF, ADF, IVDMD, CP, CF, N) means before 

watering treatment, and after low and high watering treatments, respectively, in 

Andropogon gerardii population sources for correlation.  Principal component axis one 

and two were graphed to visualize the distribution of sites in ordination space.  
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Table 2.1. Seed sources used in greenhouse experiment. 

 

Region Source Name Seed Source Latitude (N) Longitude (W) 

Central KS Hays Hays, Kansas 38
o 
52’ 99

o 
19’ 

Eastern KS Konza  Manhattan, Kansas 39
o
 05’ 96

o
 36’ 

Southern IL 12 Mile  Farina, Illinois 38° 46’ 88°50 

 

 

 

 

 

Table 2.2.  Container weight required to establish desired water levels during 

experimental watering treatments in the greenhouse based upon field capacity of soil. 

 

 

Watering 

Treatment 

Field Capacity (%) Container weight 

(kg) 

Total amount of 

water held (L) 

Moist 85 5.32 2.77 

Dry 35 3.68 1.14 

!
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Field Experiment 

An observational field study was used to quantify forage quality of Andropogon gerardii 

throughout four precipitation regions at the time of optimal forage quality for C4 grasses 

(Griffin and Jung 1983) during the growing season (2-9 July 2010).   

The independent variables were precipitation, region and population source (nested 

within region).  Dependent variables were DM, ash, NDF, ADF, IVDMD, CP, and CF. 

 

Experimental Design  

Twelve field sites were located across the North American Great Plains precipitation 

gradient (Table 2.3). Three remnant prairies were chosen from each of four precipitation 

regions (Table 2.4).  All samples were collected from July 2-9 2010 (Table 2.5). Study 

sites were high quality prairies, which had never been tilled.  Konza Prairie was the only 

site that was grazed.  The grazing herbivore was cattle (May-October) and the burn 

regime was patch burn. 

 

Field Methods  

Within each site, ten 1m
2
 quadrats randomly located in upland areas were sampled.  All 

A. gerardii within the quadrat was assessed visually for percent dominance and clipped 

>5cm from the soil surface and composited for each site.  Samples were dried (at 50°C 

for 7 days), weighed, and finely ground using a Thomas-Wiley Laboratory Mill, Model 4 

(Arthur H. Thomas Company, Philadelphia, PA, USA) through a 1 mm screen.   
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Forage Analyses 

See methodologies for greenhouse experiment. 

 

Statistical Analyses 

Data were analyzed using SAS Ver. 9.2 to test for variation in forage quality 

measurements (DM, Ash, NDF, ADF, IVDMD, CP, CF, N) among population sources.   

Two-way ANOVAs were run on the effects of precipitation region and population source 

on each forage quality measurement.  Post-hoc Tukey tests were run on significant 

effects to test for differences among treatment levels.  Significance was set to !=0.05. 

 Principal Component Analysis (PCA) was run using Primer 6 (Clarke 1993a) 

where each site is represented as a point in multi-dimensional space, calculating 

correlation among sites (Clarke 1993b).  A principal component analysis was run on the 

correlation matrix of forage variable (DM, Ash, NDF, ADF, IVDMD, CP, CF, N) means 

of population source samples grown in the greenhouse before and after (low and high) 

watering treatments.  Principal component axis one and two were graphed to see visualize 

the distribution of sites in ordination space. 
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Table 2.3. Precipitation regions used in field experiment. Annual average precipitation 

from www.NOAA.gov (accessed February 15, 2011). 

 

Region Source  Annual Average 

Precipitation (mm) 

Boulder, Colorado   405 

Hays, Kansas   580 

Manhattan, Kansas   830 

Carbondale, Illinois 1124 
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Table 2.4. Location and environmental data for field sites. Data retrieved from http://websoilsurvey.nrcs.usda.gov/ accessed 

2/14/2011. (SoilSurveyStaff) 

 
Region Site Name Site 

Abbreviat

ion 

County Latitude (N) Longitude (W) Soil Type Slope (%) Elevation (m) Mean annual 

rainfall (mm) 

Mean annual 

temperature 

Visual 

Assessme

nt of 

Percent 
Dominanc

e of A. 

gerardii  

Within 
Quadrant 

Sampled 

Growing 

Degree 

Days 

(2010) 

DeSoto DES Jackson  37°51’ 14.22” 

 

89°13’ 50.49” Orthents silt-loam 0 to 5 128 1165 54.6°F 25 

Fult’s Hill FTL Monroe  
 

38°09’26.26” 90°10’53.08” Menfro silt loam; 
Stookey silt loam 

5 to 10; 35 to 
70 

218 736 to 1168 54 to 57°F 20 

Illinois  

12 Mile 12M Marion  

 

38°44’24.92”  88°53’07.86”  Hoyleton silt loam 0 to 2 192 889 to 1067 52 to 57 °F 20 

4474 

Konza KNZ Riley  
 

39°05’47.38”” 96°32’35.43” Dwight silt loam, 
Irwin silty clay loam 

1 to 3 366 787 to 1194 51 to 59 °F 25 

Carnahan CAR Pottawatomie  39°20’08.20”  

 

96°37’27.19” Benfield silty clay 

loam, Florence 

gravely silt loam 

5 to 30 389 787 to 1194 43 to 66 °F 25 

Eastern 
Kansas 

Top of the 

World 

TOW Riley  39°13’27.45”  96°37’10.59” Benfield silty clay 

loam, Florence 

gravely silt loam 

5 to 30 379 787 to 1194 50 to 57 °F 30 

4105 

Relic REL Ellis  
 

38°51’26.69” 99°22’41.35”  Brownell gravelly 
loam 

2 to 10 659 508 to 618 39 to 66 °F 20 

Webster WEB Rooks  

 

39°24’19.18”  99°30’19.71”  Wakeen-Harney silt 

loams 

1 to 3 606 508 to 618 41 to 66 °F 30 

Central 
Kansas 

Cedar Bluff CDB Trego  
 

38°49’00.10”  99°32’39.21”  Heizer Brownell  
gravelly silt loam  

5 to 30 688 508 to 618 37 to 66 °F 20 

4193 

Paramount 

Point 

PPT Boulder  

 

40°00’17.13”  105°17’36.14“  Rock outcrop 20 to 95 1 811 381 to 508 48 to 52 °F 10 

Crown Rock CRN Boulder  
 

40°00’04.39”  105°17’39.01” Rock outcrop 20 to 95 1 879 381 to 508 48 to 52 °F 10 

Colorado  

Greenbelt GBT Boulder  

 

39°55’42.52”  105°14’09.15”  Nederland very 

cobbly sandy loam 

1 to 12 1 802 381 to 508 48 to 52 °F 5 

3827 
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Table 2.5. Approximate length of growing season in different regions at time of field 

sampling.  Last frost date data from www.NCDC.NOAA.gov (2005) based on 50% 

probability of mean last frost data from 1971-2000 (accessed September 30, 2012). 

Population 

Region 

Weeks Since Last 

Frost Date 

Date Collected (2010) Last Frost 

Date 

CO 4 July 4-6 May 4 

CKS 5 July 6-8 April 26 

EKS 6 July 2-3 April 20 

SIL 8 July 9 April 15 
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Synthesis of Greenhouse and Field Experiment 

One-way ANOVAs were run by population sources used in the field and greenhouse 

study to test the treatment effect of field conditions and controlled greenhouse conditions 

on each forage variable.   

 A PCA was run on forage variable (DM, Ash, NDF, ADF, IVDMD, CP, CF) 

means of population sources which were used in greenhouse experiment and field 

experiment, i.e., Relic Prairie, Konza Prairie and Twelve Mile Prairie.  Greenhouse 

samples were plotted as before watering treatment, and samples after low and high 

watering treatments.  Principal component axis one and two were graphed to map the 

distribution of sites in ordination space. 
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CHAPTER 3: RESULTS 

!

 

Greenhouse Experiment 

Growth Measurements 

Total biomass (TB) 

There was a significant effect of source population on total biomass (F2,18 = 21.76, 

p<0.0001) (Table 3.1).  Overall, means of total biomass showed that the southern IL 

source was the largest (103.7 ± 14.7 g) and eastern KS source was the smallest (14.9 ± 

3.9 g) (Table 3.2) (Figure 3.1) (Appendices Table A1).  Total biomass of eastern KS 

source plants was not statistically different to total biomass of central KS source plants.   

 

Aboveground biomass (AB) 

There was a significant effect of source population on aboveground biomass (F2,18=10.57, 

p=0.0009) (Table 3.1) (Figure 3.2).  Overall, aboveground biomass showed southern IL 

sources were highest (20.1 ± 2.5 g) and eastern KS was lowest (5.4 ± 1.4 g).  

Aboveground biomass of central KS plants was not statistically different to aboveground 

biomass of eastern KS and southern IL plants. 

 

Belowground biomass (BB) 

There was a significant effect of source population on belowground biomass (F2,18=18.31, 

p<0.0001) (Table 3.1) (Figure 3.3).  Overall, means of belowground biomass showed the 

southern IL source to be the greatest (83.6 ± 13.4 g) and eastern KS source were the 
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smallest (9.6 ± 2.5 g).  Belowground biomass of eastern KS plants was not statistically 

different to belowground biomass of central KS plants. 

 

Plant height 

There were no significant differences among sources in initial height of plants (Table 

3.3).  There was a two-way interaction between population source and days since cutting 

on plant height (F8,90=2.56, p=0.0145) (Figure 3.4) (Table 3.4).  Overall, central KS 

plants grew to be the tallest (Day 34 = 91.1 ± 8.5 cm) (Table 3.4).  For the initial twenty 

days of plant growth after cutting all sources grew at relatively the same rate.  On the 

twenty-seventh day since cutting central KS plants surpassed eastern KS and southern IL 

plants in height.   Central KS plants grew at a faster rate, surpassing the height of other 

sources, while eastern KS and southern IL plants leveled out their growth by day thirty-

four (Figure 3.4).   

There was a marginally significant interaction on height by population source and 

watering treatment (F2,90=3.08, p=0.051) (Table 3.4).   Central KS and southern IL source 

plants were not statistically different to each other (Figure 3.5).  Southern IL plants grew 

marginally taller with higher water treatment than with the low water treatment (Table 

3.6, Figure 3.5).   Eastern KS plants were statistically similar not different to themselves, 

and grew shorter with increased watering levels. By contrast, southern IL and central KS 

sources grew taller when subjected to increased watering levels. 
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Inflorescence development 

Inflorescence development was different among and between ecotypes after watering 

treatments (Table 3.7).  Central KS had five flowering plants, one plant with an emerging 

inflorescence and two plants with no sign of an inflorescence.  Eastern KS had one 

flowering plant, one plant in the boot stage, one plant with an emerging inflorescence and 

four plants with no sign of an inflorescence.  Southern IL had one plant with an emerging 

inflorescence and eight plants with no sign of an inflorescence.   

 

Dry matter and ash content  

There was a two-way interaction between population source and time harvested on ash 

content (F2,16=3.79, p=0.0449) (Figure 3.6) (Table 3.8). Overall, eastern KS plants had 

the highest ash content. Central KS plants before cutting were not statistically different to 

eastern KS plants. Ash content was lowest in plants from southern IL compared with the 

other sources, regardless of time.  Southern IL plants, before and after imposing the 

watering treatment were not statistically different to the central KS plants after watering 

treatment. Although ash content in central KS and eastern KS plants decreased after 

implementing the watering treatment; statistical differences in ash content within a source 

were restricted to central KS plants. 

 

Neutral detergent fiber 

There were no significant treatment, time, or source effects, or interactions on NDF 

(Table 3.8). 
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Acid detergent fiber 

There was a significant two-way interaction between population source and watering 

treatment on ADF content, (F2, 16=3.77, p=0.0456) (Figure 3.7).  ADF content was, on 

average, greatest in plants from central KS compared to other sources, whereas southern 

IL plants had the lowest average ADF by source. Eastern KS plants showed the greatest 

change in ADF value between the low and high watering treatment.  ADF of eastern KS 

low watering treatment plants were marginally less than eastern KS high watering 

treatment plants (p = 0.09).  ADF also decreased significantly with time independent of 

watering treatment or source (time 1 ADF = 39.7%  ± 0.4, time 2 = 37.1% ± 0.4) (F1,16 = 

12.65, p=0.0026). 

 

In-vitro dry matter digestibility  

There was a significant effect of population source and harvest time on IVDMD (F 2, 

16=5.63, p=0.014) (Figure 3.8).  Overall, population sources before the watering treatment 

had a higher IVDMD, and were statistically different (higher) from population sources 

after watering treatment (lower).  Although IVDMD decreased in all sources after the 

watering treatment, eastern KS plants exhibited the lowest value (38% ± 0.9) and were 

statistically different from all other sources.  IVDMD of central KS and southern IL 

plants were not statistically different after imposing the watering treatment. 

 

Crude protein 

There was a significant effect of time harvested on CP (F1, 16=41.73, p<0.0001) (Figure 

3.9).  Crude protein decreased 3.4% from the first to the second harvest.   
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Nitrogen 

There was a significant effect of time harvested on nitrogen content (F1, 16=35.01, 

p<0.0001) (Figure 3.10).  Nitrogen decreased 0.6% following implementation of 

watering treatment. 

 

Crude fat 

There was a significant effect of population source on CF (F 2,16=4.24, p=0.0334) (Figure 

3.11).  Overall, southern IL plants had the highest CF content, and were higher than 

eastern KS plants.  Although CF content was lowest in plants from eastern KS, statistical 

differences in CF were not found between central KS and eastern KS plants.  

 

PCA forage quality 

A Principal Component Analysis (PCA) of forage quality measurements, DM, NDF, 

ADF, IVDMD, CP, and ash, respectively, on Andropogon gerardii populations grown in 

the greenhouse before and after (low and high) watering treatments was run on the 

correlation matrix. Two PCA axes were retained for interpretation accounting for 97.6% 

of the total cumulative variation (Table 3.9).  A plot of the samples with respect to PCA 

axes 1 and 2 showed low, negative axis 1 scores for samples before the water treatment 

was imposed and high, positive axis 1 scores for samples after the water treatment, with 

the scores increasing for central KS, to southern IL to eastern KS plants (Figure 3.12). 

The contrast in samples along PCA axis 1 reflected a large negative loading for IVDMD 

and small but positive loadings for DM and NDF (Table 3.10).  PCA axis 2 provided 
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little separation of plants but was reflective of a contrast in loadings for CF and IVDMD 

versus NDF and CP. 
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Figure 3.1. Mean (±1 SE) biomass in greenhouse plants of Andropogon gerardii at end of 

growing season (15 September 2010) by region collected.  CKS = central Kansas, Relic 

Prairie; EKS = eastern Kansas, Konza Prairie; SIL = southern Illinois, Twelve Mile 

Prairie indicate seed sources.  Means accompanied by the same letter were not 

significantly different (! = 0.05). 
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Figure 3.2. Mean (±1 SE) aboveground biomass of greenhouse plants at end of growing 

season (15 September 2010) by region collected.  CKS = central Kansas, Relic Prairie; 

EKS = eastern Kansas, Konza Prairie; SIL = southern Illinois, Twelve Mile Prairie 

indicate seed sources.  Means accompanied by the same letter were not significantly 

different (! = 0.05). 

!

!
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Figure 3.3. Mean (±1 SE) belowground biomass means of greenhouse plants at end of 

growing season (15 September 2010) by region collected.  CKS = central Kansas, Relic 

Prairie; EKS = eastern Kansas, Konza Prairie; SIL = southern Illinois, Twelve Mile 

Prairie indicate seed sources.  Means accompanied by the same letter were not 

significantly different (! = 0.05). 

!

!

!

!

!

!

!

!

!

!

!

!



 

 

! "#!

!

!

Table 3.1. Mixed model analysis of the effects of source population and soil moisture 

treatment on dependent biomass variables in greenhouse samples. Abbreviations 

correspond to: TB = Total biomass, AB = Aboveground biomass, BB = Belowground 

biomass.  Note that analysis of BB was on log BB to improve normality. 

 

 

TB numDF denDF F P value 

Source 2 18 21.76 <0.0001 

Treatment 2 18 0.18 0.6803 

Source*Treatment 2 18 0.40   0.6762  

 

 

 

BB numDF denDF F P value 

Source 2 18 18.31  <0.0001 

Treatment 2 18 1.07 0.3148 

Source*Treatment 2 18  0.88 0.4318 

 

 

 

Table 3.2. Mean (±1 standard error) Total Biomass (TB), Aboveground Biomass (AB) 

and Belowground Biomass (BB) by population source. 

 

 

Source Region Population Source TB (g d.w.) AB (g d.w.) BB (g d.w.) 

Central KS Hays 27.5 ± 4.2 12.7 ± 2.2 14.8 ± 2.4 

Eastern KS Konza 14.9 ± 3.9 5.4 ± 1.4 9.6 ± 2.5 

Southern IL Twelve Mile 103.7 ± 14.7 20.1 ± 2.5 83.6 ± 13.4 

 

 

AB numDF denDF F P value 

Source 2 18   10.57  0.0009 

Treatment 2 18 0.63 0.4386 

Source*Treatment 2 18  0.35 0.7108 
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Figure 3.4. Mean (±1 SE) height (cm) of Andropogon gerardii ecotypes grown in 

greenhouse from August 18 2010 to September 15 2010 by population source (CKS = 

central Kansas, Relic Prairie; EKS = eastern Kansas, Konza Prairie; SIL = southern 

Illinois, Twelve Mile Prairie) and days since cutting all plants to 5 cm.  Means 

accompanied by the same letter were not significantly different (! = 0.05).  



 

 

! "#!

 

 
Figure 3.5. Mean (±1 SE) height values of Andropogon gerardii ecotypes by source 

(CKS = central Kansas, Relic Prairie; EKS = eastern Kansas, Konza Prairie; SIL = 

southern Illinois, Twelve Mile Prairie) and watering treatment (Low treatment = 35% 

field capacity, High treatment = 85% field capacity).  Means accompanied by the same 

letter were not significantly different (! = 0.05; without the Tukey’s adjustment to the p-

values for the paired comparisons, the 12 Mile plants were significantly different between 

low and high watering treatment, ! = 0.02). 
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Table 3.3. Pre-treatment analysis of height before cutting. Note that analysis of height 

before cutting was on log height to improve normality.  

 

 

Height (before) numDF denDF F value p value 

Source 2 18 0.82 0.4570 

Treatment 1 18 0.15 0.6999 

Source*Treatment 2 18 0.76 0.4837 

 

 

Table 3.4. Repeated measures analysis of height following regrowth. Note that analysis 

of height following regrowth was on log height to improve normality. 

 

 

Height (after) numDF denDF F value p value 

Source 2 90 17.76 <.0001 

Day Since Cutting 4 90 125.98 <.0001 

Source*Day 8 90 2.56 0.0145 

Treatment 1 90 1.07 0.3028 

Source*Treatment 2 90 3.08 0.0509 

Day*Treatment 4 90 0.06 0.9930 

Source*Day*Treatment 8 90 0.15 0.9965 

 

 

 

Table 3.5. Mean (±1 standard error) height (cm) by source (CKS = Relic prairie, central 

Kansas; EKS = Konza prairie, eastern Kansas; SIL = Twelve mile prairie, southern 

Illinois) and days after cutting. 

 

 

Days since cutting  

Source 7 days 14 days 20 days 27 days 34 days 

CKS 25.8 ± 1.2 50.6 ± 2.6 59.9 ± 3.5 72.1 ± 4.5 91.1 ± 8.5 

EKS 25.1 ± 0.9 44.4 ± 2.0 51.1 ± 2.3 55.8 ± 4.1 57.2 ± 4.8 

SIL 28.7 ± 1.0 56.7 ± 2.5 65 ± 3.0 67.8 ± 3.1 69.6 ± 3.0 
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Table 3.6. Mean (±1 standard error) height (cm) by source (CKS = Relic prairie, central 

Kansas; EKS = Konza prairie, eastern Kansas; SIL = Twelve mile prairie, southern 

Illinois) and watering treatment.  (Low treatment = 35% field capacity, high treatment = 

85% field capacity). 

 

 

Source Low Treatment (cm) High Treatment (cm) 

CKS 59 ± 6.1 60.8 ± 5.4 

EKS 48.4 ± 3.4 45.5 ± 3.4 

SIL 54.6 ± 3.3 61.3 ± 4.0 
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Table 3.7. Flowering stage after watering treatments in greenhouse plants. Source, CKS = 

Relic prairie, central Kansas; EKS = Konza prairie, eastern Kansas; SIL = Twelve mile 

prairie, southern Illinois. Treatment, 1 = 35% field capacity watering treatment, 2 = 85% 

field capacity watering treatment.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source Plant Treatment Flowering? 

SIL 1 1 Emerging 

SIL 3 1 No 

SIL 7 1 No 

SIL 8 1 No!

SIL 9 1 No!

SIL 2 2 No!

SIL 4 2 No!

SIL 5 2 No!

SIL 6 2 No!

EKS 1 1 No!

EKS! 2 1 No!

EKS! 3 1 Boot 

EKS! 4 2 Yes 

EKS! 5 2 No 

EKS! 6 2 Emerging 

EKS! 7 2 No 

CKS 2 1 No 

CKS 5 1 Yes 

CKS! 6 1 Yes 

CKS! 8 1 Yes 

CKS! 1 2 Yes 

CKS! 3 2 No 

CKS! 4 2 Yes 

CKS! 7 2 Emerging 
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Figure 3.6. Mean (±1 SE) ash content in greenhouse samples by population source (CKS 

= Relic prairie, central Kansas; EKS = Konza prairie, eastern Kansas; SIL = Twelve mile 

prairie, southern Illinois) and time harvested (Before = before watering treatment, After = 

after watering treatment).  Means accompanied by the same letter were not significantly 

different (! = 0.05).   

!

!

!
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Figure 3.7. Mean (±1 SE) acid detergent fiber content in greenhouse samples by 

population source (CKS = Relic prairie, central Kansas; EKS = Konza prairie, eastern 

Kansas; SIL = Twelve mile prairie, southern Illinois) and watering treatment level.  

Means accompanied by the same letter were not significantly different (! = 0.09). Low 

watering treatment is 35% field capactiy and high watering treatment is 85% field 

capacity. 
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Figure 3.8. Mean (±1 SE) in-vitro dry matter digestion content in greenhouse samples by 

population source (CKS = Relic prairie, central Kansas; EKS = Konza prairie, eastern 

Kansas; SIL = Twelve mile prairie, southern Illinois) and time harvested (Before = before 

watering treatment, After = after watering treatment).  Means accompanied by the same 

letter were not significantly different (! = 0.05). 
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Figure 3.9. Mean (±1 SE) crude protein content in greenhouse plants of Andropogon 

gerardii by time harvested (Before = before watering treatment, After = after watering 

treatment).  Means accompanied by the same letter were not significantly different (! = 

0.05). 

 

 

 

!
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Figure 3.10. Mean (±1 SE) nitrogen content in greenhouse plants of Andropogon gerardii 

by time harvested (Before = before watering treatment, After = after watering treatment).  

Means accompanied by the same letter were not significantly different (! = 0.05). 

 

!
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Figure 3.11. Mean (±1 SE) crude fat content in greenhouse plant of Andropogon gerardii 

by population source (CKS = Relic prairie, central Kansas; EKS = Konza prairie, eastern 

Kansas; SIL = Twelve mile prairie, southern Illinois).  Means accompanied by the same 

letter were not significantly different (! = 0.05). 
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Table 3.8. Mixed model analysis on dependent variables in greenhouse samples. 

!
 

 

 

 

 

Ash content numDF denDF F value p value 

Source 2 16 12.54 0.0005 

Time 1 16 1.28 0.2737 

Source*Time 2 16 3.79 0.0449 

Treatment 1 16 0.33 0.5749 

Source*Treatment 2 16 1.03 0.3781 

Time*Treatment 1 16 0.01 0.9163 

Source*Time*Treatment 2 16 0.43 0.6593 

NDF content numDF denDF F value p value 

Source 2 16 2.03 0.1632 

Time 1 16 0.00 0.9837 

Source*Time 2 16 0.06 0.9409 

Treatment 1 16 0.61 0.4473 

Source*Treatment 2 16 0.92 0.4183 

Time*Treatment 1 16 0.55 0.4676 

Source*Time*Treatment 2 16 1.01 0.3877 

ADF content numDF denDF F value p value 

Source 2 16 2.7 0.0977 

Time 1 16 12.65 0.0026 

Source*Time 2 16 0.33 0.7247 

Treatment 1 16 5.67 0.0300 

Source*Treatment 2 16 3.77 0.0456 

Time*Treatment 1 16 0.82 0.3778 

Source*Time*Treatment 2 16 0.06 0.9380 
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IVDMD numDF denDF F value p value 

Source 2 16 2.05 0.1612 

Time 1 16 137.85 <.0001 

Source*Time 2 16 5.63 0.0141 

Treatment 1 16 0.75 0.3994 

Source*Treatment 2 16 0.44 0.6495 

Time*Treatment 1 16 0.20 0.6615 

Source*Time*Treatment 2 16 0.17 0.8424 

 

 

 

Crude protein numDF denDF F value p value 

Source 2 16 1.35 0.2868 

Time 1 16 41.73 <.0001 

Source*Time 2 16 2.09 0.1558 

Treatment 1 16 1.63 0.2198 

Source*Treatment 2 16 1.38 0.2811 

Time*Treatment 1 16 1.00 0.3325 

Source*Time*Treatment 2 16 0.18 0.8336 

 

 

 

Nitrogen numDF denDF F value p value 

Source 2 16 1.17 0.3351 

Time 1 16 35.01 <.0001 

Source*Time 2 16 1.49 0.2541 

Treatment 1 16 2.02 0.1748 

Source*Treatment 2 16 0.95 0.4089 

Time*Treatment 1 16 1.91 0.1856 

Source*Time*Treatment 2 16 0.01 0.9944 
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Crude fat numDF denDF F value p value 

Source 2 16 4.24 0.0334 

Time 1 16 2.84 0.1115 

Source*Time 2 16 2.28 0.1342 

Treatment 1 16 1.46 0.2441 

Source*Treatment 2 16 1.05 0.3715 

Time*Treatment 1 16 0.27 0.6084 

Source*Time*Treatment 2 16 0.34 0.7135 
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Figure 3.12.  Principal component analysis of forage quality (dry matter (DM), neutral 

detergent fiber (NDF), acid detergent fiber (ADF), In-vitro dry matter digestion 

(IVDMD), crude fat (CF), crude protein, (CP), ash content and nitrogen (N)) of 

Andropogon gerardii grown in the greenhouse from three sources under low and high 

moisture treatments, before watering treatment (circles) and after high (85% field 

capacity: squares) and low (35% field capacity: triangles) treatments.  
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Table 3.9. Eigenvalues from PCA on greenhouse sample forage variables (DM, Ash 

content, NDF, ADF, IVDMD, CP, CF and N). 

!

!

Eigenvalues 

PC Eigenvalues %Variation Cumulative %Variation 

1 86.1 94.0 94.0 

2 3.3 3.6 97.6 

 

!

 

 

Table 3.10. Eigenvectors, variable loadings for PCA axes 1 and 2 on forage variables 

(DM, Ash, NDF, ADF, IVDMD, CP, CF and N) for greenhouse samples before and after 

low and high watering treatment. 

 

Eigenvectors 

 

Variable PC1 PC2 

DM 0.068 0.066 

Ash -0.001 -0.344 

CF -0.026 0.173 

IVDMD -0.974 0.115 

NDF 0.031 -0.668 

ADF -0.109 -0.318 

CP -0.182 -0.535 

Nitrogen -0.029 -0.086 
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Field Experiment 

!

Dry matter and ash content  

There were significant effects of region and population source on ash content (Table 

3.11).  Central Kansas exhibited higher ash content (9.5% ± 2.1) than all other 

precipitation regions: Colorado (6.2% ± 0.7), eastern Kansas (6.7% ± 0.4), and southern 

Illinois (6.1% ± 0.7).   The Webster ecotype in central Kansas exhibited the highest ash 

content, 11.9% ± 0.1, and was statistically different from all other ecotype sources 

(Figure 3.13). !

 

Neutral detergent fiber (NDF) 

There were significant effects of region and population source on NDF (Table 3.11).  

Eastern Kansas (74.1% ± 0.8) and southern Illinois 72.4% ± 1.9) populations exhibited 

higher NDF value than Colorado (69.3% ± 1.1) and central Kansas (68.5% ± 1.8) 

precipitation regions (Figure 3.14). 

 

Acid detergent fiber (ADF) 

There were significant effects of precipitation region and population source on ADF 

(Table 3.11).  Eastern Kansas exhibited the highest ADF content, 42.3% ± 0.8, followed 

by southern Illinois, 41.5% ± 0.5, then central Kansas, 40.6% ± 3.3, and lastly, Colorado, 

36.3% ± 2.6. Central Kansas ecotypes exhibited significant differences between 

populations within a region.  Webster, a central Kansas source, exhibited the highest 
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ADF content, 44.7% ± 0.8. Greenbelt, a Colorado source, exhibited the lowest ADF 

content 35.8% ± 3.6 (Figure 3.15).  

 

In-vitro dry matter digestibility (IVDMD) 

There were significant effects of precipitation region and source digestibility (Table 

3.11).  Percentages of IVDMD declined as average annual rainfall increased (Figure 

3.16). Colorado ecotypes exhibited the greatest IVDMD, 56% ± 4.3, followed by central 

Kansas at 50% ± 5.7, eastern Kansas, 46% ± 3.1 and southern Illinois ecotypes exhibited 

the lowest IVDMD at 43% ± 2.9. 

 

Crude protein (CP) 

There were significant effects of precipitation region and population source on CP (Table 

3.11). Colorado ecotypes exhibited higher CP content than other precipitation regions 7% 

± 0.5 (Crown Rock = 7.3% ± 0.2; Greenbelt = 7.2% ± 0.3; Paramount Point = 6.6% ± 

0.6) (Figure 3.17).  Central Kansas, 4.6% ± 1.1, and southern Illinois, 4.8% ± 0.6, 

exhibited intermediate crude protein values.  Eastern Kansas exhibited lowest values as a 

region 3.8% ± 0.6, where as the Webster population exhibited the overall lowest value of 

all samples 3.4% ± 0.7. 

 

Nitrogen 

There were significant effects of precipitation region and population source on percent N 

of samples (Table 3.11).  Colorado ecotypes exhibited the highest N content 1.2% ± 0.05 
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(Crown Rock = 1.17% ± 0.03; Greenbelt = 1.2% ± 0.05; Paramount Point = 1.1% ± 

0.09). Colorado ecotypes were not statistically different from each other.  Central Kansas, 

0.7% ± 0.2, eastern Kansas, 0.6% ± 0.1, and southern Illinois, 0.8% ± 0.1, exhibited 

similar values.  Webster ecotype in central Kansas exhibited the lowest N content of all 

ecotypes at 0.6% ± 0.05 (Figure 3.18). 

 

Crude fat (CF) 

There were no significant treatment effects on CF. Overall, CF means were highest in 

central Kansas, 4% ± 0.2, followed by Colorado, 3.6% ± 0.3.  Eastern Kansas, 3.2 ± 0.8, 

and southern Illinois values, 3.3 ± 0.7, were similar. 

 

PCA forage quality 

Sites sorted on a west to east gradient along PC 1 (Figure 3.19) reflecting a zero loading 

for DM contrasting with a high positive loading for IVDMD (Table 3.12).  The total 

cumulative variation in PC1 and 2 was 79.4% and 90.9%, respectively (Table 3.13).  PC 

2 provided little separation of sites but contrasted a positive loading for ADF and a 

negative loading for ash. 
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Figure 3.13. Mean (±1 SE) ash content in field samples of Andropogon gerardii collected 

across a precipitation gradient (Abbreviations: CO = Colorado, CKS = central Kansas, 

EKS = eastern Kansas, SIL = southern Illinois. Population abbreviations see Table 2.4).  

Means accompanied by the same letter were not significantly different (! = 0.05).
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Figure 3.14. Precipitation region and population source on Mean (±1 SE) NDF content in 

field plants of Andropogon gerardii collected across a precipitation gradient 

(Abbreviations: CO = Colorado, CKS = central Kansas, EKS = eastern Kansas, SIL = 

southern Illinois. Population abbreviations see Table 2.4). Means accompanied by the 

same letter were not significantly different (! = 0.05). 

!

!



 

 

! "#!

!

!

Figure 3.15. Precipitation region and population source on Mean (±1 SE) ADF content in 

field plants of Andropogon gerardii collected across a precipitation gradient 

(Abbreviations: CO = Colorado, CKS = central Kansas, EKS = eastern Kansas, SIL = 

southern Illinois. Population abbreviations see Table 2.4).  Means accompanied by the 

same letter were not significantly different (! = 0.05).
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Figure 3.16.  Mean (±1 SE) in-vitro dry matter digestion from field plants of Andropogon 

gerardii collected across a precipitation gradient (Abbreviations: CO = Colorado, CKS = 

central Kansas, EKS = eastern Kansas, SIL = southern Illinois. Population abbreviations 

see Table 2.4).  Means accompanied by the same letter were not significantly different 

(!= 0.05). 

!

!

!

!
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Figure 3.17. Mean (±1 SE) CP content in field plants of Andropogon gerardii collected 

across a precipitation gradient ((Abbreviations: CO = Colorado, CKS = central Kansas, 

EKS = eastern Kansas, SIL = southern Illinois. Population abbreviations see Table 2.4).  

Means accompanied by the same letter were not significantly different (! = 0.05). 
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Figure 3.18. Mean (±1 SE) nitrogen content in field plants of Andropogon gerardii 

collected across a precipitation gradient (Abbreviations: CO = Colorado, CKS = central 

Kansas, EKS = eastern Kansas, SIL = southern Illinois. Population abbreviations see 

Table 2.4).  Means accompanied by the same letter were not significantly different (! = 

0.05). 

!
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Figure 3.19. Principal component analysis (PCA) of Andropogon gerardii ecotypes based 

on forage quality measurements of dry matter (DM), neutral detergent fiber (NDF), acid 

detergent fiber (ADF), in-vitro dry matter digestion (IVDMD), crude fat (CF), crude 

protein, (CP), ash content and nitrogen (N) in field plants (CO = Colorado, CKS = central 

Kansas, EKS = eastern Kansas, SIL = southern Illinois).  
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Table 3.11. Mixed model analysis on dependent variables in forage analysis of field 

experiment. Sources were nested in region. 

! !

Ash numDF denDF F value p value 

Region 3 24 133.67 <0.0001 

Source 8 24 31.33 <0.0001 

 

 

 

 

 

 

ADF numDF denDF F value p value 

Region 3 24 41.63 <0.0001 

Source 8 24 8.94 <0.0001 

 

 

 

 

 

 

 

 

 

Crude protein numDF denDF F value p value 

Region 3 24 64.02 <0.0001 

Source 8 24 5.21 0.0008 

 

 

 

 

 

 

 

NDF numDF denDF F value p value 

Region 3 24 63.5 <0.0001 

Source 8 24 5.98 0.0003 

IVDMD numDF denDF F value p value 

Region 3 24 16.03 <0.0001 

Source 8 24 0.95 0.5 

Nitrogen numDF denDF F value p value 

Region 3 24 64.03 <0.0001 

Source 8 24 5.21 0.0008 
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Crude fat numDF denDF F value p value 

Region 3 24 1.46 0.28 

Source 8 24 0.57 0.78 
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Table 3.12. Variable loadings for PCA axes 1 and 2 on forage variables (DM, Ash, NDF, 

ADF, IVDMD, CP, CF and N) for field samples. 

! ! ! ! ! !

 

Eigenvectors 

Variable PC1 PC2 

CF 0.019 -0.008 

CP 0.133 0.277 

DM 0.000 0.000 

NDF 0.261 -0.055 

ADF 0.343 0.684 

IVDMD 0.892 -0.278 

Ash 0.017 -0.611 

Nitrogen 0.021 0.044 

!

 

 

 

 

 

Table 3.13. Eigenvalues from PCA on field sample forage variables (DM, Ash, NDF, 

ADF, IVDMD, CP, CF and N). 

 

 

Eigenvalues 

PC Eigenvalues %Variation Cumulative %Variation 

1 48.0 79.4 79.4 

2 7.0 11.6 90.9 

! !!!!!!! !!!!!!!! !
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Synthesis of Field and Greenhouse Experiment 

 

PCA 

All sources of greenhouse plants before watering treatment had similar, high positive 

scores along PC 1, separate from all other plants (Figure 3.19).  Field samples fell into 

the same area of the PCA as greenhouse samples after they were subjected to watering 

treatments.  There was no distinction between the location of greenhouse samples 

receiving the low and high watering treatments.  The total cumulative variation in PC1 

and 2 was 81.6 and 95%, respectively (Table 3.14).   PC 1 had negative eigenvector 

loadings for DM and NDF, and large positive eigenvector loadings for IVDMD.  PC 2 

provided little separation of sources.  Some separation was seen for southern Illinois and 

eastern Kansas field samples from the post-watering treatment greenhouse samples and 

the field central Kansas sample.  !
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!

!
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Figure 3.20. PCA on forage quality measurements dry matter (DM), neutral detergent 

fiber (NDF), acid detergent fiber (ADF), in-vitro dry matter digestion (IVDMD), crude 

fat (CF), crude protein, (CP), ash and nitrogen (N) of Andropogon gerardii comparing 

field sample and greenhouse plants before watering treatment and after low (35% field 

capacity) and high (85% field capacity) watering treatments. (CKS = central Kansas, 

Relic prairie; EKS = eastern Kansas, Konza prairie; SIL = southern Illinois, Twelve mile 

prairie).  

!

!

! !
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!

!
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Table 3.14. Eigenvalues from PCA on field and greenhouse sample forage variables 

(DM, Ash, NDF, ADF, IVDMD, CP, CF and N). 
!

 

Eigenvalues 

PC Eigenvalues %Variation Cumulative %Variation 

1 66.3 81.6 81.6% 

2 10.9 13.4 95% 

! !!!!!!! !!!!!!!! !

!

Table 3.15. Variable loadings for PCA axes 1 and 2 on forage variables (DM, Ash, NDF, 

ADF, IVDMD, CP, CF and N) for field and greenhouse samples. 

 

Eigenvectors 

Variable PC1 PC2 

CF 0.006 0.180 

CP 0.164 0.218 

DM -0.047 -0.237  

NDF -0.106 0.770 

ADF 0.064 0.519 

IVDMD 0.977 -0.001 

Ash 0.010 0.019 

Nitrogen 0.026 0.035 
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CHAPTER 4: DISCUSSION 

 

!

 The objective of this study was to quantify the effect of ecotypic variation on 

forage quality in the dominant prairie species Andropogon gerardii Vitman.  Samples 

were collected across a precipitation gradient in the North American grasslands from 

Colorado to southern Illinois and analyzed to determine suitability for ruminant 

consumption.   

 

Intraspecific variation in growth 

 Growth differences among populations of Andropogon gerardii were categorized 

as early as the 1960s, with seminal work by McMillan on ecotypes through common 

garden experiments in Lincoln, Nebraska (McMillian 1959, McMillan 1965, McMillian 

1969).  McMillan examined phenology patterns for native prairie grasses collected from 

sixty-five sites along a north-south gradient ranging over 2,000 km from North Dakota to 

northern Texas.  He noted that ecotypes collected from northern sites flowered earlier 

when grown in Lincoln, NE, an adaptation due to their shorter photoperiods, than 

ecotypes from southern sites, where growing seasons are longer.   

 A more recent study of flowering patterns from a central Illinois tallgrass prairie 

found number of flowering plants per month was correlated with long-term temperature 

and precipitation patterns (Kerbart and Anderson 1987).  This same general trend was 

observed in the field study presented here.  A. gerardii in eastern regions of the field 

study, where longer growing seasons and greater precipitation occur, were 
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developmentally more advanced compared to those further west at the time samples were 

collected for forage analysis.  These observations were not supported under the controlled 

conditions of my greenhouse study.  After watering treatments, at the time of final 

harvest, most plants from central KS were flowering, followed by fewer plants from 

eastern KS, and, only one plant from southern IL (Table 3.7).  Under greenhouse 

conditions central KS sourced plants were the most advanced, an opposite trend than 

observed in the field.   Yet, this difference could be attributed to the central KS 

ecotype’s adaption to shorter growing seasons, and therefore, they developed faster than 

the southern IL ecotype, under controlled conditions.  Thus, ecotypic variation greatly 

influences growth patterns of A. gerardii.   

 In the greenhouse study, differences in height among population sources were 

observed only following regrowth after initial harvest and application of the soil moisture 

treatments, indicating that baseline growth for all sources were similar.  Growth 

following initial harvest differed among sources, but not as predicted: the central KS 

source plants grew tallest and the eastern KS source plants grew, shortest. Nevertheless, 

these differences in height under greenhouse conditions again confirms the occurrence of 

ecotypic differentiation among the Andropogon gerardii population sources modified by 

a plastic response to precipitation.  As in previous studies (Gustafson et al. 2004), height 

is a useful measure of ecotypic differentiation in A. gerardii. 

 Furthermore, total biomass, including above- and belowground biomass, differed 

among population sources.   Many studies have found a significant relationship between 

NPP and mean annual precipitation in North American grassland plants (Lauenroth and 

Sala 1992, Briggs and Knapp 1995) a general trend of production increasing along the 
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west to east gradient (Sala et al. 1988).  In A. gerardii, this relationship of greater NPP 

with greater rainfall has been noted to account for up to 89% of growth variation within 

the Great Plains (Epstein et al. 1996).  However, in the greenhouse study the hypothesis 

which predicted greater NPP from ecotypes originating from greater rainfall regions was 

not supported.  Plants from the southern IL population source, originating in the area of 

the greatest annual rainfall across the precipitation gradient, did produce the most 

biomass of the three sources as predicted.  Although, by contrast, plants from the eastern 

KS source, exhibited the lowest biomass of the sources tested.  The central KS source, 

originating from the driest region and assumed to be the most drought tolerant of the 

three regions, exhibited intermediate productivity among the three population sources.   

 

Intraspecific variation in forage quality 

 Forage quality of A. gerardii collected from the field varied among the four 

regions across the precipitation gradient, and, to a lesser extent among populations within 

each region reflecting both intraspecific variation in forage quality because of the 

presence of ecotypes of A. gerardii, and phenotypic plasticity and phenological 

variability.  Highest forage quality in the field, i.e., high IVDMD, low ADF (lignin) and 

high crude protein (CP), occurred in CO ecotypes of A. gerardii from the driest, western 

end of the precipitation gradient.  However, plants sampled in the western ends of the 

gradient were observed to be in earlier developmental stages, i.e., smaller leaf to stem 

ratio, than those sampled from the east.   

 A reciprocal common garden experiment at locations across the precipitation 

gradient of the same A. gerardii ecotypes studied here found planting location had 

significant effects on nutritive composition of A. gerardii, and was a more valuable 
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indicator of elemental and chemical composition than ecotype, or the interaction between 

location and ecotype (Zhang et al. 2012).  They also found ecotypic variation had 

significant effects on digestibility (ADF% and ash content).  The results of my study, 

where the plants were directly sampled from the same remnant prairies, rather than plants 

grown from seed and reciprocally transplanted into common gardens, is comparable to 

Zhang et al.,’s (2012) findings where population location in the field was the primary 

indicator of forage quality, and ecotypic variation and had significant effects on forage 

quality.  Gan at el. (2012), studied plants from the same reciprocal gardens as Zhang et al. 

(2012) and found southern IL ecotypes, and Carbondale, IL (southern IL) and Manhattan, 

KS (eastern KS) planting locations produced the highest total cellulose and hemicellulose 

content (Gan et al. 2012).  In my experiment, eastern KS and southern IL plants similarly 

had the highest NDF content.  High cellulose and hemicellulose leads to lower forage 

quality due to difficulty in digesting these cell wall components.   Overall, it is apparent 

that planting location and population source has significant effects on digestibility, and 

eastern KS and southern IL ecotypes produce high bio-oil yields, but have lower forage 

quality than central KS ecotypes in field conditions. 

The greenhouse experiment largely supported an interpretation of lower forage 

quality of as a result of more advanced plant maturity and to a lesser extent lower soil 

moisture. When A. gerardii was raised from seed in the greenhouse, forage quality did 

not decrease from west to east sources as seen in the field samples.  All populations 

sampled before the watering treatments were imposed exhibited similar high forage 

quality, with the highest occurring in eastern KS, then southern IL, followed by central 

KS.   Forage quality of all greenhouse plants before the watering treatment were higher 
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than any population observed in the field.  In fact, the high level of forage quality found 

in the greenhouse grown plants before watering treatments were comparable to strains of 

Pawnee C3, ‘Bonanza’, and Kaw C3, ‘Goldmine’, third generation cultivars of Pawnee 

and Kaw, respectively, of A. gerardii bred for high forage quality (Mitchell et al. 2005, 

Vogel et al. 2006b, a) (Table 4.1). 

Forage quality dropped significantly after regrowth following clipping and 

imposition of the watering treatments in all sources.  Ecotypes were affected differently 

due to ecotypic variation, i.e., the different climates, particularly, and precipitation levels, 

to which they are adapted.  After the high watering treatment, the southern IL ecotype 

exhibited the highest forage quality, i.e., high IVDMD, low ADF (lignin) and high crude 

protein (CP), of the three ecotypes, followed by the southern IL ecotype subject to the 

low water treatment.  These values were comparable to those found in the field.  Central 

KS and eastern KS exhibited low forage quality after implementation of watering 

treatments, i.e., low IVDMD, high ADF (lignin) and low crude protein (CP), under both 

watering conditions.  Eastern KS values in the greenhouse following watering treatments 

were lower than any values found in the field.  Southern IL ecotypes are adapted to 

longer growing seasons and greater precipitation compared with central KS ecotypes that 

evolved under conditions of lower precipitation and shorter growing seasons. Southern IL 

ecotypes exhibited greater plasticity, maintaining high levels of forage quality in both 

low and high watering treatments.  The difference in adaptation explains the ability of 

ecotypes from longer growing seasons to better maintain higher rates of forage quality 

under varied precipitation conditions as seen in the southern IL ecotype and why lower 

forage quality was exhibited in the central KS ecotype.  This adaption confirms ecotypic 
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variation and phenotypic plasticity in forage quality under controlled conditions with 

maturity and soil moisture effecting values.  Both the field and greenhouse experiments 

support previous findings indicating that advancing plant maturity is primarily 

responsible for decreases in forage quality through the growing season (Perry and 

Baltensperger 1977, Perry and Baltensperger 1979, Griffin and Jung 1983, Mitchell et al. 

1994, Cherney and Hall 1998, Jung and Vogel 2006), with environmental factors having 

a significant albeit lesser role.  These results also suggest that southern IL ecotypes of A. 

gerardii exhibit greater phenological plasticity than more westerly derived ecotypes due 

to their high forage qualities under both watering treatments, and adaption to longer 

growing seasons.   

 

Implications for Climate Change, Management and Restoration 

 Shifting global precipitation patterns resulting from climate change (Vitousek 

1994, IPCC et al. 2000) requires knowledge of species response to altered conditions if 

we are to preserve and restore communities that are able to adapt, persist and become 

self-sustaining over time.  Responsible grazing management on prairies can help to 

restore natural ecosystem functionality and enhance biodiversity on rangelands 

(Fuhlendorf and Engle 2001) including tallgrass prairies (Collins et al. 1998, Hickman et 

al. 2004).  Nutritious forage is essential for productive animal management, high rates of 

weight gain and ample milk production (Cherney and Hall 1998, Ball et al. 2001).   

Grasses are the “backbone” of successful forage management systems (Moser and Nelson 

2003).  
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 Andropogon gerardii can be found in high frequency across a wide range of 

physiographic regions (Tompkins et al. 2010).  A recent study examining the gene pool 

of three natural populations of A. gerardii in Wisconsin confirmed three distinct gene 

pools of the species with overlapping regions and called for preserving its genetic 

diversity (Price et al. 2012).   A study in southwestern Quebec confirmed that the Big 

Bluestem cultivar ‘Niaga’ can be grown successfully as far as eastern Canada for forage 

and biofuel production (Madakadze et al. 1998).  Therefore, this species is essential to 

preserve and use for economic benefits. 

 If we are to restore grassland communities with grazing using Andropogon 

gerardii, population sources must be considered due to ecotypic differences.  Ecotypic 

differences in forage quality vary with forage maturity, and to a lesser extent soil 

moisture, and potentially other as yet untested environmental factors.  Of those tested 

here, southern IL ecotypes appear to be the most adaptable to variations in precipitation, 

and will likely maintain high levels of forage quality under projected changes in 

precipitation resulting from climate change.   

 

 

New Questions 

 In the Midwest and Great Plains regions, models project increased summer 

aridity, with higher temperatures, longer growing seasons, and greater precipitation in the 

winter months (Karl et al. 2009).  Western ecotypes, which have evolved under shorter 

growing seasons might not as easily adapt to weather pattern changes, and may 

experience declines in forage quality as a result.  As seen under controlled conditions, the 

southern IL ecotype exhibited greater phenological plasticity than the more westerly 
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sourced ecotypes, and can maintain high levels of forage quality under varied 

precipitation. 

 From this study new questions arise.  Forage quality values in the greenhouse 

before watering treatments were only slightly lower than Kaw and Pawnee cultivars, but 

further investigation should be done as to why greenhouse values of forage quality were 

so high compared with field values, and whether this difference is a result of first 

generation growth from seed versus re-sprouts of older plants in the field. Age of plant 

alone was not the reason for differences found in forage quality between the field and 

greenhouse studies: Greenhouse plants were harvested 16 weeks since planting seed, and 

field plants were harvested 4-8 weeks since last frost date (Table 2.5).  Yet, ecotypes 

under controlled conditions grown from seed were much higher in initial nutrition value 

than any field samples.   

 The effect of other important interacting environmental factors, such as fire, and 

how they may interact with forage quality and a changing climate should also be 

considered. Studies show both bison (Knapp et al. 1999, Fuhlendorf et al. 2008) and 

cattle (Allred et al. 2011) prefer recently burned areas, where forage is highest and 

choose quality over quantity (Coppedge and Shaw 1998).  Do all ecotypes exhibit high 

nutrition levels after fire?  Further investigation on how the forage quality of ecotypes 

respond to fire should also be explored.   
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Source IVDMD (%) CP (%) NDF (%) ADF (%) 

Pawnee 59.3 9.5 71.8 . 

Pawnee C3 (Bonanza) 60.8 9.4 71.3 . 

Kaw 61.2 9.4 71.1 . 

Kaw C3 (Goldmine) 61.2 9.7 71.1 . 

Central KS (before) 58.8 7.9 67.2 40.5 

Eastern KS (before) 62.7 8.0 70.0 39.2 

Southern IL (before) 59.3 6.3 68.0 39.4 

Central KS (after low) 42.9 2.6 67.1 38.2 

Central KS (after high) 46.0 3.6 66.5 38.5 

Eastern KS (after low) 37.9 4.4 69.6 35.6 

Eastern KS (after high) 39.7 4.0 70.7 39.0 

Southern IL (after low) 47.0 4.0 68.0 32.7 

Southern IL (after high) 49.0 3.4 67.2 32.0 

 

 

Table 4.1. Comparison of forage quality in A. gerardii cultivars Pawnee, Pawnee C3, 

Kaw and Kaw C3 data compared with mean values from greenhouse grown Hays, Konza 

and Twelve Mile ecotypes in this study (cultivar data adapted from Mitchell et al. 2006). 
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APPENDIX A 

Greenhouse Experiment 

Table A1. Aboveground Net Primary Production (ANPP), Belowground Net Primary 

Production (BNPP) and Net Primary Production (NPP) in grams (g) on greenhouse 

samples harvested at end of growing season. Treatment 1=Low moisture treatment of 

35% field capacity, and, Treatment 2=High moisture treatment of 85% field capacity 

 

 

 

 

 

 

 

 

Source Plant No. Treatment ANPP BGPP NPP 

CKS! 1 2 14.9 21.4 36.3 

CKS! 2 1 4.15 6.11 10.26 

CKS! 3 2 9.88 15.88 25.76 

CKS! 4 2 24.54 22.57 47.11 

CKS! 5 1 16.64 20.57 37.21 

CKS! 6 1 9.18 15.96 25.14 

CKS! 7 2 9.97 6.78 16.75 

CKS! 8 1 12.56 9.14 21.7 

EKS 1 1 8.7 17.26 25.96 

EKS! 2 1 2.65 4.85 7.5 

EKS! 3 1 6.59 14.18 20.77 

EKS! 4 2 9.13 11.05 20.18 

EKS! 5 2 0.4 0.95 1.35 

EKS! 6 2 8.4 15.99 24.39 

EKS! 7 2 1.7 2.57 4.27 

SIL 1 1 28.8 147.54 176.34 

SIL! 2 2 26.56 11.63 38.19 

SIL! 3 1 12.62 51.19 63.81 

SIL! 4 2 16.78 126.63 143.41 

SIL! 5 2 12.31 61.5 73.81 

SIL! 6 2 31.58 88.86 120.44 

SIL! 7 1 14.81 78.35 93.16 

SIL! 8 1 14.5 84.97 99.47 

SIL! 9 1 22.72 101.65 124.37 



 

 

! "#!

Table A2. Height data in centimeters (cm), tiller count and base diameter (cm) on greenhouse samples from after first harvest to the 

end of growing season. 

 

  

 

 

 

Source Plant Treatment 8/18/10 8/25/10 9/1/10 9/7/10 9/14/10 9/21/10 Flowering? Tiller Count Base Diameter 

CKS! 2 1 52 22 45 48 48.5 49 no 13 13 

CKS! 5 1 104 28 49.5 62 75 105 yes 23 26 

CKS! 6 1 101 29 58 73 87.5 110 yes 23 27 

CKS! 8 1 87 21 39.5 50 74 106 yes 24 22 

CKS! 1 2 85 27.5 62 72 79 94 yes 28 27 

CKS! 3 2 67 26 52 54 58.5 59 no 21 23 

CKS! 4 2 95 29.5 54 67 81 112 yes 28 31 

CKS! 7 2 107 23 44.5 53 73.5 94 emerging 16 18 

EKS! 1 1 74 26 48 61 64 64 no 11 19 

EKS! 2 1 77 24.5 49 53 57 57 no 5 15 

EKS! 3 1 100 25.5 44.5 51 51 50 boot 11 19 

EKS! 4 2 103 22 38 52 74 82 yes 18 21 

EKS! 5 2 47 22.5 49 49 50 50 no 1 7 

EKS! 6 2 96 29 46.5 52 54.5 54.5 emerging 31 26 

EKS! 7 2 39 26 36 40 40 43 no 5 9 

SIL! 1 1 97 32 63.5 78 82 76 emerging 71 29 

SIL! 3 1 73 25 49.5 55 59 60 no 67 24 

SIL! 7 1 81 25.5 52 60 65.5 67 no 73 27 

SIL! 8 1 84 27 49.5 60 73 57 no 94 42 

SIL! 9 1 85 27.5 50 57 57 58 no 106 38 

SIL! 2 2 84 31.5 61 66 74 71 no 68 30 

SIL! 4 2 91 29.5 55.5 64 64 64 no 72 28 

SIL! 5 2 88 27 59 64 69 75 no 57 25 

SIL! 6 2 93 33 70.5 81 83 83 no 54 29 
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Table A3.  Dry matter (%DM), moisture content (% Moisture) and Ash content (ASH) for each sample before (Time 1) and after 

(Time 2) watering treatments, 1=Low moisture treatment of 35% field capacity, and, 2=High moisture treatment of 85% field 

capacity.  Source abbreviations: Relic Prairie (CKS), Konza Prairie (ESK), Twelve Mile Prairie (SIL). 

 

Sample Container No. Time Treatment Replicate % DM % Moisture ASH 

CKS! 13 1 2 1 94.42 0.06 8.19 

CKS! 13 1 2 2 94.48 0.06 7.99 

CKS! 25 1 1 1 94.76 0.05 7.19 

CKS! 25 1 1 2 94.67 0.05 7.09 

CKS! 47 1 2 1 94.52 0.05 7.49 

CKS! 47 1 2 2 95.13 0.05 7.31 

CKS! 68 1 1 1 94.37 0.06 7.09 

CKS! 68 1 1 2 94.58 0.05 7.11 

CKS! 13 2 2 1 95.67 0.04 7.01 

CKS! 25 2 1 1 96.46 0.04 6.27 

CKS! 47 2 2 1 95.91 0.04 5.65 

CKS! 68 2 1 1 96.44 0.04 6.24 

EKS! 123 1 1 1 95.11 0.05 7.39 

EKS! 123 1 1 2 94.69 0.05 7.22 

EKS! 4567 1 2 1 94.18 0.06 7.29 

EKS! 4567 1 2 2 94.39 0.06 7.45 

EKS! 123 2 1 1 95.80 0.04 6.79 

EKS! 4567 2 2 1 95.91 0.04 7.65 

SIL! 1 1 1 1 94.51 0.05 6.95 

SIL! 1 1 1 2 94.36 0.06 6.08 

SIL! 2 1 2 1 94.35 0.06 5.34 

SIL! 2 1 2 2 94.85 0.05 5.84 

SIL! 3 1 1 1 94.30 0.06 4.76 

SIL! 3 1 1 2 94.46 0.06 5.61 
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SIL! 4 1 2 1 94.42 0.06 5.01 

SIL! 4 1 2 2 94.47 0.06 5.43 

SIL! 5 1 2 1 94.64 0.05 5.32 

SIL! 5 1 2 2 94.68 0.05 5.45 

SIL! 6 1 2 1 94.23 0.06 6.68 

SIL! 6 1 2 2 94.27 0.06 6.35 

SIL! 7 1 1 1 94.20 0.06 5.63 

SIL! 7 1 1 2 94.43 0.06 5.47 

SIL! 8 1 1 1 94.10 0.06 5.95 

SIL! 8 1 1 2 94.23 0.06 5.71 

SIL! 1 2 1 1 95.23 0.05 5.39 

SIL! 2 2 2 1 95.57 0.04 5.67 

SIL! 3 2 1 1 95.17 0.05 6.01 

SIL! 4 2 2 1 95.13 0.05 5.99 

SIL! 5 2 2 1 95.52 0.04 6.25 

SIL! 6 2 2 1 95.61 0.04 5.25 

SIL! 7 2 1 1 95.30 0.05 6.5 

SIL! 8 2 1 1 95.59 0.04 7.24 
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Table A4.  Neutral detergent fiber (NDF%) for each sample before (Time 1) and after 
(Time 2) watering treatments, 1=Low moisture treatment of 35% field capacity, and, 
2=High moisture treatment of 85% field capacity.  Source abbreviations: Relic Prairie 
(CKS), Konza Prairie (ESK), Twelve Mile Prairie (SIL). 
 
Source Container No. Time Watering Treatment Bag No. NDF% 

CKS! 13 1 2 1 64.97 

CKS! 13 1 2 2 64.07 

CKS! 13 1 2 3 64.05 

CKS! 25 1 1 1 67.12 

CKS! 25 1 1 2 65.62 

CKS! 25 1 1 3 65.83 

CKS! 47 1 2 1 65.10 

CKS! 47 1 2 2 65.67 

CKS! 47 1 2 3 65.43 

CKS! 68 1 1 1 77.09 

CKS! 68 1 1 2 68.97 

CKS! 68 1 1 3 72.66 

CKS! 13 2 2 1 63.58 

CKS! 13 2 2 2 63.00 

CKS! 13 2 2 3 63.60 

CKS! 25 2 1 1 63.05 

CKS! 25 2 1 2 64.54 

CKS! 25 2 1 3 61.17 

CKS! 47 2 2 1 69.73 

CKS! 47 2 2 2 69.63 

CKS! 47 2 2 3 69.99 

CKS! 68 2 1 1 73.79 

CKS! 68 2 1 2 70.95 

CKS! 68 2 1 3 69.08 

EKS! 123 1 1 1 68.87 

EKS! 123 1 1 2 69.73 

EKS! 123 1 1 3 71.31 

EKS! 4567 1 2 1 70.93 

EKS! 4567 1 2 2 68.83 

EKS! 4567 1 2 3 67.92 

EKS! 123 2 1 1 68.81 

EKS! 123 2 1 2 70.42 

EKS! 4567 2 2 1 71.93 

EKS! 4567 2 2 2 69.13 

EKS! 4567 2 2 3 71.09 

SIL! 1 1 1 1 68.58 

SIL! 1 1 1 2 66.90 

SIL! 1 1 1 3 66.96 

SIL! 2 1 2 1 68.22 

SIL! 2 1 2 2 67.49 

SIL! 2 1 2 3 65.66 

SIL! 39 1 1 1 69.04 
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SIL! 39 1 1 2 66.82 

SIL! 39 1 1 3 67.71 

SIL! 4 1 2 1 68.09 

SIL! 4 1 2 2 69.17 

SIL! 4 1 2 3 70.91 

SIL! 5 1 2 1 68.56 

SIL! 5 1 2 2 69.61 

SIL! 5 1 2 3 69.98 

SIL! 6 1 2 1 66.95 

SIL! 6 1 2 2 67.94 

SIL! 6 1 2 3 66.85 

SIL! 7 1 1 1 67.79 

SIL! 7 1 1 2 67.22 

SIL! 7 1 1 3 67.36 

SIL! 8 1 1 1 66.34 

SIL! 8 1 1 2 67.01 

SIL! 8 1 1 3 68.90 

SIL! 1 2 1 1 66.99 

SIL! 1 2 1 2 66.54 

SIL! 1 2 1 3 69.23 

SIL! 2 2 2 1 66.57 

SIL! 2 2 2 2 65.72 

SIL! 2 2 2 3 66.70 

SIL! 39 2 1 1 68.33 

SIL! 39 2 1 2 68.58 

SIL! 39 2 1 3 68.65 

SIL! 4 2 2 1 67.50 

SIL! 4 2 2 2 67.47 

SIL! 5 2 2 1 68.22 

SIL! 5 2 2 2 68.00 

SIL! 6 2 2 1 67.04 

SIL! 6 2 2 2 66.95 

SIL! 6 2 2 3 67.92 

SIL! 7 2 1 1 66.07 

SIL! 7 2 1 2 68.57 

SIL! 8 2 1 1 69.68 

SIL! 8 2 1 2 67.56 
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Table A5.  Acid detergent fiber (ADF%) for each sample before (Time 1) and after (Time 
2) watering treatments.  Source abbreviations: Relic Prairie (CKS), Konza Prairie (ESK), 
Twelve Mile Prairie (SIL). 
 
Source Container# Time Watering Treatment Bag No. ADF % 

CKS! 13 1 2 1 37.90 

CKS! 13 1 2 2 38.36 

CKS! 13 1 2 3 39.64 

CKS! 25 1 1 1 39.34 

CKS! 25 1 1 2 38.89 

CKS! 25 1 1 3 39.23 

CKS! 47 1 2 1 43.48 

CKS! 47 1 2 2 43.12 

CKS! 47 1 2 3 43.52 

CKS! 68 1 1 1 39.72 

CKS! 68 1 1 2 40.81 

CKS! 68 1 1 3 41.52 

CKS! 13 2 2 1 37.69 

CKS! 13 2 2 2 36.49 

CKS! 25 2 1 1 35.53 

CKS! 25 2 1 2 36.88 

CKS! 47 2 2 1 39.93 

CKS! 47 2 2 2 39.73 

CKS! 68 2 1 1 40.66 

CKS! 68 2 1 2 39.73 

EKS! 123 1 1 1 37.01 

EKS! 123 1 1 2 36.91 

EKS! 123 1 1 3 35.76 

EKS! 4567 1 2 1 42.61 

EKS! 4567 1 2 2 40.83 

EKS! 4567 1 2 3 42.03 

EKS! 123 2 1 1 35.68 

EKS! 123 2 1 2 35.60 

EKS! 4567 2 2 1 39.01 

EKS! 4567 2 2 2 38.89 

SIL! 1 1 1 1 39.25 

SIL! 1 1 1 2 38.73 

SIL! 1 1 1 3 37.77 

SIL! 2 1 2 1 38.78 

SIL! 2 1 2 2 40.11 

SIL! 2 1 2 3 38.64 

SIL! 39 1 1 1 39.42 

SIL! 39 1 1 2 39.40 

SIL! 39 1 1 3 40.22 

SIL! 4 1 2 1 39.28 

SIL! 4 1 2 2 39.22 

SIL! 4 1 2 3 39.45 

SIL! 5 1 2 1 40.46 

SIL! 5 1 2 2 40.31 
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SIL! 5 1 2 3 40.27 

SIL! 6 1 2 1 39.05 

SIL! 6 1 2 2 38.80 

SIL! 6 1 2 3 38.97 

SIL! 7 1 1 1 38.35 

SIL! 7 1 1 2 38.74 

SIL! 7 1 1 3 38.67 

SIL! 8 1 1 1 40.94 

SIL! 8 1 1 2 40.16 

SIL! 8 1 1 3 40.27 

SIL! 1 2 1 1 35.87 

SIL! 1 2 1 2 35.76 

SIL! 2 2 2 1 35.45 

SIL! 2 2 2 2 34.99 

SIL! 39 2 1 1 36.90 

SIL! 39 2 1 2 36.13 

SIL! 4 2 2 1 36.46 

SIL! 4 2 2 2 36.83 

SIL! 5 2 2 1 36.13 

SIL! 5 2 2 2 37.03 

SIL! 6 2 2 1 36.51 

SIL! 6 2 2 2 35.33 

SIL! 7 2 1 1 35.69 

SIL! 7 2 1 2 35.99 

SIL! 8 2 1 1 39.02 

SIL! 8 2 1 2 38.72 
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Table A6.  In-Vitro Dry Matter Digestion (Digestibility %) for each sample before (Time 
1) and after (Time 2) watering treatments.  Source abbreviations: Relic Prairie (CKS), 
Konza Prairie (ESK), Twelve Mile Prairie (SIL). 
 
Sample Container No. Time Treatment Digestibility % 

CKS! 13 1 2 64.35 

CKS! 13 1 2 62.40 

CKS! 13 1 2 61.58 

CKS! 25 1 1 53.13 

CKS! 25 1 1 52.42 

CKS! 25 1 1 59.57 

CKS! 47 1 2 54.49 

CKS! 47 1 2 65.91 

CKS! 47 1 2 55.18 

CKS! 68 1 1 63.94 

CKS! 68 1 1 58.96 

CKS! 68 1 1 54.02 

CKS! 13 2 2 45.15 

CKS! 13 2 2 46.58 

CKS! 13 2 2 41.35 

CKS! 25 2 1 44.03 

CKS! 25 2 1 49.08 

CKS! 47 2 2 48.16 

CKS! 47 2 2 45.98 

CKS! 47 2 2 48.97 

CKS! 68 2 1 40.46 

CKS! 68 2 1 37.08 

CKS! 68 2 1 44.33 

EKS! 123 1 1 62.35 

EKS! 123 1 1 67.48 

EKS! 123 1 1 61.50 

EKS! 4567 1 2 64.68 

EKS! 4567 1 2 66.73 

EKS! 4567 1 2 53.70 

EKS! 123 2 1 40.41 

EKS! 123 2 1 35.33 

EKS! 4567 2 2 39.94 

EKS! 4567 2 2 39.37 

SIL! 1 1 1 61.64 

SIL! 1 1 1 60.60 

SIL! 1 1 1 66.33 

SIL! 2 1 2 61.01 

SIL! 2 1 2 65.23 

SIL! 2 1 2 66.13 

SIL! 39 1 1 58.21 

SIL! 39 1 1 62.50 

SIL! 39 1 1 62.69 

SIL! 4 1 2 63.41 
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SIL! 4 1 2 56.19 

SIL! 4 1 2 51.58 

SIL! 5 1 2 60.69 

SIL! 5 1 2 58.39 

SIL! 5 1 2 63.30 

SIL! 6 1 2 61.59 

SIL! 6 1 2 62.37 

SIL! 6 1 2 49.26 

SIL! 7 1 1 48.50 

SIL! 7 1 1 62.73 

SIL! 7 1 1 59.24 

SIL! 8 1 1 55.16 

SIL! 8 1 1 60.59 

SIL! 8 1 1 57.30 

SIL! 1 2 1 48.31 

SIL! 1 2 1 49.50 

SIL! 1 2 1 46.79 

SIL! 2 2 2 50.15 

SIL! 2 2 2 50.12 

SIL! 2 2 2 49.03 

SIL! 3 2 1 48.35 

SIL! 3 2 1 47.74 

SIL! 3 2 1 41.85 

SIL! 4 2 2 48.23 

SIL! 4 2 2 47.25 

SIL! 5 2 2 42.86 

SIL! 6 2 2 51.76 

SIL! 6 2 2 52.18 

SIL! 6 2 2 49.40 

SIL! 7 2 1 43.11 

SIL! 7 2 1 42.76 

SIL! 8 2 1 48.86 

SIL! 8 2 1 52.66 
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Table A7.  Crude protein (%Protein) and nitrogen content (%Nitrogen) for each sample 
before (Time 1) and after (Time 2) watering treatments.  Source abbreviations: Relic 
Prairie (CKS), Konza Prairie (ESK), Twelve Mile Prairie (SIL). 
 
Source Container No. Time Treatment Label %Nitrogen %Protein 

CKS! 13 1 2 25 1.15 7.16 

CKS! 13 1 2 26 1.66 10.35 

CKS! 13 1 2 27 1.56 9.73 

CKS! 25 1 1 28 1.01 6.33 

CKS! 25 1 1 29 1.00 6.22 

CKS! 25 1 1 30 0.88 5.48 

CKS! 47 1 2 31 1.32 8.23 

CKS! 47 1 2 32 1.61 10.06 

CKS! 47 1 2 33 1.67 10.43 

CKS! 68 1 1 34 1.08 6.72 

CKS! 68 1 1 35 1.22 7.63 

CKS! 68 1 1 36 1.03 6.42 

CKS! 13 2 2 59 0.45 2.84 

CKS! 13 2 2 60 0.64 4.00 

CKS! 25 2 1 61 0.33 2.05 

CKS! 25 2 1 62 0.34 2.09 

CKS! 47 2 2 63 0.60 3.74 

CKS! 47 2 2 64 0.63 3.91 

CKS! 68 2 1 65 0.45 2.80 

CKS! 68 2 1 66 0.58 3.61 

EKS! 123 1 1 37 1.31 8.19 

EKS! 123 1 1 38 1.10 6.87 

EKS! 123 1 1 39 1.12 7.00 

EKS! 4567 1 2 40 1.30 8.12 

EKS! 4567 1 2 41 1.53 9.54 

EKS! 4567 1 2 42 1.39 8.67 

EKS! 123 2 1 67 0.68 4.28 

EKS! 123 2 1 68 0.73 4.57 

EKS! 4567 2 2 69 0.70 4.38 

EKS! 4567 2 2 70 0.61 3.79 

SIL! 1 1 1 1 1.38 8.60 

SIL! 1 1 1 2 1.47 9.16 

SIL! 1 1 1 3 1.38 8.64 

SIL! 2 1 2 4 1.05 6.58 

SIL! 2 1 2 5 1.79 11.17 

SIL! 2 1 2 6 1.45 9.07 

SIL! 39 1 1 7 0.94 5.88 

SIL! 39 1 1 8 0.82 5.15 

SIL! 39 1 1 9 0.69 4.31 

SIL! 4 1 2 10 0.91 5.69 

SIL! 4 1 2 11 0.79 4.97 

SIL! 4 1 2 12 0.78 4.88 

SIL! 5 1 2 13 0.75 4.72 

SIL! 5 1 2 14 0.56 3.49 
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SIL! 5 1 2 15 0.77 4.84 

SIL! 6 1 2 16 1.44 9.03 

SIL! 6 1 2 17 1.41 8.84 

SIL! 6 1 2 18 1.40 8.74 

SIL! 7 1 1 19 0.71 4.43 

SIL! 7 1 1 20 0.48 3.02 

SIL! 7 1 1 21 0.62 3.85 

SIL! 8 1 1 22 0.97 6.08 

SIL! 8 1 1 23 0.78 4.86 

SIL! 8 1 1 24 0.90 5.66 

SIL! 1 2 1 43 0.57 3.57 

SIL! 1 2 1 44 0.53 3.31 

SIL! 2 2 2 45 0.56 3.49 

SIL! 2 2 2 46 0.53 3.28 

SIL! 39 2 1 47 0.62 3.89 

SIL! 39 2 1 48 0.67 4.17 

SIL! 4 2 2 49 0.56 3.48 

SIL! 4 2 2 50 0.48 2.98 

SIL! 5 2 2 51 0.58 3.65 

SIL! 5 2 2 52 0.47 2.96 

SIL! 6 2 2 53 0.62 3.88 

SIL! 6 2 2 54 0.53 3.31 

SIL! 7 2 1 55 0.72 4.52 

SIL! 7 2 1 56 0.61 3.80 

SIL! 8 2 1 57 0.70 4.35 

SIL! 8 2 1 58 0.65 4.06 
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Table A8.  Crude fat content for each sample before (Time 1) and after (Time 2) watering 
treatments.  Source abbreviations: Relic Prairie (CKS), Konza Prairie (ESK), Twelve 
Mile Prairie (SIL). 
 
Sample Container No. Time Treatment Bag No. %CF 

CKS! 13 1 2 1 1.63 

CKS! 13 1 2 2 2.42 

CKS! 25 1 1 1 3.03 

CKS! 25 1 1 2 1.77 

CKS! 47 1 2 1 1.66 

CKS! 47 1 2 2 1.58 

CKS! 68 1 1 1 2.03 

CKS! 68 1 1 2 2.29 

CKS! 13 2 2 1 2.04 

CKS! 25 2 1 1 2.41 

CKS! 47 2 2 1 1.34 

CKS! 68 2 1 1 1.42 

EKS! 123 1 1 1 2.40 

EKS! 123 1 1 2 1.40 

EKS! 4567 1 2 1 1.87 

EKS! 4567 1 2 2 1.52 

EKS! 123 2 1 1 1.31 

EKS! 4567 2 2 1 0.91 

SIL! 1 1 1 1 1.26 

SIL! 1 1 1 2 2.87 

SIL! 2 1 2 1 1.73 

SIL! 2 1 2 2 1.28 

SIL! 39 1 1 1 1.74 

SIL! 39 1 1 2 1.79 

SIL! 4 1 2 1 3.00 

SIL! 4 1 2 2 2.00 

SIL! 5 1 2 1 1.81 

SIL! 5 1 2 2 1.45 

SIL! 6 1 2 1 1.84 

SIL! 6 1 2 2 2.06 

SIL! 7 1 1 1 1.58 

SIL! 7 1 1 2 2.15 

SIL! 8 1 1 1 2.30 

SIL! 8 1 1 2 2.77 

SIL! 1 2 1 1 1.68 

SIL! 2 2 2 1 2.21 

SIL! 3 2 1 1 2.11 

SIL! 4 2 2 1 2.41 

SIL! 5 2 2 1 2.09 

SIL! 6 2 2 1 2.31 

SIL! 7 2 1 1 1.75 

SIL! 8 2 1 1 2.28 
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Table A9.  Post-Digestion DM and ASH in Greenhouse samples before (Time 1) 
watering treatments.  Source abbreviations: Relic Prairie (CKS), Konza Prairie (ESK), 
Twelve Mile Prairie (SIL). 
 
Source Container No.  DM% ASH 

CKS! 13 97.34 2.31 

CKS! 25 97.39 3.41 

CKS! 47 97.69 2.92 

CKS! 68 97.19 4.45 

EKS! 123 97.29 3.51 

EKS! 4567 97.23 3.44 

SIL! 1 97.18 1.71 

SIL! 2 97.34 1.64 

SIL! 39 97.79 1.67 

SIL! 4 97.47 2.63 

SIL! 5 97.48 2.32 

SIL! 6 97.50 2.33 

SIL! 7 97.72 2.66 

SIL! 7 97.70 2.67 

 
 
Table A10.  Post-Digestion Crude Protein in Greenhouse samples before (Time 1) 
watering treatments.  Source abbreviations: Relic Prairie (CKS), Konza Prairie (ESK), 
Twelve Mile Prairie (SIL). 
 
Source Container No. Nitrogen % Protein % 

CKS! 13 2.52 15.76 

CKS! 25 1.83 11.45 

CKS! 25 1.95 12.18 

CKS! 47 2.36 14.75 

CKS! 47 2.31 14.43 

CKS! 68 2.22 13.86 

EKS 123 2.84 17.77 

EKS 4567 2.42 15.11 

SIL! 1 1.92 11.97 

SIL! 1 1.90 11.90 

SIL! 2 2.05 12.82 

SIL! 2 2.19 13.72 

SIL! 39 1.77 11.08 

SIL! 4 1.86 11.61 

SIL! 5 3.27 20.44 

SIL! 5 2.35 14.67 

SIL! 6 2.44 15.25 

SIL! 6 2.34 14.64 

SIL! 7 1.86 11.65 

SIL! 8 1.88 11.73 
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Table A11.  Post-Digestion Crude Protein in Greenhouse samples after (Time 2) watering 
treatments.  Source abbreviations: Relic Prairie (CKS), Konza Prairie (ESK), Twelve 
Mile Prairie (SIL).  
 
Source Container No. Nitrogen % Protein % 

CKS 13 1.93 12.05 

CKS! 13 1.93 12.08 

CKS! 25 1.94 12.16 

CKS! 47 1.99 12.45 

CKS! 47 2.02 12.63 

CKS! 68 1.74 10.86 

CKS! 68 1.78 11.12 

EKS 123 1.70 10.65 

EKS 4567 2.13 13.30 

SIL 1 2.27 14.22 

SIL! 1 2.21 13.81 

SIL! 2 1.97 12.33 

SIL! 2 1.83 11.45 

SIL! 3 2.08 12.98 

SIL! 3 2.03 12.71 

SIL! 4 1.93 12.08 

SIL! 4 1.89 11.80 

SIL! 5 1.86 11.60 

SIL! 6 2.11 13.20 

SIL! 6 2.15 13.43 

SIL! 7 1.82 11.37 

SIL! 7 2.37 14.80 
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APPENDIX B 

!

Field Experiment 

 
Table B1.  Dry Matter (DM) & ASH content in field samples.  Region abbreviations: 
Colorado (CO), central Kansas (CKS), eastern Kansas (EKS), and southern Illinois (SIL).  
Source abbreviations: Crown Rock (CRN), Paramount Point (PPT), Greenbelt (GBT), 
Cedar Bluff (CDB), Webster (WEB), Relic (REL), Carnahan (CAR), Top of the World 
(TOW), Konza (KNZ), Twelve Mile Prairie (12M), Fult’s Hill (FTL), and DeSoto (DES).   
 
Region Sample % Moisture DM % ASH 

CO CRN 0.07 93.46 6.18 

CO CRN 0.06 93.75 6.47 

CO PPT 0.06 94.10 7.23 

CO PPT 0.06 93.80 6.41 

CO GBT 0.06 94.21 5.64 

CO GBT 0.06 94.33 5.36 

CKS CDB 0.07 92.67 7.64 

CKS! CDB 0.07 92.95 7.04 

CKS! WEB 0.07 93.30 11.92 

CKS! WEB 0.06 93.54 11.92 

CKS! REL 0.07 93.15 8.81 

CKS! REL 0.07 93.30 8.93 

EKS CAR 0.07 92.95 6.07 

EKS CAR 0.07 92.79 6.98 

EKS TOW 0.07 93.25 6.39 

EKS TOW 0.07 93.35 7.06 

EKS KNZ 0.07 92.86 6.82 

EKS KNZ 0.06 93.73 6.80 

SIL 12M 0.06 93.68 5.77 

SIL! 12M 0.06 93.72 5.85 

SIL! FTL 0.07 93.35 5.49 

SIL! FTL 0.07 93.05 5.42 

SIL! DES 0.06 93.85 6.81 

SIL! DES 0.06 94.20 6.97 
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Table B2.  Neutral Detergent Fiber (NDF) in field samples.  Region abbreviations: 
Colorado (CO), central Kansas (CKS), eastern Kansas (EKS), and southern Illinois (SIL).  
Source abbreviations: Crown Rock (CRN), Paramount Point (PPT), Greenbelt (GBT), 
Cedar Bluff (CDB), Webster (WEB), Relic (REL), Carnahan (CAR), Top of the World 
(TOW), Konza (KNZ), Twelve Mile Prairie (12M), Fult’s Hill (FTL), and DeSoto (DES).   
  
Region Sample Bag No. NDF % 

CO CRN 1 70.35 

CO CRN 2 69.64 

CO CRN 3 71.18 

CO PPT 1 68.10 

CO PPT 2 68.28 

CO PPT 3 69.72 

CO GBT 1 68.56 

CO GBT 2 68.17 

CO GBT 3 69.80 

CKS! CDB 1 68.83 

CKS! CDB 2 68.45 

CKS! CDB 3 68.15 

CKS! WEB 1 71.30 

CKS! WEB 2 70.81 

CKS! WEB 3 68.78 

CKS! REL 1 65.40 

CKS! REL 2 67.24 

CKS REL 3 67.77 

EKS CAR 1 74.19 

EKS CAR 2 74.78 

EKS CAR 3 74.71 

EKS TOW 1 73.30 

EKS TOW 2 73.69 

EKS TOW 3 73.06 

EKS KNZ 1 74.43 

EKS KNZ 2 73.59 

EKS KNZ 3 75.35 

SIL! 12M 1 75.23 

SIL! 12M 2 74.06 

SIL! 12M 3 72.96 

SIL! FTL 1 70.81 

SIL! FTL 2 74.29 

SIL! FTL 3 72.56 

SIL! DES 1 69.44 

SIL! DES 2 71.16 

SIL! DES 3 70.71 
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Table B3.  Acid Detergent Fiber (ADF) in field samples.  Region abbreviations: Colorado 
(CO), central Kansas (CKS), eastern Kansas (EKS), and southern Illinois (SIL).  Source 
abbreviations: Crown Rock (CRN), Paramount Point (PPT), Greenbelt (GBT), Cedar 
Bluff (CDB), Webster (WEB), Relic (REL), Carnahan (CAR), Top of the World (TOW), 
Konza (KNZ), Twelve Mile Prairie (12M), Fult’s Hill (FTL), and DeSoto (DES).  
 

CO CRN 1 38.20 

CO CRN 2 37.30 

CO CRN 3 36.21 

CO PPT 1 37.24 

CO PPT 2 37.80 

CO PPT 3 38.19 

CO GBT 1 35.40 

CO GBT 2 29.70 

CO GBT 3 36.35 

CKS! CDB 1 36.90 

CKS! CDB 2 38.32 

CKS! CDB 3 37.88 

CKS! WEB 1 44.91 

CKS! WEB 2 45.48 

CKS! WEB 3 43.83 

CKS! REL 1 38.98 

CKS! REL 2 39.18 

CKS REL 3 39.62 

EKS CAR 1 42.03 

EKS CAR 2 43.49 

EKS CAR 3 40.89 

EKS TOW 1 42.19 

EKS TOW 2 41.81 

EKS TOW 3 42.20 

EKS KNZ 1 41.93 

EKS KNZ 2 43.56 

EKS KNZ 3 42.25 

SIL 12M 1 41.35 

SIL! 12M 2 40.85 

SIL! 12M 3 41.36 

SIL! FTL 1 41.30 

SIL! FTL 2 42.42 

SIL! FTL 3 41.99 

SIL! DES 1 41.69 

SIL! DES 2 41.49 

SIL! DES 3 40.86 

Region Sample Bag # ADF % 
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Table B4.  In-Vitro Dry Matter Digestion (IVDMD) in field samples.  Region 
abbreviations: Colorado (CO), central Kansas (CKS), eastern Kansas (EKS), and 
southern Illinois (SIL).  Source abbreviations: Crown Rock (CRN), Paramount Point 
(PPT), Greenbelt (GBT), Cedar Bluff (CDB), Webster (WEB), Relic (REL), Carnahan 
(CAR), Top of the World (TOW), Konza (KNZ), Twelve Mile Prairie (12M), Fult’s Hill 
(FTL), and DeSoto (DES).   
 
Region Sample Rep No. Digestibility % 

CO CRN 1 59.55 

CO CRN 2 60.40 

CO CRN 3 57.99 

CO PPT 1 49.46 

CO PPT 2 58.29 

CO PPT 3 53.41 

CO GBT 1 49.21 

CO GBT 2 58.79 

CO GBT 3 58.72 

CKS! CDB 1 46.05 

CKS! CDB 2 52.20 

CKS! CDB 3 59.05 

CKS! WEB 1 51.69 

CKS! WEB 2 52.39 

CKS! WEB 3 41.14 

CKS! REL 1 47.68 

CKS! REL 2 45.38 

CKS! REL 3 56.55 

EKS CAR 1 43.77 

EKS CAR 2 42.22 

EKS CAR 3 46.28 

EKS TOW 1 44.15 

EKS TOW 2 49.86 

EKS TOW 3 51.56 

EKS KNZ 1 44.11 

EKS KNZ 2 45.75 

EKS KNZ 3 48.34 

SIL 12M 1 42.88 

SIL! 12M 2 41.45 

SIL! 12M 3 45.28 

SIL! FTL 1 43.14 

SIL! FTL 2 38.35 

SIL! FTL 3 41.31 

SIL! DES 1 47.78 

SIL! DES 2 47.00 

SIL! DES 3 41.79 
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Table B5.  Crude Protein (CP) in field samples.  Region abbreviations: Colorado (CO), 
central Kansas (CKS), eastern Kansas (EKS), and southern Illinois (SIL).  Source 
abbreviations: Crown Rock (CRN), Paramount Point (PPT), Greenbelt (GBT), Cedar 
Bluff (CDB), Webster (WEB), Relic (REL), Carnahan (CAR), Top of the World (TOW), 
Konza (KNZ), Twelve Mile Prairie (12M), Fult’s Hill (FTL), and DeSoto (DES).   
 
Region Source Rep No. % Nitrogen  % Protein 

CO CRN 1 1.18 7.36 

CO CRN 2 1.12 7.00 

CO CRN 3 1.19 7.41 

CO PPT 1 1.11 6.93 

CO PPT 2 1.12 6.99 

CO PPT 3 0.96 5.97 

CO GBT 1 1.21 7.58 

CO GBT 2 1.16 7.23 

CO GBT 3 1.11 6.91 

CKS CDB 1 0.99 6.21 

CKS! CDB 2 0.88 5.52 

CKS! CDB 3 0.92 5.77 

CKS! WEB 1 0.64 3.98 

CKS! WEB 2 0.56 3.53 

CKS! WEB 3 0.42 2.62 

CKS! REL 1 0.75 4.72 

CKS! REL 2 0.76 4.73 

CKS! REL 3 0.72 4.51 

EKS CAR 1 0.63 3.96 

EKS CAR 2 0.59 3.71 

EKS CAR 3 0.55 3.43 

EKS TOW 1 0.64 3.99 

EKS TOW 2 0.49 3.05 

EKS TOW 3 0.51 3.17 

EKS KNZ 1 0.80 4.97 

EKS KNZ 2 0.61 3.83 

EKS KNZ 3 0.66 4.11 

SIL! 12M 1 0.90 5.63 

SIL! 12M 2 0.64 4.01 

SIL! 12M 3 0.73 4.59 

SIL! FTL 1 0.92 5.72 

SIL! FTL 2 0.77 4.79 

SIL! FTL 3 0.73 4.57 

SIL! DES 1 0.84 5.22 

SIL! DES 2 0.80 4.99 

SIL! DES 3 0.64 4.03 
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Table B6.  Crude Fat (CF) in field samples.  Region abbreviations: Colorado (CO), 
central Kansas (CKS), eastern Kansas (EKS), and southern Illinois (SIL).  Source 
abbreviations: Crown Rock (CRN), Paramount Point (PPT), Greenbelt (GBT), Cedar 
Bluff (CDB), Webster (WEB), Relic (REL), Carnahan (CAR), Top of the World (TOW), 
Konza (KNZ), Twelve Mile Prairie (12M), Fult’s Hill (FTL), and DeSoto (DES).   
 
Region Source Sample Rep. No. %CF 

CO CRN 25 1 3.84 

CO CRN 26 2 3.43 

CO PPT 27 1 3.30 

CO PPT 28 2 3.48 

CO GBT 19 1 4.03 

CO GBT 20 2 3.63 

CKS! CDB 5 1 3.79 

CKS! CDB 6 2 4.00 

CKS! WEB 11 1 4.15 

CKS! WEB 12 2 3.51 

CKS! REL 21 1 4.04 

CKS! REL 22 2 3.94 

EKS CAR 3 1 3.46 

EKS CAR 4 2 3.24 

EKS TOW 13 1 2.97 

EKS TOW 14 2 2.45 

EKS KNZ 23 1 4.69 

EKS KNZ 24 2 2.59 

SIL 12M 1 1 3.46 

SIL! 12M 2 2 4.10 

SIL! DES 15 1 3.44 

SIL! DES 16 2 2.61 

SIL! FTL 17 1 2.32 

SIL! FTL 18 2 3.95 
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APPENDIX C 

!

Post-Digestion Field Experiment 

Table C1.  Post-Digestion Dry Matter (DM) and ASH content in field samples. Region 
abbreviations: Colorado (CO), central Kansas (CKS), eastern Kansas (EKS), and 
southern Illinois (SIL).  Source abbreviations: Crown Rock (CRN), Paramount Point 
(PPT), Greenbelt (GBT), Cedar Bluff (CDB), Webster (WEB), Relic (REL), Carnahan 
(CAR), Top of the World (TOW), Konza (KNZ), Twelve Mile Prairie (12M), Fult’s Hill 
(FTL), and DeSoto (DES).   
 

 
 

 
 
 
 
 
 
 
 
 
 

Region Source %DM ASH 

CO CRN 95.98 0.07 

CO PPT 97.07 0.06 

CO GBT 95.58 0.03 

CKS REL 96.86 0.09 

CKS CDB 97.42 0.08 

CKS WEB 95.93 0.12 

EKS TOW 95.77 0.06 

EKS CAR 96.72 0.06 

EKS KNZ 95.87 0.07 

SIL 12M 97.07 0.06 

SIL DES 97.19 0.08 

SIL FTL 97.16 0.06 
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Table C2.  Post-Digestion Neutral Detergent Fiber (NDF) in field samples. Region 
abbreviations: Colorado (CO), central Kansas (CKS), eastern Kansas (EKS), and 
southern Illinois (SIL).  Source abbreviations: Crown Rock (CRN), Paramount Point 
(PPT), Greenbelt (GBT), Cedar Bluff (CDB), Webster (WEB), Relic (REL), Carnahan 
(CAR), Top of the World (TOW), Konza (KNZ), Twelve Mile Prairie (12M), Fult’s Hill 
(FTL), and DeSoto (DES).   
 
Region Source Replication NDF% 

CO CRN 1 23.42 

CO CRN 2 22.66 

CO CRN 3 22.92 

CO PPT 1 23.88 

CO PPT 2 28.16 

CO PPT 3 25.76 

CO GBT 1 20.72 

CO GBT 2 21.32 

CO GBT 3 22.21 

CKS! CDB 1 24.58 

CKS! CDB 2 24.01 

CKS! CDB 3 23.99 

CKS! WEB 1 22.89 

CKS! WEB 2 20.16 

CKS! WEB 3 21.36 

CKS! REL 1 21.02 

CKS! REL 2 20.81 

CKS! REL 3 22.32 

EKS CAR 1 20.72 

EKS CAR 2 21.18 

EKS CAR 3 20.60 

EKS TOW 1 20.89 

EKS TOW 2 21.80 

EKS TOW 3 21.16 

EKS KNZ 1 22.21 

EKS KNZ 2 21.35 

EKS KNZ 3 21.98 

SIL! 12M 1 18.02 

SIL! 12M 2 17.28 

SIL! 12M 3 18.01 

SIL! FTL 1 20.77 

SIL! FTL 2 22.59 

SIL! FTL 3 20.87 

SIL! DES 1 21.56 

SIL! DES 2 22.41 

SIL! DES 3 21.65 
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Table C3.  Post-Digestion Crude Protein (CP) in field samples. Region abbreviations: 
Colorado (CO), central Kansas (CKS), eastern Kansas (EKS), and southern Illinois (SIL).  
Source abbreviations: Crown Rock (CRN), Paramount Point (PPT), Greenbelt (GBT), 
Cedar Bluff (CDB), Webster (WEB), Relic (REL), Carnahan (CAR), Top of the World 
(TOW), Konza (KNZ), Twelve Mile Prairie (12M), Fult’s Hill (FTL), and DeSoto (DES).   
 
Region Source Rep# Nitrogen % Protein % 

CO CRN 1 2.16 13.51 

CO CRN 2 1.82 11.38 

CO PPT 1 1.45 9.09 

CO PPT 2 1.95 12.16 

CO GBT 1 1.87 11.68 

CO GBT 2 1.87 11.67 

CKS CDB 1 1.98 12.37 

CKS! CDB 2 2.10 13.13 

CKS! WEB 1 1.13 7.07 

CKS! WEB 2 1.11 6.94 

CKS! REL 1 1.86 11.65 

CKS! REL 2 1.58 9.89 

EKS CAR 1 1.46 9.11 

EKS CAR 2 1.44 9.01 

EKS TOW 1 1.26 7.85 

EKS TOW 2 1.39 8.68 

EKS KNZ 1 1.55 9.68 

EKS KNZ 2 1.47 9.21 

SIL 12M 1 1.48 9.24 

SIL! 12M 2 1.48 9.25 

SIL! FTL 1 1.73 10.78 

SIL! FTL 2 1.74 10.90 

SIL! DES 1 . . 

SIL! DES 2 1.59 9.96 
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