
IN THE MAZES OF MATHEMATICS.

A SERIES OF PERPLEXING QUESTIONS.

BY WM. F. WHITE, PH. D.

IV. A QUESTION OF FOURTH DIMENSION BY ANALOGY.

AFTER class one day a normal-school pupil asked the writer the

-following- question, and received the following reply:

Q. If the path of a moving point (no dimension) is a line (one

dimension), and the path of a moving line is a surface (two dimen-

sions), and the path of a moving surface is a solid (three dimen-

sions), why isn't the path of a moving solid a four-dimensional

magnitude ?

A. If your hypotheses were correct, your conclusion should

follow by analogy. The path of a moving point is, indeed, al-

ways a line. The path of a moving line is a surface except when
the line moves in its own dimension, "slides in its trace." The path

of a moving surface is a solid only when the motion is in a third

dimension. The generation of a four-dimensional magnitude by

the motion of a solid presupposes that the solid is to be moved in

a fourth dimension.

V. LAW OF COMMUTATION.

This law, emphasized for arithmetic in McLellan and Dewey's

Psychology of Number, and explicitly employed in all algebras that

give attention to the logical side of the subject, is one whose im-

portance is often overlooked. So long as it is used implicitly and

regarded as of universal application, its import is neglected. An
antidote: to remember that there are regions in which this law does

not apply, e. g.

:

In the "geometric multiplication" of rectangular vectors used

in quaternions, the commutative property of factors does not hold,

but a change in the order of factors reverses the sign of the product.
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Even in elementary algebra or arithmetic, the commutative

principle is not valid in the operation of involution. Professor

Schubert, in his Mathematical Essays and Recreations, has called

attention to the fact that this limitation—the impossibility of inter-

changing base and exponent—renders useless any high operation of

continued involution.

VI. A FEW CATCH QUESTIONS.

What number can be divided by every other number without a

remainder ?

"Four-fourths exceeds three-fourths by what fractional part?"

This question will usually divide a company.

Can a fraction whose numerator is less than its denominator

be equal to a fraction whose numerator is greater than its denom-

— 3 +5
mator? If not, how can -7—f ^= ^

-f 6 — 10

In the proportion

-f6 :—3 ::—10 : -f

5

is not either extreme greater than either mean? What has become

of the old rule, "greater is to less as greater is to less"?

Where is the fallacy here?

I mile square = i square mile,

.•.2 miles square ^2 square miles. (Axiom: If equals

be multiplied by equals, etc.)

VII. THE THREE FAMOUS PROBLEMS OF ANTIQUITY.

1. To trisect an angle or arc.

2. To "duplicate the cube" (Delian problem).

3. To "square the circle" (said to have been first tried by

Anaxagoras).

Hippias of Elis invented the quadratrix for the trisection of an

angle, and it was later used for the quadrature of the circle. Other

Greeks devised other curves to effect the construction required in

(i) and (2). Eratosthenes and Nicomedes invented mechanical

instruments to draw such curves. But none of these curves can be

constructed with ruler and compass alone. And this was the limita-

tion imposed on the solution of the problems.

Antiquity bequeathed to modern times all three of the prob-

lems unsolved. Modern mathematics, with its greatly improved

methods, has proved them all impossible of construction with ruler

and compass alone—a result which the shrewdest investigator in
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antiquity could have only conjectured—has shown new ways of

solving them if the limitation of ruler and compass be removed, and

has devised and applied methods of approximation. It has dissolved

the problems, if that term may be permitted.

It was not until 1882 that the transcendental nature of the

number tt was established (by Lindcmann). The final results in all

three of the problems, with mathematical demonstrations, are given

in Klein's Famous Problems of Elementary Geometry, translated by

Beman and Smith (Ginn, 1897).

It should be noted that the number tt, which the student first

meets as the ratio of the circumference to the diameter of a circle,

is a number that appears often in analysis in connections remote

from elementary geometry, e. g., in formulas in the calculus of prob-

ability.

The value of tt was computed to 707 places of decimals by

William Shanks. His result (communicated in 1873) with a dis-

cussion of the formula he used (Machin's) may be found in the

Proceedings of the Royal Society of London, Vol. 21. No other

problem has been worked out to such a degree of accuracy
—

"an ac-

curacy exceeding the ratio of microscopic to telescopic distances."

An illustration calculated to give some conception of the degree of

accuracy attained may be found in Professor Schubert's Mathemat-

ical Essays and Recreations (translation by T. J. McCormack), p.

140. Most of this computation serves, apparently, no useful pur-

pose. But it should be a deterrent to those who—immune to the

demonstration of Lindemann and others—still hope to find an exact

ratio.

The quadrature of the circle has been the most fascinating of

mathematical problems. The "army of circle-squarers" has been

recruited in each generation. "Their efforts remained as futile as

though they had attempted to jump into a rainbow" (Cajori)
;
yet

they were undismayed. In some minds, the proof that no solution

can be found seems only to have lent zest to the search.

That these problems are of perennial interest, is attested by the

fact that contributions to them still appear. In 1905 a little book

was published in Los Angeles entitled The Secret of the Circle and

the Square, in wdiich also the division of "any angle inlo any number

of equal angles" is considered. The author, J. C. Willmon, gives

original methods of approximation. School Science and Mathematics

for May 1906 contains a "solution" of the trisection problem by a

high-school boy in Missouri, printed, apparently, to show that the

problem still has fascination for the youthful mind. In a later num-
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ber of that magazine the problem is discussed by another from the

vantage ground of higher mathematics.

While the three problems have all been proved to be insolvable

under the conditions imposed, still the attempts made through many

centuries to find a solution have led to much more valuable results,

not only by quickening interest in mathematical questions, but espe-

cially by the many and important discoveries that have been made

in the effort. The voyagers were unable to find the northwest pas-

sage, and one can easily see now that the search was necessarily

futile ; but in the attempt they discovered continents whose re-

sources, when developed, make the wealth of the Indies seem poor

indeed.


