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This paper, taken from Olive (2017d), presents and examines a prediction interval for

the multiple linear regression model Y = β1x1 + · · · + βpxp + e, where the partial least

squares or principal component regression is selected using d = min(dn/Je, p) variables

v1, v2, ..., vd for some positive integer J such as 10 or 20. Here v1 corresponds to a constant

and vi is a PLS component or principal component for i ≥ 2.
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CHAPTER 1

INTRODUCTION

Suppose that the response variable Yi and at least one predictor variable xi,j are

quantitative with xi,1 ≡ 1. Let xT
i = (xi,1, ..., xi,p) = (1 uT

i ) and β = (β1, ..., βp)
T where

β1 corresponds to the intercept. Then the multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (1.1)

for i = 1, ..., n. This model is also called the full model. Here n is the sample size and the

random variable ei is the ith error. In matrix notation, these n equations become

Y = Xβ + e, (1.2)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of unknown errors.

Ordinary least squares (OLS) is often used for inference if n/p is large.

It is often convenient to use the centered response Z = Y − Y and the n × (p − 1)

matrix of standardized nontrivial predictors W = (Wij). For j = 1, ..., p−1, let Wij denote

the (j + 1)th variable standardized so that
∑n

i=1 Wij = 0 and
∑n

i=1W
2
ij = n. Hence

Wij =
xi,j+1 − xj+1

σ̃j+1

where σ̃2
j+1 =

1

n

n
∑

i=1

(xi,j+1 − xj+1)
2.

Note that the sample correlation matrix of the nontrivial predictors ui is

Ru =
W T W

n
.

Then regression through the origin is used for the model

Z = Wη + e (1.3)

where the vector of fitted values Ŷ = Y + Ẑ.
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There are many alternative methods for estimating β, including forward selection

with OLS, principal component regression (PCR), and partial least squares (PLS) due to

Wold (1975). Forward selection, PCR, and PLS use variables v1 = 1 (the constant or

trivial predictor) and vj = γT
j x that are linear combinations of the predictors for j =

2, ..., p. Model Ii uses variables v1, v2, ..., vi for i = 1, ...,M where M ≤ p and often M ≤

min(p, n/10). Then M models Ii are used where OLS is used to regress Y (or Z) on

v1, ..., vi. Then a criterion chooses the final submodel Id from candidates I1, ..., IM. See

James, Witten, Hastie, and Tibshirani (2013, ch. 6), Olive (2017d), Pelawa Watagoda

(2017), and Pelawa Watagoda and Olive (2017) for more details about these three methods.

Partial least squares (PLS) uses variables v1 = 1 and “PLS components” vj = γT
j x

for j = 2, ..., p. Often k–fold cross validation is used to pick the PLS model from I1, ..., IM.

If M = p, then the PLS Ip model is the OLS full model. Chun and Keleş (2010) show that

PLS does not give a consistent estimator of β unless p/n → 0. Also see Cook, Helland, and

Su (2013), and Wold (1985, 2006). Denham (1997) suggested a prediction interval (PI) for

PLS that assumes the number of components is selected in advance.

Some notation for eigenvalues, eigenvectors, orthonormal eigenvectors, positive def-

inite matrices, and positive semidefinite matrices will be useful before defining principal

component regression, which is also called principal components regression. See Olive

(2017d, ch. 3).

Notation: Recall that a square symmetric p × p matrix A has an eigenvalue λ with

corresponding eigenvector x 6= 0 if

Ax = λx. (1.4)

The eigenvalues of A are real since A is symmetric. Note that if constant c 6= 0 and x

is an eigenvector of A, then c x is an eigenvector of A. Let e be an eigenvector of A

with unit length ‖e‖ =
√

eT e = 1. Then e and −e are eigenvectors with unit length, and

A has p eigenvalue eigenvector pairs (λ1, e1), (λ2, e2), ..., (λp, ep). Since A is symmetric,

the eigenvectors are chosen such that the ei are orthonormal: eT
i ei = 1 and eT

i ej = 0 for
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i 6= j. The symmetric matrix A is positive definite iff all of its eigenvalues are positive, and

positive semidefinite iff all of its eigenvalues are nonnegative. If A is positive semidefinite,

let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. If A is positive definite, then λp > 0.

Theorem 1. Let A be a p × p symmetric matrix with eigenvector eigenvalue pairs

(λ1, e1), (λ2, e2), ..., (λp, ep) where eT
i ei = 1 and eT

i ej = 0 if i 6= j for i = 1, ..., p. Then the

spectral decomposition of A is

A =

p
∑

i=1

λieie
T
i = λ1e1e

T
1 + · · · + λpepe

T
p .

Using the same notation as Johnson and Wichern (1988, pp. 50-51), let P =

[e1 e2 · · · ep] be the p×p orthogonal matrix with ith column ei. Then PP T = P T P = I.

Let Λ = diag(λ1, ..., λp) and let Λ
1/2 = diag(

√
λ1, ...,

√

λp). If A is a positive definite p× p

symmetric matrix with spectral decomposition A =
∑p

i=1 λieie
T
i , then A = PΛP T and

A−1 = PΛ
−1P T =

p
∑

i=1

1

λi
eie

T
i .

Theorem 2. Let A be a positive definite p× p symmetric matrix with spectral decom-

position A =
∑p

i=1 λieie
T
i . The square root matrix A1/2 = PΛ

1/2P T is a positive definite

symmetric matrix such that A1/2A1/2 = A.

Principal component regression (PCR) uses OLS regression on the principal compo-

nents of the correlation matrix Ru of the p−1 nontrivial predictors u1 = x2, ..., up−1 = xp.

Suppose Ru has eigenvalue eigenvector pairs (λ̂1, ê1), ..., (λ̂K, êK) where λ̂1 ≥ λ̂2 ≥ · · · ≥

λ̂K ≥ 0 where K = min(n, p − 1). Then Ruêi = λ̂iêi for i = 1, ..., K. Since Ru is a

symmetric positive semidefinite matrix, the λ̂i are real and nonnegative.

The eigenvectors êi are orthonormal: êT
i êi = 1 and êT

i êj = 0 for i 6= j. If the eigenval-

ues are unique, then êi and −êi are the only orthonormal eigenvectors corresponding to λ̂i.

For example, the eigenvalue eigenvector pairs can be found using the singular value decom-

position of the matrix W /
√
n− a where W is the matrix of the standardized nontrivial
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predictors wi, the sample covariance matrix

Σ̂w =
1

n − a

n
∑

i=1

(wi − w)(wi −w)T =
1

n − a

n
∑

i=1

wiw
T
i = Ru,

and usually a = 0 or a = 1. If n > K = p− 1, then the spectral decomposition of Ru is

Ru =

p−1
∑

i=1

λ̂iêiê
T
i = λ̂1ê1ê

T
1 + · · · + λ̂p−1êp−1ê

T
p−1,

and
∑p−1

i=1 λ̂i = p− 1.

Let w1, ...,wn denote the standardized vectors of nontrivial predictors. Then the K

principal components corresponding to the jth case wj are Pj1 = êT
1 wj, ..., PjK = êT

Kwj .

Principal components have a nice geometric interpretation if n > K = p−1. If n > K

and Ru is nonsingular, then the hyperellipsoid

{w|D2
w(0,Ru) ≤ h2} = {w : wT R−1

u w ≤ h2}

is centered at 0. The volume of the hyperellipsoid is

2πK/2

KΓ(K/2)
|Ru|1/2hK .

Then points at squared distance wTR−1
u w = h2 from the origin lie on the hyperellipsoid

centered at the origin whose axes are given by the eigenvectors êi where the half length

in the direction of êi is h
√

λ̂i. Let j = 1, ..., n. Then the first principal component Pj1 is

obtained by projecting the wj on the (longest) major axis of the hyperellipsoid, the second

principal component Pj2 is obtained by projecting the wj on the next longest axis of the

hyperellipsoid, ..., and the (p− 1)th principal component Pj,p−1 is obtained by projecting

the wj on the (shortest) minor axis of the hyperellipsoid. Examine Figure 1.1 for two

ellipsoids with 2 nontrivial predictors. The axes of the hyperellipsoid are a rotation of the

usual axes about the origin.

Let the random variable Vi correspond to the ith principal component, and let

(P1i, ..., Pni)
T = (V1i, ..., Vni)

T be the observed data for Vi. Then the sample mean

V i =
1

n

n
∑

k=1

Vki =
1

n

n
∑

k=1

êT
i wk = êT

i w = êT
i 0 = 0,
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Figure 1.1. Population Prediction Regions for 2 MVN Distributions
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and the sample covariance of Vi and Vj is

Cov(Vi, Vj) =
1

n

n
∑

k=1

(Vki − V i)(Vkj − V j) =
1

n

n
∑

k=1

êT
i wkw

T
k êj = êT

i Ruêj

= λ̂jê
T
i êj = 0 for i 6= j since the sample covariance matrix of the standardized data is

1

n

n
∑

k=1

wkw
T
k = Ru

and Ruêj = λ̂j êj. Hence Vi and Vj are uncorrelated.

PCR uses linear combinations of the standardized data as predictors. Let v1 = 1 and

vj = γT
j w = êT

j−1w = Vj−1 for j = 2, ..., K. Let model Ii contain v1, ..., vi. Then for model

Ii, PCR uses OLS regression of Y on v1, ..., vi.

Alternatively let vj = êT
j w for j = 1, ..., K and let model Ii contain v1, ..., vi. Then

for model Ii, use OLS regression of Z = Y − Y on v1, ..., vi with Ŷ = Ẑ + Y .

Generally there is no reason why the predictors should be ranked from best to worst by

v1, v2, ..., vK. Performing OLS forward selection or lasso on v1, ..., vK may be more effective.

There is one exception. Suppose
∑J

i=1 λ̂i ≥ q(p−1) where 0.5 ≤ q ≤ 1, e.g. q = 0.8 where J

is a lot smaller than p−1. Then the J predictors V1, ..., VJ capture much of the information

of the standardized nontrivial predictors w1, ..., wp−1. Then regressing Y on 1, V1, ..., VJ may

be competitive with regressing Y on 1, w1, ..., wp−1. This exception tends to occur when p

is very small, and is an example of dimension reduction. PCR is equivalent to OLS on the

full model when Y is regressed on a constant and all K of the principal components. PCR

can also be useful if X is singular or nearly singular (ill conditioned). In general, PCR

does not give a consistent estimator of β unless PCR is the full OLS model so all p − 1

principal components are used.

Variable selection is the search for a subset of predictor variables that can be deleted

without important loss of information. Following Olive(2017c, p.99), a model for variable

selection can be described by

xTβ = xT
SβS + xT

EβE = xT
SβS (1.5)
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where x = (xT
S ,x

T
E)T , xS is a kS × 1 vector, and xE is a (p− kS)× 1 vector. Given that xS

is in the model, βE = 0 and E denotes the subset of terms that can be eliminated given

that the subset S is in the model. Let xI be the vector of k terms from a candidate subset

indexed by I , and let xO be the vector of the remaining predictors (out of the candidate

submodel). Suppose that S is a subset of I and that model (1.5) holds. Then

xT β = xT
SβS = xT

SβS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI (1.6)

where xI/S denotes the predictors in I that are not in S. Since this is true regardless of the

values of the predictors, βO = 0 if S ⊆ I .

When there is a sequence of M submodels, the final submodel Id needs to be selected.

Suppose the ei are independent and identically distributed (iid) with variance V (ei) = σ2.

Then there are many criteria used to select the final submodel Id. A simple method is to

take the model that uses d = min(dn/Je, p) variables V1, ..., Vd. This is the method that

we will investigate. If p is fixed, the method will use the full OLS model once n/J ≥ p.

Hence the PI (2.4) described below will be asymptotically optimal for a wide class of zero

mean error distributions.

Consider predicting a future test response variable Yf given a p×1 vector of predictors

xf and training data (x1, Y1), ..., (xn, Yn). A large sample 100(1 − δ)% prediction interval

(PI) has the form [L̂n, Ûn] where P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as the sample size n→ ∞.

The shorth(c) estimator is useful for making prediction intervals. Let Z(1), ..., Z(n) be

the order statistics of Z1, ..., Zn. Then let the shortest closed interval containing at least c

of the Zi be

shorth(c) = [Z(s),Z(s+c−1)]. (1.7)

Let

kn = dn(1 − δ).e (1.8)

Frey (2013) showed that for large nδ and iid data, the shorth(kn) PI has maximum under-

coverage ≈ 1.12
√

δ/n, and used the shorth(c) estimator as the large sample 100(1 − δ)%
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PI where

c = min(n, dn[1 − δ + 1.12
√

δ/n ] e). (1.9)

A problem with the prediction intervals that cover ≈ 100(1− δ)% of the training data

cases Yi (such as the shorth(kn) PI), is that they have coverage lower than the nominal

coverage of 1 − δ for moderate n. This result is not surprising since empirically statistical

methods perform worse on test data. Increasing c will improve the coverage for moderate

samples.

Example 1. (Example 5.3 from Olive (2017b).) Given below were votes for preseason

1A basketball poll from Nov. 22, 2011 WSIL News where the 778 was a typo: the actual

value was 78. As shown below, finding shorth(3) from the ordered data is simple. If the

outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]

Olive (2007) developed prediction intervals for the full MLR model. Olive (2013)

developed prediction intervals for models of the form Yi = m(xi)+ei, and variable selection

models for (1.1) have this form, as noted by Olive (2017a). Both these PIs need n/p large.

Let c be given by (2.2) with d replaced by p, and let

bn =

(

1 +
15

n

)
√

n + 2p

n− p
. (1.10)
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Compute the shorth(c) of the residuals = [r(s), r(s+c−1)] = [ξ̃δ1
, ξ̃1−δ2

] where the ith residual

ri = Yi − Ŷi = Yi − m̂(xi). Then a 100 (1 − δ)% large sample PI for Yf is

[m̂(xf) + bnξ̃δ1
, m̂(xf ) + bnξ̃1−δ2

]. (1.11)

Note that correction factors bn → 1 are used in large sample confidence intervals

and tests if the limiting distribution is N(0,1) or χ2
p, but a tdn

or pFp,dn
cutoff is used:

tdn,1−δ/z1−δ → 1 and pFp,dn,1−δ/χ
2
p,1−δ → 1 if dn → ∞ as n → 1. Using correction factors

for prediction intervals and bootstrap confidence regions improves the performance for

moderate sample size n.
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CHAPTER 2

PREDICTION INTERVALS AFTER VARIABLE SELECTION

If n/p is large, the PI (1.11) can be used for the variable selection estimators with

m̂(xf ) = Ŷf = xT
f,Id

β̂Id
where Id denotes the index of predictors selected from the variable

selection method. For example, Id = Imin is the model that minimizes Cp for forward

selection. Now we want Id to use d = M = min(dn/Je, p) variables where n/p is not

necessarily large.

PI (1.11) needs the shorth of the residuals to be a consistent estimator of the popula-

tion shorth of the error distribution. Olive and Hawkins (2003) show that if the ‖xi‖ are

bounded and β̂ is a consistent estimator of β, then maxi=1,...,n |ri − ei| P→ 0 and the sample

quantiles of the residuals estimate the population quantiles of the error distribution. For

OLS, each submodel I produces a
√
n consistent estimator provided that S ⊆ I .

The Cauchy Schwartz inequality says |aTb| ≤ ‖a‖ ‖b‖. Suppose
√
n(β̂−β) = OP (1)

is bounded in probability. This will occur if
√
n(β̂ − β)

D→ Np(0,Σ), e.g. if β̂ is the OLS

estimator. Then

|ri − ei| = |Yi − xT
i β̂ − (Yi − xT

i β)| = |xT
i (β̂ − β)|.

Hence
√
n max

i=1,...,n
|ri − ei| ≤ ( max

i=1,...,n
‖xi‖) ‖

√
n(β̂ − β)‖ = OP (1)

since max ‖xi‖ = OP (1) or there is extrapolation. Hence OLS residuals behave well if the

zero mean error distribution of the iid ei has a finite variance σ2.

Let d be a crude estimate of the model degrees of freedom. For forward selection with

OLS, PCR, and PLS, d = j is the number of components V1, ..., Vj in model Ij. The Olive

(2017d) and Pelawa Watagoda and Olive (2017) PI that can work if n >> p or p > n is

defined below. The PI is similar to the Olive (2013) PI (1.11) with p replaced by d, but

some care needs to be taken to that the PI is well defined and does not have infinite length.
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Let qn = min(1 − δ + 0.05, 1 − δ + d/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δd/n), otherwise. (2.1)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Let

c = dnqne, (2.2)

and let

bn =

(

1 +
15

n

)

√

n+ 2d

n− d
(2.3)

if d ≤ 8n/9, and

bn = 5

(

1 +
15

n

)

,

otherwise. Compute the shorth(c) of the residuals = [r(s), r(s+c−1)] = [ξ̃δ1
, ξ̃1−δ2

]. Then a

100 (1 − δ)% large sample PI for Yf is

[m̂(xf) + bnξ̃δ1
, m̂(xf ) + bnξ̃1−δ2

]. (2.4)
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CHAPTER 3

EXAMPLES AND SIMULATIONS

Let x = (1 uT )T where u is the p − 1 × 1 vector of nontrivial predictors. For the

simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the m = p−1 elements of

the vector wi are iid N(0,1). Let them×m matrix A = (aij) with aii = 1 and aij = ψ where

0 ≤ ψ < 1 for i 6= j. Then the vector u = Awi so that Cov(u) = Σu = AAT = (σij) where

the diagonal entries σii = [1+(m−1)ψ2] and the off diagonal entries σij = [2ψ+(m−2)ψ2].

Hence the correlations are cor(xi, xj) = ρ = (2ψ+(m−2)ψ2)/(1+(m−1)ψ2) for i 6= j where

xi and xj are nontrivial predictors. If ψ = 1/
√
cp, then ρ → 1/(c + 1) as p → ∞ where

c > 0. As ψ gets close to 1, the predictor vectors cluster about the line in the direction of

(1, ..., 1)T . Then Yi = 1 + 1xi,2 + · · ·+ 1xi,k + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T

with k+1 ones and p−k−1 zeros. The zero mean errors ei were iid of five types: i) N(0,1)

errors, ii) t3 errors, iii) EXP(1) - 1 errors, iv) uniform(−1, 1) errors, and v) 0.9 N(0,1) +

0.1 N(0,100) errors.

The lengths of the asymptotically optimal 95% PIs are i) 3.92 = 2(1.96), ii) 6.365,

iii) 2.996, iv) 1.90 = 2(0.95), and v) 13.490. Suppose the simulation uses K runs and

Wi = 1 if Yf is in the ith PI, and Wi = 0 otherwise, for i = 1, ..., K. Then the Wi

are iid binomial(1,1 − δn) where ρn = 1 − δn is the true coverage of the PI when the

sample size is n. Let ρ̂n = W . Since
∑K

i=1 Wi ∼ binomial(K, ρn), the standard error

SE(W ) =
√

ρn(1 − ρn)/K. For K = 5000 and ρn near 0.9, we have 3SE(W ) ≈ 0.01.

Hence an observed coverage of ρ̂n within 0.01 of the nominal coverage 1 − δ suggests that

there is no reason to doubt that the nominal PI coverage is different from the observed

coverage. So for a large sample 95% PI, we want the observed coverage to be between 0.94

and 0.96. Also a difference of 0.01 is not large. Coverage slightly higher than the nominal

coverage is better than coverage slightly lower than the nominal coverage.

We used J = 5, 10, 20, 50, and dn/pe as long as J ≤ n/p since n/J ≥ p uses the
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full model. The selected model used the d variables. The simulation used 5000 runs with

p = 20, 40, n, and 2n. The simulation used ψ = 0, 1/
√
p, and 0.9. An observed coverage

in [0.94, 0.96] gives no reason to doubt that the PI has the nominal coverage of 0.95. The

simulation used k = 1, 19, and p − 1. Table 1 shows some simulations for the new large

sample prediction interval (2.4).

Table 3.1. Simulated PI Coverages and Lengths, Error type = i)

n p k J ψ pcrcov pcrlen plscov plslen

1000 20 1 10 0 0.960 4.175 0.960 4.175

Some R code is below. For 5000 runs of the nominal large sample 95% PI, the observed

coverage for PCR and PLS was 0.960 and the average length was 4.175. Since min(n/J, p) =

20, the OLS full model was fit for both PCR and PLS.

library(pls)

dpisim3(n=1000,p=20,k=1,J=10,nruns=5000,psi=0,type=1)

$pcrpicov

[1] 0.9604

$pcrpimenlen

[1] 4.174539

$plspicov

[1] 0.9604

$plspimenlen

[1] 4.174539 #PCR and PLS used full model OLS
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CHAPTER 4

ERROR TYPE 1 EXAMPLES

Table 4.1. PI coverage and length for error type 1 (runs = 5000)

n p k J ψ PCR-PIcov PCR-PIlen PLS-PIcov PLS-PIlen

100 20 1 5 0 0.9838 5.6986 0.9838 5.6986

100 20 1 10 0 0.9800 6.1915 0.9648 4.9670

100 20 1 50 0 0.9636 6.1435 0.9352 4.3383

100 20 19 5 1/
√
p 0.9842 5.6968 0.9842 5.3696

100 20 19 5 0 0.9822 5.7227 0.9822 5.7227

100 20 19 10 0 0.9678 14.9895 0.9676 4.9840

100 20 19 10 0 0.9702 15.0622 0.9682 4.9871

100 40 1 5 0.9 0.9856 5.7251 0.9308 4.9458

100 40 19 5 0 0.9706 15.0521 0.9376 4.9373

100 40 19 10 1/
√
p 0.9802 12.2942 0.8922 4.3135

100 40 19 20 1/
√
p 0.9814 13.2225 0.9018 4.3601

100 40 19 50 0 0.9654 19.3259 0.8998 8.5771

100 40 39 5 0.9 0.9864 5.6988 0.9290 4.9310

100 40 19 5 0.9 0.9862 5.8007 0.9312 4.9389

100 100 19 5 0.9 0.9894 5.9683 0.1976 1.3784

100 100 1 50 0.9 0.9642 4.4555 0.9642 4.4555

100 100 19 5 1/
√
p 0.9816 16.6874 0.2158 1.4890

200 20 19 10 0 0.9764 4.9727 0.9764 4.9727

200 40 39 5 0 0.9812 5.3764 0.9812 5.3764

200 40 39 10 0 0.9584 19.2529 0.9586 4.6827

200 200 39 5 0 0.9764 26.2433 0.1044 0.9628

—
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Table 4.2. PI coverage and length for error type 1 (runs = 5000)

n p k J ψ PCR-PIcov PCR-PIlen PLS-PIcov PLS-PIlen

200 200 19 10 0 0.9734 19.6847 0.1814 1.2602

200 200 1 50 0.9 0.9634 4.2975 0.6622 2.4768

200 400 19 5 0.9 0.9856 5.7063 0.0000 0+

200 400 19 10 0 0.9766 20.5782 0.0012 0.0093

400 400 1 20 1/
√
p 0.9754 5.8147 0.1714 1.1049

400 40 1 20 1/
√
p 0.9766 5.2346 0.9700 4.5699

400 400 19 20 0.9 0.9766 5.0590 0.1646 1.0945

400 400 19 10 1/
√
p 0.9756 18.0847 0.0960 0.8461

400 400 399 5 0 0.9740 81.0937 0.0518 0.7160

400 800 1 5 0.9 0.9892 5.3092 0.0000 0+

1000 1000 1 5 0 0.9834 6.6318 0.0170 3.9468

1000 2000 19 10 0 0.9746 20.1530 0.0000 0+

1000 1000 19 5 0.9 0.9894 5.5498 0.0192 0.3966

1000 1000 19 10 0 0.9744 19.2322 0.0320 0.5119

1000 1000 999 10 1/
√
p 0.9810 5.6068 0.0324 0.5037

1000 2000 19 5 0.9 0.9882 5.6161 0.0000 0.1948

2000 2000 19 10 0 0.9772 19.2329 0.0138 0.3587

2000 20 19 10 0 0.9584 4.0332 0.9584 4.0332

2000 40 19 50 0 0.9632 4.1714 0.9632 4.1714

2000 2000 19 50 0 0.9570 18.1827 0.0710 0.6969

2000 4000 19 20 0.9 0.9772 5.0651 0.0000 0.1042

—
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CHAPTER 5

ERROR TYPE 2 EXAMPLES

Table 5.1. PI coverage and length for error type 2 (runs = 5000)

n p k J ψ PCR-PIcov PCR-PIlen PLS-PIcov PLS-PIlen

100 20 1 5 0 0.9792 9.9965 0.9792 9.9965

100 20 1 10 0 0.9720 9.9857 0.9604 8.7199

100 20 1 50 0 0.9566 8.2785 0.9334 6.7660

100 20 19 5 1/
√
p 0.9746 10.0399 0.9746 10.0399

100 20 19 5 0 0.9730 10.0729 0.9730 10.0729

100 20 19 10 0 0.9704 16.8327 0.9622 8.7501

100 40 1 5 0.9 0.9730 10.0105 0.9386 8.4738

100 40 19 5 0 0.9696 17.0405 0.9398 8.4748

100 40 19 10 1/
√
p 0.9756 14.3545 0.9080 7.3646

100 40 19 20 1/
√
p 0.9766 14.9748 0.9140 7.1425

100 40 19 50 0 0.9630 20.2452 0.9078 9.8723

100 40 39 5 0.9 0.9760 10.0731 0.9394 8.5256

100 40 19 5 0.9 0.9772 10.0500 0.9356 8.4479

100 100 19 5 0.9 0.9782 10.1202 0.1986 2.2876

100 100 1 5 0.9 0.9764 9.9913 0.1942 2.2722

100 100 19 5 1/
√
p 0.9798 18.5163 0.2162 2.3866

200 20 19 10 0 0.9706 8.7374 0.9706 8.7374

200 40 39 5 0 0.9712 9.2992 0.9712 9.2992

200 40 39 10 0 0.9632 20.4525 0.9596 8.1193

200 200 39 5 0 0.9760 27.3389 0.0986 1.5524

—
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Table 5.2. PI coverage and length for error type 2 (runs = 5000)

n p k J ψ PCR-PIcov PCR-PIlen PLS-PIcov PLS-PIlen

200 200 19 10 0 0.9758 20.8502 0.1784 2.0256

200 200 1 50 0.9 0.9578 7.0348 0.7320 4.1288

200 400 19 5 0.9 0.9764 9.5186 0.0000 0+

200 400 19 10 0 0.9786 21.7175 0.0012 0.0109

400 400 1 20 1/
√
p 0.9660 9.2259 0.1674 1.8628

400 40 1 20 1/
√
p 0.9740 8.7070 0.9686 8.1353

400 400 19 20 0.9 0.9702 8.5641 0.1676 1.8438

400 400 19 10 1/
√
p 0.9756 19.3178 0.0932 1.3996

400 400 399 5 0 0.9764 81.4265 0.0522 1.1464

400 800 1 5 0.9 0.9774 9.3098 0.0000 0+

1000 1000 1 5 0 0.9800 10.0610 0.0220 0.6747

1000 2000 19 10 0 0.9778 21.2955 0.0000 0+

1000 1000 19 5 0.9 0.9788 9.4796 0.0170 0.6787

1000 1000 999 10 1/
√
p 0.9760 9.1170 0.0360 0.8613

1000 2000 19 5 0.9 0.9788 9.4974 0.0000 0.1736

2000 20 19 10 0 0.9532 6.6374 0.9532 6.6374

2000 40 19 50 0 0.9602 7.0086 0.9602 7.0086

2000 4000 19 20 0.9 0.9772 8.6916 0.0000 0.0960

—
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CHAPTER 6

ERROR TYPE 3 EXAMPLES

Table 6.1. PI coverage and length for error type 3 (runs = 5000)

n p k J ψ PCR-PIcov PCR-PIlen PLS-PIcov PLS-PIlen

100 20 1 5 0 0.9828 5.6715 0.9828 5.6715

100 20 1 10 0 0.9746 6.2819 0.9684 4.9344

100 20 1 50 0 0.9564 6.0674 0.9364 4.1519

100 20 19 5 1/
√
p 0.9772 5.6342 0.9772 5.6342

100 20 19 5 0 0.9794 5.6661 0.9794 5.6661

100 20 19 10 0 0.9698 15.1213 0.9670 4.9244

100 40 1 5 0.9 0.9806 5.6583 0.9358 5.0030

100 40 19 5 0 0.9682 15.0609 0.9350 5.0092

100 40 19 10 1/
√
p 0.9804 12.3775 0.9054 4.3720

100 40 19 20 1/
√
p 0.9792 13.3088 0.9002 4.4148

100 40 19 50 0 0.9616 19.4041 0.8954 8.5805

100 40 39 5 0.9 0.9854 5.6216 0.9364 4.9688

100 40 19 5 0.9 0.9804 5.7460 0.9364 4.9729

100 100 19 5 0.9 0.9860 5.9587 0.2032 1.3571

100 100 1 5 0.9 0.9842 5.6614 0.2074 1.3740

100 100 19 5 1/
√
p 0.9808 18.4986 0.2198 2.3689

200 20 19 10 0 0.9744 4.7202 0.9744 4.7202

200 40 39 5 0 0.9750 5.2786 0.9750 5.2786

200 40 39 10 0 0.9610 19.2659 0.9598 4.6056

200 200 39 5 0 0.9732 26.2859 0.0964 0.9564

200 200 19 5 0 0.9728 18.7091 0.0982 0.9311

—
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Table 6.2. PI coverage and length for error type 3 (runs = 5000)

n p k J ψ PCR-PIcov PCR-PIlen PLS-PIcov PLS-PIlen

200 200 19 10 0 0.9770 19.7015 0.1866 1.2476

200 400 19 5 0.9 0.9818 5.7142 0.0000 0+

200 400 19 10 0 0.9724 20.5824 0.0006 0.0093

400 400 1 20 1/
√
p 0.9760 6.3802 0.1696 1.1061

400 40 1 20 1/
√
p 0.9712 5.3134 0.9742 4.3537

400 400 19 20 0.9 0.9762 4.9638 0.1692 1.0918

400 400 19 10 1/
√
p 0.9688 18.1031 0.0936 0.8421

400 400 399 5 0 0.9756 81.0709 0.0518 0.7113

400 800 1 5 0.9 0.9818 5.2501 0.0000 0+

1000 1000 1 5 0 0.9822 6.7610 0.0184 0.3947

1000 2000 19 10 0 0.9810 20.1860 0.0000 0+

1000 1000 19 5 0.9 0.9854 5.5665 0.0180 0.3952

1000 1000 999 10 1/
√
p 0.9836 5.6595 0.0376 0.5020

1000 2000 19 5 0.9 0.9840 5.6525 0.0000 0.1976

2000 2000 19 10 0 0.9780 19.2504 0.0150 0.3563

2000 2000 19 50 0 0.9590 18.1872 0.0758 0.6978

—
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CHAPTER 7

ERROR TYPE 4 EXAMPLES

Table 7.1. PI coverage and length for error type 4 (runs = 5000)

n p k J ψ PCR-PIcov PCR-PIlen PLS-PIcov PLS-PIlen

100 20 1 5 0 0.9898 2.9655 0.9898 2.9655

100 20 1 10 0 0.9764 4.3736 0.9728 2.5878

100 20 1 50 0 0.9646 4.9268 0.9346 2.6719

100 20 19 5 1/
√
p 0.9890 2.9630 0.9890 2.9630

100 20 19 5 0 0.9914 2.9664 0.9914 2.9664

100 20 19 10 0 0.9744 14.3614 0.9714 2.5855

100 40 1 5 0.9 0.9966 2.9863 0.9332 2.7193

100 40 19 5 0 0.9712 14.2618 0.9334 2.7160

100 40 19 10 1/
√
p 0.9758 11.5036 0.8866 2.3761

100 40 19 20 1/
√
p 0.9796 12.5995 0.8750 2.7480

100 40 19 50 0 0.9634 19.0424 0.8874 8.0006

100 40 39 5 0.9 0.9964 2.9637 0.9302 2.7160

100 40 19 5 0.9 0.9914 3.1739 0.9282 2.7096

100 100 19 5 0.9 0.9920 3.5293 0.2010 0.8019

100 100 19 5 1/
√
p 0.9812 16.0850 0.2258 0.9396

200 20 19 10 0 0.9872 2.4599 0.9872 2.4599

200 40 39 5 0 0.9860 2.7904 0.9860 2.7904

200 40 39 10 0 0.9594 18.8393 0.9566 2.4349

200 200 19 5 0 0.9768 18.2050 0.104 0.5671

—
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Table 7.2. PI coverage and length for error type 4 (runs = 5000)

n p k J ψ PCR-PIcov PCR-PIlen PLS-PIcov PLS-PIlen

200 200 19 10 0 0.9704 19.2521 0.1858 0.8050

200 400 19 5 0.9 0.9904 3.5016 0.0000 0+

200 400 19 10 0 0.9748 20.1496 0.0006 0.0086

400 400 1 20 1/
√
p 0.9760 4.9445 0.1724 0.6484

400 40 1 20 1/
√
p 0.9694 3.5638 0.9698 2.2470

400 400 19 20 0.9 0.9788 3.1004 0.1672 0.6344

400 400 19 10 1/
√
p 0.9800 17.6391 0.0964 0.5085

400 400 399 5 0 0.9748 80.8251 0.0572 0.4646

400 800 1 5 0.9 0.9986 2.7852 0.0000 0+

1000 1000 1 5 0 0.9802 4.9959 0.0168 0.2277

1000 1000 19 5 0.9 0.9890 3.3199 0.0190 0.2291

1000 1000 999 10 1/
√
p 0.9796 3.8343 0.0334 0.2908

1000 2000 19 5 0.9 0.9910 3.4403 0.0000 0.2020

—
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CHAPTER 8

ERROR TYPE 5 EXAMPLES

Table 8.1. PI coverage and length for error type 5 (runs = 5000)

n p k J ψ PCR-PIcov PCR-PIlen PLS-PIcov PLS-PIlen

100 20 1 5 0 0.9664 22.8287 0.9664 22.8287

100 20 1 10 0 0.9604 21.8894 0.9556 19.7716

100 20 1 50 0 0.9458 14.4248 0.9382 12.7511

100 20 19 5 1/
√
p 0.9674 22.6792 0.9674 22.6792

100 20 19 5 0 0.9664 22.7310 0.9664 22.7310

100 20 19 10 0 0.9654 25.1281 0.9586 19.7382

100 40 1 5 0.9 0.9676 22.5918 0.9508 18.1508

100 40 19 5 0 0.9716 26.0466 0.9444 18.3753

100 40 19 10 1/
√
p 0.9668 23.8813 0.9304 15.8560

100 40 19 20 1/
√
p 0.9666 23.6983 0.9364 15.1586

100 40 19 50 0 0.9596 23.5867 0.9194 14.1523

100 40 39 5 0.9 0.9704 22.6733 0.9482 18.2587

100 40 19 5 0.9 0.9678 22.6664 0.9486 18.1901

100 100 19 5 0.9 0.9652 22.6233 0.1998 4.3895

100 100 19 5 1/
√
p 0.9732 26.9037 0.1996 4.4913

200 20 19 10 0 0.9692 20.7071 0.9692 20.7071

200 40 39 5 0 0.9690 21.4478 0.9690 21.4478

200 40 39 10 0 0.9676 26.4430 0.9636 18.7647

200 200 19 5 0 0.9734 26.7558 0.0910 2.9437

—
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Table 8.2. PI coverage and length for error type 5 (runs = 5000)

n p k J ψ PCR-PIcov PCR-PIlen PLS-PIcov PLS-PIlen

200 200 19 10 0 0.9680 26.5190 0.1872 3.7995

200 400 19 5 0.9 0.9704 21.5960 0.0000 0+

200 400 19 10 0 0.9726 27.2236 0.0012 0.0156

400 400 1 20 1/
√
p 0.9694 21.3949 0.1668 3.5956

400 40 1 20 1/
√
p 0.9676 21.3109 0.9666 20.2323

400 400 19 20 0.9 0.9686 21.2116 0.1674 3.5771

400 400 19 10 1/
√
p 0.9700 25.7260 0.0930 2.6704

400 400 399 5 0 0.9780 82.7513 0.0506 2.1254

400 800 1 5 0.9 0.9728 22.3380 0.0000 0+

1000 1000 1 5 0 0.9772 23.3596 0.0154 1.2894

1000 1000 999 10 1/
√
p 0.9716 22.7092 0.0364 1.6613

1000 2000 19 5 0.9 0.9736 23.2161 0.0000 0.1374

—
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CHAPTER 9

CONCLUSIONS

0. When n/J ≥ p, the method is doing a full OLS. In other words both PCR and PLS

produce same coverage and lengths which are those of the OLS, as stated before.

1. When p = n, or 2n, typically PLS coverage � PCR coverage implying that PLS does

not work for sufficiently large value of p. This was already stated before, Chun and Keleş

(2010) show that PLS does not give a consistent estimator of β unless p/n → 0. This can

also be seen by the tables on previous pages, when p = n, or 2n. Refer to table 9.1.

2. When n > 2p, n/J < p, and k = 1, PLS seems to work slightly better than PCR. This is

seen by the coverage percentage and length, PCR gives us a longer coverage length. Refer

to table 9.2.

3. When n > 2p, n/J < k + 1, or maybe when k = p− 1, PLS seems much more reliable

than PCR. Refer to table 9.3 for examples. This is could also be due to the fact that ψ = 0

implying that there was no correlation between the predictors which usually lead to much

longer PCR lengths than what was expected given the error types. Refer to table 9.3.
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Table 9.1. Partial Least Squares � Principal Component Regression, small n/p

n p k J ψ error type PCR-PIcov PCR-PIlen PLS-PIcov PLS-PIlen

100 100 19 5 0.9 1 0.9894 5.9683 0.1976 1.3784

100 100 19 5 0.9 2 0.9782 10.1202 0.1986 2.2876

100 100 19 5 0.9 3 0.9860 5.9587 0.2032 1.3571

100 100 19 5 0.9 4 0.9920 3.5293 0.2010 0.8019

100 100 19 5 0.9 5 0.9652 22.6233 0.1998 4.3895

200 400 19 5 0.9 1 0.9856 5.7063 0.0000 0+

200 400 19 5 0.9 2 0.9764 9.5186 0.0000 0+

200 200 39 5 0 3 0.9732 26.2859 0.0964 0.9564

200 200 19 5 0 4 0.9768 18.2050 0.104 0.5671

400 400 19 10 1/
√
p 1 0.9756 18.0847 0.0960 0.8461

400 400 19 10 1/
√
p 2 0.9756 19.3178 0.0932 1.3996

400 800 1 5 0.9 3 0.9818 5.2500 0.0000 0+

400 800 1 5 0.9 4 0.9986 2.7852 0.0000 0+

1000 2000 19 10 0 1 0.9746 20.1530 0.0000 0+

1000 2000 19 10 0 2 0.9778 21.2955 0.0000 0+

1000 1000 1 5 0 3 0.9822 6.7610 0.0184 0.3947

1000 1000 19 5 0.9 4 0.9890 3.3199 0.0190 0.2291

2000 2000 19 10 0 1 0.9772 19.2329 0.0138 0.3587

2000 4000 19 20 0.9 2 0.9772 8.6916 0.0000 0.0960

2000 2000 19 50 0 3 0.9590 18.1872 0.0758 0.6978
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Table 9.2. Partial Least Squares � Principal Component Regression, n/J < p and k = 1

n p k J ψ error type PCR-PIcov PCR-PIlen PLS-PIcov PLS-PIlen

100 20 1 10 0 1 0.9800 6.1915 0.9648 4.9670

100 20 1 50 0 1 0.9636 6.1435 0.9352 4.3383

100 40 1 5 0.9 1 0.9856 5.7251 0.9308 4.9458

400 40 1 20 1/
√
p 1 0.9766 5.2346 0.9700 4.5699

100 20 1 10 0 2 0.9720 9.9857 0.9604 8.7199

100 20 1 50 0 2 0.9566 8.2785 0.9334 6.7660

100 40 1 5 0.9 2 0.9730 10.0105 0.9386 8.4738

400 40 1 20 1/
√
p 2 0.9740 8.7070 0.9686 8.1353

100 20 1 10 0 3 0.9746 6.2819 0.9684 4.9344

100 20 1 50 0 3 0.9564 6.0674 0.9364 4.1519

100 40 1 5 0.9 3 0.9806 5.6583 0.9358 5.0030

400 40 1 20 1/
√
p 3 0.9712 5.3134 0.9742 4.3537

100 20 1 10 0 4 0.9764 4.3736 0.9728 2.5878

100 20 1 50 0 4 0.9646 4.9268 0.9346 2.6719

100 40 1 5 0.9 4 0.9966 2.9863 0.9332 2.7193

400 40 1 20 1/
√
p 4 0.9694 3.5638 0.9698 2.2470

100 20 1 10 0 5 0.9604 21.8894 0.9556 19.7716

100 20 1 50 0 5 0.9458 14.4248 0.9382 12.7511

100 40 1 5 0.9 5 0.9676 22.5918 0.9508 18.1508

400 40 1 20 1/
√
p 5 0.9676 21.3109 0.9666 20.2323
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Table 9.3. Partial Least Squares � Principal Component Regression,
n/J < k + 1 or maybe when k = p− 1

n p k J ψ error type PCR-PIcov PCR-PIlen PLS-PIcov PLS-PIlen

100 20 19 10 0 1 0.9678 14.9895 0.9676 4.9840

200 40 39 10 0 1 0.9584 19.2529 0.9586 4.6827

100 20 19 10 0 2 0.9704 16.8327 0.9622 8.7501

200 40 39 10 0 2 0.9632 20.4525 0.9596 8.1193

100 20 19 10 0 3 0.9698 15.1213 0.9670 4.9244

200 40 39 10 0 3 0.9610 19.2659 0.9598 4.6056

100 20 19 10 0 4 0.9744 14.3614 0.9714 2.5855

200 40 39 10 0 4 0.9594 18.8393 0.9566 2.4349

100 20 19 10 0 5 0.9654 25.1281 0.9586 19.7382

200 40 39 10 0 5 0.9676 26.4430 0.9636 18.7647

Simulations were done in R. See R Core Team(2016).
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