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CHAPTER 1

INTRODUCTION

The response variable is the variable that you want to predict. The predictor vari-

ables are the variables used to predict the response variable. The response variable will

be denoted by Y and the p predictor variables will be denoted by x1, ..., xp and collected

in a vector x. Then xT is the transpose of x.

Suppose that the response variable Y and at least one predictor variable xi are

quantitative. Then the multiple linear regression (MLR) model is

Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (1.1)

for i = 1, . . . , n. Here n is the sample size and the random variable ei is the ith error.

Suppressing the subscript i, the model is Y = xT β + e. A constant will be in the model,

so xi,1 ≡ 1 is sometimes called the trivial predictor. In matrix notation, these n equations

become

Y = Xβ + e, (1.2)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

β is a p× 1 vector of unknown coefficients, and e is an n× 1 vector of unknown errors.

Variable selection, also called subset or model selection, is the search for a subset of

predictor variables that can be deleted without important loss of information. Following

Olive and Hawkins (2005), a model for variable selection can be described by

xT β = xT
SβS + xT

EβE = xT
SβS (1.3)

where x = (xT
S ,x

T
E)T , xS is a kS × 1 vector and xE is a (p− kS)× 1 vector. Given that

xS is in the model, βE = 0 and E denotes the subset of terms that can be eliminated

given that the subset S is in the model. Let xI be the vector of k terms from a candidate

subset indexed by I, and let xO be the vector of the remaining predictors (out of the
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candidate submodel). Suppose that S is a subset of I and that model (1.3) holds. Then

xT β = xT
SβS = xT

SβS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI (1.4)

where xI/S denotes the predictors in I that are not in S. Since this is true regardless of

the values of the predictors, βO = 0 if S ⊆ I.

Many methods for variable selection have been suggested. We will consider forward

selection as computed with the R function regsubsets function from the leaps library.

Forward Selection forms a sequence of of submodels I1, ..., IM where Ij uses j

predictors including the constant. Let I1 use x∗1 = x1 ≡ 1: the model has a constant but

no nontrivial predictors. To form I2, consider all models I with two predictors including

x∗1. Compute Q2(I) = SSE(I) = RSS(I) = rT (I)r(I) =
∑n

i=1 r
2
i (I) =

∑n
i=1(Yi− Ŷi(I))

2

where RSS stands for residual sum of squares and SSE stands for sum of squared errors.

Let I2 minimize Q2(I) for the p − 1 models I that contain x∗1 and one other predictor.

Denote the predictors in I2 by x∗1, x
∗
2. In general, to form Ij consider all models I with

j predictors including variables x∗1, ..., x
∗
j−1. Compute Qj(I) = rT (I)r(I) =

∑n
i=1 r

2
i (I) =∑n

i=1(Yi−Ŷi(I))
2. Let Ij minimize Qj(I) for the p−j+1 models I that contain x∗1, ..., x

∗
j−1

and one other predictor not already selected. Denote the predictors in Ij by x∗1, ..., x
∗
j .

Continue in this manner for j = 2, ...,M . Often M = min(dn/Je, p) for some integer J

such as J = 5, 10, or 20. Here dxe is the smallest integer ≥ x, e.g., d7.7e = 8.

When there is a sequence ofM submodels, the final submodel Id needs to be selected.

Let xI and β̂I be a×1. Hence the candidate model contains a terms, including a constant.

Suppose the ei are independent and identically distributed (iid) with variance V (ei) = σ2.

Then there are many criteria used to select the final submodel Id. Let criteria CS(I) have

the form

Cs(I) = SSE(I) + aKnσ̂
2.

These criteria need a good estimator of σ2. The criterion Cp(I) = AICs(I) uses Kn = 2
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while the BICs(I) criterion uses Kn = log(n). Typically σ2 is the full model

MSE =
n∑

i=1

r2
i

n− p

when n/p is large. Then σ̂2 = MSE is a
√
n consistent estimator of σ̂2 under mild

conditions by Su and Cook (2012).

It is hard to get a good estimator of σ2 when n/p is not large. The following

criterion are describe in Burnham and Anderson (2004), but still need n/p large.

AIC(I) = n log

(
SSE(I

n

)
+ 2a,

AICC(I) = n log

(
SSE(I

n

)
+ 2

a(a+ 1)

n− a− 1
,

and

BIC(I) = n log

(
SSE(I)

n

)
+ 2log(n).

Let Imin be the submodel that minimize the criterion. Following Seber and Lee(2003,

p. 448) and Nishi(1984), the probability that model Imin from Cp or AIC under fit goes to

zero as n→∞. If β̂I is a×1, form the p×1 vector β̂I,0 from β̂I by adding 0s corresponding

to the omitted variables. Since there are a finite number of regression models I that

contain the true model, and each such model gives a
√
n consistent estimator β̂I,0 of β,

the probability that Imin picks one of these models goes to one as n→∞. Hence β̂Imin,0

is a
√
n consistent estimator of β under model (1.3).

An interesting BIC-type criterion is given in Luo and Chen (2012) that may work

when n/p in not large. Let 0 ≤ γ ≤ 1 and |I| = a ≤ min(n, q) if β̂I is a × 1. We may

use a ≤ min(n/5, p). Then

EBIC(I) = n log

(
SSE(I)

n

)
+ a log(n) + 2γ log

[(
p

a

)]
This criterion can give good result if p = pn = O(nk) and γ > 1− 1/(2k).

A simple method is to take the model that uses d = M = min(dn/Je, p). This

method that we will investigate. If p is fixed, the method will use the full model once
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n/J ≥ p. Hence the PI (2.4) described below will be asymptotically optimal for a wide

class of zero mean error distributions.

Consider predicting a future test response variable Yf given a p × 1 vector of pre-

dictors xf and training data (x1, Y1), ..., (xn, Yn). A large sample 100(1− δ)% prediction

interval (PI) has the form (L̂n, Ûn) where P (L̂n < Yf < Ûn) → 1 − δ as the sample size

n→∞.

The shorth(c) estimator is useful for making prediction intervals. Let Z(1), ..., Z(n)

be the order statistics of Z1, ..., Zn. Then let the shortest closed interval containing at

least c of the Zi be

shorth(c) = [Z(s),Z(s+c−1)]. (1.5)

Let

kn = dn(1− δ)e (1.6)

where dxe is the smallest integer ≥ x, e.g., d7.7e = 8. Frey (2013) showed that for large

nδ and iid data, the shorth(kn) PI has maximum undercoverage ≈ 1.12
√
δ/n, and used

the shorth(c) estimator as the large sample 100(1− δ)% PI where

c = min(n, dn[1− δ + 1.12
√
δ/n ] e). (1.7)

A problem with the prediction intervals that cover ≈ 100(1 − δ)% of the training

data cases Yi (such as (1.5) using c = kn given by (1.6)), is that they have coverage lower

than the nominal coverage of 1 − δ for moderate n. This result is not surprising since

empirically statistical methods perform worse on test data. Increasing c will improve the

coverage for moderate samples.

Example 1. (Example 5.3 from Olive(2017b).) Given below were votes for pre-

season 1A basketball poll from Nov. 22,2011 WSIL News where the 778 was typo: the

actual value was 78. As shown below, finding shorth(3) from the ordered data is simple.

If the outlier was corrected, shorth(3)=[76,78].

111 89 778 78 76
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ordered data: 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3)=[76,89]

Olive (2007) developed prediction intervals for the full MLR model. Olive (2013)

developed prediction intervals for models of the form Yi = m(xi)+ei and variable selection

model for (1.1) have this form, as noted by Olive (2017a). Both these PIs need n/p large.

Let c be given by (2.2), and let

bn =

(
1 +

15

n

) √
n+ 2p

n− p
. (1.8)

Compute the shorth(c) of the residual = [r(s), r(s+c−1)] = [ξ̂δ1 , ξ̂1−δ2 ] where the ith residual

ri = Yi − Ŷi = Yi − m̂(xi). Then a 100(1− δ)% large sample PI for Yf is

[m̂(xf ) + bnξ̃, m̂(xf ) + bnξ̃1−δ2 ] (1.9)

Note that the correlation factors bn → 1 are used in large sample confidence intervals

and tests if the limiting distribution is N(0,1) or χ2
p, but a tdn or pFp,dn cutoff is used:

tdn,1−δ/z1−δ
→ 1 and pFp,dn,1−δ/χ

2
p,1−δ → 1 if dn →∞ as n→ 1. Using correction factors

for prediction intervals and bootstrap confidence regions improves the performance for

moderate sample size n.
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CHAPTER 2

PREDICTION INTERVALS AFTER VARIABLE SELECTION

If n/p is large, the PI (1.9) can be used for the variable selection estimators with

m̂(x) = xT
Id
β̂Id

, where Id denotes the index of predictors selected from the variable

selection method. For example, Id = Imin is the model that minimizes Cp for forward

selection. Now we want Id to used d = M = min(dn/Je, p) variables where n/p is not

necessarily large.

PI (1.9) needs the shorth of the residuals to be a consistent estimator of the popula-

tion shorth of the error distribution. Olive and Hawkins (2003) show that if the ‖xi‖ are

bounded and β̂ is a consistent estimator of β, then maxi=1,...,n|ri−ei|
P→ 0 and the sample

quantiles of the residuals estimate the population quantiles of the error distribution. For

OLS, each submodel I produces a
√
n consistent estimator provided that S ⊆ I.

The Cauchy Schwartz Inequality says |aTb| ≤ ‖a‖‖b‖. Suppose
√
n(β̂−β) = Op(1)

is bounded in probability. This will occur if
√
n(β̂−β)

D→ Np(0,Σ), e.g. if β̂ is the OLS

estimator. Then

|ri − ei| = |Yi − xT β̂ − (Yi − xT
i β)| = |xT

i (β̂ − β)|.

Hence
√
n max

i=1,...,n
|ri − ei| ≤ ( max

i=1,...,n
‖xi‖) ‖

√
n(β̂ − β)‖ = Op(1)

since max‖xi‖ = Op(1) or there is extrapolation. Hence OLS residuals behave well if the

zero mean error distribution of the iid ei has a finite variance σ2.

Let d be a crude estimate of the model degrees of freedom. For forward selection

with OLS, β̂Id
is a d × 1 vector. The Olive (2017d) and Pelawa Watagoda and Olive

(2017) PI that can work if n >> p or p > n is defined below. The PI is similar to the

Olive (2013) PI. Let qn = min(1− δ + 0.05, 1− δ + d/n) for δ > 0.1 and

qn = min(1− δ/2, 1− 10δd/n), otherwise (2.1)

6



If 1− δ < 0.999 and qn < 1− δ + 0.001, set qn = 1− δ. Let

c = dnqne, (2.2)

and let

bn =

(
1 +

15

n

) √
n+ 2d

n− d
(2.3)

if d ≤ 8n/9, and

bn = 5

(
1 +

15

n

)
otherwise. Compute the shorth(c) of the residuals= [r(s), rs+c−1] = [ξ̃δ1 , ξ̃1−δ2 ]. Then a

100(1− δ)% large sample PI for Yf is

[m̂(xf ) + bnξ̃δ1 , m̂(xf ) + bnξ̃1−δ2 ] (2.4)

7



CHAPTER 3

THE SIMULATION

Let x = (1 uT )T where u is the (p − 1) × 1 vector of nontrivial predictors. For

the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0 , I ) where the m = p − 1

elements of the vector wi are iid N(0, 1). Let the m×m matrix A = (aij) with aii = 1

and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the vector u = Awi so that Cov(u) =

Σu = AAT = (σij) where the diagonal entries σii = [1 + (m− 1)ψ2] and the off diagonal

entries σij = [2ψ + (m − 2)ψ2]. Hence the correlation are cor(xi, xj) = ρ = (2ψ + (m −

2)ψ2)/(1 + (m− 1)ψ2) for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/
√
cp,

then ρ→ 1
c+1

where c > 0. As ψ gets close to 1, the predictor vectors cluster about the

line in the direction of (1, ..., 1)T . Then Yi = 1 + 1xi,2 + ... + 1xi,k + ei for i = 1, ..., n.

Hence β = (1, ..., 1, 0, ..., 0)T with k + 1 ones and p− k − 1 zeros. The zero mean errors

ei were iid of five types: i) N(0, 1) errors, ii) EXP (1) − 1 errors, iii) uniform(−1, 1)

errors, and v) 0.9N(0, 1) + 0.1N(0, 100) errors.

The lengths of the asymptotically optimal 95% PIs are i) 3.92 = 2(1.96), ii) 6.365,

iii) 2.996, iv) 1.90 = 2(0.95), and v) 13.490. Suppose the simulation uses K runs and

Wi = 1 if Yf is in the ith PI, and Wi = 0 otherwise, for i = 1, ..., K. Then the Wi

are iid binomial(1,1 − δn) where ρn = 1 − δn is the true coverage of the PI when the

sample size is n. Let ρ̂n = W . Since
∑K

i=1Wi ∼ binomial(K, ρn), the standard error

SE(W ) =
√
ρn(1− ρn)/K. For K = 5000 and ρn near 0.9, we have 3SE(W ) ≈ 0.01.

Hence an observed coverage of ρ̂n within 0.01 of the nominal coverage 1− δ suggests that

there is no reason to doubt that the nominal PI coverage is different from the observed

coverage. So for a large sample 95% PI, we want the observed coverage to be between

0.94 and 0.96. Also a difference of 0.01 is not large. Coverage slightly higher than the

nominal coverage is better than coverage slightly lower than the nominal coverage.

The forward selection used 2, 3, ..., M = d = min(dn/Je, p) variables in the MLR
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model, including a constant. We used J = 5, 10, 20, 50, and dn/pe as long as J ≤ n/p

since n/J ≥ p uses the full model. The selected model used the d variables. The

simulation used 5000 runs with p = 20, 40, n and 2n. The simulation used ψ = 0, 1/
√
p,

and 0.9, so an observed coverage in [0.94, 0.96] gives no reason to doubt that the PI has

the nominal coverage of 0.95. The simulation used k = 1, 19, and p− 1.

Table 3.1 shows some simulations for the new large sample prediction interval (2.4)

Table 3.1. Simulated PI Coverages and Lengths

n p k J ψ cov len

100 20 1 20 0 0.9692 4.86813

1000 20 1 10 0 0.963 4.177

Some R code is below. For 5000 runs of the nominal large sample 95% PI, the

observed coverage was 0.963, the average length was 4.177, and variable selection used

p=20 variables, including a constant.

library(leaps)

dvspisim(n=1000,p=20,k=1,j=10,nruns=5000,psi=0,type=1)

$fselpimenlen

[1]0.983

$fselpmenlen

[1]4.176784

9



CHAPTER 4

EXAMPLES

Table 4.1. Simulated PI Coverages and Lengths, Error type = i)

n p k J ψ cov len

100 20 1 20 0 0.9692 4.868132

100 20 1 20 1/
√

20 0.97 4.875998

100 20 1 50 0.9 0.9604 4.392484

100 20 19 5 0 0.9786 5.70508

100 40 1 50 0 0.968 4.434229

100 40 1 20 0.9 0.9624 4.735577

100 40 19 5 1/
√

40 0.9842 5.699041

100 40 19 10 0.9 0.9572 4.982567

100 40 39 10 0 0.928 22.25589

100 40 39 10 0.9 0.9268 5.827665

100 40 39 10 1/
√

40 0.9094 33.54649

100 100 1 50 1/
√

100 0.964 4.429076

100 100 1 50 0.9 0.9578 4.360497

100 100 99 5 0.9 0.8234 6.70691

100 200 1 50 0 0.9666 4.437201

100 200 1 50 0.9 0.96 4.356799

100 200 19 20 0.9 0.9174 5.219952

400 40 1 50 0 0.9506 4.124511

400 40 39 5 0 0.975 4.900493

400 400 19 20 1/
√

400 0.974 4.695523

400 800 19 20 0 0.9756 4.697523

400 800 19 20 1/
√

800 0.9752 4.696247

1000 20 1 5 0 0.963 4.176784

2000 20 1 5 0 0.9562 4.033074

2000 40 1 50 0 0.9636 4.171298

2000 2000 1 20 0 0.9228 4.104282
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Table 4.2. Simulated PI Coverages and Lengths, Error type = ii)

n p k J ψ cov len

100 20 1 20 0 0.964 8.665205

100 20 1 20 1/
√

20 0.9654 8.673434

100 20 1 50 0.9 0.9528 7.148538

100 20 19 5 0 0.974 10.0023

100 40 1 50 0 0.953 7.21319

100 40 1 20 0.9 0.9578 8.345325

100 40 19 5 1/
√

40 0.9748 10.00913

100 40 19 10 0.9 0.9526 8.408594

100 40 39 10 0 0.93 23.05468

100 40 39 10 0.9 0.9494 8.670369

100 40 39 10 1/
√

40 0.913 33.93117

100 100 1 50 1/
√

100 0.9524 7.191489

100 100 1 50 0.9 0.9526 7.08956

100 100 99 5 0.9 0.8636 8.580055

100 200 1 50 0 0.9534 7.230835

100 200 1 50 0.9 0.9542 7.105399

100 200 19 20 0.9 0.9496 8.132494

400 40 1 50 0 0.9522 6.846537

400 40 39 5 0 0.976 8.747738

400 400 19 20 1/
√

400 0.974 8.438005

400 800 19 20 0 0.9714 8.440177

400 800 19 20 1/
√

800 0.971 8.437335

1000 20 1 5 0 0.9632 6.981182

2000 20 1 5 0 0.9578 6.646147

2000 40 1 50 0 0.96 7.005258

2000 2000 1 20 0 0.9466 7.246556
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Table 4.3. Simulated PI Coverages and Lengths, Error type = iii)

n p k J ψ cov len

100 20 1 20 0 0.9664 4.725709

100 20 1 20 1/
√

20 0.967 4.726421

100 20 1 50 0.9 0.9572 3.802869

100 20 19 5 0 0.9772 5.652184

100 40 1 50 0 0.9642 3.73385

100 40 1 20 0.9 0.963 4.669649

100 40 19 5 1/
√

40 0.9816 5.647228

100 40 19 10 0.9 0.955 5.016633

100 40 39 10 0 0.9276 22.26106

100 40 39 10 0.9 0.9336 5.916098

100 40 39 10 1/
√

40 0.9044 33.55738

100 100 1 50 1/
√

100 0.962 3.734274

100 100 1 50 0.9 0.9578 3.787153

100 100 99 5 0.9 0.8352 6.768091

100 200 1 50 0 0.9666 3.759443

100 200 1 50 0.9 0.9642 3.812725

100 200 19 20 0.9 0.9396 5.333583

400 40 1 50 0 0.9578 3.679031

400 40 39 5 0 0.9788 4.671147

400 400 19 20 1/
√

400 0.9762 4.33107

400 800 19 20 0 0.9768 4.325581

400 800 19 20 1/
√

800 0.9778 4.325469

1000 20 1 5 0 0.9602 3.562779

2000 20 1 5 0 0.9544 3.322709

2000 40 1 50 0 0.9608 3.557465

2000 2000 1 20 0 0.9326 4.120581
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Table 4.4. Simulated PI Coverages and Lengths, Error type = iv)

n p k J ψ cov len

100 20 1 20 0 0.9812 2.435685

100 20 1 20 1/
√

20 0.9826 2.43635

100 20 1 50 0.9 0.9844 2.219116

100 20 19 5 0 0.9926 2.962008

100 40 1 50 0 0.994 2.198207

100 40 1 20 0.9 0.9664 2.449893

100 40 19 5 1/
√

40 0.9904 2.961731

100 40 19 10 0.9 0.9408 3.083672

100 40 39 10 0 0.9298 21.92773

100 40 39 10 0.9 0.914 4.677512

100 40 39 10 1/
√

40 0.903 33.32117

100 100 1 50 1/
√

100 0.9954 2.200217

100 100 1 50 0.9 0.9792 2.222378

100 100 99 5 0.9 0.8068 6.01635

100 200 1 50 0 0.9936 2.197057

100 200 1 50 0.9 0.9762 2.215849

100 200 19 20 0.9 0.9074 4.008402

400 40 1 50 0 0.9524 2.053494

400 40 39 5 0 0.9804 2.411465

400 400 19 20 1/
√

400 0.9812 2.224335

400 800 19 20 0 0.9856 2.222391

400 800 19 20 1/
√

800 0.9864 2.222302

1000 20 1 5 0 0.9734 2.00578

2000 20 1 5 0 0.9562 1.944549

2000 40 1 50 0 0.9686 1.996759

2000 2000 1 20 0 0.9076 2.162859
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Table 4.5. Simulated PI Coverages and Lengths, Error type = v)

n p k J ψ cov len

100 20 1 20 0 0.9614 19.79061

100 20 1 20 1/
√

20 0.962 19.78306

100 20 1 50 0.9 0.9448 13.55284

100 20 19 5 0 0.9688 22.55319

100 40 1 50 0 0.946 13.54309

100 40 1 20 0.9 0.962 18.88696

100 40 19 5 1/
√

40 0.9592 20.09148

100 40 19 10 0.9 0.9572 18.43204

100 40 39 10 0 0.9392 27.02255

100 40 39 10 0.9 0.9592 18.55625

100 40 39 10 1/
√

40 0.9142 36.18274

100 100 1 50 1/
√

100 0.9442 13.51805

100 100 1 50 0.9 0.9448 13.57073

100 100 99 5 0.9 0.9064 15.32787

100 200 1 50 0 0.9422 13.47423

100 200 1 50 0.9 0.944 13.55491

100 200 19 20 0.9 0.9494 17.46374

400 40 1 50 0 0.949 14.58944

400 40 39 5 0 0.968 21.73703

400 400 19 20 1/
√

400 0.969 21.18569

400 800 19 20 0 0.9692 21.06037

400 800 19 20 1/
√

800 0.9694 21.23808

1000 20 1 5 0 0.9586 15.78017

2000 20 1 5 0 0.9516 14.38024

2000 40 1 50 0 0.9578 16.17342

2000 2000 1 20 0 0.9638 17.7788
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CHAPTER 5

CONCLUSION

Several methods of prediction intervals after variable or model selection are consid-

ered for (1.1) by Olive (2017d), Pelawa Watagoda (2017) and Pelawa Watagoda and Olive

(2017). Prediction intervals are also used in Olive (2017ac). The method described here

can be used for many other methods, such as lasso and relaxed lasso Meinshausen (2007),

which is OLS applied to the predictors that have nonzero lasso coefficients, including a

constant.

The simulations were done in R. See R Core Team (2016). The collection of R func-

tions slpack, available from (http://lagrange.math.siu.edu/Olive/slpack.txt), has some

useful functions for the inference. The function dvspisim was used to do the simulation.

According to the simulation tables we can found that 1) If n
J
< k, then the average

length is a lot higher than the optimal length. Then ψ=0.9 sometimes worked better but

sometime had undercoverage. 2) If n
J
> k, then n

J
close to k with in n

k
large often work

well.
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