
Southern Illinois University Carbondale
OpenSIUC

Research Papers Graduate School

2017

Prediction Interval After Forward Selection Using
EBIC
Mulubrhan Haile
murer563@yahoo.com

Follow this and additional works at: http://opensiuc.lib.siu.edu/gs_rp

This Article is brought to you for free and open access by the Graduate School at OpenSIUC. It has been accepted for inclusion in Research Papers by
an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Haile, Mulubrhan. "Prediction Interval After Forward Selection Using EBIC." ( Jan 2017).

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fgs_rp%2F761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/gs_rp?utm_source=opensiuc.lib.siu.edu%2Fgs_rp%2F761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/grad?utm_source=opensiuc.lib.siu.edu%2Fgs_rp%2F761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/gs_rp?utm_source=opensiuc.lib.siu.edu%2Fgs_rp%2F761&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


PREDICTION INTERVALS AFTER FORWARD SELECTION USING EBIC

by

Mulubrhan Haile

B.S., University of Asmara, 2005

A Research Paper

Submitted in Partial Fulfillment of the Requirements for the

Master of Science

Department of Mathematics

in the Graduate School

Southern Illinois University Carbondale

May, 2017



RESEARCH PAPER APPROVAL

PREDICTION INTERVALS AFTER FORWARD SELECTION USING EBIC

by

Mulubrhan Haile

A Research Paper Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Master of Science

in the field of Mathematics

Approved by:

David J. Olive

Bhaskar Bhattacharya

Kwangho Choiy

Graduate School

Southern Illinois University Carbondale

March 31, 2017



AN ABSTRACT OF THE RESEARCH PAPER OF

MULUBRHAN HAILE, for the Master of Science degree in MATHEMATICS,
presented on MARCH 31, 2017, at Southern Illinois University Carbondale.

TITLE: PREDICTION INTERVALS AFTER FORWARD SELECTION USING EBIC

MAJOR PROFESSOR: Dr. David J. Olive

This paper presents a prediction interval for the multiple linear regression model

Y = β1x1 + · · · + βpxp + e after forward selection, where the model is selected using the EBIC

criterion.

KEY WORDS: Forward Selection; Prediction Interval; Relaxed Lasso.

i



ACKNOWLEDGMENTS

I would like to thank my advisor Dr. David Olive for his invaluable assistance and insights

leading to the writing of this paper. He was always available to answer all my questions. He

encouraged me at every moment. Dr. David Olive, it was a pleasure to have you an advisor.

My sincere thanks also goes to Dr. S. Yaser Samadi who helped me improve my statistical skills

through the courses I had with him. I would like to thank Professors of my committee for their

helpful comments and suggestions. I would also like to thank all Mathematics Department faculty

and staff. You were so helpful to me.

ii



TABLE OF CONTENTS

CHAPTER PAGE

ABSTRACT ........................................................................................................................... i

ACKNOWLEDGMENTS ....................................................................................................... ii

LIST OF TABLES.................................................................................................................. iv

CHAPTERS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Prediction Intervals After Forward Selection . . . . . . . . . . . . . . . . . 6

3 Examples And Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Simulations For Five Error Types . . . . . . . . . . . . . . . . . . . . . . . 10

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

REFERENCES....................................................................................................................... 26

VITA....................................................................................................................................... 28

iii



LIST OF TABLES

TABLE PAGE

Table 4.1 R-output for different values of n, p, k and ψ for error type-1 . . . . . . . . 10

Table 4.2 R-output for different values of n, p, k and ψ for error type-1 . . . . . . . . 11

Table 4.3 R-output for different values of n, p, k and ψ for error type-1 . . . . . . . . 12

Table 4.4 R-output for different values of n, p, k and ψ for error type-2 . . . . . . . . 13

Table 4.5 R-output for different values of n, p, k and ψ for error type-2 . . . . . . . . 14

Table 4.6 R-output for different values of n, p, k and ψ for error type-2 . . . . . . . . 15

Table 4.7 R-output for different values of n, p, k and ψ for error type-3 . . . . . . . . 16

Table 4.8 R-output for different values of n, p, k and ψ for error type-3 . . . . . . . . 17

Table 4.9 R-output for different values of n, p, k and ψ for error type-3 . . . . . . . . 18

Table 4.10 R-output for different values of n, p, k and ψ for error type-4 . . . . . . . . 19

Table 4.11 R-output for different values of n, p, k and ψ for error type-4 . . . . . . . . 20

Table 4.12 R-output for different values of n, p, k and ψ for error type-4 . . . . . . . . 21

Table 4.13 R-output for different values of n, p, k and ψ for error type-5 . . . . . . . . 22

Table 4.14 R-output for different values of n, p, k and ψ for error type-5 . . . . . . . . 23

Table 4.15 R-output for different values of n, p, k and ψ for error type-5 . . . . . . . . 24

iv



1

CHAPTER 1

INTRODUCTION

Suppose that the response variable Yi and at least one predictor variable xi,j are quantitative

with xi,1 ≡ 1. Let xTi = (xi,1, ..., xi,p) = (1 uTi ) and β = (β1, ..., βp)
T where β1 corresponds to

the intercept. Then the multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xTi β + ei (1.1)

for i = 1, ..., n. This model is also called the full model. Here n is the sample size and the random

variable ei is the ith error. In matrix notation, these n equations become

Y = Xβ + e, (1.2)

where Y is an n×1 vector of dependent variables, X is an n×p matrix of predictors, β is a p×1

vector of unknown coefficients, and e is an n × 1 vector of unknown errors. The ith fitted value

Ŷi = xTi β̂ and the ith residual ri = Yi − Ŷi where β̂ is an estimator of β. Ordinary least squares

(OLS) is often used for inference if n/p is large.

Variable selection is the search for a subset of predictor variables that can be deleted without

important loss of information. Following Olive and Hawkins (2005), a model for variable selection

can be described by

xTβ = xTSβS + xTEβE = xTSβS , (1.3)

where x = (xTS ,x
T
E)T , xS is a kS × 1 vector, and xE is a (p − kS) × 1 vector. Given that xS is

in the model, βE = 0 and E denotes the subset of terms that can be eliminated, given that the

subset S is in the model. Let xI be the vector of k terms from a candidate subset indexed by I,

and let xO be the vector of the remaining predictors (out of the candidate submodel). Suppose

that S is a subset of I and that model (1.3) holds. Then

xTβ = xTSβS = xTSβS + xTI/Sβ(I/S) + xTO0 = xTI βI , (1.4)
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where xI/S denotes the predictors in I that are not in S. Since this is true regardless of the values

of the predictors, βO = 0 if S ⊆ I.

Forward selection forms a sequence of of submodels I1, ..., IM , where Ij uses j predictors

including the constant. Let I1 use x∗1 = x1 ≡ 1: the model has a constant but no nontrivial

predictors. To form I2, consider all models I with two predictors including x∗1. Compute Q2(I) =

SSE(I) = RSS(I) = rT (I)r(I) =
∑n

i=1 r
2
i (I) =

∑n
i=1(Yi − Ŷi(I))2, where RSS stands for

residual sum of squares and SSE stands for sum of squared errors. Let I2 minimize Q2(I) for the

p − 1 models I that contain x∗1 and one other predictor. Denote the predictors in I2 by x∗1, x
∗
2.

In general, to form Ij , consider all models I with j predictors including variables x∗1, ..., x
∗
j−1.

Compute Qj(I) = rT (I)r(I) =
∑n

i=1 r
2
i (I) =

∑n
i=1(Yi − Ŷi(I))2. Let Ij minimize Qj(I) for the

p−j+1 models I that contain x∗1, ..., x
∗
j−1 and one other predictor not already selected. Denote the

predictors in Ij by x∗1, ..., x
∗
j . Continue in this manner for j = 2, ...,M . Often M = min(dn/Je, p)

for some integer J such as J = 5, 10, or 20. Here dxe is the smallest integer ≥ x, e.g., d7.7e = 8.

When there is a sequence of M submodels, the final submodel Id needs to be selected. Let

xI and β̂I be an a× 1 vector. Hence the candidate model contains a terms, including a constant.

Suppose the ei are independent and identically distributed (iid) with variance V (ei) = σ2. Then

there are many criteria used to select the final submodel Id. Let criteria CS(I) have the form

CS(I) = SSE(I) + aKnσ̂
2.

These criteria need a good estimator of σ2. The criterion Cp(I) = AICS(I) uses Kn = 2, while

the BICS(I) criterion uses Kn = log(n). Typically σ̂2 is the full OLS model

MSE =
n∑
i=1

r2i
n− p

when n/p is large. Then σ̂2 = MSE is a
√
n consistent estimator of σ2 under mild conditions by

Su and Cook (2012).

It is hard to get a good estimator of σ2 when n/p is not large. The following criterion are

described in Burnham and Anderson (2004), but still need n/p large.
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AIC(I) = n log

(
SSE(I)

n

)
+ 2a,

AICC(I) = n log

(
SSE(I)

n

)
+ 2

a(a+ 1)

n− a− 1
,

and

BIC(I) = n log

(
SSE(I)

n

)
+ a log(n).

Let Imin be the submodel that minimizes the criterion. Following Seber and Lee (2003, p.

448) and Nishi (1984), the probability that model Imin from Cp or AIC underfits goes to zero as

n→∞. If β̂I is an a× 1 vector, form the p× 1 vector β̂I,0 from β̂I by adding 0’s corresponding

to the omitted variables. Since there are a finite number of regression models I that contain the

true model, and each such model gives a
√
n consistent estimator β̂I,0 of β, the probability that

Imin picks one of these models goes to one as n→∞. Hence β̂Imin,0 is a
√
n consistent estimator

of β under model (1.3).

An interesting BIC-type criterion is given in Luo and Chen (2012) that may work when n/p

is not large. Let 0 ≤ γ ≤ 1 and |I| = a ≤ min(n, p) if β̂I is a × 1. We may use a ≤ min(n/5, p).

Then

EBIC(I) = n log

(
SSE(I)

n

)
+ a log(n) + 2γ log

[(
p

a

)]
= BIC(I) + 2γ log

[(
p

a

)]
.

This criterion can give good results if p = pn = O(nk) and γ > 1 − 1/(2k). Hence we will use

γ = 1.

Consider predicting a future test response variable Yf given a p× 1 vector of predictors xf

and training data (x1, Y1), ..., (xn, Yn). A large sample 100(1 − δ)% prediction interval (PI) has

the form [L̂n, Ûn], where P (L̂n ≤ Yf ≤ Ûn)→ 1− δ as the sample size n→∞.

The shorth(c) estimator is useful for making prediction intervals. Let Z(1), ..., Z(n) be the

order statistics of Z1, ..., Zn. Then let the shortest closed interval containing at least c of the Zi
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be

shorth(c) = [Z(s),Z(s+c−1)]. (1.5)

Let

kn = dn(1− δ)e. (1.6)

Frey (2013) showed that for large nδ and identically independent distributed (iid) data, the

shorth(kn) PI has maximum undercoverage ≈ 1.12
√
δ/n, and used the shorth(c) estimator as the

large sample 100(1− δ)% PI, where

c = min(n, dn[1− δ + 1.12
√
δ/n ] e). (1.7)

A problem with the prediction intervals that cover ≈ 100(1− δ)% of the training data cases

Yi (such as the shorth(kn) PI), is that they have coverage lower than the nominal coverage of 1−δ

for moderate n. This result is not surprising since empirically statistical methods perform worse

on test data. Increasing c will improve the coverage for moderate samples.

Example 1. (Example 5.3 from Olive (2017b).) Given below were votes for preseason 1A

basketball poll from Nov. 22, 2011 WSIL News, where the 778 was a typo: the actual value

was 78. As shown below, finding shorth(3) from the ordered data is simple. If the outlier was

corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]

Olive (2007) developed prediction intervals for the full MLR model. Olive (2013) developed

prediction intervals for models of the form Yi = m(xi)+ei, and variable selection models for (1.1)
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have this form, as noted by Olive (2017a). Both these PIs need n/p large. Let c be given by (2.2)

with d replaced by p, and let

bn =

(
1 +

15

n

)√
n+ 2p

n− p
. (1.8)

Compute the shorth(c) of the residuals = [r(s), r(s+c−1)] = [ξ̃δ1 , ξ̃1−δ2 ] where the ith residual

ri = Yi − Ŷi = Yi − m̂(xi). Then a 100 (1− δ)% large sample PI for Yf is

[m̂(xf ) + bnξ̃δ1 , m̂(xf ) + bnξ̃1−δ2 ]. (1.9)

Note that correction factors bn → 1 are used in large sample confidence intervals and tests

if the limiting distribution is N(0,1) or χ2
p, but a tdn or pFp,dn cutoff is used: tdn,1−δ/z1−δ → 1

and pFp,dn,1−δ/χ
2
p,1−δ → 1 if dn → ∞ as n → 1. Using correction factors for prediction intervals

and bootstrap confidence regions improves the performance for moderate sample size n.
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CHAPTER 2

PREDICTION INTERVALS AFTER FORWARD SELECTION

If n/p is large, the PI (1.9) can be used for the variable selection estimators with m̂(x) =

xTIdβ̂Id , where Id denotes the index of predictors selected from the variable selection method.

Hence Id = Imin is the model that minimizes Cp for forward selection. Now we want to minimize

EBIC for forward selection, where n/p is not necessarily large.

PI (1.9) needs the shorth of the residuals to be a consistent estimator of the population

shorth of the error distribution. Olive and Hawkins (2003) show that if the ‖xi‖ are bounded and

β̂ is a consistent estimator of β, then maxi=1,...,n |ri − ei|
P→ 0 and the sample quantiles of the

residuals estimate the population quantiles of the error distribution. For OLS, each submodel I

produces a
√
n consistent estimator provided that S ⊆ I.

The Cauchy Schwartz inequality says |aTb| ≤ ‖a‖ ‖b‖. Suppose
√
n(β̂ − β) = OP (1) is

bounded in probability. This will occur if
√
n(β̂−β)

D→ Np(0,Σ), e.g. if β̂ is the OLS estimator.

Then

|ri − ei| = |Yi − xTi β̂ − (Yi − xTi β)| = |xTi (β̂ − β)|.

Hence

√
n max
i=1,...,n

|ri − ei| ≤ ( max
i=1,...,n

‖xi‖) ‖
√
n(β̂ − β)‖ = OP (1)

since max ‖xi‖ = OP (1) or there is extrapolation. Hence OLS residuals behave well if the zero

mean error distribution of the iid ei has a finite variance σ2.

Let d be a crude estimate of the model degrees of freedom. For forward selection with OLS,

β̂Id is a d × 1 vector. For example, use Id = Imin where d is the number of nonzero coefficients,

including a constant, in the submodel Imin that minimized a criterion such as EBIC.

The Olive (2017d) and Pelawa Watagoda and Olive (2017) PI that can work if n >> p

or p > n is defined below. The PI is similar to the Olive (2013) PI with p replaced by d, but

some care needs to be taken to that the PI is well defined and does not have infinite length. Let
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qn = min(1− δ + 0.05, 1− δ + d/n) for δ > 0.1 and

qn = min(1− δ/2, 1− δ + 10δd/n), otherwise. (2.1)

If 1− δ < 0.999 and qn < 1− δ + 0.001, set qn = 1− δ. Let

c = dnqne, (2.2)

and let

bn =

(
1 +

15

n

)√
n+ 2d

n− d
, (2.3)

if d ≤ 8n/9, and

bn = 5

(
1 +

15

n

)
,

otherwise. Compute the shorth(c) of the residuals = [r(s), r(s+c−1)] = [ξ̃δ1 , ξ̃1−δ2 ]. Then a 100

(1− δ)% large sample PI for Yf is

[m̂(xf ) + bnξ̃δ1 , m̂(xf ) + bnξ̃1−δ2 ]. (2.4)
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CHAPTER 3

EXAMPLES AND SIMULATIONS

Let x = (1 uT )T where u is the (p−1)×1 vector of nontrivial predictors. For the simulations,

for i = 1, ..., n, we generated wi ∼ Np−1(0, I), where the m = p − 1 elements of the vector wi

are iid N(0,1). Let the m ×m matrix A = (aij) with aii = 1 and aij = ψ, where 0 ≤ ψ < 1 for

i 6= j. Then the vector u = Awi so that Cov(u) = Σu = AAT = (σij), where the diagonal

entries σii = [1 + (m − 1)ψ2] and the off diagonal entries σij = [2ψ + (m − 2)ψ2]. Hence the

correlations are cor(xi, xj) = ρ = (2ψ + (m − 2)ψ2)/(1 + (m − 1)ψ2) for i 6= j, where xi and

xj are nontrivial predictors. If ψ = 1/
√
cp, then ρ → 1/(c + 1) as p → ∞, where c > 0. As ψ

gets close to 1, the predictor vectors cluster about the line in the direction of (1, ..., 1)T . Then

Yi = 1 + 1xi,2 + · · · + 1xi,k + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T with k + 1 ones and

p − k − 1 zeros. The zero mean errors ei were iid of five types: i) N(0,1) errors, ii) t3 errors, iii)

EXP(1) - 1 errors, iv) uniform(−1, 1) errors, and v) 0.9 N(0,1) + 0.1 N(0,100) errors.

The lengths of the asymptotically optimal 95% PIs are i) 3.92 = 2(1.96), ii) 6.365, iii) 2.996,

iv) 1.90 = 2(0.95), and v) 13.490. Suppose that the simulation uses K runs and Wi = 1 if Yf

is in the ith PI, and Wi = 0 otherwise, for i = 1, ...,K. Then the Wi are iid binomial(1,1 − δn)

where ρn = 1 − δn is the true coverage of the PI when the sample size is n. Let ρ̂n = W . Since∑K
i=1Wi ∼ binomial(K, ρn), the standard error SE(W ) =

√
ρn(1− ρn)/K. For K = 5000 and ρn

near 0.9, we have 3SE(W ) ≈ 0.01. Hence an observed coverage of ρ̂n within 0.01 of the nominal

coverage 1− δ suggests that there is no reason to doubt that the nominal PI coverage is different

from the observed coverage. So for a large sample 95% PI, we want the observed coverage to be

between 0.94 and 0.96. Also a difference of 0.01 is not large. Coverage slightly higher than the

nominal coverage is better than coverage slightly lower than the nominal coverage.

The forward selection used 2, 3, ..., M = min(dn/Je, p) variables in the MLR model, includ-

ing a constant, with J = 5.

The simulation used 5000 runs with p = 20, 40, n and 2n. The simulation used ψ = 0, 1/
√
p,
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and 0.9, so an observed coverage in [0.94, 0.96] gives no reason to doubt that the PI has the

nominal coverage of 0.95. The simulation used k = 1, 19, and p− 1.

Some R code is below. For 5000 runs of the nominal large sample 95% PI, the observed

coverage was 0.963, the average length was 4.441, and variable selection on average used 2.1

variables, including a constant. We would like this number, recorded as dave, to be near but

slightly larger than k + 1 when n/k is large.

library(leaps)

out<-evspisim(n=100,p=20,k=1,nruns=5000,psi=0,type=1)

out

$fselpicov

[1] 0.963

$fselpimenlen

[1] 4.441144

mean(out$dd)+1

[1] 2.0968
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CHAPTER 4

SIMULATIONS FOR FIVE ERROR TYPES

Table 4.1. R-output for different values of n, p, k and ψ for error type-1

n p k ψ cov len dave

100 20 1 0 0.963 4.441 2.097

100 20 19 0 0.979 5.705 20.000

100 20 19 0.9 0.955 5.170 7.187

100 40 1 0 0.967 4.434 2.095

100 100 1 0 0.963 4.425 2.094

100 100 1 0.9 0.955 4.352 2.149

100 100 99 0 0.941 40.564 3.454

100 200 1 0 0.966 4.430 2.092

400 20 1 0 0.949 4.006 2.040

400 20 19 0 0.976 4.695 20.000

400 20 19 0.9 0.961 4.444 13.229

400 40 1 0 0.951 4.006 2.042
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Table 4.2. R-output for different values of n, p, k and ψ for error type-1

n p k ψ cov len dave

400 40 39 0 0.975 4.900 40.000

400 400 1 0 0.956 4.009 2.028

400 400 1 0.05 0.958 4.008 2.023

400 400 399 0 0.946 78.458 2.292

400 800 1 0 0.954 4.007 2.027

800 20 1 0 0.953 3.947 2.024

800 20 1 0.9 0.953 3.945 2.013

800 20 1 0.224 0.954 3.946 2.023

800 20 19 0 0.964 4.251 20.000

800 40 1 0 0.952 3.946 2.025

800 40 1 0.9 0.950 3.943 2.009

800 40 39 0 0.979 4.673 40.000

800 800 1 0.035 0.949 3.949 2.014

800 800 19 0 0.965 4.250 20.185

800 800 799 0 0.946 110.364 2.179
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Table 4.3. R-output for different values of n, p, k and ψ for error type-1

n p k ψ cov len dave

1000 20 1 0 0.953 3.937 2.023

1000 20 1 0.9 0.951 3.937 2.007

1000 20 19 0 0.963 4.177 20.000

1000 40 19 0 0.959 4.177 20.217

1000 40 1 0.9 0.952 3.935 2.007

1000 1000 1 0 0.952 3.937 2.019

1000 1000 999 0.9 0.750 15.787 198.991

2000 20 1 0 0.952 3.909 2.017

2000 20 1 0.9 0.951 3.909 2.007

2000 20 1 0.224 0.951 3.909 2.015

2000 20 19 0 0.956 4.033 20.000

2000 20 19 0.9 0.956 4.033 19.991

2000 40 19 0 0.957 4.033 20.130

2000 40 39 0 0.964 4.171 40.000

2000 40 39 0.224 0.964 4.171 40.000
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Table 4.4. R-output for different values of n, p, k and ψ for error type-2

n p k ψ cov len dave

100 20 1 0 0.955 7.244 2.100

100 20 19 0 0.974 10.013 19.925

100 20 19 0.9 0.958 8.312 4.790

100 40 1 0 0.953 7.232 2.084

100 100 1 0 0.956 7.207 2.094

100 100 1 0.9 0.953 7.151 2.278

100 100 99 0 0.933 41.069 3.302

100 200 1 0 0.954 7.238 2.094

400 20 1 0 0.950 6.463 2.034

400 20 19 0 0.973 8.445 19.990

400 20 19 0.9 0.953 7.018 7.939

400 40 1 0 0.951 6.475 2.035
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Table 4.5. R-output for different values of n, p, k and ψ for error type-2

n p k ψ cov len dave

400 40 39 0 0.976 8.751 39.986

400 400 1 0 0.948 6.462 2.030

400 400 1 0.05 0.949 6.462 2.027

400 400 399 0 0.947 78.618 2.291

400 800 1 0 0.948 6.453 2.029

800 20 1 0 0.942 6.366 2.024

800 20 1 0.9 0.941 6.358 2.012

800 20 1 0.224 0.942 6.367 2.021

800 20 19 0 0.953 7.190 19.994

800 40 1 0 0.945 6.368 2.025

800 40 1 0.9 0.943 6.356 2.011

800 40 39 0 0.971 8.464 39.993

800 800 1 0.035 0.951 6.370 2.017

800 800 19 0 0.963 7.186 20.187

800 800 799 0 0.947 110.480 2.169
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Table 4.6. R-output for different values of n, p, k and ψ for error type-2

n p k ψ cov len dave

1000 20 1 0 0.951 6.349 2.024

1000 20 1 0.9 0.948 6.343 2.011

1000 20 19 0 0.963 6.982 19.996

1000 40 19 0 0.955 7.000 20.203

1000 40 1 0.9 0.946 6.348 2.009

1000 1000 1 0 0.951 6.355 2.016

1000 1000 999 0.9 0.760 16.768 193.686

2000 20 1 0 0.953 6.320 2.014

2000 20 1 0.9 0.954 6.319 2.009

2000 20 1 0.224 0.953 6.320 2.015

2000 20 19 0 0.958 6.646 20.000

2000 20 19 0.9 0.957 6.591 16.053

2000 40 19 0 0.955 6.636 20.129

2000 40 39 0 0.960 7.005 40.000

2000 40 39 0.224 0.960 7.006 39.998
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Table 4.7. R-output for different values of n, p, k and ψ for error type-3

n p k ψ cov len dave

100 20 1 0 0.961 3.782 2.093

100 20 19 0 0.977 5.652 20.000

100 20 19 0.9 0.958 5.212 7.334

100 40 1 0 0.964 3.773 2.097

100 100 1 0 0.962 3.771 2.086

100 100 1 0.9 0.956 3.848 2.139

100 100 99 0 0.936 40.610 3.433

100 200 1 0 0.966 3.792 2.089

400 20 1 0 0.949 3.206 2.037

400 20 19 0 0.972 4.321 20.000

400 20 19 0.9 0.958 4.164 13.419

400 40 1 0 0.958 3.218 2.036
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Table 4.8. R-output for different values of n, p, k and ψ for error type-3

n p k ψ cov len dave

400 40 39 0 0.979 4.671 40.000

400 400 1 0 0.955 3.217 2.032

400 400 1 0.05 0.956 3.215 2.024

400 400 399 0 0.944 78.414 2.294

400 800 1 0 0.955 3.214 2.028

800 20 1 0 0.952 3.121 2.024

800 20 1 0.9 0.952 3.155 2.011

800 20 1 0.224 0.952 3.120 2.025

800 20 19 0 0.961 3.681 20.000

800 40 1 0 0.953 3.119 2.021

800 40 1 0.9 0.952 3.168 2.011

800 40 39 0 0.973 4.315 40.000

800 800 1 0.035 0.950 3.119 2.017

800 800 19 0 0.963 3.694 20.195

800 800 799 0 0.942 110.359 2.201
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Table 4.9. R-output for different values of n, p, k and ψ for error type-3

n p k ψ cov len dave

1000 20 1 0 0.952 3.101 2.023

1000 20 1 0.9 0.951 3.122 2.011

1000 20 19 0 0.960 3.563 20.000

1000 40 19 0 0.965 3.567 20.204

1000 40 1 0.9 0.956 3.129 2.008

1000 1000 1 0 0.950 3.099 2.016

1000 1000 999 0.9 0.748 15.801 198.984

2000 20 1 0 0.951 3.047 2.015

2000 20 1 0.9 0.951 3.048 2.008

2000 20 1 0.224 0.950 3.047 2.015

2000 20 19 0 0.954 3.323 20.000

2000 20 19 0.9 0.954 3.323 19.989

2000 40 19 0 0.956 3.330 20.135

2000 40 39 0 0.961 3.557 40.000

2000 40 39 0.224 0.961 3.557 40.000
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Table 4.10. R-output for different values of n, p, k and ψ for error type-4

n p k ψ cov len dave

100 20 1 0 0.992 2.208 2.098

100 20 19 0 0.993 2.962 20.000

100 20 19 0.9 0.969 2.927 13.525

100 40 1 0 0.992 2.206 2.091

100 100 1 0 0.990 2.206 2.086

100 100 1 0.9 0.977 2.225 2.046

100 100 99 0 0.936 40.314 3.529

100 200 1 0 0.991 2.203 2.090

400 20 1 0 0.967 1.963 2.039

400 20 19 0 0.987 2.223 20.000

400 20 19 0.9 0.986 2.223 19.986

400 40 1 0 0.973 1.964 2.041
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Table 4.11. R-output for different values of n, p, k and ψ for error type-4

n p k ψ cov len dave

400 40 39 0 0.980 2.411 40.000

400 400 1 0 0.966 1.963 2.033

400 400 1 0.05 0.967 1.963 2.024

400 400 399 0 0.940 78.376 2.277

400 800 1 0 0.966 1.962 2.023

800 20 1 0 0.957 1.926 2.021

800 20 1 0.9 0.960 1.926 2.017

800 20 1 0.224 0.960 1.926 2.020

800 20 19 0 0.972 2.038 20.000

800 40 1 0 0.957 1.926 2.027

800 40 1 0.9 0.959 1.926 2.014

800 40 39 0 0.981 2.200 40.000

800 800 1 0.035 0.956 1.925 2.016

800 800 19 0 0.970 2.042 20.191

800 800 799 0 0.945 110.424 2.170
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Table 4.12. R-output for different values of n, p, k and ψ for error type-4

n p k ψ cov len dave

1000 20 1 0 0.959 1.919 2.025

1000 20 1 0.9 0.961 1.919 2.017

1000 20 19 0 0.973 2.006 20.000

1000 40 19 0 0.967 2.009 20.215

1000 40 1 0.9 0.961 1.919 2.017

1000 1000 1 0 0.964 1.919 2.018

1000 1000 999 0.9 0.741 15.542 199.511

2000 20 1 0 0.951 1.905 2.015

2000 20 1 0.9 0.950 1.905 2.012

2000 20 1 0.224 0.949 1.905 2.013

2000 20 19 0 0.956 1.945 20.000

2000 20 19 0.9 0.956 1.945 20.000

2000 40 19 0 0.962 1.945 20.128

2000 40 39 0 0.969 1.997 40.000

2000 40 39 0.224 0.969 1.997 40.000
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Table 4.13. R-output for different values of n, p, k and ψ for error type-5

n p k ψ cov len dave

100 20 1 0 0.945 13.684 2.066

100 20 19 0 0.966 21.821 18.118

100 20 19 0.9 0.951 15.818 3.089

100 40 1 0 0.946 13.647 2.056

100 100 1 0 0.941 13.583 2.056

100 100 1 0.9 0.945 14.267 2.418

100 100 99 0 0.942 43.213 3.012

100 200 1 0 0.942 13.511 2.046

400 20 1 0 0.947 12.447 2.033

400 20 19 0 0.968 21.140 20.000

400 20 19 0.9 0.948 13.385 4.522

400 40 1 0 0.942 12.593 2.033
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Table 4.14. R-output for different values of n, p, k and ψ for error type-5

n p k ψ cov len dave

400 40 39 0 0.968 21.737 40.000

400 400 1 0 0.943 12.565 2.031

400 400 1 0.05 0.943 12.563 2.025

400 400 399 0 0.943 79.409 2.254

400 800 1 0 0.946 12.558 2.028

800 20 1 0 0.947 12.617 2.024

800 20 1 0.9 0.947 12.593 2.024

800 20 1 0.224 0.948 12.617 2.026

800 20 19 0 0.959 16.562 20.000

800 40 1 0 0.946 12.648 2.026

800 40 1 0.9 0.945 12.623 2.037

800 40 39 0 0.971 22.071 40.000

800 800 1 0.035 0.949 12.620 2.017

800 800 19 0 0.962 16.559 20.196

800 800 799 0 0.945 111.196 2.163
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Table 4.15. R-output for different values of n, p, k and ψ for error type-5

n p k ψ cov len dave

1000 20 1 0 0.949 12.684 2.023

1000 20 1 0.9 0.949 12.661 2.019

1000 20 19 0 0.959 15.780 20.000

1000 40 19 0 0.956 15.838 20.205

1000 40 1 0.9 0.947 12.676 2.027

1000 1000 1 0 0.947 12.682 2.019

1000 1000 999 0.9 0.818 22.299 153.057

2000 20 1 0 0.947 12.709 2.015

2000 20 1 0.9 0.947 12.695 2.008

2000 20 1 0.224 0.947 12.709 2.014

2000 20 19 0 0.952 14.380 20.000

2000 20 19 0.9 0.950 13.322 8.317

2000 40 19 0 0.953 14.384 20.128

2000 40 39 0 0.958 16.173 40.000

2000 40 39 0.224 0.958 16.173 40.000
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CHAPTER 5

CONCLUSIONS

Several methods of prediction intervals after variable or model selection are considered for

(1.1) by Olive (2017d), Pelawa Watagoda (2017) and Pelawa Watagoda and Olive (2017). Pre-

diction intervals are also used in Olive (2017ac). EBIC could also be used for relaxed lasso

Meinshausen (2007), which is OLS applied to the predictors that have nonzero lasso coefficients,

including a constant.

The simulations were done in R. See R Core Team (2016). The collection of R functions

slpack, available from (http://lagrange.math.siu.edu/Olive/slpack.txt), has some useful functions

for the inference. The function evspisim was used to do the simulation.

The following points can be observed from the simulation tables.

1. When ψ=0.9 and k > 1, dave is sometimes too low, especially if n/p ≤ 20.

2. The simulations took longer when n and p are large.

3. The dave, cov and len outputs were bad when we have k=p-1 and p is very large.

4. As the sample size increases the coverage is fairly close to 0.95.
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