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 This paper presents and studies analytically a new compressive sensing (CS) 

approach with the aim of bringing this technique closer to successful commercialization 

in image sensor circuits. Unlike existing CS techniques that use random measurement 

matrices (RMM) to encode a signal given in form of a vector of discrete samples, the 

proposed technique utilizes carefully chosen custom measurement matrices. In CS 

measurement operation, RMM are often used to achieve small coherence between the 

measurement matrix and the sparse representation bases. However, when applied in 

practice, RMM based CS designs typically lead to complicated hardware design and 

thus have a large circuit overhead to obtain random summations. The proposed custom 

measurement matrix achieves about the same level of incoherence as the RMMs, but 

results in a dramatically simplified CS measurement circuit, improving both energy 

efficiency and circuit scalability, and thus the attractiveness of this technique for 

industrial commercialization. The proposed method is evaluated analytically in terms of 

Peak Signal to Noise Ratio (PSNR), a measure for the quality of the reconstructed 

compared to the original signal. Matlab simulations are also conducted to evaluate the 

effectiveness of the proposed technique, and to compare simulated and estimated 

PSNRs. Finally, the proposed technique is extended to two-dimensional projections with 

the aim of further improving signal quality, in particular with high compression rates. A 
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newly formulated minimization problem is proposed to combine the projections in both 

dimensions to a single optimization problem. 
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PREFACE 

 
Writing this paper about Compressive Sensing is motivated by the authors prior 

experience in this field. While pursuing a Master of Science degree in Electrical and 

Computer Engineering, research has been carried out on the topic of Compressive 

Sensing related to the process of capturing images in camera devices. During this 

period, a new image compression technique has been found and experimentally 

evaluated. Results suggest that the newly found technique is very promising, as it has 

significant advantages in terms of simplicity and thus power consumption of circuits 

carrying out the task of image compression. The quality of reconstructed images has 

also been found to be superior compared to conventional techniques. Results have 

been, or are in the process to be, published in scientific conference [10] and journal 

papers, and a provisional patent application has been filed.  

The aim of this paper is to study the proposed technique analytically. Due to the 

complexity of the underlying topic and the time available to write this paper it is not 

possible to provide a rigorous proof of the validity of the new measurement technique. 

The analytic discussion in this paper merely intends to give more insight into this 

method, and to explain intuitively why the proposed technique might be the better 

choice when performing image compression. 

The technique discussed in this paper is applicable in many different fields, and 

on signals of any kind, as long as certain properties are satisfied. However, since writing 

this paper is motivated by prior experience in compressive acquisition of image data, 

the concept of this technique as well as the topic in general will be introduced and 

studied in the context of compressive image acquisition. 
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INTRODUCTION 

Image sensors have been used in a wide range of applications such as consumer 

electronics, medical diagnosis instruments, robotics, defense and reconnaissance 

equipment. Due to the rich information provided by images and videos, image sensors 

are also widespread in Internet of Things (IoT) applications, which is currently a booming 

field. Driven by these applications, the image sensor industry has been experiencing an 

explosive growth and its market revenue is expected to be over $15B in 2020 [1]. Along 

this impressive development trend, there are increasing demands for high resolution and 

high frame rate image sensors to attain better user experience or to provide more 

detailed images for industrial, scientific and military applications. 

IoT devices, but image sensors in general, often have very stringent power 

budgets, limited computation and communication capabilities. For example, such 

devices are extremely desirable for hand-held or wearable gadgets, and might be 

mandatory in swallow-able medical devices due to power and heat dissipation 

constraints. On the other hand, image sensors tend to be power hungry and often 

generate large volumes of raw data for being processed, stored or transmitted. 

Unfortunately, the enhancement of image sensor resolution and frame rate also 

undesirably increases the power consumption of such sensors, which limits the suitability 

of such sensors in many applications. For example, a high resolution image sensor may 

not be used in an endoscopic instrument due to the heat problem associated with the 

high power consumption of the image sensor. Additional examples can be easily found in 

many other application domains, such as wearable devices, Internet of Things (IoT), and 

aerospace applications. Circuit techniques and fabrication processes have been 
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aggressively exploited to reduce the image sensor power consumption over the past few 

decades [2-3]. However, with the rapid increase of image sensor resolutions (e.g. from 

past VGA to current 1080p and near future 4K ultra HD), continuously reducing power 

consumption with these traditional approaches alone will become more challenging since 

the number of pixels that have to be captured and digitized is exponentially growing.  

Recently, compressive sensing (CS) emerged as a promising technique to 

accomplish low power image acquisition [4-5]. Instead of digitizing every pixel, CS image 

sensors digitize only a small set of random summations of the pixels. Therefore, the 

number of measurements can be significantly smaller than the number of pixels. From 

this small set of measurement data, the image can still be reconstructed with high 

fidelity via CS techniques. It has the potential to dramatically reduce the amount of data 

to be digitized and subsequently transmitted. Since the analog to digital conversion 

(ADC) as well as the data transmission consumes a significant portion of the image 

sensor power, CS techniques hold great promise for dramatically reducing the power 

consumption at the image sensing end. Motivated by such potentials, several CS image 

sensor circuits were developed in the past few years. Despite the fact that these 

implementations clearly demonstrated the feasibility and power saving advantages, CS 

techniques have not yet been widely used in CMOS image sensor circuits. One of the 

major hurdles toward the wide acceptance of CS techniques in CMOS image sensor 

design is the very complex circuit structure and thus the difficulty to scale the existing CS 

image measurement circuits to high resolution image sensors. 
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In this paper a modified image compression approach is presented which leads to 

energy and hardware efficient CS measurement circuits for CMOS image sensors. The 

proposed method targets image sensors capturing natural images. Statistical data show 

that the vast majority of the signal power of natural images is described by low frequency 

(or low index) coefficients in their sparse representations with properly selected sparse 

basis [6]. In plain terms, it means the average variance of the pixel power among 

neighboring pixels is small. Taking advantage of this property, unlike the existing CS 

image sensors that use random measurement matrices (RMM) in CS measurement 

operation, the proposed measurement technique utilizes a carefully chosen custom 

measurement matrix. Typically, RMM are selected to achieve small coherence between 

the measurement matrix and the spare base matrices used in CS operation [7]. 

However, the implementation of the RMM based CS circuits not only requires large linear 

feedback shift registers (LFSR) but also leads to complex circuit structures to perform 

pixel summation. The proposed custom measurement matrices achieve about the same 

level of incoherence but result in a dramatically simplified CS measurement circuit. This 

improves the energy efficiency as well as the scalability of CS image sensor circuits, and 

makes the CS technique, in general, more appealing to the industry.  

The aim of this paper is to give an introduction to compressive sensing theory and 

to provide closed form expressions to compute lower bounds for the minimum signal 

quality of the compressed and reconstructed signals (upper bounds of the error between 

original and reconstructed data), based on the assumption that the signals satisfy the 

sparseness and low variance properties, whose definitions are given in a later section. 

Matlab simulations are conducted to evaluate the derived expressions, and the 
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effectiveness of the proposed technique. Results indicate that good quality images can 

be obtained with the proposed measurement matrices, and that the derived minimum 

signal quality bounds are valid. 
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THEORY OF COMPRESSIVE SENSING 

The mathematical framework of CS was developed about a decade ago [4, 5] and 

shortly after that CS techniques were applied in various fields including image sensing, 

image denoising, image de-blurring, sub-Niquist sensing of signals, radar, ultra-wide-

band communication, low-power sensors, etc [11]. The most appealing feature of CS 

techniques is the ability to recover a sparse signal 𝑥 with 𝑁 data points from less than 𝑁 

measurements. This idea can be used to reduce hardware size, relax circuit 

performance requirements, minimize system operation, or reduce power consumption at 

the sensing end. To take advantage of the CS concept, the signal under consideration 

must be sparse. Sparsity is defined as follows. Assume 𝑥 is a one dimensional vector 

with 𝑁 elements and 𝛹 is a matrix of dimension 𝑁 × 𝑁, whose column vectors 𝜓𝑖 form an 

orthonormal bases. The projection of 𝑥 on domain 𝛹 is given by coordinate vector [𝑠]𝛹, 

such that 𝑥 = ∑ 𝜓𝑖𝑠𝑖
𝑁
1 ;  (𝑥 = 𝛹 ∙ [𝑠]𝛹), where 𝑠𝑖 is the 𝑖𝑡ℎ element of [𝑠]𝛹. If the number of 

non-zero (or significant) terms in [𝑠]𝛹 is significantly smaller than N (for example, if less 

than 10% of the coefficients have a magnitude larger than 1% of the magnitude of the 

dominant component), signal 𝑥 is called sparse with respect to basis 𝛹. A vector is 

defined to be k-sparse if it has at most k non-zero or significant elements. 

In real applications, many signals are not sparse in their original form but become 

sparse after being projected into another domain; which can be applied to CS techniques 

in fields like image sensing. In the typical operation of CS image sensors, the pixel 

values are not directly measured and digitized. Instead, a set of random summations of 

pixel values are measured. For convenience, the pixel data is expressed in column 
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vector 𝑥 of length 𝑁 for a 𝑝 × 𝑞 dimensional pixel array, where 𝑁 = 𝑝 × 𝑞. The measured 

signal, denoted by 𝑦, can be expressed as 𝑦 = 𝛷 ∙ 𝑥. 𝛷 is referred to as the 

measurement matrix with dimension 𝑀 × 𝑁, whose rows are denoted by 𝜑𝑖. If 𝑀 < 𝑁, 𝑦 

has less data points than 𝑥 and hence less data needs to be measured and processed 

when CS techniques are applied. The ratio of 𝑁 over 𝑀 is referred to as the compression 

rate 𝑅.  

To recover signal 𝑥 from 𝑦, the system requires prior knowledge of 𝛹 and 𝛷. With 

the measurement data 𝑦 it solves for [𝑠]𝛹 from 𝑦 = 𝛷 ∙ 𝛹 ∙ [𝑠]𝛹. Since 𝑀 < 𝑁, this is an 

underdetermined system and its solution is not unique. Here, the signal sparsity comes 

to the rescue and it has been proven that the sparsest solution, the one that contains the 

least number of nonzero terms, has a very high probability to be a close approximation to 

the correct solution [5]. Once the values of [𝑠]𝛹 are obtained, signal 𝑥 can be easily 

reconstructed by the projection relation 𝑥 = 𝛹 ∙ [𝑠]𝛹.  

Several conditions for selecting matrix 𝛷 to guarantee the recovery of 𝑥 have 

been derived by experts in mathematical fields, such as constraints in terms of spark, 

coherence, Null space, restricted isometry property (RIP), etc. Meanwhile, various 

methods to recover 𝑥 have also been developed, including adaptive binary search, 𝑙1 

minimization (or basis pursuit), greedy pursuits, etc. Among them, the RIP condition and 

the basis pursuit recovery method are frequently used in CS related applications. The 

RIP was originally defined as follows [5]: Matrix 𝛷 obeys the RIP with constant 𝛿𝑘 if: 

(1 − 𝛿𝑘)||𝑥||
2

2
≤ ||𝛷 ⋅ 𝑥||

2

2
≤ (1 + 𝛿𝑘)||𝑥||

2

2
 (1) 

for all k-sparse vectors 𝑥, ||  ||2 denoting the standard 𝑙2-norm on ℜ𝑑. To be able to 

recover vector 𝑥, 𝛿𝑘 needs to be smaller than certain thresholds. Intuitively, 𝛿𝑘 indicates 
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how well the linear observations, 𝛷 ⋅ 𝑥, preserve the energy of the signal vector 𝑥. The 

smaller 𝛿𝑘 is, the better the signal energy is preserved. Later, the RIP is generalized with 

condition [8]: (1 − 𝛿𝑘)||𝑥||
𝑝

≤ ||𝛷 ⋅ 𝑥||
𝑝

≤ (1 + 𝛿𝑘)||𝑥||
𝑝
. It shows that RIP with 𝑝 = 1, 

denoted as RIP-1, can also be used to select 𝛷 to guarantee the recovery of 𝑥. Note that 

these conditions are typically sufficient, but not necessary. For example, a matrix that 

satisfies RIP-1 guarantees signal recovery, but may not satisfy the original RIP-2 

condition, and vice versa. Thus neither of the conditions is stronger than the other. 

The mathematical theory behind the CS operation also indicates that the sparsest 

solution can be obtained by solving a convex minimization problem formulated as 

follows: 

𝑚𝑖𝑛||[𝑠]𝛹||
𝑙1

, 𝑠𝑢𝑏𝑗.  𝑡𝑜 𝑦 = 𝛷 ∙ 𝛹 ∙ [𝑠]𝛹 (2) 

To recover signal 𝑥 with a high confidence level, the above approach also requires:  

1) the measurement size 𝑀 meets the lower bound requirement: 𝑀 ≥ 𝑂 (𝑘 ∙ 𝑙𝑜𝑔 (
𝑁

𝑘
)), 

where 𝑘 is the number of non-zero or significant terms in vector [𝑠]𝛹 (sparsity of [𝑠]𝛹);  

2) the measurement matrix 𝛷 and sparse basis 𝛹 are incoherent. This means the 

coherence measure 𝜇 given below should be small. 

𝜇(𝛷, 𝛹) = √𝑁 ∙ max
1≤𝑖≤𝑀;1≤𝑗≤𝑁

|〈𝜑𝑖, 𝜓𝑗〉| (3) 

It has been shown that 𝜇(𝛷, 𝛹) ∈ [1, √𝑁] for any normalized matrices 𝛷 and 𝛹 [7]. 

Finally, it is observed that random measurement matrices are largely incoherent to many 

sparse bases used in CS operations [7], which is the reason why random measurement 

matrices are often used in the existing CS image sensor implementations. 
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 For the completeness of discussion, the Sparse Representation- Based Super-

Resolution (SR) technique [11] should also be mentioned. The SR technique aims to 

recover a high-resolution image from one or a multiple of low-resolution images. The low 

quality signals treated in SR stem from a high resolution image, whose signal attenuation 

is due to non-ideal low-pass filtering and/or decimation filtering effects. Unlike what 

occurs in CS, these signal attenuations are undesired, and not part of a prior 

compression process. The projection operator in SR (equivalent of 𝛷 in CS) is therefore 

unknown. Still, CS theory can be applied to SR by modeling the non-ideal image 

capturing and processing effects via a projection operator 𝐿. Thus the low-resolution 

image is viewed as if it were obtained via a dimension diminishing map 𝐿 from the high 

resolution image, with the difference that the projection operator cannot be chosen, but 

is rather dependent on many artificial circumstances. Unlike random matrices in CS, the 

RS operator is frequency discriminative, i.e., low frequency content in the signal is 

preserved well, while high frequency components are largely attenuated [11]. Thus 

unlike in CS, the quality of the reconstructed image is a function of the frequency 

spectrum of the original signal. The proposed technique presented in the next section 

belongs to the field of CS, but has similarities with RS in terms of the frequency 

discriminative behavior of the projection operator. As explained below however, 

attenuation of high frequency signal content is not performance critical for the 

overwhelming majority of natural images. 
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PROPOSED COMPRESSION METHOD 

A. Introduction to the Proposed CS Technique 

Unlike the existing CS image sensor circuits that perform random summations for 

variable sets of samples of 𝑥, the proposed method follows regular patterns to sum 

neighboring pixels within the same column or row of the two-dimensional image array. It 

can be explained with the following example. Without losing generality, assume the CS 

measurement is conducted for a column vector containing 256 samples and the 

compression rate 𝑅 is 4.  R is defined as the ratio of the number of pixels over the 

number of CS measurements. Thus, 64 CS measurements are to be generated, which 

are denoted by 𝔖1, 𝔖2, ⋯ 𝔖64. To generate a single CS measurement, six neighboring 

samples are added together and there is an overlap of two samples between two 

neighboring summation groups. The CS measurement operations are illustrated in Fig. 

1. Note that the vertical bars in the figure represent the same sample column and the 

groups of six samples in the shaded regions are added together to produce the 64 CS 

measurements. The starting and ending pixel positions of each summation group are 

listed on the left side of the shaded regions. For example, in the first CS measurement, 

the outputs of samples 1 ∼ 3 and 254 ∼ 256 are added together; in the second CS 

measurement, the outputs of samples 2 ∼ 7 are added. Thereafter, the position of the 

measurement group is moved by 4 samples to start the next CS measurement. 
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246

251
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Fig. 1. Example pixel access pattern in CS measurement operation 

The sample summations can, in general, be described by the following equations: 

𝔖1
𝑚 = ∑ 𝑥(𝑖) + ∑ 𝑥(𝑖)

(𝑚+1)⋅𝑝

𝑖=(𝑚+1)⋅𝑝−2

𝑚⋅𝑝+3

𝑖=𝑚⋅𝑝+1

 

𝔖𝑘
𝑚 = ∑ 𝑥(𝑖)

𝑚⋅ 𝑝+4∙𝑘−1

𝑖=𝑚⋅𝑝+4∙𝑘−6

, 1 < 𝑘 ≤ 64 

 

 

(4) 

In the above equations, letter 𝑚 indicates for which pixel column the CS measurement is 

performed, and 0 ≤ 𝑚 ≤ 𝑞 − 1, for a 𝑝 × 𝑞 dimensional image array (In the example, 𝑝 is 

chosen as 256, with measurement supports of 6 samples each). In general, to generate 

M CS measurements for a pixel array containing N pixels, the size of summation groups 

should be 
𝑁

𝑀
+ 𝑂𝐿, where 𝑂𝐿 represents the number of overlapping samples between two 

neighboring summation groups. As a guideline, 𝑂𝐿 is preferred to be selected as 
𝑅

2
, if 
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possible. For given N, M, and OL values, the entries of measurement matrix 𝜙 can be 

determined using: 

𝜙(𝑖, 𝑗) = {1 𝑖𝑓 1 +
(𝑖 − 1) ∙ 𝑁

𝑀
≤ 𝑗 ≤

𝑖 ∙ 𝑁

𝑀
+ 𝑂𝐿

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

for 1 < 𝑖 < 𝑀. For 𝑖 = 1, 𝑀 (the first and last row respectively), the pattern needs to be 

slightly adjusted to meet the image size constraint, since the dimension of the frame 

may not be a multiple of 
𝑁

𝑀
. 

B.  Justification of Proposed CS Measurement Method  

As discussed earlier, signals must be sparse with respect to a sparse basis to be 

able to take advantage of CS techniques. Image signals are generally sparse with 

respect to an inverse discrete cosine transform (IDCT) basis. The vectors in IDCT 

correspond to samples of the cosine function with variable frequency starting from DC, 

which are given as: 

𝛹(𝑘, 𝑗) = ∑ 𝛼(𝑖) [𝐼(𝑖, 𝑗) ∙ 𝑐𝑜𝑠 (
𝜋(2𝑘 + 1)(𝑖 − 1)

2𝑁
)]

𝑁

𝑖=1

 (6) 

where 𝐼 is the 𝑁 × 𝑁 dimensional identity matrix, 𝛼(𝑖) = √1/𝑁 when 𝑖 = 1, and 𝛼(𝑖) =

√2/𝑁  when 𝑖 > 1. 

The coherence measure 𝜇(𝛷, 𝛹) defined in (3) is evaluated for the pair of the 

proposed measurement matrix 𝜙 and the IDCT sparse basis 𝜓. Matrix 𝜙 is normalized 

before the evaluation in accordance to Equation 2. The obtained coherence value is 

3.46. For comparison purposes, a random matrix generated by Matlab rand function is 

also examined in the study. The coherence between the random matrix and the IDCT 
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sparse bases is 5.2. This shows that the proposed measurement matrix achieves about 

the same level of incoherence as random measurement matrices and hence confirms 

the suitability of the proposed measurement method in CS image applications. 

The proposed measurement matrix does not satisfy RIP requirements. Note that 

RIP requirements are sufficient but not necessary conditions for recovering the original 

signal from CS measurements. For example, both RIP-2 and RIP-1, defined in Equation 

1 with 𝑝 = 2 and 𝑝 = 1 respectively, guarantee signal recovery. A matrix that satisfies 

RIP-1 may not satisfy RIP-2, and vice versa. Further, RIP is a very strong condition 

guaranteeing the recovery of any signal, providing it is sufficiently sparse with respect to 

a properly chosen basis.  

It has been shown that natural images generally have dominating low frequency 

components, and insignificant high frequency components. From [6] follows that the 

frequency spectrum of natural images along the frequency axis decays according to the 

equation: 

𝐴(𝑓) =
𝐴𝐷𝐶

𝑓𝛼
 (7) 

where 𝐴𝐷𝐶 and 𝛼 represent the magnitude of the image DC component (proportional to 

the average pixel power) and decay rate along the frequency axis 𝑓 respectively. 

Statistical data from a large number of images show that, on average, 𝛼 is about 2.08, 

with an average standard deviation of 0.53 [6]. Thus, if a natural image is projected to 

the IDCT domain, the significant coefficients will be mainly distributed in the low 

frequency or low index region. Matlab simulations indicate that this is the key factor that 

enables the superb performance of the proposed CS measurement method.  
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To exemplify our finding, we use the proposed measurement matrix and a 

random measurement matrix, which satisfies RIP conditions, to conduct CS operations 

for two images. One is a common benchmark image Cameraman and the other is an 

artificially created image by alternately assigning one pixel to black, the next pixel to 

gray and the third pixel to white, as depicted in Fig. 2. 

  

Fig. 2. IDCT coefficients of Cameraman (top) and black-gray-white pattern (bottom) 

Clearly, the artificial image does not exist in the real world since no natural images can 

exhibit such dramatic changes from one pixel to another, throughout the image. Both 

images are sparse with respect to the IDCT basis and their IDCT coefficients 

(coordinate vectors) are plotted in the left panel of fig. 2. For image Cameraman, its 
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significant coefficients concentrate in the low frequency region. However, the significant 

coefficients of the artificial image are scattered in a wide range. Despite this difference, 

the two images approximately have the same level of sparsity. This becomes evident 

after the coefficients are sorted in a descending order and plotted in the middle panel of 

the figure. In experiments using CS techniques to sample and recover image 

Cameraman, both the proposed and random measurement matrices lead to successful 

image reconstruction. Also, the proposed method results in a better image quality 

measured by peak signal to noise ratio (PSNR) [9]. This is mainly attributed to the fact 

that the CS measurements with using the proposed method better preserve local 

energy. With compression rate 4, the PSNR values with using the proposed and 

random measurement matrices are 32.7dB and 24.3dB, respectively. For the artificial 

image, the PSNR of the recovered image from the proposed CS measurements is only 

12.3 dB. However, this image can still be recovered from the CS measurements using 

the random matrix. These observations support the earlier statements about the 

proposed and random measurement matrices. Nevertheless, the failure of recovering 

the artificial image from the proposed CS measurements should not be alarmed since 

such an image is unlikely to be seen in the real world. 

Studies were also conducted via Matlab simulations to examine how widely the 

proposed CS measurement method can be applied to natural images. Without losing 

generality, sparse signals with a length of 2560 samples were used in the study. The 

sparsity of the signals is selected as 200. Thus, among the 2560 IDCT coefficients, 200 

are significant and the remaining 2360 coefficients are negligible, which are at least 75 

times smaller than the largest magnitude of the significant coefficients. A large set of 
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such sparse signals was generated by randomly varying the magnitudes and positions 

of the 200 significant coefficient terms. Then, the proposed and random matrices were 

used to generate CS measurements of these signals and later 𝑙1 minimization 

techniques were used to recover the signals from their CS measurements.  

 

Fig. 3. Recovered signals from the proposed and random CS measurements with 
variable signal spectrum bandwidth 

. PSNR of recovere 

The PSNRs of the recovered signals using the proposed and random matrices are 

compared in Fig. 3. The horizontal axis indicates the highest index or frequency of the 

significant coefficients for a given signal. For example, if a data point in the figure has 

horizontal axis value of 500, then the significant coefficients of the corresponding signal 

are distributed in the region with indexes ranging from 1 to 500. The plot shows that, if 

the significant coefficients are distributed in the region with indexes smaller than 720 

(the position marked by the dotted line in the figure), the proposed method outperforms 

the conventional random matrix based CS measurement method. Equation 7 indicates 
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that the maximum coefficient magnitude drops to about 1/75 of its DC value at the 

frequency corresponding to index 720, where α is approximately 0.67. This value is off 

from the average value of α by 2.66 times the standard deviation. This leads to the 

conclusion that the proposed method results in better image quality for about 99.6% of 

all natural images. If the significant coefficients are distributed in the region with index 

smaller than 600, which corresponds to 99.4% of natural images according to (7), the 

proposed CS measurement method results in significantly better image quality.  

The proposed and the conventional random matrix-based CS measurement 

methods were applied to the two widely used benchmark images Lenna and 

Cameraman with different compression rates. The quality of the reconstructed images 

from the proposed and conventional CS measurements are shown in Fig. 4. The listed 

results clearly demonstrate the superiority of the proposed CS measurement method. 

 

Fig. 4. Comparison of reconstructed image quality from the proposed and conventional 
CS measurements with variable compression rates 
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PERFORMANCE ESTIMATION 

 

This section develops closed form expressions to evaluate the error between the 

original signals and the compressed or reconstructed data. Intuitive explanations are 

given in several instances, where a rigorous proof could not be found. This derivation 

therefore merely intends to collect ideas on how to quantify signal errors, rather than 

provide tight bounds for signal errors, and thus show validity of the proposed technique. 

Consider the previously introduced notations: 

 Original discrete signal 𝑥 of length 𝑁 

 Compressed signal 𝑦 of length 𝑀 

 Measurement matrix 𝛷 of dimension 𝑀, 𝑁 

 Compression rate 𝑅 

 Sparse representation bases 𝛹 of dimension 𝑁, 𝑁 

 Coordinate vector [𝑠]𝛹 of 𝑥 w.r.t. 𝛹 

As discussed in the introduction and background sections, signals under consideration 

must satisfy the following criteria: 

a) Sparsity: When projecting signal 𝑥 onto representation bases 𝛹, only at 

most 𝑁[𝑠]
∗  out of 𝑁 coefficients are significant in coordinate vector [𝑠]𝛹. 

Define a coefficient 𝑠𝑖 to be significant if its magnitude is not less than 𝑃-% 

of that of the largest coefficients. 

b) Dominant low- frequency components: The bulk of the signal power is 

carried by low frequency components, i.e., coefficients corresponding to 

low frequency bases vectors are large, while high frequency components 
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have, in general, small coefficients. In particular, (7) is altered to obtain the 

more practical model: 

|𝑠𝑗| ≤ 𝐶𝑁 +
𝐶𝐷𝐶

𝑗𝛼
                1 ≤ 𝑗 ≤ 𝑁 

(8) 

where 𝐶𝑁 and 𝐶𝐷𝐶 are the magnitude of high frequency (noise) 

components and the magnitude of the DC- or dominant low frequency 

component respectively. 𝛼 is the decay rate along the frequency axes, 

obtained from statistical data of natural images. 

The entries in 𝛹 originate from the inverse discrete cosine transform. A simplified and 

slightly modified version of the expression in (6) is given by: 

𝛹(𝑖, 𝑗) = 𝐶𝑗 ∙ cos (
𝜋(𝑗 − 1)(𝑖 − 1)

𝑁
) (9) 

with 𝐶1 = √1
𝑁⁄  and 𝐶𝑗 = √2

𝑁⁄  for 𝑗 = 2, … , 𝑁. Note that these constants lead to unified 

signal power of all 𝑗 columns of 𝛹. With the help of 𝑥 = 𝛹 ∙ [𝑠]𝛹, the signal can be 

represented as: 

𝑥(𝑖) = ∑ 𝑠𝑗 ∙

𝑁

𝑗=1

𝛹(𝑖, 𝑗) = ∑ 𝑠𝑗 ∙

𝑁

𝑗=1

𝐶𝑗 ∙ cos (
𝜋(𝑗 − 1)(𝑖 − 1)

𝑁
) (10) 

with unique coefficients 𝑠1, 𝑠2, … , 𝑠𝑁 for any given signal 𝑥 є ℜ𝑛. 

To compute bounds for the minimum signal quality, it is necessary to quantify 

how much the signal can deviate from the measurement value, which is the average of 

the samples in the measurement support. Thus, this measure depends on the rate of 

change of 𝑥 along index 𝑖. The average, root mean square (RMS), and maximum slope 

of the signal are three potential candidates to quantify the rate of change of 𝑥. By 

definition of PSNR, the squared difference between the original and reconstructed 
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signals is accumulated. Thus absolute differences are weighted with a power of two. 

The same is true for the definition of the root mean square value of a continuous 

function, which also is a measure of the squared magnitudes. This suggests that the 

RMS slope should be the main component when quantifying signal rate of change. The 

first step is to compute these slopes, which for simplification purposes, is partially 

carried out in the continuous domain.  

A. Upper bound for maximum slope of x along i: 

From (10) the maximum rate of change of 𝑥 along 𝑖 can be approximated in the 

continuous domain by: 

𝑚𝑎𝑥
𝑖

|
𝑑𝑥(𝑖)

𝑑𝑖
| ≈ 𝑚𝑎𝑥

𝑖
|

𝑑

𝑑𝑖
(∫ 𝑠𝑗 ∙

𝑁

𝑗=1

𝐶𝑗 ∙ cos (
𝜋(𝑗 − 1)(𝑖 − 1)

𝑁
) 𝑑𝑗)|. (11) 

Unfortunately, the above formula has no explicit solution. In the discrete domain 
△𝑥(𝑖)

△𝑖
 

follows from (10) as: 

△ 𝑥(𝑖)

△ 𝑖
= − ∑ 𝑠𝑗 ∙

𝑁

𝑗=1

𝐶𝑗 ∙ (
𝜋(𝑗 − 1)

𝑁
) ∙ sin (

𝜋(𝑗 − 1)(𝑖 − 1)

𝑁
). (12) 

Similarly, it follows from (10) that: 

𝑚𝑎𝑥
𝑖

|
△ 𝑥(𝑖)

△ 𝑖
| = 𝑚𝑎𝑥

𝑖
|△ 𝑥(𝑖)| ≈ 𝑚𝑎𝑥

1≤𝑘≤𝑁−1
|𝑥(𝑘) − 𝑥(𝑘 + 1)| 

= 𝑚𝑎𝑥
1≤𝑘≤𝑁−1

|∑ 𝑠𝑗 ∙

𝑁

𝑗=1

𝐶𝑗 ∙ [cos (
𝜋(𝑗 − 1)(𝑘 − 1)

𝑁
) − cos (

𝜋(𝑗 − 1)𝑘

𝑁
)]| 

 

(13) 

with △ 𝑖 = 1. Coefficients 𝑠𝑗 are, in general, unknown, so that it is difficult to find a tight 

upper bound of the distance among two consecutive entries of 𝑥 for all possible signals 



  20 

 

 
 

satisfying the above properties. The slope of the cosine is maximally one, and the 

argument of the cosine functions differs by a factor (
𝜋(𝑗−1)

𝑁
). Thus it follows that: 

𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)| ≤ ∑ 𝑠𝑗 ∙

𝑁

𝑗=1

𝐶𝑗 ∙ (
𝜋(𝑗 − 1)

𝑁
) (14) 

which becomes immediately clear also from (12). By definition 𝐶1 = √1
𝑁⁄  and 𝐶𝑗 =

√2
𝑁⁄  for 𝑗 = 2, … , 𝑁. Since this estimation is to compute the rate of change of signal 𝑥, 

the constant term, whose magnitude is 𝐶1, has no impact. Note that this is congruent 

with term (𝑗 − 1) in the sum, which vanishes when 𝑗 = 1. Going back to the continuous 

domain, 𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)| can be determined as follows: 

𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)| ≤ ∑ 𝑠𝑗 ∙

𝑁

𝑗=1

𝐶𝑗 ∙ (
𝜋(𝑗 − 1)

𝑁
) ≤ ∑ (𝐶𝑁 +

𝐶𝐷𝐶

𝑗𝛼
) ∙

𝑁

𝑗=1

𝐶𝑗 ∙ (
𝜋(𝑗 − 1)

𝑁
) 

≈ ∫ (𝐶𝑁 + 𝐶𝐷𝐶 ∙ 𝑗−𝛼) ∙
𝑁

𝑗=1

𝐶𝑗 ∙ (
𝜋(𝑗 − 1)

𝑁
) 𝑑𝑗 

=
𝐶𝑁 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
∫ (𝑗 − 1)𝑑𝑗

𝑁

𝑗=1

+
𝐶𝐷𝐶 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
∫ 𝑗−𝛼(𝑗 − 1)𝑑𝑗

𝑁

𝑗=1

 

=
𝐶𝑁 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
[
𝑗2

2
− 𝑗]

𝑗=1

𝑁

+
𝐶𝐷𝐶 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
[

𝑗2−𝛼

2 − 𝛼
−

𝑗1−𝛼

1 − 𝛼
]

𝑗=1

𝑁

 

=
𝐶𝑁 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
[
𝑗2

2
− 𝑗]

𝑗=1

𝑁

+
𝐶𝐷𝐶 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
[
𝑗1−𝛼(−𝑗 ∙ 𝛼 + 𝛼 + 𝑗 − 2)

(𝛼 − 2)(𝛼 − 1)
]

𝑗=1

𝑁

 

=
𝐶𝑁 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
(

𝑁2

2
− 𝑁 +

1

2
) +

𝐶𝐷𝐶 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
(

𝑁1−𝛼(−𝑁 ∙ 𝛼 + 𝛼 + 𝑁 − 2) + 1

(𝛼 − 2)(𝛼 − 1)
). 

 

 

 

 

 

(15) 

 

Note that: 
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𝑙𝑖𝑚
𝛼→1

𝑁1−𝛼(−𝑁 ∙ 𝛼 + 𝛼 + 𝑁 − 2) + 1

(𝛼 − 2)(𝛼 − 1)
=

"0"

"0"
 

= 𝑙𝑖𝑚
𝛼→1

𝑑
𝑑𝛼

(𝑁1−𝛼(−𝑁 ∙ 𝛼 + 𝛼 + 𝑁 − 2) + 1)

𝑑
𝑑𝛼

(𝛼 − 2)(𝛼 − 1)
 

lim
𝛼→1

−𝑁1−𝛼ln(𝑁)(−𝑁 ∙ 𝛼 + 𝛼 + 𝑁 − 2) + 𝑁1−𝛼(−𝑁 + 1)

2𝛼 − 3
= 𝑁 − 1 − ln(𝑁) ≥ 0. 

 

 

(16) 

Similarly: 

𝑙𝑖𝑚
𝛼→2

𝑁1−𝛼(−𝑁 ∙ 𝛼 + 𝛼 + 𝑁 − 2) + 1

(𝛼 − 2)(𝛼 − 1)
=

"0"

"0"
 

= 𝑙𝑖𝑚
𝛼→2

𝑑
𝑑𝛼

(𝑁1−𝛼(−𝑁 ∙ 𝛼 + 𝛼 + 𝑁 − 2) + 1)

𝑑
𝑑𝛼

(𝛼 − 2)(𝛼 − 1)
 

lim
𝛼→2

−𝑁1−𝛼 ∙ ln(𝑁)(−𝑁 ∙ 𝛼 + 𝛼 + 𝑁 − 2) + 𝑁1−𝛼(−𝑁 + 1)

2𝛼 − 3
= ln(𝑁) + 𝑁−1 − 1 ≥ 0 

 

 

(17) 

for all 𝑁 > 0. Thus above result is well defined for any 𝛼 > 0, and 𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)| can be 

bounded above by: 

 (18) 

𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)| ≤
𝐶𝑁 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
(

𝑁2

2
− 𝑁 +

1

2
) +

𝐶𝐷𝐶 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
(

𝑁1−𝛼(−𝑁 ∙ 𝛼 + 𝛼 + 𝑁 − 2) + 1

(𝛼 − 2)(𝛼 − 1)
). 

A. Upper bound for Average absolute slope of 𝐱 along 𝐢: 

The estimation of the average slope requires the evaluation of: 

𝑎𝑣𝑔
𝑖

(
𝑑𝑥(𝑖)

𝑑𝑖
) =

1

N
∫ |

d

di
(∫ 𝑠𝑗 ∙

N

j=1

Cj ∙ cos (
π(j − 1)(i − 1)

N
) dj)|

N

i=1

di (19) 

for which no closed form solution exists. In addition, since the form factor for general 

signal 𝑥 is unknown, no relation is possible between the RMS and average value of the 

slope of 𝑥. It is however in general true that the average value is smaller than or equal 
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to the RMS value, and the closed form solution for the upper bound of the RMS slope is 

given below. In addition, the maximum slope being much larger than the RMS slope 

indicates that the average slope is much smaller than the RMS slope. However, it is 

difficult to quantify in general how large this difference is. 

B. Upper bound for Root Mean Square slope of 𝐱 along 𝐢: 

The Root Mean Square (RMS) slope of 𝒙 along 𝒊 can be defined with the help of 

(12) and the definition of RMS as: 

𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) = √
1

𝑁
∑(△ 𝑥(𝑖))2

𝑁

𝑖=1

 

= √
1

𝑁
∑ (− ∑ 𝑠𝑗 ∙

𝑁

𝑗=1

𝐶𝑗 ∙ (
𝜋(𝑗 − 1)

𝑁
) sin (

𝜋(𝑗 − 1)(𝑖 − 1)

𝑁
))

2
𝑁

𝑖=1

 

 

 

(20) 

The expression under the quadrat can be divided into two parts. First, the product of 

every term with itself, and second, all permutations of terms with different arguments in 

the sinusoids: 

(∑ 𝑠𝑗 ∙

𝑁

𝑗=1

𝐶𝑗 ∙ (
𝜋(𝑗 − 1)

𝑁
) sin (

𝜋(𝑗 − 1)(𝑖 − 1)

𝑁
))

2

 

= ∑ (𝑠𝑗 ∙ 𝐶𝑗 ∙ (
𝜋(𝑗 − 1)

𝑁
) sin (

𝜋(𝑗 − 1)(𝑖 − 1)

𝑁
))

2𝑁

𝑗=1

 

 

 

(21) 

 (22) 

+ ∑ 𝑠𝑗𝑠𝑘𝐶𝑗𝐶𝑘

𝜋2

𝑁2
(𝑗 − 1) (𝑘 − 1)sin (

𝜋(𝑗 − 1)(𝑖 − 1)

𝑁
) sin (

𝜋(𝑘 − 1)(𝑖 − 1)

𝑁
)

𝑗=1,2,…,𝑁
𝑘=1,2,…,𝑁

𝑗≠𝑘

. 

Note that: 
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∫ sin(𝑘 ∙ 𝑥) sin(𝑗 ∙ 𝑥) 𝑑𝑥
𝑛∙𝜋

0

 

= [
−

cos(𝑘 ∙ 𝑥) sin(𝑗 ∙ 𝑥)
𝑘

+
j ∙ sin(𝑘 ∙ 𝑥) cos(𝑗 ∙ 𝑥)

𝑘2

1 − (
𝑗
𝑘

)
2 ]

𝑥=0

𝑖∙𝜋

= 0 

 

(23) 

for all integers 𝑘, 𝑗 and 𝑖, if 𝑘 ≠ 𝑗. That is, the integral over the product of two sinusoids 

with different integer arguments over a multiple of half-periods is zero. Computing the 

average of expression (22) over all 𝑖 as necessary to obtain (20) yields: 

 (24) 

1

𝑁
∑ ∑ 𝑠𝑗𝑠𝑘𝐶𝑗𝐶𝑘

𝜋2

𝑁2
(𝑗 − 1) (𝑘 − 1)sin (

𝜋(𝑗 − 1)(𝑖 − 1)

𝑁
) sin (

𝜋(𝑘 − 1)(𝑖 − 1)

𝑁
)

𝑗=1,2,…,𝑁
𝑘=1,2,…,𝑁

𝑗≠𝑘

𝑁

𝑖=1

. 

The order of addition can be interchanged, so that (24) can be simplified to: 

 (25) 

∑ 𝑠𝑗𝑠𝑘𝐶𝑗𝐶𝑘

𝜋2

𝑁3
(𝑗 − 1)(𝑘 − 1) ∑ sin (

𝜋(𝑗 − 1)(𝑖 − 1)

𝑁
) sin (

𝜋(𝑘 − 1)(𝑖 − 1)

𝑁
)

𝑁

𝑖=1𝑗=1,2,…,𝑁
𝑘=1,2,…,𝑁

𝑗≠𝑘

. 

The internal sum in (25) is the discrete version of integral (23). The sum is performed 

over all 𝑖 from 1 to 𝑁, where the arguments of the sine functions span the intervals 0 to 

approximately 𝜋(𝑗 − 1) and 𝜋(𝑘 − 1) respectively, assuming 𝑁 is not very small. By the 

result in (23) it is therefore reasonable to assume that expression (25) is approximately 

zero. 
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Now, (20) simplifies to: 

𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) ≈ √
1

𝑁
∑ ∑ (𝑠𝑗 ∙ 𝐶𝑗 ∙ (

𝜋(𝑗 − 1)

𝑁
) sin (

𝜋(𝑗 − 1)(𝑖 − 1)

𝑁
))

2𝑁

𝑗=1

𝑁

𝑖=1

 (26) 

and can be rearranged to the even simpler form: 

𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) ≈ √∑ (𝑠𝑗 ∙ 𝐶𝑗 ∙ (
𝜋(𝑗 − 1)

𝑁
))

2
1

𝑁
∑ (sin (

𝜋(𝑗 − 1)(𝑖 − 1)

𝑁
))

2𝑁

𝑖=1

𝑁

𝑗=1

. (27) 

But 
1

𝑁
∑ (sin (

𝜋(𝑗−1)(𝑖−1)

𝑁
))

2
𝑁
𝑖=1  is the squared and discrete version of the general equation 

for computing the RMS value of any continuous function 𝑦(𝑡) in the interval [𝑎, 𝑏] given 

by: 

𝑅𝑀𝑆𝑦(𝑡)
2 =

1

𝑏 − 𝑎
∫ (𝑦(𝑡))

2
𝑑𝑡

𝑏

𝑎

. (28) 

It is well known that the RMS value of the sinusoidal waveform over an interval, which is 

a multiple of 𝜋, is equal to 1 √2⁄ . It follows that: 

1

𝑁
∑ (sin (

𝜋(𝑗 − 1)(𝑖 − 1)

𝑁
))

2𝑁

𝑖=1

≈
1

2
 (29) 

Thus (27) becomes: 

𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) ≈ √
1

2
∑ (𝑠𝑗 ∙ 𝐶𝑗 ∙ (

𝜋(𝑗 − 1)

𝑁
))

2𝑁

𝑗=1

 

≈ √
1

2
∫ (𝑠𝑗 ∙ 𝐶𝑗 ∙ (

𝜋(𝑗 − 1)

𝑁
))

2
𝑁

𝑗=1

𝑑𝑗 

 

 

 

(30) 
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≤ √
1

2
∫ ((𝐶𝑁 + 𝐶𝐷𝐶 ∙ 𝑗−𝛼) ∙ 𝐶𝑗 ∙ (

𝜋(𝑗 − 1)

𝑁
))

2
𝑁

𝑗=1

𝑑𝑗. 

As discussed earlier, the constant term in the sum has no impact, so that 𝐶𝑗 = √2
𝑁⁄  can 

be chosen for all 𝑗 = 1, … , 𝑁. Thus: 

(𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)))

2

≤
1

2
(

𝐶𝑁 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
)

2

∫ (𝑗 − 1)2𝑑𝑗
𝑁

𝑗=1

 

+𝐶𝑁 ∙ 𝐶𝐷𝐶 ∙ (
𝐶𝑗 ∙ 𝜋

𝑁
)

2

∫ 𝑗−𝛼(𝑗 − 1)2𝑑𝑗
𝑁

𝑗=1

 

+
1

2
(

𝐶𝐷𝐶 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
)

2

∫ 𝑗−2∙𝛼(𝑗 − 1)2𝑑𝑗
𝑁

𝑗=1

 

=
1

2
(

𝐶𝑁 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
)

2

[
𝑗3

3
− 𝑗2 + 𝑗]

𝑗=1

𝑁

 

−𝐶𝑁 ∙ 𝐶𝐷𝐶 ∙ (
𝐶𝑗 ∙ 𝜋

𝑁
)

2

[
𝑗1−𝛼(𝛼2(𝑗 − 1)2 + 𝛼(−3𝑗2 + 8𝑗 − 5) + 2(𝑗2 − 3𝑗 + 3))

(𝛼 − 3)(𝛼 − 2)(𝛼 − 1)
]

𝑗=1

𝑁

 

−
1

2
(

𝐶𝐷𝐶 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
)

2

[
𝑗1−2∙𝛼(2𝛼2(𝑗 − 1)2 + 𝛼(−3𝑗2 + 8𝑗 − 5) + 𝑗2 − 3𝑗 + 3)

(2𝛼 − 1)(2𝛼 − 3)(𝛼 − 1)
]

𝑗=1

𝑁

 

=
1

2
(

𝐶𝑁 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
)

2

(
𝑁3

3
− 𝑁2 + 𝑁 −

1

3
) 

 

 

 

 

 

 

(31) 

+𝐶𝑁 ∙ 𝐶𝐷𝐶 ∙ (
𝐶𝑗 ∙ 𝜋

𝑁
)

2

(
2 − 𝑁1−𝛼(𝛼2(𝑁 − 1)2 + 𝛼(−3𝑁2 + 8𝑁 − 5) + 2(𝑁2 − 3𝑁 + 3))

(𝛼 − 3)(𝛼 − 2)(𝛼 − 1)
) 

+
1

2
(

𝐶𝐷𝐶 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
)

2

(
1 − 𝑁1−2∙𝛼(2𝛼2(𝑁 − 1)2 + 𝛼(−3𝑁2 + 8𝑁 − 5) + 𝑁2 − 3𝑁 + 3)

(2𝛼 − 1)(2𝛼 − 3)(𝛼 − 1)
). 
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Using L’Hospital’s rule it can be shown that, (31) is well defined for all 𝛼 grater zero. The 

desired result is then given by: 

𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) ≤ [
1

2
(

𝐶𝑁 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
)

2

(
𝑁3

3
− 𝑁2 + 𝑁 −

1

3
) 

(32) 

+𝐶𝑁 ∙ 𝐶𝐷𝐶 ∙ (
𝐶𝑗 ∙ 𝜋

𝑁
)

2

(
2 − 𝑁1−𝛼(𝛼2(𝑁 − 1)2 + 𝛼(−3𝑁2 + 8𝑁 − 5) + 2(𝑁2 − 3𝑁 + 3))

(𝛼 − 3)(𝛼 − 2)(𝛼 − 1)
) 

+
1

2
(

𝐶𝐷𝐶 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
)

2

(
1 − 𝑁1−2∙𝛼(2𝛼2(𝑁 − 1)2 + 𝛼(−3𝑁2 + 8𝑁 − 5) + 𝑁2 − 3𝑁 + 3)

(2𝛼 − 1)(2𝛼 − 3)(𝛼 − 1)
)]

1
2

. 

B. Sparsity consideration: 

In the estimation of (18) and (32), coefficients |𝑠𝑗| are expressed as 𝐶𝑁 +
𝐶𝐷𝐶

𝑗𝛼 . In 

reality, function 𝐶𝑁 +
𝐶𝐷𝐶

𝑗𝛼  bounds coefficients |𝑠𝑗|, but typically only a (small) subset of all 

coefficients has a magnitude significantly large to have a notable contribution to the 

harmonic signal representation. Defining a relative magnitude of at least 𝑃-% as 

significant, the maximum number of significant coefficients 𝑁[𝑠]
max is given by: 

1

(𝑁[𝑠]
max)

𝛼 =
𝑃(%)

100%
→ 𝑁[𝑠]

max ≈ (
100

𝑃(%)
)

1
𝛼
 (33) 

with the limitation that 𝑁[𝑠]
max ≤ 𝑁. Assuming the signal has a sparsity of 𝑁[𝑠]

∗ , 𝑁[𝑠]
max − 𝑁[𝑠]

∗  

coefficients are insignificant under the envelope described by (8). The distribution of the 

significant coefficients is, in general, unknown. While magnitudes drop proportionally to 

1

𝑗𝛼, the rate of change of their corresponding sinusoid increases according to (𝑗 − 1) ≈ 𝑗. 

Since 
𝑗

𝑗𝛼
= 𝑗1−𝛼, it depends on 𝛼 which coefficients carry the largest weight of the signal. 

If 𝛼 ≪ 1, coefficients with indexes close to 𝑁[𝑠]
max are dominant. If 𝛼 ≫ 1, coefficients with 

small indexes are dominant. Assuming the dominant coefficients are approximately 
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equally distributed in the window 1 𝑡𝑜 𝑁[𝑠]
max, and assuming |1 − 𝛼| is small, selecting the 

subset of 𝑁[𝑠]
∗  dominant coefficients is approximately equivalent to assuming all 

coefficients are significant, scaled by the ratio 𝑁[𝑠]
∗ 𝑁[𝑠]

max⁄ . This is because, in that 

particular case, all coefficients carry approximately the same weight. (18) and (32) are 

then modified respectively as follows: 

𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)| ≤
𝐶𝑁 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
(

𝑁2

2
− 𝑁 +

1

2
) 

+
𝑁[𝑠]

∗ ∙ 𝐶𝐷𝐶 ∙ 𝐶𝑗 ∙ 𝜋

𝑁[𝑠]
max ∙ 𝑁

(
𝑁1−𝛼(−𝑁 ∙ 𝛼 + 𝛼 + 𝑁 − 2) + 1

(𝛼 − 2)(𝛼 − 1)
) 

 

(34) 

𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) ≤ [
1

2
(

𝐶𝑁 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
)

2

(
𝑁3

3
− 𝑁2 + 𝑁 −

1

3
) + 𝐶𝑁 ∙ 𝐶𝐷𝐶 ∙

𝑁[𝑠]
∗

𝑁[𝑠]
max 

(
𝐶𝑗 ∙ 𝜋

𝑁
)

2

(
2 − 𝑁1−𝛼(𝛼2(𝑁 − 1)2 + 𝛼(−3𝑁2 + 8𝑁 − 5) + 2(𝑁2 − 3𝑁 + 3))

(𝛼 − 3)(𝛼 − 2)(𝛼 − 1)
) 

 

 

(35) 

+
1

2
(

𝑁[𝑠]
∗ ∙ 𝐶𝐷𝐶 ∙ 𝐶𝑗 ∙ 𝜋

𝑁[𝑠]
max ∙ 𝑁

)

2

(
1 − 𝑁1−2∙𝛼(2𝛼2(𝑁 − 1)2 + 𝛼(−3𝑁2 + 8𝑁 − 5) + 𝑁2 − 3𝑁 + 3)

(2𝛼 − 1)(2𝛼 − 3)(𝛼 − 1)
)]

1
2

. 

C. Minimum signal quality of compressed signal 

The measurement matrices used in this discussion sum a small number of 

neighboring samples, without overlap among neighboring measurement supports. The 

𝑘𝑡ℎ sum 𝑦(𝑘) can be conveniently described as: 

𝑦(𝑘) = ∑ 𝑥(𝑖)

𝑅∙𝑘

𝑖=1+𝑅(𝑘−1)

 (36) 

for 𝑘 = 1, … , 𝑀. Employing these matrices, the signal power of the small groups of 

neighboring samples is precisely known. It is easily possible to even it out among 

neighboring samples of the same measurement subgroup, ie., to compute the average 
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power of the samples included in a particular support. This yields a minimum signal 

quality which can always be achieved. The goal in this subsection is to quantify the error 

of the compressed signal with respect to the original signal, and to find an upper bound 

of the same. 

 The question is, what compressed- original signal combination results in the 

largest accumulated squared error, with the constraint that the averaged actual signal 

trajectory equals the measurement value. Figures 5 and 6 show two extreme cases with 

zero and large variation among neighboring measurement supports. In both cases, the 

solid line represents the averaged sample values, the dashed trajectory a possible 

actual signal path, with maximum accumulated error with respect to the measurement 

value. As discussed earlier, the slope of the dashed line is assumed to be limited by the 

RMS slope computed in (35). 

actual signal- 
(worst case)  
RMS slope

error

compressed 
(averaged) signal- 

measurement support

R

 

Fig. 5. Maximum difference among compressed and original signals  
with constant measurement values 
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compressed 
(averaged) signal- 

measurement support

actual signal- 
(worst case)  
RMS slope

error

Var1

Var2

R/2

 

Fig. 6. Maximum difference among compressed and original signals  
with monotonic and largely variant measurement values 

From fig. 5 and 6 follows that the squared error of one measurement of the compressed 

and averaged signal 𝑥′(𝑖) containing 𝑅 samples is bounded above by: 

∑ (𝑥(𝑖) − 𝑥′(𝑖))
2

𝑅∙𝑘

𝑖=1+𝑅(𝑘−1)

≤ 2 ∫ (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) ∙ 𝑥)
2

𝑅
2

0

𝑑𝑥 

= 2 (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)))

2
𝑅3

24
=

𝑅3

12
 (𝑟𝑚𝑠

𝑖
(△ 𝑥(𝑖)))

2

 

 

(37) 

assuming the worst case when the actual signal sweeps with a slope of 𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) 

throughout the measurement support. The accumulated squared error over all 

measurements is then bounded above by: 

∑(𝑥(𝑖) − 𝑥′(𝑖))
2

𝑁

𝑖=1

=
𝑁

𝑅
∙ ∑ (𝑥(𝑖) − 𝑥′(𝑖))

2
=

𝑁

𝑅

𝑅∙𝑘

𝑖=1+𝑅(𝑘−1)

𝑅3

12
 (𝑟𝑚𝑠

𝑖
(△ 𝑥(𝑖)))

2

 

 

(38) 
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=
𝑁 ∙ 𝑅2

12
 (𝑟𝑚𝑠

𝑖
(△ 𝑥(𝑖)))

2

. 

The mean square error (average squared error) follows as: 

𝑀𝑆𝐸𝑀𝐴𝑋 =
𝑅2

12
 (𝑟𝑚𝑠

𝑖
(△ 𝑥(𝑖)))

2

 (39) 

and the PSNR is defined as: 

𝑃𝑆𝑁𝑅(𝑑𝐵) = −10 ∙ log10 (
𝑀𝑆𝐸

𝑆2
) (40) 

where 𝑆 is the maximum value a sample (or pixel value in image processing) can take 

on. Finally, with the help of (36), (39) and (40), the minimum PSNR can be determined 

using: 

 (41) 

𝑆𝑁𝑅(𝑑𝐵) = −10 ∙ log10 {
𝑅2

12 ∙ 𝑆2
[
1

2
(

𝐶𝑁 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
)

2

(
𝑁3

3
− 𝑁2 + 𝑁 −

1

3
) + 𝐶𝑁 ∙ 𝐶𝐷𝐶 ∙

𝑁[𝑠]
∗

𝑁[𝑠]
max 

(
𝐶𝑗 ∙ 𝜋

𝑁
)

2

(
2 − 𝑁1−𝛼(𝛼2(𝑁 − 1)2 + 𝛼(−3𝑁2 + 8𝑁 − 5) + 2(𝑁2 − 3𝑁 + 3))

(𝛼 − 3)(𝛼 − 2)(𝛼 − 1)
) 

+
1

2
(

𝑁[𝑠]
∗ ∙ 𝐶𝐷𝐶 ∙ 𝐶𝑗 ∙ 𝜋

𝑁[𝑠]
max ∙ 𝑁

)

2
1 − 𝑁1−2∙𝛼(2𝛼2(𝑁 − 1)2 + 𝛼(−3𝑁2 + 8𝑁 − 5) + 𝑁2 − 3𝑁 + 3)

(2𝛼 − 1)(2𝛼 − 3)(𝛼 − 1)
]}. 

Note that this limit is a theoretical minimum giving a theoretical lowest possible PSNR 

for all signals of length N satisfying the sparsity and low frequency condition. 

To find a tighter lower bound for the minimum PSNR, and to further categorize 

the types of signals, introduce the following two additional parameters, further adding 

information about the signal: 

c) Define by 𝑉𝑎𝑟 the average absolute variation between two measurements. 

Note that the knowledge of coefficient vector [𝑠]𝛹 gives an upper bound for 
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𝑉𝑎𝑟, but no lower bound. 𝑉𝑎𝑟 = 0 is possible for arbitrary coefficients 𝑠𝑗. 

The maximum possible average variation is given by the average slope 

along  𝑥 times 𝑅. Thus 𝑉𝑎𝑟 calculated from the measurements has to be 

smaller than 𝑎𝑣𝑔
𝑖

(△ 𝑥(𝑖)) ∙ 𝑅. Naturally define: 

0 ≤ 𝑉𝑎𝑟 =
1

𝑀 − 1
∑ |𝑦(𝑖) − 𝑦(𝑖 + 1)|

𝑀−1

𝑖=1

≤ 𝑎𝑣𝑔
𝑖

(△ 𝑥(𝑖)) ∙ 𝑅 
(42) 

d) Another factor influencing the recovered signal-s quality is the 

monotonicity of the measurements. Are the measurements mostly 

continuously in- or decreasing or do they in- and decrease randomly? As 

discussed later, the less monotonic a signal, the better the quality of the 

reconstructed image. Thus define by 𝛽 the monotonicity of the 

measurements. Let 𝛽 = 1 if the number of measurements larger than their 

predecessor is approximately equal to the number of measurements 

smaller than their predecessor (as in Fig. 7). Let 𝛽 = 0 if all measurements 

are larger/smaller than their predecessor (as in Fig. 6).  

compressed 
(averaged) signal- 

measurement support

R

error
Var1

 

Fig. 7. Maximum difference among compressed and original signals  
with non-monotonic and largely variant measurement values 
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If 𝛽 = 1 and 𝑉𝑎𝑟 = 𝑎𝑣𝑔
𝑖

(△ 𝑥(𝑖)) ∙ 𝑅 as shown in Fig. 7, the maximum error of the 

compressed signal reduces to: 

∑ (𝑥(𝑖) − 𝑥′(𝑖))
2

𝑅∙𝑘

𝑖=1+𝑅(𝑘−1)

≤ 4 ∫ (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) ∙ 𝑥)
2

𝑅
4

0

𝑑𝑥 

= 4 (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)))

2
𝑅3

192
=

𝑅3

48
 (𝑟𝑚𝑠

𝑖
(△ 𝑥(𝑖)))

2

. 

 

(43) 

The mean square error then follows as: 

𝑀𝑆𝐸𝑀𝐼𝑁 =
𝑅2

48
 (𝑟𝑚𝑠

𝑖
(△ 𝑥(𝑖)))

2

 (44) 

which is four times smaller than 𝑀𝑆𝐸𝑀𝐴𝑋. Now, if 𝑉𝑎𝑟 and/or 𝛽 is zero, the mean square 

error is bounded by the result in (39). In the other extreme when 𝑉𝑎𝑟 and 𝛽 is one, (44) 

gives a lower bound for the accumulated error. Table 1 summarizes the four extreme 

cases as a function of 𝑉𝑎𝑟 and 𝛽. 

Table. 1. Mean Square Error as a function of Variation and  
Monotonicity of the compressed signal 

 𝛽 = 0 𝛽 = 1 

𝑉𝑎𝑟 = 0 𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑀𝐴𝑋 (𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑀𝐴𝑋) 

𝑉𝑎𝑟 = 𝑅 ∙ 𝑎𝑣𝑔
𝑖

(△ 𝑥(𝑖)) 𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑀𝐴𝑋 𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑀𝐼𝑁 

 

Thus incorporating a linear shift determined by 𝑉𝑎𝑟 and 𝛽 between the minimum and 

maximum variation and monotonicity cases in 𝑀𝑆𝐸 yields: 
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𝑀𝑆𝐸 =
𝑅2

12
 (1 −

3

4

𝑉𝑎𝑟 ∙ 𝛽

𝑅 ∙ 𝑎𝑣𝑔
𝑖

(△ 𝑥(𝑖))
) (𝑟𝑚𝑠

𝑖
(△ 𝑥(𝑖)))

2

. (45) 

Thus the minimum guaranteed PSNR as a function of signal length 𝑁, signal strength 𝑆, 

compression rate 𝑅, variation 𝑉𝑎𝑟, monotonicity 𝛽, frequency decay rate 𝛼 and 

magnitudes 𝐶𝑁 , 𝐶𝐷𝐶 can be determined using: 

(46) 

𝑆𝑁𝑅(𝑑𝐵) = −10 ∙ log10 {
𝑅2

12 ∙ 𝑆2
(1 −

3

4

𝑉𝑎𝑟 ∙ 𝛽

𝑅 ∙ 𝑎𝑣𝑔
𝑖

(△ 𝑥(𝑖))
) 

[
1

2
(

𝐶𝑁 ∙ 𝐶𝑗 ∙ 𝜋

𝑁
)

2

(
𝑁3

3
− 𝑁2 + 𝑁 −

1

3
) + 𝐶𝑁 ∙ 𝐶𝐷𝐶 ∙

𝑁[𝑠]
∗

𝑁[𝑠]
max 

(
𝐶𝑗 ∙ 𝜋

𝑁
)

2

(
2 − 𝑁1−𝛼(𝛼2(𝑁 − 1)2 + 𝛼(−3𝑁2 + 8𝑁 − 5) + 2(𝑁2 − 3𝑁 + 3))

(𝛼 − 3)(𝛼 − 2)(𝛼 − 1)
) 

+
1

2
(

𝑁[𝑠]
∗ ∙ 𝐶𝐷𝐶 ∙ 𝐶𝑗 ∙ 𝜋

𝑁[𝑠]
max ∙ 𝑁

)

2
1 − 𝑁1−2∙𝛼(2𝛼2(𝑁 − 1)2 + 𝛼(−3𝑁2 + 8𝑁 − 5) + 𝑁2 − 3𝑁 + 3)

(2𝛼 − 1)(2𝛼 − 3)(𝛼 − 1)
]} 

 

D. Minimum signal quality of reconstructed signal 

If the entire image frame is homogeneous, i.e., all measurements result in 

approximately the same value, the compressed signal does not differ from the 

reconstructed signal, since a homogeneous solution is the sparsest solution recovered 

by the minimization algorithm. Thus the above formula applies for such a reconstructed 

signal’s quality with 𝑉𝑎𝑟 = 0. 

For nonzero variation the monotonicity again influences the signal quality. It is 

not possible to find a tight upper bound of the accumulated error, since the signal is 

recovered by the iterative minimization algorithm, for which no explicit solution exists. 
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However, in general, the recovered signal tends towards low frequency components. 

Thus, I assume that the maximum rate of change of the recovered signal is not larger 

than that of the original signal. Since the reconstructed signal has to be continuous 

when observed in a continuous time framework, on average, the recovered signal 

“slews” on at least: 

𝑥𝑠𝑙𝑒𝑤 =
𝑉𝑎𝑟

2 ∙ 𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)|
 (47) 

per measurement support group, where the geometric meaning of 𝑥𝑠𝑙𝑒𝑤 becomes clear 

from Fig. 8. This reduces the maximum possible error compared to the non-recovered 

signal, also indicated in fig. 8. 

 

decompressed 
 signal (worst case)

actual signal- 
(worst case)  
RMS slope

error

R

xslew

R/2

  maximum 
slope

 

Fig. 8. Maximum difference among reconstructed and original signals  
with monotonic and largely variant measurement values 
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In this case, with 𝛽 = 0, the maximum error is determined by: 

∑ (𝑥(𝑖) − 𝑥′(𝑖))
2

𝑅∙𝑘

𝑖=1+𝑅(𝑘−1)

≤ 𝑅𝐸𝐶𝛽0 = 2 ∫ (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) ∙ 𝑥)
2

𝑅
2

−𝑥𝑠𝑙𝑒𝑤

0

𝑑𝑥 

+2 ∫ (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) ∙ 𝑥 − 𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)| (𝑥 −
𝑅

2
+ 𝑥𝑠𝑙𝑒𝑤))

2𝑅
2

𝑅
2

−𝑥𝑠𝑙𝑒𝑤

𝑑𝑥 

 

(48) 

= 2 (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)))

2

∫ 𝑥2𝑑𝑥

𝑅
2

−𝑥𝑠𝑙𝑒𝑤

0

+ 2 (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)))

2

∫ 𝑥2𝑑𝑥

𝑅
2

𝑅
2

−𝑥𝑠𝑙𝑒𝑤

− 4 ∙ 𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) 𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)| ∫ 𝑥 (𝑥 −
𝑅

2
+ 𝑥𝑠𝑙𝑒𝑤)

𝑅
2

𝑅
2

−𝑥𝑠𝑙𝑒𝑤

𝑑𝑥

+ 2 (𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)|)
2

∫ (𝑥 −
𝑅

2
+ 𝑥𝑠𝑙𝑒𝑤)

2𝑅
2

𝑅
2

−𝑥𝑠𝑙𝑒𝑤

𝑑𝑥 

= (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)))

2
𝑅3

12
− 4 ∙ 𝑟𝑚𝑠

𝑖
(△ 𝑥(𝑖)) ∙ 𝑚𝑎𝑥

𝑖
|△ 𝑥(𝑖)| (

𝑅3

24
+ (𝑥𝑠𝑙𝑒𝑤 −

𝑅

2
)

𝑅2

8
+

(
𝑅
2 − 𝑥𝑠𝑙𝑒𝑤)

3

6
) 

+2 (𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)|)
2

(
𝑅3

24
+ (𝑥𝑠𝑙𝑒𝑤 −

𝑅

2
)

𝑅2

4
+ (−

𝑅

2
+ 𝑥𝑠𝑙𝑒𝑤)

2 𝑅

2
−

(
𝑅
2 − 𝑥𝑠𝑙𝑒𝑤)

3

3
). 

The mean square error follows as: 

𝑀𝑆𝐸𝑅𝐸𝐶𝛽0
=

1

𝑅
∙ ∑ (𝑥(𝑖) − 𝑥′(𝑖))

2
𝑅∙𝑘

𝑖=1+𝑅(𝑘−1)

=
𝑅𝐸𝐶𝛽0

𝑅
. (49) 
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 signal (worst case)

error

R

xslew

R/2
actual signal- 
(worst case)  
RMS slope

  maximum 
slope

 

Fig. 9. Maximum difference among reconstructed and original signals  
with non-monotonic and largely variant measurement values 

For maximum variation and 𝛽 = 1 as shown in Fig. 9, the maximum error is 

determined by: 

∑ (𝑥(𝑖) − 𝑥′(𝑖))
2

𝑅∙𝑘

𝑖=1+𝑅(𝑘−1)

≤ 𝑅𝐸𝐶𝛽1 = 4 ∫ (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) ∙ 𝑥)
2

𝑅
4

−𝑥𝑠𝑙𝑒𝑤

0

𝑑𝑥 

+4 ∫ (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) ∙ 𝑥 − 𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)| (𝑥 −
𝑅

4
+ 𝑥𝑠𝑙𝑒𝑤))

2𝑅
4

𝑅
4

−𝑥𝑠𝑙𝑒𝑤

𝑑𝑥 

(50) 

= 4 (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)))

2

∫ 𝑥2𝑑𝑥

𝑅
4

−𝑥𝑠𝑙𝑒𝑤

0

+ 4 (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)))

2

∫ 𝑥2𝑑𝑥

𝑅
4

𝑅
4

−𝑥𝑠𝑙𝑒𝑤

− 8 ∙ 𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)) 𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)| ∫ 𝑥 (𝑥 −
𝑅

4
+ 𝑥𝑠𝑙𝑒𝑤)

𝑅
4

𝑅
4

−𝑥𝑠𝑙𝑒𝑤

𝑑𝑥

+ 4 (𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)|)
2

∫ (𝑥 −
𝑅

4
+ 𝑥𝑠𝑙𝑒𝑤)

2𝑅
4

𝑅
4

−𝑥𝑠𝑙𝑒𝑤

𝑑𝑥 

= (𝑟𝑚𝑠
𝑖

(△ 𝑥(𝑖)))

2
𝑅3

48
− 8 ∙ 𝑟𝑚𝑠

𝑖
(△ 𝑥(𝑖)) 𝑚𝑎𝑥

𝑖
|△ 𝑥(𝑖)| (

𝑅3

192
+ (𝑥𝑠𝑙𝑒𝑤 −

𝑅

2
)

𝑅2

32
+

(
𝑅
4 − 𝑥𝑠𝑙𝑒𝑤)

3

6
) 
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+4 (𝑚𝑎𝑥
𝑖

|△ 𝑥(𝑖)|)
2

(
𝑅3

192
+ (𝑥𝑠𝑙𝑒𝑤 −

𝑅

4
)

𝑅2

16
+ (𝑥𝑠𝑙𝑒𝑤 −

𝑅

4
)

2 𝑅

4
−

(
𝑅
4 − 𝑥𝑠𝑙𝑒𝑤)

3

3
). 

The accumulated squared error over all measurements and the mean square error 

𝑀𝑆𝐸𝑅𝐸𝐶𝛽1
=

𝑅𝐸𝐶𝛽1

𝑅
 are determined the same way as above.  

Table. 2. Mean Square Error as a function of Variation and 

Monotonicity of the reconstructed signal 

 𝛽 = 0 𝛽 = 1 

𝑉𝑎𝑟 = 0 𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑀𝐴𝑋 (𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑀𝐴𝑋) 

𝑉𝑎𝑟 = 𝑅 ∙ 𝑎𝑣𝑔
𝑖

(△ 𝑥(𝑖)) 𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑅𝐸𝐶𝛽0
 𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑅𝐸𝐶𝛽1

 

 

Thus incorporating a linear shift between the variations of  𝑀𝑆𝐸 for the original vs. 

recovered signal shapes as listed in Table 2 yields: 

𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑀𝐴𝑋 +
𝑉𝑎𝑟

𝑅 ∙ 𝑎𝑣𝑔
𝑖

(△ 𝑥(𝑖))
((1 − 𝛽)𝑀𝑆𝐸𝑅𝐸𝐶𝛽0

+ 𝛽 ∙ 𝑀𝑆𝐸𝑅𝐸𝐶𝛽1
− 𝑀𝑆𝐸𝑀𝐴𝑋). (51) 

Then follows the PSNR of the reconstructed signal by: 

(52) 

𝑃𝑆𝑁𝑅(𝑑𝐵) = 10 ∙ 𝑙𝑜𝑔{𝑆2} − 10 ∙ log10{𝑀𝑆𝐸𝑀𝐴𝑋 

+
𝑉𝑎𝑟

𝑅 ∙ 𝑎𝑣𝑔
𝑖

(△ 𝑥(𝑖))
[(1 − 𝛽)𝑀𝑆𝐸𝑅𝐸𝐶𝛽0

+ 𝛽 ∙ 𝑀𝑆𝐸𝑅𝐸𝐶𝛽1
− 𝑀𝑆𝐸𝑀𝐴𝑋]} 

where 𝑀𝑆𝐸𝑀𝐴𝑋, 𝑀𝑆𝐸𝑅𝐸𝐶𝛽0
 and 𝑀𝑆𝐸𝑅𝐸𝐶𝛽1

 can be computed explicitly via (39), (49) and 

(50) respectively.  
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EVALUATION OF THE DERIVED FRAMEWORK 

In this section, computational results are provided to evaluate the PSNR 

expressions developed in the previous section. The parameters, if not varied to obtain a 

graph as a function of the given variable, are selected as follows: 

 𝑁 = 2500 (Image with 2500 pixels, i.e., 50x50 pixel image) 

 𝑆 = 255 (Standard image resolution of 8 bits) 

 𝐶𝐷𝐶 = 7500 (Average pixel strength of 150, value of DC component in 𝛹 equals  

𝐶1 = 𝑁−
1

2, and 𝐶𝐷𝐶 = 150/𝐶1. Note that this is because the AC components are 

centered at zero and do not contribute to the average signal strength.) 

 𝐶𝑁 = 5 (Common value obtained from Matlab simulation results from a set of natural 

images) 

 𝑃 = 1% (Coefficients whose magnitude is less than 1% of 𝐶𝐷𝐶  are considered to be 

insignificant) 

 𝛼 = 0.7 (From [6] follows that approximately 99% of all natural images have a 

coefficient 𝛼 which is larger than 0.7) 

 𝑁[𝑠]
∗ = 100 (𝑁[𝑠]

∗  of the possible 𝑁[𝑠]
max coefficients in the low frequency window are 

dominant coefficients)  

 𝑅 = 6  

The parameters given above associated with the signal to be compressed are 

reasonable and represent practical data chosen from a set of natural images.  

Fig. 10 depicts the achievable PSNR of the compressed signal computed via 

(46), as a function of the sparsity of the signal itself. Clearly, the less sparse the signal 
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(small 𝛼 and large number of significant coefficients in the low frequency window), the 

smaller the PSNR. If 𝛼 is large, it is not critical if all low frequency coefficients are 

significant. The graph shows however, that even very few dominant high frequency 

coefficients dramatically limit the signal quality. 

Fig. 10. Image quality as a function of number and location 

of significant coefficients in [𝑠]𝛹 
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Fig. 11. Image quality with variable decay rate,  

but constant number of significant coefficients 

Fig. (11) shows the relation between decay rate 𝛼 and the PSNR, with a constant 

number of dominant coefficients. Thus the same number of significant coefficients are 

distributed in variable size frequency windows, which are a function of 𝛼 as given by 

(33). The steep slope of the graph, in the region with 𝛼 smaller one, confirms that it is 

essential that dominant coefficients are contained in a tight window corresponding to 

low frequency bases vectors. Finally, Fig. 12 shows the effect of variable noise levels. 

The smaller high frequency noise, the better the proposed technique performs. 
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Fig. 12. Image quality as a function of noise magnitude 

Fig. 13. PSNR as a function of compression rate 

Fig-s. 10, 11 and 12 demonstrate how the signal properties affect the compression 

technique. The result in Fig. 13 shows the effect of variable compression rate, which is 

controlled by the device performing the compression. As expected signal quality steadily 

drops as 𝑅 increases. The graph shows PSNR values of about 23.7, 17.2 and 11 for 

compression rates of 4, 8 and 16 respectively. Thus doubling the compression rate 



  42 

 

 
 

leads to a decrease in PSNR by approximately 6dB, which is equivalent to an increase 

of 𝑀𝑆𝐸 (45) by about a factor of four. The average sample value (strength of the signal) 

is not performance critical. Thus varying 𝐶𝐷𝐶 has no significant impact on the results 

presented above. 

 All simulation results presented above correspond to the compressed signal. The 

equivalent computations for the reconstructed signals yield slightly higher results, but 

not higher by several dB as expected. This is because the maximum slope computed in 

(34) is very large. The model of the reconstructed signals as shown in fig-s. 8 and 9 

may not be very realistic. In reality, on average, the slope of the signal section 

connecting between two measurement supports must be much smaller than the 

maximum possible slope, consequently leading to higher PSNR values. However, it is in 

general very difficult to find an explicit upper bound for this average, as the 

reconstructed solution is the output of an iterative minimization process. It will be part of 

the future work to determine a more accurate measure and model for this case.  
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EXTENSION-LINEAR OBSERVATIONS IN TWO DIMENSIONS 

The proposed measurement method in this section is to address degrading 

image quality when the compression rate increases, as observed in the results of fig.13. 

Forming linear observations with binary sparse matrices as presented in the proposed 

method section is very beneficial, when the compression rate is not very large. This is 

because the groups of samples where sums are formed are small, leaving not much 

freedom to relocate signal power compared to how it is distributed in the original signal. 

As 𝑅 increases, these groups necessarily have to increase, leading to more signal 

power redistribution and consequently diminished quality of the reconstructed signal. 

 

Fig. 14. Original (left) and compressed and reconstructed (right) Lenna image with a 
compression rate of 12 

Simulation results of compressed and reconstructed images with compression 

rates of eight or higher show signal power redistribution following a clear pattern. The 

samples show oscillating behavior, as the reconstructed signal is the sparsest solution 

and thus is mainly represented by a small number of sinusoids. Therefore, the signal 

value changes from large to small and back to large steadily and consistently 
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throughout the whole frame, as clearly visible in Fig. 14. While this distribution satisfies 

the obtained linear observations (column wise or row wise), this significantly alters the 

power of the rows or columns of the 2D-signal respectively. 

To address this negative effect, it should be very beneficial to perform 

measurements along columns and rows, and to combine the projections to form stiffer 

restrictions on the sparsest solution to be found. This way undesirable redistribution as 

shown above with oscillating signal power can be avoided. Incorporating this into [2] 

alters the minimization problem in the following way: Let 𝑥ℎ be the image data 

concatenated in a row by row fashion, and 𝑥𝑣 the same in a column wise fashion. The 

sparse representations and the projections are given as: 

𝑥ℎ = 𝛹 ∙ [𝑠ℎ]𝛹 (53) 

𝑦ℎ = 𝛷 ∙ 𝑥ℎ (54) 

𝑥𝑣 = 𝛹 ∙ [𝑠𝑣]𝛹 (55) 

𝑦𝑣 = 𝛷 ∙ 𝑥𝑣 (56) 

Let 𝑇ℎ−𝑣 be the map which maps 𝑥ℎ to 𝑥𝑣. This map is uniquely defined and can be 

obtained by interchanging the rows of the n-dimensional identity matrix. Mathematically 

this relation yields: 

𝑥𝑣 = 𝑇ℎ−𝑣 ∙ 𝑥ℎ (57) 

From (53), (55) and (57) follows that: 

[𝑠𝑣]𝛹 = 𝛹−1 ∙ 𝑥𝑣 = 𝛹−1 ∙ 𝑇ℎ−𝑣 ∙ 𝛹 ∙ [𝑠ℎ]𝛹 (58) 

Thus, the column and row wise projections can be expressed as a function of [𝑠ℎ]𝛹 by: 

𝑦ℎ = 𝛷 ∙ 𝛹 ∙ [𝑠ℎ]𝛹 

𝑦𝑣 = 𝛷 ∙ 𝛹 ∙ [𝑠𝑣]𝛹 = 𝛷 ∙ 𝑇ℎ−𝑣 ∙ 𝛹 ∙ [𝑠ℎ]𝛹 
(59) 
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The minimization problem to solve for the sparsest solution satisfying all projections can 

then be modified to: 

𝑚𝑖𝑛||[𝑠ℎ]𝛹||
𝑙1

 𝑠𝑢𝑏𝑗. 𝑡𝑜 [
𝑦ℎ

𝑦𝑣
] = (

𝛷𝛹 𝑂
𝑂 𝛷𝑇ℎ−𝑣𝛹

) [
[𝑠ℎ]𝛹

[𝑠ℎ]𝛹
] (60) 

It is also possible to apply different measurement matrices to perform the column and 

row projections: 

𝑚𝑖𝑛||[𝑠ℎ]𝛹||
𝑙1

 𝑠𝑢𝑏𝑗. 𝑡𝑜 [
𝑦ℎ

𝑦𝑣
] = (

𝛷ℎ𝛹 𝑂
𝑂 𝛷𝑣𝑇ℎ−𝑣𝛹

) [
[𝑠ℎ]𝛹

[𝑠ℎ]𝛹
] (61) 

which enables different compression rates for the row and column measurements. To 

take advantage of this technique it is necessary to simultaneously reconstruct the pixel 

values of a rectangular array of samples, whereas in the conventional approach column 

independent reconstruction is possible. However, it has been observed by simulation 

that results improve with the size of the array of samples reconstructed simultaneously, 

such that this is not a disadvantage of this approach. 
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CONCLUSION AND FUTURE WORK 

A new signal compression technique for signals with sparse, and low frequency 

representation has been introduced in this paper. Simulation results are provided to 

demonstrate the validity of the technique. Closed form expressions are developed to 

determine lower bounds for the quality of the compressed and reconstructed signals 

analytically. Comparing computed PSNR values and simulated data suggests that the 

framework to compute the compressed signal quality is valid, and provides insight into 

the dependence of signal quality on all parameters.  

More work has to be done to predict achievable PSNR values in the 

reconstructed signal case. While the current lower bounds are valid, they are not very 

tight. Thus more accurate models, potentially involving statistical analysis, modeling the 

behavior of the minimization algorithm have to be developed. Also, in the current 

derivation, measurement matrices are assumed to add a small group of neighboring 

pixels, without overlap among measurement supports. Simulation suggests however 

that overlap is beneficial to achieve superb signal quality. While its benefit is intuitively 

clear, as it adds more constraints to the solution of the minimization algorithm, its effect 

has yet to be understood and described analytically. 
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