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INTRODUCTION

In this report, my aim is to present a fundamental concepts of knot theory.

Chapter 1 gives a brief discossion of history of knot theory.

Chapter 2 gives background containing definitions of knots and links in the space R
3

and different definitions of knot equivalence.

In chapter 3, knot projections and regular diagrams, Reidemeister moves and proof of

Reidemester’s theorem for piecewise linear knots and are also given define knot equivalence

for knot diagrams.

In chapter 4, knot groups and examples to show that knot group is not completely

knot invariant are given.
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CHAPTER 1

HISTORY

Knot theory was originally used by physicists to study atoms. In the 1860’s, W

Thomson introduced the idea that atoms might be knots. This idea remained of interest

to physicists until the twentieth century, before mathematicians began investigating the

concept. In contemporary science, mathematical theories about knot theory are applied to

the fields of biology and chemistry too.

1.1 EARLY WORKS

In the 19th century, the knot theory was studied by Carl Friedrich Gauss from a math-

ematical point of view. But even in the 18th century, there was a good deal of mathematical

work in knot theory. For an example, French mathematician Alexandre-Theophile Vander-

monde wrote a paper titled Remarques sur less problems de situation (1771) that explored

what we would now call the topological features of knots and braids. That is, he was

concerned not with “questions of measurements, but with those of positions”.

Gauss made the first step toward the study of what we now refer to as knot theory.

He developed the “Gauss Linking Integral” for computing the linking number of two knots.

He was fascinated by this discovery and went on to prove that the linking number is

unchanged under ambient isotopy. This is the earliest discovered link invariant. This was

the first method for studying about the two non-equivalent links from each other.

Johann Benedict Listing who was a student of Gauss in the 1830’s was interested in

knots during his study of topology. He was interested in the chirality of knots, or the

equivalence of a knot to its mirror image. His paper included the significant result about

trefoil knot with the statement that the right and left trefoil knots are not equivalent, or

not amphichiral. Later, he showed that the figure eight knot and its mirror image are

equivalent, or amphichiral.
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Figure 1.1. Examples of Knots

Knot theory was popular among physicists as well as mathematicians. In 1867, the

English physicist, Sir William Thomson (Lord Kelvin) theorized that atoms were knots of

swirling vortices in the aether. He suggested that atoms could be classified by the knots that

they resembled and the representative knot would help to identify some physicochemical

properties of the atom. In 1858 the work of physicist Hermann Von Helmboltz presented

a foundation for Thomson’s theory of vortex atoms. He had written a paper titled “On

the integrals of hydrodynamic equations to which vertex motions conform” involving the

concepts about “aether”. Helmholtz analyzed the idea that vortices of this theoretical

aether, an ideal fluid, were stable. It followed that these stable vortices could become

knotted and still retain their original identities.

A friend of Thomson’s the physicist James Clerk Maxwell, also developed a strong

interest in knots. He was interested in the fact that knots could be used in the study

of electricity and magnetism. In 1873, he wrote a paper entitled Treatise on Electricity

and Magnetism using the idea of Gauss in relating knots to physics. During the period of

his course work, he studied Listing’s work on knots and remodeled Gauss’ linking integral

in terms of electromagnetic theory. Also, he created the knot diagrams with over and

under crossings, and then explored how change the diagram without affecting the knot

type. Maxwell analyzed a region bounded by three arcs and defined the three Reidemeister

moves before they were named in the 1920’s.

Peter Guthrie Tait, Thomas Kirkman, and Charles Newton Little made a great contri-
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bution by tabulating all possible knots with fewer crossings. Physicist Tait began making

the first table of knots in 1867. With Thomson’s theory of vortex atoms, Tait needed to

classify knots according to the number of their crossings.

Mathematician Thomas Kirkman made the first major contribution to the task of clas-

sifying knots. He was only interested to classify knots for alternating knots and tabulated

diagrams for alternating knots with up to eleven crossings. Although some diagrams which

were found by Tait to be equivalent, this was a still a significant early development. After

categorizing the table of alternating knot diagrams, he saw that there were some duplicate

diagrams. He has used a similar method to the second Reidemeister move. As a result, he

made an accurate table of knots.

Kirkman’s work on the classification of the knots was continued by Tait and Charles

Newton Little. They found some repeated knots in this table and remodeled it again after

examining with the different methods of notation, including Listing’s notation and Gauss’

“scheme of knots”. Consequently, they have published the table of alternating knots with up

to ten crossings. However, Little was quite interested in classifying non-alternating knots.

After six years of hard work, in 1899, Little published a table of forty-three ten-crossing,

non-alternating knots, including 551 variations of the already classified diagrams.

Among the early knot theorists, Tait’s contributions were important and varied. He

defined the reduced knot diagram. Then Tait partnered with Little to work on the clas-

sification of knots, he was quite interested about the properties of reduced knot diagram,

and how to obtain them. He defined a new concept called a nugatory crossing as a crossing

that divides a diagram into two non-intersecting parts, as in Figure 1.2.
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Figure 1.2. Removal of a nugatery crossing by twisting

He stated that the removable crossing could be added or removed from a diagram by

twisting. When he tabulated knots using reduced knot diagrams, he came up with what we

now know as the Tait’s three conjectures. Now all of then have proved and most of them

are true only for alternating knots.

Tait’s knot conjectures:

1. Reduced alternating knot diagrams have minimal link crossing number.

2. Any two reduced alternating diagrams of a given knot have equal writhe.

3. The number of crossings is the same for any reduced knot diagram of an alternating

knot.

1.2 LATER WORK

Mathematicians were very much interested in studying knot theory as a new subject

area. In the 1920’s, a mathematician was interested into apply knot theory for studying

another subject areas. Thus braid theory was presented by Emil Artin in the early 1920’s.

A braid is defined as “a set of n strings, all of which are attached to a horizontal bar at the

top and at the bottom such that each string intersects any horizontal plane between the

two bars exactly once,”[2].

We can draw the projection of the braid on the plane. Then we close the open ends

of the braid by adding arcs around one side of the braid. This is called the closure of the

braid.
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Figure 1.3. Example of a braid

In 1888, James Waddell Alexander (1888-1971) was also becoming interested in knot

theory and he noticed a relation between knots and braids. He did experiments to find how

to obtain knots and links by the closure of braid. Finally in 1923, he proved that every link

can be expressed as a closed braid. As a result of this, every knot can be represented as

a closed braid. Alexander discovered the first knot polynomial and he proved that it was

a knot invariant in 1928, which allowed him to find a valuable means to distinguish many

non-ambient isotopic knots from one another. It was essentially the only knot polynomial

invariant until discovery of the Jones polynomial in 1984. The Alexander polynomial

defined by

∆k(t)
.
= det(∆k(t)),

where
.
= represents equality up to factors of the form ±tn [2], and

∆k(t) is the reduced matrix obtained from the Alexander matrix of an oriented diagram

by deleting the last two columns. It was a major finding in knot theory, even though it

was not a complete invariant. That is there is some non-ambient isotopic knots with same

Alexander polynomial. Other than this, it is difficult to identify the chirality of knots
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using the alexander polynormial. In the 1960’s, John Conway reworked the Alexander

polynomial, making it unique, and capable of identifying the chirality in some cases.

Kurt Reidemeister was an ingenious mathematician. He made significant contributions

to development of knot theory in the 1920’s. His work basically related to planar diagrams

of knots. At the beginning, he struggled to develop new methods to categorize knots. But

his effort was useless as neither an analytic nor a combinatorial approaches give sufficient

information to manipulate the knot or draw a knot diagram. Reidemeister changed his

point of view towards the methods of classification by diagram. Tait, Little, and Kirkman,

published knot diagrams specified with over and under crossings. So, he has used those

diagrams to explain equivalent between two knot diagrams. Finally, he proved that “Two

knots K, K ′ with diagrams D, D′ are equivalent if and only if their diagrams are related

by a finite sequence D = D0, D1, D2, ...Dn = D′ of intermediate diagrams such that each

differs from its predecessor by one of the following three Reidemester moves” [2].

Figure 1.4. Three Reidemester moves

Regular isotopy is a relation defined by using only second and third Reidemeister

moves. But if all three moves are used, it is referd to as “ambient isotopy”.
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The idea about Reidemeister moves had been given by Maxwell several years before.

But it was not expressed clearly until Reidemeister. The most important remark in Reide-

meister’s study was the proof that these three moves were the only three needed to illustrate

the equivalence of two knots [2].

1.3 CONTEMPORARY

English mathematician John Conway discoverd a new method for knot notation in the

1960’s. Then, he had worked with the Alexander polynomial and normalized it. Conway’s

knot notation was based on the tangle which had been introduced by W.B.R.Lickorish. “A

region in a knot or link projection plane surrounded by a circle such that the knot or link

crosses the circle exactly four times” is known as the tangle [2].

Two tangles are said to be equivalent if it is possible to transform one into another by

using a sequence of Reidemeister moves, while keeping the end points fixed [2].

Conway defined three axioms for the Conway polynomial, 5(x):

1. Invariance: K ∼ K ′.

2. Normalization: 5(O) = 1, where O is any diagram of the unknot.

3. Skein Relation: 5(K+) −5(K−) = x 5 (K0).

Conway’s skein relation uses the following notations:

K+, K−, K0 are knot diagrams that differ only inside a disk in the manner shown in

Figure 1.5. [5]

Figure 1.5. Skein relations
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Conway’s polynomial is related to Alexander’s polynomial as follows,

∆K(t)
.
= 5K(

√
t − 1√

t
) [5].

Conway tried to prove the knot invariance of his polynomial by using the Reidemeister

moves. But there were some cases which have the same Conway polynomial for non-ambient

isotopic knots. However, the chirality of knots in some cases can be analyzed by using the

Conway polynomial, which could not be done using the Alexander polynomial. Since it is

still not a complete invariant, mathematicians are significantly interested in searching for

more sensitive polynomial.

There was critical finding in the mathematical field of knot theory, the Jones polyno-

mial, which is a knot polynomial found by Vaughan Jones in 1984. Jones was awarded the

Fields medal in 1990 for his work.

Let L is an oriented knot (or link) and K is a oriented regular diagram for L. Then the

Jones polynomial of L, VL(t) is a polynomial in which satisfies the following three axioms:

1. The polynomial VL(t) is an invariant of L.

2. Normalization: V0(t) = 1.

3. Skein Relation: t−1VK+
− tVK

−

= (
√

t − 1√
t
)VK0

, where K+, K−, K0 are skein

diagrams (cf. Figure 1.4) [4].

This is the only new polynomial knot invariant under the ambient isotopy since the

Alexander polynomial, and it can be used to distinguish two non-equivalent knots from

one another. After finding the Jones polynomial, it has been calculated for knots up to

thirteen crossings and all of the knots had unique polynomials except for two knots, each

with eleven crossings. After that, it was revealed that those two knots were equivalent and

the knot table was corrected. Also, it was the first polynomial which can detect the knot’s

handedness, it distinguishes the right trefoil from the left trefoil. But Jones polynomial

was not complete invariant and there exist non-ambient isotopic knots which have same

Jones polynomial.

The Jones polynomial can be simplified to obtain an invariant called the Arf invariant,
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which always has value zero or one [2].

After Jones’ finding, the HOMFLY/HOMFLY-PT polynomial was discovered by

mathematicians- Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, J. Przytycki, and P.

Traczyk. It is polynormial knot invariant. The HOMFLY polynomial, PK(a, z) has two

variables, a and z which satisfies the following three axioms:

1. Invariance: K ∼ K ′ ⇒ PK = PK ′.

2. Normalization: If K is the trivial knot O, then PO = 1.

3. Skein Relation: a−1PK+
(a, z) − aPK

−

(a, z) = aPK0
(a, z), where K+, K−, K0 are

skein diagrams (cf. Figure 1.5) [7].

It is a generalization of the Jones polynomial, and in most cases detects chirality.

Still mathematicians were searching to find complete polynomial knot invariant since

after finding the Alexander polynomial. Several findings are disclosed during that time

and knot theorists were showing continued hard work to develop polynomial knot invariant

since Jones’ work. After that, the mathematician Louis H. Kauffman discovered another

approach to the Jones polynomial in 1985. Before finding this, he found another polynomial

called the BLIM/HO invariant, also called the bracket polynomial. He started by defining

a polynomial in variables A, B and d which satisfied the following axioms:

Figure 1.6. BLIM/HO invariant

In the second axiom, 0 represents the unknot [2].

Kauffman introduced the idea of a state, S, for a knot diagram, D, as a choice of a

splitting marker for each vertex of D such that the two A regions which is the area on right

one’s if we travel along the bottom of the over-pass towards the crossing, and region B is

the area on left.
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Figure 1.7. Regions

Then A regions are connected by A-splicing and the B regions are connected by the

B-splicing. Two possible states are shown in Figure 1.8:

Figure 1.8. Splitting marker

Kauffman’s bracket polynomial could be defined by the following ”state sum” formula:

[K] =
∑

S

Aα(S)−β(S)d|S|−1

Where the sum is taken over all states S of the diagram D of the knot K and α(S)

is the number of A-splicing, β(S) is the number of B-splicing, and |S| is the number of

components of the state [2].

Also, it is easy to verify that if we set B = A−1 and d = (−A2 − A−2), then

[K] =
∑

S

Aα(S)−β(S)(−A2 − A−2)|S|−1

[K] is a regular isotopy invariant, that is, it is invariant under the second and third

Reidemeister moves and but is not ambient isotopy invariant, i.e. first Reidemester move

produces the following changes to bracket polynomial:

11



Figure 1.9. Kauffman’s bracket polynomial is not ambient isotopy invariant

Since the Kauffman’s bracket is not invariant under R1, he did some modifications on

his polynomial using the writhe of an oriented knot diagram.

The writhe of an oriented diagram is the sum of the signs of all its crossings; by

assigning the +1 for the crossing

Figure 1.10. Crossing 1

and −1 for the crossing

Figure 1.11. Crossing 2

The writhe is regular isotopy invariant.

So he defined new polynomial, actually a Laurent polynomial, associated with the

writhe.

Let L be an oriented link and let K be an oriented diagram of L with writhe w(K).

Then,

f [L] = (−A)3w(K)[K].

f [L] is a ambient isotopy invariant knot polynomial. He initially thought that his

discovery was an original invariant of links, but soon be realized that he had discovered a

different method for obtaining the Jones polynomial [2].
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CHAPTER 2

BACKGROUND

Mathematicians have the described the knot concept in various ways. In this chapter

we give several definitions of knots and links, starting with the most general one.

Definition. A subset K of a space X is a knot if K is homeomorphic with a sphere Sp.

More generally, K is a link if K is homeomorphic with a disjoint union Sp
1 ∪... ∪Sp

n of one

or more spheres [3].

In this paper we will consider the special case, a knot is a continuous, one-to-one map

K : S1 → S3 or R
3.

Since S3 is homeomorphic with the one point compactification of R
3, these two knot theories

are essentially the same.

Figure 2.1 contains some examples of knot and link diagrams.

Figure 2.1. Figure-eight knot and Hopf link

2.1 KNOT EQUIVALENCE

Knot equivalence is an important notion when we are going to study two knots con-

sidered the same even if they are positioned quite differently in the space. The notion of

equivalence satisfies the definition of an equivalence relation; it is reflexive, symmetric, and

transitive. Knot theory consists of the study of equivalence classes of knots.

13



The notion of knot equivalence has been defined for various cases.

Definition. (map equivalence)

Two knots K1 and K2 are map equivalent if there exist a homeomorphism of X → X,

where X = S3 or R
3 such that h(K1) = K2 [3].

In general, it is difficult to study whether two knots are equivalent or not. Another

formal mathematical definition is given below.

Definition. (oriented equivalence)

Two knots K1 and K2 are oriented equivalent or, K1 is oriented equivalent to K2, if

there exists an orientation-preserving homeomorphism of R
3 to itself that maps K1 to K2

[3].

Note: Let f : X → Y be a map from an oriented manifold X to an oriented manifold

Y . If the orientation of f(X) ⊂ Y induced by f is same as the orientation it inherits from

Y , then f is orientation preserving.

I.e. h should be preserved orientation of the space.

For example figure eight knot and its mirror image is oriented equivalence.

Definition. (amphicheiral)

A knot K is said to be amphicheiral if there exist an orientation reversing homeomor-

phism h of R
3 onto itself such that h(K) = K.

Figure eight knot is amphicheiral.

Theorem 2.1.1. A knot K is amphicheiral if and only if there exist an orientation pre-

serving homeomorphism of R
3 onto itself which maps K onto its mirror image.

Hence it is followed from the theorem that figure eight knot and its mirror image is

oriented equivalence.

14



Definition. Let K : S1 → S3 be a topological knot. Parameterize S1 using the stan-

dard polar angle θ, that is (1, 0) has θ = 0 and then θ increases through [0, 2π) going

counterclockwise. Let K+ : [0, 2π) → S3 be a one-to-one continuous function whose im-

age is K(S1) that can be continuously extended to [0, 2π] with K+(2π) = K+(0). define

K− : (0, 2π] → S3 by K−(θ) = K+(2π − θ). Then we can regard K+ and K− as oriented

knots.

Definition. A topological isotopy from K1 to K2 is a continuous map. i : I×S1 → S3, I =

[0, 1] such that i(0,−) = K1, i(1,−) = K2 and i(t,−) = Kt is a knot for all t ∈ I .

For example, trefoil knot and its mirror image are map equivalent, but not ambient

isotopic. See Figure 2.2.

Figure 2.2. Trefoil knot and its mirror image

I.e. we can not find a homeomorphism h which can get one from another. But the

figure-eight knot and its mirror image are isotopic. We can get one from another by ma-

nipulating a string tie as on the left and transform it to being tied as on the right as shown

in Figure 2.3.
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Figure 2.3. figure-eight knot and its mirror image is isotopic

Thus the Figure eight knot and its mirror image are map equivalent.

Note : The equivalence class of knot or link in a space X is called its knot type or link

type.

But it is difficult to study about knot equivalence using knots in the 3-dimensional

space. So, we are going to knot diagrams to check whether two knots are equivalent or not.

The elementary knot moves are applied to PL knots in R
3. We will pursue this topic in

chapter 3.

Definition. (Topological ambient isotopy)

A topological ambient isotopy carrying K0 to K1 is a continuous map h : I × S3 → S3

such that h(t,−) is a homeomorphism of S3 for all t ∈ I , h(0,−) is the identity map, and

h(1,−) ◦ K0 = K1 [1]

In addition h(t,−)◦K0 defines an isotopy from K0 to K1, and h(1,−) is a homeomor-

phism from K0 to K1. This definition gives a non-trivial notion of equivalence.

Definition. (Smooth Knot)

A smooth knot is a smooth embedding K : S1 → S3.

In particular, K ′ is never vanishing. All smooth knots are tame topological knots.

Wild knot is an example which is topological knot, but not smooth.

Note: Polygonal knot K : S1 → R
3 is a knot whose image in R

3 is the union of finite

set of line segments. Tame knot is any knot equivalent to the polygonal knot. Knots which

are not tame is called wild knot. Wild knots are not considered in this report.
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Definition. (Smooth isotopy)

A smooth isotopy from K0 to K1 is a smooth map h : I × S1 → S3 such that

h(0,−) = K0, h(1,−) = K1, and h(t,−) = Kt is a knot for all t ∈ I .

Definition. (Oriented equivalence for smooth knots)

A diffeomorphism between K0 and K1 is an orientation-preserving diffeomorphism

h : S3 → S3 such that h ◦ K0 = K1.

All spaces are endowed with orientations, all of which h is required to preserve.

Definition. (Smooth ambient isotopy)

A smooth ambient isotopy carrying K0 to K1 is a smooth map h : I × S3 → S3

such that h(t,−) is a diffeomorphism of S3 for all t ∈ I , h(0,−) is the identity map, and

h(1,−) ◦ K0 = K1.

Definition. (Piece-wise Linear Knot)

Let K : S1 → S3 be a knot. A knot K is piecewise linear or PL if its image in S3 is a

union of finite number of line segments.

A piecewise linear knot can be represented by a diagram whose arcs are straight lines.

Eg:

Figure 2.4. Example for PL knot
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Definition. (Oriented Equivalence for PL knots)

Two PL knots K0 and K1 are equivalent if there exists an orientation preserving

isomorphism h : S3 → S3 such that h ◦ K0 = K1.

We can define equivalent (or ambient isotopy) for PL knots and it is same definition

applies to equivalence in topological category and the smooth category. But the map h

should be isomorphism.

Remark: There is a problem with topological isotopy definition. For example, consider

trefoil knot in R
3. If two joining ends of trefoil knot is pulled, then knot is pulled, then

knotted part is shrinked to a point and thus it is unknot.

i.e. Trefoil knot is equivalent to an unknot according to the definition.

Also, definition for ambient isotopy defined for each category is slightly different as

map h should be homeomorphism for topological knots, diffeomorphism for smooth knots,

and isomorphism for PL knots.

Note: Smooth knots and PL knots are obviously topological knots and it can be shown

that they are always tame.
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CHAPTER 3

PROJECTIONS AND DIAGRAMS

3.1 PROJECTIONS

A knot is an embedding of a circle in 3-dimensional Euclidean space (R3) or the 3-

sphere. A knot in R
3 can be projected onto the plane R

2. This projection is almost always

regular, i.e. it is injective everywhere, except at a finite number of double points, also called

crossing points. Projections of a knot onto the plane allow the representation of a knot as

a knot diagram on the xy-plane. It is difficult to study knots inspace, R
3. So in order to

study knots it is useful to consider projections of the knots on the xy-plane.

Let p be the map that projects the point P (x, y, z) in R
3 onto the point P (x, y, 0) in

the xy-plane [5].

Figure 3.1. Projection of Trefoil knot in the xy-plane
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We shall say that p(K) = K̂ is the projection of K. If K has orientation assigned ,

then K̂ inherits its orientation from the orientation of K.

Definition. (Regular Projection)

Let K̂ be the projection of K in the xy-plane. A knot projection is called a regular

projection if

1. all double points occurs at transverse crossings, and

2. for PL knots, no vertex of K is mapped onto a double point.

Knot projections can cause some information to be lost, for example at a double point

of a projection, it is not clear whether the knot passes over or under itself. So we slightly

change the drawing of the projection close to each double point, drawing the projection

so that it appears to have been cut. A diagram of a knot is the drawing of its regular

projection in which are left gaps to remedy this fault. We say that the vertices have been

decorated. For a particular knot type, the number of regular diagrams is uncountable.

A knot diagram is the regular projection of a knot onto a plane with over/under

decorated vertices. A knort diagram give us a information about how the knot lies in 3-

dimensions, and also we can use it to recover information lost in the projection. We call

the arcs of this diagram edges and the points that correspond to two double points in the

projection crossings.

Figure 3.1(b) shows a projection of the figure-eight knot, while 3.1(a) shows the dec-

orated vertices.
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Figure 3.2. A projection of the figure-eight knot and the decorated vertices

Figure 3.3 shows the possible crossing points on a regular diagram.

Figure 3.3. crossing points on a regular diagram

The notion of equivalence between two knots can be studied using knot diagrams, i.e.

when two different diagrams can represent the same knot. First of all, it is necessary to

define the elementary knot moves.

Definition. On a given PL knot K the following four operations are called elementary

knot moves.

1. We may devide an edge, AB, in space of K into two edges, AC, CB, buy placing a

point C on the edge AB, see Figure 3.4.1.

2. [The converse of (1)] If AC and CB are two adjecent edges of K such that if C is

erased AB becomes a straight line, then we may remove the point C , see Figure 3.4.1.

3. Suppose C is a point in space that does not lie on K. If the triangle ABC , formed

by AB and C , does not intersect K, with the exception of the edge AB, then we may
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remove AB and add the two edges AC and CB, see Figure 3.4.2.

4. [The converse of (2)] If there exists in space a triangle ABC that contains two adgecent

edges AC and CB of K, and this triangle does not intersect K, except at the edges

AC and CB, then we may delete the two edges AC, CB and add the edge AB, see

Figure 3.4.2.

Figure 3.4. 3.4.1 and 3.4.2

[5]

Elementary knot moves are applied on smooth knots too, because every smooth knot

is ambient isotopic to a PL knots. So if elementary knot moves are performed several times

on a given knot, then it can seem to be a completely different knot. For example, the

Figure 3.5 shows the resultant diagram after applying several the knot moves on the trefoil

knot.
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Figure 3.5. Elementary knot moves performed on trefoil knot

Knots that can be obtained one from another by applying the elementary knot moves

are said to be equivalent or equal. Therefore, the two knots in Figure 3.5 are equivalent.

Definition. A knot K is said to be equivalent (or equal) to a knot K ′ if we can obtain K ′

from K by applying the elementary knot moves a finite number of times [5].

We shall denote this equivalence by K ≈ K ′.

One of the fundamental results of knot theory characterizes ambient isotopy in terms

of an equivalence relation between knot diagrams. In 1920’s the mathematician Kurt Rei-

demeister introduced the three Reidemeister moves. These are operations that can be

performed on the knot diagram without changing the corresponding knot. In each of case,

knot diagram has changed but, the knot type is unchanged.

The following figure shows the three Reidemeister moves.
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Figure 3.6. Three Reidemeister moves

Note: The diagrams D and D′ are ambient isotopic if D can be transformed into the

D′ by using the moves R1, R2 and R3, and regular isotopic if they differ by a sequence of

Redemeister moves of types R2 and R3.

Theorem 3.1.1. Two knots or links are equivalent if and only if their diagrams are related

by a sequence of Reidemeister moves [5].

Proof. We give the proof for the PL knots. Let D be a knot diagram corresponding to the

knot K, and D′ be a diagram corresponding to the knot K ′.

Suppose K is equivalent to K ′, i.e. K ≈ K ′.

Then, there is a sequence of knots K = K0, K1, K2, ..., Kn = K ′ with each Ki+1 is an

elementary deformation of Ki. Each Ki can be projected to a plane.

Let AB be an edge of K.

Suppose K ′ is obtained from AB of K by adding two edges AC ∪ CB.

The triangle along which the elementary deformation is performed is projected to a

triangle in the plane as seen on the figure. Also, we can divide knot diagram into a small

triangle containing only one crossing or segment in each triangle. Since D′ is obtained from
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Figure 3.7. Replace AB edge with two edges AC and CB

D by performing elementary deformation, we can view this elementary deformation as the

composition of a series of other elementary deformation performed on smaller triangles.

Next check whether we can change AC ∪ CB to the segment AB by repeatedly using

Reidemester moves.

Case (i)

When the intersection with the triangle is a segment and this segment is adjacent to the

segment being deformed.

Figure 3.8. Intersection of ABC triangle with a line adjacent to the AB line

This process is the Redemester move R1.

Case (ii)

When the intersection with the triangle is segment and that segment is not adjacent to the

segment being deformed.
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Figure 3.9. Intersection of ABC triangle with a line segment

This process is the R2 move.

Case (iii)

When the intersection with the triangle is a crossing.

Figure 3.10. Intersection of ABC triangle with a crossing

This process is the R3 move.

A similar result hold for oriented knot. PL knots are ambient isotopic to a smooth

knots and tame topological knots. So this theorem is true for smooth knots.

The proof is beyond he scope of this report.
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3.2 KNOT INVARIANTS

The concept of a knot invariant plays important role when we are going to discuss

whether two knots are equivalent or not. A knot invariant is a quantity defined for each

knot and it is same for equivalent knots. Tricolorability is a particularly simple example.

Most knot invariants are defined for knot diagrams in the plane and are unchanged under

the Reidemeister moves.

The following shows some examples for the knot invariant.

Tricolorability

A knot diagram is 3-colorable if we can assign colors to its arcs such that

3C1 : Each arc is assigned one color,

3C2 : Exactly three colors are used in the assignment,

3C3 : At each crossing, either all the arcs have the same color, or arcs of all three

colors meet [4].

Figure 3.11 gives an example of a 3- coloring of a knot diagram.

Figure 3.11. Example for 3-colorable knot diagram

If the knot diagram is 3-colorable, then we apply any Reidemester move on that

diagram, resultant diagram is also 3-colorable.

Jones Polynormial

Jones polynormial defined for oriented knot and link diagrams.

JP1 : VU (t) = 1, where U is the oriented unknot,
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JP2 : t−1V (K+) − tV (K−) = (t1/2 − t−1/2)V (K0) where K+, K−, and K0 are three

oriented link diagrams that differ only inside a small disk in the manner shown in Figure

3.12.

Figure 3.12. Skein Relations

Jones polynormial is an isotopy invariant of oriented knots or links. It may have same

same polynomial for the knot diagrams in the same equivalence class.
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CHAPTER 4

KNOT GROUP

The knot group is a important knot invariant defined for each knot. the knot group

can be used to show that certain pairs of knots are not equivalent. But we can not always

use knot groups to show that two knots are inequivalent. For example, the right-hand

trefoil and its mirror image, the left-hand trefoil, have the same knot group, while they are

non-equivalent.

Definition. (Knot Group)

The knot group of a knot K is the fundamental group of the knot complement of K

in S3, π1(S
3 \ K) [6].

Theorem 4.0.1. The knot group is an invariant of ambient isotopy [6].

We say two knots are equivalent if one can be transformed into another via an ambient

isotopy of S3 upon itself. By definition, two topological objects are equivalent if they are

homeomorphic. So, if two knots are equivalent, the complements of knots under ambient

isotopy are homeomorphic. Homeomorphic topological spaces have isomorphic fundamental

groups. Hence knot group is invariant under ambient isotopy.

So this is one of the common method to distinguish inequivalent knots.

4.1 THE WIRTINGER PRESENTATION

In the beginning of the 20th century, Wilhelm Wirtinger found a general method for

calculating the knot group for any tame knot in R
3 or S3. To calculate the knot groups,

we are using knot diagram on the xy - plane.

We need to start with an oriented knot diagram of a knot K to construct the Wirtinger

presentation. For any knot diagram of a tame knot consists of finitely many arcs with finite

number of crossings at the ends where one arc bridges under another.
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Let K be a knot with n number of arcs a0, a1, a2, ..., an−1 and m is the number of

crossings.

At each crossings, the over pass arc is unbroken and thus each side is part of a same

arc, while the under pass arc is broken, each side is associated with two different arcs (or

in some cases, the two ends of the same arc). If K is true knot (as opposed to a link), then

ai+1 is the arc that comes after ai with the given orientation.

Figure 4.1 shows the oriented figure-eight knot with labeled arcs.

Figure 4.1. Oriented figure-eight knot with labeled arc

In order to construct the Writinger presentation, we need to consider the crossings of

the knot. The Figure 4.2 shows the two possible crossings, based on orietations of the knot

diagram:

Figure 4.2. Crossings of the knot diagram

At each arc, write down the corresponding generator with exponent +1 if the arc is

entering the crossing and −1 if the arc is leaving the crossing.

We define the relations between the group generator as follows:
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1. xl = xi
−1xkxi (called the rl relation)

2. xk = xixlxi
−1 (called the rk relation)

The symbol xi represents the loop that starting from a base point in the complement

of knot, goes straight to the ith arc, froming a circle around it in a positive direction

and returns directly to the base point. The resulting presentation is called the Wirtinger

presentation of the knot group.

Theorem 4.1.1. The group π1(R
3 − K) is generated by the (homotopy classes of the) xi

and has presentation

π1(R
3 −K) = (x1, x2, x3, ..., xn|r1, r2, ..., rn)

Moreover any one of the ri may be omitted and the above remains true [3].

Example (1)(The granny knot)

The granny knot K is obtained by taking the connected sum of two identical trefoil

knots.

Figure 4.3. The granny knot
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Let {1, 2, 3, 4, 5, 6} denote the crossings and {x1, x2, x3, x4, x5, x6} denote the group

generators corresponding to the over passing arcs.

Since we have 6 over passes, we know there are 6 at most generators. So we will use

the Wirtinger presentation to find all the relations for this group.

Figure 4.4. Wirtinger presentation of the granny knot
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x4 = x2
−1x3x2,

⇒ x2x4 = x3x2 .........(1).

Sbstitute x3 = x1
−1x2x1. Then we have,

x2x4 = x1
−1x2x1x2,

⇒ x1x2x4 = x2x1x2.

Consider

x2 = x3
−1x1x3,

⇒ x3x2 = x1x3 .........(2).

Also, x3 = x1
−1x2x1,

⇒ x1x3 = x2x1 .........(3).

By equation (1), (2), and (3),

x2x4 = x2x1.

Thus we have,

x1x2x1 = x2x1x2.

Consider x1 = x5
−1x6x5,

⇒ x5x1 = x6x5.

Sbstitute x6 = x4
−1x5x4. Then we have,

x5x1 = x4
−1x5x4x5,

⇒ x4x5x1 = x5x4x5,

⇒ x2
−1x3x2x5x1 = x5x2

−1x3x2x5 (Since x4 = x2
−1x3x2 ),

⇒ x2
−1x2x1x5x1 = x5x2

−1x2x1x5 (By (2) and (3), we have x3x2 = x2x1),

⇒ x1x5x1 = x5x1x5.

Π1(s
3 − K) = {x1, x2, x5 | x1x2x1 = x2x1x2, x1x5x1 = x5x1x5}.
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Example (2)(The Square Knot)

The square knot K ′ is a composite knot (knot is decomposable) obtained by taking

the connected sum of a trefoil knot with its reflection.

Figure 4.5. The Square Knot

We will use the Wirtinger presentation to find all the relations for the knot group of

the square knot.
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Figure 4.6. Wirtinger presentation of the square knot
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Relations (1), (2), and (3) are same as the first three relations which is obtained in the

example (1). Thus we have,

x1x2x1 = x2x1x2.

(6) ⇒ x6x1 = x1x5,

x1x5 = x5x1x5x1
−1,

x1x5x1 = x5x1x5.

Π1(s
3 − K ′) = {x1, x2, x5 | x1x2x1 = x2x1x2, x1x5x1 = x5x1x5}.

Note : square knot and granny knot are not oriented equivalent or equivalent. But knot

groups are isomorphic. This is the another example for showing that the knot group is not

a complete invariant.
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