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CHAPTER 1

INTRODUCTION

In the analysis of “time to event” data, there are n individuals and the time until

an event is recorded for each individual. Typical events are failure of a product or death

of a person or reoccurrence of cancer after surgery, but other events such as first use of

cigarettes or the time that baboons come down from trees (early in the morning) can also

be modeled. The data is typically right skewed and censored data is often present.

Censoring occurs because of time and cost constraints. A product such as light bulbs

may be tested for 1000 hours. Perhaps 30% fail in that time but the remaining 70% are

still working. These are censored: they give partial information on the lifetime of the bulbs

because it is known that about 70% last longer than 1000 hours. Handling censoring and

time dependent covariates is what makes the analysis of time to event data different from

other fields of statistics.

Reliability analysis is used in engineering to study the lifetime (time until failure) of

manufactured products while survival analysis is used in actuarial sciences, statistics and

biostatistics to study the lifetime (time until death) of humans, often after contracting a

deadly disease. In the social sciences, the study of the time until the occurrence of an event

is called the analysis of event time data or event history analysis. In economics, the study

is called duration analysis or transition analysis. Hence reliability data = failure time data

= lifetime data = survival data = event time data.

For univariate survival analysis, there is a response but no predictors. Let log(t) =

ln(t) = loge(t), and exp(t) = et.

One of the difficulties with survival analysis is that the response Y = survival time

is usually not observed, instead the censored response is observed. In this thesis the data

will be right censored, and “right” will often be omitted. In the following definition, note

that both T ≥ 0 and Y ≥ 0 are nonnegative.
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Definition 1. Let Y ≥ 0 be the time until an event occurs. Then Y is called the survival

time. The survival time is censored if the event of interest has not been observed. Let Yi

be the ith survival time. Let Zi be the time the ith observation (possibly an individual

or machine) leaves the study for any reason other than the event of interest. Then Zi is

the time until the ith observation is censored. Then the right censored survival time Ti

of the ith observation is Ti = min(Yi, Zi). Let δi = 0 if Ti is (right) censored (Ti = Zi)

and let δi = 1 if Ti is not censored (Ti = Yi). Then the univariate survival analysis data

is (T1, δ1), (T2, δ2), ..., (Tn, δn). Alternatively, the data is T1, T
∗
2 , T3, ..., T

∗
n−1, Tn where the *

means that the case was (right) censored. Sometimes the asterisk * is replaced by a plus

+, and Yi, yi or ti can replace Ti. In this manuscript we will assume that the censoring

mechanism is independent of the time to event: Yi and Zi are independent.

For example, in a study breast cancer patients who receive a lumpectomy, suppose the

researchers want to keep track of 100 patients for five years after receiving a lumpectomy

(tumor removal). The response is time until death after a lumpectomy. Patients who are

lost to the study (move or eventually refuse to cooperate) and patients who are still alive

after the study are censored. Perhaps 15% die, 5% move away and so leave the study and

80% are still alive after 5 years. Then 85% of the cases are (right) censored. The actual

study may take two years to recruit patients, follow each patient for 5 years, but end 5 years

after the end of the two year recruitment period. So patients enter the study at different

times, but the censored response is the time until death or censoring from the time the

patient entered the study.

Definition 2. i) The cumulative distribution function (cdf) of Y is F (t) = P (Y ≤ t).

Since Y ≥ 0, F (0) = 0, F (∞) = 1, and F (t) is nondecreasing.

ii) The probability density function (pdf) of Y is f(t) = F ′(t).

iii) The survival function of Y is S(t) = P (Y > t) = 1 − F (t). S(0) = 1, S(∞) = 0

and S(t) is nonincreasing.
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CHAPTER 2

THE EMPIRICAL ESTIMATOR

Notation: Let the indicator variable IA(Yi) = 1 if Yi ∈ A and IA(Yi) = 0 otherwise.

Often write I(t,∞)(Yi) as I(Yi > t).

Definition 3. If none of the survival times are censored, then the empirical survival

function ŜE(t) = (number of individual with survival times > t)/(number of individuals)

= a/n. So

ŜE(t) =
1

n

n∑
i=1

I(Yi > t) = p̂t =

sample proportion of lifetimes > t.

Assume Y1, ..., Yn are iid with Yi ≥ 0. Fix t > 0. Then I(Yi > t) are iid binomial(1,p =

P (Yi > t)). So nŜE(t) ∼ binomial(n,p = P (Yi > t)). Hence E[nŜE(t)] = nP (Y > t)

and V [nŜE(t)] = nS(t)F (t). Thus E[ŜE(t)] = S(t) and V [ŜE(t)] = S(t)F (t)/n =

[S(t)(1−S(t))]/n ≤ 0.25/n. Thus SD[ŜE(t)] =
√

V [ŜE(t)] ≤ 0.5/
√

n. So need n ≈ 100 for

SD[ŜE(t)] < 0.05.

Let t(1) ≤ t(2) ≤ · · · ≤ t(n) be the observed ordered survival times (= lifetimes = death

times). Let t0 = 0 and let 0 < t1 < t2 < · · · < tm be the distinct survival times. Let di =

number of deaths at time ti. If m = n and di = 1 for i = 1, ..., n then there are no ties. If

m < n and some di ≥ 2, then there are ties.

Then ŜE(t) is a step function with ŜE(0) = 1 and ŜE(t) = ŜE(ti−1) for ti−1 ≤ t < ti.

Note that
∑m

i=1 di = n. The table below is useful for computing and plotting ŜE(t) given

the t(i) or given the ti and di. Let a0 = n and ai =
∑n

k=1 I(Ti > ti) = # of cases t(j) > ti

for i = 1, ..., m. Then ŜE(ti) = ai/n =
∑n

k=1 I(Ti > ti)/n = ŜE(ti−1) − di

n
.

Let Ŝ(t) be the estimated survival function. Let t(p) be the pth percentile of Y :

P (Y ≤ t(p)) = F (t(p)) = p so 1 − p = S(t(p)) = P (Y > t(p)). Then t̂(p), the estimated

time when 100 p % have died, can be estimated from a graph of Ŝ(t) with “over” and
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Table 2.1. Method for Computing Empirical Estimator

ti di ŜE(ti) = ŜE(ti−1) − di

n

t0 = 0 ŜE(0) = 1 =
n

n
=

a0

n

t1 d1 ŜE(t1) = ŜE(t0) − d1

n
=

a0 − d1

n
=

a1

n

t2 d2 ŜE(t2) = ŜE(t1) − d2

n
=

a1 − d2

n
=

a2

n

...
...

...

tj dj ŜE(tj) = ŜE(tj−1) − dj

n
=

aj−1 − dj

n
=

aj

n

...
...

...

tm−1 dm−1 ŜE(tm−1) = ŜE(tm−2) − dm−1

n
=

am−2 − dm−1

n
=

am−1

n

tm dm ŜE(tm) = 0 = ŜE(tm−1) − dm

n
=

am−1 − dm

n
=

am

n
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“down” lines. a) Find 1 − p on the vertical axis and draw a horizontal “over” line to Ŝ(t).

Draw a vertical “down” line until it intersects the horizontal axis at t̂(p). Usually want

p = 0.5 but sometimes p = 0.25 and p = 0.75 are used.

Example 1. Smith (2002, p. 68) gives steroid induced remission times for leukemia

patients. The t(j), ti and di are given in the following table. The ai and ŜE(t) needed to

be computed. Note that ai = # of cases with t(j) > ti.

The 2nd column t(j) gives the 21 ordered survival times. The 3rd column ti gives the

distinct ordered survival times. Often just the number is given, so t1 = 1 would be replaced

by 1. The 4th column di tells how many events (remissions) occurred at time ti and the

last column computes ŜE(ti). A good check is that the 1st column entry divided by n is

equal to ai/n = ŜE(ti) = last column entry. A graph of the estimated survival function

would be a step function with times 0, 1, ..., 23 on the horizontal axis and ŜE(t) on the

vertical axis. A convention is to draw vertical lines at the jumps (at the ti). So the step

function would be 1 on (0,1), 19/21 on (1,2), ..., 1/21 on (22,23) and 0 for t > 23. The

vertical lines connecting the steps are at t = 1, 2, ..., 23.

^

S_E(t)

___

| |____

| |_____

| |_____

|____________________|_ t

1 2 3 4 5 6 7

Example 2. If di = 1, 1, 1, 1 and if ti = 1, 3, 5, 7, then a1 = 3, a2 = 2 and a3 = 1.

Hence ŜE(1) = 0.75, ŜE(3) = 0.5, ŜE(5) = 0.25, and ŜE(7) = 0, and the estimated survival

function is graphed above.
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Table 2.2. Example for Computing Empirical Estimator

ai t(j) ti di ŜE(ti) = ŜE(ti−1) − di

n

21 t0 = 0 ŜE(0) = 1 = 21/21

1

19 1 t1 = 1 2 ŜE(1) = (21 − 2)/21 = 19/21

2

17 2 t2 = 2 2 ŜE(2) = (19 − 2)/21 = 17/21

16 3 t3 = 3 1 ŜE(3) = (17 − 1)/21 = 16/21

4

14 4 t4 = 4 2 ŜE(4) = (16 − 2)/21 = 14/21

5

12 5 t5 = 5 2 ŜE(5) = (14 − 2)/21 = 12/21

8

8

8

8 8 t6 = 8 4 ŜE(8) = (12 − 4)/21 = 8/21

11

6 11 t7 = 11 2 ŜE(11) = (8 − 2)/21 = 6/21

12

4 12 t8 = 12 2 ŜE(12) = (6 − 2)/21 = 4/21

3 15 t9 = 15 1 ŜE(15) = (4 − 1)/21 = 3/21

2 17 t10 = 17 1 ŜE(17) = (3 − 1)/21 = 2/21

1 22 t11 = 22 1 ŜE(22) = (2 − 1)/21 = 1/21

0 23 t12 = 23 1 ŜE(23) = (1 − 1)/21 = 0
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Let t1 ≤ t < tm. Then the classical large sample 95% CI for S(tc) based on ŜE(t) is

ŜE(tc) ± 1.96

√
ŜE(tc)[1 − ŜE(tc)]

n
= ŜE(tc) ± 1.96SE[ŜE(tc)].

Let 0 < t and let

p̃tc =
nŜE(tc) + 2

n + 4
.

Then the Agresti and Coull (1998) plus four 95% CI for S(tc) based on ŜE(t) is

p̃tc ± 1.96

√
p̃tc [1 − p̃tc ]

n + 4
= p̃tc ± 1.96SE[p̃tc ].

The 95% large sample CI ŜE(tc) ± 1.96SE[p̃tc ] is also interesting. Alternative confi-

dence intervals for a binomial parameter p could also be used. See Olive (2014, pp. 268-269,

285-286) and Agresti and Coull (1998) for references.

Example 3. Let n = 21 and ŜE(12) = 4/21.

a) Find the 95% classical CI for ŜE(12).

b) Find the 95% plus four CI for ŜE(12).

Solution: a)

4

21
± 1.96

√
4
21

(1 − 4
21

)

21
=

4

21
± 0.16795 = (0.0225, 0.3584).

b)

p̃12 =
21 4

21
+ 2

21 + 4
=

6

25
.

So the 95% CI is

6

25
± 1.96

√
6
25

(1 − 6
25

)

25
=

6

25
± 0.16742 = (0.0726, 0.4074).

Note that the CIs are not very short since n = 21 is small.



8

CHAPTER 3

THE KAPLAN MEIER ESTIMATOR

Let [0,∞) = I1 ∪ I2 ∪ · · · ∪ Im = [t0, t1) ∪ [t1, t2) · · · ∪ [tm−1, tm) where t0 = 0 and

tm = ∞. It is possible that the 1st interval will have left endpoint > 0 (t0 > 0) and the

last interval will have finite right endpoint (tm < ∞).

The Kaplan Meier estimator is used to estimate SY (t) = P (Y > t) when there is

censoring. Let pj = P(surviving through Ij| alive at the start of Ij) = P (Y > tj|Y > tj−1) =

P (Y > tj, Y > tj−1)

P (Y > tj−1)
=

S(tj)

S(tj−1)
. Now p1 = S(t1)/S(t0) = S(t1) since S(0) = S(t0) = 1.

Writing S(tk) as a telescoping product gives

S(tk) = S(t1)
S(t2)

S(t1)

S(t3)

S(t2)
· · · S(tk−1)

S(tk−2)

S(tk)

S(tk−1)
= p1p2 · · · pk =

k∏
j=1

pj .

Let p̂j = 1− (number dying in Ij)/(number with potential to die in Ij). Then p̂j = 1−dj/nj

is the estimate of pj used by the Kaplan Meier estimator.

Now suppose the data is censored but the event and censoring times are known.

Let Yi = time to event for ith person. Let Y ∗
i = Ti = min(Yi, Zi) where Yi and Zi are

independent and Zi is the censoring time for the ith person (the time the ith person is lost

to the study for any reason other than the time to event under study). The censored data

is, for example, y1, y2+, y3, ..., yn−1, yn+ where yi means the time was uncensored and yi+

means the time was censored. A status variable will be 1 if the time was uncensored and

0 if censored.

Let δi = I(Yi ≤ Zi) so δi = 1 if Ti is uncensored and δi = 0 if Ti is censored. Let

t(1) ≤ t(2) ≤ · · · ≤ t(n) be the observed ordered survival times. Let γj = 1 if t(j) is

uncensored and 0, otherwise. Let t0 = 0 and let 0 < t1 < t2 < · · · < tm be the distinct

survival times corresponding to the t(j) with γj = 1. Let di = number of events (deaths)

at time ti. If m = n and di = 1 for i = 1, ..., n then there are no ties. If m < n and some

di ≥ 2, then there are ties. Let ni =
∑n

j=1 I(t(j) ≥ ti) = # at risk at ti = # alive and not
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yet censored just before ti.

Definition 4. The Kaplan Meier estimator = product limit estimator of SY (ti) =

P (Y > ti) is ŜK(0) = 1 and

ŜK(ti) =

i∏
k=1

(1 − dk

nk
) = ŜK(ti−1)(1 − di

ni
).

ŜK(t) is a step function with ŜK(t) = ŜK(ti−1) for ti−1 ≤ t < ti and i = 1, ..., m. If t(n) is

uncensored then tm = t(n) and ŜK(t) = 0 for t > tm. If t(n) is censored, then ŜK(t) = ŜK(tm)

for tm ≤ t ≤ t(n), but ŜK(t) is undefined for t > t(n).

The table below is useful for computing and plotting Ŝk(ti) given the t(j) and γj or

given the ti, ni and di. Let n0 = n. If fi−1 = number of events (deaths) and number

censored in time interval [ti−1, ti), then ni = ni−1 − fi−1 = number of t(j) ≥ ti.

Example 4. Modifying Smith (2002, p. 113) slightly, suppose that the ordered censored

survival times in days until repair of n = 13 street lights is 36, 38, 38, 38+, 78 112, 112,

114+, 162+, 189, 198, 237, 489+.

In general, a 95% CI for SY (ti) is Ŝ(ti) ± 1.96 SE[Ŝ(ti)]. If the lower endpoint of the

CI is negative, round it up to 0. If the upper endpoint of the CI is greater than 1, round

it down to 1. Do not use impossible values of SY (t).

R plots the KM survival estimator along with the pointwise 95% CIs for SY (t). If we

guess a distribution for Y , say Y ∼ W, with a formula for SW (t), then the guessed SW (ti)

can be added to the plot. If roughly 95% of the SW (ti) fall within the bands, then Y ∼ W

may be reasonable. For example, if W ∼ EXP (1), use SW (t) = exp(−t). If W ∼ EXP (λ),

then SW (t) = exp(−λt). Recall that E(W ) = 1/λ.

If limt→∞ tSY (t) → 0, then E(Y ) =
∫∞
0

tfY (t)dt =
∫∞

0
SY (t)dt. Hence an estimate of

the mean Ê(Y ) can be obtained from the area under Ŝ(t).

Greenwood’s formula is

SE[ŜK(tj)] = ŜK(tj)

√√√√ j∑
i=1

dj

nj(nj − dj)
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Table 3.1. Method for Computing Kaplan Meier Estimator

ti ni di ŜK(t)

t0 = 0 ŜK(0) = 1

t1 n1 d1 ŜK(t1) = ŜK(t0)[1 − d1

n1
]

t2 n2 d2 ŜK(t2) = ŜK(t1)[1 − d2

n2
]

...
...

...
...

tj nj dj ŜK(tj) = ŜK(tj−1)[1 − dj

nj
]

...
...

...
...

tm−1 nm−1 dm−1 ŜK(tm−1) = ŜK(tm−2)[1 − dm−1

nm−1
]

tm nm dm ŜK(tm) = 0 = ŜK(tm−1)[1 − dm

nm
]
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Table 3.2. Example for Computing Kaplan Meier Estimator

fj t(j) γj ti ni di Ŝ(t)

Ŝ(0) = 1

1 36 1 36 13 1 Ŝ(36) = 0.9231

3 38 1 38 12 2 Ŝ(38) = 0.7692

38 1

38 0

1 78 1 78 9 1 Ŝ(78) = 0.6837

4 112 1 112 8 2 Ŝ(112) = 0.5128

112 1

114 0

162 0

1 189 1 189 4 1 Ŝ(189) = 0.3846

1 198 1 198 3 1 Ŝ(198) = 0.2564

1 237 1 237 2 1 Ŝ(36) = 0.1282

489 0
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where j = 1, ..., m− 1.

The Agresti and Coull (1998) plus four 95% CI adds two successes (deaths) and two

failures (survives) to the data set from a binomial distribution, and then computes the

classical binomial 95% CI from the modified data set. For t ∈ [t1, tm], Olive (2010, problem

16.45) modifies this procedure by adding two artificial deaths just before time t1 and two

artificial censored observations after the largest death time tm. Then the classical 95% CI

for the Kaplan Meier estimator is computed from the modified data set.

Hence

S̃K(ti) =

(
1 − 1

n + 4

)(
1 − 1

n + 3

) i∏
k=1

(
1 − dk

nk + 2

)

for i = 1, ..., m where the first two terms are due to the two artificial deaths at the just

before t1 and nk + 2 is used in the product due to the two artificial cases censored at time

tm. Also [SE(S̃K(ti)]
2 =

[S̃K(ti)]
2

(
i∑

k=1

dk

(nk + 2)(nk + 2 − dk)
+

1

(n + 4)(n + 4 − 1)
+

1

(n + 3)(n + 3 − 1)

)

for i = 1, ..., m− 1.

If the CI is initially (L,U), then the CI (max(0, L), min(1, U)) is used. In addition to

the classical Kaplan Meier CI, there is a log CI that uses log(Ŝ) and a log–log CI that uses

log(−log(Ŝ)) that are easy to compute with software.
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CHAPTER 4

EXAMPLES AND SIMULATIONS

Simulations were done in R. See R Core Team (2015). The function km-

sim2 simulates the classical, log, log–log, and plus four CIs for the Kaplan

Meier estimator and is in the collection of R functions regpack available from

(http://lagrange.math.siu.edu/Olive/regpack.txt).

The program kmsim2 computes censored data T = min(Y, Z) where Y ∼ EXP (1).

Then a 95% CI is made for SY (t(j)) for each of the n t(j). This is done for runs=5000

data sets and the program computes the proportion of times the CI contains SY (t(j)) =

exp(−t(j)). The average scaled CI lengths (the average of
√

n CI length) are also computed.

The ccov is the proportion for the classical Ŝ ± 1.96SE(Ŝ) interval while p4cov is for the

plus 4 CI. The lcov is based on a CI that uses log(Ŝ) and llcov is based on a CI that uses

log(−log(Ŝ)). The three classical CIs are not made if the last case is censored so NA is

given. The plus four CI seems to be good at t(1) and t(n). With 5000 runs, coverage between

0.94 and 0.96 would not give much evidence that the coverage is different from the nominal

covarage of 0.95.

> library(survival)

> kmsim2(n=10,runs=5000)

$ccov

[1] 0.8808 0.9648 0.9740 0.9748 0.9644 0.9536 0.9368 0.9088 0.8400 NA

$lcov

[1] 0.8730 0.9490 0.9570 0.9652 0.9664 0.9646 0.9750 0.9762 0.9826 NA

$llcov
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[1] 0.7768 0.8954 0.9144 0.9222 0.9210 0.9216 0.9234 0.9230 0.9214 NA

$p4cov

[1] 0.9964 0.9114 0.9108 0.9148 0.9184 0.9194 0.9326 0.9414 0.9554 0.9738

$clen

[1] 0.8170504 1.3276870 1.7097334 1.8942508 1.9756001 1.9786097 1.9024568

[8] 1.5967784 1.0986384 NaN

$llen

[1] 0.7657591 1.2264927 1.5981921 1.9133880 2.0764107 2.1498071 2.1682851

[8] 2.1503575 2.2076806 NA

$lllen

[1] 1.463784 1.682308 1.776004 1.825388 1.831936 1.790259 1.692386 1.525528

[9] 1.265297 NA

$p4len

[1] 1.325905 1.473112 1.569981 1.632562 1.665454 1.668856 1.641050 1.577583

[9] 1.470264 1.189196

The above output is for n = 10 with 5000 runs. The tables below summarizes the CI

coverages and scaled lengths for t1, t3, tn−2, and tn−1 for various values on n. The figures

and tables are explained further in the conclusions chapter. The sample size n is the last

number on the horizontal axis for a figure.
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Table 4.1. Simulated CI Coverages and Scaled Lengths

n ti cov/len clas log loglog plus4

10 t1 cov 0.8808 0.8730 0.7768 0.9964

len 0.8171 0.7658 1.4638 1.3259

10 t3 cov 0.9740 0.9570 0.9144 0.9108

len 1.7097 1.5982 1.7760 1.5700

10 tn−2 cov 0.9088 0.9762 0.9230 0.9414

len 1.5968 2.1504 1.5255 1.5776

10 tn−1 cov 0.8400 0.9826 0.9214 0.9554

len 1.0986 2.2077 1.2653 1.4703

Table 4.2. Simulated CI Coverages and Scaled Lengths

n ti cov/len clas log loglog plus4

20 t1 cov 0.8762 0.8734 0.7768 0.9974

len 0.5896 0.5708 1.2077 1.1241

20 t3 cov 0.9588 0.9486 0.9180 0.9302

len 1.2810 1.2254 1.5181 1.4217

20 tn−2 cov 0.8850 0.9740 0.9368 0.9608

len 1.2486 1.7692 1.3159 1.4844

20 tn−1 cov 0.8246 0.9776 0.9360 0.9708

len 0.8423 1.7547 1.0856 1.3348
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Table 4.3. Simulated CI Coverages and Scaled Lengths

n ti cov/len clas log loglog plus4

50 t1 cov 0.8788 0.8770 0.7764 0.9982

len 0.3783 0.3734 0.8413 0.8062

50 t3 cov 0.9510 0.9458 0.9206 0.9558

len 0.8303 0.8157 1.0705 1.0646

50 tn−2 cov 0.8832 0.9716 0.9486 0.9722

len 0.8771 1.2793 1.0062 1.1901

50 tn−1 cov 0.8220 0.9810 0.9530 0.9804

len 0.5865 1.2472 0.8375 1.0419
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Table 4.4. Simulated CI Coverages and Scaled Lengths

n ti cov/len clas log loglog plus4

100 t1 cov 0.8806 0.8802 0.7806 0.9996

len 0.2688 0.2670 0.6145 0.5964

100 t3 cov 0.9534 0.9512 0.9258 0.9638

len 0.5905 0.5853 0.7835 0.7988

100 tn−2 cov 0.8660 0.9720 0.9522 0.9770

len 0.6676 0.9820 0.7981 0.9499

100 tn−1 cov 0.8158 0.9722 0.9504 0.9818

len 0.4441 0.9528 0.6706 0.8231

Table 4.5. Simulated CI Coverages and Scaled Lengths

n ti cov/len clas log loglog plus4

200 t1 cov 0.8740 0.8736 0.7836 0.9980

len 0.1897 0.1891 0.4397 0.4313

200 t3 cov 0.9536 0.9524 0.9246 0.9718

len 0.4191 0.4173 0.5636 0.5826

200 tn−2 cov 0.8692 0.9674 0.9482 0.9760

len 0.5049 0.7456 0.6220 0.7361

200 tn−1 cov 0.8090 0.9812 0.9598 0.9828

len 0.3349 0.7216 0.5277 0.6342
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Table 4.6. Simulated CI Coverages and Scaled Lengths

n ti cov/len clas log loglog plus4

400 t1 cov 0.8748 0.8744 0.7784 0.9990

len 0.1342 0.1340 0.3133 0.3085

400 t3 cov 0.9474 0.9466 0.9202 0.9680

len 0.2973 0.2967 0.4023 0.4187

400 tn−2 cov 0.8668 0.9712 0.9572 0.9772

len 0.3789 0.5623 0.4785 0.5611

400 tn−1 cov 0.8076 0.9766 0.9600 0.9836

len 0.2518 0.5426 0.4096 0.4822

Table 4.7. Simulated CI Coverages and Scaled Lengths

n ti cov/len clas log loglog plus4

600 t1 cov 0.8872 0.8872 0.7782 0.9988

len 0.1104 0.1103 0.2583 0.2534

600 t3 cov 0.9498 0.9496 0.9238 0.9748

len 0.2428 0.2425 0.3294 0.3436

600 tn−2 cov 0.8622 0.9720 0.9586 0.9798

len 0.3227 0.4783 0.4114 0.4787

600 tn−1 cov 0.8160 0.9840 0.9622 0.9820

len 0.2149 0.4622 0.3547 0.4116
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Table 4.8. Simulated CI Coverages and Scaled Lengths

n ti cov/len clas log loglog plus4

800 t1 cov 0.8816 0.8814 0.7722 0.9988

len 0.0959 0.0958 0.2247 0.2200

800 t3 cov 0.9436 0.9422 0.9152 0.9712

len 0.2097 0.2095 0.2851 0.2979

800 tn−2 cov 0.8708 0.9670 0.9582 0.9774

len 0.2865 0.4248 0.3677 0.4263

800 tn−1 cov NA NA NA 0.9836

len NaN NA NA 0.3664

Table 4.9. Simulated CI Coverages and Scaled Lengths

n ti cov/len clas log loglog plus4

1000 t1 cov 0.8732 0.8732 0.7726 0.9986

len 0.0849 0.0848 0.1989 0.1965

1000 t3 cov 0.9460 0.9460 0.9220 0.9734

len 0.1873 0.1871 0.2551 0.2667

1000 tn−2 cov 0.8682 0.9700 0.9576 0.9744

len 0.2616 0.3882 0.3375 0.3898

1000 tn−1 cov 0.8056 0.9808 0.9654 0.9852

len 0.1740 0.3748 0.2926 0.3347
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Figure 4.1. CI coverages: (a) classic (b) log
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Figure 4.2. CI coverages: (a) log-log (b) plus4
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Figure 4.3. CI coverages: (a) classic (b) log
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Figure 4.4. CI coverages: (a) log-log (b) plus4
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Figure 4.5. CI coverages: (a) classic (b) log
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Figure 4.6. CI coverages: (a) log-log (b) plus4
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CHAPTER 5

CONCLUSIONS

Table 5.1. Best Method

n 10 20 50 100 200

t1 p4 p4 p4 p4 p4

t3 log log clas log log

tn−2 p4 p4 llog llog llog

tn−1 p4 llog llog llog llog

n 400 600 800 1000 conclusion

t1 p4 p4 p4 p4 p4

t3 log clas clas clas/log log

tn−2 llog llog llog llog llog

tn−1 llog llog p4 llog llog
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Table 5.2. Ranges on Figures

n clas log llog p4 conclusion

20 0.80 - 1.00 0.86 - 1.00 0.70 - 1.00 0.86 - 1.00 log,p4

100 0.84 - 1.00 0.89 - 1.00 0.80 - 1.00 0.90 - 1.00 p4

1000 0.80 - 1.00 0.86 - 1.00 0.75 - 1.00 0.86 - 1.00 log,p4

From the tables, the best CIs are plus4 for t1, log for t3, and loglog for tn−2 and tn−1.

From the figures, the best CIs are log and plus4 if n=20, plus4 if n=100, and log and

plus4 if n=1,000. Examine the ranges of the vertical axis of the figures. These ranges are

summarized in table 4.2.
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