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ABSTRACT 

 

 

ON MOTION MECHANISMS OF FREIGHT TRAIN SUSPENSION SYSTEMS 

 

 

by 

 

Dennis O’Connor 

 

 

In this dissertation, a freight train suspension system is presented for all possible types of 

motion.  The suspension system experiences impacts and friction between wedges and bolster. 

The impacts cause the chatter motions between wedges and bolster, and the friction will cause 

the stick and non-stick motions between wedges and bolster. Due to the wedge effect, the 

suspension system may become stuck and not move, which cause the suspension lose functions. 

To discuss such phenomena in the freight train suspension systems, the theory of discontinuous 

dynamical systems is used, and the motion mechanism of impacting chatter with stick and stuck 

is discussed. The analytical conditions for the onset and vanishing of stick motions between the 

wedges and bolster are presented, and the condition for maintaining stick motion was achieved as 

well.  The analytical conditions for stuck motion are developed to determine the onset and 

vanishing conditions for stuck motion. Analytical prediction of periodic motions relative to 

impacting chatter with stick and stuck motions in train suspension is performed through the 

mapping dynamics. The corresponding analyses of local stability and bifurcation are carried out, 

and the grazing and stick conditions are used to determine periodic motions. Numerical 

simulations are to illustrate periodic motions of stick and stuck motions.  Finally, from field 

testing data, the effects of wedge angle on the motions of the suspension is presented to find a 

more desirable suspension response for design. 
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CHAPTER I 

INTRODUCTION 

In this chapter, a literature review of research on train suspension systems describes the 

approaches and progress made in the work of modeling and understanding such systems.  While 

considerable advancements have been made in passenger train suspension systems, far less 

developments have been realized in freight train suspension systems.  Herein, a mechanical 

model of the freight train suspension system is introduced for investigation. Through this model, 

the dynamic behaviors of the current suspension system may be better understood and 

improvements to the overall system realized. 

  

1.1 Bibliography 

Train suspension systems are for the comfort and stability of train locomotion, and an 

effective suspension system is necessary for safety and reliability. With the advancements in 

control theory and suspension technology, significant improvements have been made for 

passenger trains. Shieh et al. (2005) developed the optimal control to the passive suspension 

system of the light rail train using evolution algorithms. A train model with nine degrees of 

freedom was introduced and a stochastic optimization algorithm was used to optimize the 

suspension system parameters. Gottzein & Lange (1975) modeled the wheel-less high-speed 

passenger train to design the magnetic levitation suspension system. For the riding comfort of 

trains, Wu & Yang (2003) investigated the dynamic responses of trains moving over simply 

supported bridges through the development of a mechanical model including impact. Sayyaadi & 

Shokouhi (2009) introduced a system with seventy degrees of freedom for the rail-vehicle 
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suspension including a nonlinear air-spring damper. Experimental studies showed the 

effectiveness of the suspension system and the relevance of the mechanical model. Other 

research has considered the environmental impact of moving trains. Karlstrom (2006) developed 

an analytical model for the train-induced ground vibrations and simulated the vibration responses 

at various train speeds. Using a finite element approach, Ju & Lin (2008) investigated the ground 

vibration from high-speed trains and compared the results with experimental measurements.  

On the other hand, less advancement has been attained for the suspension system of freight 

trains. Indeed, the ubiquitous wedge based friction-damped suspension system for heavy haul 

freight trains has not been changed too much in the past century while speed and cargo demands 

have increased greatly. The freight train suspension system uses friction damping in which pairs 

of wedges perform a force transmission of the track disturbance onto the side frame wall of the 

train undercarriage. Gardner & Cusumano (1997) discussed the differences between the variable-

damping and constant-damping friction wedge model as well as the wedge model used in the 

dynamic train simulator software NUCARS®. Kaiser et al. (2002) considered a piecewise 

smooth wedge model with dry friction and gave parameter studies focused on the slip-stick 

phenomena. In that model, the wedge and bolster remain in contact, and periodic motions were 

found through numerical and harmonic balance methods. The separation of the wedges and 

bolster with the directional change of the friction is allowed, and the train suspension system can 

be investigated with a piecewise linear model including friction and impact. 

The impacts between two masses in the train suspension system are similar to the dynamics 

of gear transmission. Herein, the gear dynamics is reviewed herein to help us work on the 

dynamics of train suspension systems. For instance, Pfeiffer (1984) presented an impact model to 

investigate dynamics of gear transmissions, and the regular and chaotic motions in the gear box 
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were investigated in Karagiannis & Pfeiffer (1991). One also used a piecewise linear model to 

investigate the dynamics of gear transmission systems (e.g., Comparin & Singh, 1989; 

Theodossiades & Natsiavas, 2000). To model vibrations in gear transmission systems, Luo & 

Chen (2005) used an impact model of two oscillators, and the local singularity theory in Luo 

(2005) was used for grazing and chaotic motions. Luo & O’Connor (2009) discussed the 

mechanism of impacting chatter with stick, and the analytical prediction of periodic chatter with 

and without stick was completed. The train suspension system is a dynamical system of three 

bodies with impact and frictions. One worked on nonlinear dynamics of two systems connected 

with the friction for many years. For instance, Hundal (1979) examined the response of a base 

excited system with Coulomb and viscous friction, and Feeny (1992) studied a non-smooth 

Coulomb friction oscillator. Shaw & Holmes (1983) studied nonlinear dynamics of a piecewise 

linear oscillator, and Shaw (1986) investigated a piecewise linear oscillator with dry friction. Luo 

& Gegg (2006) developed the stick and non-stick force criteria for the friction induced oscillator. 

Combining the friction and impact phenomena, Hinrichs et al. (1997) investigated the dynamics 

of a system undergoing friction as well as impact. An experimental investigation of stick-slip 

dynamics in a friction wedge damper was carried out in Chandiramani et al. (2006). 

 In this paper, a simple model for the train suspension system will be presented. The bolster 

and two wedges will be considered to be independent, and impacts between the wedge and 

bolster occur at different locations. When sticking together, the combined wedge and bolster 

system will experience friction. This train suspension system with friction and impact will be 

modeled. Following the ideas of Luo & O’Connor (2009), the global nonlinear behaviors of such 

a suspension system will be discussed and parameter maps will be presented. Numerical 

illustrations will be given for parameter characteristics of impacting chatter with/without stick for 
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the train suspension system. The theory for discontinuous dynamical systems can be found from 

Luo (2009) and (2012).  

1.2 Physical Model 

To model the freight train suspension system, consider the general configuration of the train 

suspension system, as shown in Figure 1.1. A major bracket known as the bolster is anchored to 

the bottom of the train. The bolster rests within the side arm on a set of springs and a pair of 

wedges. The wedges create friction dampening as they are pressed down and against the wall of 

the side arm. Since the tracks may not be perfectly level, the track is described by the curve 

underneath the wheels. Note, each train car has two complete sets of the suspension system 

described in Figure 1.1. Further, due to symmetry, only one side of the suspension system is 

shown. 

Consider a periodically forced oscillator acted upon by a pair of secondary oscillators, as 

shown in Figure1.2. The primary mass represents the bolster on the train suspension system, 

while the pair of secondary masses represents the wedges used for the friction damping. 

Interaction between the bolster and wedges causes impacting and sticking together. When  

 

Bolster 

Wheels 

Track 

Train 
(Friction Wedges) (Side Frame) 

 

Figure 1.1. A mechanical description of freight train suspension. 
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1m  2m  3m  

2r  2k  2r  2k  1r  14k  

2 3,x x  1x  

0 0 1cosB A t  

 

Figure 1.2. A mechanical model for a train suspension system. 

 

sticking occurs, the pressure between the combined systems creates a normal force against the 

wall surface. This causes a friction force, with coefficient k , that resists the train movement. 

Each mass im  ( 1,2i  ) connected a spring and a damper. The spring stiffness ik  is from the 

actual spring, and the damper damping ir  is from internal friction loss in the spring. The external 

force 0 0 cosB A t   acts on the bolster 1m  where 0A  and   are the amplitude and frequency of 

the truck inertial force input, respectively. 0B  is from the constant load. The displacements of 

each mass measured from their equilibriums are expressed by (1)x , (2)x , and (3)x .  Impacts 

between oscillators are oblique and described through the impact law with restitution coefficient 

e.  

 

1.3 Objectives 

In this thesis, the freight train suspension system will be modeled by a piecewise linear 

system with impacts.  From the theory of discontinuous dynamical systems, the mechanism of 
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impacting chatter with stick and stuck will be investigated, and the onset and vanishing 

conditions of such motions will be developed.  The condition for maintaining stick and stuck 

motion in such a suspension system will be discussed.  Motion mappings will be introduced first 

based on the separation boundaries, and then from the basic mappings, the mapping structures 

will be developed for periodic motions.  Further, the analytical prediction of periodic motions 

pertaining to impacting chatter with stick and stuck can be completed, and the corresponding 

local stability and bifurcation of the periodic motion will be analyzed.  Analytical conditions will 

be employed to complete the bifurcation analysis, and numerical simulations will be carried out 

for illustration of periodic motions and stick criteria.  

 

1.4 Layout 

To begin, this thesis conducts a literature survey on related and pertinent works of train 

suspension systems. Also, a mechanical model for train suspension is developed based on a 

simplification of the said mechanical system.  In Chapter 2, a mathematical description of the 

train suspension system will be given.  Additionally, the equations of motion based on the 

absolute and relative frames will be developed on the different domains.  In Chapter 3, the stick, 

stuck, and grazing criteria for such a suspension system will be derived from the singularity 

theory of discontinuous systems on the boundary.  In chapter 4, the basic mappings will be 

introduced for developing the mapping structure of periodic motion.  Based on the mapping 

structure, the periodic motion can be predicted analytically.  The corresponding stability and 

bifurcation analysis will be carried out in Chapter 5.  For illustration of the analytical conditions, 

the displacement response, velocity response, and phase planes of periodic motions in such a 

suspension system will be presented.  In Chapter 6, field data from Amsted Rail is implemented 
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to consider realistic suspension parameters.  In addition, an investigation into wedge angle 

influence of system response through analytical prediction will be conducted.  Finally, in Chapter 

7 the summary of this thesis project will be given.  

 

1.5 Significance of Research 

The simplified train suspension model in Figure 1.2 is investigated in order to better 

understand the vibration and dynamic phenomena experienced during train locomotion. More 

specifically, the suspension system discussed herein is investigated so that the underlying 

behavioral characteristics of train suspension can be identified and controlled to avoid derailment 

or unsafe vibration.  Parametric investigations will provide insights into motion mechanisms for 

impacting chatter with stick and stuck motion.  Moreover, the analytical conditions of such 

motion phenomena may provide efficient methods to catch the motion switching, and this will 

give a good physical interpretation of vibration in such a train suspension system. An 

investigation into the influence of wedge angle can help design future suspension systems to 

avoid undesirable suspension behavior.  Finally, with such a mechanical model, vibration and 

dynamic behavior of the train can be adjusted through the operating conditions and a better 

performance may be achieved. 
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CHAPTER II 

MECHANICAL MODEL 

In this chapter, the mathematical model of the freight train suspension system described 

in Chapter 1 will be developed.  From Newton’s laws, the equations of motion are introduced to 

describe the different types of motion. Based on the regions for each type of motion, domains and 

their respective boundaries will be defined.  Importantly, the boundaries represent a discontinuity 

and must be considered carefully to determine how motion may interact in such proximity. To 

this end, the corresponding state variables for the equations of motion in the absolute and relative 

reference frames will be defined and boundaries described mathematically.  

 

2.1 Equations of Motion 

To obtain equations of motion for the train suspension systems, a free body diagram (FBD) 

of the wedge and bolster is considered when not in contact. Due to symmetry, the FBD of the 

bolster and the left wedge is given in Figure 2.1. Positive displacement is measured vertically 

upward by 1x  and 2x . The spring and damping force are described through the spring stiffness 

and damping coefficient ik  and ir  for ( 1,2i  ), respectively. The wedge angle is given by  .  

Summation of the forces in Newton’s second law yields the following equations of motion for  

 

(2)

2k x  

  

0 0 cosB A t   

(2)

2r x  (1)

14k x  
(1)

1r x  
1m g  2m g  

(2)x  

(1)x  

 

Figure 2.1. Free body diagram of wedge and bolster not in contact. 
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the wedge and bolster while not in contact, which is called the free flight motion. 

( ) ( ) ( ) ( ) 2 ( ) ( ) ( )2 ( ) cosi i i i i i ix x x b Q t                                (1) 

where ( ) ( ) /i ix dx dt   and for 1   

( ) (1) 1
1 1

1

(1) ( )

1 1 0 1

1

( ) ( ) (1) 0
1 1 1

1

4
( 1,2,3),  ,

2

1
( ) , ,

,  0 ( 2,3),  ,

i i

i

i

i ii

i

r k
i

m m

b m g B b g
m

k A
Q i Q

m m

 




   





     


   


   (2) 

Herein, the position, velocity, and acceleration of the two wedges are assumed identical 

(i.e., (2) (3) ,x x (2) (3) ,x x (2) (3)x x  ) for the mechanical model in Figure 2.1. For 

(1) (2)

1 1| | 0x x  , an impact between the bolster and two wedges occurs. Since the springs are 

unable to support bending moment and the side wall does not allow horizontal movement, the 

impact between the wedge and bolster is assumed to take place vertically with direct impact. 

From momentum conservation and the simple impact law, velocities of the bolster and wedge 

after impacting are 

(1) (1) (1) (1) (2)

1 1 1 2 1

(2) (2) (1) (2) (2)

1 1 1 2 1

(3) (2)

1 1

,

,

.

x I x I x

x I x I x

x x

  

  

 

 


  


 

                            (3) 

where the superscripts “-” and “+” represent before and after impact, and the corresponding 

coefficients are  

(1) (1)1 2 2
1 2

1 2 1 2

(2) (2)1 2 1
1 2

1 2 1 2

2 2(1 )
, ,

2 2

(1 ) 2
, .

2 2

m m e e m
I I

m m m m

e m m em
I I

m m m m

  
    


   

  

                            (4) 
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0N  

(2)

2k x  

N

 
kF  

  

N

 

0 0 cosB A t   

(2)

2r x  (1)

14k x  
(1)

1r x  

  

  

1m g  
2m g  

(2)x  
(1)x  

 

Figure 2.2. Free body diagram of wedge and bolster in contact. 

 

 Consider the wedge and bolster to remain in contact, which is called the stick motion. The 

free body diagram for this scenario is given in Figure 2.2. The normal force N  is the contact 

force between the wedge and bolster. Herein, it is assumed that the wedge and bolster make a 

point contact and no slipping occurs. Subsequently any friction force acting between the wedge 

and bolster can be neglected. However, as a result of the wedge angle  , there is an additional 

normal force 0N  defining the contact force between the side wall and wedge.  This normal force 

creates a kinetic friction force fF  as defined in Eq.(5). 

0 2

2 0 0 2

0 2

[0, ),

( ) [ , ] 0,

( ,0].

k

f k k

k

N x

F x N N x

N x



 



  

  
   

    (5) 

Further, the normal force 0N  is related to the normal force N , i.e.,  

0 cos .N N                                             (6) 

The total forces in Figure 2.2 with Eqs.(5) and (6), the equations of motion for the combined 

mass system for 1,2i   and 2,3   is given by 

( ) ( ) ( ) ( ) 2 ( ) ( ) ( )2 ( ) cosi i i i i i ix x x b Q t                             (7) 
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where 

( ) ( ) ( )1 2 1 2 0

1 2 1 2 1 2

( ) 1 2 0

(2)

1 2

4
,  ,  ,

( ) 2sin
,  .

sin cos sgn( )

i i is s

s s s

i s
s

s k

r r k k A
Q

m m m m m m

m m g B
b

m m x

  





 



  

   
   

      


      
   

                (8) 

Region 2   is used to describe stick motion with positive velocity (i.e., (1) 0x  ) while region 

3   is used to describe the stick motion with negative velocity (i.e., (1) 0x  ).  From a physics 

point of view, the normal force between the wedge and bolster indicates the respective internal 

force between the bolster and wedge. Such an internal force requires that the wedge and bolster 

remain in contact. From Eqs.(1) and (7), the normal force is given by  

(1) (1) (1)
(1) 1 1 1 1 0 0

(2) (2) (2)
(2) 2 2 2 2

(2)

4 cos
,

2sin

.
sin cos sgn( )k

m x r x k x m g B A t
N

m x r x k x m g
N

x

  


  






  

     
 




    
 

           (9) 

For 2  , we have (2) 0x  . So (2)sgn( ) 1x  . For 3  , we have (2) 0x  . So (2)sgn( ) 1x   . 

From the Newton’s third law, we have 

(1) (2)N N N N                                          (10)  

and 

(1) (2) (1) (2) (1) (2),   , and x x x x x x x x x                                  (11)  

For a better understanding of equation of motion, equation (7) also can be written as 

( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )2 ( ) cos 2 cos sgn( )i i i i i i i i

kx x x b Q t N x                                  (12) 

where 
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0 ( )k N t  

(1)x  

0 ( ) k N t  

fF  

 

Figure 2.3. Friction model varying with time. 

 

( ) ( )1 2 1 2

1 2 1 2 1 2

( ) ( )0 1 2 0

1 2 1 2

2 4 2
, ,

2 2 2

( 2 )
, .

2 2

i i

i i

Nr r k k
N

m m m m m m

A m m g B
Q b

m m m m


  

 

 
 

   
   


    

  

                    (13) 

The normal force  N  can be computed from Eqs. (9)–(11). Since the normal force between the 

wedge and bolster may vary with time, the force of friction is also a function of time. To 

illustrate this, the friction force in Eq.(5) is shown in Figure 2.3. In physics, the normal force is 

actually the internal force that keeps the bolster and wedge together, the vanishing of stick 

motion vanishing requires for 1,2i          

( ) 0.iN N                                        (14) 

Consequently, the stick condition for the three oscillators is given for 1,2i   and 2,3   

( ) 0.iN N                                        (15) 

In the region of 1  , the bolster and wedge do not interfere with each other, so ( ) 0iN   holds 

always. Finally, if the friction force acting on the combined mass system is greater than or equal 
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to the resultant dynamic forces, then the bolster and wedges will become “stuck” against the side 

wall. In other words, the wedge with bolster does not move.  

 

2.2 Absolute Motions 

The bolster and pair of wedges represent a discontinuous system because of their possible 

impacts and the friction force acting on the wedges. Accordingly, the vector fields for each 

oscillator are discontinuous. Consider the free-flight region described earlier as 1  . For 

( {1,2}i,i  and i i ),   domain ( )

1

i  in  phase plane for free-flight motion is defined as 

 ( ) ( ) ( ) ( ) ( )

1 1( , ) ( ( ), ), (0, )i i i i i

m mx x x x t t          (16) 

Since the bolster and wedge displacements are changing with time, ( )

1 ( )i

mx t  describes the lower 

bound for ( )

1

ix  where mt  is the impact time. The boundary ( )

1

i

  of the domain ( )

1

i  is defined as  

( ) ( ) ( )

1 1( ) ( ) ( )

1 ( ) ( )

1

( ) 0
( , )

( ), (0, )

i i i

mi i i

i i

m m

x x t
x x

x x t t

 



    
   

    

              (17) 

which is a non-passable boundary or infinite flow barrier. In Figure 2.4, the shaded region is the 

domains for the free-fright motion. The dash dot curve is the boundary ( )

1

i

 , which is 

instantaneous  at time mt  with the vertical dotted lines. In Figure 2.4(a), the domain and boundary 

for the free-flight motion of the bolster is presented. The domain lies on the right side of the 

boundary relative to the wedges. Since the wedges are below the bolster, the domain and 

boundary for the free-flight motion of wedges are presented in Figure 2.4(b), and the domain lies 

on the left side of the boundary relative to the bolster.    
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(a)

 

(1)x  

(1)x  

(1)

1

(1)

1  

mt

Free Flight 

 

 

(b)

 

(2)x  

(2)x  

(2)

1

(2)

1  

mt

Free Flight 

 

 

Figure 2.4. Free-flight domain and boundary: (a) bolster and (b) wedges. 
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Consider the regions ( 2,3  ) for stick motion when the bolster and wedges are sticking 

together.  The domains ( )

2

i  and ( )

3

i   in phase plane are for stick motion with frictional force. In 

domain ( )

2

i , the velocity of the combined system is positive, so the frictional force acts in the 

negative direction. However, in domain ( )

3

i , the friction force acts in the positive direction.  

( ) ( ) ( )

2 2( ) ( ) ( )

2 ( )

( ) ( ) ( )

2 2( ) ( ) ( )

3 ( )

( , ),  
( , ) ,

(0, )

( , ),  
( , ) .

( ,0)

i i i

i i i

i

i i i

i i i

i

x x x
x x

x

x x x
x x

x

     
   

   

     
   

   

   (18) 

Herein  ( )i

  is defined as the closure of ( )i

  ( 1,2)i   and ( 2,3)  . The corresponding 

separation boundaries ( )

23

i  and ( )

32

i   for the stick motion are defined as for positive and 

negative displacement, respectively.  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

23 2 3 ( ) ( )

23

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

32 2 3 ( ) ( )

32

0, 0
( , ) ,

0

0, 0
( , ) .

0

i i i

i i i i i

i i

i i i

i i i i i

i i

x x x
x x

x

x x x
x x

x





    
      

   

    
      

   

             (19) 

In Figure 2.5, the hatched regions are for ( )

2

i  and ( )

3

i  ( 1,2i  ), define the region of stick 

motion with positive and negative velocity, respectively. Since the bolster wall is considered as 

the fixed inertial reference frame, the velocity boundary separating ( )

2

i  and ( )

3

i   is at ( ) 0ix   

and is represented by the dotted line. The vertical arrows drawn across the boundary show the 

direction of the motion flow. For 1i  , the domains for the bolster are presented in Figure 2.5(a).   

For 2i  , the domain for the wedges are presented in Figure 2.5(b).   For the stick motion, the 

bolster and wedges are together to form a new oscillator. Thus, the domains and boundary are 

same.  
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(a)

 (1)

2x  

(1)

2

( )ix  

(1)

3

(1)

32
(1)

23

 

 

(b)

 

(2)

2

(2)x  

(2)

3

(2)

32
(2)

23

(2)x  

 

 

Figure 2.5. Phase plane domains and boundaries for stick motion: (a) bolster and (b).  

wedges. 
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The bolster and two wedges may undergo free-flight motion with impacts and stick motion, 

From Eq.(18), the displacement for stick domains ( )

2

i  and ( )

3

i  was defined for ( ) ( , )ix     

( 1,2)i  . The free-flight domain has a displacement ( ) ( )

2( ( ), )i i

mx x t    and the two stick 

domains require ( ) ( )

2( , ( ))i i

mx x t  . The domain partition of the mixed free flight and stick 

motion is related to ( )

1 ( )i

mx t , and the location of the thi  oscillator is at switching time mt . The 

domains for the mixed free flight and stick motion are defined as   

( ) ( )

( ) ( ) ( ) 1

1

( ) ( ) ( ) ( )

2 2 2( ) ( ) ( )

2 ( )

( ) ( ) ( ) ( )

2 2 2( ) ( ) ( )

3 ( )

( ( ), )
( , ) ,

(0, )

( , ( )),  
( , ) ,

(0, )

( , ( )),  
( , )

( ,0)

i i

i i i m

m

i i i i

mi i i

i

i i i i

mi i i

i

x x t
x x

t

x x t x x
x x

x

x x t x x
x x

x

   
   

   

    
   

   

   
   

 

.




                               (20) 

The corresponding boundaries for the mixed motion domains are defined as  

 

( ) ( )

1( ) ( ) ( ) ( ) ( )

21 1 2 ( ) ( ) ( )

21 1

( ) ( )

1( ) ( ) ( ) ( ) ( )

31 1 3 ( ) ( ) ( )

31 1

( ) ( )

( ) ( ) ( ) ( ) ( )

23 2 3 (

23

0
( , ) ,

0

0
( , ) ,

0

0
( , )

i i

i i i i i

i i i

i i

i i i i i

i i i

i i

i i i i i

i

x x
x x

x x

x x
x x

x x

x x
x x







   
      

    

   
      

    

 
    

) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

32 2 3 ( ) ( )

32

,
0

0
( , ) .

0

i

i i

i i i i i

i i

x

x x
x x

x

  
 

   

   
      

   

       (21) 

For these boundaries, under certain conditions, the motion can pass through the boundary from 

one domain to an adjacent domain (i.e., the oscillators can enter the regions of stick motion).  No 

transport law is needed for motion continuity. The domains of the mixed motion are sketched in  
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(a) 

 
(1)x  

(1)

2

(1)

3

(1)

32

(1)

21

(1)x  

(1)

31

(1)

23

(1)

1
mt

Free Flight 

 

 

(b) 

 

( )

2

i

( )

3

i

( )

32

i

(2)

21

(2)x  

( )

31

i

(2)

23

(2)

1
mt

Free Flight 

(2)

2

(2)x  

(2)

3

(2)

32

 

 

Figure 2.6. Phase plane domains for mixed free-flight and stick motion: (a) bolster and (b) 

wedge. 
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Figure 2.6(a) and (b) for the bolster and wedges, respectively. The domain ( )

1

i  ( 1,2i  ) for the 

flight motion of the bolster is represented by the shaded region, and two domains for stick 

motions are represented by the two hatched regions, labeled as ( )

2

i  and ( )

3

i  ( 1,2i  ).  Again, 

the dotted line at ( ) 0ix   ( 1,2i  ) represents the velocity boundary for wedges’ friction with side 

walls. The boundaries for the onset and vanishing of stick motion are sketched by the dash-dot 

line, and the switching times mt  mark the locations for the appearance and disappearance of stick 

motions. The hollow and solid circular symbols represent the starting and ending of stick motion, 

respectively.  

In the absolute reference frame, the following vectors are introduced as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( , ) ( , ) ,

( , ) ( , ) .

i i i T i i T

i i i T i i T

x x x y

x F y F

    

    

 

 

x

F
                                              (22) 

With Eq.(22), equations of motion for free-fright motion in Eq.(1) and stick motion in Eq.(7) can 

be represented for as 

( ) ( ) ( )( , )  for 1,2,3 and 1,2i i i t i     x F x                                          (23) 

where  

( ) ( ) ( ) ( ) 2 ( ) ( ) ( )2 ( ) cosi i i i i i iF x x b Q t                                                (24) 

and the superscript “i” represents the ith mass and the subscript “ ” represents the  -domain.  

For the boundary 1 , the flow cannot pass through the boundary, thus the impact chatter will 

occurs.  For the boundary  1  ( 2 3,  ), the flow will pass through the boundary from domain 

1  to domain 2  or from domain 3  to domain 1 . On the boundary 23 , there is sliding 

motion.   
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( ) ( ) ( )

0 0 0( , )  for , 2,3 and 1,2i i i t i   x F x                                       (25) 

where  

( )

0

( )

0 23

0  for stick

[ 2 cos ,2 cos ] on boundary  

i

i

k k

F

F N N    



  
                            (26) 

 

2.3 Relative motion 

Because the boundaries that separate free-flight and stick motion vary with time, the 

analytical conditions for the motion mechanisms of bolster and wedge interaction with a moving 

boundary is be difficult to be obtained. Hence, two relative variables are introduced herein as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) and .i i i i i i iz x x v z x x                                                         (27) 

From the foregoing equation, the equations of motion are for , 1,2i i   ( i i ) and 1,2,3   

( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )

( ) ( ) ( ) ( ) 2 ( ) ( ) ( )

2 ( ) cos 2 ( ) ,

2 ( ) cos .

i i i i i i i i i i i i

i i i i i i i

z z z b Q t x x x

x x x b Q t

           

      

   

 

        


     

           (28) 

In a similar fashion, two more vectors are introduced as follows. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( , ) ( , )

( , ) ( , )

i i i T i i T

i i i T i i T

z z z v

z g v g

    

    

  


  

z

g
                                              (29) 

From Eqs.(28) and (29), the equations of motion become for 1,2i  and 1,2,3   

( ) ( ) ( ) ( )

( ) ( ) ( )

( , , )

( , )

i i i i

i i i

t

t

   

  

 


 

z g z x

x F x
                                                     (30) 

where 

 

( ) ( ) ( ) ( ) 2 ( ) ( ) ( )

( ) ( ) ( ) ( ) 2 ( )

2 ( ) cos

2 ( ) .

i i i i i i i

i i i i i

g z z b Q t

x x x

      

    

 

 

     

  
                                  (31) 

Because the stick motion requires the relative motion to vanish between the wedge and bolsters, 
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the domains ( )

2

i  and ( )

3

i  become two points in relative phase space.  In the relative frame, the 

sub-domains in Eq.(17) can be expressed by 

 

 
 

( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( ) ( )

2

( ) ( ) ( ) ( ) ( )

3

( , ) (0, ), ( , ) ,

( , ) 0, 0 ,

( , ) 0, 0 .

i i i i i

i i i i i

i i i i i

z z z z

z z z z

z z z z

      



    

   


                                  (32) 

In the relative frame, the impacting chatter boundaries in Eq.(14) become 

 ( ) ( ) ( ) ( ) ( )

1 1( , ) 0i i i i iz z z                                                   (33) 

Through their subsets, such boundary sets become 

( ) ( ) ( )

1 1 1

i i i

                                                             (34) 

where 

 

 

( ) ( ) ( ) ( ) ( ) ( )

1 1

( ) ( ) ( ) ( ) ( ) ( )

1 1

( , ) 0,  (0, ) ,

( , ) 0,  ( ,0) .

i i i i i i

i i i i i i

z z z z

z z z z





  

  

     

     
                                (35) 

The stick boundary become one points, which is expressed by 

 

 

( ) ( ) ( ) ( ) ( ) ( )

32 23

( ) ( ) ( ) ( ) ( ) ( )

23 23

( , ) 0,  0 ,

( , ) 0,  0 .

i i i i i i

i i i i i i

z z z z

z z z z









    



     


                                    (36) 

The boundaries in the relative frame are independent of time. The phase partitions in relative 

phase space for the bolster and wedges are sketched in Figure 2.7(a) and (b), respectively. The 

stick boundaries and domains are presented by the two large dots. 
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(1) (1)
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(1) (1)
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(b) 
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(2)z  
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1 

(2)
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Free Flight 

 

 

Figure 2.7. Phase plane partition in the relative reference frame: (a) bolster and (b) wedges. 
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CHAPTER III 

MOTION MECHANISMS 

The domains and boundaries of the different types of motion were introduced in Chapter 

2.  This chapter considers how motion may interact with the boundary separating two different 

domains. In other words, the necessary and sufficient conditions for passable boundaries, 

grazing, and stick motions will be developed to give analytical conditions for motion 

mechanisms. Based on discontinuous dynamical system theory, the equations of motion in the 

relative and absolute reference frame will be utilized to obtain such conditions.  To help 

understand these analytical conditions, physical explanations of such analytical conditions will be 

presented. 

 

3.1 Stuck and Sliding Conditions 

To investigate the motion mechanism of the discontinuous suspension model, both the 

absolute and relative coordinate systems will be utilized. For the stick motion (i.e., bolster and 

wedge already joined) and the corresponding velocity boundary, the absolute reference frame will 

be used. For free flight chatters with possible stick motion, the relative coordinate system will be 

adopted. To develop analytical conditions for motion switching at the boundary ( )i

 , from Luo 

(2009) and (2012),  the following G-functions are introduced as    

( )

(0, ) ( ) T ( ) ( ) (0) ( )( , )  ( , ) ( , ) ,i

i i i i

m m mG t t t




      
    x n F x F x                            (37) 

( )

( )

(1, ) ( ) T ( ) ( ) (0) ( )

T ( ) ( ) (0) ( )

( , ) 2 ( , ) ( , )

+ ( , ) ( , ) ,

i

i

i i i i

m m m

i i i

m m

G t D t t

D t D t







    

   

  

 

    

   

x n F x F x

n F x F x
                        (38) 

where ( ) ( ) ( )D t        x x . If the normal vector ( )i


n  is a unit vector, the G-function in 
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Eq.(37) gives the normal component of the difference between the vector field within a domain 

and the vector field on a boundary.  The time-change rate of the G-function is given in Eq.(38), 

which is the first order G-function.  The switching time 
mt  represents the time for motion on the 

boundary, and 0m mt t    reflects the responses in the domains rather than on the boundary.  

The vector field ( ) ( )( , )i i

mt  F x  is for a flow of the ith oscillator in domain ( )i

 , and the vector field 

(0) ( )( , )i t F x  is for a flow on the boundary 
( )i

 .  The normal vector ( )n i


of the boundary 
( )i

  

is computed by 

( )

T
( ) ( )

( )

( ) ( )
,i

i i

i

i ix y

 



 




  
       

n                                               (39) 

where  
T

,x y       is the Hamilton operator.  Because ( )

T (0) ( )( , ) 0i

i

mt


  
 n F x , its total 

derivative gives  

( ) ( )

T (0) ( ) T (0) ( )( , ) ( , ) 0.i i

i i

m mD t D t
 

     
   n F x n F x                                 (40)  

If the boundary 
( )i

  is a line independent of time t, ( )

T 0iD

n .  Therefore, equation (40) 

becomes  

( )

T (0) ( )( , ) 0.i

i

mD t


  
n F x                                                    (41)  

Notice that 
(0) T( , ) (0,0)t F x  on the boundary 

( )i

 . Taking the time change rate of the  

 
T

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , )

, ( , ), ( , ) ( , ) .
i i

i i i i i i i i

m

F t
D t F t F t F t

t

 
       

 
    

 

x
F x x x x               (42) 

Further, equations (37) and (38) reduce to 
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( )

( )

(0, ) ( ) T ( ) ( ) ( ) ( )

( ) ( )
(1, ) ( ) T ( ) ( ) ( ) ( ) ( ) ( )

( , )  ( , ) ( , ), {2,3}

( , )
( , )  ( , ) ( , ) ( , .

i

i

i i i i i

m m m

i i
i i i i i i i

m m

G t t F t

F t
G t D t F t t

t







    

  
      

  

 

   


     

 

x n F x x

x
x n F x x F x

        (43)           

To investigate the stick motions in domains ( )i

 ( 2,3  ), the condition for a flow to pass 

through the velocity boundary of ( ) ( )

23 0i ix    and ( ) ( )

32 0i ix    in Eq.(19) is very important.  

From Luo (2009) and (2012), the passable motion to the boundary 
( )i

  is guaranteed by  

( ) ( )

(0, ) ( ) (0, ) ( )

T ( ) ( ) T ( ) ( )

( ) ( , ) ( , )

[ ( , )] [ ( , )] 0.i i

i i

m m m m m

i i i i

m m m m

L t G t G t

t t
 

 



 

  

  

 

    

x x

n F x n F x
                      (44) 

In other words, the conditions for passable motion from domain ( )i

  into ( )i

  and vice versa 

can be expressed as  

( )

( )

( )

(0, ) ( ) T ( ) ( )

( ) ( )

(0, ) ( ) T ( ) ( )

(0, ) ( ) T ( ) ( )

(0

( 1) ( , )  ( 1) ( , ) 0

from 
( 1) ( , )  ( 1) ( , ) 0

( 1) ( , )  ( 1) ( , ) 0

( 1)

i

i

i

i i i

m m m m
i i

i i i

m m m m

i i i

m m m m

G t t

G t t

G t t

G







  



   



  





 

 

 

    


 
     

   



x n F x

x n F x

x n F x

( )

( ) ( )

, ) ( ) T ( ) ( )
from .

( , )  ( 1) ( , ) 0i

i i

i i i

m m m mt t


  

 







 
 

    
x n F x

          (45) 

or more concisely as  

 

(0, ) ( ) (0, ) ( )

( ) ( ) ( ) ( )

( ) ( , ) ( , )

( , ) ( , ) 0.

i i

m m m m m

i i i i

m m m m

L t G t G t

F t F t

 



 

  

 

 

  

x x

x x
              (46) 

From Eq.(19) and (35), the normal vector ( )n i


 to the boundary 
( )i

  for , {2,3},     is 

given as 

( ) ( )
23 32

T(0,1) .i i
 

 n n                      (47) 

With Eq.(45) or (47),  the passable conditions for , {2,3},      become   
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Figure 3.1. Passable flow illustration on (a) 
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32  and (b) 
(1)

23 . 
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x x

x x

x x

x x

          (48) 

The aforementioned conditions are illustrated through the absolute frame as shown in Figure 3.1.  

The solid grey curve represents the motion flow as it approaches and then passes through the 

boundary at ( , )m mx t .  The dashed and solid vectors labeled ( )

2 ( , )i tF x  and ( )

3 ( , )i tF x  illustrate the 

vector fields in the domains 2  and 3 , respectively. In Figure 3.1(a), the conditions 

(0,2) ( )( , )i

m mG t x  and (0,3) ( )( , )i

m mG t x  are both drawn in the positive direction along the normal 

vector ( )i


n , thus reflecting that the motion passes the boundary ( )

32

i  and enters ( )

2

i . Further, 

for 1i   and 2 , the conditions in Eq.(48) are same because oscillators 1 and 2 are combined 

together. Thus, the analytical condition is  

(1) (1) (1) (1) (1) (1)

2 3 3 2( , ) 0 and ( , ) 0  from .m m m mF t F t    x x                             (49) 

In a similar manner, Figure 3.1(b) can be discussed. 

 From [Luo, 2009, 2012], the stuck motion on 
( )i

  is guaranteed by  

( ) ( )

(0, ) ( ) (0, ) ( )

T ( ) ( ) T ( ) ( )

( ) ( , ) ( , )

[ ( , )] [ ( , )] 0.i i

i i

m m m m m

i i i i

m m m m

L t G t G t

t t
 

 



 

  

  

  

   

x x

n F x n F x
            (50) 

Here the stuck condition requires a negative cross product. For the boundary 
( )i

  with 

( )

T ( )
i

i




n  the necessary and sufficient conditions for non-passable motion to the boundary 

(i.e., stuck motion) are expressed as  
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( )

( )

(0, ) ( ) T ( ) ( )

(0, ) ( ) T ( ) ( )

( 1) ( , )  ( 1) ( , ) 0,

( 1) ( , )  ( 1) ( , ) 0.

i

i

i i i

m m m m

i i i

m m m m

G t t

G t t





  



  



 

 

    



     

x n F x

x n F x
              (51) 

With Eq.(47), the stuck conditions in Eq.(51) are simplified for , {2,3},      as 

(0,2) ( ) ( ) ( )

2 ( )

23(0,3) ( ) ( ) ( )

3

( , )  ( , ) 0,
on .

( , )  ( , ) 0,

i i i

m m m m i

i i i

m m m m

G t F t

G t F t

 

 

  


  

x x

x x
                         (52) 

The foregoing equation means that for stuck motion to occur for 1i  , the force per unit mass (or 

acceleration) on the boundary (1)

23  and (1)

32  must be negative just inside (1)

2  and positive just 

inside (1)

3 .  The requirement to keep the stuck motion is given by 

(1) (1) (1) (1)

2 3( , ) 0 and ( , ) 0.m m m mF t F t  x x                                         (53) 

Since the oscillator 1 and oscillator 2 with stick are together. So the oscillator has the same 

conditions in Eq,(53).  If two coming flows in phase plane reach the velocity boundary (1)

23  

with conditions in Eq.(53), the stuck motion will exist, as sketched in Figure 3.2. The solid grey 

curve represents the motion flow as it approaches and then passes through the boundary at 

( , )m mx t . The dashed and solid vectors depicts the vector fields (1)

2 ( , )tF x  and (1)

3 ( , )tF x in domains 

2  and 3 , respectively. In Figure 3.2(a), the G-functions (0,2) (1)( , )m mG t x  and (0,3) ( )( , )i

m mG t x  are 

in the negative and positive direction, respectively. In other words, the coming flow in domain 

(1)

2  arrives to the boundary (1)

23 . However, the vector fields in domain  (1)

2  and  (1)

3 toward  

each other at the boundary on the normal vector (1)
32

n , thus the motion will become stuck on the 

boundary (1)

23 . In a similar manner, in Figure 3.2(b), the coming flow in domain (1)

3  arrives to 

the boundary (1)

32 . However, the vector fields in domain  (1)

2  and  (1)

3 toward each other at the 

boundary on the normal vector (1)
32

n , thus the motion will become stuck on the boundary (1)

32 . 
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Figure 3.2.  Stuck motion on (a) 
(1)

32  and (b) 
(1)

23 . 

 

For stuck motion vanishing, the wedge combined with the bolster will start to move on the 

both side walls. The G-function (0, ) ( )( , )i

m mG t
x  will equal zero for stuck vanishing and moving to 
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the domain ( )i

 , the time change rate of the G-function (i.e., (1,2) ( )( , )i

m mG t x ) must be considered 

to guarantee vanishing of the stuck motion. From Luo (2009) and (2012), the analytical 

conditions are  

( )
32

( )
32

( )
32

(0,3) ( ) T ( ) ( )
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2 32 2
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x n F x

x n F x

x n F x

             (55) 

From Eq.(39), (1, ) ( )( , )i

iG t

x is given by the following equation 

(1, ) ( ) ( ) ( ) ( ) 2 ( ) ( )( , ) 2 ( ) sin .i i i i i iG t x x Q t

           x                               (56) 

From a physical point of view, equation (56) describes the absolute jerk, namely   

( ) ( ) ( ) ( ) 2 ( ) ( )( ) 2 ( ) sin .i i i i i iJ t x x Q t                                              (57) 

Consider the stuck motion on (1)

32 for 1i  . If (0,2) ( )

2( , ) 0i

mG t x  and (1,2) ( )( , ) 0i

m mG t  x , 

then for mt t   , (0,2) ( )

2( , ) 0i

mG t  x  will be true.  The analytical conditions for the vanishing of 

stuck motion are further simplified and given below for , {2,3},     . 

(0,3) ( ) ( ) ( )

3

(0,2) ( ) ( ) ( ) ( ) ( )

2 32 2

(1,2) ( )

( , ) ( , ) 0

( , )  ( , ) 0 from

( , ) 0

i i i

m m m m

i i i i i

m m m m
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m m

G t F t

G t F t

G t
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x x
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In Figure 3.3, a leaving flow from the boundary to domain is presented when the vanishing of 

stuck motion occurs. The solid red circle represents the static position where the bolster and 

wedges are stuck against the wall. The solid grey curve shows the motion leaving the stuck 

position. The dashed and solid vectors labeled ( )

2 ( , )i tF x  and ( )

3 ( , )i tF x  illustrate the vector fields 

in the domains 2  and 3 , respectively. In Figure 3.3(a), the motion is from the boundary (1)

23  

to domain (1)

2 . Due to (1) (1)

2 ( , ) 0m mF t x  with (1,2) (1)( , ) 0m mG t x , then (1) (1)

2 ( , ) 0m mF t  x  for 

0  . In a similar manner, Figure 3.3(b), a leaving motion is from the boundary (1)

32  to domain 

(1)

3  because (1) (1)

3 ( , ) 0m mF t x  with (1,2) (1)( , ) 0m mG t x , then (1) (1)

3 ( , ) 0m mF t  x  for 0  .   

From Eq.(58) for 1i  ,  when (1) (1)

2 ( , ) 0m mF t x ,  we have (1,2) (1)( , ) 0m mG t x .  As a result, at 

the next moment (1) (1)

2 ( , ) 0m mF t  x  would be negative and the stuck conditions of Eq.(49) would 

be satisfied.  This phenomena is called the grazing of stuck, and the conditions are described as   

(0,3) ( ) ( ) ( )

3

(0,2) ( ) ( ) ( ) ( )

2 23

(1,2) ( )
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x
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32on i









 
 

 
 

                        (60) 

Consider the grazing of the stuck motion on the boundary 32  for 1i  , then (1) (1)

3 ( , ) 0m mF t  x  

and (1) (1)

2 ( , ) 0m mF t x .  However, due to (1,2) (1)( , ) 0m mG t x , at the next instance, we have  

(1) (1)

2 ( , ) 0m mF t  x  and the stuck motion conditions of Eq.(53) will be satisfied.  
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Figure 3.3. Vanishing of stuck motion:  (a) from ( )

32

i  to 
( )

2

i  and (b) form ( )

23

i  to 
( )

3

i . 
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3.2 Free-flight and stick motions 

 To discuss the free-flight and stick motions, the relative coordinate system is adopted. From 

Eq.(30), the relative coordinate systems is utilized to define the following two functions for 

, {2,3},     .    

( )

(0, ) ( ) ( ) ( ) ( ) ( ) (0) ( ) ( )( , , )  ( , , ) ( , , ) ,i

i i T i i i i i

m m mG t t t




         
    z x n g z x g z x                  (61) 

( )

( )

(1, ) ( ) ( ) ( ) ( ) ( ) (0) ( ) ( )

( ) ( ) ( ) (0) ( ) ( )

( , , ) 2 [ ( , , ) ( , , )]

+ [ ( , , ) ( , , )].

i

i

i i T i i i i i

m m m

T i i i i i

m m

G t D t t

D t D t







       

     

  

 

  

 

z x n g z x g z x

n g z x g z x
               (62) 

For the free-flight impact chatter, from Eq.(33) the normal vector ( )
1
i


n  to the boundary ( )

1

i

  is  

( )
1

T
( ) ( )

( ) T

( ) ( )
, (1,0) .i

i i

i

i iz z

 



 

 




  
       

n                       (63) 

Therefore, equations (61) and (62) give 

( )
1

( )
1

(0,1) ( ) ( ) T ( ) ( ) ( ) ( )

1 1 1 1 1 1

(1,1) ( ) ( ) T ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1

( , , ) ( , , ) ,

( , , ) ( , , ) ( , , ).
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i i i i i i

m m

i i i i i i i i

m m m

G t t v

G t D t g t





 

 

  



   

z x n g z x

z x n g z x z x
                 (64) 

From Luo (2009) and (2012), the analytical conditions for grazing motions on the impact 

boundary are 

( ) ( ) ( ) ( ) ( )

1 1 1 1 1( ) 0 and ( 1) ( , , ) 0     on i i i i i i

m mv t g t     z x                              (65) 

For 1i  , the bolster and wedges just contact, the conditions in Eq.(62) give (1)

1 ( ) 0mv t   and 

(1) (1) (2)

1 1 2( , , ) 0mg t  z x . For mt t  , the relative velocity (1)

1 ( ) 0mv t    because (1)

1 0g  .  With 

negative relative velocity, the relative displacement (1)

1 ( ) 0mz t    will be satisfied.  In other 

words, the bolster remains in (1)

1 .  Such a phenomenon is called grazing motion to the boundary 

(1)

1 , as shown in Figure 3.4.  The black curve in (1)

1  approaches the boundary (1)

1  but turns  



34 

away without interaction to the boundary. 

From Luo (2009) and (2012), the passable motion to the boundary 
( )i

  is guaranteed by  

( ) ( )

(0, ) ( ) ( ) (0, ) ( ) ( )

T ( ) ( ) ( ) T ( ) ( ) ( )
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z x z x

n g z x n g z x
              (66) 

Passable motion to the boundary 
( )i

  means the onset of stick motion (i.e., the bolster and 

wedges move as one). From Luo (2009) and (2012), the conditions for stick motion can also be 

written as   

( )
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   (67) 
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Figure 3.4. Free-flight motion grazing at 
(1)

1 . 
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With Eq.(36), the normal vector ( )i


n  to the boundary 
( )i

   for , {1,2,3},      is 

( ) ( )
21 31

T(0,1) .i i
 

 n n                          (68) 

The G-function in Eq,(67) is  
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( , , )  ( , , )

(
( , , ) ( , , )

i

i

i i i i i i i i

m m m

i i i i i

m m

i
i i i i i i

G t t g t

G t D t

g
g t t







       



    

 
     

  

 

   

 


   

z x n g z x z x

z x n g z x

z
z x g z x

) ( ), , )
.

i i t

t










 

x

           (70) 

For motion entering domain 3  from 1 , the passable conditions in Eq.(67) is  

(0,1) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 ( ) ( )

1 3(0,3) ( ) ( ) ( ) ( ) ( )

3 3 3 3 3

( 1) ( , , )  ( 1) ( , , ) 0,
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i i i i i i i

m m i i

i i i i i i i

m m

G t g t

G t g t

 

 

    
 

    

z x z x

z x z x
          (71) 

The conditions for motion from domain ( )

1

i to ( )

2

i   are given by 

(0,1) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 ( ) ( )

1 2(0,2) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2

( 1) ( , , )  ( 1) ( , , ) 0,
for .

( 1) ( , , )  ( 1) ( , , ) 0

i i i i i i i

m m i i

i i i i i i i

m m

G t g t

G t g t

 

 

    
 

    

z x z x

z x z x
        (72) 

The foregoing equation gives the analytical conditions for stick motion of the bolster and edges. 

The relative force per unit mass (or relative acceleration) in (1) (1)

2 1and   must be negative on 

the boundary (1)

21 . Also, the relative acceleration in (1) (1)

3 1and   must be negative on the 

boundary (1)

31 . The stick conditions of Eq.(71) gives 

(1) (1) (2) (1) (1) (2)

1 1 1 3 1 1g ( , , ) 0 and g ( , , ) 0.m mt t  z x z x                                   (73) 

From Eq.(36), the stick motion requires that the relative displacement and velocity equal zero 

(i.e., 
(1)

1 0z   and 
(1)

1 0z  ). The conditions for stick motion are depicted in the absolute 

coordinate system in Figure 3.5.  
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Figure 3.5. Stick motion on (1)

13  in the phase plane of bolster. 

 

The vanishing of the stick motion requires that the normal force between the bolster and wedges 

equal zero, thus the relative force per unit mass must also be zero. From [Luo, 2009, 2012], the 

analytical conditions for stick vanishing  for 2,3   and 1   are given by  

( )

( )

( )

(0, ) ( ) ( ) T ( ) ( ) ( )

(0, ) ( ) ( ) T ( ) ( ) ( )

(1, ) ( ) ( ) T ( ) ( ) ( )

( 1) ( , , )  ( 1) ( , , ) 0,

( , , )  ( , , ) 0,

( 1) ( , , )  ( 1) ( , , ) 0

i

i

i

i i i i i i i

m m

i i i i i

m m

i i i i i i i

m m

G t t

G t t

G t D t









    



    



    

 



 

    

  

    

z x n g z x

z x n g z x

z x n g z x

( )

( ) for   i

i












n       (74) 

In Eq.(74), (1, ) ( ) ( )( , , )i i

mG t

  z x  can be considered as the relative Jerk and is determined by   

(1, ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( ) 2 ( )

( , , ) 2 ( ) sin

2 ( ) .

i i i i i i i

i i i i i

G t z z Q t

x x x



      

    

 

 

     

  

z x
                                 (75) 

For , {1,2,3},     , the analytical conditions for stick vanishing from domain ( )

2

i   and 

entering domain ( )

1

i  become 
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Similarly, the conditions for stick vanishing of domain ( )

3

i  and entering domain ( )

1

i  become 
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z x z x

z x z x

z x

     (77) 

For 1i   in Eq.(76), we have (1) (1) (2)

1 1 1( , , ) 0mg t z x . Because (1,1) (1) (2)

1 1( , , ) 0mG t  z x , for mt t   , 

(1) (1) (2)

1 1 1( , , ) 0mg t  z x .  This implies that the relative acceleration of the bolster to the wedge is 

positive, and in the next moment the two oscillators must move apart. In Figure 3.6, the 

vanishing of stick motion in Eq.(76) is sketched.  
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Figure 3.6. Stick motion vanishing on 
(1)

21 . 
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From Eq.(23), ( ) ( ) ( )g ( , , )i i i t  z x  is equivalent to ( ) ( ) ( )g ( , , )i i i t  z x  because ( )i

x  is a function of 

time and the calculation of (1, ) ( ) ( )( , , , )i iG t

 z x  from Eq.( 75) is given by 

(1, ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( ) 2 ( )

( , , ) 2 ( ) sin

2 ( ) .

i i i i i i i

i i i i i

G t z z Q t

x x x



      

    

 

 

     

  

z x
                            (77) 

Therefore, the function (1, ) ( ) ( )( , , )i iG t

 z x  is a relative jerk in domain ( )i

 .  From Eqs.(29) and 

(31), the relative jerk is given by  

( ) ( ) ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( ) 2 ( )

( ) 2 ( ) sin

2 ( ) .

i i i i i i

i i i i i

J t z z Q t

x x x

     

    

 

 

     

  
                                   (78) 

The function ( ) ( ) ( )g ( , , )i i i t  z x  is a relative acceleration or a relative force per unit mass. From Luo 

(2008) and (2009), the grazing of stick motion requires 

( )
21
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( , , )  ( , , ) 0
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(
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n

z x z x
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)

( )

1 .i        (80) 

In Figure 3.7, an illustration of grazing motion is presented to help understand the analytical 

grazing conditions in Eq.(80).  The blue circle designates the starting point within the stick 

domain (1)

2 .  With (0,2) (1) (2)

2 2( , , ) 0G t z x , the solid black curve approaches the boundary (1)

21 .  

Upon reaching the boundary at time mt , (0,2) (1) (2)

2 2( , , ) 0mG t z x . However (1,2) (1) (2)

2 2( , , ) 0mG t z x  

so for mt t   , (0,2) (1) (2)

2 2( , , ) 0mG t  z x  will be true.  With the stick motion conditions of 
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Eq.(73), the  wedge and bolster will remain in 2 .  Furthermore, with (0,2) ( )( , ) 0i

m mG t  z  the 

solid black curve in Figure 3.7 will move to back to domain 2 to keep contact without 

interaction to the boundary 21 .  

 

 

( )

2

i

( )

3

i

(1)

21

(1)

13
(1)

1

31n  mt  

(0,2) (1) (1)

2 2( , , )mG t z x  

(0,2) (1) (1)

2 2( , , )mG t z x  (1)x  

(1)y  

 

Figure 3.7: Grazing of stick motion at ( )

21

i . 
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CHAPTER IV 

MOTION DESCRIPTION 

To discuss periodic impacting chatter with and without stick in the freight train 

suspension system, the mapping structure will be introduced through the boundaries.  Before the 

mapping structure for a prescribed impacting chatter motion is developed, the switching planes 

will be defined first, and from the switching planes, the basic mappings will be developed for the 

mechanical model.  Basic mappings will also be defined in the relative frame.  A bifurcation 

scenario will be presented to illustrate complicated motions of the freight train suspension 

system.   

 

4.1 Switching Sets and Basic Mappings 

For a periodic motion with stick motion in the train suspension system, consider the case 

when the bolster and wedges are sticking together always. Since the discontinuity results from 

the friction force sign change, the switching planes for stick are defined at zero velocity. 

However, from Luo & Gegg (2005) and Luo (2009) and (2012), the oscillators may stick to the 

velocity boundary. From Eq. (19), the corresponding switching planes are defined as  

 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

23

( ) ( ) ( ) ( ) ( ) ( ) ( )

32

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

( , , , ) 0,  0 ,

( , , , ) 0,  0 ,

( , , , ) ,  0 .

i i i i i i i

k k k k k k k

i i i i i i i

k k k k k k k

i i i i i i i

k k k k k k k

t x x x x x x

t x x x x x x

t x x x x x x

    



     

   


         (81) 

The switching planes ( )

23

i  and ( )

32

i  define the switching sets for the zero velocity boundary 

having a positive or negative displacement, respectively. The switching plane ( )

0

i  defines the 

switching set for the zero velocity boundary to stuck with two side walls.  
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(a)
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(b)
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0P ( )ix  

( )
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32

i
( )

23

i

 

 

Figure 4.1. Mapping: (a) stick and (b) stuck motion. 
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From the above switching planes, the mappings are defined as 

( ) ( ) ( ) ( ) ( ) ( )

0 0 0 1 32 23 2 23 32: , : ,  : .i i i i i iP P P                (82) 

The 0P  mapping is where the bolster and two wedges are stuck together, but the combined 

system is also stuck to the wall (i.e., the bolster does not move). The other two mappings ( 1P  and 

2P ) are stick motions with positive and negative velocities, respectively. The switching phase is 

defined by mod( ,2 )k kt   . To illustrate the stick mappings,  
1P  and 

2P  are illustrated in 

Figure 4.1 by the curves with positive and negative velocity, respectively. Since velocity is zero 

for the stuck mapping 0P , the entire mapping exists as a single point on the phase plane. But, 

with varying time, the force will be changed, and the stuck motion will start once the force 

condition is satisfied.  

From the discontinuous boundaries, the switching plane based on the impacting chatter 

boundary is defined as  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ( , , , ) ,i i i i i i i i

k k k k k k k kt x x x x x x x                       (83) 

for ( {1,2}i,i  and i i ). From now on, ( ) ( ) ( )i i

k kx x t  and ( ) ( ) ( )i i

k kx x t  are switching 

displacement and velocity on the separation boundary at time kt .  

Based on the above definition of switching plane, a single mapping for impacting chatter is 

defined in the absolute frame as  

 ( ) ( )

5 1 1: .i iP                                      (84) 

In Figure 4.2, the 5P  map is illustrated through the curves that connect the switching planes ( )

1

i

 . 

The bolster and two wedges come into contact with repeated impacts but do not stick together 

(i.e., always free-flight).  



43 

 
(1)y  

(1)x  

(1)

1(1)

1

(1)

1(1)

1

5P

5P

5P

 

Figure 4.2. The free flight to impacting chatter map 5P . 

 

For the passable stick boundaries ( )

21

i  and ( )

13

i , the corresponding switching sets are 

defined as  

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

21

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

13 1

( , , , ) ,  0 ,

( , , , ) ,  0 .

i i i i i i i i

k k k k k k k k

i i i i i i i i

k k k k k k k

t x x x x x x x

t x x x x x x x

    



     


       (85) 

Since the stick boundaries separate the free-flight and stick domains, the mappings for other 

motions in the mixed domains are defined as  

( ) ( ) ( ) ( )

3 32 21 4 21 1

( ) ( ) ( ) ( )

5 1 1 6 13 32

: ,  : ,  

: , : .

i i i i

i i i i

P P

P P



 

    


    

                 (86) 

Upon stick motion separation the motion is described by 3P , and for repeated impacts the motion 

is described by 4P . The mappings based on the sticking and impacting switching planes are 

presented in Figure 4.3. 
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Figure 4.3. Mixed domain mappings with free-flight, chatter, and stick switching. 

 

 

4.2 Algebraic equations for mappings 

For mappings in the absolute and relative frames, set the vectors as 

( ) ( ) ( ) T ( ) ( ) ( ) T( , , , ) ,  and ( , , , )i i i i i i

k k k k k k k k k kt x x x t z x x y w                                (87) 

For impacting maps P ( 4,5  ) in the absolute coordinate,  1k kP y y  can be expressed by 

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1: ( , , , ) ( , , , )i i i i i i

k k k k k k k kP t x x x t x x x                                           (88) 

From Appendix A, the absolute displacement and velocity for two gear oscillators can be 

obtained with initial conditions ( ) ( )( , , )i i

k k kt x x  and ( ) ( )( , , )i i

k k kt x x .  The switching planes require 

( ) ( )i ix x   where ( , 1k k   ), so the final state for time 1kt    can be given.  The four equations 

of displacement and velocity for two oscillators give a set of four algebraic equations, i.e.,  
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( )

1( , ) 0k k



 f y y ,                                                        (89) 

where 

( ) ( ) ( ) ( ) ( ) T

1 2 3 4( , , , )f f f f    f .                                              (90) 

For the impact mapping itself, Eq.(86) can be determined from the impact relationships as 

  

( )

1 1

( ) ( ) ( )

2 1

( ) ( ) ( ) ( ) ( ) ( )

3 1 1 2

( ) ( ) ( ) ( ) ( ) ( )
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f x I x I x

















 


  


   


   

    (91) 

For the stick motion, the displacement and velocity of the ith oscillator will be adopted.  In 

addition, the stick vanishing conditions in Eqs.(75)  and (77) will be used. 

( ) ( )

1 1

( ) ( ) ( ) ( )

1 1 1 1

,

( , , , ) 0.

i i

k k

i i i i

k k k k

x x

g t x x x

 

   

 


 

                                                 (92) 

With the condition ( ) ( )i ix x   for ( , 1k k   ), the algebraic equations in Eq.(90) can be 

obtained.  If a mapping starts or ends at the stick boundary, the corresponding displacement plus 

the following equation can be employed to obtain Eq.(92).  

( ) ( ) for { , 1}i ix x k k                                                         (93) 

Based on the relative coordinate ( ) ( )( , )i iz z , the relative displacement and velocity can be used 

with the initial condition ( ) ( )(t , , )i i

k k kz z  on the switching boundary.  The displacement and velocity 

with an initial condition ( ) ( )(t , , )i i

k k kx x  can be given.  With conditions 
( ) 0iz   for ( , 1k k   ), 

the relative and absolute displacements and velocities generate a set of four algebraic equations 

as   

( )

1( , ) 0k k



 h w w                                                         (94) 
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where 

( ) ( ) ( ) ( ) ( ) T

1 2 3 4( , , , ) .h h h h    h                                                  (95) 

In a similar fashion, for stick motion, the stick vanishing condition in Eq.(73) gives 

( ) ( )

1

( ) ( ) ( ) ( )

1 1 1 1

0,

( , , , ) 0.

i i

k k

i i i i

k k k k

z z

g t x x x



   

  


 

                                                (96) 

If a mapping starts or ends at the stick boundary, the relative displacement plus the following 

equation can be used to obtain Eq.(94).  

( ) 0 for { , 1}.iz k k                                                        (97) 

For the impact mapping in relative coordinates, the corresponding functions in Eq.(94) are  

2

1 2
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1 1

( ) ( ) ( )

2 1

( ) ( ) ( )

3 1

(1 )( ) ( ) ( ) ( ) ( )
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k k

i i

k k

mi i i i

k k k km m

h t t

h x x

h z ez

h x x z z

















 

 


  


  


    

                                          (98) 

For simplicity of mapping structures of periodic motions, the impact mapping will be dropped 

from now on, but the impact relation will be embedded.  For stuck motion mapping 0P , the 

system of equations to connect the switching points before and after stuck motion are given by 

(0)

1

( ) ( ) ( ) ( )

2 3

( , ) 0,

( , ) ( , ) 0

k k

i i i i

k k k kF t F t

 

 

f y y

x x
               (99) 
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4.3 Mapping structures 

To investigate periodic motions in such a freight train suspension system, the notation for 

mapping actions of basic mappings is introduced as in Luo (2009) and (2012)  

1 0 1 0k kn n n n n nP P P P                (101) 

where the mapping 
jnP (  0,1, ,6jn  , 1,2, ,j k ) is defined in the previous section. 

Consider a generalized mapping structure as 

4 3 2 1 31 4 3 2 1 3141 21 11 41 21 11(65 432 1 0 ) (65 432 1 0 ) (65 432 1 0 ) (65 432 1 0 )
k k k k k k k k k kk k k k k ks s s s s s s s

s terms

P P P



                     (102) 

where ( {0, },k  1,2, , s  , 1,2,3,4  ).  From the generalized mapping structure, 

consider a simple mapping structure of periodic motions for impacting chatter with stick and 

stuck motion.  For instance, the mapping structure is  

6 4 3 065 430 5m mP P P P P P                                                 (103) 

where  0,m .  Such a mapping structure gives ( 1)m  impacts on the boundary 1   

which are described by mappings.  Consider a periodic motion of 
65 430mP  with period 1 1T k T  

( 1k  ).  If the mapping structure copies itself, the new mapping structure is: 

2(65 430) 65 430 65 430m m mP P P                                                   (104) 

The periodic motion of 2(65 430)mP  is obtained during a period of 12T .  In a similar fashion, such an 

action of mapping structure continues to copy itself with period- 12l T .  

1 12 2 2(65 430) (65 430) (65 430)
l l lm m m

P P P                                              (105) 

As l  , a chaotic motion relative to mapping structure 
65 430mP  is formed. The prescribed chaos 

is generated by period-doubling. However, if grazing bifurcation occurs, such a mapping 
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structure may not be copied by itself.  The new mapping structures are combined by the two 

different mapping structures.  For instance,   

2 1 2 1

1 1

(65 430)(65 430) 65 430 65 430

(65 430) (65 430) 65 43065 430

,

.

m m m m

ml m m ml

l terms

P P P

P P P







                                        (106) 

Such a grazing bifurcation will cause the discontinuity of periodic motions, and chaotic motions 

may exist between periodic motions 1(65 430) (65 430)ml mP  and 1 1(65 430) (65 430)ml mP  . If the wedge and 

bolster do not have free-flight motion or remain in stick motion always, the mapping structure 

may take the general form  

 
3 3 312 1 2 1 21 112 1 0 2 1 0 2 1 0

k k kk k ks ks k ks

s terms

P P P



             (107)   

In a similar manner above, the period doubling and grazing bifurcation for stick can be discussed.   

 

4.4 Bifurcation scenario 

From the motion mappings, a bifurcation scenario can be presented through the switching 

displacements, velocities, and phases of the wedge and bolster.  All the numerical computations 

are completed from the closed-form solutions in Appendix A.  Herein, a set of system parameters 

( 1 3,m   2 1,m   1 2 0.1,r r   1 2 20,k k   0 20,A   0.4k   37.5 ,    and 0.6e  ) are 

considered to investigate the mechanical model. The impacting chatter with and without stick 

varying with excitation frequency are presented in the following figures.  The switching phase 

k kt  , displacement (1)

kx  are shown Figure 4.4 while the two switching velocities (1)

ky  and 

(2)

ky  of the bolster and wedges are shown in Figure 4.5. For the range of frequencies labeled 

“Chatter w/stick”, (0.001,1.662) , the motion consists of multiple chatter impacts which 
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(a)  

 

(b)  

 

Figure 4.4. Bifurcation scenario for switching: (a) phase and (b) displacement,  
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(a)  

 

(b)  

 

Figure 4.5. Bifurcation scenario for switching: (a) bolster velocity and (b) wedge 

velocity.  
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lead to stick motion as well as the possibility of stuck motion.  For 1.662 , the stick motion 

no longer occurs. The “C-chatter” and “S-chatter” describe the ranges for complicated and simple 

impacting chatters without stick, respectively. For higher frequencies  5.791,11.940  and 

 16.520,21.500 , the impacting chatter motion possesses a simple mapping structure, 

namely 
5P . However, for the range  11.940,16.519  the motion consists of chaotic 

impacting chatters.   

 

Table 4.1. Summary of excitation frequency for impacting chatter with stick. 

Mapping Structure Excitation Frequency,   

5P  P(2T) (16.520,21.500) 

 chaos (11.940,16.519) 

55P  P(2T) (5.748,5.791) 

555P  P(2T) (4.926,6.059) 

2(555)
P  P(4T) (5.026,5.426) 

5P  P(T) (2.71,5.779), (5.791,11.940) 

55P  P(T) (3.959,4.889) 

2(55)
P  P(2T) (3.675,3.9543) 

35
P  P(T) (2.866,3.495) 

45
P  P(T) (2.648,2.9465) 

55
P  P(T) (2.585,2.69424) 

65
P  P(T) (2.382,2.4351) 

22435
P  P(T) (1.748,2.316) 

224365
P  P(T) (1.667,1.747) 
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Table 4.2. Summary of excitation frequency for impacting chatter with stuck. 

Mapping Structure Excitation Frequency,   

23435
P   P(T) (1.748,2.316) 

224365
P  P(T) (1.667,1.747) 

2243015
P  P(T) (1.408,1.662) 

194302015
P  P(T) (1.3916,1.4066) 

1943020165
P  P(T) (1.3830,1.3914) 

204302015
P  P(T) (1.3754,1.3828) 

204302065
P  P(T) (1.3692,1.3752) 

20 20(43065 )(4302065 )
P  P(2T) (13618,1.3690) 

20 21(43065 )(4302065 )
P  P(2T) (1.3566, 1.3616) 

21 2(43065 )
P  P(2T) (1.352,1.3564) 

2243065
P  P(T) (0.910,1.330) 

2143065
P  P(T) (0.7254,0.816), (1.3310,1.3515) 

224302065
P  P(T) (0.710,0.7252), (0.8169,0.909) 

(43065 )m NP  P(NT), ( 1,2,3,... )m k  (0.001,0.709) 

 

 

This pattern of a range of simple impacting chatter switching to a range of chaotic impacting 

chatter is repeated each time for the excitation frequency near the system’s natural frequency.  

Details of the mapping structures for impacting chatter with and without stick are tabulated in 

Table 1 and Table 2, respectively. 
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CHAPTER V 

GENERAL PREDICTION RESULTS 

In this Chapter, the analytical prediction of periodic motion will be completed through the 

mapping structure, and the corresponding local stability and bifurcation analysis will be carried 

out through the eigenvalue analysis.  The generalized methodology for analytical prediction and 

stability analysis of periodic motions will be presented first.  The two periodic motions with and 

without stick will be discussed.  The switching displacement, velocity, and phase varying with 

excitation frequency will be given.  Finally, the stability and bifurcation analysis will be 

presented through the eigenvalues of the prescribed periodic motions. 

 

5.1 Periodic Motions 

 From mapping structures of periodic motions, the switching sets for any specific periodic 

motion can be determined through solving a set of nonlinear algebraic equations.  Consider a 

periodic motion of mapping structure
4 3 2 1 3141 21 11(65 432 1 0 ) (65 432 1 0 )

k k k k kk k ks s s s
P and the following relation 

holds.   

44 3 2 1 3141 21 11

1 1

(65 432 1 0 ) (65 432 1 0 )
2

k k k k k sk k ks s s s

mj

m j

k
k s k

P

 

 




y y                                  (108) 

where ( ) ( ) ( ) T( , , , )y
i i i

k k k k kt x x x .  A set of vector equations is as 
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where ( ) ( ) ( ) ( ) ( ) T

1 2 3 4( , , , )f f f f f     is relative to governing equations of mapping P  

(  1,2, ,6  ).  The periodicity of the period-1 motion per N-periods requires 

4

1 1

2

s

mj

m j

k
k s k

 

 




y y                                                        (110) 

or 

 

4 4 4

1 1 1 1 1 1

4

1 1

( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2

,  , ,

2 .

s s s

mj mj mj

m j m j m j

s

mj

m j

i i i i i i

k k k
k s k k s k k s k

k
k s k

x x x x x x

t t N

     

 

     

 

  
  



    
 

                     (111) 

Solving Eqs.(109) and (110) generates the switching sets for periodic motions.  Once the 

analytical prediction of any periodic motion is obtained, the corresponding stability and 

bifurcation analysis can be completed.  

 

5.2 Stability 

The local stability and bifurcation for such a period-1 motion is determined through the 

corresponding Jacobian matrix of the Poincaré mapping.  From Eq.(109), the Jacobian matrix is 

computed by the chain rule, 
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4 3 2 1 3141 21 11

4 3 2 1

(65 432 1 0 ) (65 432 1 0 )

6 5 4 3 2 1 0

1

k k k k kk k ks s s s

m m m m

n
k k k k

m

DP DP

DP DP DP DP DP DP DP





                           (112) 

where 

( ) ( ) ( )

1 1 1 1

( ) ( ) ( )

( , , , )

( , , , )

i i i

i i i

t x y y
DP

t x y y

   


   

   
  

  
  

                                     (113) 

for 
4

1 1
, 1, , 2 1

s

mjm j
k k k s k

 
      , and all the Jacobian matrix components can be 

computed through Eq.(96).  The variational equation for a set of switching points  

4

1 1

* *

2 1

{ , , }s

mj

m j

k
k s k

 

  
y y  is  

4

1 1

*

2

( ) .s

mj

m j

k k
k s k

DP

 

 

  


y y y                                               (114) 

A derivation of Eq.(109) is shown in Appendix C.  The eigenvalues are computed by  

| I | 0.DP                                                            (115) 

The Jacobian matrix DP  is 4x4, and the eigenvalues can be determined by the QR factorization.  

A C++ version of the QR factorization is shown in Appendix D. Because DP  is a 4x4 matrix, 

there are four eigenvalues.  If the four eigenvalues lie inside the unit circle, then the period-1 

motion is stable.  If one of them lies outside the unit circle, the periodic motion is unstable.   

i. If the eigenvalues to be 

 1,  1,2,3,4 .j j                                                    (116) 

the periodic motion  is table. 

ii. If the magnitude of any eigenvalue is greater than one,  

 | | 1, {1,2,3,4}j j                                                    (117) 
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the periodic motion is unstable.  The corresponding bifurcation conditions are summarized as 

follows. 

i. For  | | 1 3,4j j    and real   1,2j j  , if  

 max{ ,  1,2} 1,  min{ ,  1,2} 1,1j jj j      ,                               (118) 

then the saddle-node (SN) bifurcation occurs; if 

 min{ , 1,2} 1,  max{ , 1,2} 1,1j jj j       ,                              (119) 

then the period-doubling bifurcation occurs. 

ii. For  | | 1 3,4j j    and complex   1,2j j  , if  

    | | 1 1,2 ,j j                                                          (120) 

then the Neimark bifurcation occurs. 

 

 

5.3 Impacting Chatter Prediction  

Using the mapping structure in Eq.(102), all the periodic motions for the entire range of 

excitation frequency can be determined analytically.  The mapping structure gives the nonlinear 

algebraic equations similar to Eqs.(99) and (100), which can be solved by the Newton-Raphson 

method.  Once the first solution is obtained, the rest of the solutions with varying parameters can 

be determined through the corresponding mapping structure.  The generic parameters ( 1 3,m   

2 1,m   1 2 0.1,r r   1 2 20,k k   0 20,A   0.4k   37.5 ,    and 0.6e  ) are also used for 

the analytical prediction of periodic motions.  Firstly, the analytical prediction of the simplest 

periodic motion 5P   is shown in Figures 5.1 and 5.2. The switching phase and displacement of 
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the bolster (i.e., (1)

ky  ) is plotted in Figure 5.1(a) and (b), respectively.  The solid black curve 

represents the stable periodic switching phase and displacement while the red dashed curve 

represents the unstable periodic switching solutions. Also, the solid blue curve describes the 

switching sets for 55P  after period doubling motion occurs at 5.80 .  Note, at switching 

points, the switching phase and displacement of the bolster and wedge are identical since they 

make contact at  (1) (2)

k kx x  and the wedges have no forcing function. The switching velocities for 

each oscillator is presented in Figure 5.2.  Due to the impact relationships defined in Chapter 1, 

the switching velocity sets are only recorded just before impact.   

The corresponding eigenvalues to the analytical prediction of 5P  periodic motion are 

presented in Figure 5.3.  From local stability analysis gives the excitation frequency range for 

stable and unstable periodic motion.  The stable range for periodic motion 5P  is found for the 

three sets 16.520,21 0( ).50 , 2.71,5. 9( )77 , and 5.791,11. 0( )94 . Again, the solid 

black curves and dashed red curves correspond to stable and unstable switching sets, 

respectively. Note, the vertical dashed lines show the bifurcation points. Also, “GB” stands for 

grazing bifurcation, “NB” stands for Neimark bifurcation, and “PD” stands for period doubling. 

From Figure 5.3(a), period doubling occurs when the real part of one eigenvalue equals -1.0 at 

5.791 . The range for stable 55P  is 5.748,5. 1( )79  with the motion disappearing from a 

grazing bifurcation at 5.748 . In Figure 5.4, the eigenvalue magnitudes are plotted to help 

show the Neimark bifurcation points. To verify the stability of the period doubling solution 55P , 

the corresponding eigenvalues are plotted in Figure 5.4(b).  
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Figure 5.1. Analytical prediction of (a) switching phase and (b) displacement for 5P . 

 



59 

(a) Excitation Frequency, 

0.0 6.0 12.0 18.0 24.0

S
w

it
ch

in
g

 V
el

o
ci

ty
, 
y k(1

)  

-18.0

-13.0

-8.0

-3.0

2.0
GB NB NBNBNBPD

5.72 5.76 5.80
-2.8

-2.0

-1.2 PDGB

 

 

(b) Excitation Frequency, 

0.0 6.0 12.0 18.0 24.0

S
w

it
ch

in
g

 V
el

o
ci

ty
, 

y k(2
)  

-4.0

0.0

4.0

8.0
GB NB NBNBNBPD

PDGB

5.72 5.76 5.80
0.8

1.4

2.0

  

Figure 5.2. Analytical prediction of switching velocities for 5P . 
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Figure 5.3. Analytical eigenvalues (a) 1,2,3,4Re( )  and (b) 1,2,3,4Im( )  for 5P . 
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Figure 5.4. Magnitude of eigenvalues for (a) 5P  and (b) 55P . 
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5.4 Impacting Chatter with Stick and Stuck Prediction  

The analytical prediction of periodic motions with stick and stuck motion is also given 

herein.  Using the generic parameters ( 1 3,m   2 1,m   
1 2 0.1,r r   1 2 20,k k   

0 20,A   

0.4k   37.5 ,    and 0.6e  ), the corresponding switching sets varying with excitation 

frequency are presented in Figures 5.5 through 5.9. Because the computational time is very 

consuming, the impacting chatters with stick and stuck are predicted only in the range of 

excitation frequency (0.710,2.316) .  In Figure 5.5(a), the switching phase is plotted for the 

complete set of impacting chatter with stick and stuck. For the range, (1.667,2.316)  there is 

impacting chatter and stick motion. On the other hand, for the range (0.710,1.662)  there is 

both impacting chatter with stick as well as stuck motion. Recall, stuck motion is defined by the 

0P  map. Due to the complicated motion switching, Figure 5.5(b) describes in more detail the 

switching phase solutions and mapping structures for the excitation frequency (1.35,1.40) . 

The eigenvalues of impacting chatter with stick and stuck motion are presented in Figure 

5.9.  Note that eigenvalues 3,4  are necessarily zero for the entire range of stick motion. 

Moreover, for stuck motion, the eigenvalues 2,3,4  are necessarily zero. In Figure 5.9(a), the 

vertical dashed lines labeled “SB” represents the stick bifurcations. On the far right, the 

impacting chatter with stick disappears after 2.316 .  Consider the range (1.408,1.662)  

with mapping structure 2243015
P , the end of stuck motion occurs with a saddle node bifurcation at  

1.662 . Finally, in impacting chatter to stick motion computation, the computational criterion 

(1) (2) 6| | 10k kx x    was embedded as a tolerance to minimize the number of impacts before 

considering the stick conditions.  
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               (a)  

 

(b)  

Figure 5.5. Analytical prediction of (a) switching phase (b) zoomed (1.35,1.40)  portion 

for chatter with stick and stuck. 
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            (a)  

 

(b)  

Figure 5.6. Analytical prediction of (a) switching displacement and (b) zoomed 

(1.35,1.40)  portion for chatter with stick and stuck. 
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(a)  

 

(b)  

Figure 5.7. Analytical prediction of (a) switching velocity 
(1)y  and (b) zoomed 

(1.35,1.40)  portion for chatter with stick and stuck. 
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(a)  

 

(b)  

Figure 5.8. Analytical prediction of (a) switching velocity 
(2)y  and (b) zoomed 

(1.35,1.40)  portion for chatter with stick and stuck. 
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Figure 5.9. Magnitude of eigenvalues for chatter with stick and stuck. 
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5.5 Numerical Simulation of Periodic Chatter   

Numerical illustrations of periodic motions will help one better understand the motion 

mechanisms of such a mechanical model for a train suspension system.  From the analytical 

prediction of simple impact chatter, the periodic motions will be plotted to illustrate the basic 

impact phenomena. In addition, the analytical condition for stick motion will be shown to not be 

satisfied during simple impacting chatter. For the parameters ( 1 3,m   2 1,m   1 2 0.1,r r   

1 2 20,k k   0 20,A   0.4k   37.5 ,    and 0.6e  ), consider the excitation frequency 

6.0 . The analytical prediction gives the initial condition (i.e., 0 =0.54879846t   

(1)

0 0.3097066x  , (2)

0 0.3097066x  , (1)

0 0.26900707y  , (2)

0 -1.51636088y  ) for the stable 

simple periodic impact 5P .   

With displacement and velocity time-histories, trajectories of the wedge and bolster are 

presented in Figures 5.10 and 5.11.  All the responses of the bolster and wedge are represented by 

the thick and thin curves, respectively.  The switching points before and after impacts are 

represented by the small circles. The large circle designates the initial condition for starting 

simulation while the vertical dashed line describes one period. From Figure 5.10(a), the bolster 

and wedge impact when their displacements are equal causing a velocity jump as seen in Figure 

5.10(b). To verify the periodicity of this simple impact chatter, Figure 5.11 shows the bolster and 

wedge phase plane trajectories for 5P . The single loop and velocity jump is observed for both the 

wedge and bolster. In Figure 5.12, the relative force and jerk are plotted to show why the wedge 

and bolster do not stick together. After impact, (1) 0g   and (2) 0g  . This means that the 

acceleration of the bolster is greater than that of the wedge indicating that the bolster will tend to 

move apart from the wedge (i.e., (1) (2)x x  which yields a positive relative velocity).   
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Figure 5.10. Displacement and velocity response for simple impacting chatter 5P  . 
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Figure 5.11: Phase plane trajectories for simple impacting chatter 5P . 
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Figure 5.12: Relative force and jerk response for simple for simple impacting chatter 5P . 

 



72 

5.6 Numerical Simulation of Chatter with Stick and Stuck Motion   

The impacting chatter with stick and stuck motion for the train suspension model will be 

discussed through the mapping structure of 215 4306
P .  For 1.35 , the same parameters as before 

( 1 3,m   2 1,m   
1 2 0.1,r r   1 2 20,k k   

0 20,A   0.4k   37.5 ,    and 0.6e  ) will be 

adopted for this illustration.  From the analytical prediction, the initial condition is selected from 

the switching point 
0 1.78307254t  , (1) (2)

0 0 -0.09712064x x  , and (1) (2)

0 0 -0.062413071y y  . 

From such an initial condition, the bolster and wedge begin with stick motion. During the stick 

motion, the two become stuck having zero velocity and acceleration. After a brief moment, they 

continue with stick motion until the analytical conditions allow for the wedge and bolster to 

separate.  After the stick vanishes, the two oscillators endure free-flying motion. Eventually they 

make contact with repeated impacts until finally (1) (2)

k ky y  and stick motion is observed.  

In Figure 5.13 the displacement and velocity trajectories are presented.  The shaded area 

is used for stick motion, and the letters “SSP” and “SEP” represent the stick motion starting and 

ending point, respectively.  The vertical dashed lines define the boundaries for stick and stuck 

motion. Accordingly, the letters “WS” describe the section of wall stuck motion. In Figure 

5.13(a), the displacement responses of the bolster and wedge are presented. After stick motion, 

the thick black curve and the thin blue curve describe the separate free-flight motions of the 

bolster and wedge, respectively.  Before stick motion is observed again, 21 impacts occur.  To 

further confirm the impacts, velocity responses for each oscillator are presented in Figure 

5.13(b).  Notice, during the wall stuck motion, the velocity is zero and the displacement remains 

constant. Also, as seen in the acceleration time-history, Figure 5.14(a) shows the acceleration to 

be zero during wall stuck motion. Near the end of the free-flight motion, the acceleration (1) 0a     
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and (2) 0a   is observed. This explains why the bolster and wedge are headed for collision, (i.e., 

the bolster’s velocity is decreasing while the wedge’s velocity is speeding up). After enough 

collisions to satisfy the condition (1) (2)y y , Figure 5.14(b) shows the normal Force between the 

wedge and bolster. At the onset and during stick motion, the normal force is positive. However, 

at stick motion vanishing, the normal force reduces to zero. Finally, the mapping structure can be 

realized through the phase plane trajectories of the bolster and wedge as shown in Figure 5.15.  

For a further understanding of the motion phenomena associated with the train suspension 

model, the analytical conditions introduced in Chapter 3 must be examined. In Figure 5.16(a), the 

g-function for wall stuck is plotted within the shaded region of stick motion. Observe that 

(1)

2 0F   and (1)

3 0F   for the duration of wall stuck. For vanishing stuck (1)

2 0F   and  (1)

3 0F  ; 

however in Figure 5.16(b), (2,1)

1 0G   which means in the next moment (1)

2 0F   thus satisfying 

the analytical vanishing stuck conditions. Next consider the motion mechanisms of stick motion. 

On the switching boundary with (1) (2)

k ky y , the stick motion requires (1) ( ) 0kg t  . In Figure 

5.17(a), the relative force (1) 0g   is satisfied. In other words, the bolster tends to push down 

relative to the wedge. With (2) 0g  , the wedge is pushing up relative to the bolster. For the 

vanishing of stick motion, it can be observed that the relative force (1) 0g   at the switching 

boundary. In Figure 5.17(b), the corresponding relative jerk (1) 0J   which means that for 

kt t   , (1) 0g  . Note, during stick motion, the relative displacement and velocity are zero. At 

the next moment with a positive relative force, (1) (1) (2) 0z y y    which means 

(1) (1) (2) 0z x x   , (i.e., (1) (2)x x ). In other words, the bolster and wedge lie in the state of 

free-flying motion, and the stick disappears. 



74 

(a) Time, s 

0.0 2.0 4.0 6.0 8.0 10.0

D
is

p
la

ce
m

en
t,

 x
(i

)

-0.2

0.0

0.2

0.4

x(1)

x(2)

1T

SSP SSP

SEP SEP

WS WS

 

 

(b) Time, s

0.0 2.0 4.0 6.0 8.0 10.0

V
el

o
ci

ty
, 
y(i

)

-0.6

-0.3

0.0

0.3

0.6

y(1)

1T

WS WS

SSP SSP

SEP SEP

y(2)

 

Figure 5.13. Displacement and velocity response for impacting chatter with stick and stuck 

motion 215 4306
P  . 
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Figure 5.14. Acceleration and Normal Force response for impacting chatter with stick and 

stuck motion 215 4306
P  . 
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Figure 5.15. Phase plane trajectories of bolster and wedge for impacting chatter with stick 

and stuck motion 215 4306
P  . 
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Figure 5.16. First and second order stuck condition function for motion 215 4306
P  . 
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Figure 5.17. Relative force and jerk time-history for 215 4306
P  . 
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CHAPTER VI 

WEDGE ANGLE EFFECTS 

Wedge angle plays an important role in freight train suspension systems. Herein, wedge 

angle effects on the motions of the freight train suspension systems.  Before discussion, the field 

testing data will be presented and discussed. The possibility of a better performing freight train 

suspension system will be investigated. The analytical prediction of periodic motion will be 

completed for a range of wedge angles and the corresponding local stability and bifurcation 

analysis will be carried out through the eigenvalue analysis. From the predicted solutions, the 

switching displacement, velocity, and forces will be analyzed to investigate the dynamic effects 

of the wedge angle. Based on the mapping structure and work done by friction, the wedge angle 

can be shown to provide more desirable performance.   

 

6.1 Field Data Results  

 Based on the goal to model the freight train suspension system, Amsted Rail 

provided field testing data to help validate the suspension model herein and to help us investigate 

the suspension problems encountered during train locomotion.  In Figure 6.1(a), the wedge 

displacement response is given for a typical load scenario. The solid black curve moves in a 

smooth sinusoidal fashion. In Figure 6.1(b), the relative movement between the wedge and 

bolster is shown to validate the assumption herein that the bolster and wedge are assumed to 

move strictly in the vertical direction. Also, with negligible relative movement, the mechanical 

model can also safely ignore any internal friction and sliding between the wedge and bolster. 

Based on field measurements, the normal force acting on the wedge is plotted in Figure 6.2(a).  
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Figure 6.1. Field data of wedge vertical displacement and wedge-bolster relative movement, 

Amsted Rail Inc. 



81 

 

(a) Time, s

206.0 208.0 210.0 212.0 214.0

W
ed

g
e 

N
o
rm

al
 F

o
rc

e,
 (

N
)

2.5e+4

3.0e+4

3.5e+4

4.0e+4

4.5e+4

 

 

(b) Wedge Dispalcement, (m)

-0.016 -0.012 -0.008 -0.004 0.000

W
ed

g
e 

N
o

rm
al

 F
o

rc
e,

 (
N

)

2.00e+4

3.00e+4

4.00e+4

5.00e+4

 

Figure 6.2. Field data of wedge normal force time-history and wedge normal force versus 

displacement, Amsted Rail Inc. 
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Clearly, there is a significant periodic jump in the normal force which is caused by a change in 

direction. When the velocity of the bolster and wedge system switches from positive to negative 

the side-wall friction must also switch direction from negative to positive, and vice versa. With 

friction acting in a reverse direction, the normal force experienced between the wedge and bolster 

will respond accordingly.  In Figure 6.2(b), the normal force versus displacement is plotted to 

show the hysteresis completed in one cycle of movement. Notice that the normal force jumps 

when at the displacement extremes.  This is exactly when the wedge and bolster are switching 

directions.    

       

6.2 Analytical Prediction  

From experimental measurements of spring stiffness and approximated cargo loads, the 

parameter set ( 1 50000,m   1 100,m   1 2 0.1,r r   1 2 367747.3,k k   0 50000,A   

0 100000,B    3.14 , 0.2,k   and 0.6e  ) is utilized to investigate the effects of the 

wedge angle to the dynamic response of the suspension model.  Using the mapping structure in 

Eq.(90), all the periodic motions for the entire range of wedge angle can be determined 

analytically.  As discussed in Chapter 5, the mapping structure gives the nonlinear algebraic 

equations, which can be solved to obtain the periodic switching set solutions.  The wedge angle 

is constrained between zero and 90 degrees, (i.e., (0, 2)  ).  For the entire possible range of 

wedge angle, the switching phase and displacement is plotted in Figure 6.3(a) and (b), 

respectively.  The solid black and red curves represents the stable periodic switching phase and 

displacement. The purpose of the alternating colors is to help differentiate between the different 

mapping structure solutions. Note, the switching phase and displacement of the bolster and  
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Figure 6.3. Analytical prediction of switching phase and displacement. 
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Figure 6.4. Analytical eigenvalues (a) 1,2,3,4Re( )  and (b) 1,2,3,4Im( ) . 
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Table 6.1. Summary of excitation frequency for impacting chatter with stick. 

Mapping Structure Wedge Angle,   

 chaos (1.46607, 2 ) 

21P  P(T) (0.89708,1.46606) 

2010P  P(T) (0.86757,0.89708), (0.23843,0.272) 

20201P  P(T) (0.85375,0.86756) 

210201P  P(T) (0.71472,0.85374) 

2101P  P(T) (0.66042,0.71471) 

210P  P(T) (0.27201,0.66041) 

 NM (0.2720,0) 

 

wedge are identical while the switching velocity is necessarily zero since stick motion is always 

satisfied.  

The corresponding eigenvalues to the analytical prediction described in Figure 6.3, are 

presented in Figure 6.4.  Note, for the given set of analytical prediction, all solution are stable, 

(i.e., the magnitude of all eigenvalues lie in the unit circle).  In Figure 6.4(a), the 1,2,3,4Re( )  

show a saddle node “SN” bifurcation at 0.23843   for 2010P .  The 2010P  mapping structure 

ends, and for 0.23843   the wedge and bolster become permanently stuck.  This region is 

labeled “NM” for no motion. Also, “SB” stands for stuck bifurcation.  Recall the stuck mapping 

0P  means that the wedge and bolster are locked against the side-frame for a given amount of 

time, (i.e., ( ) ( )

1

i i

k kx x C  , ( ) ( )

1 0i i

k ky y    for 1,2i  ).  This means that the Jacobean matrix for 

stability will have rank 1 and three of the four eigenvalues will necessarily equal zero. On the 

other hand, for the 21P  mapping 0.89708,1.4 6)( 660  , only ( ) ( )

1 0i i

k ky y    is true, so two of the 
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eigenvalues will equal zero. Table 6.1 describes the mapping structures and their respective 

wedge angle ranges. 

 

6.3 Numerical Simulation  

From the analytical prediction discussed in the previous section, the following numerical 

simulations will help illustrate the importance of the wedge angle. For the parameter set 

( 1 50000,m   1 100,m   1 2 0.1,r r   1 2 367747.3,k k   0 50000,A   0 100000,B    3.14 , 

0.2,k   and 0.6e  ), the initial conditions are selected from the predicted periodic solutions 

for motion involving stick and stuck motion.. For 0.654rad  , the initial condition is selected 

from the switching point 0 0.6763449t  , (1) (2)

0 0 -0.0613692x x  , and (1) (2)

0 0 0.0y y   to 

achieve 210P . From such an initial condition, the bolster and wedge remain in stick motion always 

and endure a periodic stuck motion.  In Figure 6.5, the displacement and velocity trajectories are 

presented.  Since the bolster and wedge are always sticking together, the shaded area labeled 

“WS” signifies stuck motion, and the letters “SSP” and “SEP” represent the stuck motion starting 

and ending point, respectively.  The acceleration response and phase plane trajectory are 

presented in Figure 6.6. The magnitude of acceleration can help to quantify the effectiveness of 

the wedge damping. In Figure 6.7, the wedge normal force is presented through time-history and 

wedge displacement. Notice, the jump in normal force corresponds well with the jump seen in 

field data test presented in Figure 6.  Also, the jump in normal force occurs when the velocity 

crosses the switching boundary.  For the wall stuck motion, observe that (1)

2 0F   and (1)

3 0F   in 

Figure 6.8(a) until for vanishing stuck (1)

2 0F   and (1)

3 0F  . At the same time, in Figure 6.8(b), 

(2,1)

1 0G  . This means that for kt t   , (1)

2 0F   and (1)

3 0F   and the stuck vanishing  
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Figure 6.5. Displacement and velocity response for 210P  . 
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Figure 6.6. Acceleration response and phase plane trajectory for 210P . 
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Figure 6.7. Wedge normal force time-history and wedge normal force versus displacement 

for 210P . 
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Figure 6.8. First and second order stuck condition function for 210P . 
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conditions are satisfied.  Furthermore, stuck motion for the freight train suspension system may 

be catastrophic because there will be no system damping. 

 

6.4 Work Dissipation by Friction 

From the analytical prediction of periodic solutions for the entire possible range of wedge 

angles, clearly the wedge angle plays a critical role in determining the train suspension response. 

From the mapping structure, smaller wedge angles presented the addition of one or more stuck 

mappings. Since a smaller wedge angle will transfers more of the normal force between the 

wedge and bolster into the side-frame, there is an increasing likelihood of stuck motion.  While 

the goal of the wedge is to act as a friction damper, there is a trade-off between increasing the 

friction damping and causing more stuck motion.  Furthermore, stuck motion for the train 

suspension system means a temporary loss of suspension. Without an active suspension system, a 

train may lose control and derail.  On the other hand, a larger wedge angle transfers less normal 

force and thus is less likely to endure stuck motion. In fact, with larger wedge angles, the stuck 

motion disappears. The trade-off now becomes less or no stuck motion versus reduced damping 

capacity. To help quantify the differences in wedge angle performance, the displacement, 

acceleration, and work done by friction will be considered for various wedge angles. 

From Physics, the work done by a force is given by   

( )W F s ds          (121) 

where ( )F s  is the force acting over a known distance. For the force of friction acting on the 

wedge and bolster, the work done can be determined by  

2

1

( )
x

k
x

W F x dx            (122) 
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Figure 6.9. Friction force response for 210P . 

 

From Figure 6.7(a), the normal force was shown to both vary with time and be different in 

magnitude based on the direction of movement.  This means that for one period of motion, the 

net work done by Friction will not be zero.  With Eqs.(5) and (6) from Chapter 2, the force of 

friction can be given in terms of the normal force and kinetic friction by 

cosk kF N  .             (123) 

 From the analytical prediction and numerical simulation of 0.654   and parameter set 

1 50000,m   1 100,m   1 2 0.1,r r   1 2 367747.3,k k   0 50000,A   0 100000,B    3.14 , 

0.2,k   and 0.6e  , the kinetic friction force time-history is plotted in Figure 6.9. As 

mentioned previously, the shaded region labeled “WS” is for the stuck motion. Since the wedge 

and bolster are stationary, the friction force does zero work during stuck motion. To calculate the 

work during one period, the friction force versus displacement must be considered. In Figure 
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6.10, the friction force is plotted for negative and positive velocity, respectively.  The area under 

the curve denotes the amount of work done by Friction.  

Based on the simulation results, the curves in Figures 6.10(a) and (b) were numerically 

integrated to give -142.64J and -242.94J for the friction during negative and positive velocity, 

respectively. Note, since friction acts in the opposite direction to movement the work will 

necessary be negative. Based on the amount of work done, the friction damping is significantly 

more effective when the wedge and bolster are moving downward as opposed to upward.  This 

“wedge effect” is also confirmed by the field testing data provided by Amsted Rail. From Figure 

6.2, the normal force is significantly larger with negative velocity, which means that the friction 

damping would also be much larger. 

To further discuss the wedge angle relationship to suspension performance, additional 

wedge angles must be considered. From the analytical prediction, several wedge angle solutions 

were simulated to quantify displacement, acceleration and work. In Table 6.2, the results are 

tabulated for the sake of brevity and clarity.  As the wedge angle is increased, the displacement 

range increases slightly while the work done by friction decreases. Notice, for 0.38   and 

0.92   the maximum displacement is -0.0542 and -0.0682, respectively. If friction is doing less  

work in damping, the displacement of the bolster and wedge will likely increase. On the other 

hand, the acceleration is also an important response. With smaller angles the acceleration is 

larger, (i.e., -0.7288 and -0.894 for 0.38   and 0.92  , respectively).  Slowing the bolster 

down over a smaller distance will certainly require higher acceleration and vice versa.  The 

current wedge angle used by industry is 37.5  or 0.654rad  , also described in Table 6.2. As 

compared to the larger wedge angle 0.92  , the displacement, acceleration, and work done by 
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Figure 6.10. Friction force versus displacement for (a) negative velocity and (b) positive 

velocity, 0.654rad  . 
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friction are quite similar.  The major and most important difference is the mapping structure. By 

increasing the wedge angle from 0.654 to 0.92, the wedge and bolster no longer endure stuck 

motion at the cost of slightly less friction damping.  

 

Table 6.2. Tabulated values of displacement acceleration and work. 

Wedge,   

(rad)  

Displacement Range 

 ( )m   

Acceleration Range 
2( )m s  

Work by Friction, 

( )J  

0.38 , 210P  (-0.0542,-0.00535)  (-0.8941,0.6169)  -152.43, -456.88 

0.50, 210P  (-0.0592,-0.00375)  (-0.8953,0.5846)  -155.28, -333.07 

0.654 , 210P  (-0.0614,-0.0542)  (-0.8656,-0.0542)  -142.64, -242.94 

0.92 , 21P  (-0.0682,-0.00637)  (-0.7288,0.4212)  -146.67, -199.06 
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CHAPTER VII 

SUMMARY 

In this Dissertation, a mechanical model for a freight train suspension system was 

developed to include all possible types of motion such as free-flight, stick, and stuck motion.  

The dynamic mechanism of the impacting chatter with stick was investigated from the local 

singularity theory of discontinuous dynamical systems.  The analytical conditions for the onset 

and vanishing of stick motions were presented, and the condition for maintaining stick motion 

was achieved as well.  Due to the possibility of stuck motion, additional analytical conditions 

were developed to determine the onset and vanishing conditions for stuck motion. Analytical 

prediction of periodic motions relative to impacting chatter with stick and stuck in train 

suspension was completed through the mapping structure.  The corresponding local stability and 

bifurcation analyses were carried out, and the grazing and stick conditions were used for the 

existence of periodic motions.  Numerical simulations were performed to illustrate the periodic 

motions of stick and stuck motion.  Finally, based on field testing data, an investigation into the 

effects of wedge angle was conducted to find a more desirable suspension response.     

In Chapter 1, the mechanical model of a typical freight train suspension system was 

presented.  The corresponding literature survey about the previous and more current status of 

train suspension systems was completed.  In Chapter 2, because of the discontinuity between the 

wedge and bolster with friction, the domain partition in phase plane was discussed.  The 

corresponding dynamical system on such sub-domains was presented in the absolute and relative 

frames.  Further, the mathematical description of the train suspension system was given.  In 

Chapter 3, the analytical conditions for grazing and stick phenomena, as well as stuck motion, 
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were developed, which included the necessary and sufficient conditions.  In Chapter 4, the basic 

mappings and switching sets were introduced in the absolute and relative frame.  The generalized 

mapping structure for periodic motion was presented.  In addition, consider generic parameters, 

the bifurcation scenario versus excitation frequency was presented.  In Chapter 5, the 

methodology for analytical prediction of periodic motion was given, and the local stability and 

bifurcation conditions were presented.  The impacting chatter with stick and stuck were 

analytically predicted, and the local stability and bifurcation was given through the eigenvalue 

analysis.  To help one better understand such mathematical conditions, numerical illustrations of 

period motion from the predicted solutions demonstrated the physical interpretation of the stick 

and stuck conditions.  In Chapter 6, field testing data was considered to obtain a more realistic 

parameter set.  Based on analytical predictions of periodic motion, the entire range of possible 

wedge angles was investigated.  Considering the displacement, acceleration, and work done by 

friction in damping the system, a comparison study described the benefits of having a larger 

wedge angle.  

Through this investigation, the motion mechanism of the ubiquitous freight train 

suspension system can be further understood, which may provide some clues to reduce the 

possibility of poor suspension performance and further derailment.  According to industry, a 

leading cause for derailment at high speeds is suspension performance.  Current investigations 

are interested in what industry calls the “slip-stick” phenomena. Here “slip-stick” refers to the 

wedge and bolster sticking to the side-wall, otherwise known as “stuck” motion herein.  Through 

further parameter studies, the mechanical model presented herein can be utilized to recommend 

better performing suspension characteristics such as wedge angle, spring stiffness, friction 

coefficients, etc. 



98 

REFERENCES 

 

Chandiramani, N.K., Srinivasan, K. Nagendra, J. (2006). “Experimental study of stick-slip  

dynamics in a friction wedge damper”, Journal of Sound and Vibration, 291, pp. 1-18. 

  

Comparin, R.J. and Singh, R. (1989). “Nonlinear frequency response characteristics of an impact  

pair,” Journal of Sound and Vibration, 134, pp.259-290. 

 

Feeny, B.F. (1992). “A nonsmooth Coulomb friction oscillator”, Physics D, 59, pp. 25–38. 

 

Gardner, J.F. and Cusumano, J. P. (1997). “Dynamic models of friction wedge dampers”,  

Proceedings of the 1997 IEEE/ASME Joint Railroad Conference, Boston, MA, pp. 65-69. 

 

Gottzein, E. and Lange, B. (1975). “Magnetic suspension control systems for the MBB high  

speed train”, Automatica, 11, pp.271-284. 

 

Ju, S.-H. and Lin, H.-T. (2008). “Experimentally investigating finite element accuracy for ground  

vibrations induced by high-speed trains”, Engineering Structures, 30, pp. 733-746. 

 

Kaiser A. B., Cusumano J. P., and Gardner J. F. (2002). “Modeling and dynamics of friction  

wedge dampers in railroad freight trucks”, Vehicle System Dynamics, 38, pp.55-82. 

 

Pfeiffer, F. (1984). “Mechanische Systems mit unstetigen Ubergangen,” Ingeniuer- Archiv, 54,  

pp.232-240. 

 

Hinrichs, N., Oestreich, M., and Popp. K. (1997). “Dynamics of oscillators with impact and  

friction”, Chaos, Solitons, and Fractals,  8 (4), pp. 535–558. 

 

Hundal, M.S. (1979). “Response of a base excited system with Coulomb and viscous friction”,  

Journal of Sound and Vibration, 64, pp. 371–378.  

 

Karagiannis, K. and Pfeiffer, F. (1991). “Theoretical and experimental investigations of gear  

box”, Nonlinear Dynamics, 2, pp.367-387. 

 

Karlström, A. B. (2006). “An analytical model for train-induced ground vibrations from  

railways”, Journal of Sound and Vibration, 292, pp. 221-241. 



99 

Luo, A.C.J. (2005). “A theory for non-smooth dynamic systems on the connectable Domains,”  

Communications in Nonlinear Science and Numerical Simulation, 10, pp.1-55. 

 

Luo, A.C.J., and Chen, L.D. (2005). “Periodic motion and grazing in a harmonically forced,  

piecewise linear, oscillator with impacts,” Chaos, Solitons and Fractals, 24, pp.567-578. 

 

Luo, A.C.J. and Gegg, B.C. (2006). “Stick and non-stick periodic motions in periodically forced  

 oscillators with dry friction”, Journal of Sound and Vibration, 291, pp.132-168. 

 

Luo, A.C.J. and O’Connor, D.M. (2009). “Mechanism of impacting chatter with stick in a gear  

 transmission system”, International Journal of Bifurcation and Chaos, 19, pp.2093-2105. 

 

Luo, A.C.J. and O’Connor, D.M. (2009). “Periodic motions and Chaos with Impacting Chatter  

and stick in a Gear Transmission System”, International Journal of Bifurcation and 

Chaos, 19, pp.1975-1994. 

 

Sayyaadi, H. and Shokouhi, N. (2009). “A new model in rail–vehicles dynamics considering  

nonlinear suspension components behavior”, International Journal of Mechanical 

Sciences,  51, pp. 222-232. 

 

Shieh, N.-C., Lin, C.-L., Lin, Y.-C. Liang, K.-Z. (2005). “Optimal design for passive suspension  

of a light rail vehicle using constrained multiobjective evolutionary search” Journal of 

Sound and Vibration, 285, pp. 407-424. 

 

Shaw, S.W. (1986). “On the dynamic response of a system with dry-friction”, Journal of Sound  

and Vibration, 108, pp. 305–325. 

 

Shaw, S. W. and  Holmes, P.J. (1983). “A Periodically Forced Piecewise Linear Oscillator,”  

Journal of Sound and Vibration, 90(1), pp.129-155. 

 

Theodossiades, S. and Natsiavas, S. (2000). “Non-linear dynamics of gear-pair systems with  

periodic stiffness and backlash,” Journal of Sound and Vibration, 229(2), pp 287-310. 

 

Wu, Y.-S., and Yang, Y.-B. (2003). “Steady-state response and riding comfort of trains moving  

over a series of simply supported bridges”, Engineering Structures, 25, pp. 251-265. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 

APPENDIX A 

GENERAL SOLUTIONS 

 

With an initial condition ( ) ( ) ( ) ( )( , , ) ( , , )i i i i

k k kt x x t x y , the general solutions for wedge and 

bolster for three regions are given as follows:  

Case I ( ) 2 ( )( ) 0i id c    

  
( , )( ) ( ) ( )( ) ( )( ) ( , ) ( , ) ( , ) ( , ) ( , )
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APPENDIX B 

NUMERICAL SIMULATION ALGORITHM 

 

The numerical simulation algorithm used in this thesis is for plotting the displacement 

and velocity response of each oscillator in the mechanical model in Fig.2.  For the equations of 

motion in Eqs.(1) and (7), the closed form solutions and their corresponding homogeneous 

coefficients (i.e., displacement and velocity equations) can be found in Appendix A.  These 

equations are programmed in C++.  Additionally, the impact relationship in Eq.(4) as well as the 

analytical conditions for stick onset and vanishing are programmed.  Assuming that the 

oscillators are described by Eq.(1) with initial conditions ( ) ( ) ( )( , , , )i i i

k k k kt x x x  and by incrementing 

time by a small amount kt , the new displacement and velocity of each mass can be computed 

for the new time.  After each increment, the conditions for impact are checked.  Once impact 

occurs at the boundary, the initial conditions ( ) ( ) ( )( , , , )i i i

k k k kt x x x  are updated.  If the stick 

conditions are satisfied, then the two oscillators are described by Eq.(7).  While in stick motion, 

the wedge and bolster may become stuck when crossing the velocity boundary.  If the analytical 

conditions for stuck are satisfied, the oscillators will become fixed to the side frame.  This 

process of incrementing time, computing displacements and velocities, checking impact and stick 

conditions, and updating the initial conditions to be those at the domain boundaries is repeated 

until the motion can be considered either periodic or chaotic.  By keeping track of the switching 

boundaries, the mapping structure can be defined and a bifurcation scenario presented as shown 

in Chapter 4.  Furthermore, by recording all the computations at each time step, the motion can 

be numerically simulated as shown in Chapter 5.  



104 

APPENDIX C 

JACOBEAN MATRIX 

 

From the analytical prediction in Chapter 5, the stability analysis of periodic solutions is 

achieved through the eigenvalues of the Jacobean matrix.  Herein, the Jacobean matrix is derived 

for a 2P  mapping.  From Eq.(95), consider the following vector 

 (2)

1, 0f y yk k  .                                                        (B1) 

Equation (B1) can be rewritten as  

 (2)

1y g yk k  ,                                                         (B2) 

where  (2)g yk  is the vector of solutions to Eq.(2) that relate the initial and final switching sets.  

For the predicted switching sets *

1yk  and *
y k , Equation (B2) becomes 

 * (2) *

1y g yk k  .                                                         (B3) 

The predicted solutions are perturbed by a small amount ( )   in   

 * (2) *

1 1y y g y yk k k k    .                                               (B4) 

From the first order Taylor Series expansion 

    *

(2) * (2) * (2)

y
g y y g y g y

k
k k k kD    .                                      (B5) 

Substitution of Eq.(B5) into Eq.(B4) gives 

  *

* (2) * (2)

1 1 y
y y g y g y

k
k k k kD     .                                        (B6) 

Further simplification gives the variational equation for *

1yk  and *
y k  as 

*

1 ( )y y yk k kDP   ,                                                      (B7) 
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where the Jacobean Matrix 
*

(2)

y
g

k

D  is represented by *( )ykDP .  The total derivatives of the 

displacement and velocity functions represented in Eq.(B1) provide the components of DP .  

(1) (1) (2)(2) (2) (2) (2) (2)

1 1 1 11 1 1 1 1

(1) (1) (2)

1 1 1 1
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11 1 1
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(1) (1) (2)(2) (2) (2) (2) (2)
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.                  (B11) 

The partial derivatives of the final time, position, and velocities in Eqs.(B8)-(B11) are the 

necessary derivatives for Jacobean matrix DP  in Eq.(108).  These derivatives can be found by 

arranging the functions in matrix form (i.e., solve four systems of four equations each with four 

unknowns).  
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The Lambda matrix is defined by  
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.                                       (B14) 

After solving each system of equations in Eqs.(B12) and (B13), the derivatives for the Jacobean 

matrix are known and the first 2DP  matrix of Eq.(107) can be given.  The above process is 

repeated for each subsequent mapping. 
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