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In principle a quantum system could be used to simulate another quantum system. The

purpose of such a simulation would be to obtain information about problems which are

difficult to simulate on a classical computer due to the exponential increase of the Hilbert

space with the size of the system, and which cannot be readily measured or controlled in

an experiment. A quantum simulator is, however, an open quantum system that will

interact with the surrounding environment, which in this case are other particles in the

system, and will be implemented using imperfect controls, making it subject to noise. It

has been suggested that noise does not need to be controlled to the same extent as it must

be for general quantum information processing. However, the effects of noise in quantum

simulations are not well understood and how best to treat them in most cases is not

known. In the present work we study an existing quantum algorithm for the simulation of

the one-dimensional Fano-Anderson model. This algorithm was proposed for a liquid-state

NMR device. We examine models of noise in the evolution using different initial states in

the original model. We also add interacting spins to simulate realistic situation where an

environment of spins is present. We find that states which are entangled with their

environment, and sometimes correlated but not necessarily entangled have an evolution

which is described by maps which are not completely positive. We discuss the conditions

for this to occur and also the implications.

ii



ACKNOWLEDGMENTS

I would like to express my gratitude to my PhD advisor, Prof. Mark Byrd for his support

and guidance.

I am also deeply grateful to Prof. Thushari Jayasekera, Prof. Eric Chitambar, Prof. Aldo

Migone and Prof. Philip Feinsilver for agreeing to serve on my graduate committee.

Special thanks to Prof. Leonardo Silbert who, due to timing issues, could not serve on my

graduate committee, but has been very supportive and helpful all through my PhD.

Also special thanks to Prof. Mercedes Calbi, for being my mentor before I began working

with Prof. Byrd.

Thanks to my colleague Yu-Chieh Chi for collaborating with me in this project.

I also want to thank the SIUC physics department for their support and opportunities they

provided for me.

And last, but not least I wish to thank my family for their support and encouragement.

iii



TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Arrangement of this dissertation . . . . . . . . . . . . . . . . . . . . . 3

2 OPEN QUANTUM SYSTEM DYNAMICS . . . . . . . . . . . . . . . . . . . . . 4

2.1 Closed quantum system dynamics . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The density operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 The properties of the density operator . . . . . . . . . . . . . . . . . 9

2.3 Open quantum system dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Dynamical maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Composition of dynamical maps: Assignment maps and consistency . 16

3 QUANTUM SIMULATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Quantum Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Experimental Implementation of Quantum Simulations . . . . . . . . . . . . 21

3.2.1 Analog and digital quantum simulators . . . . . . . . . . . . . . . . . 23

3.3 Quantum Simulation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Initial State Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Evolution of the Quantum System . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Output and measurement of a physical property of the final state . . 33

3.4 Unsolved problems with Quantum Simulations . . . . . . . . . . . . . . . . . 35

4 A QUANTUM SIMULATION WITH NOISE AND DYNAMICAL MAPS . . . . 37

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



4.1.1 Quantum Algorithm for Simulation . . . . . . . . . . . . . . . . . . . 37

4.1.2 States with Bloch vector in the z direction . . . . . . . . . . . . . . . 39

4.1.3 States with an x component to their Bloch vector . . . . . . . . . . . 50

4.1.4 Completely or not completely positive dynamics? . . . . . . . . . . . 57

4.1.5 Time correlation function . . . . . . . . . . . . . . . . . . . . . . . . 64

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

v



LIST OF FIGURES

2.1 The Bloch Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Time Evolution of the Bloch vector: states in the z basis . . . . . . . . . . . . . 39

4.2 Eigenvalues of a completely positive map . . . . . . . . . . . . . . . . . . . . . . 43

4.3 System interacting with two external qubits . . . . . . . . . . . . . . . . . . . . 45

4.4 System interacting with one external qubit . . . . . . . . . . . . . . . . . . . . . 46

4.5 Eigenvalues of a completely positive map . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Eigenvalues of a completely positive map: system interacting with two external

qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Eigenvalues of a completely positive map: system interacting with one external

qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Time evolution of the Bloch vector: States with an x component . . . . . . . . . 51

4.9 Eigenvalues of a non completely positive map . . . . . . . . . . . . . . . . . . . 55

4.10 Eigenvalues of a non completely positve map: system interacting with two exter-

nal qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.11 Eigenvalues of a non completely positive map: system interacting with one ex-

ternal qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.12 Time correlation function: errors in inital state and interaction with external qubit 65

4.13 Time correlation function: errors in the preparation of initial states . . . . . . . 66

4.14 Time correlation function: Comparison of different initial states . . . . . . . . . 67

4.15 Time correlation function: Errors in the preparation of the state . . . . . . . . . 68

4.16 Time correlation function: Errors in the preparation of quantum states and noise 69

vi



CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The rising interest in the field of open quantum system dynamics can be attributed to

the possibility of building a quantum computer. Quantum information processing promises

to perform tasks much more efficiently than classical computers, and they do so by relying

on quantum superposition and entanglement. Quantum superposition implies that the

state of a system can be in a linear combination of allowed states |0〉 and |1〉. However, this

behavior is never observed in classical information processing.

According to Zurek [142, 143], the environment surrounding a quantum system

imposes classical behavior by destroying coherences of preferred states, which he calls

pointer states and are stable despite the environment, but the quantum superpositions of

these states are not. The fragility of quantum correlations has proved a challenge in the

quest to develop a quantum computing device. This, added to the fact that complete

isolation of quantum mechanical systems is impossible, highlights the importance of

understanding how noise affects quantum mechanical systems and how it can be controlled

or minimized.

One of the central motivations to build a quantum computer was Feynman’s idea of

using a quantum system as a simulator to other quantum systems [141, 104, 83]. A

quantum computer would perform as a universal quantum simulator, however, it is not

necessary to have a fully functioning quantum computer to perform quantum simulations

[74]. Recent experimental advances allow for the use of smaller, controllable quantum

systems which are engineered to represent other quantum systems and mimic their

dynamics. These are called quantum simulators. A device of this type not only requires

less computational resources than a classical computer to simulate a relatively large Hilbert

space, but behaves according to the laws of quantum mechanics, just like the systems it is
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intended to represent. It is expected that quantum simulators may help provide answers to

a variety of many-body problems for which no analytical solution is known, and for which

numerical simulation requires more computational resources than those currently available.

However, these are quantum systems, and are in contact with a reservoir which will induce

noise in the system. And even though control has been achieved for relatively small

systems, the problems of relevance are those that cannot be simulated in a classical

computer (i.e. systems composed of more than 50 particles [74]). Scaling the size of the

simulator has proved problematic since it is more challenging to control a larger number of

particles. But there is also the problem of interactions of the particles with the

environment and with other particles in the system. This can lead to unwanted

correlations that can alter the physical quantity of interest.

Although it has been suggested that noise in quantum simulations does not need to be

treated in the same was as for quantum computation, it is not known to what extent do

errors affect the output of the simulation [109, 105]. Moreover, it is not known if the

presence of initial correlations with either the environment or other particles in the system

will also affect the final result. Quantum simulators are experimental devices which will be

subject to many sources of noise and imperfections, studying the effects of these can help

determine how they will affect the outcome and what useful information can be obtained.

Because a quantum simulator is a quantum system, one of the sources of noise and

imperfections will be this interaction. And because the dynamics of a system in the

presence of a noisy environment is described with dynamical maps, we also look at the

effects that errors in the initialization of a quantum simulator have on the reduced

dynamics.

Dynamical maps are expected to be completely positive, just like a unitary operator

is, but this has been found to not always be the case. Some initial correlations may result

in non completely positive dynamics, which can still describe the evolution of a quantum

state, but the physical interpretation of non-complete positivity is not completely clear at
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the moment. We look at different configurations of the initial state to find what class of

states can yield a non completely positive dynamical map, and discuss the implications.

1.1.1 Arrangement of this dissertation

Most of the work presented in this dissertation has been published in [105], and has

been organized in the next chapters.

Chapter 2 provides an introduction to open quantum system dynamics, starting from

closed system evolution. The main subject is the definition of dynamical maps, which are

used to describe the most general evolution of a quantum system. We review the

characteristics of the map that make it adequate to describe quantum dynamics and recall

that in the limit of closed quantum system dynamics, these maps become the unitary

operator. Most research in this field is concerned with the concept of completely and not

completely positive evolution, which are also defined.

Chapter 3 provides an introduction to quantum simulators. Quantum simulations in

this context are experiments in which a quantum system is engineered to simulate another

quantum system. The basic quantum simulation steps are: preparation of an initial state,

time evolution and exctraction of quantities of interest. We review the different ways in

which these tasks are performed and look into the classification of available and proposed

quantum simulating devices.

In Chapter 4 the results of this research are summarized. Starting with the

description of the quantum algorithm and the procedure followed to represent different

types of errors. The outcome of the quantum simulation is analyzed when errors are

present, and we also calculate the dynamical maps to describe the most general quantum

evolution. Finally, in Chapter 5, we discuss our conclusions.
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CHAPTER 2

OPEN QUANTUM SYSTEM DYNAMICS

2.1 CLOSED QUANTUM SYSTEM DYNAMICS

Classically, a closed system is one which does not exchange energy or particles with the

environment [120, 13]. In quantum mechanics a closed, or isolated, quantum system is one

which evolves unitarily according to the time dependent Schrödinger equation [61, 142, 13]

i~
d |ψ〉
dt

= H |ψ〉 (2.1)

H is the Hamiltonian of the system, and |ψ〉 is a vector in the Hilbert space, HS , of the

system, and is a solution to the Schrödinger equation. The state vector |ψ〉 contains all the

information about the state of the system. Is usually represented as a linear combination of

the set of orthonormal basis states, |φi〉, that span the space HS :

|ψ〉 =
∑
i

|φi〉 〈φi| |ψ〉 =
∑
i

ci |φi〉 (2.2)

The complex coefficients, ci, can be thought of as projections of the state |ψ〉 on each of the

eigenvectors |φi〉, and give the probability that the quantum system will be in the state |φi〉

at a given time t, given by |ci(t)|2. And all the probabilities must satisfy
∑

i |ci(t)|
2 = 1.

Therefore Eq. (2.2) is in a quantum superposition of allowed states. The eigenvectors, |φi〉,

are usually solutions to the Schrödinger equation, and so is a linear combination of the

form of Eq. (2.2).

In the classical world, objects are localized, their position and momentum can be

measured precisely, but in the quantum world, a system can be in a superposition of states.

Zurek [142, 143] defines the loss of quantum superpositions as the transition from quantum

to classical, which occurs when the system is in contact with the environment. This
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phenomenon is known as decoherence, dephasing or loss of quantum coherent superposition

[142]. This point will be addressed again in this dissertation.

The solution to Eq. (2.1) is the propagator, or the unitary operator, U , that

describes the time evolution of the state |ψ〉

U = e−i
Ht
~ (2.3)

Where the Hamiltonian, H is assumed to be time independent, and ~ is Planck’s constant.

For simplicity, we will use ~ = 1. The evolution of an initial state at time t = 0, given by

|ψ(0)〉, is given by:

|ψ(t)〉 = U(t) |ψ(0)〉 (2.4)

And |ψ(t)〉 is the final state at time t. Because it is a closed system evolution in a finite

dimensional space, the norm of the vector |ψ(0)〉 is preserved [13]. Unitary evolution also

preserves quantum superposition [142].

Having determined how the closed system evolves, we can also calculate expectation

values of observables Ô at different times:

〈O(t)〉 = 〈ψ(t)| Ô |ψ(t)〉

There also exists the possibility that a closed system is subject to external forces, and

then the Hamiltonian will become time dependent. When this is the case, the evolution is

carried out as a Dyson series through the time ordered evolution operator [61, 13, 48]:

U = T
e
−i
~

∫ t
t0
H(t′)dt′

This is a unitary operator, or propagator, that acts on the system for a time interval [t0, t].

The operator T
 here has the two arrow directions in the subindex for use in a general
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context. However, one order is selected, depending on the ordering of the product of the

propagators. T← orders the propagators chronologically, i.e. the time arguments will

increase from right to left. T→ is the antichronological ordering, where the time argument

increases from left to right [61].

An open quantum system will not evolve unitarily. In the later case, there are effects

that cannot be described with the formalism above. The dynamics of an open system are

usually described with master equations or with dynamical maps. Master equations are a

widely used tool[61], however, the focus of this dissertation will be on dynamical maps,

which allow for description of system dynamics that have been interacting with a reservoir,

bath or environment, without recurring to the perturbative limit. We first look at the

properties of the density operator, this is because, although the state vector |ψ〉 contains

all the information about the system, some processes, such as relaxation [53], decoherence

and mixed states, which may arise from lack of knowledge of the quantum state in an

experiment, are better represented with the density matrix.

2.2 THE DENSITY OPERATOR

The density operator is used to represent the most general state of a quantum

mechanical system. It arises from the statistical interpretation of quantum mechanics

[61, 120]. If we consider an ensemble of N identical systems, all characterized by the same

Hamiltonian, Ĥ, then the state of each system in the ensemble is given by a normalized

vector |ψk〉. Every state vector is defined by the linear combination of the eigenbasis states

|ψ〉 =
∑

i ci |φi〉, the density matrix has a standard representation:

ρ = |ψ〉 〈ψ| =
∑
ij

c∗jci |φi〉 〈φj| (2.5)
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The elements of this matrix are given by the numbers ci

ρij = cic
∗
j (2.6)

When i = j, the product c∗i ci = |ci|2 is a diagonal element of ρ and represents a probability

that a measurement will yield the state |φi〉. The off diagonal terms, c∗jci, represent the

quantum superpositions of the basis states. Therefore, Eq. (2.5) can be written as

ρ =
∑
ij

ρij |φi〉 〈φj| (2.7)

Given an orthonormal set of basis kets |j〉, the density operator is given by:

ρ =
∑
j

pj |j〉 〈j| (2.8)

The pj represent the probabilities associated to each state |j〉; a mixed state will be a linear

combination of the states |j〉, and a pure state is one in which only one of the probabilities

is equal to 1 and the rest are 0.

The preferred notation in quantum information is in terms of the 2× 2 unit matrix

and the Pauli spin 1
2

matrices, since they are the basis for the algebra of qubits.

ρ =
1

2
(1l + ~a · ~σ) (2.9)

Where the coefficients ai are the projections along the x, y and z directions of the Bloch

vector. The Bloch vector is a geometric representation of the states of two-level systems in

terms of a sphere of radius 1, called the Bloch sphere, such as the one in figure (2.1) (for

higher dimensional systems, this is referred to as the polarization vector, coherence vector,

or generalized Bloch vector. See [102, 15, 16, 90, 24, 55, 22] and references therein).
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Figure 2.1. The Bloch sphere provides a visual representation of the
state of a two-level system.

The coefficents ai of the Bloch vector are subject to the constraint
√
a2
x + a2

y + a2
z ≤ 1,

for a normalized state; | ~a |= 1 represents a pure state. Any state on the surface of the

Bloch sphere is a pure state. A mixed state is represented by a vector with | ~a |< 1. This

notation makes it possible to have a visual representation of the quantum state of a two

level system at different times when it undergoes time evolution.

In any basis, the density operator is a n× n matrix, where n is the dimension of the

system, and provides the most general picture of a quantum mechanical state [26].

However, not any n× n matrix represents a quantum mechanical state, and while the

properties of the state vectors that generate the density matrix through the outer product

should preserve the properties that make it relevant to a physical system, the following

subsection will provide the characteristics that must be preserved under any dynamical

process (closed or open), such that the density operator represents the state of a quantum

mechanical system.

8



2.2.1 The properties of the density operator

A density operator that represents the state of a quantum mechanical system must

satisfy the following conditions [48, 96]:

ρ = ρ†, it is Hermitian, (2.10)

ρ ≥ 0, it is positive semi-definite,

i.e. its eigenvalues are non-negative, (2.11)

Tr(ρ) = 1, it has trace 1,

i.e. the sum of the probabilities is 1. (2.12)

The first condition, given by Eq. (2.10), guarantees that the eigenvalues of the density

matrix are real, thus experimentally measured quantities are real as well. The second

condition, Eq. (2.11), ensures that the eigenvalues are positive. This provides a valid

probabilistic interpretation of the density matrix [103], i.e. ensures there are no negative

probabilities. The last condition, Eq. (2.12), ensures that the probabilities associated to

the basis vectors that span the space of the state of the system sum to one.

The evolution of a density matrix representing the state of a closed system is also

unitary process [26]:

ρ(t) = U(t)ρ(0)U(t)†

That preserves the norm of the basis states and the quantum superpositions. Expectation
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values are obtained through the trace

〈O(t)〉 = Tr[Ôρ(t)] =
∑
mn

Omnρmn

Before this last section, we reviewed closed quantum system dynamics, however,

quantum systems are rarely, if any, completely isolated from the environment. Isolation

acquired for experimental pusposes may be costly and difficult as the size of the system

increases. Interactions with the environment lead to processes that spoil the unitarity of

the system dynamics, and therefore cannot be mathematically described as such. The two

main effects arising from the interaction with the environment are: dissipative processes, in

which there is an exchange of energy with the environment, and leads to modification of the

populations (diagonal terms of the density operator, also known as T1 type of decay [91]);

and decoherence, dephasing, or phase randomization, which involves decay of quantum

coherent superpositions (decay of the off diagonal terms of the density operator, also known

as T2 type of decay [142, 91]). Decoherence is a term that has been generalized to describe

dissipative processes, however, here the term will be used to define its original context,

which is dephasing. A unitary operator does not describe dynamics when these processes

occur, therefore the next section will cover quantum dynamics for open systems, focused on

dynamical maps (for master equation formalism, refer to [61] and references therein).

2.3 OPEN QUANTUM SYSTEM DYNAMICS

A system, S, that is coupled to an environment, E, will no longer evolve unitarily.

The coupling to E gives rise to quantum and/or classical correlations, that spoil the

unitarity of the time evolution of S [91].

A valid assumption is to consider that the system and the bath form one joined closed

system, S + E, that undergoes a global unitary evolution. The final state of this joint

system is a pure state [143]. But we are often interested only in the evolution of S. Since
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we can no longer describe the evolution of S without taking into account the effects of E

on it, we look at the reduced dynamics of the system, which provides the density matrix

that represents the state of the system after it has interacted with E. It is obtained

through the partial trace over the environment E:

ρS(t) = TrE[ρSE(t)] = TrE

[
USE(t)ρSE(0)U †SE

]
=
∑
α

λαζα(t)ρS(0)ζ†α(t) (2.13)

And the evolution of S, including the effects of its interaction with E, will be fully

characterized by the matrices ζα [14, 26]. This is called a dynamical map, and will be

described in the next section.

2.3.1 Dynamical maps

Dynamical maps are the linear mapping of an initial state in the domain, the space

HS , at time t0 to a final state in the range, which is the same, or a different (e.g. when it is

an assignment map, explained below, or a projection operator), Hilbert space at a later

time t.

The dynamical map is required to transform quantum states into quantum states in

order to be relevant to physics. Therefore a dynamical map is subject to the following

conditions [96]:

1. Is linear Φ[pρ1 + (1− p)ρ2] = pΦ[ρ1] + (1− p)Φ[ρ2]

2. Is trace preserving Tr(Φ[ρ(0)]) = 1

3. Is positive Φ[ρ(0)] ≥ 0

4. Is self adjoint Φ[ρ(0)†]† = Φ[ρ(0)]

The first condition requires that the map is independent of the initial state of the

system [48, 27], and also means that the action of the map can be represented in terms of
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its eigenmatrices, ζ(α), and its eigenvalues, λα, as follows [27]:

Φ[ρ(0)] =
∑
α

λαζ
(α)ρ(0)ζ(α)† (2.14)

The last three conditions guarantee that the mapped final quantum state has trace 1,

is positive (has positive eigenvalues) and is Hermitian.

The most general linear mapping is an n2 × n2 homogeneous matrix, or superoperator,

that acts on the initial state of the system. This superoperator acts on the quantum state

of the n× n density operator rearranged as a n2 × 1 column vector [48], such that:

ρ(t) = Aρ(0)

In index notation: ∑
r′s′

ρ′
r′s′

(t) =
∑
r′s′rs

Ar′s′ ,rsρrs(0), (2.15)

One could think that any matrix A, with the right dimensions, can be used to map an

initial state to a final one in the same Hilbert space, but physics restricts the class of

operators A that can be considered dynamical maps. According to [48], the matrix A must

satisfy the following conditions

∑
r′s′ ,rs

Ar′s′ ,rs = (
∑
r′s′ ,rs

As′r′ ,sr)
∗, A preserves Hermiticity, (2.16)

∑
rsr′s′

x∗rxsArs,r′s′y
∗
r′
ys′ ≥ 0, A preserves positivity, (2.17)

∑
r

Arr,r′s′ = δr′s′ , A is trace preserving. (2.18)

These conditions ensure that the final quantum state mapped by A is Hermitian, has trace

1 and is positive. However, it should be noted that A may not be necessarily Hermitian.
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The characteristics of A are further analyzed by interchanging indices and obtaining

another N2 ×N2 supermatrix B. In brief, the rows of matrix A become block matrices of

B, row 1 of A will become the first n× n block matrix of B, then row 2 is the second one,

and so forth. Then the properties of B are [48]

∑
rr′ ,ss′

Brr′ ,ss′ ≡
∑
rs,r′s′

Ars,r′s′ . (2.19)

The 1×N2 rows of A become the N ×N block matrices of B. The following conditions are

imposed on B so that it represents a physical map:

Brr
′
,ss
′ = (Br′r,s′s)

∗, B is Hermitian, (2.20)

∑
rsr′s′

x∗ryr′Brr′ ,ss′xsy
∗
s′
≥ 0, B is positive semi-definite, (2.21)

∑
r

Brr′ ,rs′ = δr′s′ , B is trace preserving. (2.22)

The action of B is not the same as that of A, i.e. not through direct matrix multiplication.

The action of B can then be determined by decomposed in its eigenmatrices and

eigenvalues and writing the sum:

ρ(t) = B [ρ(0)] =
∑
α

λαζαρ(0)ζ†α (2.23)

Where λα ∈ R are the eigenvalues of B. The Hermiticity of ρ(t) is guaranteed by the

restriction given in Eq. (2.20) [26], so that B must be Hermitian. The matrix A is required

to transform ρ(0), in vector form, into another Hermitian state ρ(t), but A is not

necessarily Hermitian itself.
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Complete and not complete positivity

When all of the eigenvalues of B are positive, the map is said to be a completely

positive (CP) map (see Ref. [119] and references therein). In this case, the eigenvalues can

be absorbed in the eigenmatrices like
√
ζα so Eq. (2.27) becomes

B [ρ(0)] =
∑
α

Cαρ(0)C†α, (2.24)

where Cα =
√
λαζα.

Eq. (2.24) is sometimes known as the Kraus representation or operator-sum

decomposition [39], although it was originally discussed in this context by Sudarshan,

Mathews, and Rau [48]. Note that when the system is closed, the map is completely

positive, and there is only one Cα, which is the unitary operator U(t)ρ(0)U † [26]. Thus we

can see why dynamical maps are the most general representation of a quantum dynamical

process.

This CP map can also be derived from the reduced dynamics of a state that is initially

uncorrelated from the bath:

ρ(0) = ρS(0)⊗ ρE(0)

Expressing the initial state of the bath as ρE =
∑

i νi |i〉 〈i| and taking the trace over E:

B [ρ(0)] =
∑
ij

〈j|U(t)ρ(0)⊗ νi |i〉 〈i|U †(t) |j〉 =
∑
ij

νi 〈j|U(t) |i〉 ρ(0) 〈i|U †(t) |j〉 (2.25)

Then we define Cα =
√
νi 〈j|U(t) |i〉, and provided that all the νi are positive, we obtain

Eq. (2.24).

If at least one eigenvalue is negative, but the map still transforms a positive ρ into

another positive ρ, the map is non-completely positive (NCP). Reduced dynamics have

been restricted to satisfy the condition of complete positivity because their interpretation is

14



not completely understood and also because CP maps preserve positivity even if the size of

the Hilbert space is increased.

Pechukas was the first to demonstrate in 1994 that reduced dynamics do not need to

be completely positive. He showed that complete positivity constrains a system to initial

separable product states ρSE = ρS ⊗ ρE, where ρE is a fixed state of the bath [110, 1].

Jordan, et al. demonstrated that entanglement in the initial state of the system can lead to

non-completely positive maps, yet the map is still positive [134].

Moreover, non-completely positive (NCP) maps have been measured experimentally

using quantum process tomography (QPT) [75, 3], which has caused the specifics of QPT

to be questioned [28]. But the possibility that a map which is not a completely positive

map can transform a valid quantum state into another state that satisfies the conditions in

Eqs. (2.10), (2.11) and (2.12), has brought a great deal of interest in studying the

conditions for complete positivity, the main question is: what kind of correlations result in

a NCP map? This is in addition to the interest in NCP maps due to the partial transpose

as an indicator of entanglement [11, 98].

To differentiate the initial state from a simply separable one, we introduce the

correlation matrix ρcorr(0):

ρ(0) = ρS(0)⊗ ρE(0) + ρcorr(0) (2.26)

The element ρcorr(0) contains all the correlations, but its not a quantum state [13]. It

satisfies TrSρcorr(0) = TrEρcorr(0) = 0, since is traceless (it must be to preserve the

properties of ρ). With an initial state of the form of Eq. (2.26), one can write the

dynamical map as a sum of two contributions:

ρ(t) = Φ [ρ(0)] =
∑
α

CαρS(0)C†α + TrE[U(t)ρcorr(0)U †(t)] (2.27)
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The first part is CP and depends on the global unitary and the initial state of the bath.

The last term, however, depends on the initial SE correlations [13]. A quantum system

that interacts with the environment before our prescribed t = 0 can be described by

completely positive dynamics if the environment does not re-act on the system [26], i.e. the

coupling is weak and/or the initial state is in a particular form [110]. More broadly

speaking, according to [27] if the initial state has only classical correlations with the

environment, then this is a sufficient condition for the dynamical map to be completely

positive. The nature of the correlations is defined in terms of the“quantum discord”, which

is a measure of the “quantumness of correlations” [107]. Quantum discord vanishes when

the correlations are classical and it’s a maximum when there is entanglement. But more

specific detail on the nature of initial correlations is provided by the authors of [84]. They

state that correlations which are Markovian satisfy

TrE
[
U(t)ρcorr(0)U †(t)

]
= 0

for different times, thus providing CP dynamics for Markovian models.

Shabani and Lidar demonstrated that vanishing quantum discord is not only

sufficient, but a necessary condition for complete positivity [131], this means that quantum

correlations should yield NCP dynamics every time. However Brodutch, et al. [4], provide

a counter-example of an initial state with non-vanishing quantum discord that contradicts

this last statement. So the question of which types of initial correlations result in a NCP

map remains open. Why is the initial state so important in determining this? This is a

question that can be answered by looking at the map as a composition of maps.

2.3.2 Composition of dynamical maps: Assignment maps and consistency

Just like a function can be a function of other functions, a dynamical map can be a

function of other maps. Pechukas, in [110], introduced the concept of the assignment map,
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Λ. Λ is the map that assigns the state of S to some state in the larger space SE [110, 27].

The assignment map is one of three maps that compose the complete dynamical map; the

other two are the trace with respect to the bath, TE and the global unitary transformation

USE, therefore:

B = TE ◦ USE ◦ Λ (2.28)

where ◦ is the composition function (see Appendix 5.1). So then Eq. (2.13) is written as

Φ[ρS(0)] = ρS(t) = TrE
{
U(t)Λ[ρS(0)]U †(t)

}
(2.29)

Because the unitary and the trace are linear and completely positive, the positivity or non

complete positivity should arise from the assignment map, Λ [28, 84, 4]. The assignment

map is the one that contains information about possible correlations in the initial state.

Alicki [115], defines the following conditions on the assignment map:

1. Linearity Λ[pρ1 + (1− p)ρ2] = pΛ[ρ1] + (1− p)Λ[ρ2], where p ≤ 1

2. Consistency TrE[Λρ(0)] = ρ(0)

3. Positivity Λ[ρ(0)] ≥ 0

According to Alicki there is no general definition for the reduced quantum dynamics

beyond the weak coupling regime , therefore, when the system is in an initially correlated

state with the environment, linear assignment maps have no unique definition [28], and

linearity would only be preserved for states that are invariant under the transformation

[115]. Pechukas concurred with Alicki on giving up linearity for initial states that are not

weakly coupled to the environment [1]. However, Rodriguez-Rosario et al. examine the

assignment maps and argue against giving up linearity by noting that the assignment maps

can be linear if the conditions of consistency or positivity are relaxed, and favor relaxing

the positivity condition [28]. Giving up complete positivity means that the assignment
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map that transforms a state in S to a state in SE is NCP, even if the state in SE is

positive, and this will cause the dynamical map B to be NCP.

Giving up consistency means that the same initial state is not obtained after tracing

over environmental degrees of freedom, it refers to errors in the preparation of initial

states; this is particularly possible in quantum process tomography experiments. When

there are errors in the preparation (such as unwanted correlations with E), there can be a

loss of consistency and therefore in a NCP map. But according to [28] it is undesirable to

give up consistency because it can result in non linear maps, due to the dependence on the

initial state.

Why is complete positivity relevant? the answer is because it guarantees positivity of

the final density operator. Also, the map will remain CP when it is extended to higher

dimensions. However, CP maps are restricted to a reduced class of states, which excludes

correlations with the environment and therefore many realistic physical situations.

It is important to study dynamical maps beyond the initially separable state

assumption. Dynamical maps directly characterize the dynamics of quantum systems [101],

and more importantly, outside the Markovian regime [12, 84]. Modelling dynamics of

initial states that are not uncorrelated from the environment is becoming increasingly

important. Part of the present work consists of studying a quantum simulation algorithm

developed by Ortiz et al. [56] in the presence of errors and correlations in the initial state

of the system. The open quantum system dynamics are described with dynamical maps

[105], mainly to observe the effects of errors in the preparation of initial states, which are

key to successful quantum simulation experiments.
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CHAPTER 3

QUANTUM SIMULATORS

3.1 QUANTUM SIMULATORS

3.1.1 Introduction

Most of the results presented in this section have been published in [105].

Numerical simulations allow us to further understand experimental as well as

analytical results, but more importantly, they allow us to simulate physical problems for

which exact models are difficult. This is the case for many problems in high energy physics,

atomic physics, condensed matter,cosmology, biology and quantum chemistry, among

others. It is known that in the case of quantum mechanics classical simulation becomes

intractable for systems with more than 50 particles [74]. This is because the dimension of

the Hilbert space increases exponentially with the size of the

system[130, 32, 121, 129, 70, 56, 123, 122, 30, 76, 31, 80, 85], and that requires more

computational resources than those currently available[85]. Some problems in which

computational power is an issue include: the quantum many-body problem, high

temperature superconductivity and quantum field-theories [20, 125, 83].

In a classical simulation, the state of an N 2-state particle system is represented by a

2N vector; simulating this system classically implies storing 2N complex coefficients to

represent that state as a linear combination of the 2N orthogonal states that span the

Hilbert space of the system. Moreover, time evolution makes it necessary to perform

operations with those coefficients in order to predict quantities of interest.

Computationally, this problem becomes intractable when the number of two level particles

exceeds 50 [109, 74]. The amount of memory required to do this exceeds a terabyte, which

would occupy the entire memory space available of some currently existing classical

computers.

Richard P. Feynman proposed in 1982 the idea of a “quantum simulator”, i.e. a
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quantum system that could be used to simulate another quantum system. A quantum

simulator could be a collection of spin 1
2

particles that can be manipulated at will through

external controls (e.g. lasers)[74], such that the interactions between them are modified to

simulate the evolution of another system of interest. Then the desired quantities would be

extracted by performing measurements on the simulator. This type of device can perform

the task much more efficiently than a classical computer [124], because it only requires N

qubits to store the state of N spin frac12 particles; and this alone provides an exponential

reduction in the amount of computational resources required [126, 50, 74].

Evolution of the system, however, requires a N ×N unitary operator. This takes an

exponential amount of resources, even in a quantum simulator. Nevertheless, Lloyd

demonstrated in 1996 that this problem can be overcome by evolving the system in small,

discrete time steps; and by turning on and off the correct sequence of Hamiltonians, a

quantum simulator can be programed to mimic any evolution of quantum systems subject

to local interactions [126].

In addition, a quantum simulator behaves according to the laws of quantum

mechanics, just like the system it is built to emulate [74], and this means that they would

provide insight on quantum phenomena that may not be available otherwise. Quantum

simulators might also help overcome the sign problem in Quantum Monte Carlo algorithms

for fermionic systems or the exchange-correlation functionals in Density Functional Theory

[56, 78].

The possibility of finding answers to problems that are intractable using classical

computers has brought a great deal of interest in the field of quantum simulations. A large

portion of the existing theoretical work is devoted to the development of algorithms for

implementation on specific existing devices which perform as simulators

[56, 145, 50, 127, 128, 62, 72, 85, 97, 70, 68, 18, 63, 82, 2], and some simulations have been

carried out experimentally [73, 76, 146, 71, 29, 118, 117, 99].

Nevertheless, a quantum simulating device is, after all, a quantum system, and its
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interaction with the surrounding environment is unavoidable. It is therefore necessary to

study how the interactions affect it, whether they can be included in the simulation or if

error correction is necessary and if so how. Noise in quantum systems can cause

discrepancies in the output of a quantum simulation, affecting the final result in an

undesirable manner [88].

The following subsections provide a brief review of advances on the realization of

quantum simulators. The present work is focused on a specific algorithm, but an

introduction to these devices and how they operate provide the necessary background to

understand the problem.

3.2 EXPERIMENTAL IMPLEMENTATION OF QUANTUM

SIMULATIONS

Quantum simulation is one of the motivations for building a fully functioning

universal quantum computer. A quantum computer would serve as a universal quantum

simulator, in the sense that it should be capable of simulating any other quantum system

[36, 67]. Universal quantum computation relies on a universal gates that act on a collection

of two-state systems [38, 79, 114]. The state of the quantum system of interest is

represented with qubits [67]. And operations are performed as a stroboscopic sequence of

quantum gates to mimic any unitary transformation. Building a quantum computer

though requires controlling particles for long periods of time and measuring final states,

both with high precision, which requires a large number of quantum gates [88]. And during

these operations the fidelity of the computation will be affected by interactions with the

surrounding environment and with other particles in the system [135]. This causes both

evolution and measurement to lose precision. Since these errors are not yet able to be

overcome, it will take some time before a fully-functioning fault-tolerant quantum

computer can be built.

A quantum simulator can also be a system composed of a finite number of particles
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that can be manipulated with external controls. In these systems the Hamiltonian of the

system will be directly mapped onto a many body Hamiltonian that constitutes the

simulating device. Given an initial state Ψ(0), time evolution is performed by inducing

interactions between the particles, and then properties of some final state Ψ(t) can be

studied [74]. These devices operate continuously in time instead of through discretized

unitary transformations, as a quantum computer does. Universality in these devices means

finding a many body system that can be engineered to simulate any other many body

Hamiltonian, though, just as with a quantum computer, is difficult to achieve, therefore,

there are no universal quantum simulators available.

Fortunately, recent experimental advances in quantum control techniques are reaching

highly sophisticated levels for many systems; these include: ultracold atoms, ultracold

Fermi gases, ion traps, quantum dots, atoms in optical lattices, coupled cavities, photons,

superconducting qubits and NMR devices

[67, 43, 77, 50, 76, 80, 85, 146, 99, 71, 127, 2, 66, 109]. This, in addition to the availability

of universal gates to many physical systems [109], has made it possible to design smaller

scale quantum systems as specialized quantum simulators in order to study characteristics

of specific systems of interest, such as Fermi-Hubbard models [65].

Because both types of devices have been proposed as universal quantum simulators,

and specialized ones are available with both operation schemes described above, there exist

two main classifications of quantum simulators:

1. The Digital quantum simulator (DQS) [67], which includes those quantum simulators

which operate under the same principles a quantum computer would [67], and

evolution of the system is carried out through stroboscopic sequences of quantum

gates to simulate a unitary evolution.

2. The Analog Quantum Simulator (AQS) [67, 135, 109], which refers to the device

which involves direct mapping of the Hamiltonian of interest onto the Hamiltonian of

the controllable system and continuous time operation [67], which is a Hamiltonian
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with “always on” interactions [109], and evolution is carried out continuously in time

by modifying these interactions. These were initially referred to as Specialized

Quantum Simulation (SQS) [69, 95], because they were systems designed to simulate

very specific models, but the possibility of universality and the fact that DQSs can be

used as specialized quantum simulations, calls for a broader definition.

Further sub classification is provided by Hauke, et al. in [109], who identify three

subtypes of simulators in each category according to their universality and applicability.

The details of these will be provided next.

3.2.1 Analog and digital quantum simulators

In this section we will go over the subtypes of quantum simulators in each category.

Hauke et a. [109] identify each subcategory according to their universality and purpose.

1. Analogue Quantum Simulators:

• Universal Analogue quantum simulators (UAQS): Which are controllable

many-body Hamiltonians that can be used to represent any Hamiltonian

evolution; mapping of systems of interest onto these Hamiltonians is done with

specifically designed unitary control sequences; the unitary transformations in

these control sequences are one or more particle operations to map the

Hamiltonian of interest onto the one in the UAQS. Universality for AQSs is

concerned with the Hamiltonians can be used as simulators and to what degree

of accuracy they can represent other systems. This has been the subject of

extensive research in recent years [35, 79, 113, 112, 111, 94, 100, 8, 6, 7]. Work

by Childs characterizes the family of two-qbit Hamiltonians and determined

conditions under which they fail to be universal [7]. Berry et al [41] considered

the simulation of more general sparse Hamiltonians, which are not necessarily

representative of a system composed of tensor products of subsystems. Instead,
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they have a fixed number of nonzero elements per row. Their algorithms

improve the simulation time by reducing it to almost linear. But, these kinds of

Hamiltonians are more applicable to quantum algorithms than to physical

systems [83]. More complex non-sparse Hamiltonians are analyzed by Childs, et

al. [6] and their results show that there is no general algorithm for their

simulation; finding control sequences and calculating their efficiency can be an

extremely difficult task [6, 83]. Dur et al. [141] studied the possibility of using

“always on” Hamiltonians for universal quantum simulations for which time

evolution would be carried out through a Trotter decomposition, but found

them to be inefficient for this purpose due to noise and timing errors [141, 109].

Some theoretical universality questions still remain for very specific systems, but

many have been already answered [83]. Although there exist some proposals for

implementation [51], there is no universal AQS available, mostly due unsolved

controllability issues arising from scaling of the system.

• Non-Universal Analogue quantum simulators (nUAQS), which are currently the

most widely available type of quantum simulators. These are Hamiltonian

simulators that operate continuously in time, built to specifically carry out the

quantum simulation of certain systems of interest [109]. Giving up universality

allows the experimentalist to use a system that will have a Hamiltonian similar

to that of the system that will be simulated, something that is desirable for

accuracy of the results. There have been many theoretical proposals

[56, 122, 50, 30] as well as experimental realizations[80, 54] for nUAQS.

Although not universal, these types of simulators promise to provide answers to

problems that have no known analytical solution and take more than the

currently available computational resources.

• Open-System Analogue quantum simulators, which can be any non universal

analogue simulators, but in this case the purpose is to simulate the appropriate
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master equation [83]. In the Markovian regime, the system would simulate a

Linblad master equation for a density operator. There exist some algorithms,

which propose to include the environment as part of the experiments, such as

those designed by Mostame et al. and Wang et al. [63, 128], however, these

algorithms are designed to observe non-Markovian effects, therefore, cannot be

described with Linblad operators. And since the environment is included as a

part of the total system, these most likely fit in the category of nUAQSs.

Experimentally, Barreiro, et al. proposed an ion trap simulator to emulate open

quantum systems of up to five qubits [80]. As opposed to designing dissipative

gates, including the environment as part of the joint system could provide

valuable information about non-Markovian dynamics. The Markovian

approximation used to model open quantum system dynamics provides

mathematical simplicity, but there is an increasing demand for models that

include initial correlations/interactions [84, 26], and studying noisy quantum

simulations may help provide insight about the effects of interactions and

possible memory effects.

2. Digital Quantum Simulators:

• Universal Digital quantum simulators (UDQS). The quantum simulator

proposed by Lloyd in [126] has been defined as the universal digital quantum

simulator.A universal DQS is, in principle, a universal quantum computer. But

the availability of systems for which a universal set of gates is available (such as

ultra cold trapped atoms and ions, superconducting qubits, etc.), have made it

possible to experimentally realize a UDQS without having to build a quantum

computer [109, 129, 36, 73, 21]. These types of devices are expected to be the

most reliable types of simulators, because universal error correction is available

to them. However, errors can be introduced by the Trotter decomposition of the
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unitary evolution, and error correction can increase simulation time, reducing

the efficiency.

• Non-Universal digital quantum simulators: these are special-purpose digital

quantum simulators that operate with a non-universal set of gates [64]. These

can be realized by limiting the set of universal gates on systems to which they

are available, and thus obtain special purpose digital quantum simulators. Once

more, specifically designing a device to simulate a quantum system may be

advantageous in the sense that the simulation may be more accurate. However,

according to [109] universal error correction is not guaranteed for these type of

simulators.

• Open-System digital quantum simulators: These are simulators that operate

under a set of universal dissipative gates, realized by tracing out ancillas. In the

simplest case, these gates correspond to Linblad superoperators, which represent

Markovian dynamics [109].

The availability of non universal analogue and digital quantum simulators makes it

possible to experimentally study problems of interest in the present day

[51, 77, 108, 81, 80, 73, 76, 146, 29, 118, 18, 117, 21, 54]. There should be, nevertheless,

some caution in their use.

Isolation has been achieved for a relatively small number of particle, thus enabling

small scale quantum computing [74, 80]. But the purpose of realizing quantum simulators

is to model the dynamics of systems which are not efficiently simulatable in a classical

computer, i.e. for many body systems that are composed of more than 50 particles.

Dynamical decoupling [136] can be used to avoid noise arising from interactions with

the environment, but this task is non trivial, and even if it is accomplished, there exists the

possibility of interactions between the particles of a quantum simulator. A quantum state

can be prepared ideally, but if some time passes, there can be some unwanted interaction

with other parts of the system or with the environment. And also, due to the probabilistic
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nature of quantum systems, the experiment may need to be realized many times, a factor

that could diminish the efficiency of the simulation. All these factors should be considered

in AQSs because error correction and fault tolerance are not available to them [109]. Even

though it has been suggested that noise suppression may not be as necessary for a An

additional factor is in using AQSs is the efficient design of control sequences, which is a

computationally hard problem [83, 44, 94, 56, 123, 122].

Now, it has been mentioned that the simulator should have a Hamiltonian that is

similar to the Hamiltonian of the simulated system. To better understand why, we refer

back to the processes associated to the interaction of a quantum system with the

environment: decoherence and dissipation. The term decoherence is used here in its

original context, which is the process of decay of quantum coherence. The term has been

generalized to include dissipative processes [91], and to define noise in quantum systems in

general. But the distinction is made here for the definition of the timescales.

The relaxation time, τrxn, is the time it takes for the system to undergo a loss of

energy to the environment, which affects the populations (diagonal terms) of the density

operator. The decoherence time τdec, is the time it takes for the coherence to become less

than one (decay of the off-diagonal terms). to last for up to 300 fs at room temperature.

The ratio between these two time scales determines whether one or the other processes

dominates the open system dynamics. In many systems τdec is much smaller than τrxn, so

the dominating process is dephasing. In this sense it is easy to see that the simulator and

the system of interest should have similar timescales.

3.3 QUANTUM SIMULATION PROCEDURE

The main task of a quantum simulator is the time evolution of a system governed by a

Hamiltonian, H [44, 83]:

|Ψ(t)〉 = e(−iHt) |Ψ(0)〉 (3.1)
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Where Ψ(t) is the wave function representing the state of the quantum system at a time t,

and for simplicity ~ = 1. The basic quantum simulation procedure thus has three steps

[106, 122, 67]: initial state preparation, evolution of the quantum system, output and

measurement of a physical property of interest on the final state. There exist more than

one method to implement each of these steps, and will be described in more detail in the

following subsections.

3.3.1 Initial State Preparation

In this first stage, the state of the system is mapped onto that of the quantum

simulator. It is an extremely important step, because the final state depends on it, and

errors in the preparation lead to deviations from expected results.

The main preparation methods are listed below:

1. Zalka’s method. In [33], Zalka proposes to map the discretized wavefunction onto a

qubit register of length L, in which the norm, l, of the wave function is ’split’ L times

as follows

|ψ〉 =
2L−1∑
n

〈n|
∣∣∣∣ψ(n l

2L

)〉
|n〉 (3.2)

Where the basis states |n〉 are assigned by the binary representation of n. And this is

subject to periodic boundary conditions, |ψ(x+ l)〉 = |ψ〉.

2. Direct Preparation, which includes all methods for state preparation of quantum

registers [83]. Some methods involve the use of quantum gates and/or quantum

algorithms, such as Grover’s algorithm [56, 83].

3. Adiabatic Evolution, in which a system is evolved adiabatically from the ground state

of an initial Hamiltonian to the ground state of a final Hamiltonian:

H(t) = (1− s(t))H0 + s(t)Hf , (3.3)
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where s(t) is a time dependent monotonically increasing function which determines

the speed of the evolution. H0 is the starting Hamiltonian, and Hf is the

Hamiltonian whose ground state we want to use as the initial state of a simulation.

In the scheme of quantum computing, as well as in some quantum simulations, the

ground state of Hf is the desired solution to the problem [49, 78, 72], but it is easy to

see that this is a useful method to prepare an input state [83]. The rate s(t) will

depend on the energy gap between the initial ground state and the excited states of

the final Hamiltonian [8, 10]. When the gap is larger, the evolution can be performed

in less time [83].

4. Preparation by thermal equilibrium, in which the system is in contact with a bath

that is in a state of equilibrium at a certain temperature; system and bath are

allowed to interact for a certain amount of time, after which the bath is reset to the

equilibrium state again. Then the procedure is repeated until the system is in the

equilibrium state for that temperature [17, 83]. States prepared by thermal

equilibrium are very useful for problems in statistical mechanics [69], but have also

been used for quantum computation problems [5]. Algorithms that use thermal

equilibrium as state preparation for the calculation of thermal rate constants, are a

problem of key interest in chemistry [42, 97].

3.3.2 Evolution of the Quantum System

The main difference between DQSs and AQSs is the manner in which the evolution of

the quantum state is realized.As stated before, time evolution in a DQS is carried out

through a Trotter decomposition, which is a sequence of unitaries that act on smaller size

subsystems of the total system for short periods of time. This translates into a stroboscopic

application of quantum gates that simulate, in principle, any unitary operator [109]. Time

evolution in an AQS, on the other hand, is realized by modifying particle-particle

interactions in the “always on” Hamiltonians to evolve the system continuously in time.
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Trotter decomposition

Lloyd proposed to carry out the unitary evolution through a Trotter decomposition

because the exponential size of the unitary generated by a Hamiltonian could require

exponential resources [126, 50, 83]. But also because this formula can be used even for

Hamiltonians which do not commute with each other. In this scheme the total Hamiltonian

of the system, H, is represented as a sum of n Hamiltonians Hj, that act on smaller

subsystems of fixed size `:

H =
n∑
j=1

Hj (3.4)

The quantity ` is independent of the total system size, N ; and it represents the maximum

number of nearest neighbors. The number ` should remain constant even though N

increases, this guarantees that the interactions in the system remain local [83, 6].

In this notation, the entire system is represented as a tensor product of smaller

subsystems [41]. The maximum number of terms in the sum n is given by the distribution(
N
`

)
< N `/`!, which implies a polynomial increase of n as N grows [83], not exponential,

and therefore only a polynomial number of resources is required [126, 50, 83].

Lloyd also classified the set of operations to carry out evolution in quantum simulators

in two:

1. Operations that almost preserve coherence, which are necessary to simulate closed

systems subject to Hamiltonian dynamics.

2. Operations that do not preserve coherence, which correspond to open system

evolution described by super operators or master equations [126, 83].

Coherence-preserving operations involve turning on and off a set of Hamiltonians

H1, H2, ...Hn in a controlled manner to carry out a unitary evolution U = e−iHt. The total

evolution time t is divided into ∆ small discrete time steps, and each step is approximated

with the Trotter decomposition [83]:

1. Iterations |Ψj+1〉 = U t
∆
|Ψj〉
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2. Loop j = j + 1 until desired time of evolution is achieved j t
∆
t ≥ tf

If ∆ is chosen to be sufficiently large, the dynamics have more controllability and the

amount of error is small [126, 78]. Then the unitary operator is carried out as follows:

eiHt = (eiH1
t
∆ eiH2

t
∆ ...eiHn

t
∆ )∆ +

∑
i>j

[Hi, Hj]
t2

2∆
+ · · · , (3.5)

An efficient simulation requires that the number of operations performed increase

polynomially as
(

1
δ

)
, where δ is the accuracy. Brown, et al. [83] explain the calculation of

an upper limit to the efficiency of the Trotter decomposition by allowing the upper bound

on the size, `, of the subsystems to be given by the quantity g. The n individual

Hamiltonians act on the subsystems of size `. Now, say the size of Hamiltonian Hj is gj,

and gj < g, then g2
j operations are necessary to simulate the unitary generated by Hj; and

Hj will be simulated in time ∆. This limits the maximum number of operations required to

simulate the total e−iHt to ∆ng2 [83]. Since the error is inversely proportional to the

number of time slices as ε ∝ t2/∆, the number of operations in this algorithm can be

calculated as a function of t2ng2/ε, and since n scales polynomially with N , then the

simulation algorithm is considered efficient [83].

The second kind of operations, those that do not preserve coherence, and are not

unitary. These correspond to reduced quantum dynamics of the system after tracing out

environmental degrees of freedom. The evolution is described by dynamical maps

[126, 37, 83],

B[ρS] = TrE[Wρs ⊗ ρBW †]. (3.6)

According to Lloyd, there is no need to simulate the environment in its totality, but only

the effects of the environment that may be relevant to the system. But if the environment

is small enough and local, it can be simulated and the evolution of the global unitary

carried out by Trotter approximation. A dynamical map can then be obtained to describe
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the reduced dynamics of the system after tracing out environmental degrees of freedom,

and it should preserve any relevant memory effects.

Evolution by continuous operation

Time evolution in AQSs, on the other hand, is not carried out as a Trotter

decomposition, but rather they operate continuously in time. Hamiltonian simulation in

the AQS setup is done by increasing the always on interactions present in the Hamiltonian

of the system to obtain a final Hamiltonian and, by doing so, simulate the dynamics of

many body systems.

Adiabatic quantum simulators can also be used to simulate a system and obtain

quantities of interest, in particular when studying the gap between the ground and first

excited states [145], especially in the vicinity of a quantum phase transition. In the later

case, adiabatic evolution can be used to prepare a state that is a superposition of the

ground and first excited states, which then is evolved adiabatically and information is

extracted by phase estimation algorithms. The adiabatic approach has been shown to be

equivalent to the circuit model in power, but its physical implementation can be quite

different.

The evolution of an adiabatic simulator is carried out in the same manner as the state

preparation procedure described before, when the ground state of the target Hamiltonian is

the quantity of interest. Adiabatic quantum simulators can be classified as AQSs due to

their mode of operation, but they do not require a designed control sequence to perform a

simulation [78].
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3.3.3 Output and measurement of a physical property of the final state

The final step of the simulation is the extraction of the necessary information from the

resulting quantum state. We require

〈
Ψ(tf )

∣∣e−iHt∣∣Ψ(0)
〉
≥ 1− δ, (3.7)

where δ is the non zero level of accuracy [106]. Projective measurement is not an ideal

method. It would alter the final state and provide a limited amount of information.

Moreover, to achieve accurate results, the experiment must be carried out N times, with

the same initial state. The efficiency of such procedure can only improve as 1/N [52].

Many measurement techniques are based on parameter estimation methods [52].

Brown, et al. identify the measurement techniques according to the quantities of interest

they are expected to obtain [83].

• Phase estimation algorithms, which are used to obtain energy gaps between ground

and first excited states. After performing a unitary evolution on an initial state

|ψ(0)〉, which is an eigenstate of U , the final state will have an eigenvalue ei2πφ. The

phase, φ is obtained by performing an inverse quantum fourier transform (QFT)

[116]. This phase difference is proportional to the energy gap between the ground and

first excited energy states [83, 144]. Another method to obtain an estimate of this

phase difference is by measuring the final state |ψ(t)〉 using an operator Ô, such that;

〈ψground| Ô |ψ1〉 (3.8)

Where |ψground〉 and |ψ1〉 are the ground and first excited states, respectively. Then

the phase difference is extracted by using a classical Fourier transform. This provides

an energy spectrum with peaks where the gap and zero are located [88, 83]. This

method is particularly useful if an adiabatic quantum simulation has been performed.
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Abrams and Lloyd’s propose an algorithm to calculate the eigenvalues and

eigenvectors of a Hamiltonian H based on phase estimation. The entire procedure

describes a quantum simulation, but its necessary to describe it in order to specify

the details of the procedure followed to extract the relevant data. Initialization

consists on preparing l qubits in a register in a state Va which is an approximation of

an actual eigenstate V of H; in terms of the eigenvectors of H:

|Va〉 =
∑
k

ck |φk〉 (3.9)

m additional qubits in the register are prepared in the |1〉 state (spin down, for spin 1
2

particles), and are labeled the index qubits. Then the total state of the register is

|ψ〉 = |1〉 |Va〉 (3.10)

A π
2

rotation is performed on each of the index qubits, so that the state becomes

|ψ〉 =
∑
j

|j〉 |Va〉 (3.11)

Then after Va has been evolved with the unitary operator eiHt, it should be in a

linear combination of the |φk〉 eigenstates with eigenvalues eiθt. Then a quantum

Fourier transform is performed on the index qubits to obtain these phases, and

therefore the eigenvalues of H [45]. The accuracy of this procedure is inversely

proportional to the overlap | 〈Va | V 〉 |2, which should not be exponentially small.

• Indirect measurement using an ancilla. which was proposed by Somma et al. in [122].

In this scheme, an ancilla qubit is prepared in a specified initial state and then is

allowed to interact with the simulated system. At the end of the simulation, a

measurement is performed to obtain some quantity of interest.
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Somma et al. focus on the evaluation of the time and/or spatial correlation functions,

where the ancilla is measured after performing operations with time evolution or

translation operators [122]

3.4 UNSOLVED PROBLEMS WITH QUANTUM SIMULATIONS

The first problem is scalability. Increasing the system size decreases its controllability.

When Lloyd proposed his method, he limited the efficient simulation to local Hamiltonians.

A Hamiltonian which does not satisfy this condition may require Ñ2 = 22×Nd gates per

time step to simulate its evolution [50]. This translates into an exponential number of

resources to perform the simulation of an arbitrary unitary operator. To overcome this

problem, Pritchett et al. have suggested a trade between the polynomial reduction of

resources for a reduction in simulation time [50]. Also recent work by Papageorgiou and

Zhang makes use of higher order splitting methods which increase the number of

exponentials but result in speedups when performing the simulation [9].

Scaling of the system also has implications for the efficiency of the simulation. The

amount of error scales as 1/ε, so, for small ε, the number of required resources increases

dramatically [135, 88, 83], making error correction necessary, which in turn results in

increased simulation time.

Error correction though, is not available for AQSs [109], and scaling these simulators

also decreases their controllability. The extent to which we can trust the result of a

simulation using an AQS is a question that remains open. Error correction methods are

not developed for these kind of simulators. Quantum control has been improved for certain

systems, but is usually limited to a few particles [109].

Noise, either in the form of gate errors, interactions between the particles of the

simulator, or from interactions with the environment, is another contributing factor. It was

initially suggested that decoherence in quantum simulations may not need to be treated in

the same strict sense as in quantum computation [126]. However, the interactions of the
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simulator with the bath may not be the same as those of the system of interest.

Error-correcting codes can be used for DQSs [132, 133, 34, 58, 59, 57], decoherence free

subspaces [148, 93, 47, 87, 86, 92] (see also [91, 25] for reviews) and dynamical decoupling

[136, 19, 46, 137, 147, 140, 139, 138, 40, 23, 43, 60], may help suppress noise in both types

of simulators. An example of error prevention was given by Wu and Byrd in [144], where

they show that several algorithms and observables have a robustness to errors when

quantum tomography was used to extract data.

In the case of DQSs, the Trotter decomposition can introduce additional noise [56, 31],

and can also increase the simulation time in the sense that the number time steps must be

increased to achieve a higher degree of precision, and this may not be the most efficient

solution.

Other problems in quantum simulations can be caused by errors in the initial state

preparation and measurement. In the latter case, its mostly because the amount of

information measurement provides is limited. Preparation, on the other hand, is

important, since the final state depends on the evolution of the system but also on the

initial conditions. For example, preparing ground states may result in a combination of the

ground and first excited states when the energy gap between them is small.

Experimentally, two different state preparation methods may not yield the same result and

can have a profound effect on the outcome [89].

Interactions with other particles in a quantum simulator, whether or not they are

thought of as the bath, are a central subject in the present work. We study the effects of

errors in the preparation of the initial state and see how the affect the outcome of the

simulation. And because the simulator is treated as an open quantum system, we also look

at the dynamical maps that describe the evolution of the different initial states. The

purpose of observing the effect of errors in the initial state is to obtain information about

the types of initial correlations that yield NCP maps.
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CHAPTER 4

A QUANTUM SIMULATION WITH NOISE AND DYNAMICAL MAPS

4.1 BACKGROUND

Lloyd suggested that suppressing noise in quantum simulations is not as important as

it is for quantum computation [126] and in fact may be used to simulate the interaction

with the environment of a system of interest [67]. However, as mentioned before the

manner in which noise affects the simulator may differ from that of the system of interest.

Even in cases where the bath is engineered as part of the experiment [128], it might be

useful to suppress the noise from interactions with the real environment or the quantum

simulating device, or to study their effects so they can be identified in the final result. In

any scenario, errors need to be minimized [67, 31, 109] to achieve accurate representation of

a system of interest. The degree to which noise from the environment or the device should

be included in the simulation depends on the systems being used and whether or not these

effects are relevant.

In order to study the effects of unwanted noise in a quantum simulation, we selected

an existing algorithm that could be simulated in a NMR device to observe the dynamics of

different initial states for a closed and open quantum system. To further study the effects

of interactions, we also calculated the dynamical maps that describe the evolution of

different initial states. The purpose is to observe which initial conditions would lead to non

complete positivity, and under which conditions the dynamics can only be represented with

an NCP map.

4.1.1 Quantum Algorithm for Simulation

Ortiz, et al. proposed an algorithm for the quantum simulation of the one-dimensional

Fano-Anderson model [30]. This model consists of an impurity with energy ε surrounded

by a ring of n spinless fermions, which have energies εki . The fermions interact with the
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impurity, which is also a spinless fermion, through a hopping potential V . The diagonalized

wave-number representation of the Fano-Anderson Hamiltonian is given by [30, 56]:

H =
n∑
i=0

εkic
†
ki
cki + εb†b+ V

n−1∑
i=0

(c†kib+ b†cki)δki0. (4.1)

After the Jordan-Wigner transformation Eq. (5.16 )becomes (see Appendix 5.1) [56]:

H̄ =
ε

2
σ1
z +

εk0

2
σ2
z +

V

2
(σ1

xσ
2
x + σ1

yσ
2
y). (4.2)

The drift Hamiltonian in the quantum simulator is:

Hdevice =
1

2

(ε+ εk0)

2
−

√(
ε− εk0

2

)2

+ V 2

σ1
z+

1

2

(ε+ εk0)

2
+

√(
ε− εk0

2

)2

+ V 2

σ2
z .

(4.3)

The authors provide a control sequence to map the Hamiltonian in Eq. (4.2) onto the

drift Hamiltonian of Eq. (4.3),

U = ei
π
4
σ2
xe−i

π
4
σ1
ye−i

θ
2
σ1
zσ

2
zei

π
4
σ1
yei

π
4
σ1
xe−i

π
4
σ2
xe−i

π
4
σ2
yei

θ
2
σ1
zσ

2
ze−i

π
4
σ1
xei

π
4
σ2
y . (4.4)

The final result of this simulation is the time evolution of the state of the impurity. For

this purpose the time correlation function C(t) = b(t)b(0)† is calculated. In terms of spin

operators: C(t) = eiH̄tσ1
−e
−iH̄tσ1

+ [56], where σ+ = σx + iσy and σ− = σx − iσy. The time

correlation function provides the overlap of the initial and final states of the impurity.

In this work, we use the Hamiltonian in Eq. (4.2) to perform the unitary evolution of

initial states of the system which are not “ideal”. We study the final results of the

simulation in the presence of errors in the preparation of initial states. Our results also

include calculations of the time correlation function, the purpose is to compare the result of

this quantum simulation when the initial state is prepared incorrectly or becomes correlated
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[t=0] [t=0.3] [t=0.6] [t=0.9]

Figure 4.1. Evolution of the Bloch Vector of the reduced dynamics of
qubit 1 in the initial state ρ1 = |0〉 〈0| as a function of time.

or entangled with other particles in the system, with the result under ideal conditions.

4.1.2 States with Bloch vector in the z direction

We first consider states with only a z component to their Bloch vector. These form a

special class of states due to their commutativity of the zz Hamiltonian. Fig. (4.1) is a

collection of “snapshots” that represent the evolution of the Bloch vector at different times.

Ideal states and convex combinations of eigenstates of the σz operator

The first task is to describe the dynamics of the impurity site when the entire system

undergoes closed evolution. The system is composed of the resonant impurity and a

fermion it is coupled to, and is not in contact with an external reservoir. However, we are

interested only in the dynamics of the impurity (qubit 1), and to obtain the dynamical

map for it, it is necessary to perform the partial trace over qubit 2 (the fermion site), and

thus look at qubit 1 as the reduced system, and qubit 2 as its environment. We’ll

eventually look at the dynamics when additional qubits are coupled to the system and are

treated as external noise. We first look at two different types of initial states: ideal ones

and convex combinations of eigenstates of the σz operator. To better identify the maps

arising from the reduced dynamics of qubit 1, the initial states are labeled as follows:
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A.1 Ideal states: Qubit 1 is in the excited state, qubit 2 is in the ground state.

|ψ(0)〉 = |01〉 (4.5)

Here |0〉 corresponds to the“spin-up”/occupied state, and |1〉 is the

“spin-down”/unoccupied state. In density operator notation

ρS(0) =
1

4

{
(1l + σz)⊗ (1l− σz)

}
(4.6)

Where the left hand side of the equation is the density operator representing a “spin

up” state for qubit one, and the right hand side is the density operator representing a

“spin down” state.

A.2 States in a convex combination of states

ρ(0) = (1− p)(ρI1 ⊗ ρI2) + p(ρII1 ⊗ ρII2 ), (4.7)

Where p is the probability and the super indexes are used to represent two possible

state configurations. The combination was done with varying values of p for:

ρI1 ⊗ ρI2 =
1

4
(1l + σz)⊗ (1l− σz) (4.8)

And

ρII1 ⊗ ρII2 =
1

4
(1l + σz)⊗ (1l− σz) (4.9)

We used the Bloch vector notation. Each one of the projections along x, y and z will

be represented as the arbitrary constants a1, a2 and a3, to obtain a more general result.

The class of states in this subsection have a1 = 0, a2 = 0 and a3 6= 0, i.e. only a component
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in the z direction.

Then the initial density operator that represents the state of qubit 1 becomes:

ρ1(0) =
1

2
(1l + a3σz)

The constant a3 is real and has a numerical value that is equal to or less than the radius of

the Bloch sphere (0 ≤ a3 ≤ 1). And the initial density operator that represents the state of

qubit 2 is:

ρ2(0) =
1

2
(1l− σz)

The reduced dynamics of ρ1 after performing the evolution of ρ1 ⊗ ρ2 with the unitary

generated by Eq. (4.2) is obtained as follows:

ρ1(t) = Tr[ρS(0)
(
U(t)ρ(0)U(t)†

)
]

Which is a state of the general form:

ρ1(t) =
1

2
(1l + b3σz)

where b3 is another real constant that is subject to the constraint 0 ≤ b3 ≤ 1. The value of

b3 depends on a3 and on the parameters ε, εki , V and t. The dynamical map A is

calculated to act as a direct matrix product on ρ1(t) in vector form,



1 + b3

0

0

1− b3


= A



1 + a3

0

0

1− a3


(4.10)
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The evolution can be described by the following particular form of the A map:

A =



1+b3
2

0 0 1+b3
2

0 0 0 0

0 0 0 0

1−b3
2

0 0 1−b3
2


. (4.11)

This map is not unique, it is a particular case of the dynamical map that represents the

dynamics of the system. It can be seen that there exists some freedom in the terms in the

A matrix that are multiplied by the off-diagonal terms in the density operator, this is not

explored in the present work though, but is a question for future work.

This A map is not Hermitian, but preserves the hermiticity of ρ1; it has trace 1 and

preserves the trace of ρ1. Rearrangement of the A map provides the B map:

B =



1+b3
2

0 0 0

0 1+b3
2

0 0

0 0 1−b3
2

0

0 0 0 1−b3
2


. (4.12)

Which has eigenvalues:

λ1 =
1 + b3

2
,

λ2 =
1 + b3

2
,

λ3 =
1− b3

2
,

λ4 =
1− b3

2
, (4.13)
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and these are all positive (recall the constraint b3 ≥ 1). The eigenvalues of the B map for

the ideal state |01〉 are plotted as a function of time in Figure (4.2), and it is verified that

the dynamics of qubit 1, given the ideal initial conditions can be described with a

completely positive map.
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Figure 4.2. Eigenvalues of the dynamical map, B, of the reduced dynam-
ics of qubit 1. The initial state of the closed system is |ψ〉 = |01〉. This is
an example of an ideal state (case A.1) with zero quantum discord. The
parameters of the Hamiltonian are ε = −8 meV, ε = −2 meV, V = 4
meV. The evolution was carried out for the time interval ∆t ∈ [0.1, 0.9].
There are four sets of eigenvalues, but due to form of the dynamical map
two of these sets appear to overlap with the other two sets, which is the
reason why only two lines show on the graph.

We found that a similar map is obtained for initial states in a convex combination of

the form in (A.2), but this is the case only when the individual states of the particles have

only z components to their Bloch vector.
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Ideal states and convex combinations eigenstates of the σz operator with noise

To add external noise to the system, we included environmental qubits that interact

with the system. We did so by modifying the control Hamiltonian. In this context, we

examine two different models of noise:

1. First, we added two spins and had them interacting via zz coupling with the particle

that represents the state of the fermion site (see Fig. (4.3)):

HNMR =
1

2

(ε+ εk0)

2
−

√(
ε− εk0)

2

)2

+ V 2

σ1
z

+
1

2

(ε+ εk0)

2
+

√(
(ε− εk0)

2

)2

+ V 2

σ2
z

+
Jzz
4
σ2
zσ

3
z +

Jzz
4
σ2
zσ

4
z +

Jzz
4
σ3
zσ

4
z . (4.14)

2. Next, we added an extra particle, which interacts in the same fashion (zz coupling)

with both particles that represent the system of interest: the resonant impurity and

the fermion site (see Fig. (4.4)):

HNMR =
1

2

(ε+ εk0)

2
−

√(
ε− εk0)

2

)2

+ V 2

σ1
z

+
1

2

(ε+ εk0)

2
+

√(
(ε− εk0)

2

)2

+ V 2

σ2
z

+
Jzz
4
σ1
zσ

3
z +

Jzz
4
σ2
zσ

3
z , (4.15)

where Jzz represents the zz coupling constant. To simulate an experiment, we performed

the same control sequence in Eq. (4.4) to obtain Eq. (4.2). By doing this we assume the

experimentalist is not aware of the presence of unwanted interactions with external qubits

and will find out the effects of the errors in the outcome of the simulation.
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Figure 4.3. Schematic representation of the simulated system. qubit 1 is
used to simulate the resonant impurity and qubit 2 represents a fermion
site. The two particles interact via the potential V . qubit 2 interacts
with two external spins (qubits 3 and 4) through the coupling term Jzz.

In this section we present the results for systems governed by the Hamiltonians in

Eqs. (4.14) and (4.15). The initial state of the bath must be specified in the initial state of

the system. We also chose different initial configurations of the state of qubits 1 and 2 in

order to observe the effects of noise with errors in the preparation. These are:

A.3 Ideal states

|ψ(0)〉 = |0111〉 (4.16)

and the density operator can be obtained from the outer product ρ(0) = |ψ(0)〉 〈ψ(0)|,

or calculated as the tensor product of the density operators representing the states of

all the qubits. For states that only have a z component in the Bloch vector, these

density matrices can be written in the same form as those of case A.1.

A.4 Convex combinations of eigenstates of the σz operator, which are an extension of case
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Figure 4.4. Schematic representation of the simulated system. qubit 1 is
used to simulate the resonant impurity and qubit 2 represents a fermion
site. The two particles interact via the potential V , and with an external
spin (qubit 3) through the coupling term Jzz.

A.2, but one or both qubits in the system interact with external ones:

ρ(0) =
(
(1− p)(ρI1 ⊗ ρI2) + p(ρII1 ⊗ ρII2 )

)
⊗ (|1〉 〈1|)⊗ (|1〉 〈1|) (4.17)

. The states of the bath qubits are in the same basis as those in the system, to study

the simplest scenario.

The initial state of qubit 1 can be written as an arbitrary Bloch vector of the form:

ρS(0) = TrEρ(0) =
1

2
(1l + a3σz). (4.18)

And the reduced dynamics of qubit 1 after time t is:

ρ1(t) = TrE
(
U(t)ρ(0)U(t)†

)
=

1

2
(1l + b3σz), (4.19)
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a3 and b3 are arbitrary constants with numerical value which is less than or equal to the

value of the radius of the Bloch sphere. Then, once again, the A map is obtained to satisfy



1 + b3

0

0

1− b3


= A



1 + a3

0

0

1− a3


(4.20)

And because the evolution only causes variations in the magnitude of the z

component in the Bloch vector, the A map is similar to that in Eq. (4.11):

A =



1+b3
2

0 0 1+b3
2

0 0 0 0

0 0 0 0

1−b3
2

0 0 1−b3
2


. (4.21)

From which the B map is obtained, and is similar to Eq. (4.12),

B =



1+b3
2

0 0 0

0 1+b3
2

0 0

0 0 1−b3
2

0

0 0 0 1−b3
2


. (4.22)

The purpose of adding noise is to observe the effects on the final result of the

simulation, but also on the reduced dynamics. Because this is a simple case in which there

is only a zz coupling, we found that the strength of Jzz affects only the rate of change of
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the state of qubit 1, which is more evident in the time correlation function, but has no

effect on the complete positivity of the dynamical map. This can be seen in Figs. (4.6)

and (4.7), where the eigenvalues of B are plotted with the couplings to the particles of the

spin bath being Jzz = 8 and Jzz = 1
10

respectively.
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Figure 4.5. Eigenvalues of the dynamical map, B, of the reduced dynam-
ics of qubit 1. The initial state of the closed system is |ψ〉 = |01〉. This
is an example of an initially ideal state (case A.1) with zero quantum
discord. The parameters of the Hamiltonian are ε = −8 meV, ε = −2
meV, V = 4 meV. The evolution was carried out for the time interval
∆t ∈ [0.1, 0.9]. There are four sets of eigenvalues, but due to form of the
dynamical map two of these sets appear to overlap with the other two
sets, which is the reason why only two lines show on the graph.

Figs. (4.2), (4.6) and (4.7) show the evolution of the same initial state but each has a

different environment. The class of states that had only a z component to their Bloch

vector correspond to completely positive reduced dynamics, since the interaction with the

bath is only through zz coupling. However, it does change the hopping rate and is visible

48



 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

E
ig

en
va

lu
es

 

Time (arb. units) 

λ1
λ2
λ3
λ4

Figure 4.6. Eigenvalues of the dynamical map of the reduced dynamics
of qubit 1. In the open system two qubits are interacting via zz coupling
with qubit 2 with coupling constant Jzz = 8 meV. The initial state
of the system and bath is given by ψ = |0111〉 (case A.3). The system
parameters are ε = −8 meV, ε = −2 meV and V = 4 meV. The evolution
is carried out for the time interval t ∈ [0.1, 0.9]. The dynamical map of
the reduced dynamics for this configuration is also completely positive.
Similarly to the case of Fig. (4.2), there are two sets of eigenvalues which
overlap, and the type of coupling to the bath qubits affects the rate of
change, but not the complete positivity of the reduced dynamics.

in the time correlation function, which will be discussed in the next sections. In Fig. (4.6)

the effect on the rate of change is particularly noticeable due to the choice of the coupling.

The state of the impurity does not transfer as quickly due to the strong correlations

generated by the interaction with the spin bath. In Fig. (4.7) the situation is different. In

this case the eigenvalues remained the same regardless of the strength of the coupling with

the environment.

49



 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

E
ig

en
va

lu
es

 

Time (arb. units) 

λ1
λ2
λ3
λ4

Figure 4.7. Eigenvalues of the dynamical map of the reduced dynamics
of qubit 1. The system is open. An additional qubit is interacting via zz
coupling with qubits 1 and 2 with coupling constant Jzz = 1/10 meV.
The initial state of the system and bath is |ψ〉 = |011〉 (case A.4 with
only one additional qubit). The system parameters are ε = −8 meV,
ε = −2 meV and V = 4 meV. The evolution is carried out for the time
interval t ∈ [0.1, 0.9]. This configuration was the same as in Fig. (4.2)
because the couplings to the third qubit both had the same magnitude,
which results in a shift in the values of the energies, but the relative sizes
of the parameters remain unchanged.

4.1.3 States with an x component to their Bloch vector

To represent an error in the preparation of a quantum state, we chose to add an x

component to the polarization vector that represents the initial state of qubit 1. In this

section we consider an initial state with a component of the Bloch vector in the x direction.

A visual representation of a state of this kind can be seen in Fig. (4.8). Clearly a y

component is not necessary, and only specifies a different initial condition for the angle
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since the system will precess.

[t=0] [t=0.1] [t=0.2] [t=0.3]

[t=0.4] [t=0.5] [t=0.6] [t=0.7]

Figure 4.8. Animation of the evolution of the Bloch Vector of the reduced
dynamics of qubit 1 in the initial state ρ1 = 1

2
(1l + 0.2σx + 0.97σz)

Closed system evolution

The initial states were chosen to have a component in the x direction; the components

in x and z were selected such that the magnitude of the Bloch vector is close or equal to 1

emulating a small error in the initialization. The initial state configurations are:

B.1 States in which qubit 1 has a component in the x direction

ρ1(0) =
1

2
(1l + a1σx + a3σz)

and

ρ2(0) =
1

2
(1l− α3σz)

B.2 A convex combination of states; one (or both) of the possible states of qubit 1 has a
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component in the x direction (state for qubit 1 in case B.1)

ρ(0) =
(
(1− p)(ρI1 ⊗ ρI2) + p(ρII1 ⊗ ρII2 )

)
,

Where ρ1 is the state of the impurity, ρ2 is the state of the fermion and the ai are

subject to 0 ≤
√
a2

1 + a2
3 ≤ 1.

After performing a “global” unitary evolution of the system, we take the partial trace

over qubit 2, which results in the final state of qubit 1, and for this class of states, we

obtained a state of the form:

ρ1(t) = TrE
(
Uρ(0)U †

)
=

1

2
(1l + b1σx + b2σy + b3σz) (4.23)

Because the final state has components in x, y and z, a particular A map that satisfies:



1 + b3

b1 − ib2

b1 + ib2

1− b3


= A



1 + a3

a1

a1

1− a3


(4.24)

Is given by

A =



1+b3
2

0 0 1+b3
2

0 −ib2
a1

b1
a1

0

0 b1
a1

ib2
a1

0

1−b3
2

0 0 1−b3
2


(4.25)
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Analytically, the bi parameters can be evaluated by performing the partial trace using

arbitrary initial parameters ai for the state of qubit 1, and arbitrary parameters of the

system:

bi = Trρ(t)(σi ⊗ 1l) (4.26)

Where ρ(t) is the final state of the system. The σi are the Pauli spin matrix operators for

i = x, y, z. The analytical expression for the bi parameters becomes

b1 =

{
cos

(
1

2
t(ε+ εk0)

)
cos

(
1

2
t
√

4V 2 + (ε− εk0)2

)

− sin

(
1

2
t(ε+ εk0)

)[(ε− ε) sin
(

1
2
t
√

4V 2 + (ε− εk0)2
)

√
4V 2 + (ε− εk0)2

]}
a1,

(4.27)

b2 =

{
− sin

(
1

2
t(ε+ εk0)

)
cos

(
1

2
t
√

4V 2 + (ε− εk0)2

)

− cos

(
1

2
t(ε+ εk0)

)[(ε− ε) sin
(

1
2
t
√

4V 2 + (ε− εk0)2
)

√
4V 2 + (ε− εk0)2

]}
a1

and

(4.28)

b3 =
2(−1 + a3)V 2 + a3(ε− ε)2 + (1 + a3)V 2 cos

(
t
√

4V 2 + (ε− ε)2
)

4V 2 + (ε− ε)2
. (4.29)
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And A can be rewritten,

A =



1+b3
2

0 0 1+b3
2

0 −ic2 c1 0

0 c1 ic2 0

1−b3
2

0 0 1−b3
2


(4.30)

The A map is then found to be linear (independent of the initial state), and then the

B map can be obtained:

B =



1+b3
2

0 0 −ic2

0 1+b3
2

c1 0

0 c1
1−b3

2
0

ic2 0 0 1−b3
2


(4.31)

The eigenvalues of B are given by

λ1 =
1−

√
4c2

1 + b2
3

2
λ2 =

1 +
√

4c2
1 + b2

3

2

λ3 =
1−

√
4c2

2 + b2
3

2
λ4 =

1 +
√

4c2
2 + b2

3

2
(4.32)

The plot of these eigenvalues as a function of time in Figure (4.9) shows that this is a non

completely positive map: For a state of the form B.2, it can be found that a similar

dynamical map describes the reduced dynamics. The shape of the graph changes with the

variation of the parameter p (the probability of being in one state or the other for states of

the form B.2), but its found to be mostly NCP for this system and the selected set of

parameters. Nevertheless, the dynamical map preserves the properties of the density

operator representing the quantum mechanical state of qubit 1.
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Figure 4.9. Eigenvalues of the dynamical map of the reduced dynamics
of qubit 1. The initial states of the qubits in the closed system are ρ1 =
1
2

(1l + 0.2σx + 0.97σz) and ρ2 = 1
2

(1l− σz) (case B.1). The parameters
of the Hamiltonian are ε = −8 meV, ε = −2 meV, V = 4 meV. The
evolution is carried out for the time interval t ∈ [0.1, 0.9].

We want to recall the composition of maps. As mentioned in Chapter 2, there are

three maps that compose the total dynamical map B: the assignment map, the unitary

map and the trace over the environment. The unitary and the trace must be completely

positive, it is the assignment map, the one that puts a state in the space of S (the system,

but in this particular case it is in the space of qubit 1) to a state in the space SE (the

space system plus environment, in this case, our total system, the space of qubits 1 and 2),

where we should look for the conditions for complete or not complete positivity. As

mentioned in chapter (2), the assignment map must satisfy the following conditions:

1. It is linear
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2. It is consistent

3. It is completely positive

According to [28, 115], giving up consistency can result in a loss of linearity, and therefore

it is preferable to give up complete positivity of the assignment map. In this particular

case, we can think of the error in the initial state. If the system is prepared in the state

|01〉, but an error in the state results in an initial state of the form B.1, then the dynamics

cannot be described by the CP map in Eq. (4.12), because the final state of the form of the

final state. This can be thought of as an giving up consistency, but can also be thought of

giving up complete positivity. But in both cases linearity is preserved.

Open system evolution

The results in this subsection are generated from adding the qbits in the spin bath,

and using the following initial states

B.3 States in which qubit 1 has a component in the x direction in an open system

ρ(0) = ρ1(0)⊗ ρ2(0)⊗ (|1〉 〈1|)⊗ (|1〉 〈1|), (4.33)

where

ρ1(0) =
1

2
(1l + a1σx + a3σz), (4.34)

and

ρ2(0) =
1

2
(1l− α3σz). (4.35)

The reduced dynamics of S are given by

ρ(t) = TrE
(
U(t)ρ(0)U(t)†

)
=

1

2
(1l + b1σx + b2σy + b3σz), (4.36)
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with a B map of the same for as that in Eq. (4.31),

B =



1+b3
2

0 0 −ic2

0 1+b3
2

c1 0

0 c1
1−b3

2
0

ic2 0 0 1−b3
2


. (4.37)

The coupling strength to the bath qubits has an effect on the time correlation function, but

not necessarily on the positivity or not complete positivity of the dynamical map. This can

be seen in Figs. (4.10) and (4.11), where the eigenvalues of the B map are calculated as

functions of time.

Dynamical maps obtained through quantum process tomography can present

discrepancies if the initial states are prepared through different experimental methods [89].

Thus the off diagonal term due to the x component can represent an error, which gives rise

to a NCP map like in the previous case. Note that Fig. (4.11) is very similar to Fig. (4.9).

In Fig. (4.11) the two qubits in the system are interacting with an external spin. Because

this interaction is due to a zz coupling to the bath of the same strength for both particles,

it represents only a shift in the parameters of the system. Therefore, the dynamics are the

same in both cases. However, in Fig. (4.10) only qubit 2 is interacting with two external

spins, and there is an effect on the shape of the eigenvalues plot, but not on the positivity

or complete positivity. The rate of change of the system changes when there are effects of

noise in the Hamiltonian, this can be verified with the time correlation function which will

be discussed in the next sections.

4.1.4 Completely or not completely positive dynamics?

Before proceeding to observing the effects of either the correlations in the initial state,

or the coupling to the bath on the final time correlation function, we will analyze the
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Figure 4.10. Eigenvalues of the dynamical map for the reduced dy-
namics of qubit 1. The initial states of the particles in the system
are ρ1 = 1

2
(1l + 0.2σx + 0.97σz) and ρ2 = 1

2
(1l− σz). The initial states

of the particles that compose the spin bath are ρ3 = 1
2

(1l− σz) and

ρ4 = 1
2

(1l− σz). The total state of the bath is an example of case B.3.
The Hamiltonian parameters are ε = −8 meV, ε = −2 meV, V = 4
meV. The coupling to the bath has strength Jzz = 6 meV. The evolution
is carried out in the time interval t ∈ [0.1, 0.9].

dynamical maps that describe the non- completely positive evolution. For the state that

presented an error in the preparation, we had that qubit 1 was initially of the form

ρ1(0) =
1

2
(1l + a1σx + a3σz) (4.38)
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Figure 4.11. Eigenvalues of the dynamical map for the reduced dynam-
ics of qubit 1. The initial states of the particles in the system are
ρ1 = 1

2
(1l + 0.2σx + 0.97σz) and ρ2 = 1

2
(1l− σz). The initial state of

the additional qubit is ρ3 = 1
2

(1l− σz). This is another form of case B.3,
except that there is only one additional qubit acting as the bath. The
Hamiltonian parameters are ε = −8 meV, ε = −2 meV, V = 4 meV.
The coupling to the additional qubit has strength Jzz = 1

10
meV. The

evolution of the system is evaluated for the time interval t ∈ [0.1, 0.9].

Then the direct multiplication matrix was give by

A =



1+b3
2

0 0 1+b3
2

0 −ic2 c1 0

0 c1 ic2 0

1−b3
2

0 0 1−b3
2


(4.39)
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And that recasts onto the B map:

B =



1+b3
2

0 0 −ic2

0 1+b3
2

c1 0

0 c1
1−b3

2
0

ic2 0 0 1−b3
2


. (4.40)

Whose action on ρ1(0) is defined as follows:

ρ(t) = B [ρ(0)] =
∑
α

λαζαρ(0)ζ†α, (4.41)

Where λα and ζα are the eigenvalues and eigenmatrices of B, respectively. There exists an

alternative map, which is completely positive The direct matrix product is

A
′
=



1+b3
2

0 0 −ib2
a1

b1−ib2
2

0 0 b1−ib2
2

b1+ib2
2

0 0 b1+ib2
2

1−b3
2

0 0 1−b3
2


. (4.42)

Which becomes the B
′

map

B
′
=



1+b3
2

0 b1−ib2
2

0

0 1+b3
2

0 b1−ib2
2

b1+ib2
2

0 1−b3
2

0

0 b1+ib2
2

0 1−b3
2


(4.43)
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The B
′

map is Hermitian, trace 2 and has eigenvalues:

λ1 =
1−

√
b2

1 + b2
2 + b2

3

2
, λ2 =

1−
√
b2

1 + b2
2 + b2

3

2
,

λ3 =
1 +

√
b2

1 + b2
2 + b2

3

2
, λ4 =

1 +
√
b2

1 + b2
2 + b2

3

2
, (4.44)

Which are all positive, given the restriction
√
b2

1 + b2
2 + b2

3 ≤ 1. These maps preserve

the Hermiticity, positivity and trace of ρ1(t), so the question is why use an NCP map? why

is the B map in Eq. (4.40) more adequate to describe the reduced dynamics of ρ1?

To answer this question, we will look at a particular example, of the reduced dynamics

of qubit 1, given the parameters ε = −8 meV, ε = −2 meV, V = 4 meV and t = 0.9 arb.

units. The initial state of qubit 1 is then given by:

ρ1(0) =
1

2
(1l + 0.2σx + 0.97σz) (4.45)

The initial state of qubit 2 is given by

ρ2(0) =
1

2
(1l− σz) (4.46)

Then the evolution of ρS(0) = ρ1(0)⊗ ρ2(0) is carried out with the unitary:

exp−i
(
ε

2
σ1
z +

εk0

2
σ2
z +

V

2
(σ1

xσ
2
x + σ1

yσ
2
y)

)
t (4.47)

The reduced dynamics of qubit 1 are then,

ρ1(0) =
1

2
(1l− 0.105781σx − 0.65939σy + 0.988347σz) (4.48)

61



The operator-sum decomposition of Eq. (4.40) is given by the following eigenvalues:

λ1 =
1−

√
4c2

1 + b2
3

2
, λ2 =

1 +
√

4c2
1 + b2

3

2
,

λ3 =
1−

√
4c2

2 + b2
3

2
, λ4 =

1 +
√

4c2
2 + b2

3

2
, (4.49)

And the eigenmatrices

 0
b3−
√

4c21+b23
2c1

1 0



 0
b3+
√

4c21+b23
2c1

1 0



 i
−b3+
√

4c21+b23
2c1

0

0 1



 i
−b3−
√

4c21+b23
2c1

0

0 1


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Which, when acting on ρ1(0), the final state is given by:

 0.994173 −0.0528904 + i0.0329695

−0.0528904− i0.0329695 0.00582657



Which is numerically exactly as Eq. (4.48). Now, lets look at the action of B
′
; the

eigenmatrices of Eq. (4.43) are:

 0
b3−
√
b21+b21+b23

b1+ib2

0 1




b3−
√
b21+b21+b23

b1+ib2
0

1 0



 0
b3+
√
b21+b21+b23

b1+ib2

0 1




b3+
√
b21+b21+b23

b1+ib2
0

1 0


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The action of the B
′

map in Eq. (4.43) results in the final state

 0.984146 −0.053566 + i0.0326367

−0.053566− i0.0326367 0.00577408


Which numerically, is not exactly the same as Eq. (4.48), the way Eq. (4.50) is.

In this particular system, the reduced dynamics of qubit 1 are better described by a

map of the form of that in Eq. (4.40), which is NCP. The restriction of complete positivity

may exclude many physical situations, because even when we found a CP map, the

dynamics are close numerically, but not exact.

4.1.5 Time correlation function

Ortiz et al. calculated the time correlation function C(t) = b(t)b(0)†, and plotted the

result as |G|2 = Tr (ρ(t)ρ(0)) as a function of time. One of the purposes is to observe the

effect of errors in the preparation of initial states in quantum simulations. The numerical

results are summarized in graphs, Figs. (4.12), (4.15) and (4.13).

Errors due to state preparation

In Fig. (4.12), there is a slight difference between the results of the original system

compared to those under which errors could arise due to noise and unknown initial states.

The coupling to the environment affects how fast or slow qubit 1 evolves. However, if the

coupling to the bath is weak, these errors are not as visible.

When the initial state had a small component in x, the resulting correlation functions

were very close to the original problem. The deviation may increase if there is a smaller z

component, making its detection easier. An error like this one, which represents an error in

the preparation of an initial state, may not be easily identified at the end of the simulation.

Errors of this type are interesting in the context of open quantum system dynamics and
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Figure 4.12. Time correlation function of the reduced dynamics of qubit
1. The Hamiltonian parameters are ε = −8 meV, ε = −2 meV, V = 4
meV. t ∈ [0.1, 1]. These results represent the evolution of the closed
system, the system where qubit 2 interacts with two additional qubits,
the system in which an additional qubit that interacts with qbits 1 and
2. This was done when qubit 1 was in the initial states ρ = |0〉 〈0| and
ρ = 1

2
(1l + 0.2σx + 0.97σz), as indicated above.

the consistency, complete positivity or both, of the assignment map.

In Fig. (4.13), we increased a1, the component of the Bloch vector in x, to see how it

affects the final result. When the x component of the Bloch vector is increased, we can see

shifts in the time correlation function from its original position. The smaller a3 is, the

larger the observed shift. Thus, a small error of this type may not be easily detected.

In Figure (4.14) we plot the time correlation function for different initial states.

Errors in the form of small x components in the Bloch vector are not very visible, but

convex combinations show a more significant deviation.
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Figure 4.13. Time correlation function of the reduced dynamics of qubit
1. The system parameters are ε = −8 meV, ε = −2 meV, V = 4 meV
evaluated in the time interval t ∈ [0.1, 0.9]. The result represents the time
correlation function of the closed system compared to the correlation
function of the reduced dynamics of qubit 1 in the initial state ρ =
1
2

(1l + a1σx + a3σz) for different values of a1 and a3.

Errors due to coupling with environmental spins

In Fig. (4.15) we show how the coupling to a spin bath can affect the rate of change of

the evolution. As mentioned before, these results only include zz couplings. The strength

of the couplings were adjusted in order to see the effects more clearly. These errors are

easier to identify in the time correlation function obtained from the quantum simulation.

But to better observe this effect, we looked at different regimes that are defined with

respect to the parameters of the system.

Fig. (4.16), represents the evolution of a state where both qubits 1 and 2 have only z

components to their density operators. The ’weak’, ’intermediate’ and ’strong’ regimes are
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Figure 4.14. Time correlation function of the reduced dynamics of qubit
1. The system parameters are ε = −8 meV, ε = −2 meV, V = 4 meV
evaluated in the time interval t ∈ [0.1, 0.9]. The results the time corre-
lation function of the reduced dynamics of qubit 1 for: a closed system
where the two qbits are in an ideal state (case A.1 label ×); a system
where the initial state is ρI1 = 1

2
(1l + 0.2σx + 0.97σz), ρ

II
1 = 1

2
(1l + σz),

ρI2 = ρII2 = 1
2

(1l− σz) and p = 1
2

(case B.2 label −); a system where the

initial state is ρI1 = 1
2

(1l + 0.2σx + 0.97σz), ρ
II
1 = 1

2
(1l− 0.2σx − 0.97σz),

ρI2 = 1
2

(1l− σz), ρII2 = 1
2

(1l + σz) and p = 1
2

(case B.2 label 4); a

system where the initial state is ρI1 = 1
2

(1l + σz), ρ
II
1 = 1

2
(1l− σz),

ρI2 = 1
2

(1l− σz), ρII2 = 1
2

(1l + σz) and p = 1
9

(©); a system where the
initial state is a maximally entangled one and qubit 2 is interacting with
two additional qubits with coupling strength Jzz = 1

10
meV (3).

defined in terms of the strength of the coupling to the bath, Jzz, compared to the

parameters of the system which were obtained from [56]. The coupling strength has an

effect on the transfer rate. In the ’strong’ regime, where the coupling strength is larger

than the parameters of the system, the evolution is much slower. The ’weak’ regime
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Figure 4.15. Time correlation function of the reduced dynamics of qubit
1. The system parameters are ε = −8 meV, ε = −2 meV, V = 4 meV
in the time interval t ∈ [0.1, 0.9]. The results correspond to the closed
system and the system that interacts with two additional qubits, coupled
only to qubit 2. The initial state of qubit 1 is ρ = |0〉 〈0| for one set of
results, and ρ = 1

2
(1l + 0.2σx + 0.97σz) for the other.

approximates the evolution of the system when no interaction with an external bath is

present, thus making it more difficult to detect errors. These errors can be present in a

quantum simulation. An AQS (recall chapter 3) is usually a simulator built using “always

on” Hamiltonians, and the evolution carried out by modifying the interactions. If in the

process there are interactions that are not modified properly, errors like these may arise in

the final result of the simulation.

Because quantum simulations are performed on quantum systems, where access to

complete information about the state at all times is not available, these errors can be

detected in the final result of the simulation.
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Figure 4.16. Time correlation function of the reduced dynamics of qubit
1. qubit 2 is interacting via zz coupling with qbits 3 and 4. The coupling
strengths are Jzz = 1 meV in the ’weak’ regime, Jzz = 6 meV in the
’intermediate’ regime and Jzz = 9 meV in the ’strong’ regime. The
initial state of the system and bath is |ψ〉 = |0111〉 (case A.4). The
system parameters are ε = −8 meV, ε = −2 meV and V = 4 meV, for
times t ∈ [0.1, 0.9].

.
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CHAPTER 5

CONCLUSIONS

5.1 CONCLUSIONS

Interactions of quantum systems with a surrounding environment are undesirable for

reliable quantum simulations and for quantum information processing in general. In order

to enable the reduction or correction of noise, it is imperative that we try to understand

and control or suppress the noise from the environment. Most research in error correction

and fault tolerance has so far been devoted to universal quantum computing (and therefore

universal quantum simulators) [109]. Lloyd’s suggestion to use the noise to simulate the

interaction of the system with the environment is clearly useful only in special cases. For

some analog simulators, substantial isolation has been achieved [80]. However, other

sources of noise remain in this system and in others.

It is known that interactions with the environment can lead to correlations that can

result in non completely positive maps. We found that such maps are not rare in our study

of a very simple model of a quantum system of fermions which can readily be simulated on

a quantum computing device, or a dedicated quantum simulator. This Fano-Anderson

model exhibits maps which are not completely positive for a variety of initial states, some

of which were entangled and some with other non-trivial quantum correlations in the sense

of non-zero quantum discord. They were shown to arise for even a fairly small transverse

component to an initial density matrix which is supposed to have its Bloch vector aligned

along the z axis. Thus fairly small experimental errors can lead to maps which are not

completely positive in a rather simple experiment. These interactions can also cause

relatively small errors in the final outcome of the measurement.

Initially correlated states, if they are not so identified, but are instead identified

improperly as arising from completely positive maps, may encourage an experimenter to

try to employ dynamical decoupling controls to eliminate errors. These controls will be

70



ineffective in these cases since local unitary transformations will not remove initial

correlations or entanglement.

We have used a very specific and simple model to illustrate the effects of noise on the

system including the presences of maps which are not completely positive. However, it is

important to emphasize that these effects are quite general and will be present in some

form in many other quantum systems including a wide class of quantum simulations.
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APPENDICES



COMPOSITION OF FUNCTIONS

The composition of functions is defined as

(f ◦ g)(x) = f(g(x))

Such that the function f(x) becomes a function of g(x). For example: given f(x) = x2 + x5

and g(x) = 9x3 + 2, then:

(f ◦ g)(x) = (9x3 + 2)2 + (9x3 + 2)5

Similarly, the composition of dynamical maps given by

B = TE ◦ USE ◦ Λ,

Is a function of the assignment, unitary and trace operations.
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MAPPING THE FANO-ANDERSON HAMILTONIAN

This section is a repetition of the steps followed in the calculation in [56], and its intended

only to demonstrate to the reader how the mapping of the original Hamiltonian was

performed. The Fano-Anderson model consists of an impurity with energy ε surrounded by

a ring of n spinless fermions, which have energies εki , and which interact with the impurity

through the coupling strength V :

H = −τ
n∑
i=1

(c†ici+1 + c†i+1ci) + εb†b+
V√
n

n∑
i=1

(c†ib+ b†ci) (5.1)

The ring of fermions has periodic boundary conditions: c†i = c†i+n. The first term of the

Hamiltonian in Eq. (5.1) corresponds to the ring of fermions, the ci and c†i are the fermion

creation and annihilation operators. The fermions in the ring are also allowed to jump to

adjacent sites. The second term in the Hamiltonian corresponds to the the impurity site,

with energy ε. The last term corresponds to the interaction of the impurity with the

fermion sites. The discrete Fourier transform (DFT) of c†igives

c†ki =
1√
n

n∑
j=1

eikiRjc†j (5.2)

And Rj = ja. Now, the inverse DFT is:

∑
ki

c†kie
−ikiRi =

1√
n

∑
i,j

e−ikiRieikiRjc†j (5.3)

where the orthogonality relation is

∑
i,j

eiRj(ki−kj) = nδij (5.4)

86



So

c†i =
1√
n

∑
ki

e−ikiRic†ki (5.5)

Recall that Ri = ia, so, if we fix the value of ki to ki = k:

c†i =
1√
n

∑
i

e−ikiac†k (5.6)

c†i+1 =
1√
n

∑
i

e−ikRi+1c†k =
1√
n

n∑
i

e−ikiae−ikac†k (5.7)

and,

ci =
1√
n

∑
i

eikiack (5.8)

ci+1 =
1√
n

n∑
i

eikiaeikack (5.9)

So the first term in the Hamiltonian:

H = −τ
∑
kk′

1

n

[
c†kck′(e

−ikRieik
′Rieik

′a) + c†kck′(e
−ikRieik

′Rie−ika)

]
= −τ

∑
kk′

1

n
c†kck′(e

ik′a + e−ika)ei(k
′−k)Ri (5.10)

With,

∑
kk′

c†kck′(e
ik′a + e−ika)ei(k

′−k)Ri = nc†kck′(e
ik′a + e−ika)δkk′ = nc†kck′2 cos (ka) (5.11)
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Now define εki = −2τ cos (kia), and for all ki

n∑
i=1

εkic
†
ki
cki (5.12)

Similarly the impurity-fermion interaction part, for a fixed k

Hhyb =
V√
n

n∑
i=1

(
c†ib+ b†ci

)
=

V√
n

n∑
i=1

(∑
k

1√
n
e−ikRic†kb+ b†

∑
k

1√
n
eikRick

)
(5.13)

Where we make use of the orthogonality relation given by Eq. (5.4), but we do it with a

fixed value of j = 0

∑
i,j

eiRi(k−0) = nδk0 (5.14)

Then

Hhyb =
V√
n

√
n
(
c†kb+ b†ck

)
δk,0 (5.15)

The diagonalized wave-number representation of the Fano-Anderson Hamiltonian is given

by [30, 56], where we generalize to the sum over all ki

H =
n∑
i=0

εkic
†
ki
cki + εb†b+ V

n−1∑
i=0

(c†kib+ b†cki)δki0. (5.16)
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Then the following Jordan-Wigner transformations are performed:

b = σ1
− (5.17)

b† = σ1
+ (5.18)

ck0 = −σ1
zσ

2
− (5.19)

c†k0
= −σ1

zσ
2
− (5.20)

ckn−1 = (−1)nσ1
zσ

2
z ...σ

n
z σ

n+1
− (5.21)

c†kn−1
= (−1)nσ1

zσ
2
z ...σ

n
z σ

n+1
+ (5.22)

Where

σ+ =
σx + iσy

2
(5.23)

σ− =
σx − iσy

2
(5.24)

And by using the commutation relation σiσj = 1lδij + iεijkσk, the terms in the Hamiltonian

become

b†b =
1

4
(σx + iσy)(σx + iσy) =

1

4
(21l + iσxσy − iσyσx) =

1

2
(1l + σz) (5.25)

c†k0
b+ b†ck0 = −σ1

zσ
2
+σ

1
− − σ1

+σ
1
zσ

2
−

= −σ1
z

(
σ1
x+iσ1

y

2

)(
σ2
x−iσ2

y

2

)
−
(
σ1
x+iσ1

y

2

)
σ1
z

(
σ2
x−iσ2

y

2

)
= 1

4

(
−iσ1

yσ
2
x + σ1

yσ
2
y + σ1

xσ
2
x + iσ1

xσ
2
y + iσ1

yσ
2
x + σ1

yσ
2
y + σ1

xσ
2
x − iσ1

xσ
2
y

)
= 1

2

(
σ1
xσ

2
x + σ1

yσ
2
y

)
(5.26)
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c†kicki = (1)i+2
(
σ1
zσ

2
z ...σ

i+2
+

) (
σ1
zσ

2
z ...σ

i+2
−
)

= 1l(2i+1×2i+1) ⊗
(
σi+2

+ σi+2
−
)

(5.27)

= 1l(2i+1×2i+1) ⊗
(
σi+2
x + iσi+2

y

) (
σi+2
x − iσi+2

y

)
= 1l2i+1×2i+1 ⊗ 1

4

(
1li+2 − iσi+2

x σi+2
y + iσi+2

y σi+2
x + 1li+2

)
= 1l2i+1×2i+1 ⊗ 1

4

(
1li+2 + σi+2

z + σi+2
z + 1li+2

)
= 1

2
(1l + σi+2

z )

In this last term the subindex (2i+1 × 2i+1) in the identity operator 1l(2i+1×2i+1) is written to

indicate its dimensionality.

Therefore we have,

H̄ =
ε

2
(1l + σz)

1 +
εk0

2
(1l + σ2

z) +
V

2
(σ1

xσ
2
x + σ1

yσ
2
y). (5.28)

And the simulated Hamiltonian, by dropping the phase factor due to the identity

operators, is

H̄ =
ε

2
σ1
z +

εk0

2
σ2
z +

V

2
(σ1

xσ
2
x + σ1

yσ
2
y). (5.29)
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