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ABSTRACT 

SAURAV CHAKRABORTY, for the Master of Science degree in Geography and 
Environmental Resources, approved on 25th September 2015, at Southern Illinois 
University Carbondale. 
 
TITLE:  A MULTISCALE REVIEW OF CONTEMPORARY CLIMATE MODELS 
 
MAJOR PROFESSOR:  Dr. Justin Schoof 
 

 Atmospheric Oceanic General Circulation Models (AOGCMs) are the primary 

tools that climate scientists use to investigate past, present and potential future climate. 

This research paper provides an overview of the strengths and weaknesses of 

contemporary models across spatial and temporal scales. At large spatial scales, 

models simulate recognizable patterns of the major modes of climate variability, with a 

few caveats. Deficiency in reproducing the strength of individual centers of action and 

detailed temporal characteristics has been noted. The models that best reproduce the 

spatial pattern are not necessarily the models that simulate the most realistic temporal 

pattern. Models generally capture observed synoptic scale regimes well, but studies 

have noted differences in observed and simulated frequencies of specific synoptic 

patterns as well as differences in seasonality, which could be associated with the links 

between hemispheric scale climate and synoptic scale circulation. At the regional scale, 

little literature exists to identify the minimum scale at which GCMs correspond well with 

observed statistical moments, especially for large ensembles and variables other than 

temperature and precipitation.  Recognition in the climate science community that 

model performance at small scales is dependent on reliable simulation of processes 

occurring across scales has led to a new focus on multi-scale assessment of AOGCM 

fidelity.   
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1. Introduction  

The global mean near-surface air temperature has increased by approximately 

0.75°C in the last century (Trenberth et al. 2007), raising concerns about potential 

climate change impacts, including sea level rise (Church et al. 2001, Lemke et al. 2007, 

Bindoff et al. 2007) and subsequent effects on coastal infrastructures (Nicholls et al. 

2007, Day 2004, Pilkey and Cooper 2004), changes in the frequency and intensity of 

heat waves and tropical cyclones (Meehl et al. 2007) and floods and droughts 

(Kundzewicz et al. 2007, Rosenzweig et al. 2007), effects on the ecosystem goods and 

services (Schneider et al. 2007) and alteration of the geographical extent of vector 

borne diseases (Confalonieri et al 2007) among others. Atmospheric Oceanic General 

Circulation Models (AOGCMs), coupled mathematical models that numerically 

represent physical, biological and chemical processes that govern climate, are the 

principal investigative tools (Gates et al. 1990) used to assess the historical behavior of 

climate system (e.g. Jansen et al. 2007); analyze current climate system behavior (e.g. 

Randall et al. 2007, Hegerl et al. 2007) and make projections about future climatic 

conditions (e.g. Cubasch et al. 2001; Meehl et al. 2007). It is therefore critical that the 

strengths and weaknesses of AOGCMs are explicitly quantified over the range of spatial 

and temporal scales that are typically used. Earth System Models (ESMs), that include 

biogeochemical cycles and their interactions with the climate system and human 

actions, are very important where biogeochemical feedback plays an important role in 

past simulation and future projections but for this paper a comprehensive performance 

of AOGCMs at various scales has been emphasized. 



2 
 

Policy makers, planners, engineers and impact modelers need information at 

finer spatial and temporal scale than AOGCMs are currently able to provide (Schoof et 

al. 2009, Maruan et al. 2010). Use of AOGCMs to investigate climate change impacts 

assumes that they adequately simulate climate across a range of spatial and temporal 

scales. While the shortcomings of AOGCMs at the scale of an individual grid point have 

been recognized within the AOGCM downscaling community, there has been paucity of 

literature that identifies the scale at which AOGCMs perform well, especially for 

variables other than temperature, and for large model ensembles.  

Phase 5 of the Coupled Model Intercomparison Project or CMIP5 (Taylor et al. 

2012) is an initiative of World Climate Research Programme’s (WCRP) Working Group 

on Coupled Modeling (WGCM) and successor of CMIP3. CMIP5 presents an extensive 

experimental design through which more than 20 modeling groups present model output 

for historical, present and future periods using more than 50 models (Meehl and Bony 

2011, Taylor et al. 2012). This provides the foundation of 5th Assessment report (AR5) 

of the Intergovernmental Panel on Climate Change (Stouffer et al. 2011). 

AOGCMs are relatively more skillful in simulating average climate at continental 

scales across seasons but they are not as reliable when approaching smaller spatial 

and temporal scales. The assessment of relative ability of AOGCMs to simulate large 

scale modes of climate variability is important to determine how the models perform at 

the large spatial and temporal scales where the model simulations are considered 

robust. Review of model performance at synoptic scale is another important model 

diagnostic as it indicates the ability of the models to simulate the synoptic scale features 

such as storms and jet streams which have implications for large scale events. 
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Successful reproduction of synoptic features will increase our confidence in model 

simulation at large scale. Model simulation at the smaller spatial and temporal scale is 

the most critical aspect of model performance as uncertainty in model simulation 

increases as we move from a global scale to a regional scale and from seasonal scale 

to daily time scale. Models that are more successful at large scale and synoptic scale 

are more likely to simulate the small scale features as the large scale and synoptic 

scale events influence regional climate.  

The goal of this review is to assess the performance of the state of the art 

AOGCMs across a range of spatial and temporal scales to evaluate their strengths and 

weaknesses for application in climate change impact studies. However, an assessment 

of every specific feature of each model is beyond the scope of this paper but review of 

strength and weaknesses of contemporary climate models is the focus of this paper. 

Towards that goal, performance of AOGCMs is evaluated across 3 clearly defined 

scales.  These are 1) Large continental scale – scale at which large scale modes of 

climate variability are adequately resolved, 2) Synoptic scale – scale at which daily 

variability of jet streams and the intensity of semi-permanent pressure systems and 

storm tracks are adequately captured.  3) Regional or local scale – scale at which 

regionally averaged climate information is still relevant for regional impact assessment 

studies. Climate scientists have used larger sub continental scales such as 1000 km 

*1000 km (Christensen et al. 2007), 106-108 km2 (Ruosteenoja et al. 2003) and 107 km2 

(Giorgi and Francisco 2000) for regional applications. The review is divided into 3 

distinct parts discussing the 3 above mentioned scales in section 2, 3 and 4 

respectively.  
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At the largest spatial scales, there are fundamental modes of variability that 

describe much of the annual and interannual variability in large scale climate (Schoof 

and Pryor 2006, Coleman and Klink 2009). Synoptic scale circulation is strongly 

influenced by the large-scale modes. An evaluation of AOGCMs at the synoptic scale 

will be an important aspect of model evaluation since synoptic scale links the large 

scale climate and regional or small scale climate. From the perspective of climate 

modeling, the synoptic scale is a horizontal length scale at which low pressure areas 

and high pressure areas of the lower troposphere are adequately resolved. Orlanski 

(1975) has described that the Mesoscale-α (200-2000 km) is the scale at which front, 

low pressure systems and hurricanes are formed and the upper limit of mesoscale-α 

borders on the lower limit of synoptic scale. In the extra-tropics, the synoptic scale 

circulation is a controlling influence on the climate at the regional and local scale 

(Hewitson and Crane 1992). If a model is unable to perform well at large scale and 

synoptic scale then the regional simulation of the model is also likely to lack fidelity. For 

a regional impact study it is important to capture most of the features regulating climate 

in that particular region and coarse resolution AOGCM output at grid point level is not 

very effective in this regard. It is thus important to determine the skill of AOGCM 

simulation at the regional scale where they can still produce locally relevant climate 

information. 

2. Model simulation of Large-scale Climate Variability 

2.1 Introduction 

Teleconnections are recurring and persistent large scale events that vary on a 

large spatial and temporal scale. Mode of variability can be broadly defined as the 
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statistical relationship among climatic variables that forms a link between two distant 

points of the global climate system by establishing a relationship between large scale 

oceanic and atmospheric dynamics and regional climatic features (Leathers et al. 1991). 

These patterns are recognized by measuring anomalies in sea level pressure (SLP), 

sea surface temperature (SST) or geopotential height fields (Stoner et al. 2009).  

The objective of this section is to review the capability of the state of the art 

AOGCMs in simulating the major modes of variability. The major emphasis is on the 

evaluation of the modes of variability influencing the climate of Northern Hemisphere 

while also assessing some of the major modes of variability in the Southern 

Hemisphere. Towards that goal, six major modes of variability are evaluated: the Arctic 

Oscillation (AO), the North Atlantic Oscillation (NAO), the Pacific North American 

pattern (PNA), the Atlantic Multidecadal Oscillation (AMO), El Nino-Southern Oscillation 

(ENSO) and the Pacific Decadal Oscillation (PDO). 

a) Arctic Oscillation (AO) 

The Arctic Oscillation has been defined as the leading empirical orthogonal 

function of monthly SLP anomaly during winter from 20° N towards the Arctic pole 

(Thompson and Wallace 1998; Thompson et al. 2000; Thompson and Wallace 2000). 

The Arctic Oscillation (AO) accounts for 22% of the total variance as the first principal 

component of the average monthly Sea Level Pressure (SLP) anomaly during winter for 

the region between 20°N and 90°N (Thompson and Wallace 1998). Trenberth and 

Paolino (1981) reported that 28.5 % of the variance of monthly winter SLP anomaly and 

20.3% of annual SLP anomaly for the region north of 20°N could be explained by the 

first EOF pattern. 
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Lower than normal sea level pressure in the Arctic region and higher than normal 

pressure in the middle latitudes are experienced during the positive phase of AO (Figure 

1a). As a result, strong westerly winds keep the cold arctic air confined to the polar 

region.  The positive phase of AO makes both northern Europe and most of the U.S. 

experience warmer and wetter winters.   

b) North Atlantic Oscillation (NAO) 

Walker (1923) identified the presence of a pressure anomaly “between the 

Azores and Iceland, and between the areas of high and low pressure in the N. Pacific”. 

Walker (1924) reported this seesaw in pressure anomaly as North Atlantic Oscillation 

(NAO). The NAO has nodes and anti nodes located in Iceland and Azores-Bermuda. 

The pressure center between Greenland and Iceland is known as Icelandic low and the 

one in North Atlantic is known as Azores high (Figure 1b). The North Atlantic Oscillation 

(NAO) is responsible for 31% of Northern Hemispheric surface temperature variation 

during winter (Hurrell 1996). The focus of the second section is on reviewing the 

performance of AOGCMs in simulating the modes of variability. 

Positive NAO produces stronger than average Icelandic low and Azores high, 

forming a stronger than average pressure gradient in the north Atlantic that gives rise to 

stronger westerlies. Negative NAO indicates a weaker than normal Icelandic low and 

Azores high that produces weaker westerlies. Barnston and Livezey (1987) reported 

NAO as the strongest pattern of both summer and winter Northern Hemispheric 

circulation. During positive NAO, stronger pressure gradient increases the frequency 

and intensity of storm events across the Atlantic during winter. As a result, warmer and 

wetter winter is experienced in Europe while the Northern part of Canada and 
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Greenland experience a colder and drier winter and Eastern US gets a wetter and 

warmer winter. 

c) Atlantic Multidecadal Oscillation (AMO) 

Atlantic Multidecadal Oscillation (AMO) is a natural mode of variability that is 

principally identified through the sea surface temperature anomalies in North Atlantic 

Ocean. AMO has a cycle of 65-70 years (e.g. Schlesinger and Ramankutty 1994, 

Stoner et al. 2009). Bjerknes (1964) was seminal in identifying the change in 

atmospheric thermodynamics due to warm sea surface temperature (SST) anomaly in 

the North Atlantic and attributing it to atmospheric circulation patterns.  During the warm 

phase of AMO, lower than normal precipitation is experienced in most of the U.S. 

(Enfield et al. 2001). Positive AMO phase produces a horseshoe shaped pattern of sea 

surface temperature anomalies in the North Atlantic region with a prominent warming in 

the tropical and some regions of eastern subtropical North Atlantic (Figure 1c). This also 

causes the southernmost regions of Greenland to experience warming and regions off 

the east coast of the US experience cooling (Bjerknes 1964, Kushnir 1994, Grossmann 

and Klotzbach 2009). 

d) The El Niño–Southern Oscillation (ENSO) 

Walker (1923) first described the presence of a large scale pressure anomaly 

between the regions close to Pacific and Indian Ocean. Walker (1924) named this 

oscillatory mode of variability as the southern oscillation, which caused increase in 

pressure at regions close to Pacific that included San Francisco, Tokio, Honolulu, 

Samoa and South America and decrease in pressure at locations close to the Indian 

Ocean that included Cairo, Northwest India, Port Darwin, Mauritius, and south east 
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Australia. Bjerknes (1966) found that the warm SST anomaly in the central and eastern 

equatorial Pacific during the winter period between November 1957 and February 1958 

was running concurrent with an anomalous strengthening of westerlies or anti-trades 

over the northeast Pacific. Bjerknes (1969) found that the presence of strong westerlies 

accompanied by increased SST anomaly in the equatorial Pacific that was observed 

during the winter period ranging from November 1957 to February 1958 was recurrent 

in the winters of 1963-1964 and 1965-1966. He concluded that El Niño and the southern 

oscillation are associated and are different facets of a single mechanism.  

The warm or positive phase of ENSO, El Niño, causes drier and warmer winter in 

the Northwest, northern Midwest and northern Mideast United States that results in a 

decreased snowfall in these areas during winter and a wetter winter is experienced by 

northwest Mexico and southwest United States that includes central and southern 

California. El Niño produces a cooler and wetter winter in northeast Mexico and 

southeast United States. El Niño is associated with warm SST anomaly in the central 

and eastern equatorial Pacific (Figure 1d) for several months during the Christmas that 

has an average cycle of 2-7 years (Bridgman et al. 2006).  

Under neutral conditions or La Nada conditions, strong easterlies or trade winds 

blowing from east to west in the equatorial Pacific causes the displacement of warm 

water from the west Pacific to eastern Pacific. As a result colder deeper water rises to 

replace the displaced warm water in the eastern Pacific. This is marked by warm water 

conditions in the western Pacific and cold water condition in the eastern Pacific. El Niño 

triggers a strengthening of westerlies which drives back some of the warm water from 

the western Pacific to eastern Pacific and this also prevents the upwelling of cold water 
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in the eastern Pacific. This causes the warm SST anomaly in the eastern Pacific 

(Aguardo and Burt 2012).  

The negative (cool) phase of ENSO, La Niña, produces the opposite effect of El 

Niño. La Niña represents the strengthening of the normal cold water conditions in the 

eastern equatorial Pacific accompanied by warm water conditions in the western 

tropical Pacific (Aguado and Burt 2012).  

e) Pacific Decadal Oscillation (PDO)  

PDO is defined as one of the leading modes of variability in extratropical north 

Pacific with an average period of 2-3 decades and is recognized by measuring SST 

anomaly (Mantua et al. 1997, Nigam et al. 1999, Minobe 2000, Mantua and Hare 2002, 

MacDonald and Case 2005). A positive or warm phase of PDO (Figure 1e) produces a 

reduction in rainfall, snowpack and streamflow during winter in the northwest U.S. and 

increases precipitation in the southwest United States, Mexico, coastal Gulf of Alaska, 

southeast Brazil, Western Australia and the central part of South America.  It also 

causes drier conditions in eastern Australia, Korea, Japan, the outermost regions of 

East Russia, Zonal regions from the Pacific Northwest to the Great Lakes, the Ohio 

Valley, most of Central America as well as Northern South America (Mantua and Hare 

2002). Power et al. (1998, 1999) described this multidecadal mode of variability as 

Interdecadal Pacific Oscillation (IPO).  

Climatic anomalies related with PDO are very similar to that of mild El Niño and 

La Niña events (Latif and Barnett 1996, Mantua et al. 1997, Minobe 1997, Mantua and 

Hare 2002). Zhnag et al. (1997) described this multidecadal oscillation as “ENSO-like 

EOF mode in the global SST field”. Mantua et al. (1997) stated that both ENSO and 
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PDO have spatial and temporal patterns that are related and PDO could be described 

as “ENSO-like interdecadal climate variability”, which is similar to the findings of 

Tanimoto et al. (1993) and Zhang et al. (1997).  

f) Pacific North American pattern (PNA) 

Pacific North American pattern is a distinct mode of variability, at middle and 

upper tropospheric level with geopotential height anomaly over the North Pacific Ocean 

and North America and very prominent during winter, was first identified by Wallace and 

Gutzler (1981). Shukla and Wallace (1983), Blackmon et al. (1983) used GCMs to 

investigate the response of atmospheric circulation to SST anomaly and were able to 

simulate PNA over equatorial Pacific during Northern Hemispheric winter. Tokioka et al. 

(1985) in a similar study was able to simulate PNA for the period between May to June 

using a GCM. 

Leathers et al. (1991) examined monthly variation of PNA with temperature and 

precipitation, from 1947-1982 during autumn, spring and winter when PNA is 

considered to be a major mode of variability in Northern Hemisphere and reported 

significant relationship between temperature in most of the United States and PNA. For 

temperature, areas of strong positive and negative correlation were found in northwest 

and southeast US respectively. During winter, greater than 80% of temperature 

variation (R > 0.9) was explained by PNA for some of the areas within the stated 

regions and was significant during spring and autumn. A significant relationship 

between United States precipitation and PNA was reported with the exception of April, 

May, September and October. The relationship for precipitation is somewhat weak and 

lesser in magnitude compared to temperature but strong correlations were found in 
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Upper Mississipi and Northern Rockies in January, Ohio Valley in February, Ohio Valley 

and some regions of southern Great Plains in March, Upper Mississippi valley and large 

part of western U.S. in November, Mississippi valley and western U.S. in December. 

Leathers and Palecki (1992) also associated the 1957-1987 positive PNA values 

with lower atmospheric temperature during winter over US. This is supported by Yin 

(1996), Cronin et al. (2002), Schoof and Pryor (2006). Henderson and Robinson (1994) 

found significant correlation between PNA pattern and precipitation in some parts of 

southeastern US with Negative PNA producing drier winter and wetter summer. 

Henderson and Vega (1996) also found significant positive correlation between PNA 

index and precipitation events during summer in southeast United States. Henderson 

and Vega (1996) found 28.2% variation in winter precipitation of Florida was influenced 

by PNA. The positive PNA is responsible for increase in atmospheric instability, 

development of thunderstorms and wetter winter in southeastern U.S. (Cronin et al. 

2002). Positive PNA (Figure 1f) gives rise to an extended ridge in northwest U.S. and a 

deep trough over southeast US and Aleutian island (Wallace and Gutzler 1981, Slowey 

and Crowley 1995, Sheridan 2003). This results in meridional flow over US, whereas 

negative PNA index is associated with more zonal flow. Slowey and Crowley (1995) has 

discussed the relationship between lower SST and positive values of PNA in southeast 

United States. 

Barnston and Livejey (1987) reported the absence of PNA as a major mode 

during the Northern Hemispheric summer circulation but found it present from 

September through April with the exception of November and attainment of maximum 
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strength in February. The average period for PNA is from of 1-4 years (Stoner et al. 

2009). 
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Figure 1.  Spatial pattern of a) the AO calculated from monthly 950 hPa geopotential 
height field b) the NAO calculated from monthly 500 hPa geopotential height fields c) 
the AMO calculated from monthly SST anomaly d) the ENSO calculated from monthly 
SST anomaly e) PDO calculated from monthly SST anomaly and f) PNA calculated from 
monthly 500 hPa geopotential height fields. (Figure reproduced from Stoner et al. 2009). 
©American Meteorological Society. Used with permission. 
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2.2 Assessment of Model Performance at Large Scale 

Stoner et al. (2009) reviewed the ability of the CMIP3 AOGCMs to simulate the 

spatial and temporal patterns of specific teleconnection events and found that both 

coupled and uncoupled AOGCMs replicate the AO, ENSO, NAO and PNA patterns well 

in general. However, there were intermodal differences and systematic biases when 

compared with observed spatial and temporal patterns.  

Xiao-Ge et al. (2008) evaluated the ability of 23 CMIP3 AOGCMs in simulating 

Northern Hemispheric winter and stated all models except one simulated AO as the 

principal empirical orthogonal function of extratropical SLP anomaly during Northern 

Hemispheric winter. Stoner et al. (2009) in a similar study used 22 CMIP3 AOGCMs 

and found that most of the models were able to reproduce a spatial and temporal 

pattern that is similar to the observed AO pattern. Hurrell et al. (2006) used CAM3, the 

atmospheric component of coupled AOGCM CCSM3, to simulate the Northern Annular 

Mode (NAM) or AO and found that model simulation produces a pattern that is identical 

with observed NAM/AO. Miller et al. (2006) used 14 CMIP3 models and reported that 

the simulated NAM/AO and the observed pattern of NAM/AO show high spatial 

correlation. Gerber et al. (2008) evaluated the ability of CMIP3 models in simulating the 

temporal pattern of NAM and found that the models broadly replicate the general 

temporal patterns but also found intermodal differences arising from systematic biases 

in simulating the temporal pattern. The problem was more severe for the Southern 

Hemispheric counterpart of NAM where the time scales were unusually longer 

compared to Northern Hemisphere and multimodel ensemble average was two times 

higher than observed reanalysis data.  
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Handorf and Dethloff (2012) evaluated the ability of a suite of 23 CMIP3 

AOGCMs in reproducing the spatial and temporal characteristics of NAO and PNA 

along with some other teleconnections in Atlantic and Pacific. They found that although 

the spatial and temporal patterns of atmospheric teleconnections were simulated well by 

most of the GCMs but there was scope of improvement for the models in simulating the 

strength of centers of action for the teleconnections. In general, the pacific patterns 

were reproduced better than the Atlantic patterns with some models performing poorly 

in both the regions. They observed model deficiency in simulating the spatial and 

temporal pattern over the shorter time scale and concluded the overestimation in the 

persistence of the teleconnections on the sub seasonal and seasonal time scale was 

responsible for reproducing the deviation from annular mode time scale observed in 

reanalysis data. It has been noted that most GCMs tend to produce too strong an 

annular structure for NAO than observed (McHugh and Rogers 2005; Xiao-Ge et al. 

2008; Stoner et al. 2009; Flato et al. 2013). An attempt to project future European 

temperature analysis done with 33 CMIP5 models by Cattiaux et al. (2013) revealed 

that majority of CMIP5 models tend to project increase in the frequency of negative 

NAO in future which is contrary to the projection of increase in the frequency of positive 

NAO by CMIP3 models.  

AchutaRao and Sperber (2002) used 17 CMIP2 AOGCMs and found most of 

them were unable to simulate the sea level pressure variation caused by ENSO in the 

eastern Pacific resulting in erroneous precipitation response. CMIP2 models 

overestimated the frequency of ENSO events. However, CMIP3 models were much 

more efficient at simulating the frequency of ENSO (AchutaRao and Sperber 2006). 
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Single model simulation of ENSO attempted by Min et al. (2005) indicated an 

overestimation of frequency and intensity of ENSO by ECHO-G model. However, Cai et 

al. (2003) found that CSIRO mark 3 GCM produced realistically similar spatial pattern 

and frequency when compared with historical ENSO records. Van Oldenborgh et al. 

(2005) found mixed results with the CMIP3 model ensemble where 6 models 

overestimated the frequency of ENSO cycles but 4 models were able to match the 

observed spatial and temporal pattern of ENSO. Models often simulate an ENSO 

pattern that expands too far into the western equatorial Pacific (Cai et al. 2003; Min et 

al. 2005; van Oldenborgh et al. 2005; AchutaRao and Sperber 2006; Reichler and Kim 

2008;  Guilyardi  et al. 2009). The CMIP3 models were relatively successful at 

reproducing the general mean state and annual cycle of ENSO (Randall et al. 2007). 

Most CMIP3 models did not reproduce the observed ENSO variability at the 2-7 year 

time scale but most of the CMIP5 models do capture the observed spectral peak for 

ENSO at the 2-7 year time scale. Models still show errors in reproducing the amplitude, 

period, irregularity, skewness and spatial pattern due to little seasonal modulation or 

phase locking that does not reflect the observed El Niño and La Niña anomalies 

strongest in the Northern Hemispheric winter (DJF) and weakest in the Northern 

Hemispheric spring (MAM) with few exceptions (Guilyardi et al. 2009). The intermodal 

spread for the simulation of amplitude of El Niño is much smaller in CMIP5 compared to 

CMIP3 models (Kim and Yu 2012; Flato et al. 2013). Models continue to have the well-

known double ITCZ problem resulting in an erroneous reproduction of ITCZ in the 

Southern Hemisphere causing excessive precipitation over the tropics (Mechoso et al. 

1995; Lin 2007). This remains a major source of model error in simulating the annual 
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cycle in the tropics and can affect the reliability of ENSO simulations (Guilyardi et al. 

2003, 2009; Sun et al. 2009). Kim and Yu (2012) noted that compared to CMIP3 

models, observed spatial patterns were better reproduced by CMIP5 models, although 

models continue to have difficulty in reproducing the realistically strong observed EP 

(Eastern Pacific) ENSO intensity compared to strong observed CP (Central Pacific) 

ENSO intensity. A comparative study between 21 CMIP3 and 31 CMIP5 models by Gao 

et al. (2015) showed that both the 31 model and the best 8 model ensemble from 

CMIP5 outperformed corresponding CMIP3 model ensembles in reproducing the 

dominant mode of summer precipitation in the Pan-Asian monsoon region as the CMIP5 

models better represented the ENSO pattern as well as the relationship between 

Antarctic Oscillation in the south Pacific Ocean and ENSO which represented the 

dominant mode in summer precipitation indicating improved air-sea interaction of 

Southern Hemisphere in CMIP5 models. 

Sheffield et al. (2013) used 27 CMIP5 models to examine AMO, PDO and ENSO 

simulations and teleconnections with North American climate and found that frequency 

and mean state of ENSO are well represented but only few models could reproduce the 

CP ENSO, EP ENSO and the teleconnections with the North American winter time 

temperature. Model efficiency in simulating certain aspects such as the two types of 

ENSO and the observed teleconnection also did not mean efficiency in simulating other 

features such as ENSO asymmetry. Spatial pattern for PDO and teleconnection with 

temperature and precipitation was reasonably reproduced with less efficiency in winter. 

AMO spatial patterns showed improvements over CMIP3 results and particularly after 

1960 but SST seasonality was not captured well with larger strength in summer and 
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discrepancy in spatial structure as maximum SST anomalies were reproduced over the 

mid-Atlantic Ocean instead of the observed maximum over the south of Greenland. 

Sheffield et al. (2013) concluded that CMIP5 models have not shown a great deal of 

improvements over CMIP3 models in this regard.  Langenbrunner and Neelin (2013) 

investigated the ENSO precipitation teleconnections for the Niño 3.4 region and found 

very little improvement in CMIP5 ensemble with that of CMIP3 in reproducing the 

amplitude and spatial pattern for ENSO precipitation teleconnection in that region.  

Schoof and Pryor (2006) evaluated the ability of CMIP3 coupled AOGCMs 

HadCM3 and CGCM2 to reproduce the NAO and PNA and found both GCMs were 

relatively good at reproducing the 500 hPa pressure pattern. However, significant 

intermodal differences were found. In a sequel paper, Schoof and Pryor (2014) 

employed 10 CMIP5 AOGCMs and found good correspondence between the observed 

AO, PNA and ENSO spatial pattern with the simulated spatial pattern, although the 

match was better for AO and PNA compared to ENSO. The results indicate that CMIP5 

models overestimated the magnitude and the spatial extent of the node in the polar 

region whereas Stoner et al (2009) found that CMIP3 models underestimate the 

magnitude of the center of action at the high latitude (C1 region in figure 1a). For PNA, 

considerable intermodal difference was found in estimating the magnitude of the center 

of actions. The observed seasonal timing for ENSO, that features anomalies peaking in 

Northern Hemispheric winter and falling at the Northern Hemispheric spring, is also not 

captured by CMIP5 AOGCMs which is consistent with the findings of Guilyardi et al. 

(2009) and Sheffield et al. (2013). In reproducing the temporal pattern for AO, ENSO 

and PNA, models that failed to capture the seasonal pattern well were found to be good 
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at simulating the temporal pattern and at times models that performed poorly in 

simulating the spatial pattern simulated the temporal pattern well. This is in agreement 

with the findings of Stoner et al. (2009) that found CMIP3 models that produce best 

temporal patterns are not essentially the models with best spatial patterns which shows 

the importance of including all the models in analyzing the spatial and temporal pattern 

as no single model was found to outperform the other models in CMIP5 consistent with 

CMIP3 model performances.  

2.3 Summary 

Climate models have made great improvements in the past two decades and as 

they continue to improve, a review of model performance to analyze their strengths and 

weaknesses across various spatial and temporal scales is required. At the large spatial 

scale, where the model simulations are considered robust, a general improvement has 

been noted in CMIP5 models compared to their CMIP3 counterparts and this has been 

attributed to the presence of lesser number of poorly performing models in the CMIP5 

suite of models (Flato et al. 2013). In general, CMIP5 models simulate a recognizable 

spatial and temporal pattern for the modes of climate variability discussed in this section 

but as was the case for CMIP3 models, a varied spectrum of model performance is also 

witnessed for CMIP5 models. Kim and Yu (2012) found that the CMIP5 models 

reproduce the observed EP ENSO and CP ENSO spatial patterns better and show less 

inter-model spread compared to CMIP3  models. Gao et al. (2015) reported that CMIP5 

models are more skillful in reproducing the primary mode of summer precipitation in 

Pan-Asian monsoon region. Langenbrunner and Neelin (2013) found that the ability of 

the CMIP5 models in reproducing the amplitude and spatial pattern for ENSO 
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precipitation teleconnections has not shown great improvement compared to CMIP3 

models. Modes of variability with multidecadal variance such as AMO and PDO present 

stronger challenge as the observational period is too short and remain less investigated 

than the others. Among AO, NAO, PNA and ENSO, the models continue to have 

significant challenges and more so in simulating ENSO. CMIP5 models still show error 

in reproducing the observed ENSO amplitude period, irregularity, skewness although 

the mean state and seasonal cycle is well represented in both CMIP3 and CMIP5 

models (Flato et al. 2013). CMIP5 models also continue to have deficiency in simulating 

the realistically strong EP ENSO and CP ENSO intensity and more so for EP ENSO but 

CMIP5 models show less intermodal spread which represents better consistency of 

model performance compared to CMIP3 models (Kim and Yu 2012, Flato et al. 2013).  

Most of the CMIP5 models are able to reproduce the observed ENSO 2-7 year peak in 

the power spectra which was a noted deficiency in most of the CMIP3 models. Although 

CMIP5 models are claimed to have lesser number of poorly performing models, there is 

scope for improvement in individual model performance in simulating the strength of 

center of action for the modes of interannual and interdecadal variability. Similar to the 

findings of Stoner et al (2009) for CMIP3 models, it has been reported that CMIP5 

models that are good at simulating the spatial pattern are not always the models that 

reproduce the best temporal pattern (Schoof and Pryor 2014). This presents an 

important aspect of model simulation which calls for an analysis of contemporary 

climate models to determine if some models produce better match with the observed 

historical simulation in a specific study area and should be included in the analysis for 
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that specific region. Table-1 provides a summary of major findings of model 

performance at large scale. 

Table-1: A Summary of Model Performance at Large Scale 

Primary 
reference 

Dataset(s) Model(s) 
used 

Data type Major findings 

Gerber et al. 
(2008) 

NCEP/NCA
R 
reanalysis 
(NNR) for 
observed 
zonal wind 
data 

17 CMIP3  
GCMs 

Daily Models broadly simulate the 
observed time scale of NAM and 
SAM. However, systematic 
overestimation of the time scales 
for SAM in the Southern 
Hemispheric summer and spring is 
noted with broader annual cycles in 
both the hemispheres. 

Schoof and 
Pryor (2006) 

NNR for 
observed 
sea level 
pressure 
and 
geopotential 
height data. 

2 CMIP2 
GCMs 

Daily A high degree of correspondence 
between simulated and observed 
temporal behavior of NAO and PNA 
is reported but intermodal 
differences are noted.  

Stoner et al. 
(2009) 

ERA-40, 
NNR and 
Kaplan SST 
V2 for 
observed 
geopotential 
height and 
sea surface 
temperature 
(SST) 

22 CMIP3  
models 

6 hourly 
and 
monthly 

Models reproduce a spatial pattern 
that closely matches with the 
observed spatial pattern of all 6 
modes of variability with limited 
success for AMO. Most models 
show a recognizable temporal 
pattern but models that show the 
best spatial pattern are not 
necessarily the models with the 
best temporal pattern. Also, 
overestimation or underestimation 
of strength of spatial pattern is 
noted and models often show 
temporal variability that is a) too 
slow or too rapid and b) too regular 
compared to the observed.   

Handorf and 
Dethloff 
(2012) 

ERA-40 and 
NNR for 
observed 
geopotential 
height data 

23 CMIP3  
models 

Monthly Spatial Pattern of NAO, PNA and 
some other modes of variability 
show good correspondence with 
observed spatial pattern but 
intermodal differences in simulating 
the strength of centers of action is 
noted. Models display a temporal 
pattern somewhat similar with the 
observed temporal pattern but the 
range of observed temporal 
characteristics are not captured 
which is consistent with the findings 
of Stoner et al. (2009). 
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Table-1: Continued 

Primary 
reference 

Dataset(s) Model(s) 
used 

Data type Major findings 

Kim and Yu 
(2012) 

The Extended 
Reconstruction 
of Historical 
Sea Surface 
Temperature 
version 3 
(ERSST V3) 
for observed 
SST 
 

20 CMIP5 
and 19 
CMIP3  
models 

Monthly Compared to CMIP3 models, 
observed spatial pattern for ENSO is 
better reproduced by CMIP5 models. 
The intermodal spread in simulating 
the ENSO intensities is much smaller 
in CMIP5 suite of models although 
the models continue to have difficulty 
in simulating realistically strong 
Eastern Pacific (EP) ENSO intensity 
compared to strong observed Central 
Pacific (CP) ENSO intensity. 

Flato et al. 
(2013) 

NA NA NA CMIP5 models still show error in 
reproducing the observed ENSO 
amplitude, period, irregularity and 
skewness although the mean state 
and seasonal cycle are well 
represented in both CMIP3 and 
CMIP5 models. 

Sheffield et al. 
(2013) 

NNR, NCEP-
DOE, ERA-
Interim, 20 
CR, TMPA 3B 
42 V6, CRU 
TS3.1, CPC-
Unified, GPCP 
v2.1, UNAM 
v0705, CRU 
TS3.1, 
HadISST, 
ERSST.v3b for 
observed 
temperature, 
precipitation 
and SST 

27 CMIP5 
models 

3-hourly, 6-
hourly, 
daily, 
monthly 

CMIP5 models have not shown 
improvements in capturing the 
seasonal timing of ENSO peaking in 
fall and winter. Frequency and 
mean state ENSO are well 
represented but only a few models 
are able to display the EP and CP 
ENSO and teleconnections with 
North American winter. The spatial 
representation of AMO and PDO is 
reasonable. However, PDO 
teleconnections with temperature 
and precipitation was less efficient 
in winter. 
 

Langenbrunne
r and  Neelin 
(2013) 

Extended 
Reconstructed 
Sea Surface 
Temperature 
(ERSST) 
version 3 for 
observed SST, 
CMAP for 
observed 
precipitation 

15 CMIP5 
models 
and 13 
CMIP3 
models 

Monthly CMIP5 models show little 
improvement in reproducing the 
amplitude and spatial pattern of 
ENSO precipitation teleconnections 
in the region of strong observed 
teleconnection. 
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Table-1: Continued 

Primary 
reference 

Dataset(s) Model(s) 
used 

Data type Major findings 

Schoof 
and Pryor 
(2014) 

NNR for observed 
SST, sea level 
pressure and wind 
speed 

10 CMIP5 
models 

Daily CMIP5 models show general 
agreement between the simulated 
and observed AO, PNA and ENSO 
pattern, although the match was 
better for AO and PNA compared to 
ENSO. Models that capture the 
spatial pattern well are not 
necessarily the models that 
simulate the temporal pattern well 
which are consistent with the 
findings of Stoner et al. (2009). 

Gao et al. 
(2015) 

NNR and GPCP 
for observed 
precipitation and 
Hadley Center 
Sea surface 
Temperature data 
for observed SST  

21 CMIP3 
and 31 
CMIP5 
models 

Monthly CMIP5 models outperformed 
CMIP3 models in reproducing the 
dominant mode of summer 
precipitation in the Pan-Asian 
monsoon region due to more 
realistic simulation of ENSO in the 
central-eastern equatorial Pacific.   

 

3. Model Simulation of Synoptic Scale Features 

3.1 Introduction 

Schoof and Pryor (2006, 2009) found that the frequency of several synoptic map 

patterns occurring in the Midwestern region of the US were dependent on the positive or 

negative phase of a single mode of variability (NAO or Pacific North American Pattern 

i.e. PNA) and sometimes on the phase of more than one modes of variability (NAO and 

PNA). The climate of much of the United States is prone to high daily variability due to 

relative changes in the intensity of the polar jet streams and semi-permanent pressure 

systems that include subtropical high and subpolar low. Change in the intensity of these 

low and high pressure systems are reflected through the modes of variability which in 

turn inflict change on the intensity and frequency of synoptic scale events which finally 

manifest in local or regional scale events (Schoof and Pryor 2009). The focus of the 

third section is on the evaluation of synoptic scale circulation by AOGCMs.  
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Li et al (2011) analyzed the impact of changes in the North Atlantic subtropical 

high (NASH) on summer precipitation of southeast United States by applying CMIP3 

model simulations and reported a westward displacement of NASH in future which is 

likely to cause increased extreme occurrences of dry and wet summers in southeast 

United States.  From the perspective of synoptic climatology, the links between 

atmospheric circulation and regional scale climate is analyzed by applying widely 

accepted classification techniques such as weather classification, air mass classification 

and circulation types that categorize the atmospheric conditions into different groups 

that as a whole is representative of all pertinent atmospheric states (Yarnal 1993, Huth 

et al. 2008, Sheridan and Lee 2012). Synoptic scale simulation holds an important link 

between large scale modes and regional scale climate and the effect of large scale 

features on regional climate can be assessed by examining the variation in atmospheric 

circulation with regard to changes in the modes of variability (Sheridan and Lee 2012).  

A general overview of classification of synoptic circulation is described in Yarnal 

(1993), Yarnal et al. (2001) and Huth et al. (2008). A wide variety of approaches for the 

classification of circulation pattern have been applied to various GCM application 

studies. Employment of the Lamb synoptic classification (Tolika et al. 2006; 

Anagnostopoulou et al. 2008, 2009; Demuzere et al. 2009), Self organizing maps (e.g. 

Cassano et al. 2006, 2007; Lynch et al. 2006; Finnis et al. 2009a, 2009b), Kirchhofer 

correlation based classification (Crane and Barry 1988; McKendry et al. 1995; Saunders 

and Byrne 1996; Schoof and Pryor 2006), mixture method (Vrac et al. 2007), Principal 

component analysis (PCA) coupled with K means cluster analysis (Galambosi et al. 

1996; Corte-Real et al. 1999; McKendry et al. 2006), fuzzy rule based clustering 
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technique (Ghosh and Mujumdar 2006; Wetterhall et al. 2009) eigenvector based 

analysis including principal component analysis (Hewitson and Crane 1992), T-mode 

Principal component analysis (Huth 1997; 2000) and common empirical orthogonal 

function (Benestad 2001), have been found in the literature.  

With the continuous progress in the development of AOGCMs over the last few 

decades, it has been noted that AOGCMs should be capable of simulating synoptic 

scale features and their daily variability (Boer et al. 1992; McFarlane et al. 1992; 

McKendry et al. 1995). However, only a few studies have examined the ability of 

AOGCMs in simulating synoptic scale circulation patterns (e.g. Crane and Barry 1988; 

Hewitson and Crane 1992, McKendry et al. 1995, 2006; Lapp et al. 2002; Schoof and 

Pryor 2006; Demuzere et al. 2009; Lynch et al. 2006; Cassano et al. 2006, 2007; Finnis 

et al. 2007, 2009a, 2009b; Anagnostopoulou et al. 2008, 2009).  

 A number of studies have used MSLP (e.g. Crane and Barry 1988; Hewitson 

and Crane 1992; Cassano et al. 2006, 2007; Lynch et al. 2006; McKendry et al. 2006; 

Demuzere et al. 2009; Finnis et al. 2009a, 2009b) and 500 hpa geopotential height 

fields (e.g. Lapp et al. 2002; Schoof and Pryor 2006; Anagnostopoulou et al. 2008, 

2009;) or both (McKendry et al. 1995) to simulate the synoptic scale circulation.  

3.2 Assessment of Model Performance at Synoptic Scale 

The review in this section focuses mainly on the individual or collective 

performance of GCMs in reproducing the historical synoptic pattern. In a pioneering 

study, Crane and Barry (1988) applied automated Kirchhofer map pattern categorization 

followed by rotated principal component analysis (RPCA) to compare the daily observed 

MSLP synoptic patterns with the simulated MSLP patterns generated by GISS 



26 
 

(Goddard Institute for Space Studies) GCM over the Arctic. Hewitson and Crane (1992) 

evaluated the accuracy of representativeness of GISS GCM II at reproducing daily 

synoptic scale circulation pattern over continental United States using a PCA. McKendry 

et al. (1995) used the automated Kirchhofer map typing technique to evaluate the ability 

of Canadian Climate Center (CCC) second generation GCM in simulating regional to 

synoptic scale circulation by using daily sea level pressure and 500 hPa geopotential 

height over western north United States. Lapp et al. (2002) employed the first 

generation of Coupled Global Model (CGCM1) of Canadian Centre for Climate 

Modelling and Analysis (CCCMA) to analyze the link between regional or local 

precipitation and synoptic scale circulation pattern over western North America using 

500 hpa geopotential height values.  

Schoof and Pryor (2006) investigated the ability of two coupled GCMs namely 

Hadley Center’s third generation Coupled Climate Model (HadCM3) and the second 

generation of Canadian Centre for Climate Modelling and Analysis CGCM (CGCM2) in 

simulating synoptic scale circulation pattern over Midwest United States and their links 

with NAO and PNA using 500 hPa geopotential height fields.  

Cassano et al. (2006) used 10 CMIP3 AOGCMs to examine the accuracy of 

model simulation of Arctic synoptic circulation using the neural network classification 

known as Self Organizing Maps (SOM) to daily SLP data. Cassano et al. (2007) in a 

sequel paper further investigated the effect of change in synoptic circulation on net 

precipitation in Arctic by using an ensemble of 15 CMIP3 AOGCMS. In the Antarctic, 

Lynch et al. (2006) employed the 10 model ensemble used by Cassano et al. (2006) to 

study the agreement of Antarctic synoptic circulation simulation with NCEP/NCAR 
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reanalysis (NNR) and European Centre for Medium-Range Weather Forecasts 

(ECMWF) Reanalysis (ERA-40) by applying SOM to daily SLP data for the summer and 

winter. Finnis et al. (2009a) studied the representativeness of 14 CMIP3 GCMs in 

assessing the link between synoptic scale circulation pattern and precipitation 

influencing the hydroclimatology of the Mackenzie River Basin (MRB) in Canada by 

applying SOM to daily SLP data. In a companion paper, Finnis et al. (2009b) compared 

the same 14 model ensemble against ERA-40 to investigate the role of synoptic forcing 

on the Eurasian watersheds by applying SOM to daily SLP data.  

Anagnostopoulou et al. (2009) assessed the ability of HadAM3P to reproduce the 

Lamb synoptic types (Lamb 1972, Yarnal 1993, O’Hare and Sweeney 1993) and 

precipitation over 3 areas in the Mediterranean namely Greece, Cyprus and central Italy 

by using daily 500 hPa geopotential height anomalies. In a previous work, 

Anagnostopoulou et al. (2008) employed HadAM3P to reproduce the Lamb synoptic 

types over Europe and the Mediterranean. Demuzere et al. (2009) used the Lamb 

weather type classification based on 6 hourly SLP values averaged over a day to 

appraise the ability of ECHAM5 in reproducing the circulation pattern and variability over 

western and central Europe. McKendry et al. (2006) undertook Principal component 

analysis based classification to compare the daily MSLP synoptic pattern reproduced by 

CGCM2 with that of observed NNR data over the Pacific Northwest region of North 

America. 

The Results from above studies indicate that in most cases, GCMs reproduce the 

observed synoptic pattern but the frequency of circulation pattern is often not accurate 

and simulations are not consistent across seasons. Crane and Barry (1988) found that 
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the simulated spatial and temporal characteristics were broadly similar with the 

observed data. However, model simulation had more extreme values compared to 

observed data. Hewitson and Crane (1992) reported better agreement for spatial 

pattern than for temporal pattern but concluded the results were better than Crane and 

Barry (1988) because of difference in GCM resolution and selection of study area. 

McKendry et al. (1995) found that the model simulation successfully reproduced the 

range of synoptic types but there was significant difference in seasonal frequency and 

variability of the synoptic types in the sense that the 3 most common MSL synoptic 

types showed significantly different mean annual frequency in all 4 seasons.  

Lapp et al. (2002) stated that the model simulation reasonably reproduced the 

500 hPa synoptic types but there was a significant difference between modeled and 

observed frequency distribution for one synoptic type. Schoof and Pryor (2006) found 

good agreement between GCM simulation and reanalysis data in reproducing the range 

of synoptic types but also reported significant model differences. HadCM3 overpredicted 

the dominant map pattern 1 (map type 1) and underpredicted the second and third most 

recurring map pattern (map type 8 and 11 respectively). Frequency of synoptic types 

produced by CGCM2 showed better agreement with the observed map pattern 

classification but the map type 1 was under produced which was contrary to HadCM3 

simulations. This was attributed to overrepresentation of meridional flow in HadCM3. 

Schoof and Pryor (2009) discussed some of the causal links between positive and 

negative phases of NAO and PNA that can influence the frequency of synoptic types 

and recommended an evaluation of synoptic scale circulation by a larger suite of 

AOGCMs across various spatial and temporal scales. 
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Cassano et al. (2006), Cassano et al. (2007), Lynch et al. (2006), Finnis et al. 

(2009a, 2009b) found a varying degree of model efficiency when SOM was applied to 

model ensemble. Cassano et al. (2006) found that in winter, model ensemble produced 

a synoptic pattern that was close to the observed synoptic pattern but the frequency of 

some of the synoptic type was different from the observed data. Only 3 among 10 

models were able to match the observed synoptic pattern individually. In summer, 

model ensemble failed to reproduce the observed pattern but 5 among the 10 models 

were able to simulate the observed pattern to some extent individually.  

Cassano et al. (2007) identified a subset of 4 models, which was able to simulate 

the basic Arctic synoptic circulation pattern when compared with reanalysis, to assess 

the change in precipitation over the 21st century. Lynch et al. (2006) discovered that the 

performance of model ensemble was satisfactory in the summer and winter but some 

models performed very poorly in representing the synoptic circulation over Antarctic. 

Finnis et al. (2009a) found significant variation among models but circulation patterns 

were better reproduced during the summer and winter compared to the autumn and 

spring. Finnis et al. (2009b) also found that the results varied among models and across 

seasons with best results being produced in the summer and winter.  

It was noted that third generation of Community Climate System Model (CCSM3) 

of NCAR (National Center for Atmospheric Research) that was used by Cassano et al. 

(2006, 2007) and Finnis et al. (2007, 2009a, 2009b) showed varying degree of 

efficiency. Cassano et al. (2007) found that CCSM3 was one of the best performing 

models over Arctic and identified CCSM3 as one of the 4-model subset ensemble to 

simulate future precipitation trend. CCSM3 performance was reasonably good over the 
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Arctic and particularly in the summer as was found by Cassano et al. (2006). The study 

of Finnis et al. (2009a) revealed that CCSM3 was the poorest performing model in the 

MRB but it was concluded that individual model performance can vary across different 

regions taking into account that CCMS3 performed well in  Cassano et al. (2006, 2007) 

and Finnis et al. (2007). Sheridan and Lee (2010) stated that while assessing the 

representation of precipitation by the GCMs relative to synoptic scale circulation pattern, 

it has to be taken into account that GCMs are not particularly good at simulating 

precipitation at local scale. Finnis et al. (2009a; 2009b) and Sheridan and Lee (2010) 

attributed the model errors to difficulty in GCM simulation of the processes related with 

precipitation. 

Among the studies that used Lamb synoptic classification, Anagnostopoulou et 

al. (2008) found that the most prominent anticyclonic type was overestimated in the 

spring and summer and underestimated in the autumn and winter. The most prominent 

cyclonic type was underestimated in the summer and winter and overestimated in the 

spring and autumn. 2 cyclonic types were overestimated and 2 other cyclonic types 

were underestimated across all the seasons. During the winter, 3 anticyclonic types 

were overestimated among which one was statistically significant. Positive and negative 

significant differences were found for the other cyclonic types across 3 other seasons. 

Anagnostopoulou et al. (2009) found that the model simulated the mean circulation 

patterns well but the anticyclonic types were overproduced while cyclonic types were 

underproduced during the summer and winter. Demuzere et al. (2009) found better 

model performance in reproducing the synoptic types during the winter. 
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McKendry et al. (2006) found that the model successfully reproduced the range 

of surface synoptic types but the frequency of synoptic types were not accurately 

simulated which is consistent with the findings of McKendry et al. (1995) and Schoof 

and Pryor (2006). The model overestimated the frequency of 3 warm, wet types and 

underestimated the frequency of 3 cold types. Best model performance was achieved 

during the summer, when the synoptic circulation is more stable. Demuzere et al. (2009) 

concluded that consistent circulation pattern simulation across all seasons is required 

for the application of GCMs in downscaling, the assessment of climate change and 

other applications. Spatial and temporal correspondence between observed and 

simulated synoptic scale circulation pattern will be a key area to determine the ability of 

the state of the art AOGCMs across scales. 

Yin (2005) analyzed 15 coupled CMIP3 GCMs for 21st century climate 

simulations and reported a consistent poleward shift of the storm tracks is more 

augmented in Southern Hemisphere compared to Northern Hemisphere. Poleward shift 

of storm tracks is accompanied by the poleward shift of the surface wind stress and 

precipitation causing an increased occurrence of the higher index state of Northern 

Annular Mode and Southern Annular Mode. Chang et al. (2012) applied 23 CMIP5 and 

11 CMIP3 models to simulate changes in the storm track for the 21st century and found 

a stronger trend in the poleward shift of the storm tracks in the Southern Hemisphere 

and also to some extent in the Northern Hemisphere. The CMIP5 models projected a 

significant increase in the frequency of extreme cyclones during the Southern 

Hemispheric winter which is consistent with the CMIP3 projections. However, CMIP5 

models projected a larger significant decrease, compared to CMIP3 models, in the 
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frequency of extreme cyclones for the Northern Hemispheric winter. Zappa et al. (2013) 

reported the improvement in CMIP5 models over CMIP3 simulations in reproducing the 

frequency and intensity of North Atlantic Cyclones but systematic biases affecting the 

position of the storm track leading to overestimation of the frequency and intensity of the 

storms in central Europe and underestimation of frequency and intensity of storms over 

the Norwegian sea in winter was reported. In summer the position of the storm track 

was captured well but the number of cyclones were underestimated. Cattiaux et al. 

(2013) found that CMIP5 models reproduce a stronger than observed North Atlantic jet 

stream. Nishii et al. (2015) reported some improvement in reproducing the storm-track 

activity over Arctic by CMIP5 models when 17 CMIP5 model simulations were 

compared with 17 CMIP3 model simulations but found consistent bias in the form of 

underestimation of summertime storm-track activity in CMIP3 and CMIP5 models.  

3.3 Summary 

Aforementioned studies examined the ability of a single model, (e.g. Crane and 

Barry 1988; Hewitson and Crane 1992; McKendry et al. 1995, 2006; Lapp et al. 2002; 

Demuzere et al. 2009, Anagnostopoulou et al. 2008, 2009) or two models, (e.g. Schoof 

and Pryor 2006).  The importance of need for inclusion of larger suite of models to 

better understand the links between teleconnection scale indices and synoptic scale 

condition is emphasized by Schoof and Pryor (2009). Sheridan and Lee (2010) 

highlighted the need for the application of multiple models to address the uncertainty 

inherent in a single model simulation.  Multimodel ensemble have been employed in 

studies that applied SOM (e.g. Cassano et al. 2006, 2007; Lynch et al. 2006; Finnis et al 

2009a, 2009b) and in more recent series of papers that made a comparative analysis 
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between CMIP3 and CMIP5 (e.g. Chang et al. 2012; Nishii et al. 2015) or evaluated 

individual CMIP3 (e.g. Yin 2005) or CMIP5 model performance (e.g. Zappa et al. 2013, 

Cattiaux et al. 2013). In general, the simulation of observed synoptic patterns are 

captured by the GCMs but the frequency of the synoptic types are often different and 

not consistent across seasons. The intermodal (e.g. Yin 2005, Cassano et al. 2006, 

2007; Lynch et al. 2006; Schoof and Pryor 2006, Finnis et al 2009a, 2009b, Zappa et al. 

2013,  Nishii et al. 2015) and intra model (e.g. Cassano et al 2006, 2007; Finnis et al 

2007, 2009a) differences reported in the body of work discussed in this section 

indicates the need of additional research to perform an evaluation of large suite of 

contemporary climate models across various spatial and temporal scales as the 

agreement between observed and simulated synoptic scale features represent an 

important model diagnostic. The ability of the models to capture the synoptic scale 

variations due to changes in the large scale modes of variability across a range of time 

scales is an important aspect of model evaluation as the regional scale climate 

simulation is governed by changes in synoptic scale features. Table-2 provides a 

summary of major findings of model performance at synoptic scale. 
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Table-2: A Summary of Model Performance at Synoptic Scale 

Primary 
reference 

Dataset(s) Model(s) 
used 

Data 
type 

Major findings 

Cassano 
et al. 
(2006) 

European Center for 
Medium-Range 
Weather Forecasts 
(ECMWF) Re-
Analysis (ERA-40) 
and NCEP/NCAR 
reanalysis (NNR) for 
observed 
temperature, 
precipitation and sea 
level pressure (SLP) 
data 

10 CMIP3  
models 

Daily In winter, model ensemble simulated the 
observed synoptic pattern but frequency 
of synoptic types was different than 
observed. In summer model ensemble 
failed to reproduce the observed 
synoptic pattern and only 5 models were 
able to match the observed synoptic 
pattern to some extent individually. 

Cassano 
et al. 
(2007) 

ERA-40 and 
NCEP/NCAR 
reanalysis for 
observed 
precipitation and 
SLP data. 

15 CMIP3 
models 

Daily Intermodel differences in reproducing 
the observed synoptic climate over 
Arctic is reported and a subset of 4 best 
performing models is selected to 
simulate changes in net precipitation 
over Arctic in future.  

Lynch et 
al. (2006) 

ERA-40 and 
NCEP/NCAR 
reanalysis for 
observed 
temperature, 
precipitation and 
SLP. 

10 CMIP3  
models 

Daily Model ensemble reasonably reproduced 
the Antarctic Circulation but some 
models showed poor performance in 
simulating the circulation pattern. 

McKendr
y et al. 
(2006) 

NCEP/NCAR 
reanalysis (NNR) for 
observed sea level 
pressure data. 

A single 
CMIP2 
GCM 

Daily Model successfully reproduced the 
observed synoptic pattern but the 
frequency of synoptic types was not 
accurately simulated.  
 

Schoof 
and Pryor 
(2006) 

NNR for observed 
sea level pressure 
and geopotential 
height data. 

2 CMIP2 
GCMs 

Daily In general the models showed good 
agreement with the observed synoptic 
pattern. However, model differences are 
noted in reproducing the frequency of 
synoptic types.   

Finnis et 
al. 
(2009a) 

ERA-40 for 

observed 

precipitation and 

SLP.   

14 CMIP3  
models 

Daily Compared to observed circulation 
pattern, model performance varies 
significantly across models and seasons 
with best match being produced in 
summer and winter.  

Finnis et 
al. 
(2009b) 

ERA-40 for 
observed 
precipitation and 
SLP. 
 

14 CMIP3  
models 

Daily Models show the best correspondence 
with observed synoptic pattern during 
summer and winter. A subset of 5 best 
performing models is selected for future 
projections.  
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Table-2: Continued 

Primary 
reference 

Dataset(s) Model(s) 
used 

Data 
type 

Major findings 

Finnis et 
al. 
(2009b) 

ERA-40 for 
observed 
precipitation and 
SLP. 
 

14 CMIP3  
models 

Daily Models show the best correspondence 
with observed synoptic pattern during 
summer and winter. A subset of 5 best 
performing models is selected for 
future projections.  
 

Chang et 
al. (2012) 

ERA-Interim data 
for observed 
meridional wind 
and SLP. 

11 CMIP3 
and 23 
CMIP5 
models 

6-hourly CMIP5 models project a significant 
increase in the frequency of extreme 
cyclones during Southern Hemispheric 
winter which is consistent with CMIP3 
projections. However, compared to 
CMIP3 projections, CMIP5 models 
show a larger significant decrease in 
the frequency of extreme cyclones 
during Northern Hemispheric winter. 

Cattiaux 
et al. 
(2013) 

E-OBS v3.0 for 
observed European 
temperature and 
NCEP/DOE 
reanalysis for 
observed 
geopotential height 
data 

33 CMIP5 
models 

Daily CMIP2 and CMIP3 models suggested 
an increase in the positive phase of 
NAO in the future influencing the 
European temperature trend. However, 
CMIP5 models projected an increase 
in the negative phase of NAO in winter. 
CMIP5 models reproduce a stronger 
than observed North Atlantic jet 
stream. 
 

Zappa et 
al. (2013) 

ERA-Interim, the 
Japanese 25 year 
Reanalysis (JRA-
25), NCEP Climate 
Forecast System 
Reanalysis (NCEP 
CFSR) and NASA 
Modern Era 
Retrospective-
Analysis for 
Research and 
Applications (NASA 
MERRA) for 
observed zonal and 
meridional wind 
speed and mean 
sea level pressure. 

22 CMIP5 
models 
and 19 
CMIP3 
models 

6-hourly Reported improvement in the 
representation of number and intensity 
of Northern Hemispheric extratropical 
storm tracks in CMIP5 models over 
CMIP3 simulations. CMIP5 models are 
better at reproducing the location and 
tilt of North Atlantic storm track in 
summer. However, CMIP5 models 
underestimate the intensity of cyclones 
in both summer and winter and 
systematic bias affected the spatial 
distribution of storm tracks.  
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Table-2: Continued 

Primary 
reference 

Dataset(s) Model(s) 
used 

Data 
type 

Major findings 

Nishii et 
al. (2015) 

ERA-Interim, JRA-
25, NNR, ERA-40, 
NCEP CFSR and 
JRA-55 for observed 
temperature, SLP 
and meridional wind. 

17 
CMIP3 
and 17 
CMIP5 
models 

Daily CMIP5 models show improvement in 
reproducing the summertime storm 
track activity over Arctic. However, 
systematic bias was found in both 
CMIP3 and CMIP5 models. 10 out of 
17 CMIP3 models predict an increase 
in the total number of cyclones but 14 
out of 17 CMIP5 models show a 
decrease in future. Recommendation 
of more reliable simulation of 
summertime NAM variability and how 
that influences the present and future 
land temperatures over Eurasia is 
made. 
 

 

4. Model Simulation of Regional Scale Features 

4.1 Introduction 

Comparison of AOGCM simulations with observed data at the grid point scale 

has led to the notion that AOGCMs do not show agreement even when simulating the 

same variable using the same scenario over the same region (Kundzewicz et al. 2007). 

Global climate is the response of the climate system to the large scale processes 

(differential solar heating, rotation of earth and surface features that includes distribution 

of land, ocean and mountains) but regional climate is the response of global climate to 

regional details (Zorita and von Storch 1999). At the smallest spatial scale model errors 

will always be large even if the AOGCMs agree well on a large scale (Grotch and 

MacCracken 1991, Masson and Knutti 2011). AOGCMs are unable to provide locally 

relevant climate data for regional applications and downscaling is a method that is used 

by climate scientists to generate climate information on a smaller spatial scale from 

AOGCMs.  
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When we try to understand climate system behavior or impact of climate change 

in a particular region, downscaling (statistical or dynamic or hybrid) approach is applied 

to the AOGCM output. Statistical downscaling establishes a relationship between 

predictor (large scale atmospheric variable) and predictand (local regional or small scale 

variable). Various downscaling methodologies (see Wilby and Wigley 1997) are used to 

bridge the gap between what AOGCMs are able to provide and what these finer scale 

applications will require (Lim et al. 2007).  

Downscaling produces the regional climate information but results in adding 

another layer of complexity that stems from a host of uncertainties associated with the 

regionalization process (see Giorgi and Francisco 2000, Hawkins and Sutton 2009, 

Schoof 2013). Most of the downscaling techniques do not have the provision of the 

parent AOGCM deriving the feedback from regional processes (Schoof 2013). One of 

the primary conditions that needs to be fulfilled for a successful statistical downscaling 

approach is that predictor variable should be well simulated by GCM (Busuioc et al. 

2001, Wilby et al. 2004, Benestad et al. 2008, Schoof 2013). If the model simulation of 

large scale and synoptic scale features are not credibly replicated by the GCM at the 

timescale required for the regional impact assessment, the downscaled climate 

information is also likely to lack fidelity (Schoof and Pryor 2006).  

Uncertainty, that results from choice of AOGCMs or using different AOGCMs, 

increases as we approach finer scale and adds to the uncertainty associated with the 

downscaling technique and this could be addressed by determining the scale at which 

optimal simulation of large scale predictor variables is achieved which can greatly 

enhance the value of statistical downscaling to decision makers (Schoof 2013). An 



38 
 

optimal scale exists between the continental scale, where AOGCMs are most effective 

(model errors are less) but regional signal is not retained, and the regional scale where 

most of the surface features are captured but model errors are higher (Masson and 

Knutti 2011).  

4.2 Assessment of model performance at regional scale 

Uncertainty in the AOGCM simulation increases as we move from a global scale 

to a regional scale (Zorita and von Storch 1999, Williamson and Laprise 2000, Räisänen 

2001, Randall et al. 2007). In order to circumvent this problem, climate scientists have 

used the broad subcontinental scale, considering it skillful for regional impact studies 

(e.g. Christensen et al. 2007; Giorgi and Francisco 2000; Ruosteenoja et al. 2003). 

Following the work of Grotch and MacCracken (1991), there have been various 

interpretations of “skillful scale” (e.g. von Storch et al. 1993; Zorita and von Storch 

1999). 

The focus of this section is on the assessment of model skills on regional scale 

with the need for identification of optimal scale for variables other than temperature and 

precipitation in contemporary climate models. For a regional impact study it is important 

to capture most of the features regulating climate in that particular region and coarse 

resolution AOGCM output at grid point level is not very effective in this regard. The 

AOGCMs are more efficient at larger continental scale but may fail to simulate the 

regional circulation pattern that leads to extreme precipitation events (Christensen and 

Christensen 2003). This calls for finer scale simulation (Kundzewicz et al. 2007, Schoof 

et al. 2009, Maruan et al. 2010) and downscaling is required to make the AOGCM 

simulations relevant for a sub grid level study.  



39 
 

Portman et al. (1992) aptly visualized that the importance of AOGCM application 

for studying the impact of climate change at regional scale will increase in near future. 

In order to bridge the gap between inability of AOGCMs to provide reliable information 

at local scale and need for information at small scale for sub grid level studies, an 

assessment of performance of AOGCMs across a range of spatial and temporal scales 

is required. Chervin (1981) and Portman et al. (1992) used standard statistical analysis 

to evaluate this scale for precipitation and temperature respectively. This approach has 

been applied in several downscaling studies (e.g. Schoof et al. 2007). Masson and 

Knutti (2011) and Räisänen and Ylhäisi (2011) recently identified an “optimal smoothing 

scale” for temperature and precipitation using CMIP3 models. However, only 

temperature and precipitation were analyzed. There remains a need for detailed 

analysis of other widely used downscaling variables to present a comprehensive 

account of ability of CMIP5 AOGCMs across scales.  

Grotch and MacCracken (1991) assessed climate sensitivity of GCMs across 

various spatial scales and was seminal in introducing the concept of skillful scale 

(Benestad et al. 2008). They found that even though models agree well on a large scale 

but at a regional scale or grid point level, “very large regional or pointwise differences 

can, and do exist” and for temperature this pointwise difference can be more than 20K 

(Grotch and MacCracken 1991, Benestad et al. 2008).  They also found that model 

disagreement becomes more pronounced at smaller scales. Grotch and MacCracken 

(1991) opined that there is a need for comprehensive regional and seasonal evaluation 

of GCMs to make it more useful or meaningful for regional or finer scale studies. 

Following the work of Grotch and MacCracken (1991), von Storch et al. (1993) defined 
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the minimum scale as the grid point distance between two adjacent grid points and 

skillful scale was defined as a scale consisting of more than or equal to 8 grid points or 

the distance between 8 or more adjacent grid points. Regional scales and large scales 

were defined as scales smaller and larger than the skillful scales respectively.  After 

Grotch and MacCracken (1991), Zorita and von Storch (1999) stated that GCMs are to 

be considered less skillful as the spatial scale approaches a distance between few grid 

points. Huth and Kyselý (2000) also stated that the GCMs are more accurate in the 

simulation of large scale fields compared to simulation at a single grid point.  

The AOGCMs of the present generation mostly have a grid size of approximately 

100-400 km (Wilby et al. 2009, Endo et al. 2012). Christensen et al. (2007) in the 4th 

Assessment Report of the IPCC mentions the gridbox resolution of state of the art 

AOGCMs to be roughly about 200 km and that scales below the computational grid size 

should be considered unreliable. For CMIP3 models, this is equivalent to the minimum 

scale defined by von Storch et al. (1993). A lack of reliability of model simulations at the 

minimum scale or regional scale has prompted climate scientists to opt for larger sub 

continental scales for regional impact assessment (Masson and Knutti 2011). 

Christensen et al. (2007) considered 1000 km Χ 1000 km or 106 km2 as the horizontal 

length scale at which AOGCM simulations would be considered useful for regional 

climate analysis. Giorgi and Francisco (2000) used 107 km2 as the upper limit of the 

regional scale at which regionally averaged climate information would still be relevant 

for regional applications. Ruosteenoja et al. (2003) opined that most meaningful 

information for regional climate analysis could be obtained at the sub continental scale 

of 106-108 km2 and used this scale for regional climate study. 
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In order to identify the desired scale of model performance for regional impact 

assessment, it is required to determine the optimum number of grid points at which 

model errors will be relatively less but most of the spatial features will still be captured 

effectively. A few pioneering studies have attempted model evaluation across scales, 

but using only precipitation (e.g. Chervin 1981), temperature (e.g. Portman et al. 1992), 

temperature and precipitation (Grotch and MacCracken 1991; Masson and Knutti 2011; 

Räisänen and Ylhäisi 2011), near-surface temperature, precipitation and sea level 

pressure (Bhend and Whetton 2013). Masson and Knutti (2011) identified the desired 

scale of model performance by comparing the observed mean and variance with that of 

AOGCM simulated mean and variances over different spatial aggregation and time 

periods.  Räisänen and Ylhäisi (2011) and Masson and Knutti (2011) evaluated CMIP3 

model performances. Bhend and Whetton (2013) provided a comparative analysis 

between CMIP3 and CMIP5 model performance using multimodel ensemble average. 

There is paucity of literature aimed at evaluating optimal smoothing scale for other 

important variables (surface air temperature, sea level pressure, eastward wind, 

northward wind, geopotential height and specific humidity) which are widely used in 

downscaling studies.  

4.3 Summary 

AOGCMs are relatively more skillful in simulating average climate at continental 

scales across seasons but they are not as reliable while approaching smaller spatial 

and temporal scales (Grotch and MacCracken 1991). Policy makers, planners, 

engineers and impact modelers need information at finer spatial and temporal scale 

than AOGCMs are currently able to provide (Schoof et al. 2009, Maruan et al. 2010). 
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Use of AOGCMs to investigate climate change impacts assumes that they adequately 

simulate climate across a range of spatial and temporal scales. While the shortcomings 

of AOGCMs at the scale of an individual grid point have been recognized within the 

AOGCM downscaling community, there has been paucity of literature that identifies the 

scale at which AOGCMs perform well, especially for variables other than temperature, 

and for large model ensembles. To what extent AOGCMs would be able to provide 

reliable information for regional impact analysis would be best answered by evaluation 

of AOGCMs at the scale at which AOGCM simulation would provide better agreement 

with the observed statistical moments at regional scale. In order to identify the desired 

scale of model performance for regional impact assessment, it is required to determine 

the optimum number of grid points at which model errors will be relatively less but most 

of the spatial features will still be captured effectively. Optimal smoothing scale for 

temperature and precipitation has been identified for temperature and precipitation (e.g. 

Masson and Knutti 2011, Räisänen and Ylhäisi 2011) and near-surface temperature, 

precipitation and sea level pressure (Bhend and Whetton 2013) but there have been no 

attempts to identify optimal smoothing scale for widely used downscaling predictors. 

The extension of the aforementioned works by evaluating AOGCM skills across various 

spatial, temporal scales, large scale atmospheric variables among latest generation of 

CMIP5 climate models while also assessing the ability of individual models is highly 

recommended. Table-3 provides a summary of major findings of model performance at 

regional scale. 

  



43 
 

Table-3: A Summary of Model Performance at Regional Scale 

Primary 
reference 

Dataset(s) Model(s) 
used 

Data type Major findings 

Grotch and 
MacCracke
n (1991) 

Oort Historical 
temperature data, 
Jaeger and Schutz-
Gates historical 
precipitation data. 

4 uncoupled 
GCMs 

Seasonal 
(winter and 
summer) 

Models agree well on a large 
scale but at a regional scale 
or grid point level, model 
disagreement becomes more 
pronounced. This pointwise 
difference can be more than 
20K for temperature.  
Comprehensive regional and 
seasonal evaluation of GCMs 
was recommended for finer 
scale applications of GCMs. 

von Storch 
et al. (1993) 

29 stations from 
World Meteorological 
Station Climatology 
(WMSC) datasets for 
temperature and 
precipitation and 
Comprehensive 
Ocean Atmosphere 
Data Set (COADS) 
for SLP. 

A coupled 
AOGCM 

Annual 
cycle 

Reliability of model 
simulation is dependent on 
the spatial scale. Skillful 
scale is defined as the scale 
consisting of more than or 
equal to 4-8 grid points. 
 

Giorgi and 
Francisco 
(2000) 

Observed datasets of 
the Climatic 
Research Unit of the 
University of East 
Angalia for 
Temperature and 
Precipitation. 

5 coupled 
AOGCMs 

Seasonal 
(winter and 
summer) 

Inter-model variability is 
found to be the major source 
of uncertainty that dominated 
over inter-scenario and 
internal model variability for 
regional impact assessment. 
10

7
 km

2
 is considered as the 

upper limit for regional scale 
aggregation of AOGCMs. 
 

Ruosteenoj
a et al. 
(2003) 

Observed datasets of 
the Climatic 
Research Unit of the 
University of East 
Angalia for 
Temperature and 
Precipitation. 

7 coupled 
CMIP2 
AOGCMs 

Seasonal 
(all 4) and 
annual 
cycle 

Considered the sub 
continental scale of 10

6
-10

8
 

km
2 
to be most useful for 

regional impact analysis. 

Christensen 
et al. (2007) 

N/A N/A N/A Considered 1000 km Χ 1000 
km or 10

6
 km

2
 as the scale 

that could be used for 
regional climate analysis. 
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Table-3: Continued 

Primary 
reference 

Dataset(s) Model(s) 
used 

Data type Major findings 

Masson 
and Knutti 
(2011) 

European Center for 
Medium-Range 
Weather Forecasts 
(ECMWF) Re-
Analysis (ERA-40) for 
observed 
temperature, Climate 
Prediction Center 
(CPC) Merged 
Analysis for 
Precipitation (CMAP) 
and Global 
Precipitation 
Climatology Project 
(GPCP) for observed 
precipitation. 

24 CMIP3 
AOGCMs 

Monthly Identified the optimal smoothing 
scale for temperature and 
precipitation.  A penalty function 
that combines model error and 
spatial information lost from 
aggregation is minimized to 
determine the optimum number 
of grid points at which model 
errors will be relatively less but 
most of the spatial features 
would still be captured 
effectively. An optimal smoothing 
scale of 2000 Km was proposed 
for CMIP3 models subject to 
variable, study area and 
smoothing technique used. 
 

Räisänen 
and Ylhäisi 
(2011) 

ERA-40 and 
NCEP/NCAR 
reanalysis (NNR) for 
observed 
temperature, CMAP 
and GPCP for 
observed 
precipitation 

24 CMIP3 
AOGCMs 

Monthly The Optimal smoothing scale of 
2000 Km for CMIP models 
proposed by Masson and Knutti 
(2011), to obtain information 
about local climate, is reported to 
be higher for individual model 
and more so  for multimodal 
means. For temperature, the 
scale is stated to be 126 Km and 
1008 Km for multimodel mean 
and individual models 
respectively. For precipitation, 
the optimal smoothing scale is 
200 Km and 1600 Km for 
multimodel mean and individual 
models. 

Bhend and 
Whetton 
(2013)  

GISS surface 
temperature analysis 
(GISTEMP) for 
observed 
temperature, 
HadSLP2 dataset for 
observed sea level 
pressure and Global 
Precipitation 
Climatology Center’s 
(GPCC) Variability 
Analysis of Surface 
Climate Observations 
(VASClimO) version 
1.1 for observed 
precipitation.  

24 CMIP3 
and 26 
CMIP5 
models 

Seasonal 
(winter 
and 
summer) 

No sign of improvement is 
reported in the ability of CMIP5 
models over their CMIP3 
counterparts in reproducing 
locally relevant temperature, 
precipitation and sea level 
pressure data. Inconstancies 
between observed and simulated 
changes in temperature and sea 
level pressure is significant while 
simulated changes in 
precipitation is not significantly 
different from observed changes.  
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5. Synthesis 

An evaluation of AOGCMs at large scale, where the models are generally 

considered robust, has been reviewed in section 2. This has been attempted by 

evaluating and comparing CMIP5, CMIP3 and previous intercomparisons and how well 

do they correspond with the observed spatial and temporal pattern of the major modes 

of variability. A general improvement has been noted among the CMIP5 models 

compared to the performance of CMIP3 models. In general, models mostly represent a 

recognizable spatial and temporal pattern consistent with the observed spatial and 

temporal pattern of the modes of climatic variability. Common errors in reproducing the 

strength of center of actions and too regular variability in time series compared to 

observations have been noted. Models tend to simulate different modes of variability 

with varying degree of skills. Models that simulate poor (best) temporal variability are 

found to reproduce the best (poor) spatial pattern which emphasizes the importance of 

including all the models in analyzing the spatial and temporal correspondence. ENSO 

simulations continue to need improvement in reproducing the observed amplitude, 

period, irregularity and skewness. Model skill varies depending on the mode of climate 

variability studied, spatial and temporal characteristics, study area and model used.  

This is followed by model evaluation at synoptic scale, which is the intermediate 

scale between large scale and regional scale, in section 3.  A detailed evaluation of the 

state of the art AOGCMs is attempted to examine how the AOGCMs perform in 

simulating the synoptic scale patterns. This has been achieved by examining the ability 

of AOGCMs in capturing the observed spatial and temporal variability of synoptic scale 

features. In general, the simulations of observed synoptic patterns are reproduced by 
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the GCMs but the frequencies of the synoptic types vary and remain inconsistent across 

seasons. Differences in model performances could be associated with the links between 

large scale modes of climate variability and synoptic scale condition, study area and 

model selection. In section 4, evaluation of model performance at the smallest regional 

scale is presented to further analyze model reliability at a range of scales. This has 

been achieved by reviewing the shortcomings of GCMs at shorter spatial and temporal 

scales and how this can be improved by analyzing model performance across a range 

of spatial and temporal scales to identify the optimal scale at which the model 

simulations for regional analysis would show best correspondence with the observed 

statistical moments. This emphasizes the need to determine a desired scale of model 

performance for the latest suite of climate models and how this scale varies among 

variables, models, spatial and temporal scales. It is critical to understand synoptic scale 

climate in the context of large scale climate. Links between large scale modes of climate 

variability and synoptic scale climate has been analyzed by Schoof and Pryor (2006). 

Regional scale climate is influenced by synoptic scale features which are governed by 

modes of variability occurring at large scale. Grotjahn et al. (2015) analyzed extreme 

temperature events at regional scale in the context of large scale meteorological 

patterns (LSMP). How well a model will perform at the regional scale is dependent on 

model simulation of local processes and also on the reliability of model performance at 

synoptic scale and large scale.  

6. Significance  

Model performance across large scale, synoptic scale and regional scale has 

been reviewed to provide an overview of strength and weaknesses of contemporary 
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climate models. The reliability of simulation of modes of climate variability at the large 

scale improves our confidence in the model’s ability to reproduce the governing features 

of the climate at hemispheric scale. Varying degree of the skills shown by the individual 

CMIP3 and CMIP5 models in reproducing the observed spatial and temporal pattern 

highlights the need of employing a large suite of contemporary climate models to 

examine their individual and collective skills in reproducing the spatial and temporal 

patterns of modes of climate variability. Credible simulation of synoptic scale features 

increases our confidence in model’s ability to simulate the regional features more 

effectively. Intermodel and intramodel differences among contemporary climate models 

in reproducing the synoptic scale climate emphasize the importance of analyzing the 

model simulation at synoptic scale to determine model efficiency at large scale and 

regional scale. Further research is required to evaluate the contemporary climate 

models across a range of spatial and temporal scales to reduce the uncertainty 

associated with the application of the models to regional impact studies, which will 

greatly help the downscaling community to assess the scale at which statistical 

downscaling predictors are adequately reproduced by AOGCMs. This can greatly 

benefit the Impact modelers, planners and engineers, who would require climate 

information at smaller regional scale.   
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Appendix A – CORRESPONDENCE 

 

Correspondence related to Figure 1 

 

From: Stoner, Anne <anne.stoner@ttu.edu> 
Sent: Tuesday, April 14, 2015 11:01 AM 
To: Saurav Chakraborty 
Subject: Re: request for permission to use the figure from Stoner et al. 2009 
  
Hi Saurav, 
 
Go ahead and use the figure! I’m glad it relates to your research, and it sounds like an 
interesting study. 
 
Best of luck with your paper and your MS. 
Anne 
 
 
On Apr 14, 2015, at 10:54 AM, Saurav Chakraborty <saurav@siu.edu> wrote: 
 
 
Dear Dr. Stoner, 
 
I am pursuing MS in Geography and Environmental Resources at Southern Illinois 
University in Carbondale.  I am working on a research paper for which I am looking at 
the performance of contemporary climate models across various spatial and temporal 
scales. I am chiefly trying to examine AO, NAO, PNA, ENSO, AMO and PDO. I have 
read your paper entitled "Assessing General Circulation Model Simulations of 
Atmospheric Teleconnection Patterns" for this purpose many times. I wanted to 
include the figure 1 of Stoner et al. (2009) for the visual representation of 
observed spatial patterns of 6 teleconnections in my research paper. The graduate 
school requires me to have a written permission from you to use this figure in my paper. 
I will be grateful if you please allow me to cite this figure in my paper. 
 
With best regards, 
 
sincerely, 
 
Saurav 

 

 

 

mailto:saurav@siu.edu
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From: Nathans, Jinny <jnathans@ametsoc.org> 
Sent: Thursday, October 8, 2015 8:05 AM 
To: Saurav Chakraborty 
Subject: Re: Permission to use a figure for my Master's Research Paper 
  
Dear Saurav— 
 
My name is Jinny Nathans and I’m the Permissions Officer at AMS.  Your question was 
referred to me.  This signed message constitutes permission to use the material 
requested in your email below. 
 
You may use the figure in your paper with the following conditions: 
 
+ please include the complete bibliographic citation of the original source, and 
+ please include the following statement with that citation:  ©American Meteorological 
Society.  Used with permission. 
 
Thanks very much for your request and if you need any further information, please get 
in touch with me.  My contact information is below. 
 
Regards, 
  

 
 
Jinny Nathans 
Permissions Officer  
American Meteorological Society 
 
jnathans@ametsoc.org 
617 226-3905 
 
 
 
 
 
On Tue, Oct 6, 2015 at 7:18 PM, Saurav Chakraborty <saurav@siu.edu> wrote: 
Hi, 
 
My name is Saurav Chakraborty and I am a Master's student in the Dept. of Geography 
and Environmental Resources in The Southern Illinois University of Carbondale   

 

mailto:jnathans@ametsoc.org
mailto:saurav@siu.edu
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I would like to use a figure from "Anne Marie K. Stoner, Katharine Hayhoe, and Donald 
J. Wuebbles, 2009: Assessing General Circulation Model Simulations of Atmospheric 
Teleconnection Patterns. J. Climate, 22, 4348–
4372. doi: http://dx.doi.org/10.1175/2009JCLI2577.1" 
 
The figure I would like to use is figure. 1 from the above mentioned article. 
 
This figure would be included in the literature review of my Master's Research paper 
and I have the permission of the author (Anne Marie K. Stoner). However, the graduate 
school told me that permission would be required from the Journal as well. I do not 
know  exactly whom I should write to in AMS regarding this, so could you please help 
me with this? 
 
 

 

AMS Journals Online - Assessing General Circulation Model 
Simulations of Atmospheric Teleconnection Patterns 
Anne Marie K. Stoner, Katharine Hayhoe, and Donald J. Wuebbles, 
2009: Assessing General Circulation Model Simulations of 
Atmospheric Teleconnection Patterns. J. Climate, 22, 4348–4372. 
doi: http://dx.doi.org/10.1175/2009JCLI2577.1 
Read more... 

Thanks and regards 
 
Sincerely, 
 
Saurav Chakraborty 
Graduate Student 
Dept. of Geography and Environmental Resources 
1000 Faner Dr.  
Southern Illinois University Carbondale 
Carbondale, IL-62901 
 

 

 

 

 

 

http://dx.doi.org/10.1175/2009JCLI2577.1
http://dx.doi.org/10.1175/2009JCLI2577.1
http://dx.doi.org/10.1175/2009JCLI2577.1
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