Southern Illinois University Carbondale OpenSIUC

Research Papers

Graduate School

Fall 2015

Monetary Policy Uncertainty

Andrew M. Croessman Southern Illinois University Carbondale, andrewcroessman@siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/gs_rp

Recommended Citation

Croessman, Andrew M. "Monetary Policy Uncertainty." (Fall 2015).

This Article is brought to you for free and open access by the Graduate School at OpenSIUC. It has been accepted for inclusion in Research Papers by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

MONETARY POLICY UNCERTAINTY

by

Andrew Croessman

A.A., John A. Logan College, 2011 B.A., Southern Illinois University, 2013

A Research Paper Submitted in Partial Fulfillment of the Requirements for the Master of Arts in Economics

> Department of Economics in the Graduate School Southern Illinois University Carbondale December 2015

RESEARCH PAPER APPROVAL

MONETARY POLICY UNCERTAINTY

By

Andrew Croessman

A Research Paper Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Master of Arts

in the field of Economics

Approved by:

Dr. Scott Gilbert

Graduate School Southern Illinois University Carbondale August 8, 2015

TABLE OF CONTENTS

<u>CHAPTER</u>	PAGE
LIST OF TABLES	iii
CHAPTERS	
CHAPTER 1 – Introduction	1
CHAPTER 2 – Literature Review	1
CHAPTER 3 – Economic Theory	3
CHAPTER 4 – Data	5
CHAPTER 5 – Unit Root Tests	7
CHAPTER 6 – Model	9
CHAPTER 7 – Conclusion	
REFERENCES	
APPENDICES	
Appendix A	

LIST OF TABLES

TABLE	PAGE
Table 1	5
Table 2	
Table 3	
Table 4	
Table 5	
Table 6	
Table 7	
Table 8	

1. Introduction

By definition, monetary policy uncertainty is the increased volatility of the expected outcome resulting from changes in monetary policy, which is unforecastable from the perspective of economic agents. Following the financial crisis of 2007-2008, the US Federal Reserve shouldered most of the burden of providing economic stimulus. They did so by slashing their benchmark interest rate, and by buying longer-term bonds and mortgage-backed securities. However, the Federal Reserve has a dual mandate, and it is not specific to the extent it targets employment versus price stability. Therefore, economic agents must depend on precedent to form expectations about monetary policy in unprecedented times.

My objective for this paper is to determine the effects of monetary policy uncertainty on US asset prices and real macroeconomic aggregates within a vector autoregressive (VAR) framework. To gauge monetary policy uncertainty, I will employ a frontier dataset referred to as the "Monetary Policy Uncertainty index". This dataset was created by Northwestern University finance professor Scott Baker and his colleagues.

2. Literature Review

I proceed with a brief literature review of notable papers pertaining to monetary policy uncertainty. The first paper that relates to my paper is titled "The Stock Market and Investment" by Robert Barro. In this paper, he deviates from many empirical studies that have related business investment to q. q is the ratio of the market's valuation of capital to the long run cost of acquiring

new capital. Barro finds for the US that stock market prices explain the growth rate of investment. Furthermore, he finds that the stock market variable outperforms q. Barro justifies this result by stating that the equity component of q is a bad proxy for stock market value. Lastly, he concludes that the relationship between stock market prices and the growth rate of investment is not different in stock market crashes than at other times (Barro, 1990).

The second paper I choose to review is titled "What Explains the Stock Market's Reaction to Federal Reserve Policy?" by Ben Bernanke and Kenneth Kuttner. In this paper, the authors analyze the linkage between monetary policy and asset prices. They use the Fed funds futures as a proxy of monetary policy expectations. Using a stock market value-weighted index, the authors find that an unexpected 25 basis point rate cut would increase stock prices by 1 percent. This result is robust. Moreover, there is evidence of a larger stock market response to monetary policy changes that are more permanent. For example, a reversal in the direction of the Fed funds rate generates a larger stock market response. Lastly, they find that stock market prices respond as they do to monetary policy due to its effects on expected future excess returns or on expected future dividends. This result contradicts the notion that the reaction of stock market prices to monetary policy is not attributable to monetary policy's effects on the real interest rate (Bernanke & Kuttner, 2003).

The third paper that relates to my paper is titled "Dynamics of Monetary Policy Uncertainty and the Impact on the Macroeconomy" by Nicholas Herro and James Murray. The authors gauge monetary policy uncertainty by

measuring deviations of the Fed funds rate from forecasts. They use this measure within a VAR model to analyze the effect monetary policy uncertainty has on inflation, growth of output, and unemployment. Their results suggest that there is not sufficient evidence that monetary policy uncertainty affects inflation, growth of output, and unemployment. However, the authors conclude that greater monetary policy uncertainty leads to greater volatility of growth of output and unemployment (Herro & Murray, 2011).

The last paper that I choose to review is titled "Impact of Uncertainty on High Frequency Response of the US Stock Markets to the Fed's Policy Surprises" by Hardik Marfatia. In this paper, he analyzes the response of stock market returns to US monetary policy surprise. This topic is supported by the Lucas island model. The Lucas island model suggests that there is an inverse relationship between the effectiveness of a policy and the magnitude of uncertainty. To conduct his research, he estimates the response of stock market returns to monetary policy surprises within a time varying parameter (TVP) model. Marfatia finds that at higher levels of uncertainty, the affect of the Federal Open Market Committee (FOMC) policy surprise on stock market returns decreases. Moreover, he finds that using volatility in the short-term bond market as a proxy of uncertainty provides the highest explanatory power in explaining the impact of uncertainty on the effectiveness of monetary policy surprises. Lastly, Marfatia concludes that the response of stock markets to monetary policy shocks significantly varies across time (Marfatia, 2014).

3. Economic Theory

How do exogenous uncertainty shocks fit into Keynes' IS-LM framework? Keynes does not explicitly discuss exogenous uncertainty shocks in his IS-LM framework. However, implicitly he accounts for uncertainty through what he refers to as "animal spirits". By the term "animal spirits", Keynes is referring to the notion that changes in households' and firms' confidence and optimism regarding the economy can lead to self-fulfilling economic booms or busts even if the fundamentals of the economy have not changed. To further elaborate; assume aggregate consumption and investment have the following functional forms.

(1)
$$C = c_0 + b(Y - T) - ar$$

$$I = i_0 - dr$$

where:

a, b, and d are parameters

 c_0 = the autonomous or exogenous component of aggregate consumption i_0 = the autonomous or exogenous component of aggregate investment Y - T = the after – tax income r = the real \Box nterest rate

Keynes argues that these autonomous components (c_0 and i_0) of aggregate demand are affected by animal spirits. They lead to changes in *C* and *I* even though there are no changes in Y - T or *r*. For example, suppose there is an exogenous decrease in c_0 or i_0 due to pessimism about the economy resulting from monetary policy uncertainty. If the economy is initially in equilibrium, an exogenous decrease in c_0 or i_0 will shift the IS curve downward to the left. This decrease in aggregate demand leads to a decrease in output as firms cut production in response to reduced demand. As income drops, aggregate demand further falls, which further exacerbates the initial decrease in output. As output drops, there is less demand for loanable funds, which drives down the real interest rate. Through the autonomous components of aggregate demand channel, it is evident that monetary policy uncertainty fits within Keynes' IS-LM framework. To conclude, an exogenous increase in consumers' and firms' pessimism about the economy can lead to a self-fulfilling recession. Conversely, an exogenous increase in consumers' and firms' optimism about the economy can pull an economy out of a recession. I proceed with describing the data I will be using in the model.

4. Data

Within a VAR model, I employ five endogenous variables. These five variables are listed with a brief description in the following table.

Variable	Description	Source
mpu	The MPU index is a news-based proxy for US monetary policy uncertainty. The index is computed as the monthly number of articles containing joint references to the Federal Reserve, uncertainty, and the economy. To compensate with changing volumes of articles, they divide the number of articles containing joint references by the total number of articles in the same newspaper for each given month. Next, they normalize each newspaper index to have a unit standard deviation over the period 1985-2012 and add the indices for all newspapers. Lastly, the monthly index is rescaled to have an average value of 100.	SB
sp	The monthly return of the S&P 500 index. The index is widely regarded as the best single gauge of large-cap	Quandl

Table 1: Variables with Description and Source

	US equities. The index includes 500 leading	
	companies and captures approximately 80% coverage	
	of available market capitalization.	
dlipi	The log first-differences of the Industrial Production index. It is an economic indicator that measures real output for all facilities located in the US manufacturing, mining, and electric, and gas utilities. This index is compiled on a monthly basis to bring attention to short-term changes in industrial production. It measures movements in production output and highlights structural developments in the economy.	FRED
dlur	The log first-differences of the unemployment rate. The unemployment rate represents the number of unemployed as a percentage of the labor force.	FRED
ffr	The level of the federal funds rate. The federal funds rate is the interest rate at which depository institutions trade federal funds with each other overnight.	FRED
To note, the FRED: Fede	e abbreviated sources stand for the following: eral Reserve Economic Data - St. Louis Fed	

SB: Scott Baker and colleagues

All five variables are observed on a monthly basis from January 1985 to

October 2012. In total, there are 334 observations for each variable. To obtain

a better sense of the MPU index, I plot the MPU index against time. The

following figure illustrates the stationarity and volatility properties of the MPU

index.

5. Unit Root Tests

Before I begin estimating a VAR model, I must ensure that each one of my time series variables is stationary. We know that if each time series variable is not stationary, then when we estimate the model via ordinary least squares (OLS), the t-statistics will tend to overstate significance of Granger causality. This is the case even when the time series variables are independent of each other. This is referred to as the spurious correlation problem.

To reduce the chance of a spurious correlation problem, I test each time series variable individually for a unit root. The unit root test I use is the Augmented Dickey-Fuller (ADF) test. Within the ADF unit root test, there are three different models. The three models are the following: with drift and trend, with drift only, and without drift and trend. I use these three models of ADF for each of my time series. In general, the former of the three models can be expressed as follows.

(3)
$$\Delta y_t = \alpha_0 + \gamma y_{t-1} + \alpha_2 t + \sum_{i=2}^p \beta_i \Delta y_{t-i+1} + \varepsilon_t$$

The parameter of interest is γ . The null hypothesis is that $\gamma = 0$ or that there is a unit root. The alternative hypothesis is that $\gamma < 0$. I conduct my unit root tests in the following manner. First, I estimate equation (3). If the time series is not stationary, I remove the trend term from equation (3) and re-estimate. If the time series is still not stationary, I remove the drift and trend term from equation (3) and re-estimate. Lastly, if the time series is still not stationary after removing the drift and trend term, I transform the time series to log firstdifferences and conduct the aforementioned unit root test process again. I present my unit root test results in the following table.

	Augmented Dickey-Fuller test statistic					
	with constant and trend	with constant	none	result		
mpu	-9.59*** (0.00)	-9.50*** (0.00)	-4.66*** (0.00)	stationary		
sp	-17.18*** (0.00)	-17.12*** (0.00)	-16.74*** (0.00)	stationary		
ipi	-2.22 (0.48)	-1.33 (0.62)	1.25 (0.95)	non- stationary		
Dlog(ipi)	-4.88*** (0.00)	-4.79*** (0.00)	-4.42*** (0.00)	stationary		
ur	-2.56 (0.30)	-2.38 (0.15)	-0.63 (0.44)	non- stationary		
Dlog(ur)	-6.78*** (0.00)	-4.58*** (0.00)	-4.59*** (0.00)	stationary		

Table 2: Unit Root Test Statistics

ffm	-2.71	-1.36	-1.77*	atationam
111	(0.23)	(0.60)	(0.07)	stationary

^{***, **,} and * denotes significant at 1%, 5%, and 10% level, respectively () denotes MacKinnon one-sided p-values

From table 2, I find that mpu, sp, and ffr are stationary. Conversely, I find that ipi and ur are not stationary. To ensure stationarity, I transform ipi and ur to log first-differences. After transforming these time series, I conduct the ADF unit root test again. The ADF test statistics for log first-differences of ipi and ur conclude stationarity.

6. Model

My primary objective is to observe the effects of monetary policy uncertainty (mpu) on the S&P 500 index (sp), the Industrial Production index (dlipi), unemployment rate (dlur), and federal funds rate (ffr). The economic intuition is as follows. Suppose mpu increases pessimism about the economy resulting in a decrease of the autonomous component of aggregate consumption and aggregate investment. This decrease in aggregate demand leads to a decrease in output as firms cut production in response to reduced demand. As firms cut production, labor is laid off. As income drops, aggregate demand falls further, which further exacerbates the initial decrease in output. As output drops, there is less demand for loanable funds, which drives down the real interest rate. In addition, there may be another channel that decreases the real interest rate. It may be the case that the Federal Reserve observes the deteriorating economic conditions and decides to stimulate the economy by driving down the real interest rate. In sum, an increase in consumers' and firms' pessimism about the economy resulting from mpu may lead to a self-

fulfilling recession.

First, I must determine the appropriate lag length for my VAR model. To do so, I use EViews software and obtain the following table.

Lag	LogL	LR	FPE	AIC
0	-1566.9400	NA	0.0109	9.6735
1	-569.4104	1958.2280	0.0000	3.6887
2	-504.5625	125.3062	0.0000	3.4435
3	-472.6058	60.7668*	2.06e-05*	3.4007*
4	-452.6375	37.3561	0.0000	3.4316
5	-432.2351	37.5405	0.0000	3.4599
6	-417.8091	26.0999	0.0000	3.5250
7	-400.8709	30.1239	0.0000	3.5746
8	-386.6621	24.8326	0.0000	3.6410

Table 3: Lag Order Selection Criteria

* denotes lag order selected by the criterion LR denotes sequential modified LR test statistic FPE denotes Final prediction error AIC denotes Akaike information criterion

From table 3, LR, FPE, and AIC test statistics suggest that three lags is the appropriate lag length.

Now that I have determined the appropriate lag length, my structural

VAR model can be expressed as follows.

(4) $B_{5\times5}X_{t_{5\times1}} = \Gamma_{0_{5\times1}} + \Gamma_{1_{5\times5}}X_{t-1_{5\times1}} + \Gamma_{2_{5\times5}}X_{t-2_{5\times1}} + \Gamma_{3_{5\times5}}X_{t-3_{5\times1}} + \varepsilon_{t_{5\times1}}$

In addition, matrix *X* is a column vector of mpu, sp, dlipi, dlur, and ffr. From my above structural VAR model, there are a total of 105 parameters. The parameters are distributed as follows. There are 20 parameters in *B*, five parameters in Γ_0 , 25 parameters each in Γ_1 , Γ_2 , and Γ_3 , and five parameters in Σ .

In practice, my structural VAR model cannot be estimated. Therefore, I must use my structural VAR model to construct a reduced form VAR model.

From equation (4), I obtain my reduced from VAR model as follows. By multiplying equation (4) by B^{-1} , I obtain equation (5).

(5)
$$B^{-1}BX_t = B^{-1}\Gamma_0 + B^{-1}\Gamma_1 X_{t-1} + B^{-1}\Gamma_2 X_{t-2} + B^{-1}\Gamma_3 X_{t-3} + B^{-1}\varepsilon_t$$

By simplifying equation (5), I obtain equation (6).

(6)
$$X_t = A_0 + A_1 X_{t-1} + A_2 X_{t-2} + A_3 X_{t-3} + e_t$$

From my above reduced form VAR model, there are a total of 95 parameters. The parameters are distributed as follows. There are five parameters in A_0 , 25 parameters each in A_1 , A_2 , and A_3 , and 15 parameters in Σ . Again, only 95 parameters are estimable within my reduced form VAR model. However, my structural VAR model contains 105 parameters. To reconcile the difference in the number of parameters between my VAR models, I impose restrictions on 10 parameters. These restrictions are imposed from aforementioned economic theory.

By following previously mentioned economic theory, my variables are ordered recursively as such: mpu, sp, dlipi, dlur, and ffr. The intuition for such ordering is as follows. By placing mpu first, the assumption is that an exogenous shock to mpu affects the remaining variables. More specifically, an exogenous shock to mpu affects sp, the combined effect of mpu and sp affects dlipi, the combined effect of mpu, sp, and dlipi affects dlur, and the combined effect of mpu, sp, dlipi, and dlur affects ffr. To obtain this structure, I restrict the upper off-diagonal elements of B to zero. Therefore, B can be expressed as follows.

(7)
$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ b_{21} & 1 & 0 & 0 & 0 \\ b_{31} & b_{32} & 1 & 0 & 0 \\ b_{41} & b_{42} & b_{43} & 1 & 0 \\ b_{51} & b_{52} & b_{53} & b_{54} & 1 \end{pmatrix}$$

Now that I have restricted the 10 upper off-diagonal elements of *B* to zero, the number of parameters in my structural VAR model equals the number of parameters in my reduced form VAR model. By imposing these restrictions on my structural VAR model, the order of shocks can be expressed as follows.

$$\begin{pmatrix} \varepsilon_{t}^{mpu} \\ \varepsilon_{t}^{sp} \\ \varepsilon_{t}^{dlipi} \\ \varepsilon_{t}^{dlivn} \\ \varepsilon_{t}^{ffr} \\ \varepsilon_{t}^{ffr} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ a_{21} & 1 & 0 & 0 & 0 \\ a_{31} & a_{32} & 1 & 0 & 0 \\ a_{41} & a_{42} & a_{43} & 1 & 0 \\ a_{51} & a_{52} & a_{53} & a_{54} & 1 \end{pmatrix} \begin{pmatrix} e_{t}^{mpu} \\ e_{t}^{sp} \\ e_{t}^{dlipi} \\ e_{t}^{dlur} \\ e_{t}^{ffr} \\ e_{t}^{ffr} \end{pmatrix}$$

From (8), the e_t terms denote mpu, sp, dlipi, dlur, and ffr shocks. Now, the structure of my VAR model is clearer. With my VAR model identified, I estimate my reduced form VAR model in equation (6) via EViews software. The following table reports the estimated parameters of my VAR model.

	mpu	sp	dlipi	dlur	ffr
	0.504832	0.000891	-0.000002	-0.000002	-0.001001
mnu(1)			(0.000007	(0.000029	(0.000210
iiipu(-1)	(0.059300)	(0.005530))))
	[8.51382]	[0.16110]	[-0.34219]	[-0.07412]	[-4.71839]
	-0.017335	0.017768	3.22E-06	-2.29E-06	0.000144
mnu(2)			(0.000008	(0.000033	(0.000240
mpu(-2)	(0.066550)	(0.006210))))
	[-0.26047]	[2.86335]	[0.41171]	[-0.06957]	[0.60615]

Table 4: VAR Estimates

	-0.038406	-0.00109	3.60E-06	-2.20E-05	0.000285
mnu(2)			(0.000007	(0.000029	(0.000210
mpu(-3)	(0.058310)	(0.005440))))
	[-0.65860]	[-0.20053]	[0.52471]	[-0.76235]	[1.36559]
	-2.004663	0.046969	5.47E-05	-0.000408	0.000872
sp(-1)			(0.000075	(0.000310	(0.002270
SP(1)	(0.634930)	(0.059200))))
	[-3.15732]	[0.79341]	[0.73224]	[-1.29754]	[0.38380]
	-1.340087	-0.009103	0.000168	-0.000244	0.000626
sp(-2)			(0.000075	(0.000310	(0.002270
SP(-)	(0.633740)	(0.059090))))
	[-2.11457]	[-0.15406]	[2.24999]	[-0.77770]	[0.27605]
	-0.806129	0.040097	0.000367	-0.000496	-0.003523
sp(-3)			(0.000073	(0.000310	(0.002220
SP(S)	(0.620520)	(0.057860))))
	[-1.29912]	[0.69304]	[5.03410]	[-1.61508]	[-1.58641]
	49.27393	105.2462	-0.010988	-0.758972	4.984631
dlipi(-1)	(477.846000	(44.553800	(0.056210	(0.236430	(1.710060
)))
	[0.10312]		[-0.19546]	[-3.21007]	[2.91488]
	-68.88872	67.32418	0.163918	-0.857561	0.667138
dlipi(-2)	(490.446000	(45.728700	(0.057700	(0.242670	(1.755150
1 ()))	
	[-0.14046]		[2.84105]	[-3.53387]	
	287.2274	-79.63827	0.203457	-0.632247	-0.943343
dlipi(-3)	(494.761000	(46.131000	(0.058200	(0.244800	(1.770600
				[-2.58200]	
	124.3934	-9.002420	-0.028230	-0.233000	-0.705575
dlur(-1)	(110.005000	(10.872100	(0.013720	(0.057700	(0.417290
) [1 06679]) [_0.90897]) [_2.05840]) [_4_03961]	/ [_1 60084]
	80 42366	-6 857517	-0.003972	-0.032724	-0.525472
	(120 170000	(11, 205400)	-0.003972	-0.052724	(0.430080
dlur(-2)	(120.179000	(11.200+00	0+1+10.0)	00+00	(0.+50000
	/ [0 74409]	/ [-0.61198]	/ [_0.28098]	/ [-0 55031]	/ [_1 22179]
	171 0945	_7 99441	-0.014124	0.119206	-0 44587
	(115 516000	(10.770500)	(0.013590)	(0.057160)	(0.413390
dlur(-3)	(110.010.011)	(10.110000	0.010010.0)	(0.001100)	(0.1100)
	[148114]	, [-0 74225]	[-1 03934]	[2.08561]	/ [-1 07856]
	4.394742	0.479646	0.001464	-0.021002	1.343285
		0.179010	(0.001860	(0.007840)	(0.056690
tfr(-1)	(15.840600)	(1.476960)	(0.001000)	(0.00.0.0)
	[0.27744]	[0.32475]	(0.78553)	(-2.67960)	[23.6959]

	-14.76729	1.199582	-1.95E-05	0.019514	-0.284513
$\mathbf{ffr}(\mathbf{Q})$			(0.003080	(0.012940	(0.093580
111 (-2)	(26.150600)	(2.438250))))
	[-0.56470]	[0.49198]	[-0.00635]	[1.50815]	[-3.04017]
	12.29151	-1.617449	-0.001559	0.0016	-0.064093
ffr(3)			(0.001870	(0.007880	(0.056990
III (-3)	(15.925500)	(1.484880))))
	[0.77181]	[-1.08928]	[-0.83215]	[0.20309]	[-1.12458]
	48.16762	-1.421258	0.000842	0.006553	0.058771
0			(0.000960	(0.004030	(0.029140
C	(8.142750)	(0.759220))))
	[5.91540]	[-1.87199]	[0.87929]	[1.62655]	[2.01681]
R-squared	0.397526	0.094508	0.283037	0.242564	0.996096
Adj. R-					
squared	0.368745	0.051252	0.248788	0.20638	0.995909

() denotes standard errors

[] denotes t-statistics

I reported the estimated parameters of my VAR model for completeness. However, a shortfall of VAR models is the difficulty in interpreting the estimated parameters. A more intuitive approach used by economists is to estimate the impulse response function (IRF).

The IRF traces out the response of the endogenous variable in the VAR model to shocks in the error term. Suppose the error term in the mpu equation increases by one standard deviation. Such a shock will change mpu in the current period, as well as future periods. Since mpu appears in the sp, dlipi, dlur, and ffr equations, the change in the error term of mpu also affects sp, dlipi, dlur, and ffr. The IRF is the centerpiece of VAR model analysis. I present the IRFs of my VAR model in the following table.

Table 5: Impulse Response Functions

From the previous table, the IRFs are interpreted as follows. For each IRF, the magnitude of the response function is plotted on the vertical axis. The time in months is plotted on the horizontal axis. Furthermore, the dashed lines denote the confidence interval. The first column represents the structure of my VAR model. In the first month, a one standard deviation shock to mpu decreases sp. After the first month, the effect of mpu on sp is positive. Thereafter, the effect of mpu on sp is statistically insignificant. Moreover, the effect of mpu on dlipi and dlur is statistically insignificant. From the first column, last row, the response of ffr to a one standard deviation shock to mpu is in accordance with economic theory, and is statistically significant 10 months into the future. The previous finding follows economic theory that the Federal Reserve lowers the interest rate in response to the unemployment rate. Lastly, from the second column, third row, the response of dlipi to a one standard deviation shock to sp is positive. This result is also in accordance with economic theory. Firms observe higher asset prices. In turn, they increase investment in capital.

Another purpose of VAR analysis is observing causality between endogenous variables. This is referred to as Granger causality. In general, Granger causality informs us about the existence and direction of causality among endogenous variables. Furthermore, it informs us whether there is oneway or two-way causality between endogenous variables. For example, sp, dlipi, dlur, and ffr do not Granger cause mpu if and only if all of the lagged coefficients in the mpu equation are equal to zero. More formally, from equation (6), if the off-diagonal elements of A_1, A_2 , and A_3 are equal to zero, then, there is no Granger causality among endogenous variables in my VAR model. The way to test Granger causality is to use a standard F-test. I reported the

results of Granger causality in the following table.

	Dependent variable: mpu						
	Excluded	Chi-sq	df	Prob.	Sig.		
sp		15.6960	3	0.0013	***		
dlipi		0.3928	3	0.9417			
dlur		3.1973	3	0.3622			
ffr		4.0933	3	0.2516			
all		26.7639	12	0.0084	***		
		Dependent varia	ble: sp				
	Excluded	Chi-sq	df	Prob.	Sig.		
mpu		13.1937	3	0.0042	***		
dlipi		10.0847	3	0.0179	**		
dlur		1.3653	3	0.7137			
ffr		2.2135	3	0.5293			
all		29.8248	12	0.0030	***		
	Dependent variable: dlipi						
	Excluded	Chi-sq	df	Prob.	Sig.		
mpu		0.7872	3	0.8525			
sp		30.6571	3	0.0000	***		
dlur		5.3348	3	0.1489			
ffr		3.0551	3	3 0.3832			
all		48.8019	12	0.0000	***		
		Dependent variab	le: dlur				
	Excluded	Chi-sq	df	Prob.	Sig.		
mpu		0.9215	3	0.8202			
sp		4.6974	3	0.1953			
dlipi		31.2350	3	0.0000	***		
ffr		8.9156	3	0.0304	**		
all		53.0363	12	0.0000	***		
		Dependent varia	ble: ffr				
	Excluded	Chi-sq	df	Prob.	Sig.		
mpu		24.7930	3	0.0000	***		
sp		2.8028	3	0.4230			
dlipi		8.7031	3	0.0335	**		
dlur		4.2025	3	0.2404			
all		60.7179	12	0.0000	***		

 Table 6: Granger Causality

***, **, and * denotes significant at 1%, 5%, and 10% level, respectively

From table 6, there is evidence that sp Granger causes mpu. Moreover, mpu and dlipi Granger cause sp. In regards to dlipi, sp Granger causes it. Furthermore, dlipi and ffr Granger cause dlur. Lastly, mpu and dlipi Granger cause ffr. Except for the lack of evidence that dlur Granger causes ffr, the direction of causality among variables is in accordance with aforementioned economic theory.

Now that I have observed the existence and direction of Granger causality among variables, it is important to observe the contribution and decomposition of causality among variables. This is referred to as forecast error variance decomposition. Forecast error variance decomposition is also more simply known as variance decomposition. In general, variance decomposition tells us the proportion of the movements in a series due to its own shock versus the proportion of the movements due to shocks to the other variables in the model. For example, if mpu shocks do not explain the forecast error variance of sp at all forecast horizons, then, the sp series is independent of mpu shocks and of the mpu series. The sum of previously estimated impulse response functions and variance decompositions is referred to as innovation accounting. I estimated variance decompositions for all five of my series and reported them in table 7.

	Variance decomposition of mpu						
Period	SE	mpu	sp	dlipi	dlur	ffr	
1	47.0908	100.0000	0.0000	0.0000	0.0000	0.0000	
2	54.6068	97.2437	2.4788	0.0066	0.2532	0.0176	
3	57.4913	93.8372	5.2987	0.2137	0.5496	0.1008	
4	58.8079	90.4409	7.1447	0.5846	1.5879	0.2418	
5	59.2912	88.9767	7.5992	1.0830	1.8885	0.4527	
6	59.5898	88.1403	7.6624	1.5589	2.0611	0.5772	
7	59.7840	87.6368	7.6552	1.9223	2.1529	0.6328	
8	59.8955	87.3553	7.6448	2.1731	2.1761	0.6508	
9	59.9671	87.1710	7.6412	2.3485	2.1865	0.6528	
10	60.0118	87.0561	7.6441	2.4570	2.1910	0.6518	
		Variance	decomposi	tion of sp			
Period	SE	mpu	sp	dlipi	dlur	ffr	
1	4.3907	7.1961	92.8039	0.0000	0.0000	0.0000	
2	4.4447	7.0355	90.6218	2.0451	0.2659	0.0317	
3	4.5563	9.4212	86.2882	3.1318	0.4749	0.6839	
4	4.5774	9.6051	85.5792	3.1838	0.6766	0.9553	
5	4.5934	9.5666	84.9993	3.7277	0.6739	1.0325	
6	4.5998	9.5548	84.7692	3.9260	0.6877	1.0623	
7	4.6022	9.5577	84.6998	3.9534	0.6950	1.0941	
8	4.6050	9.5471	84.6210	4.0228	0.6997	1.1095	
9	4.6068	9.5427	84.5647	4.0678	0.7060	1.1188	
10	4.6080	9.5377	84.5212	4.1012	0.7096	1.1304	
		Variance d	ecompositi	on of dlipi			
Period	SE	mpu	sp	dlipi	dlur	ffr	
1	0.0055	0.1110	1.7806	98.1084	0.0000	0.0000	
2	0.0056	0.2776	1.8815	96.2786	1.3757	0.1866	
3	0.0058	0.5034	2.8370	94.6502	1.3017	0.7077	
4	0.0062	0.9729	7.9768	88.3691	1.9392	0.7420	
5	0.0062	0.9604	7.9095	87.8602	2.2180	1.0520	
6	0.0063	1.0488	8.0187	87.2325	2.3296	1.3704	
7	0.0064	1.0319	8.3682	86.5273	2.5713	1.5012	
8	0.0064	1.0496	8.3426	86.3863	2.6149	1.6066	
9	0.0065	1.0692	8.3474	86.2535	2.6625	1.6674	
10	0.0065	1.0753	8.3686	86.1514	2.7049	1.6997	
		Variance d	lecomposit	ion of dlur			
Period	SE	mpu	sp	dlipi	dlur	ffr	
1	0.0233	0.1058	0.0018	6.1956	93.6969	0.0000	
2	0.0243	0.2124	0.0937	7.0874	90.5666	2.0398	
3	0.0249	0.5673	0.0975	10.5883	86.6867	2.0603	

 Table 7: Variance Decomposition

4	0.0257	0.5552	0.8795	13.2464	83.2000	2.1189
5	0.0259	0.5522	1.0753	13.7425	82.2048	2.4252
6	0.0262	0.5392	1.3862	15.0657	80.4984	2.5105
7	0.0264	0.5342	1.6224	15.7056	79.5494	2.5884
8	0.0264	0.5497	1.6618	16.0877	79.0269	2.6739
9	0.0265	0.5555	1.7496	16.4616	78.5248	2.7086
10	0.0266	0.5596	1.7947	16.6745	78.2401	2.7312
		Variance d	lecomposit	tion of ffr		
Period	SE	mpu	sp	dlipi	dlur	ffr
1	0.1685	1.8519	1.6128	0.0100	0.6063	95.9190
2	0.2952	8.0307	1.4788	1.3077	1.4889	87.6938
3	0.4165	12.8833	0.9794	2.4034	2.5477	81.1862
4	0.5287	14.7648	0.7433	3.5287	3.6924	77.2708
5	0.6338	15.3545	0.5230	4.9562	4.7141	74.4522
6	0.7323	15.3423	0.3961	6.4364	5.5832	72.2421
7	0.8253	14.9548	0.3299	7.9941	6.2664	70.4548
8	0.9133	14.4399	0.3073	9.4922	6.8290	68.9316
9	0.9968	13.9015	0.3121	10.9031	7.2805	67.6029
10	1.0761	13.3803	0.3354	12.2202	7.6451	66.4190

Cholesky ordering: mpu, sp, dlipi, dlur, ffr

In table 7, the variance decomposition is reported up to 12 months. Also, the contribution of each variable is expressed as a percentage. Therefore, each row sums to 100. Interpretation of variance decomposition of ffr is as follows. In month 10, out of total variation in ffr, 13.38% is explained by mpu, 0.34% is explained by sp, 12.22% is explained by dlipi, 7.65% is explained by dlur, and 66.42% is self explained.

From the variance decomposition of sp, other than itself, mpu explains a majority of the variation in sp. Similarly, for dlipi, other than itself, sp explains a majority of the variation in dlipi. Also, for dlur, other than itself, dlipi explains a majority of the variation in dlur. Lastly, from the variance decomposition of ffr, a majority is explained by mpu. My variance decomposition results suggest that the structure of my VAR model is appropriate.

7. Conclusion

For this paper, my primary objective was to observe the effects of monetary policy uncertainty (mpu) on the S&P 500 (sp), Industrial Production index (dlipi), unemployment rate (dlur), and federal funds rate (ffr) within a VAR model. Furthermore, I estimated my VAR model and obtained the impulse response functions, variance decompositions, and checked for Granger causality. In brief, this paper was motivated by the economic intuition that an increase in consumers' and firms' pessimism about the economy resulting from monetary policy uncertainty may lead to a self-fulfilling recession. I find evidence that mpu negatively affects sp in the short-run. This result is in accordance with papers by Bernanke and Kuttner, and Marfatia. Moreover, my results suggest that as sp rebounds, dlipi positively reacts. This result supports the paper by Barro. When dlipi positively reacts, the effect on dlur is minimal. Lastly, there is no direct effect of mpu on dlipi and dlur. This result is in accordance with the paper by Herro and Murray that monetary policy uncertainty does not affect growth of output and unemployment.

REFERENCES

Barro, R. (1990). The Stock Market and Investment . *The Review of Financial Studies*, 115-131.

Bernanke, B., & Kuttner, K. (2003). What Explains the Stock Market's Reaction to Federal Reserve Policy? . *Federal Reserve Bank of New York Staff Reports*, 1-55.

Enders, W. (2010). Applied Econometric Time Series . John Wiley & Sons, Inc. .

Herro, N., & Murray, J. (2011). Dynamics of Monetary Policy Uncertainty and the Impact on the Macroeconomy. *MPRA Paper*.

Marfatia, H. (2014). Impact of Uncertainty on High Frequency Response of the US Stock Markets to the Fed's Policy Surprises . *The Quarterly Review of Economics and Finance*, 382-392.

APPENDIX

Appendix A

Table	8:	Data
Table	ð:	Data

Date	mpu	sp	dlipi	dlur	ffr
1985-01-01	270.4692	7.4085	54.4371	7.3000	8.3500
1985-02-01	219.8357	0.8629	54.6664	7.2000	8.5000
1985-03-01	119.0345	-0.2870	54.7455	7.2000	8.5800
1985-04-01	122.0448	-0.4594	54.6042	7.3000	8.2700
1985-05-01	107.5736	5.4051	54.6782	7.2000	7.9700
1985-06-01	156.6430	1.2134	54.7159	7.4000	7.5300
1985-07-01	173.4076	-0.4848	54.3390	7.4000	7.8800
1985-08-01	111.3308	-1.1995	54.5707	7.1000	7.9000
1985-09-01	113.5899	-3.4724	54.8135	7.1000	7.9200
1985-10-01	69.6072	4.2509	54.5916	7.1000	7.9900
1985-11-01	70.2456	6.5062	54.7719	7.0000	8.0500
1985-12-01	112.5639	4.5061	55.3412	7.0000	8.2700
1986-01-01	119.5476	0.2367	55.6062	6.7000	8.1400
1986-02-01	190.2599	7.1489	55.2091	7.2000	7.8600
1986-03-01	104.9775	5.2794	54.8519	7.2000	7.4800
1986-04-01	120.6131	-1.4148	54.8839	7.1000	6.9900
1986-05-01	148.3625	5.0229	54.9927	7.2000	6.8500
1986-06-01	162.7708	1.4110	54.8165	7.2000	6.9200
1986-07-01	183.8203	-5.8683	55.1675	7.0000	6.5600
1986-08-01	132.9929	7.1193	55.0457	6.9000	6.1700
1986-09-01	166.7552	-8.5439	55.1503	7.0000	5.8900
1986-10-01	73.6033	5.4729	55.3968	7.0000	5.8500
1986-11-01	58.4130	2.1477	55.6593	6.9000	6.0400
1986-12-01	79.1356	-2.8288	56.1333	6.6000	6.9100
1987-01-01	124.1594	13.1767	55.9679	6.6000	6.4300
1987-02-01	37.3839	3.6924	56.6775	6.6000	6.1000
1987-03-01	58.1611	2.6390	56.7642	6.6000	6.1300
1987-04-01	93.7138	-1.1450	57.1169	6.3000	6.3700
1987-05-01	98.8715	0.6034	57.4935	6.3000	6.8500
1987-06-01	137.0816	4.7914	57.7707	6.2000	6.7300
1987-07-01	59.4997	4.8224	58.1523	6.1000	6.5800
1987-08-01	24.4365	3.4959	58.6196	6.0000	6.7300
1987-09-01	64.6670	-2.4166	58.7737	5.9000	7.2200
1987-10-01	353.3000	-21.7630	59.6354	6.0000	7.2900
1987-11-01	289.5950	-8.5349	59.9604	5.8000	6.6900
1987-12-01	216.7241	7.2861	60.2533	5.7000	6.7700
1988-01-01	268.1962	4.0432	60.2832	5.7000	6.8300
1988-02-01	142.5190	4.1817	60.5286	5.7000	6.5800
1988-03-01	46.6377	-3.3343	60.6669	5.7000	6.5800
1988-04-01	77.7090	0.9425	60.9879	5.4000	6.8700
1988-05-01	61.1958	0.3176	60.9180	5.6000	7.0900

1988-06-01	64.5013	4.3256	61.0765	5.4000	7.5100
1988-07-01	59.1343	-0.5411	61.1063	5.4000	7.7500
1988-08-01	110.9631	-3.8600	61.3905	5.6000	8.0100
1988-09-01	69.6130	3.9729	61.2132	5.4000	8.1900
1988-10-01	103.5281	2.5964	61.5021	5.4000	8.3000
1988-11-01	176.5999	-1.8891	61.6122	5.3000	8.3500
1988-12-01	109.4703	1.4688	61.8936	5.3000	8.7600
1989-01-01	94.2344	7.1115	62.0714	5.4000	9.1200
1989-02-01	60.8768	-2.8944	61.8060	5.2000	9.3600
1989-03-01	47.0229	2.0806	61.9610	5.0000	9.8500
1989-04-01	67.4642	5.0090	62.0166	5.2000	9.8400
1989-05-01	78.5050	3.5137	61.5631	5.2000	9.8100
1989-06-01	119.2716	-0.7925	61.6029	5.3000	9.5300
1989-07-01	103.3324	8.8370	61.0102	5.2000	9.2400
1989-08-01	74.3222	1.5517	61.5621	5.2000	8.9900
1989-09-01	51.4155	-0.6544	61.3843	5.3000	9.0200
1989-10-01	95.2859	-2.5175	61.3103	5.3000	8.8400
1989-11-01	67.4101	1.6541	61.5146	5.4000	8.5500
1989-12-01	91.1619	2.1417	61.8768	5.4000	8.4500
1990-01-01	128.5027	-6.8817	61.4882	5.4000	8.2300
1990-02-01	75.2743	0.8539	62.0678	5.3000	8.2400
1990-03-01	55.4767	2.4255	62.3988	5.2000	8.2800
1990-04-01	49.9482	-2.6887	62.3357	5.4000	8.2600
1990-05-01	58.8046	9.1989	62.4364	5.4000	8.1800
1990-06-01	58.9016	-0.8886	62.6392	5.2000	8.2900
1990-07-01	77.4366	-0.5223	62.5683	5.5000	8.1500
1990-08-01	197.2009	-9.4314	62.7314	5.7000	8.1300
1990-09-01	162.9438	-5.1184	62.8608	5.9000	8.2000
1990-10-01	170.2559	-0.6698	62.3779	5.9000	8.1100
1990-11-01	178.2024	5.9934	61.6370	6.2000	7.8100
1990-12-01	145.6719	2.4828	61.2198	6.3000	7.3100
1991-01-01	343.6688	4.1518	60.9412	6.4000	6.9100
1991-02-01	172.3233	6.7281	60.5393	6.6000	6.2500
1991-03-01	176.3830	2.2203	60.2144	6.8000	6.1200
1991-04-01	117.5937	0.0320	60.3452	6.7000	5.9100
1991-05-01	52.7830	3.8605	60.9449	6.9000	5.7800
1991-06-01	48.2396	-4.7893	61.5109	6.9000	5.9000
1991-07-01	96.6724	4.4859	61.5154	6.8000	5.8200
1991-08-01	82.4852	1.9649	61.5997	6.9000	5.6600
1991-09-01	96.2196	-1.9144	62.1313	6.9000	5.4500
1991-10-01	111.7931	1.1834	61.9921	7.0000	5.2100
1991-11-01	201.0341	-4.3904	61.9329	7.0000	4.8100
1991-12-01	160.0888	11.1588	61.6968	7.3000	4.4300
1992-01-01	160.1280	-1.9924	61.3162	7.3000	4.0300
1992-02-01	160.0204	0.9590	61.7625	7.4000	4.0600
1992-03-01	95.0253	-2.1832	62.3018	7.4000	3.9800

1992-04-01	71.4780	2.7893	62.7350	7.4000	3.7300
1992-05-01	48.0407	0.0964	62.9477	7.6000	3.8200
1992-06-01	86.1821	-1.7359	62.9333	7.8000	3.7600
1992-07-01	173.2417	3.9374	63.4966	7.7000	3.2500
1992-08-01	141.7331	-2.3998	63.1933	7.6000	3.3000
1992-09-01	195.9262	0.9106	63.3374	7.6000	3.2200
1992-10-01	195.2485	0.2106	63.8251	7.3000	3.1000
1992-11-01	117.0326	3.0262	64.0929	7.4000	3.0900
1992-12-01	57.6082	1.0108	64.1359	7.4000	2.9200
1993-01-01	55.1599	0.7046	64.4420	7.3000	3.0200
1993-02-01	101.6173	1.0484	64.6798	7.1000	3.0300
1993-03-01	82.2864	1.8697	64.6500	7.0000	3.0700
1993-04-01	55.4737	-2.5417	64.8439	7.1000	2.9600
1993-05-01	105.5729	2.2717	64.6069	7.1000	3.0000
1993-06-01	137.5609	0.0755	64.7218	7.0000	3.0400
1993-07-01	132.8890	-0.5327	64.9088	6.9000	3.0600
1993-08-01	145.9587	3.4432	64.8689	6.8000	3.0300
1993-09-01	40.2690	-0.9988	65.1755	6.7000	3.0900
1993-10-01	56.8905	1.9393	65.6744	6.8000	2.9900
1993-11-01	57.2033	-1.2911	65.9414	6.6000	3.0200
1993-12-01	38.6565	1.0091	66.2823	6.5000	2.9600
1994-01-01	63.9599	3.2501	66.5527	6.6000	3.0500
1994-02-01	65.7915	-3.0045	66.5732	6.6000	3.2500
1994-03-01	104.5889	-4.5747	67.2551	6.5000	3.3400
1994-04-01	159.8695	1.1531	67.6129	6.4000	3.5600
1994-05-01	160.7678	1.2397	67.9941	6.1000	4.0100
1994-06-01	69.7745	-2.6791	68.4527	6.1000	4.2500
1994-07-01	73.5705	3.1490	68.5674	6.1000	4.2600
1994-08-01	100.5066	3.7599	68.9525	6.0000	4.4700
1994-09-01	51.9716	-2.6878	69.1966	5.9000	4.7300
1994-10-01	61.6265	2.0834	69.7795	5.8000	4.7600
1994-11-01	126.3685	-3.9505	70.2111	5.6000	5.2900
1994-12-01	86.4361	1.2299	70.9325	5.5000	5.4500
1995-01-01	185.1981	2.4278	71.0773	5.6000	5.5300
1995-02-01	166.7413	3.6074	71.0101	5.4000	5.9200
1995-03-01	96.2986	2.7329	71.1135	5.4000	5.9800
1995-04-01	49.7331	2.7960	71.0925	5.8000	6.0500
1995-05-01	39.3714	3.6312	71.3036	5.6000	6.0100
1995-06-01	120.1633	2.1279	71.5868	5.6000	6.0000
1995-07-01	88.6465	3.1776	71.2946	5.7000	5.8500
1995-08-01	35.9212	-0.0320	72.2460	5.7000	5.7400
1995-09-01	32.4845	4.0097	72.5149	5.6000	5.8000
1995-10-01	42.0681	-0.4979	72.4092	5.5000	5.7600
1995-11-01	93.9392	4.1049	72.5899	5.6000	5.8000
1995-12-01	176.5157	1.7444	72.8672	5.6000	5.6000
1996-01-01	138.4710	3.2617	72.3857	5.6000	5.5600

1996-02-01	57.5227	0.6934	73.5162	5.5000	5.2200
1996-03-01	68.2239	0.7917	73.4143	5.5000	5.3100
1996-04-01	29.4123	1.3431	74.0513	5.6000	5.2200
1996-05-01	57.6879	2.2853	74.5812	5.6000	5.2400
1996-06-01	71.4147	0.2257	75.2056	5.3000	5.2700
1996-07-01	92.1338	-4.5748	75.0578	5.5000	5.4000
1996-08-01	42.3408	1.8814	75.5237	5.1000	5.2200
1996-09-01	68.9522	5.4203	76.0082	5.2000	5.3000
1996-10-01	45.3565	2.6101	75.9507	5.2000	5.2400
1996-11-01	31.4628	7.3376	76.6062	5.4000	5.3100
1996-12-01	60.6549	-2.1505	77.0862	5.4000	5.2900
1997-01-01	53.1312	6.1317	77.2068	5.3000	5.2500
1997-02-01	19.4238	0.5928	78.1421	5.2000	5.1900
1997-03-01	60.9591	-4.2614	78.6905	5.2000	5.3900
1997-04-01	65.5334	5.8406	78.7482	5.1000	5.5100
1997-05-01	75.0374	5.8577	79.2425	4.9000	5.5000
1997-06-01	54.0779	4.3453	79.6340	5.0000	5.5600
1997-07-01	24.0467	7.8146	80.3148	4.9000	5.5200
1997-08-01	75.8822	-5.7466	81.0985	4.8000	5.5400
1997-09-01	16.5745	5.3154	81.8177	4.9000	5.5400
1997-10-01	80.4511	-3.4478	82.5500	4.7000	5.5000
1997-11-01	53.7214	4.4587	83.2814	4.6000	5.5200
1997-12-01	59.1026	1.5732	83.5471	4.7000	5.5000
1998-01-01	120.8020	1.0150	83.9719	4.6000	5.5600
1998-02-01	137.3872	7.0449	84.0422	4.6000	5.5100
1998-03-01	54.3545	4.9946	84.1094	4.7000	5.4900
1998-04-01	56.6569	0.9076	84.4020	4.3000	5.4500
1998-05-01	60.9189	-1.8826	84.9233	4.4000	5.4900
1998-06-01	58.8224	3.9438	84.3698	4.5000	5.5600
1998-07-01	83.1964	-1.1615	84.0508	4.5000	5.5400
1998-08-01	146.0988	-14.5797	85.7994	4.5000	5.5500
1998-09-01	239.2139	6.2396	85.5797	4.6000	5.5100
1998-10-01	157.4840	8.0294	86.2410	4.5000	5.0700
1998-11-01	148.7491	5.9126	86.2060	4.4000	4.8300
1998-12-01	87.6340	5.6375	86.5085	4.4000	4.6800
1999-01-01	109.7779	4.1009	86.9117	4.3000	4.6300
1999-02-01	37.1589	-3.2283	87.3052	4.4000	4.7600
1999-03-01	49.2165	3.8794	87.4728	4.2000	4.8100
1999-04-01	34.7273	3.7944	87.6419	4.3000	4.7400
1999-05-01	30.1506	-2.4970	88.3165	4.2000	4.7400
1999-06-01	58.4994	5.4438	88.1778	4.3000	4.7600
1999-07-01	89.1978	-3.2046	88.7370	4.3000	4.9900
1999-08-01	77.3876	-0.6254	89.0973	4.2000	5.0700
1999-09-01	64.4869	-2.8552	88.7815	4.2000	5.2200
1999-10-01	64.1781	6.2540	89.9689	4.1000	5.2000
1999-11-01	56.3339	1.9062	90.4104	4.1000	5.4200

1999-12-01	115.6896	5.7844	91.1008	4.0000	5.3000
2000-01-01	47.4697	-5.0904	91.1343	4.0000	5.4500
2000-02-01	53.6419	-2.0108	91.4065	4.1000	5.7300
2000-03-01	49.1806	9.6720	91.7982	4.0000	5.8500
2000-04-01	86.9339	-3.0796	92.4720	3.8000	6.0200
2000-05-01	95.2413	-2.1915	92.6710	4.0000	6.2700
2000-06-01	88.4576	2.3934	92.7438	4.0000	6.5300
2000-07-01	43.2638	-1.6341	92.6345	4.0000	6.5400
2000-08-01	55.6019	6.0699	92.3191	4.1000	6.5000
2000-09-01	82.0673	-5.3483	92.6699	3.9000	6.5200
2000-10-01	70.2835	-0.4949	92.3486	3.9000	6.5100
2000-11-01	227.2234	-8.0069	92.3421	3.9000	6.5100
2000-12-01	210.6738	0.4053	92.0670	3.9000	6.4000
2001-01-01	166.2386	3.4637	91.3956	4.2000	5.9800
2001-02-01	171.6383	-9.2291	90.8272	4.2000	5.4900
2001-03-01	133.9730	-6.4205	90.5589	4.3000	5.3100
2001-04-01	155.7892	7.6814	90.2884	4.4000	4.8000
2001-05-01	114.2697	0.5090	89.6315	4.3000	4.2100
2001-06-01	61.8428	-2.5035	89.0366	4.5000	3.9700
2001-07-01	89.4562	-1.0740	88.5620	4.6000	3.7700
2001-08-01	90.2477	-6.4108	88.3842	4.9000	3.6500
2001-09-01	407.9409	-8.1723	88.0735	5.0000	3.0700
2001-10-01	337.9183	1.8099	87.6361	5.3000	2.4900
2001-11-01	197.3382	7.5176	87.1612	5.5000	2.0900
2001-12-01	96.7887	0.7574	87.1764	5.7000	1.8200
2002-01-01	137.5605	-1.5574	87.7152	5.7000	1.7300
2002-02-01	60.0046	-2.0766	87.7275	5.7000	1.7400
2002-03-01	103.1454	3.6739	88.4132	5.7000	1.7300
2002-04-01	57.9641	-6.1418	88.8118	5.9000	1.7500
2002-05-01	103.2968	-0.9081	89.1944	5.8000	1.7500
2002-06-01	68.2160	-7.2455	90.0487	5.8000	1.7500
2002-07-01	114.2602	-7.9004	89.8366	5.8000	1.7300
2002-08-01	131.1420	0.4881	89.8543	5.7000	1.7400
2002-09-01	178.2958	-11.0024	89.9448	5.7000	1.7500
2002-10-01	120.5767	8.6449	89.6630	5.7000	1.7500
2002-11-01	206.8670	5.7070	90.1208	5.9000	1.3400
2002-12-01	165.0227	-6.0333	89.6894	6.0000	1.2400
2003-01-01	171.7553	-2.7415	90.2943	5.8000	1.2400
2003-02-01	283.7970	-1.7004	90.5477	5.9000	1.2600
2003-03-01	300.7496	0.8358	90.3587	5.9000	1.2500
2003-04-01	155.5913	8.1044	89.6553	6.0000	1.2600
2003-05-01	121.9248	5.0899	89.6978	6.1000	1.2600
2003-06-01	67.7909	1.1322	89.7318	6.3000	1.2200
2003-07-01	51.7466	1.6224	90.2652	6.2000	1.0100
2003-08-01	84.1955	1.7873	90.0358	6.1000	1.0300
2003-09-01	53.8378	-1.1944	90.5492	6.1000	1.0100

2003-10-01	33.8637	5.4961	90.6137	6.0000	1.0100
2003-11-01	30.2922	0.7129	91.3041	5.8000	1.0000
2003-12-01	60.4765	5.0766	91.2014	5.7000	0.9800
2004-01-01	94.5119	1.7276	91.4431	5.7000	1.0000
2004-02-01	53.0718	1.2209	91.9245	5.6000	1.0100
2004-03-01	38.9158	-1.6359	91.4496	5.8000	1.0000
2004-04-01	57.1570	-1.6791	91.7958	5.6000	1.0000
2004-05-01	92.6778	1.2083	92.4943	5.6000	1.0000
2004-06-01	114.7361	1.7989	91.7493	5.6000	1.0300
2004-07-01	73.3491	-3.4291	92.4549	5.5000	1.2600
2004-08-01	95.1246	0.2287	92.4832	5.4000	1.4300
2004-09-01	71.3217	0.9364	92.5476	5.4000	1.6100
2004-10-01	107.7022	1.4014	93.4371	5.5000	1.7600
2004-11-01	78.5755	3.8595	93.6306	5.4000	1.9300
2004-12-01	28.5923	3.2458	94.2703	5.4000	2.1600
2005-01-01	77.8328	-2.5290	94.7136	5.3000	2.2800
2005-02-01	31.3405	1.8903	95.3245	5.4000	2.5000
2005-03-01	42.2533	-1.9118	95.2402	5.2000	2.6300
2005-04-01	68.8373	-2.0109	95.3681	5.2000	2.7900
2005-05-01	60.5929	2.9952	95.5331	5.1000	3.0000
2005-06-01	61.4135	-0.0143	95.9120	5.0000	3.0400
2005-07-01	56.6082	3.5968	95.7242	5.0000	3.2600
2005-08-01	42.4126	-1.1222	95.8708	4.9000	3.5000
2005-09-01	126.8744	0.6949	93.9661	5.0000	3.6200
2005-10-01	80.4572	-1.7741	95.1806	5.0000	3.7800
2005-11-01	32.4661	3.5186	96.1177	5.0000	4.0000
2005-12-01	78.7382	-0.0952	96.6690	4.9000	4.1600
2006-01-01	62.2224	2.5467	96.7856	4.7000	4.2900
2006-02-01	60.3716	0.0453	96.8261	4.8000	4.4900
2006-03-01	46.3808	1.1096	97.0742	4.7000	4.5900
2006-04-01	57.9446	1.2156	97.4400	4.7000	4.7900
2006-05-01	95.8681	-3.0917	97.3002	4.6000	4.9400
2006-06-01	91.2169	0.0087	97.6752	4.6000	4.9900
2006-07-01	120.1636	0.5086	97.6870	4.7000	5.2400
2006-08-01	134.5969	2.1274	98.0138	4.7000	5.2500
2006-09-01	35.0633	2.4566	97.8423	4.5000	5.2500
2006-10-01	36.0966	3.1508	97.8060	4.4000	5.2500
2006-11-01	48.1965	1.6467	97.6811	4.5000	5.2500
2006-12-01	17.6162	1.2616	98.6347	4.4000	5.2400
2007-01-01	44.7217	1.4059	98.1696	4.6000	5.2500
2007-02-01	27.4846	-2.1846	99.2354	4.5000	5.2600
2007-03-01	59.7327	0.9980	99.3706	4.4000	5.2600
2007-04-01	31.2326	4.3291	100.0920	4.5000	5.2500
2007-05-01	36.2766	3.2549	100.1357	4.4000	5.2500
2007-06-01	42.4600	-1.7816	100.1295	4.6000	5.2500
2007-07-01	25.4343	-3.1982	100.1757	4.7000	5.2600

2007-08-01	148.9329	1.2864	100.3027	4.6000	5.0200
2007-09-01	154.1409	3.5794	100.6868	4.7000	4.9400
2007-10-01	122.1360	1.4822	100.1968	4.7000	4.7600
2007-11-01	94.6922	-4.4043	100.7645	4.7000	4.4900
2007-12-01	125.2693	-0.8629	100.7407	5.0000	4.2400
2008-01-01	238.2866	-6.1163	100.4921	5.0000	3.9400
2008-02-01	102.7505	-3.4761	100.2213	4.9000	2.9800
2008-03-01	161.2357	-0.5960	99.9541	5.1000	2.6100
2008-04-01	88.1525	4.7547	99.2345	5.0000	2.2800
2008-05-01	48.3197	1.0674	98.7761	5.4000	1.9800
2008-06-01	51.2132	-8.5962	98.5790	5.6000	2.0000
2008-07-01	94.8811	-0.9859	98.0964	5.8000	2.0100
2008-08-01	66.7890	1.2190	96.5934	6.1000	2.0000
2008-09-01	202.1721	-9.0791	92.5289	6.1000	1.8100
2008-10-01	181.9019	-16.9425	93.3148	6.5000	0.9700
2008-11-01	142.7077	-7.4849	92.1210	6.8000	0.3900
2008-12-01	113.5509	0.7822	89.5075	7.3000	0.1600
2009-01-01	71.8785	-8.5657	87.5382	7.8000	0.1500
2009-02-01	145.2466	-10.9931	86.9117	8.3000	0.2200
2009-03-01	93.0961	8.5404	85.6157	8.7000	0.1800
2009-04-01	71.0436	9.3925	84.9483	9.0000	0.1500
2009-05-01	88.8360	5.3081	84.0497	9.4000	0.1800
2009-06-01	44.0261	0.0196	83.7320	9.5000	0.2100
2009-07-01	46.6046	7.4142	84.5670	9.5000	0.1600
2009-08-01	46.0474	3.3560	85.3735	9.6000	0.1600
2009-09-01	71.1811	3.5723	85.9988	9.8000	0.1500
2009-10-01	30.4493	-1.9762	86.3075	10.0000	0.1200
2009-11-01	108.7671	5.7364	86.6403	9.9000	0.1200
2009-12-01	71.0769	1.7771	86.9300	9.9000	0.1200
2010-01-01	107.8695	-3.6974	87.9900	9.7000	0.1100
2010-02-01	80.1170	2.8514	88.2232	9.8000	0.1300
2010-03-01	44.5260	5.8796	88.8923	9,9000	0.1600
2010-04-01	42.1028	1.4759	89.2429	9.9000	0.2000
2010-05-01	54.5991	-8.1976	90.6351	9.6000	0.2000
2010-06-01	102.0050	-5.3882	90.8407	9.4000	0.1800
2010-07-01	159.4940	6.8778	91.4132	9.5000	0.1800
2010-08-01	133.6368	-4.7449	91.6730	9.5000	0.1900
2010-09-01	108.2014	8.7551	91.9146	9.5000	0.1900
2010-10-01	109.0729	3.6856	91.6296	9.5000	0.1900
2010-11-01	114.8108	-0.2290	91.8108	9.8000	0.1900
2010-12-01	77.0029	6.5300	92.5893	9.4000	0.1800
2011-01-01	44.6737	2.2646	92.6124	9.1000	0.1700
2011-02-01	41.6216	3.1957	92.1015	9.0000	0.1600
2011-03-01	70.4947	-0.1047	93.0194	9.0000	0.1400
2011-04-01	62.2272	2.8495	92.5816	9.1000	0.1000
2011-05-01	55.0815	-1.3501	92.8754	9.0000	0.0900

2011-06-01	91.9640	-1.8257	93.0939	9.1000	0.0900
2011-07-01	160.6456	-2.1474	93.6897	9.0000	0.0700
2011-08-01	231.1490	-5.6791	94.1465	9.0000	0.1000
2011-09-01	122.6990	-7.1762	94.2426	9.0000	0.0800
2011-10-01	75.5593	10.7723	94.7279	8.8000	0.0700
2011-11-01	78.1790	-0.5059	94.8324	8.6000	0.0800
2011-12-01	88.3977	0.8533	95.1997	8.5000	0.0700
2012-01-01	76.1084	4.3583	96.0150	8.2000	0.0800
2012-02-01	71.5501	4.0589	96.3750	8.3000	0.1000
2012-03-01	30.0201	3.1332	96.0067	8.2000	0.1300
2012-04-01	62.4860	-0.7497	96.7966	8.2000	0.1400
2012-05-01	61.2218	-6.2651	97.1123	8.2000	0.1600
2012-06-01	131.7220	3.9555	97.1618	8.2000	0.1600
2012-07-01	123.2763	1.2598	97.7061	8.2000	0.1600
2012-08-01	107.4256	1.9763	97.1146	8.1000	0.1300
2012-09-01	136.6685	2.4236	97.3865	7.8000	0.1400
2012-10-01	89.7789	-1.9789	97.3111	7.8000	0.1600

VITA

Graduate School Southern Illinois University

Andrew M. Croessman

and rew croessman@yahoo.com

John A. Logan College Associate of Arts, May 2011

Southern Illinois University Carbondale Bachelor of Arts in Economics, December 2013

Research Paper Title: Monetary Policy Uncertainty

Major Professor: Dr. Scott Gilbert