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TITLE:  EROSION FROM A CROSS COUNTRY GAS PIPELINE IN THE CENTRAL 

APPALACHIANS  

 

  

MAJOR PROFESSOR:  Dr. Karl W. J. Williard  

 

 Increasing energy demand, coupled with the recent emphasis on domestic production, has 

resulted in an increase in natural gas exploration and pipeline construction in the central 

Appalachian region. Very little is known about the effects of natural gas pipeline construction on 

sediment production. The goals of this project were to measure erosion and examine the effects 

of vegetation and precipitation characteristics on erosion on a newly constructed pipeline in the 

Fernow Experimental Forest in West Virginia. The study explored whether seed rate, slope class, 

or aspect, influenced erosion. The cross country pipeline was buried beneath the surface on study 

hillslopes ranging from 30-68% and beneath a less steep segment with slopes ranging from 18-

26%. A mixture of native herbaceous-plant seeds and straw mulch were applied following 

construction. Two different seeding rates were applied to compare vegetative recovery and to 

determine if increasing the seed rate would decrease erosion. A 1-time seed rate, or the normal 

Forest Service application rate, and a 3-time seed rate (1-time + twice that rate) were tested.  

Two aspects (northwest-facing and southeast-facing) and four precipitation variables (30-minute 

maximum intensity, duration, total rainfall amount, and time since last event) were defined. 

Sediment concentrations were compared for differences between two slopes, two seed rates, and 

two aspect classes. Precipitation variables were analyzed to identify those that could explain 

significant amounts of the variability in erosion from the pipeline. The 1-time seed rate sections 
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produced less sediment than the 3-time seed rate sections, but this was probably more a function 

of subsurface flow differences associated with the sections seeded with the lighter rate and the 

water bar construction. Precipitation intensity explained the most variability in erosion. Study 

sites with gentler slopes produced less sediment than the steeper sections, as expected. As 

vegetation became established, sediment concentrations decreased for all study sections and 

reached low and relatively constant levels by approximately the end of August 2009.  
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CHAPTER 1 

INTRODUCTION 

 Fossil fuel exploration is essential to supply the United State’s current dependency on 

gas, oil, and coal. Domestic natural gas production is expected to increase from 20.6 trillion 

cubic feet to 23.3 trillion cubic feet from 2008 to 2035 (EIA, 2009). In the Northeast, natural gas 

production is expected to rise by 35 percent from 2008 to 2035 (EIA, 2010).This increase in 

production will necessitate the construction of additional miles of gas pipeline. 

Cross county pipelines utilized to transport bulk petroleum products are some of the most 

energy efficient, safe, and economic means of transporting hydrocarbons (gas, crude oil, and 

finished product) over long distances (Dey et al. 1996). The economy of a country, like the 

United States, may be heavily dependent on uninterrupted functionality of these gas pipelines 

(Dey and Gupta, 2000). Cross country pipelines can be buried or installed above ground. Buried 

cross country pipelines are installed in trenches along cleared rights-of-way that traverse through 

a variety of terrain (Dey, 2002).  

Gas pipeline construction changes the surface of the land by removing the vegetative 

layer and exposing mineral soil, at least temporarily.  With the mineral soil exposed, an increase 

in erosion and sedimentation may occur. However, only a limited number of studies have 

examined the effects of pipeline construction on erosion and sedimentation (Robinson and Yule, 

1974; Anderson et al., 1995; Long et al., 1998; Morgan et al., 2003; Reid et al., 2004; Holz, 

2009). The study described herein was designed to quantify erosion from portions of a pipeline 

and identify factors that influence erosion immediately after pipeline construction. Best 
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management practices (BMPs), or techniques used to control nonpoint source pollution, 

especially erosion, included water bar installation on steep slopes, and seeding with native 

herbaceous and grass species and straw mulching following re-contouring of the soil surface. 

Specific objectives of the study included: 

1) Quantify sediment loss after pipeline construction for one year.  

2) Determine if the amount of eroded sediment was significantly different between two 

seed application rates, two aspects, or two slope classes.   

3) Determine if precipitation amount, duration, intensity, and time between events could 

explain a significant amount of the variability in erosion.  
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CHAPTER 2 

LITERATURE REVIEW 

 The three steps of the soil erosion process are detachment, transport and deposition of 

soil particles. Soil detachment is most probable where mineral soil has been exposed, 

compaction has occurred, or water has been concentrated (Stuart and Edwards 2006).  Particle 

detachment can occur from either raindrop impact or concentrated flow.  The kinetic energy of 

raindrops can displace soil particles vertically as high as 0.05 m and laterally as far as 1.5 m 

(Brooks et al., 2003).  The shear stress of water must exceed the shear strength of soil for 

detachment by concentrated flow to occur. Detachment rates increase with increasing flow rates 

and slope gradients (Zhang et al., 2008). After soil particles have been dislodged, transport can 

occur from raindrop impact or overland flow, functioning separately or together (Kinnell, 2005). 

Raindrop splash can transport particles in all directions away from the site of soil detachment.  

 Sediment transport can occur by sheet flow, interrill, and rill erosion. Sheet flow is an 

erosion mechanism characterized by a thin flow of water overland. It has the capacity to carry 

sediment and is the precursor to interrill erosion (Brooks et al., 2003). Interrill soil erosion occurs 

from soil detachment by raindrop impact and is dependent on the transport capacity of thin sheet 

flow (Bradford et al., 1987). Interrill erosion can be caused by a complex mixture of the 

influences of raindrop impact and sheetflow (Bryan, 2000). Rills are formed when concentrated 

overland flow creates narrow, shallow channels on the ground surface, primarily on sloping 

terrain (Bryan, 2000). As runoff becomes concentrated in rills and moves down slope, the 
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velocity, intensity, and turbulence of the flow may increase (Brooks et al., 2003). Soil movement 

by rill erosion can become extensive and eventually turn into gullies. 

Deposition occurs when surface runoff slows and its energy is insufficient to keep 

particles entrained. However, if sediment reaches water bodies by overland flow, sediment can 

be deposited within their beds during reduced streamflow rates. Sediment deposition in 

waterways can smother fish eggs and macro-invertebrates, and reduce the quality of aquatic 

habitats, thus, reducing intolerant aquatic species (Nuttall and Bielby, 1973). 

A variety of factors, such as slope steepness, vegetative cover, aspect, and rainfall 

characteristics can influence the amount of erosion in a watershed. Slope steepness can have a 

significant effect on erosion because steeper slopes may give rise to greater surface runoff 

velocity, increasing the potential for sediment detachment and transport. While detachment rates 

increase only slightly with increasing slope, sediment transport capacity increases greatly on 

steepened slopes (Ellison 1944; Quansah 1981). Steeper slopes increase erosion from rill 

development because of increased shear velocities (Chaplot and LeBissonnairs, 2000), which 

increase the ability for flow to concentrate further and develop additional or larger rills.  

The momentum that can be gained by surface runoff on a slope, and the amount of soil 

that can be lost from the area depends in part on the slope gradient and the length of the 

unobstructed slope (Brooks et al., 2003). Slope length can influence soil erosion independently 

from slope steepness; however, slope length may not be an important factor influencing runoff 

velocity until grades of 8 to 10 percent are reached (Chaplot and LeBissonnais, 2000; Kinnel, 

2000). Long contributing lengths on flat surfaces encourage little surface runoff or erosion. 
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Longer slope lengths may result in higher amounts of soil loss on steep slopes because of the 

ability to increase surface runoff velocity (Brooks et al. 2003). On less steep slopes, surface 

runoff reaches its maximum velocity in a short distance, and terminal velocity is relatively low. 

The terminal velocity and the distance required to reach that velocity increase as slope increases 

(Chaplot and LeBissonnais, 2000). During simulated rain events in a laboratory experiment, 

sediment was deposited on slopes of less than 5 percent grade with low rainfall intensities 

(Huang et al., 1999). As slope steepness and rainfall intensity increased, soil transport became 

more dominant than soil deposition.     

Regardless of slope steepness and slope length, erosion can be reduced with vegetative 

cover. Soil erosion on steep slopes can be inhibited greatly with dense, self-sustaining vegetative 

ground cover (Swift, 1984; Freebairn et al., 1986; Zellmer et al., 1991; Quinton et al., 1997; 

Loch, 2000). However, steep slopes may be difficult to vegetate because seed can be washed off 

the soil surface (Bochet and Garcia-Fayos 2004).  Reid and Anderson (1999) found that erosion 

from bare soil was an average of three times greater than that from vegetated soil. As vegetation 

becomes established erosion rates decline (Bethlahmy and Kidd, 1966). At 50 to 60 percent 

vegetative cover, erosion is substantially reduced (Quinton et al., 1997; Loch, 2000). Plant roots 

provide physical reinforcement and bind soil particles together so they resist erosion from 

concentrated flow (Tengbeh, 1993; Gyssles and Poeson, 2003; De Baets et al., 2006). In addition 

plants reduce the impact of displacement caused by raindrops (Quinton et al., 1997).  

In addition to seeding, other soil amendments including mulching have been shown to 

reduce erosion. Organic mulch, such as straw, can protect bare soil from erosion by preventing 

raindrop impact (Bethlahmy and Kidd, 1966). Mulch also increases soil moisture retention and 
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the success of vegetation establishment; vegetation provides longer-term protection as mulch 

decays (Harbor, 1999). Combined cost and erosion-control data indicated that straw mulch 

applied at a rate of 3.35 t ha
-1

 was economical and effective compared to other erosion control 

methods (Zellmer et al., 1991). Robinsons and Yule (1974) reported that straw is better suited as 

mulch than hay. Although no direct reason was provided, it may be that hay contains a mixture 

of vegetative species and could result in the introduction of invasive plants to the area.  

 Aspect plays an important role in determining the erosion potential of a hillslope by 

affecting vegetation establishment. South-facing slopes are generally the driest aspects because 

they receive the most solar radiation year-round (Churchill, 1982).  They also have higher 

incidences of freeze-thaw cycles, which make permanent vegetation establishment difficult 

(Hursh 1949; Miller and Buell, 1956). Bochet and Garcia-Fayos (2004), Swift (1984), and Bold 

et al. (2010) all found poorer vegetation establishment on south-facing road cutbanks. By 

contrast, north-facing soils receive less solar radiation which decreases soil drying. North-facing 

soils also experience less frost heaving in the winter (Hursh, 1949; Miller and Buell, 1956), thus, 

reducing the potential for erosion. Northwest-facing slopes may have an advantage for 

establishing vegetative cover compared to other aspects. They experience the combined benefits 

of the afternoon sun and later day warming associated with west-facing slopes, while having  

lower direct solar radiation and evapotranspirational losses associated with north-facing slopes 

(Bold et al., 2010).   

Rainfall intensity can influence erosion rates (Meyer, 1981) and frequently has been 

found to be the most important factor influencing erosion (Nichols and Sexton, 1932; Reid et al., 

1999; Holz et al., 2009). As rainfall intensity increases so does the kinetic energy of the 
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raindrops, which increases soil detachment and transport (Ellison, 1944; Quansah, 1981). The 

kinetic energy of a raindrop is influenced by its mass and the velocity; as mass and velocity 

increase, so does kinetic energy (Stuart and Edwards, 2006).  

Sediment from land disturbance from natural gas pipeline construction sites can produce 

localized, concentrated impacts as well as significant cumulative impacts over longer time 

periods (Dunne and Leopold 1978; Goldman et al 1986; Marsh 1991; Anderson et al., 1995). 

Most impacts observed by Anderson et al. (1995) were associated with increased levels of 

sediment deposition, and were reported to have the highest potential to cause changes to stream 

community structure.   

In addition to impacts of deposition from adjacent construction sites, waterway-crossing 

construction can have a direct impact on water bodies. Waterway-crossing construction can 

increase downstream total suspended sediment (TSS) concentrations (Reid and Anderson, 1999) 

through trench excavation, backfilling, installation of diversion structures, erosion and run-off 

from adjacent upland worksites, and the discharge of water from hydrostatic pipe testing or 

trench dewatering (Reid et al., 2004). Reid et al. (2004) examined the waterway crossing 

construction methods of open cut crossings, flume crossings, and dam and pump. Their research 

advised that each construction project must be assessed for the best possible method to prevent 

erosion and sedimentation.  

Actions can be taken to prevent or control adverse effects of land use on water quality. 

Best management practices (BMPs) are techniques that can be applied to control erosion both 

during and following land-altering and waterway-altering activities. BMPs were established as 
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mitigation measures that are applied to site-specific activities to reduce, prevent, or avoid 

adverse environmental or social impacts (U.S. Department of Interior, 2009). The design of 

BMPs is guided by the laws of physics and chemistry. This is manifested in the consideration of 

potential influences of gravity on erosion of slopes, and the effect of kinetic energy of water on 

soil detachment (Stuart and Edwards, 2006). BMPs associated with oil and gas development 

activities in West Virginia have been established for pipeline planning, construction, 

reclamation, re-vegetation, and maintenance (WV Division of Environmental Protection Office 

of Oil and Gas, 2009).  
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CHAPTER 3 

METHODS 

Study Area 

Pipeline Construction and Features 

The study area is a natural gas pipeline right-of-way in the Monongahela National Forest. 

The study sections of the pipeline are located within the Fernow Experimental Forest (Fig. 1). 

The pipeline is associated with the B800 gas well, which is also on the Fernow.  

The Fernow is located in the Allegheny Mountain section of the unglaciated Allegheny 

Plateau. The mean annual precipitation during the past 30 years (1978-2008) was 148.39 cm (F. 

Wood, Personal Communication, July 2010). The Fernow is a mixed hardwood forest and the 

principle overstory species include northern red oak (Quercus rubra), sugar maple (Acer 

saccharum), yellow-poplar (Liriodendron tulipifera), and red maple (Acer rubrum).   
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Figure 1. The Fernow Experimental Forest in the Monongahela National Forest in West Virginia. 

The pipeline extends further northwest than shown, but the study was performed on pipeline 

segments in the portion illustrated. 
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The B800 pipeline originates in compartment 16A of the Fernow Forest, which also holds 

the gas well serviced by the pipeline. The pipeline extends cross country northwest through the 

Fernow, crosses under Elklick Run and up to the ridge of Fork Mountain. It follows along Forest 

Service Road 709, and goes through the woods and into land administered by the Monongahela 

National Forest. The pipeline then continues onto private property.  

The pipeline is a buried cross country pipeline that was installed in the summer of 2008 

and was completed during the spring of 2009 (Table 1). Vegetation was cleared from the right-

of-way, and an excavator dug the trench. The pipe was laid in the trench and covered with the 

excavated soil using a small excavator or a bull dozer.  

Table 1. Timeline indicating important dates for construction and study sampling.  

Date Activity 

  

October 2, 2008 Timber removal commenced 

April 28, 2009 

Water bar installation completed 

1-time seed rate applied to pipeline right-of-way 

3-time seed rate applied to 6 study sections  

Mulch applied to pipeline right-of-way 

 

June 12, 2009 

 

Collected pipeline runoff samples (all tanks 1-15) 

July 15, 2009 Connected splitters to four installations 

July 27, 2009      Vegetation photographs taken 

June 10, 2010 Last runoff sample collected 

 

 

The pipeline is constructed of Polyflow Thermoflex
®
 3.5-in diameter tubing. It was 

buried 76 cm below the surface, unless restricted by rock. When it crossed under a Forest Service 
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road, it was buried at approximately 91 cm. The right of way was approximately 9.14-m wide 

unless it followed adjacent to a Forest Service road – in that case the right-of-way was 4.57-m 

wide. The narrower right-of-way when following a Forest Service road was possible because 

machinery and equipment were able to utilize the road for work space.  

Water-control features were installed after pipeline installation was complete (Table 1). 

Out-sloping and crowning were used as the primary water control methods in segments of the 

pipeline located in flatter ridge-top or bench areas. Water bars were the primary water controls 

utilized for the steeper sections of the right-of-way. Water bars are mounds of earth consisting of 

compacted soil built across the right-of-way at an angle (Fig. 2). They are designed to divert 

runoff in small quantities from sloped land to nearby undisturbed, and usually vegetated or 

otherwise protected areas, thus, reducing erosion potential. Water bars were installed using a 

John Deere 120D backhoe, and their spacing was dependent on percent slope of the right-of-way 

as described by the best management practices for minerals development utilized by the Forest 

Service (Table 2). The spacing refers to the space from the crest of one water bar to the crest of 

the following water bar.  
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Figure 2. A water bar installed in the field following pipeline installation, and a schematic of a 

water bar installed on a skid road following WV silvicultural BMPs (WV Division of Forestry, 

2005). The method shown for the skid roads is essentially what was used for the pipeline. 

Table 2. Water bar spacing requirements associated with hill-side slopes (Thompson, 2008). 

Slope 

(%) 

Distance between water bars  

(m) 

5-10 30-60 

10-15 20-30 

15-20 15-20 

>20 15 

 Reclamation measures were applied after the water control features were fully 

constructed (Table 1). The contractor applied a seed mixture at a standard Forest Service total 

rate of 50 lb ac
-1

 (hereafter referred to as the 1-time seed rate). The species were a mixture of 

native grasses and legumes (Table 3). Nurse crops of annual ryegrass, oats, and partridge pea 

were chosen to serve as establishing plants, to provide a quick vegetative cover, while giving the 

other more-slowly establishing species an opportunity to grow. Canada milkvetch serves as a 

nitrogen fixer and is a perennial legume. Along with the Canada milkvetch, a variety of perennial 

grasses were planted.  
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 As part of the experimental design for this study, a higher seed rate was applied to 

individual sections of the pipeline, described later.  This seeding involved the same seed mixture.  

Following seeding, the entire pipeline was fertilized (600 lb ac
-1 

of 10-20-10 (N, P, K)), limed   

(2 tons ac
-1

), and straw mulched (2 tons ac
-1

).   

Table 3. Species, function, and application rates of seeds used to re-vegetate the entire length of 

the pipeline. 

Common name Scientific name Function Seed rate 

(lb ac
-1

) 

Annual ryegrass Lolium mulitflorum Nurse crop/ grass 30 

Oats Avena sativa Nurse crop/ grass 3 

Partridge pea Chamaecrista fasiculate Nurse crop/ legume 2 

Canada milkvetch Astragalus canadensis  Perennial/ legume 2 

Little bluestem Andro-pogon scoparius Perennial grass 3 

Autumm bentgrass Agrostis perennans Perennial grass 4 

Deer tongue Panicum clandestinium Perennial grass 6 

Total   50 

Pipeline Study Sections 

Erosion monitoring was focused on sections of the pipeline that used water bars to 

control drainage. Fifteen water-barred sections, defined as the area from the crest of a water bar 

to the crest of the neighboring water bar, were selected for study.  

Based on an initial reconnaissance of the pipeline, six sections on the northwest-facing 

aspect and six sections on the southeast-facing aspect of the pipeline were selected for study. 

Sections were selected based on accessibility for equipment installation and sampling, and their 

associated aspect and slope. Following this initial reconnaissance, a more complete survey of the 

pipeline sections was conducted using a total station. Each section was surveyed along the crest 

and base of its water bar, along the edge on each side, and one-third of the way in each direction 
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from the edge. Additionally the pipeline study sections were surveyed anywhere there was a 

slope break. The survey points were used to calculate the average slope, average contributing 

lengths, and areas of each section. After selecting the study sections that would receive the 

additional seed (described below), the survey data were used to determine the amount of 

additional seed needed. Three less-steeply sloping sections on the northwest-facing aspect also 

were selected to examine the influence of pipeline gradient on erosion.  

The pipeline boundary was surveyed during the summer of 2009 using a TOPCON
TM

 

AT-G3 total station.  Each total station point represents an X, Y, and Z coordinate that is relative 

to the location and elevation of the total station itself. Consequently, the shared corner markers 

for two research compartments located along a road were used as GPS reference points to correct 

elevations in each survey file and to correctly align the points of each file in space.  The 

elevations for the remaining data in that same total station file were corrected accordingly, and 

the elevations in all other files were sequentially corrected using temporary benchmarks 

measured in each set of spatially adjacent files.   

These common benchmarks also were used to align individual files properly in space 

using ArcMap
TM

 9.1. Files were organized and rotated so the replicate temporary benchmarks 

measured in adjacent files overlapped. The X-Tools extension was used to assign the correct X 

and Y coordinates to each point. The result was a point shapefile in ArcMap
TM

 that was used to 

calculate the aspect, area, mean slope, and mean contributing length of the 15 study sections.  

Using ArcMap
TM

, a polygon shapefile was created for each of the pipeline sections using 

the boundary points of each. With the 3D Analyst extension in ArcMap
TM

, a triangulated 
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irregular network (TIN) for each of the pipeline sections was created. The TINs were restricted 

to the pipeline section boundaries using the polygon shapefiles. The 3D Analyst extension was 

used to calculate the surface area of each pipeline section and to produce raster layers from the 

TINs of the slope of the pipeline.   

Changes in elevation were not accounted for using GIS because distances are measured 

in the horizontal plane; therefore, slope distance was calculated manually using Microsoft
®
 Excel 

between each pair of points along the surveyed length and width transects of the pipeline 

segment. A known side of each right triangle was the difference in elevation between the two 

points, and the other was the horizontal length between the two points. With two known sides, 

the Pythagorean Theorem was used to calculate the hypotenuse, or the pipeline surface slope 

distance for each segment. The segment slope length results were summed for each transect of 

each individual pipeline section. The average slope length for each section was calculated as the 

mean of all slope length transects for the section. These slope lengths also were used to calculate 

the pipeline aspect. The points used for calculating aspect included only points on the face of the 

study section and excluded any water bar points. Pipeline widths were calculated using the same 

approach used for lengths.   

The total area, mean contributing lengths, and average slopes for each section are given 

in Table 4.  Total area ranged from 46.67 to 176.34 m
2
 and mean contributing lengths ranged 

from 4.61 to 25.58 m. The average slope of the less-steep sections (sections 7-9) ranged from 

18.6 to 26.8 percent, the steep northwest-facing sections (sections 1-6) ranged from 43.8 to 50.0 

percent, and the steep southeast-facing sections (sections 10-15) ranged from 30.2 to 68.4 

percent (Table 4, Fig. 3).   
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Table 4. Surface area, mean slope, aspect, and mean contributing length of each of the 15 study 

sections. The less-steep sections are sections 7-9. 

Section Surface area 

 

(m
2
) 

Mean slope 

 

(%) 

Mean contributing 

length  

(m) 

                                 Northwest-facing aspect 

1 85.45 50.0 8.51 

2 110.72 51.5 10.88 

3 111.61 43.8 10.86 

4 100.30 45.7 9.95 

5 83.08 46.8 7.82 

6 102.23 44.4 13.74 

7 119.69 26.8 18.94 

8 143.32 20.7 25.58 

9 110.64 18.6 19.44 

                                 Southeast-facing aspect 

10 

11 

12 

13 

14 

15 

148.49 

154.96 

176.34 

95.62 

46.67 

68.01 

57.0 

57.9 

30.2 

67.6 

68.4 

48.5 

10.77 

13.72 

19.19 

11.58 

4.61 

7.33 

To determine if erosion could be controlled more effectively using a higher seed rate than 

the standard 1-time seed rate, a 3-time seed rate (i.e., a 2-time seed rate of the same seed mixture 

was applied in addition to the original 1-time rate, equaling a total seed rate of 150 lb ac
-1

) was 

applied to three of the steep sections on each aspect on April 28, 2009 (Fig. 3).    

 Because the mean contributing lengths of the individual pipeline sections varied, study 

sections of similar length on the northwest- and southeast-facing aspects were paired.  Pairing 

the sections based on mean contributing length allowed for a more equal comparison of aspects 
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and seed rates. Contributing length rather than total area was used as the pairing factor because 

surface runoff would occur predominantly along the length vector of the pipeline. The sections 

for the 3-time seed rate were chosen randomly for the northwest-facing sections, and then 

applied to the corresponding southeast-facing section (Table 5). 
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Figure 3. Study section locations indicating seed rates and slope class. 
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Table 5. Northwest-facing and southeast-facing section pairs and their corresponding seed rates.   

Northwest-

facing 

Paired southeast-

facing 

Seed rate 

1 10 1-time 

2 13 3-time 

3 11 1-time 

4 15 3-time 

5 14 1-time 

6 12 3-time 

To determine if there were differences in the soils on the northwest- and southeast-facing 

slopes three soil pits were excavated, and Monongahela National Forest Soil Scientist (Stephanie 

Connolly) characterized the soils (Appendix 1). The pits were excavated immediately adjacent to 

the pipeline in areas that were considered representative of the sections in that general area. Pit 1 

was located on the northwest-facing side near study section 4 to represent the steep sections on 

that aspect. Pit 2 was excavated on the northwest-facing side near study section 8 to represent the 

less-steep sections. Pit 3 was located on the southeast-facing side near study section 13 to 

represent the steep sections on that aspect.  

Monongahela National Forest Geologist (Linda Tracy) determined the geology near study 

section 6, of the steep slope class on the northwest-facing aspect, from visual observations of 

exposed bedrock along the cutbank of a skid road that existed nearby and parallel to the pipeline. 

Results of the soil pit excavation and geologic observations are presented later.  

Field Equipment 

To measure sediment losses, runoff was collected at the down slope water bar of each 

section (Fig. 4). Field equipment was installed from May through early June 2009 (Table 1). 

Four pre-fabricated metal 0.61-m H-type flumes and 11 wooden flumes, locally constructed from 
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pressure-treated wood, were used to concentrate and direct surface runoff (Fig. 5). The wooden 

flumes were built to approximately the same dimensions as the metal flumes, and four coats of 

varnish were applied to the base and lower half of the side of the wooden flumes to provide a 

smooth surface on the wood. A bead of silicone caulk was applied to the inside edges where the 

horizontal and vertical pieces join to prevent water and sediment from leaking through the 

flumes.  

 

Figure 4. Schematic of a study section in the pipeline.  
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Figure 5. A pre-fabricated metal flume (left) and a constructed wooden flume (right). 

A flume was installed at the outlet of the water bar in each study section. A notch was cut 

into the soil at the outlet of the water bar wide enough for the back of the flume. A straight cut 

was made along the edge of the soil where the flume then was positioned up against it, 

approximately 3 cm below the ground surface. Two wooden stakes (5.0 x 5.0 x 1.2-cm) were 

driven into the ground on each side of the flume and then fastened to the flume with lag screws 

to secure the flume in place. The seam between the flume and soil was filled with hydraulic 

cement to ensure a smooth, hardened connection between the ground surface and the flume. 

Twelve pre-fabricated metal pans and three locally-constructed plastic pans (Fig. 6) were 

used to further divert the runoff toward collection tanks. The metal pans were obtained from 

Coshocton wheels. The constructed pans were assembled from square buckets cut in half 

(vertically). A PVC connector was installed a few inches from the bottom of the bucket and a 

layer of hydraulic cement was poured into the space between the bottom of the bucket and the 

bottom of the connector. A bead of silicone caulk sealed the edges of the cement to the bucket. A 
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pan was installed below the output of each flume. PVC pipe then was connected to each pan to a 

collection tank located down slope to allow gravity drainage of runoff to the tank.      

  

Figure 6. A pre-fabricated metal pan (left) and a constructed plastic pan (right). The flume outlet 

is at the top of each photograph, and the pipe leading to the tanks is shown at the bottom of the 

left photograph and on the right of the right photograph.  

High-density polyethylene holding tanks were used to store collected runoff (Fig. 7). Six 

473-L tanks, available from previous studies, had cone-shaped bottoms, and nine 378.5-L tanks 

procured for this study had flat bottoms. All of the tanks had demarcations in 10-gallon units. To 

improve the accuracy of the volume measurements taken during sampling (described later), 1-

gallon increments were marked on the tanks.  
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Figure 7. A cone-shaped (left) and flat-bottomed (right) collection tank. 

 

Water Sample Collection 

Collection of runoff samples started on May 22, 2009; however, only tank 6 was 

connected and sampled at the time. On May 27, 2009 tanks 1-5 were installed and samples were 

collected from tanks 1-6 on May 28, 2009. On June 1, 2009 tanks 7-9 were installed and on June 

3, 2009 tanks 13-15 were installed. On June 8, 2009 tanks 1-9 and 13-15 were sampled and tanks 

10-12 were installed. All tanks were in place and sampled on June 12, 2009 (Table 1). Sampling 

continued for one year from that date.    
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Samples were collected after individual precipitation events when possible; however, a 

portion of the samples included multiple events, particularly those that occurred on weekends. 

The date, time and tank volume were recorded at the time the samples were taken. Prior to 

collection, the contents of the tanks were stirred using a long-handled brush to re-suspend settled 

solids (Fig. 8). Three 1-L replicate samples were collected from each tank, and the order of the 

samples collected was noted. The tanks then were emptied. Solids that were present in the flume 

or in the pans at the time of sample collection were removed and placed into small labeled bags 

to be included in the total sediment yield for that sample date (described later).    

 



26 

 

 

 

Figure 8. The contents of the tank were re-suspended by stirring prior to sample collection. 
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Four of the tanks filled to the capacity and/or overflowed during a few of the initial 

precipitation events. Consequently, splitters manufactured by Oasis Design
TM  

were installed on 

July 14-15, 2009 (Table 1; Fig. 9). The splitters were placed on concrete bases and leveled. Each 

splitter was calibrated to determine the actual percentage of water transmitted to each tank. The 

splitters were recalibrated in the spring of 2010 following the final snowmelt to calculate new 

calibration values following freeze-thaw of the splitters or concrete pads during the winter or 

early spring. The initial calibration values were applied to all samples collected prior to January 

23, 2010, and the recalibration values were applied to all subsequent sampling periods. This date 

was selected as the cutoff because prior to January 23, freezing was minimal, but a snowpack 

and below-freezing temperatures persisted throughout most of the remaining winter.
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Figure 9. A splitter (see arrow) installed on section 7, to prevent tank overflows. Splitters were 

also installed on sections 3, 4, and 6. Approximately one-half of the flow through the pan was 

delivered to the tank (left PVC pipe in this figure) and the other half was diverted onto the forest 

floor (right PVC pipe in this figure).   

 

Sediment Sample Processing 

Sediment was determined for each of three subsamples collected from each tank at the 

U.S. Forest Service’s Northern Research Station office in Parsons, WV.  The U.S. EPA method 
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160.2 was used to determine the concentration of sediment from the collected samples (Keith, 

1991). The first step in the analysis process was to determine the total weight of each sample to 

obtain its volume. After that, total suspended sediment concentrations were determined. Samples 

collected soon after pipeline construction contained large sediment masses so most of those 

samples were initially centrifuged to separate sediment from the water prior to filtering the 

remaining supernatant. However, as vegetation became established sediment levels declined, 

making centrifuging unnecessary. Centrifuging was terminated in November 2009.  

The solid material remaining in the centrifuged bottles was transferred to one or multiple 

pre-weighed 70-mm-diameter aluminum weighing dishes. Each bottle was thoroughly rinsed to 

remove any remaining solids; the rinse water also was transferred to the aluminum dish. The 

aluminum dishes were oven-dried for 2-6 hours, depending on the amount of water present in the 

dish.   

Following centrifuging, the supernatant was vacuum filtered through Whatman
TM

 GF/C 

glass microfiber filter papers. Samples that did not require centrifuging also were filtered through 

GF/C filters. Prior to use, clean filters were oven-dried for two hours and weighed to the nearest 

microgram. Following filtering, the filters were placed in a drying oven at 100⁰C for two hours 

to evaporate the associated water.  

The oven-dried weight of the filters and aluminum weighing dishes was recorded, and 

then the filters and the pans were placed in a muffle furnace for 1 hour at 550⁰ C to combust any 

associated organic material. After combustion, the filters and aluminum dishes were weighed. 

The initial clean oven-dried weights of the filters or the aluminum pans were subtracted from the 
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final weight following combustion to determine the final weight of only the inorganic particles in 

each sample.  

The solids collected from the pans and flumes in the field were placed into pre-weighed 

pans and oven dried. The oven-dried weight was recorded and the material also was combusted 

in a muffle furnace. The mass of the mineral material remaining in the pan was determined from 

the difference between the combusted weight and initial weight of only the pan. 

  The suspended sediment concentration of each pipeline section for each sampling date 

was calculated using the mass of the three tank samples and the combusted mass of the filtered 

and pan sediment (solids in flumes and pans). The average mass of the dry sample bottles + lids 

was subtracted from the total mass of the pre-filtered sample to calculate the mass of the tank 

sample contents. The total mass of the inorganic suspended sediment was subtracted from the 

mass of the pre-filtered sample contents to obtain the mass of the water without sediment. Using 

a 1:1 conversion of grams to milliliters, the mass of the filtered water then was converted to 

liters. The runoff sediment concentration was calculated by dividing the total mass of the 

inorganic suspended sediment by the volume of water (Keith 1991). The runoff sediment 

concentration was multiplied by the total volume of the water in the collection tanks to determine 

the total mass of sediment produced for each pipeline section for each sampling period.  

Precipitation Measurements and Characteristics 

 Precipitation measurements were taken from a standard rain gauge and a recording rain 

gauge that were co-located near the study sections on the southeast-facing study section (Fig.10). 

Total rainfall (mm), 30-minute maximum intensity (mm), precipitation duration (h), and time 
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since the end of the last precipitation event (h) were determined from the recording rain gauge 

strip charts. Rainfall and precipitation both refer to the total amount of precipitation collected 

(i.e. rainfall + snow/snowmelt). During the winter season minimal samples were collected due to 

consistently frozen tanks, however, samples included rainfall, snowfall, and snowmelt. Therefore 

precipitation and rainfall refer to the collection of both rainfall and snowfall, when applicable.  

Corrections had to be made to the chart values using the total precipitation values from 

the standard rain gauge because the recording rain gauge tended to underestimate rainfall. Total 

weekly rainfall on the strip chart was adjusted to agree with the standard rain gauge 

measurements. If a single precipitation event occurred, the total difference was added to the strip 

chart for that week. If more than one event occurred the adjustments were made to account for 

the percentage of total precipitation for each event. The corrections were made by dividing the 

total measured precipitation from the standard rain gauge by the total precipitation from the 

recording rain gauge chart and then multiplying that ratio by each event on the strip chart. The 

end result was an adjustment to the precipitation total amount for that recorded event. Each 

precipitation event was multiplied by that ratio for only that chart. The process was repeated until 

all adjustments were made. Corrections were made to the nearest millimeter.    
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Figure 10. Aerial photograph showing the location of the rain gauges relative to the pipeline 

study sections. 
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 Total rainfall was calculated as the sum of all precipitation in each sampling period. The 

30-min maximum intensity was the maximum intensity during any 30-minute interval in each 

sampling period. Precipitation duration was the time from the start of each precipitation event to 

the end, and time since last storm was the time between the events.  

Two data sets were developed for the statistical analyses: one containing all precipitation 

events (36 sampled events) which may have included single or multiple event storms, and one 

with single precipitation events that yielded 5-mm or more of precipitation (19 sampled events) 

(Table 6). The objectives for using two separate data sets, respectively, were to determine how 

precipitation totals influenced erosion from the study sections through each collection period, 

and to determine how important total precipitation, 30-minute maximum intensity, duration, and 

time since last storm were for explaining the variability in the sediment loss during individual 

events.  
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Table 6. Descriptive data for the 19 individual precipitation events that were used in regression 

models to determine the precipitation factors that explained the most variability in erosion.    

Year Month 

 

Total precipitation Intensity Duration Time since 

last event 

  (cm) (cm hr
-1

) (hr) (hr) 

2009 June 1.34 0.38 2.50 12.00 

2009 June 2.15 1.02 1.50 18.00 

2009 July 1.26 0.25 12.00 15.25 

2009 July 2.35 0.64 14.75 137.75 

2009 July 1.74 1.40 1.25 62.50 

2009 July 2.08 1.78 1.00 23.50 

2009 July 0.60 0.89 23.00 22.25 

2009 August 1.56 1.02 2.50 131.25 

2009 August 1.38 0.76 7.50 113.50 

2009 August 2.50 1.14 11.00 15.50 

2009 September 0.36 0.19 28.50 163.00 

2009 October 1.40 1.02 3.50 97.00 

2009 October 1.88 0.25 65.50 9.50 

2009 October 1.24 0.25 19.00 99.00 

2009 November 0.80 0.51 9.00 462.00 

2009 December 0.97 0.25 12.50 98.50 

2010 May 1.29 0.13 18.50 11.50 

2010 June 1.13 0.13 10.50 10.50 

2010 June 2.55 0.13 25.75 51.50 

Vegetative Cover 

Percent vegetative cover was determined for each section using digital photographs. 

Because the total area of each study section was too large for a single photograph, each study 

section of the pipeline was divided into multiple subsections that were photographed 

individually.   

Photographs were taken in late July through early August 2009 (Table 1) using a 

Canon
TM

 Power Shot G2 4.0 megapixel digital camera. The camera was mounted on a swivel 

bracket on a prism pole positioned at 3.66 m above the ground. The camera was positioned at an 
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angle that was approximately parallel to the slope of each pipeline section. Video output to a 

portable television allowed the camera image to be seen to correctly position the camera for each 

photograph. The camera was activated using a remote control. The digital number assigned by 

the camera to the photograph was recorded with the subsection number of the study section. 

Access to these subsections was limited prior to photographing in order to avoid damage to the 

vegetation. The methods for field photography were adapted from Bold et al. (2010).  

For each pipeline section, wooden stakes (5.08 x 5.08 x 1.22-cm) were driven into the 

ground at the edge of the section’s water bars. A nylon rope was stretched between the wooden 

stakes to delineate the outer edges of the pipeline. Each subsection of each study section was 

defined using a frame constructed of 3.05-m x 1.83-m PVC pipe (Fig. 11). The edge of the frame 

was positioned along the edge of the pipeline and a photograph was taken. Engineering pins were 

placed at the inside corners of the frame to identify the location where the frame had been 

positioned, and then the frame was moved so that the pins on one edge were on the inside edge 

of the new frame position. This was continued until the entire section was photographed. Where 

the frame extended over the rope on the other edge of the pipeline, the rope rather than the PVC 

was used to identify the edge of those photographs. The interior faces of the upper and lower 

water bar were also photographed. These subsections were delineated with nylon rope for 

photographs (Fig. 12). The process was completed for all 15 study sections.  
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Figure 11. PVC frame used to photograph vegetative cover. The camera was mounted at the top 

of the pole shown in the bottom of this photograph. 
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Figure 12. Crest and base of water bar delineated for photography. 

 Image analysis was done by using ArcGIS
TM

 to first outline the segments delineated by 

the PVC pipe or the nylon rope for each photograph by creating a shapefile for each segment. 

Total area could be determined from the shapefiles. Erdas Imagine
TM

 software was used to 

classify the photographs for percent vegetative cover. A signature file was created by closely 

examining and identifying shades of green, which represented vegetation. This process allowed 

the program to classify each image into two categories: “green” and “other”. This technique 

transformed the picture files into growing vegetation versus all other surface objects (i.e., soil, 

rock, sticks, leaf litter, etc.). The initial signature file was created from a previous project that 

also analyzed vegetative cover. To ensure the applicability of the file to this study, it was tested 
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for vegetative color recognition using 30 photographs from this project -- two from each study 

section, selected at random. The photographs were classified and overlaid on the original 

photographs to ensure that all the green pixels were classified as vegetation. In cases where 

growing vegetation was classified as other, the signature file was adjusted until no further 

adjustments would improve the signature file.  

The signature file then was used to classify each photograph. The classified photographs 

were converted to cover shapefiles using the extension Image Analysis for ArcGIS
TM

 raster-to-

feature data conversion tool. Each cover shapefile was clipped using its boundary shapefile. This 

resulted in a thematic shapefile with polygons coded as either vegetation or other for each 

subsection. The percentage was calculated for vegetation (i.e., “green”) and “other”.  

Each photograph was taken from a consistent height; however the elevation changed 

from section to section so a common scale factor was necessary to determine cover, such as 

length or width. Photographs were laid out together and the common edges were identified. 

Using ArcGIS
TM

 the lengths of the PVC frame used to capture a subsection were measured. The 

adjacent photographs could then be linked by the corresponding portion of the PVC frame, so 

working from one end or the other of the main part of the section, each photograph had a 

corrected scale factor applied to the edges. The scale factor was squared before its application to 

the surrounding edges because the pixel is a square unit. To determine percent vegetative cover, 

the total number of green pixels in each section was divided by the total number of pixels within 

the clipped area of each study section, and then multiplied by 100.  
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Statistical Methods 

The experimental design was defined using the characteristics of the pipeline right-of-

way (i.e. slope, aspect, and location). The experimental unit for this study was an individual 

pipeline study section. A total of 15 pipeline study sections were selected for data collection and 

each varied by the slope, aspect, and seed application rate. The experimental design used 

repeated measures because, although the sampling dates were independent from one another, the 

sediment losses were not; if sediment losses from a section were high for one storm, it was likely 

that they would be high for the next storm, because many of the physical characteristics of each 

section that contribute to erosion would not be expected to change much over short periods.   

A preliminary visual assessment of the sediment data showed that by the end of August 

2009 the concentrations of sediment had decreased substantially for all study sections (Fig. 13).  

Consequently, the data were split into three sets of time periods (separate from the two data sets 

used in the precipitation model) for analyses to potentially elucidate relationships that may be 

obscured by combining all of the data together. The time periods employed were:  June 12, 2009-

June 10, 2010, June 12-Aug. 31 2009, and Sept. 1, 2009-June 10, 2010 (the end of the 1-yr-long 

study).   
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Figure 13. A graph of sediment concentration over time for each tank on each study section. By 

the end of August 2009, the concentrations of sediment decreased substantially for all study 

sections; thus, three time periods were used for data analyses.  

 A model was constructed using maxR stepwise regression with SAS/STAT
®
 software 

(Yu, 2000) to determine which precipitation characteristics could explain a significant amount of 

the variability in erosion. The dependent variables were the rainfall characteristics identified 

previously and the independent variable was sediment concentration (mg L
-1

). The best fit model 

was chosen based on the r-square and the C(p) outputs.  

One-way analysis of variance models (ANOVA) with repeated measures were used to 

compare sediment concentrations by seed rate, aspect, or slope class categories (Table 7) at        

α = 0.10  using SAS/STAT
®
 software. The data were not normally distributed, however, repeated 

measure tests account for the serial correlation between measurements over time on the same 

subject. The percent vegetative cover data met the assumption of normality using the Shapiro-
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Wilk test with a critical value of 0.05.Tukey’s studentized range test was used to determine if 

percent vegetative cover was different between seed rates, aspects, or slope classes at α=0.10.  

 Table 7.The details of each ANOVA and the time periods that were compared for each ANOVA 

performed.  

ANOVA performed Time periods compared 

Sediment concentrations for 1-time seed rate  

vs. 3-time seed rate using only steep sections and 

both  aspects 

 

June 2009-June 2010 

June-Aug. 2009 

Sept. 2009-June 2010 

 

Sediment concentrations for 1-time seed rate  

vs. 3-time seed rate using only steep sections 

on the northwest-facing  

aspect 

 

June 2009-June 2010 

June-Aug. 2009 

Sept. 2009-June 2010 

 

Sediment concentrations for 1-time seed rate  

vs. 3-time seed rate using only steep sections 

on the southeast-facing 

aspect  

 

June 2009-June 2010 

June-Aug. 2009 

Sept. 2009-June 2010 

 

Sediment concentrations for steep vs. less steep 

sections on the northwest-facing aspect 

using 1-time seed rate  

 

June 2009-June 2010 

June-Aug. 2009 

Sept. 2009-June 2010 

 

Sediment concentrations for northwest-facing vs. 

southeast-facing steep sections using 1-time seed 

rate 

 

June 2009-June 2010 

June-Aug. 2009 

Sept. 2009-June 2010 

 

Sediment concentrations for northwest-facing vs. 

southeast-facing steep sections using 3-time seed 

rate 

June 2009-June 2010 

June-Aug. 2009 

Sept. 2009-June 2010 
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CHAPTER 4 

RESULTS AND DISCUSSION  

Runoff Volumes 

Runoff from the steep northwest-facing sections totaled 450,081 L ha
-1

, compared with 

65,546 L ha
-1

 from the steep southeast-facing sections. Total tank volumes were consistently 

greater for the northwest-facing section than the southeast-facing section for all three time 

periods (Table 8). The volume of runoff was statistically greater for the northwest-facing study 

sections during all three time periods (Table 9).   

Table 8. Total tank volume (L) by section for the three time periods, by aspect.  

Northwest-facing sections  Southeast-facing sections 

   

Tank                     Time period                      Tank     Time period 

 June  

2009-June 

2010 

June 

2009-Aug. 

2009 

Sept. 

2009-June 

2010 

  June 

2009-June 

2010 

June 

2009-Aug. 

2009 

Sept. 

2009-June 

2010 

---------------------(L)------------------  ---------------------(L)------------------- 

1 1493.02 442.09 1050.93  10 985.46 192.41 793.05 

2 2378.36 1135.27 1243.09 11 619.38 135.56 483.80 

3 6997.83 3517.69 3480.14 12 205.10 10.98 194.12 

4 7952.70 3369.97 4582.73 13 926.84 404.10 521.85 

5 1293.09 247.48 1045.61 14 1184.52 1184.52 996.77 

6 6589.51 2699.77 3889.74 15 601.53 172.22 429.31 

Total 26707.41 11412.27 15292.23  Total 4523.29 1103.90 3418.90 
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Table 9. P-values of statistical comparisons of runoff volumes for the tanks on the six steep 

sections on the northwest-facing side of the pipeline vs. the six on the southeast-facing side.    

Time periods p-value 

June 2009-June 2010 <0.0001 

June-Aug. 2009 <0.0001 

Sept. 2009-June 2010   0.0003 

There is probably one main factor that contributed to the relatively large differences 

between the volumes on the two aspects – the northwest-facing aspect has a substantially greater 

contributing area. Contributing area is the area upslope of a position in a catchment where 

surface runoff is captured (Lindsay, 2003), therefore, the larger the contributing area, the greater 

the potential for high runoff volumes. The contributing area on the northwest-facing study aspect 

was approximately 8.3 ha compared with 1.1 ha on the southeast-facing study aspect (Fig. 14).  
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Figure 14. The contributing areas highlighted for each study aspect. 
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Table 8 also shows that there are substantial differences among runoff values for tanks on 

only the northwest-facing aspect. Sections 3, 4, and 6 had much greater total runoff than the 

other three steep pipeline sections on that aspect.  The exact cause of this difference is not 

known, but it is believed to be due to the presence of a discontinuous fragipan on the northwest-

facing side that is directing subsurface flow horizontally so the water either is intercepted by the 

base of those water bars (Fig. 15) or it is diverted onto the face of the pipeline and then captured 

as surface flow by the water bar. No evidence of overland flow or rilling was present under the 

mulch, which suggests water became emergent within the base of the water bar.   

 Soil pit 1 had a fragipan 50-80 cm beneath the surface that was absent in the other pits. A 

fragipan can have slow to very slow saturated hydraulic connectivity (Grossman and Carlisle, 

1969). The spatial extent of the fragipan is not known, but is believed to be discontinuous; if it 

was continuous, all six of the northwest-facing sections would have been expected to have high 

runoff values. Results of a study in Pennsylvania also indicated that hillslopes containing fragic 

properties produced more runoff than soils without fragic properties (Needelman et al., 2004). 
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Figure 15. The northwest-facing hillslope with the seed rate and study section depicted with a 

magnified cross section of the water bar from study section 6 illustrating how subsurface flow 

emerging in the base of the water bar may have created the high runoff volumes on the sections 

that required splitters, circled in black.   

The northwest-facing sections of the pipeline area were on a scarp slope (Fig. 16) with a 

dip of about 4 degrees. Normally a scarp slope directs water away from the slope face, but it 

appears that it is much less important in controlling subsurface flow on this slope than the 

fragipan. This may be because the dip of the geology is not particularly steep.   
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Figure 16. The bedrock beneath the steep northwest-facing study section is dipping at an angle of 

4 degrees into the hillslope. Scarp slopes generally divert water away from the surface.     

Sediment Loads 

 A total of 50.38 kg of sediment was collected from the fifteen study sections during the 

year of monitoring. This equates to 304.04 kg ha
-1 

yr
-1

 of soil loss from sections of the pipeline 

drained by water bars.  This value is greater than sediment losses collected from undisturbed 

forest plots in the southern Appalachians (Kolka and Smidt, 2004), but it is less than that 

collected from an in-road pipeline in the central Appalachians (Holz, 2009). Four study sections 

in Holz’s study produced 968.73 kg ha
-1 

yr
-1 

of sediment.  

Total loads from the fifteen study sections ranged from 0.045 to 14.32 kg for the duration 

of the study period (Table 10). The average total load for the steep sections on the northwest-

facing side was 6.85 kg ha
-1

 yr
-1

 while on the southeast-facing side the average total was 0.274 

kg ha
-1

 yr
-1

. The average total load for the less steep sections on the northwest-facing side was 
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2.54 kg ha
-1

 yr
-1

. The average total loads on the steep sections of southeast-facing study sections 

were significantly less than that of the steep sections on the northwest-facing side. However, 

most of this difference is due to the much greater total runoff volumes from sections 3, 4, and 6 

(Table 8), because loading calculations are dominated by the volume component of the 

calculation. The R
2
 for the relationship of the sediment concentration to the volume of collected 

runoff shows a poor linear relationship existed between the two (Fig. 17), indicating that erosion 

rates did not increase proportionally with the runoff. Consequently, no further statistical analyses 

of loads were performed and the sediment-related focus of the rest of this thesis is on 

concentrations, since they are much less influenced by the total runoff volume.   

Table 10. Total sediment loads (kg) and sediment loads per area (kg ha
-1 

of pipeline) for each 

section for the entire study period (June 2009-June 2010).  

Northwest-facing sections  Southeast-facing sections 

Steeply sloped Steeply sloped 

  

Pipeline 

section 

Total 

load 

Total 

load 

Pipeline 

section 

Total 

load 

Total load 

 (kg) (kg ha
-1

)  (kg) (kg ha
-1

) 

1 3.1964 374.071 10 0.0602 4.057 

2 4.1122 371.404 11 0.0858 5.537 

3 12.4793 1118.113 12 0.0455 2.578 

4 5.9748 595.692 13 0.4684 48.990 

5 1.0347 124.545 14 0.3392 72.684 

6 14.3159 1400.361 15 0.6470 95.134 

 

Less steeply sloped sections 

   

 

7 4.7505 396.898    

8 1.5884 110.831    

9 1.2854 116.183 
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Figure 17. Graph of concentration vs. tank volume indicating that no linear relationship exists 

between the two variables.   

Sediment Concentrations and Vegetation Establishment 

At the beginning of the study, sediment concentrations were high but they decreased 

substantially during the first 3months of the study. Sediment concentrations ranged from 26 to 

4500 mg L
-1

. Concentration graphed against time for all tanks (Fig. 13) indicates an exponential 

reduction in concentrations from the beginning of the study to the end of August 2009. By 

contrast, samples taken near the end of August 2009 show that the variability in sediment 

concentrations as well as the concentrations themselves reached relatively low, consistent levels.  

The exponential reduction of sediment concentrations suggests that as vegetation became 

established, erosion decreased. Other studies have shown that once vegetative cover reached 50 

to 60 percent, erosion declined substantially (Bethlahmy and Kidd, 1966; Quinton et al., 1997; 
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Loch, 2000).  In August 2009, the vegetative cover for the pipeline right-of-way for steep 

sections 1-6 and 10-15, ranged from 55.2 to 79 percent. The September 2009 through June 2010 

data set showed no significant differences in sediment concentrations between the 1-time and 3-

time seed rate sections suggesting that vegetative cover of at least 50 percent on the study sites 

provided an effective level of erosion control.  

Average percent vegetative cover on the steep 1-time seed rate sections was very similar 

between the sections on the southeast-facing aspect (55.2%) and the northwest-facing aspect 

(53.6%). The average percent vegetative cover on the steep 3-time seed rate sections was 

statistically different (p = 0.001) between the northwest-facing aspect (53.2%) and southeast-

facing aspect (79%). Although not significantly different (p = 0.1903), average vegetative cover 

on the 1-time seed rate sections (54.4%) was less than that of the 3-time seed rate sections 

(66.1%) (i.e., disregarding aspect). Vegetative cover on the northwest-facing sections was similar 

for the 1-time seed rate sections (53.6%) and the 3-time seed rate sections (53.2%). However, 

vegetative cover on the southeast-facing sections was less, but not statistically less (p = 0.1414) 

for the 1-time seed rate sections (55.2%) than for the 3-time seed rate sections (78.9%). The 

vegetative cover on the steep sections (53.6%) was significantly greater (p = 0.0552) than the 

less steep sections (34.4%) with the 1-time seed rate on the northwest-facing aspect. The lower 

amount of established vegetation on the less-steep northwest-facing study sections, compared to 

the steep sections on the same aspect, can be attributed to the narrow, forested right-of-way that 

shaded the pipeline during much of the day, coupled with small aspects (slopes ranged from 18-

26%), which presumably limited the amount of sunlight reaching the ground.  
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 The northwest-facing study sections had significantly larger sediment losses (mg L
-1

) for 

1-time seed rates during June 2009 – June 2010 (p = 0.0393) and June – Aug 2009 (p = 0.0366) 

compared to the southeast facing study sections (Table 11). Similar results are apparent (p = 

0.0848 and p = 0.0751, respectively) for the 3-time seed rate sections. Disregarding aspect and 

only comparing 1-time seed rate vs. 3-time seed rate for the steep sections, the 3-time seed rate 

sections had significantly greater (p = 0.0878) sediment losses (mg L
-1

) (Table 11). The 1-time 

seed rate steep sections had significantly larger sediment losses (mg L
-1

) than the 1-time seed 

rate less steep sections on the northwest-facing aspect from June 2009 – June 2010  (p = 0.0179) 

and from June – Aug 2009 (p = 0.0144) (Table 11).    
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Table 11. The statistical comparisons of least square mean sediment concentrations (mg L
-1

) 

between aspects for each time period by seed rate, between slope class on the northwest-facing 

1-time seed rate sections only, between seed rate for northwest-facing and southeast-facing, and 

for seed rate only, disregarding aspect.   

 June 2009-June 2010 June-Aug 2009 Sept 2009-June 2010 

    

 mg L
-1

 

p-value 

mg L
-1

 

p-value 

mg L
-1

 

p-value    

1-time seed rate       

northwest-facing 683.52  1788.91  66.21  

southeast-facing 376.00  798.75  68.58  

  0.0393  0.0366  0.8682 

3-time seed rate       

northwest-facing 966.62  2547.46  74.58  

southeast-facing 509.66  998.03  85.30  

  0.0848  0.0751  0.6716 

Northwest-facing       

steep (1-time seed rate) 682.91  1751.67  66.86  

less-steep (1-time seed rate) 340.83  808.76  50.74  

  0.0179  0.0144  0.2595 

Northwest-facing       

1-time seed rate 687.99  1744.02  67.88  

3-time seed rate 969.11  2514.49  74.77  

  0.2097  0.2271  0.7122 

Southeast-facing       

1-time seed rate 399.88  925.30  66.38  

3-time seed rate 484.17  1161.18  86.03  

  0.5361  0.6312  0.3378 

Seed rate only       

1-time seed rate 539.70  1318.00  67.32  

3-time seed rate 751.52  1923.33  80.45  

  0.0878  0.1095  0.3302 
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Two of the three 3-time seed rate sections on the northwest-facing aspect corresponded to 

sections believed to be influenced by the fragipan. Consequently, the greater runoff levels may 

have influenced the erosion rates from the soil primarily in the water bars (Fig. 15). However, 

the 3-time seed rate sections on the southeast-facing aspect were not influenced by a fragipan 

and these sections still produced more sediment than the 1-time seeded sections on the southeast-

facing aspect (Table 11). Consequently, the additional seed application may not be necessary for 

controlling erosion because it did not appear to provide a reduction in erosion losses. 

Precipitation 

 Total annual precipitation for 2009 at the Fernow Experimental Forest was  146.95 cm. 

Mean total annual precipitation for the previous 30 years (1979-2009) was 148.34 cm; 

consequently, total precipitation was near average during the study period (Table 12).   

Table 12.  Monthly precipitation totals during the study period. The totals for June 2009 and June 

2010 are partial sums because the start and end dates of the study occurred in the middle of those 

months.  

Year Month Precipitation   

  (cm) 

2009 June 7.38 

2009 July 17.28 

2009 August 10.21 

2009 September 5.95 

2009 October 16.86 

2009 November 2.95 

2009 December 11.47 

2010 January 10.78 

2010 February 11.55 

2010 March 6.92 

2010 April 5.99 

2010 May 14.15 

2010 June 6.89 
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Of the precipitation variables examined in the precipitation model, utilizing the 

precipitation data from the 19 individual events, 30-min maximum intensity explained the 

greatest variability in sediment concentrations (R
2 

= 0.4910 and C(p) = 0.7351). Sediment 

concentrations versus 30-min. maximum intensity (Fig. 18) for the 19 individual sampled 

precipitation events illustrate that a significant linear relationship existed between the two 

variables (p = 0.002). Other studies by Nichols and Sexton (1932), Reid et al. (1999), Holz 

(2009), and Bold et al. (2010) also found rainfall intensity to be an important factor influencing 

erosion.  

The other precipitation characteristics that were analyzed individually explained much 

less of the variability in sediment concentrations than intensity. Intensity and duration variables 

were included in the best two-variable model but could only explain 1.61 percent more 

variability than then one variable (intensity) model. Intensity, duration, and total precipitation 

amount combined was the best three variable model but only explained an additional 2.38 

percent in variability compared to the one variable model. Consequently, based on the C(p) 

values for the two and three-variable models the single variable model was the best model for 

predicting soil losses.      
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Figure 18. Sediment loss vs. 30-minute maximum intensity based on the 19 individual storm 

events.   

Management Implications 

As discussed previously, the excess flow from sections on the northwest-facing side is 

believed to be attributable to the fragic layer beneath the surface and the water bar construction. 

Physical characteristics cannot be controlled; however, it may be possible to alter water bar 

dimensions to reduce the potential for intercepting subsurface flow. Managers may want to 

consider constructing water bars in a manner that would avoid intercepting less subsurface flow 

while still controlling drainage. Water bar specifications may include a more shallow depth of 

the base, with most of the water bar being located on the soil surface. This would require 

scraping a longer length of soil surface to build each water bar.   

The sediment concentrations from the two seed application rates indicated that the 3-time 

seed rate sections had higher amounts of erosion but the results were almost assuredly affected 
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by the physical characteristics of the study section on the northwest-facing aspect. The vegetative 

cover was greater for the 3-time seed rate sections (66%) than the 1-time seed rate sections 

(54%), disregarding aspect. However, removing the influence of greater runoff by focusing only 

on the southeast-facing sections, the higher seed rate did provide greater vegetative cover (79%) 

than the 1-time seed rate sections (55%), but it did not result in reducing erosion. Therefore, 

managers must decide if the cost of establishing greater vegetative cover (in this case by using an 

additional 100 lb ac
-1

 application) for what ultimately may be simply an improvement in 

aesthetics is worthwhile.      

 Rainfall intensity had a strong relationship with erosion rates. Managers cannot control 

rainfall intensity, but they can control the timing of the construction and the exposure of soil to 

intense rain events. The summer months in this region hold a greater potential for high intensity 

storm events than the fall season. Therefore, planning construction to occur during the fall 

months may reduce the soil erosion potential.  However, because of the lower rainfall and 

extremely limited time to get vegetation established prior to the onset of winter, substantial soil 

cover in the form of thick mulch or some other material would be necessary to protect the soil 

prior to seeding in the subsequent spring or early summer. 

Future Research 

The exploration of natural gas will continue as the nation’s dependency on gas, oil, and 

coal increases. Further research is essential to determine the environmental impacts of natural 

gas exploration and natural gas pipeline construction. Future research should focus on 

implementing a study that has similar research objectives to this study. The physical 
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characteristics of the study site like the contributing area, fragic layer, and scarp slope may have 

influenced the total volume of runoff and sediment that was collected from the study sections on 

the northwest-facing side. The results for this study may have been masked by the influences of 

these factors for the vegetative cover, seed application rate, aspect class, and slope class 

analyses.  

Given more time and resources it would have been beneficial to take additional sets of 

percent vegetative cover photographs to compare sediment losses to percent vegetative cover 

with the passage of time. The first set would be more useful in this sort of comparison if it 

captured the cover before it had almost an entire growing season to become established. The 

second set then could be taken after the first growing season and finally a third set could be 

useful for after a second growing season had passed. The comparison of vegetative cover and its 

associated sediment losses would be important in determining how soil is impacted by vegetation 

recovery over time on this natural gas pipeline right-of-way.    
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CHAPTER 5 

CONCLUSION 

Contributing area appeared to influence the amount of runoff in sections with water bars 

due to interception of the subsurface flow by the water bars. The difference in erosion rates 

between the two aspects is indicative of the greater runoff. Runoff also seemed to have been 

augmented by the presence of a fragic soil layer in some pipeline segments. A fragic layer was 

found in a nearby soil pit, but the variability in the runoff among pipeline sections suggests that 

the layer may have been discontinuous. The presence of the fragic layer likely allowed 

substantial subsurface flow to become emergent in the water bars, but in the sections apparently 

absent of the fragic layer the surface runoff rates were much less.      

It is no surprise that erosion rates were strongly affected by the amount of runoff; 

therefore, methods to control surface runoff or emergence of subsurface flow could be useful. 

Traditional BMPs like soil amendments (e.g., addition of seed and mulch) and the installation of 

water bars following construction are used to reduce the amount of sediment losses from pipeline 

rights-of-ways. However in the current situation, different water bar construction techniques may 

be useful to reduce the interception of subsurface flow. Water bar specifications may include a 

more shallow depth of the base, with more water bar fill being placed on the soil surface. This 

would require scraping a longer length of soil surface to build each water bar.   

Initial vegetative establishment was much quicker on the 3-time seed rates sections than 

the 1-time seed rate sections. However, there was little difference in total erosion and sediment 

concentrations between study sections with the two different seed rates where the fragic layer 
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influences were not present. In addition, as the first growing season came to an end, the percent 

vegetative cover establishment was very similar between the study sections of the two seed rates. 

All of the study sections reached 50 percent vegetative cover which has been shown to be the 

threshold needed to provide effective erosion control. The exponential reduction of sediment 

concentrations indicated that once vegetative cover reached 50-60 percent, erosion declined. This 

highlights the importance of not only establishing adequate vegetation cover as quickly as 

possible to limit erosion, but also that the 1-time seed rate utilizing native species was adequate 

in doing so.  
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APPENDIX A. Soil pit 1, 2, and 3 field notes and soil description.  

 

Pit #/Location   1/northwest facing side    Soil type   Calvin (Shouns)  File no.  SJC            

Area      Pipeline Erosion Study     Date    June 3, 2010    Stop no.______  

Classification              Colluvium over residuum           

Location          Fernow Exp. Station    

N. veg. (or crop)     hardwood, red oak, greenbrier      Climate    mesic       

Parent material siltstone/ sandstone Hampshire   

Physiography      Allegheny Mtns   

Relief     back slope     Drainage    mod well     Salt or alkali____________ 

Elevation____________Gr. Water________________Stoniness____________ 

Slope________________________Moisture__________________ 

Aspect_______________Root distrib._________________% clay______________ 

Erosion___________% Coarse fragments________% Coarser than V.F.S.________ 

Permeability__________________________________ 

Additional notes   Bt wet water moving thru profile (not argillic horizon but clayskins     

present in the Bt layer)            

Top 50 cm (little rock component) Mixed sands (fine, silt)     
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Oe/ 

Oa 
0-3 O horizon decomposed       

A 3-8  
7.5 yr 

3/2 
Sil 2 fgr   vfr  cw 

3vf 

2m 

3f 

 10% Gr 

BA 8-17  
7.5 yr 

3/4 
Sil 

lmsbk/ 

2mgr 
  vfr  cs 

3vf 

3f 

3m  

 10% Gr 

Bw 
17-

50 
 

7.5 yr 

4/4 
SiCl 2 msbk   fr  cs 

3f 

1vf 

1m 

 20% Gr 

Bt 
50-

80 
 

7.5 yr 

4/4 
SiCl 

2 msbk/ 

2fsbk 
  fi  cs 

2f 

1vf 

2 pr on 

ped faces 

& rocks 

25% Fl 

40% Gr 

25%Cb 

Cr 
80-

108 
Boulder decomposing in place w/ a small amount of __  90% Bld 

BC 
108-

125 
 

7.5 yr 

3/4 
SiC m   vfi  cs 1f  30% Gr 

Cr 125 green siltstone       __ __   
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Pit #/Location   2/northwest facing side    Soil type      Calvin         File no.    SJC            

Area      Pipeline Study Fernow    Date    June 8, 2010    Stop no.______  

Classification                             

Location          Fernow Exp. Station    

N. veg. (or crop)     NRO, PM, SM beech midstory      Climate    mesic       

Parent material  Hampshire   residuum    

Physiography      Allegheny Mtns   

Relief     bench (ridge)     Drainage    well drained     Salt or alkali____________ 

Elevation____________Gr. Water________________Stoniness     <0.1%       

Slope    10%   Moisture__________________ 

Aspect  289 ⁰ W Root distrib._________________% clay______________ 

Erosion___________% Coarse fragments________% Coarser than V.F.S.________ 

Permeability__________________________________ 

Additional notes________________________________________________________ 
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Oi 0-3 hardwood leaf        

Oe 3-6 highly decomposing       

Oa 6-11             

A 
11-

17 
 

7.5 yr 

3/1 
Sil 2 fgr  vfr    3 vf 3 f  

15% 

gr 

BA 
17-

34 
 

7.5 yr 

3/4 
Sil 

2 fgr 

lmsbk 
 fr    

3 flc 1vf 

2m 
 

15% 

gr 

Bt 
34-

47 
 

7.5 yr 

3/4 
L 2 msbk  fr    1f 1vf 2m 

1f dis 

<15% 

30% 

gr 

BC 
47-

57 
 

7.5 yr 

4/4 
L m2fsbk  fi    2f  

40% 

gr 

C 
57-

79 
 5 yr 4/4 L m  vfi    1f  

45% 

gr 

Cr decomposing shale         
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Pit #/Location 3/southeast facing side  Soil type    Calvin  (low base)        File no.  SJC            

Area      Pipeline Study Fernow    Date    June 8, 2010    Stop no.______  

Classification                             

Location          Fernow Exp. Station    

N. veg. (or crop)     NRO, SM, chestnut oak beech midstory      Climate    mesic       

Parent material  Hampshire   residuum    

Physiography      Allegheny Mtns   

Relief     backslope     Drainage    well drained     Salt or alkali____________ 

Elevation___________Gr. Water__________Stoniness     1% 3% (flags/Stones covered)       

Slope    65%   Moisture__________________ 

Aspect   S 60 ⁰ E Root distrib._________________% clay______________ 

Erosion___________% Coarse fragments________% Coarser than V.F.S.________ 

Permeability__________________________________ 

Additional notes     pit to the left of the face of the pipeline     

<30% rock top 30 cm, increase % rock ~30-50%; fractured bedrock   

Bw2  soil in pockets along rock fractures         
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Oe 0-2 decaying hardwood leaf litter cs    

A 2-7  
10 yr 

3/3 
Sil 1 fgr  vfr   cw 2vf, f m  15% gr 5% flags 

BA 7-22  
10 yr 

4/4 
Sil 

1 fgr 

1msbk 
 fr   cw 

3f 2m 

1vf 
 

5% gr 10% ch 

10% fl 

Bw1 22-52  
7.5 yr 

4/3 
L 2 msbk  fr   cs 1f  30% fl 30% ch 

Bw2 
52-

115 
 

10 yr 

5/4  

5 yr 

4/3 

L 1 msbk  fi   iw   80%fl 

Cr 115+ decomposing shale b/w harder rock, crumbles in hand     
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